2003-06-12 Aldy Hernandez <aldyh@redhat.com>
[official-gcc.git] / libiberty / hashtab.c
blob3896328717a37d3b04bc6cfa58348f56af6c8a93
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
38 #include <sys/types.h>
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
48 #include <stdio.h>
50 #include "libiberty.h"
51 #include "hashtab.h"
53 /* This macro defines reserved value for empty table entry. */
55 #define EMPTY_ENTRY ((PTR) 0)
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
60 #define DELETED_ENTRY ((PTR) 1)
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
74 /* The following function returns a nearest prime number which is
75 greater than N, and near a power of two. */
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
81 /* These are primes that are near, but slightly smaller than, a
82 power of two. */
83 static const unsigned long primes[] = {
84 (unsigned long) 7,
85 (unsigned long) 13,
86 (unsigned long) 31,
87 (unsigned long) 61,
88 (unsigned long) 127,
89 (unsigned long) 251,
90 (unsigned long) 509,
91 (unsigned long) 1021,
92 (unsigned long) 2039,
93 (unsigned long) 4093,
94 (unsigned long) 8191,
95 (unsigned long) 16381,
96 (unsigned long) 32749,
97 (unsigned long) 65521,
98 (unsigned long) 131071,
99 (unsigned long) 262139,
100 (unsigned long) 524287,
101 (unsigned long) 1048573,
102 (unsigned long) 2097143,
103 (unsigned long) 4194301,
104 (unsigned long) 8388593,
105 (unsigned long) 16777213,
106 (unsigned long) 33554393,
107 (unsigned long) 67108859,
108 (unsigned long) 134217689,
109 (unsigned long) 268435399,
110 (unsigned long) 536870909,
111 (unsigned long) 1073741789,
112 (unsigned long) 2147483647,
113 /* 4294967291L */
114 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
117 const unsigned long *low = &primes[0];
118 const unsigned long *high = &primes[sizeof(primes) / sizeof(primes[0])];
120 while (low != high)
122 const unsigned long *mid = low + (high - low) / 2;
123 if (n > *mid)
124 low = mid + 1;
125 else
126 high = mid;
129 /* If we've run out of primes, abort. */
130 if (n > *low)
132 fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
133 abort ();
136 return *low;
139 /* Returns a hash code for P. */
141 static hashval_t
142 hash_pointer (p)
143 const PTR p;
145 return (hashval_t) ((long)p >> 3);
148 /* Returns non-zero if P1 and P2 are equal. */
150 static int
151 eq_pointer (p1, p2)
152 const PTR p1;
153 const PTR p2;
155 return p1 == p2;
158 /* This function creates table with length slightly longer than given
159 source length. Created hash table is initiated as empty (all the
160 hash table entries are EMPTY_ENTRY). The function returns the
161 created hash table, or NULL if memory allocation fails. */
163 htab_t
164 htab_create_alloc (size, hash_f, eq_f, del_f, alloc_f, free_f)
165 size_t size;
166 htab_hash hash_f;
167 htab_eq eq_f;
168 htab_del del_f;
169 htab_alloc alloc_f;
170 htab_free free_f;
172 htab_t result;
174 size = higher_prime_number (size);
175 result = (htab_t) (*alloc_f) (1, sizeof (struct htab));
176 if (result == NULL)
177 return NULL;
178 result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR));
179 if (result->entries == NULL)
181 if (free_f != NULL)
182 (*free_f) (result);
183 return NULL;
185 result->size = size;
186 result->hash_f = hash_f;
187 result->eq_f = eq_f;
188 result->del_f = del_f;
189 result->alloc_f = alloc_f;
190 result->free_f = free_f;
191 return result;
194 /* As above, but use the variants of alloc_f and free_f which accept
195 an extra argument. */
197 htab_t
198 htab_create_alloc_ex (size, hash_f, eq_f, del_f, alloc_arg, alloc_f,
199 free_f)
200 size_t size;
201 htab_hash hash_f;
202 htab_eq eq_f;
203 htab_del del_f;
204 PTR alloc_arg;
205 htab_alloc_with_arg alloc_f;
206 htab_free_with_arg free_f;
208 htab_t result;
210 size = higher_prime_number (size);
211 result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab));
212 if (result == NULL)
213 return NULL;
214 result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR));
215 if (result->entries == NULL)
217 if (free_f != NULL)
218 (*free_f) (alloc_arg, result);
219 return NULL;
221 result->size = size;
222 result->hash_f = hash_f;
223 result->eq_f = eq_f;
224 result->del_f = del_f;
225 result->alloc_arg = alloc_arg;
226 result->alloc_with_arg_f = alloc_f;
227 result->free_with_arg_f = free_f;
228 return result;
231 /* Update the function pointers and allocation parameter in the htab_t. */
233 void
234 htab_set_functions_ex (htab, hash_f, eq_f, del_f, alloc_arg, alloc_f, free_f)
235 htab_t htab;
236 htab_hash hash_f;
237 htab_eq eq_f;
238 htab_del del_f;
239 PTR alloc_arg;
240 htab_alloc_with_arg alloc_f;
241 htab_free_with_arg free_f;
243 htab->hash_f = hash_f;
244 htab->eq_f = eq_f;
245 htab->del_f = del_f;
246 htab->alloc_arg = alloc_arg;
247 htab->alloc_with_arg_f = alloc_f;
248 htab->free_with_arg_f = free_f;
251 /* These functions exist solely for backward compatibility. */
253 #undef htab_create
254 htab_t
255 htab_create (size, hash_f, eq_f, del_f)
256 size_t size;
257 htab_hash hash_f;
258 htab_eq eq_f;
259 htab_del del_f;
261 return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free);
264 htab_t
265 htab_try_create (size, hash_f, eq_f, del_f)
266 size_t size;
267 htab_hash hash_f;
268 htab_eq eq_f;
269 htab_del del_f;
271 return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free);
274 /* This function frees all memory allocated for given hash table.
275 Naturally the hash table must already exist. */
277 void
278 htab_delete (htab)
279 htab_t htab;
281 int i;
283 if (htab->del_f)
284 for (i = htab->size - 1; i >= 0; i--)
285 if (htab->entries[i] != EMPTY_ENTRY
286 && htab->entries[i] != DELETED_ENTRY)
287 (*htab->del_f) (htab->entries[i]);
289 if (htab->free_f != NULL)
291 (*htab->free_f) (htab->entries);
292 (*htab->free_f) (htab);
294 else if (htab->free_with_arg_f != NULL)
296 (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries);
297 (*htab->free_with_arg_f) (htab->alloc_arg, htab);
301 /* This function clears all entries in the given hash table. */
303 void
304 htab_empty (htab)
305 htab_t htab;
307 int i;
309 if (htab->del_f)
310 for (i = htab->size - 1; i >= 0; i--)
311 if (htab->entries[i] != EMPTY_ENTRY
312 && htab->entries[i] != DELETED_ENTRY)
313 (*htab->del_f) (htab->entries[i]);
315 memset (htab->entries, 0, htab->size * sizeof (PTR));
318 /* Similar to htab_find_slot, but without several unwanted side effects:
319 - Does not call htab->eq_f when it finds an existing entry.
320 - Does not change the count of elements/searches/collisions in the
321 hash table.
322 This function also assumes there are no deleted entries in the table.
323 HASH is the hash value for the element to be inserted. */
325 static PTR *
326 find_empty_slot_for_expand (htab, hash)
327 htab_t htab;
328 hashval_t hash;
330 size_t size = htab->size;
331 unsigned int index = hash % size;
332 PTR *slot = htab->entries + index;
333 hashval_t hash2;
335 if (*slot == EMPTY_ENTRY)
336 return slot;
337 else if (*slot == DELETED_ENTRY)
338 abort ();
340 hash2 = 1 + hash % (size - 2);
341 for (;;)
343 index += hash2;
344 if (index >= size)
345 index -= size;
347 slot = htab->entries + index;
348 if (*slot == EMPTY_ENTRY)
349 return slot;
350 else if (*slot == DELETED_ENTRY)
351 abort ();
355 /* The following function changes size of memory allocated for the
356 entries and repeatedly inserts the table elements. The occupancy
357 of the table after the call will be about 50%. Naturally the hash
358 table must already exist. Remember also that the place of the
359 table entries is changed. If memory allocation failures are allowed,
360 this function will return zero, indicating that the table could not be
361 expanded. If all goes well, it will return a non-zero value. */
363 static int
364 htab_expand (htab)
365 htab_t htab;
367 PTR *oentries;
368 PTR *olimit;
369 PTR *p;
370 PTR *nentries;
371 size_t nsize;
373 oentries = htab->entries;
374 olimit = oentries + htab->size;
376 /* Resize only when table after removal of unused elements is either
377 too full or too empty. */
378 if ((htab->n_elements - htab->n_deleted) * 2 > htab->size
379 || ((htab->n_elements - htab->n_deleted) * 8 < htab->size
380 && htab->size > 32))
381 nsize = higher_prime_number ((htab->n_elements - htab->n_deleted) * 2);
382 else
383 nsize = htab->size;
385 if (htab->alloc_with_arg_f != NULL)
386 nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize,
387 sizeof (PTR *));
388 else
389 nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *));
390 if (nentries == NULL)
391 return 0;
392 htab->entries = nentries;
393 htab->size = nsize;
395 htab->n_elements -= htab->n_deleted;
396 htab->n_deleted = 0;
398 p = oentries;
401 PTR x = *p;
403 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
405 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
407 *q = x;
410 p++;
412 while (p < olimit);
414 if (htab->free_f != NULL)
415 (*htab->free_f) (oentries);
416 else if (htab->free_with_arg_f != NULL)
417 (*htab->free_with_arg_f) (htab->alloc_arg, oentries);
418 return 1;
421 /* This function searches for a hash table entry equal to the given
422 element. It cannot be used to insert or delete an element. */
425 htab_find_with_hash (htab, element, hash)
426 htab_t htab;
427 const PTR element;
428 hashval_t hash;
430 unsigned int index;
431 hashval_t hash2;
432 size_t size;
433 PTR entry;
435 htab->searches++;
436 size = htab->size;
437 index = hash % size;
439 entry = htab->entries[index];
440 if (entry == EMPTY_ENTRY
441 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
442 return entry;
444 hash2 = 1 + hash % (size - 2);
446 for (;;)
448 htab->collisions++;
449 index += hash2;
450 if (index >= size)
451 index -= size;
453 entry = htab->entries[index];
454 if (entry == EMPTY_ENTRY
455 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
456 return entry;
460 /* Like htab_find_slot_with_hash, but compute the hash value from the
461 element. */
464 htab_find (htab, element)
465 htab_t htab;
466 const PTR element;
468 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
471 /* This function searches for a hash table slot containing an entry
472 equal to the given element. To delete an entry, call this with
473 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
474 after doing some checks). To insert an entry, call this with
475 INSERT = 1, then write the value you want into the returned slot.
476 When inserting an entry, NULL may be returned if memory allocation
477 fails. */
479 PTR *
480 htab_find_slot_with_hash (htab, element, hash, insert)
481 htab_t htab;
482 const PTR element;
483 hashval_t hash;
484 enum insert_option insert;
486 PTR *first_deleted_slot;
487 unsigned int index;
488 hashval_t hash2;
489 size_t size;
490 PTR entry;
492 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
493 && htab_expand (htab) == 0)
494 return NULL;
496 size = htab->size;
497 index = hash % size;
499 htab->searches++;
500 first_deleted_slot = NULL;
502 entry = htab->entries[index];
503 if (entry == EMPTY_ENTRY)
504 goto empty_entry;
505 else if (entry == DELETED_ENTRY)
506 first_deleted_slot = &htab->entries[index];
507 else if ((*htab->eq_f) (entry, element))
508 return &htab->entries[index];
510 hash2 = 1 + hash % (size - 2);
511 for (;;)
513 htab->collisions++;
514 index += hash2;
515 if (index >= size)
516 index -= size;
518 entry = htab->entries[index];
519 if (entry == EMPTY_ENTRY)
520 goto empty_entry;
521 else if (entry == DELETED_ENTRY)
523 if (!first_deleted_slot)
524 first_deleted_slot = &htab->entries[index];
526 else if ((*htab->eq_f) (entry, element))
527 return &htab->entries[index];
530 empty_entry:
531 if (insert == NO_INSERT)
532 return NULL;
534 htab->n_elements++;
536 if (first_deleted_slot)
538 *first_deleted_slot = EMPTY_ENTRY;
539 return first_deleted_slot;
542 return &htab->entries[index];
545 /* Like htab_find_slot_with_hash, but compute the hash value from the
546 element. */
548 PTR *
549 htab_find_slot (htab, element, insert)
550 htab_t htab;
551 const PTR element;
552 enum insert_option insert;
554 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
555 insert);
558 /* This function deletes an element with the given value from hash
559 table. If there is no matching element in the hash table, this
560 function does nothing. */
562 void
563 htab_remove_elt (htab, element)
564 htab_t htab;
565 PTR element;
567 PTR *slot;
569 slot = htab_find_slot (htab, element, NO_INSERT);
570 if (*slot == EMPTY_ENTRY)
571 return;
573 if (htab->del_f)
574 (*htab->del_f) (*slot);
576 *slot = DELETED_ENTRY;
577 htab->n_deleted++;
580 /* This function clears a specified slot in a hash table. It is
581 useful when you've already done the lookup and don't want to do it
582 again. */
584 void
585 htab_clear_slot (htab, slot)
586 htab_t htab;
587 PTR *slot;
589 if (slot < htab->entries || slot >= htab->entries + htab->size
590 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
591 abort ();
593 if (htab->del_f)
594 (*htab->del_f) (*slot);
596 *slot = DELETED_ENTRY;
597 htab->n_deleted++;
600 /* This function scans over the entire hash table calling
601 CALLBACK for each live entry. If CALLBACK returns false,
602 the iteration stops. INFO is passed as CALLBACK's second
603 argument. */
605 void
606 htab_traverse_noresize (htab, callback, info)
607 htab_t htab;
608 htab_trav callback;
609 PTR info;
611 PTR *slot;
612 PTR *limit;
614 slot = htab->entries;
615 limit = slot + htab->size;
619 PTR x = *slot;
621 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
622 if (!(*callback) (slot, info))
623 break;
625 while (++slot < limit);
628 /* Like htab_traverse_noresize, but does resize the table when it is
629 too empty to improve effectivity of subsequent calls. */
631 void
632 htab_traverse (htab, callback, info)
633 htab_t htab;
634 htab_trav callback;
635 PTR info;
637 if ((htab->n_elements - htab->n_deleted) * 8 < htab->size)
638 htab_expand (htab);
640 htab_traverse_noresize (htab, callback, info);
643 /* Return the current size of given hash table. */
645 size_t
646 htab_size (htab)
647 htab_t htab;
649 return htab->size;
652 /* Return the current number of elements in given hash table. */
654 size_t
655 htab_elements (htab)
656 htab_t htab;
658 return htab->n_elements - htab->n_deleted;
661 /* Return the fraction of fixed collisions during all work with given
662 hash table. */
664 double
665 htab_collisions (htab)
666 htab_t htab;
668 if (htab->searches == 0)
669 return 0.0;
671 return (double) htab->collisions / (double) htab->searches;
674 /* Hash P as a null-terminated string.
676 Copied from gcc/hashtable.c. Zack had the following to say with respect
677 to applicability, though note that unlike hashtable.c, this hash table
678 implementation re-hashes rather than chain buckets.
680 http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
681 From: Zack Weinberg <zackw@panix.com>
682 Date: Fri, 17 Aug 2001 02:15:56 -0400
684 I got it by extracting all the identifiers from all the source code
685 I had lying around in mid-1999, and testing many recurrences of
686 the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
687 prime numbers or the appropriate identity. This was the best one.
688 I don't remember exactly what constituted "best", except I was
689 looking at bucket-length distributions mostly.
691 So it should be very good at hashing identifiers, but might not be
692 as good at arbitrary strings.
694 I'll add that it thoroughly trounces the hash functions recommended
695 for this use at http://burtleburtle.net/bob/hash/index.html, both
696 on speed and bucket distribution. I haven't tried it against the
697 function they just started using for Perl's hashes. */
699 hashval_t
700 htab_hash_string (p)
701 const PTR p;
703 const unsigned char *str = (const unsigned char *) p;
704 hashval_t r = 0;
705 unsigned char c;
707 while ((c = *str++) != 0)
708 r = r * 67 + c - 113;
710 return r;
713 /* DERIVED FROM:
714 --------------------------------------------------------------------
715 lookup2.c, by Bob Jenkins, December 1996, Public Domain.
716 hash(), hash2(), hash3, and mix() are externally useful functions.
717 Routines to test the hash are included if SELF_TEST is defined.
718 You can use this free for any purpose. It has no warranty.
719 --------------------------------------------------------------------
723 --------------------------------------------------------------------
724 mix -- mix 3 32-bit values reversibly.
725 For every delta with one or two bit set, and the deltas of all three
726 high bits or all three low bits, whether the original value of a,b,c
727 is almost all zero or is uniformly distributed,
728 * If mix() is run forward or backward, at least 32 bits in a,b,c
729 have at least 1/4 probability of changing.
730 * If mix() is run forward, every bit of c will change between 1/3 and
731 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
732 mix() was built out of 36 single-cycle latency instructions in a
733 structure that could supported 2x parallelism, like so:
734 a -= b;
735 a -= c; x = (c>>13);
736 b -= c; a ^= x;
737 b -= a; x = (a<<8);
738 c -= a; b ^= x;
739 c -= b; x = (b>>13);
741 Unfortunately, superscalar Pentiums and Sparcs can't take advantage
742 of that parallelism. They've also turned some of those single-cycle
743 latency instructions into multi-cycle latency instructions. Still,
744 this is the fastest good hash I could find. There were about 2^^68
745 to choose from. I only looked at a billion or so.
746 --------------------------------------------------------------------
748 /* same, but slower, works on systems that might have 8 byte hashval_t's */
749 #define mix(a,b,c) \
751 a -= b; a -= c; a ^= (c>>13); \
752 b -= c; b -= a; b ^= (a<< 8); \
753 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
754 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
755 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
756 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
757 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
758 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
759 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
763 --------------------------------------------------------------------
764 hash() -- hash a variable-length key into a 32-bit value
765 k : the key (the unaligned variable-length array of bytes)
766 len : the length of the key, counting by bytes
767 level : can be any 4-byte value
768 Returns a 32-bit value. Every bit of the key affects every bit of
769 the return value. Every 1-bit and 2-bit delta achieves avalanche.
770 About 36+6len instructions.
772 The best hash table sizes are powers of 2. There is no need to do
773 mod a prime (mod is sooo slow!). If you need less than 32 bits,
774 use a bitmask. For example, if you need only 10 bits, do
775 h = (h & hashmask(10));
776 In which case, the hash table should have hashsize(10) elements.
778 If you are hashing n strings (ub1 **)k, do it like this:
779 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
781 By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
782 code any way you wish, private, educational, or commercial. It's free.
784 See http://burtleburtle.net/bob/hash/evahash.html
785 Use for hash table lookup, or anything where one collision in 2^32 is
786 acceptable. Do NOT use for cryptographic purposes.
787 --------------------------------------------------------------------
790 hashval_t iterative_hash (k_in, length, initval)
791 const PTR k_in; /* the key */
792 register size_t length; /* the length of the key */
793 register hashval_t initval; /* the previous hash, or an arbitrary value */
795 register const unsigned char *k = (const unsigned char *)k_in;
796 register hashval_t a,b,c,len;
798 /* Set up the internal state */
799 len = length;
800 a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
801 c = initval; /* the previous hash value */
803 /*---------------------------------------- handle most of the key */
804 #ifndef WORDS_BIGENDIAN
805 /* On a little-endian machine, if the data is 4-byte aligned we can hash
806 by word for better speed. This gives nondeterministic results on
807 big-endian machines. */
808 if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0)
809 while (len >= 12) /* aligned */
811 a += *(hashval_t *)(k+0);
812 b += *(hashval_t *)(k+4);
813 c += *(hashval_t *)(k+8);
814 mix(a,b,c);
815 k += 12; len -= 12;
817 else /* unaligned */
818 #endif
819 while (len >= 12)
821 a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24));
822 b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24));
823 c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24));
824 mix(a,b,c);
825 k += 12; len -= 12;
828 /*------------------------------------- handle the last 11 bytes */
829 c += length;
830 switch(len) /* all the case statements fall through */
832 case 11: c+=((hashval_t)k[10]<<24);
833 case 10: c+=((hashval_t)k[9]<<16);
834 case 9 : c+=((hashval_t)k[8]<<8);
835 /* the first byte of c is reserved for the length */
836 case 8 : b+=((hashval_t)k[7]<<24);
837 case 7 : b+=((hashval_t)k[6]<<16);
838 case 6 : b+=((hashval_t)k[5]<<8);
839 case 5 : b+=k[4];
840 case 4 : a+=((hashval_t)k[3]<<24);
841 case 3 : a+=((hashval_t)k[2]<<16);
842 case 2 : a+=((hashval_t)k[1]<<8);
843 case 1 : a+=k[0];
844 /* case 0: nothing left to add */
846 mix(a,b,c);
847 /*-------------------------------------------- report the result */
848 return c;