1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
23 #include "coretypes.h"
28 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
36 #include "langhooks.h"
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
50 The routines in this file are concerned with creating this operand cache
53 get_stmt_operands() in the primary entry point.
55 The operand tree is the parsed by the various get_* routines which look
56 through the stmt tree for the occurrence of operands which may be of
57 interest, and calls are made to the append_* routines whenever one is
58 found. There are 5 of these routines, each representing one of the
59 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
62 The append_* routines check for duplication, and simply keep a list of
63 unique objects for each operand type in the build_* extendable vectors.
65 Once the stmt tree is completely parsed, the finalize_ssa_operands()
66 routine is called, which proceeds to perform the finalization routine
67 on each of the 5 operand vectors which have been built up.
69 If the stmt had a previous operand cache, the finalization routines
70 attempt to match up the new operands with the old ones. If it's a perfect
71 match, the old vector is simply reused. If it isn't a perfect match, then
72 a new vector is created and the new operands are placed there. For
73 virtual operands, if the previous cache had SSA_NAME version of a
74 variable, and that same variable occurs in the same operands cache, then
75 the new cache vector will also get the same SSA_NAME.
77 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
78 vector for VUSE, then the new vector will also be modified such that
79 it contains 'a_5' rather than 'a'.
84 /* Flags to describe operand properties in get_stmt_operands and helpers. */
86 /* By default, operands are loaded. */
89 /* Operand is the target of an assignment expression or a
90 call-clobbered variable */
91 #define opf_is_def (1 << 0)
93 /* Operand is the target of an assignment expression. */
94 #define opf_kill_def (1 << 1)
96 /* No virtual operands should be created in the expression. This is used
97 when traversing ADDR_EXPR nodes which have different semantics than
98 other expressions. Inside an ADDR_EXPR node, the only operands that we
99 need to consider are indices into arrays. For instance, &a.b[i] should
100 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
102 #define opf_no_vops (1 << 2)
104 /* Array for building all the def operands. */
105 static GTY (()) varray_type build_defs
;
107 /* Array for building all the use operands. */
108 static GTY (()) varray_type build_uses
;
110 /* Array for building all the v_may_def operands. */
111 static GTY (()) varray_type build_v_may_defs
;
113 /* Array for building all the vuse operands. */
114 static GTY (()) varray_type build_vuses
;
116 /* Array for building all the v_must_def operands. */
117 static GTY (()) varray_type build_v_must_defs
;
119 /* True if the operands for call clobbered vars are cached and valid. */
120 bool ssa_call_clobbered_cache_valid
;
121 bool ssa_ro_call_cache_valid
;
123 /* These arrays are the cached operand vectors for call clobbered calls. */
124 static GTY (()) varray_type clobbered_v_may_defs
;
125 static GTY (()) varray_type clobbered_vuses
;
126 static GTY (()) varray_type ro_call_vuses
;
127 static bool clobbered_aliased_loads
;
128 static bool clobbered_aliased_stores
;
129 static bool ro_call_aliased_loads
;
130 static stmt_operands_p parse_old_ops
= NULL
;
132 def_operand_p NULL_DEF_OPERAND_P
= { NULL
};
134 static void note_addressable (tree
, stmt_ann_t
);
135 static void get_expr_operands (tree
, tree
*, int);
136 static void get_asm_expr_operands (tree
);
137 static void get_indirect_ref_operands (tree
, tree
, int);
138 static void get_call_expr_operands (tree
, tree
);
139 static inline void append_def (tree
*);
140 static inline void append_use (tree
*);
141 static void append_v_may_def (tree
);
142 static void append_v_must_def (tree
);
143 static void add_call_clobber_ops (tree
);
144 static void add_call_read_ops (tree
);
145 static void add_stmt_operand (tree
*, stmt_ann_t
, int);
147 /* Return a vector of contiguous memory for NUM def operands. */
149 static inline def_optype
150 allocate_def_optype (unsigned num
)
154 size
= sizeof (struct def_optype_d
) + sizeof (tree
*) * (num
- 1);
155 def_ops
= ggc_alloc (size
);
156 def_ops
->num_defs
= num
;
161 /* Return a vector of contiguous memory for NUM use operands. */
163 static inline use_optype
164 allocate_use_optype (unsigned num
)
168 size
= sizeof (struct use_optype_d
) + sizeof (use_operand_type_t
) * (num
- 1);
169 use_ops
= ggc_alloc (size
);
170 use_ops
->num_uses
= num
;
175 /* Return a vector of contiguous memory for NUM v_may_def operands. */
177 static inline v_may_def_optype
178 allocate_v_may_def_optype (unsigned num
)
180 v_may_def_optype v_may_def_ops
;
182 size
= sizeof (struct v_may_def_optype_d
)
183 + sizeof (v_def_use_operand_type_t
) * (num
- 1);
184 v_may_def_ops
= ggc_alloc (size
);
185 v_may_def_ops
->num_v_may_defs
= num
;
186 return v_may_def_ops
;
190 /* Return a vector of contiguous memory for NUM v_use operands. */
192 static inline vuse_optype
193 allocate_vuse_optype (unsigned num
)
195 vuse_optype vuse_ops
;
197 size
= sizeof (struct vuse_optype_d
)
198 + sizeof (vuse_operand_type_t
) * (num
- 1);
199 vuse_ops
= ggc_alloc (size
);
200 vuse_ops
->num_vuses
= num
;
205 /* Return a vector of contiguous memory for NUM v_must_def operands. */
207 static inline v_must_def_optype
208 allocate_v_must_def_optype (unsigned num
)
210 v_must_def_optype v_must_def_ops
;
212 size
= sizeof (struct v_must_def_optype_d
) + sizeof (v_def_use_operand_type_t
) * (num
- 1);
213 v_must_def_ops
= ggc_alloc (size
);
214 v_must_def_ops
->num_v_must_defs
= num
;
215 return v_must_def_ops
;
219 /* Free memory for USES. */
222 free_uses (use_optype
*uses
)
227 use_optype use
= *uses
;
228 for (x
= 0; x
< use
->num_uses
; x
++)
229 delink_imm_use (&(use
->uses
[x
]));
236 /* Free memory for DEFS. */
239 free_defs (def_optype
*defs
)
249 /* Free memory for VUSES. */
252 free_vuses (vuse_optype
*vuses
)
257 vuse_optype vuse
= *vuses
;
258 for (x
= 0; x
< vuse
->num_vuses
; x
++)
259 delink_imm_use (&(vuse
->vuses
[x
].imm_use
));
266 /* Free memory for V_MAY_DEFS. */
269 free_v_may_defs (v_may_def_optype
*v_may_defs
)
274 v_may_def_optype v_may_def
= *v_may_defs
;
275 for (x
= 0; x
< v_may_def
->num_v_may_defs
; x
++)
276 delink_imm_use (&(v_may_def
->v_may_defs
[x
].imm_use
));
277 ggc_free (*v_may_defs
);
283 /* Free memory for V_MUST_DEFS. */
286 free_v_must_defs (v_must_def_optype
*v_must_defs
)
291 v_must_def_optype v_must_def
= *v_must_defs
;
292 for (x
= 0; x
< v_must_def
->num_v_must_defs
; x
++)
293 delink_imm_use (&(v_must_def
->v_must_defs
[x
].imm_use
));
294 ggc_free (*v_must_defs
);
300 /* Initialize the operand cache routines. */
303 init_ssa_operands (void)
305 VARRAY_TREE_PTR_INIT (build_defs
, 5, "build defs");
306 VARRAY_TREE_PTR_INIT (build_uses
, 10, "build uses");
307 VARRAY_TREE_INIT (build_v_may_defs
, 10, "build v_may_defs");
308 VARRAY_TREE_INIT (build_vuses
, 10, "build vuses");
309 VARRAY_TREE_INIT (build_v_must_defs
, 10, "build v_must_defs");
313 /* Dispose of anything required by the operand routines. */
316 fini_ssa_operands (void)
318 ggc_free (build_defs
);
319 ggc_free (build_uses
);
320 ggc_free (build_v_may_defs
);
321 ggc_free (build_vuses
);
322 ggc_free (build_v_must_defs
);
325 build_v_may_defs
= NULL
;
327 build_v_must_defs
= NULL
;
328 if (clobbered_v_may_defs
)
330 ggc_free (clobbered_v_may_defs
);
331 ggc_free (clobbered_vuses
);
332 clobbered_v_may_defs
= NULL
;
333 clobbered_vuses
= NULL
;
337 ggc_free (ro_call_vuses
);
338 ro_call_vuses
= NULL
;
342 /* Initialize V_USES index INDEX to VAL for STMT. If OLD is present, preserve
343 the position of the may-def in the immediate_use list. */
346 initialize_vuse_operand (vuse_optype vuses
, unsigned int index
, tree val
,
347 tree stmt
, ssa_imm_use_t
*old
)
349 vuse_operand_type_t
*ptr
;
350 ptr
= &(vuses
->vuses
[index
]);
352 ptr
->imm_use
.use
= &(ptr
->use
);
354 relink_imm_use_stmt (&(ptr
->imm_use
), old
, stmt
);
356 link_imm_use_stmt (&(ptr
->imm_use
), ptr
->use
, stmt
);
360 /* Initialize V_MAY_DEF_OPS index X to be DEF = MAY_DEF <USE> for STMT. If
361 OLD is present, preserve the position of the may-def in the immediate_use
365 initialize_v_may_def_operand (v_may_def_optype v_may_def_ops
, unsigned int x
,
366 tree def
, tree use
, tree stmt
, ssa_imm_use_t
*old
)
368 v_def_use_operand_type_t
*ptr
;
369 ptr
= &(v_may_def_ops
->v_may_defs
[x
]);
372 ptr
->imm_use
.use
= &(ptr
->use
);
374 relink_imm_use_stmt (&(ptr
->imm_use
), old
, stmt
);
376 link_imm_use_stmt (&(ptr
->imm_use
), ptr
->use
, stmt
);
380 /* Initialize V_MUST_DEF_OPS index X to be DEF = MUST_DEF <USE> for STMT. If
381 OLD is present, preserve the position of the may-def in the immediate_use
385 initialize_v_must_def_operand (v_must_def_optype v_must_def_ops
, unsigned int x
,
386 tree def
, tree use
, tree stmt
, ssa_imm_use_t
*old
)
388 v_def_use_operand_type_t
*ptr
;
389 ptr
= &(v_must_def_ops
->v_must_defs
[x
]);
392 ptr
->imm_use
.use
= &(ptr
->use
);
394 relink_imm_use_stmt (&(ptr
->imm_use
), old
, stmt
);
396 link_imm_use_stmt (&(ptr
->imm_use
), ptr
->use
, stmt
);
399 /* All the finalize_ssa_* routines do the work required to turn the build_
400 VARRAY into an operand_vector of the appropriate type. The original vector,
401 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
402 old vector is reused, the pointer passed in is set to NULL so that
403 the memory is not freed when the old operands are freed. */
405 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
408 finalize_ssa_defs (def_optype
*old_ops_p
, tree stmt
)
411 def_optype def_ops
, old_ops
;
414 num
= VARRAY_ACTIVE_SIZE (build_defs
);
418 /* There should only be a single real definition per assignment. */
419 gcc_assert ((stmt
&& TREE_CODE (stmt
) != MODIFY_EXPR
) || num
<= 1);
421 old_ops
= *old_ops_p
;
423 /* Compare old vector and new array. */
425 if (stmt
&& old_ops
&& old_ops
->num_defs
== num
)
428 for (x
= 0; x
< num
; x
++)
429 if (old_ops
->defs
[x
].def
!= VARRAY_TREE_PTR (build_defs
, x
))
443 def_ops
= allocate_def_optype (num
);
444 for (x
= 0; x
< num
; x
++)
445 def_ops
->defs
[x
].def
= VARRAY_TREE_PTR (build_defs
, x
);
448 VARRAY_POP_ALL (build_defs
);
454 /* Make sure PTR is inn the correct immediate use list. Since uses are simply
455 pointers into the stmt TREE, there is no way of telling if anyone has
456 changed what this pointer points to via TREE_OPERANDS (exp, 0) = <...>.
457 THe contents are different, but the the pointer is still the same. This
458 routine will check to make sure PTR is in the correct list, and if it isn't
459 put it in the correct list. We cannot simply check the previous node
460 because all nodes in the same stmt might have be changed. */
463 correct_use_link (ssa_imm_use_t
*ptr
, tree stmt
)
468 /* Fold_stmt () may have changed the stmt pointers. */
469 if (ptr
->stmt
!= stmt
)
475 bool stmt_mod
= true;
476 /* Find the first element which isn't a SAFE iterator, is in a different
477 stmt, and is not a a modified stmt, That node is in the correct list,
478 see if we are too. */
482 while (prev
->stmt
== stmt
|| prev
->stmt
== NULL
)
484 if (prev
->use
== NULL
)
487 if ((stmt_mod
= stmt_modified_p (prev
->stmt
)))
491 /* Get the ssa_name of the list the node is in. */
492 if (prev
->use
== NULL
)
496 /* If it's the right list, simply return. */
497 if (root
== *(ptr
->use
))
500 /* Its in the wrong list if we reach here. */
501 delink_imm_use (ptr
);
502 link_imm_use (ptr
, *(ptr
->use
));
506 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
509 finalize_ssa_uses (use_optype
*old_ops_p
, tree stmt
)
511 unsigned num
, x
, num_old
, i
;
512 use_optype use_ops
, old_ops
;
515 num
= VARRAY_ACTIVE_SIZE (build_uses
);
519 #ifdef ENABLE_CHECKING
522 /* If the pointer to the operand is the statement itself, something is
523 wrong. It means that we are pointing to a local variable (the
524 initial call to get_stmt_operands does not pass a pointer to a
526 for (x
= 0; x
< num
; x
++)
527 gcc_assert (*(VARRAY_TREE_PTR (build_uses
, x
)) != stmt
);
530 old_ops
= *old_ops_p
;
531 num_old
= ((stmt
&& old_ops
) ? old_ops
->num_uses
: 0);
533 /* Check if the old vector and the new array are the same. */
535 if (stmt
&& old_ops
&& num_old
== num
)
538 for (x
= 0; x
< num
; x
++)
540 tree
*var_p
= VARRAY_TREE_PTR (build_uses
, x
);
541 tree
*node
= old_ops
->uses
[x
].use
;
542 /* Check the pointer values to see if they are the same. */
555 for (i
= 0; i
< num_old
; i
++)
556 correct_use_link (&(use_ops
->uses
[i
]), stmt
);
560 use_ops
= allocate_use_optype (num
);
561 for (x
= 0; x
< num
; x
++)
563 tree
*var
= VARRAY_TREE_PTR (build_uses
, x
);
564 use_ops
->uses
[x
].use
= var
;
565 for (i
= 0; i
< num_old
; i
++)
567 ssa_imm_use_t
*ptr
= &(old_ops
->uses
[i
]);
570 relink_imm_use_stmt (&(use_ops
->uses
[x
]), ptr
, stmt
);
571 correct_use_link (&(use_ops
->uses
[x
]), stmt
);
576 link_imm_use_stmt (&(use_ops
->uses
[x
]), *var
, stmt
);
579 VARRAY_POP_ALL (build_uses
);
585 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
587 static v_may_def_optype
588 finalize_ssa_v_may_defs (v_may_def_optype
*old_ops_p
, tree stmt
)
590 unsigned num
, x
, i
, old_num
;
591 v_may_def_optype v_may_def_ops
, old_ops
;
595 num
= VARRAY_ACTIVE_SIZE (build_v_may_defs
);
599 old_ops
= *old_ops_p
;
601 /* Check if the old vector and the new array are the same. */
603 if (stmt
&& old_ops
&& old_ops
->num_v_may_defs
== num
)
607 for (x
= 0; x
< num
; x
++)
609 var
= old_ops
->v_may_defs
[x
].def
;
610 if (TREE_CODE (var
) == SSA_NAME
)
611 var
= SSA_NAME_VAR (var
);
612 if (var
!= VARRAY_TREE (build_v_may_defs
, x
))
620 old_num
= (old_ops
? old_ops
->num_v_may_defs
: 0);
624 v_may_def_ops
= old_ops
;
626 for (x
= 0; x
< num
; x
++)
627 correct_use_link (&(v_may_def_ops
->v_may_defs
[x
].imm_use
), stmt
);
631 v_may_def_ops
= allocate_v_may_def_optype (num
);
632 for (x
= 0; x
< num
; x
++)
634 var
= VARRAY_TREE (build_v_may_defs
, x
);
635 /* Look for VAR in the old operands vector. */
636 for (i
= 0; i
< old_num
; i
++)
638 result
= old_ops
->v_may_defs
[i
].def
;
639 if (TREE_CODE (result
) == SSA_NAME
)
640 result
= SSA_NAME_VAR (result
);
643 initialize_v_may_def_operand (v_may_def_ops
, x
,
644 old_ops
->v_may_defs
[i
].def
,
645 old_ops
->v_may_defs
[i
].use
,
647 &(old_ops
->v_may_defs
[i
].imm_use
));
653 initialize_v_may_def_operand (v_may_def_ops
, x
, var
, var
, stmt
,
659 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
661 return v_may_def_ops
;
665 /* Clear the in_list bits and empty the build array for v_may_defs. */
668 cleanup_v_may_defs (void)
671 num
= VARRAY_ACTIVE_SIZE (build_v_may_defs
);
673 for (x
= 0; x
< num
; x
++)
675 tree t
= VARRAY_TREE (build_v_may_defs
, x
);
676 var_ann_t ann
= var_ann (t
);
677 ann
->in_v_may_def_list
= 0;
679 VARRAY_POP_ALL (build_v_may_defs
);
682 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
685 finalize_ssa_vuses (vuse_optype
*old_ops_p
, tree stmt
)
687 unsigned num
, x
, i
, num_v_may_defs
, old_num
;
688 vuse_optype vuse_ops
, old_ops
;
691 num
= VARRAY_ACTIVE_SIZE (build_vuses
);
694 cleanup_v_may_defs ();
698 /* Remove superfluous VUSE operands. If the statement already has a
699 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
700 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
701 suppose that variable 'a' is aliased:
704 # a_3 = V_MAY_DEF <a_2>
707 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
710 num_v_may_defs
= VARRAY_ACTIVE_SIZE (build_v_may_defs
);
712 if (num_v_may_defs
> 0)
716 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_vuses
); i
++)
718 vuse
= VARRAY_TREE (build_vuses
, i
);
719 if (TREE_CODE (vuse
) != SSA_NAME
)
721 var_ann_t ann
= var_ann (vuse
);
722 ann
->in_vuse_list
= 0;
723 if (ann
->in_v_may_def_list
)
725 /* If we found a useless VUSE operand, remove it from the
726 operand array by replacing it with the last active element
727 in the operand array (unless the useless VUSE was the
728 last operand, in which case we simply remove it. */
729 if (i
!= VARRAY_ACTIVE_SIZE (build_vuses
) - 1)
731 VARRAY_TREE (build_vuses
, i
)
732 = VARRAY_TREE (build_vuses
,
733 VARRAY_ACTIVE_SIZE (build_vuses
) - 1);
735 VARRAY_POP (build_vuses
);
737 /* We want to rescan the element at this index, unless
738 this was the last element, in which case the loop
746 /* Clear out the in_list bits. */
747 for (x
= 0; x
< num
; x
++)
749 tree t
= VARRAY_TREE (build_vuses
, x
);
750 if (TREE_CODE (t
) != SSA_NAME
)
752 var_ann_t ann
= var_ann (t
);
753 ann
->in_vuse_list
= 0;
758 num
= VARRAY_ACTIVE_SIZE (build_vuses
);
759 /* We could have reduced the size to zero now, however. */
762 cleanup_v_may_defs ();
766 old_ops
= *old_ops_p
;
768 /* Determine whether vuses is the same as the old vector. */
770 if (stmt
&& old_ops
&& old_ops
->num_vuses
== num
)
774 for (x
= 0; x
< num
; x
++)
777 v
= old_ops
->vuses
[x
].use
;
778 if (TREE_CODE (v
) == SSA_NAME
)
779 v
= SSA_NAME_VAR (v
);
780 if (v
!= VARRAY_TREE (build_vuses
, x
))
788 old_num
= (old_ops
? old_ops
->num_vuses
: 0);
794 for (x
= 0; x
< num
; x
++)
795 correct_use_link (&(vuse_ops
->vuses
[x
].imm_use
), stmt
);
799 vuse_ops
= allocate_vuse_optype (num
);
800 for (x
= 0; x
< num
; x
++)
802 tree result
, var
= VARRAY_TREE (build_vuses
, x
);
803 /* Look for VAR in the old vector, and use that SSA_NAME. */
804 for (i
= 0; i
< old_num
; i
++)
806 result
= old_ops
->vuses
[i
].use
;
807 if (TREE_CODE (result
) == SSA_NAME
)
808 result
= SSA_NAME_VAR (result
);
811 initialize_vuse_operand (vuse_ops
, x
, old_ops
->vuses
[i
].use
,
812 stmt
, &(old_ops
->vuses
[i
].imm_use
));
817 initialize_vuse_operand (vuse_ops
, x
, var
, stmt
, NULL
);
821 /* The v_may_def build vector wasn't freed because we needed it here.
822 Free it now with the vuses build vector. */
823 VARRAY_POP_ALL (build_vuses
);
824 cleanup_v_may_defs ();
829 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
831 static v_must_def_optype
832 finalize_ssa_v_must_defs (v_must_def_optype
*old_ops_p
, tree stmt
)
834 unsigned num
, x
, i
, old_num
= 0;
835 v_must_def_optype v_must_def_ops
, old_ops
;
839 num
= VARRAY_ACTIVE_SIZE (build_v_must_defs
);
843 /* In the presence of subvars, there may be more than one V_MUST_DEF per
844 statement (one for each subvar). It is a bit expensive to verify that
845 all must-defs in a statement belong to subvars if there is more than one
846 MUST-def, so we don't do it. Suffice to say, if you reach here without
847 having subvars, and have num >1, you have hit a bug. */
850 old_ops
= *old_ops_p
;
852 /* Check if the old vector and the new array are the same. */
854 if (stmt
&& old_ops
&& old_ops
->num_v_must_defs
== num
)
858 for (x
= 0; x
< num
; x
++)
860 tree var
= old_ops
->v_must_defs
[x
].def
;
861 if (TREE_CODE (var
) == SSA_NAME
)
862 var
= SSA_NAME_VAR (var
);
863 if (var
!= VARRAY_TREE (build_v_must_defs
, x
))
871 old_num
= (old_ops
? old_ops
->num_v_must_defs
: 0);
875 v_must_def_ops
= old_ops
;
877 for (x
= 0; x
< num
; x
++)
878 correct_use_link (&(v_must_def_ops
->v_must_defs
[x
].imm_use
), stmt
);
882 v_must_def_ops
= allocate_v_must_def_optype (num
);
883 for (x
= 0; x
< num
; x
++)
885 var
= VARRAY_TREE (build_v_must_defs
, x
);
886 /* Look for VAR in the original vector. */
887 for (i
= 0; i
< old_num
; i
++)
889 result
= old_ops
->v_must_defs
[i
].def
;
890 if (TREE_CODE (result
) == SSA_NAME
)
891 result
= SSA_NAME_VAR (result
);
894 initialize_v_must_def_operand (v_must_def_ops
, x
,
895 old_ops
->v_must_defs
[i
].def
,
896 old_ops
->v_must_defs
[i
].use
,
898 &(old_ops
->v_must_defs
[i
].imm_use
));
904 initialize_v_must_def_operand (v_must_def_ops
, x
, var
, var
, stmt
,
909 VARRAY_POP_ALL (build_v_must_defs
);
911 return v_must_def_ops
;
915 /* Finalize all the build vectors, fill the new ones into INFO. */
918 finalize_ssa_stmt_operands (tree stmt
, stmt_operands_p old_ops
,
919 stmt_operands_p new_ops
)
921 new_ops
->def_ops
= finalize_ssa_defs (&(old_ops
->def_ops
), stmt
);
922 new_ops
->use_ops
= finalize_ssa_uses (&(old_ops
->use_ops
), stmt
);
923 new_ops
->v_must_def_ops
924 = finalize_ssa_v_must_defs (&(old_ops
->v_must_def_ops
), stmt
);
925 new_ops
->v_may_def_ops
926 = finalize_ssa_v_may_defs (&(old_ops
->v_may_def_ops
), stmt
);
927 new_ops
->vuse_ops
= finalize_ssa_vuses (&(old_ops
->vuse_ops
), stmt
);
931 /* Start the process of building up operands vectors in INFO. */
934 start_ssa_stmt_operands (void)
936 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs
) == 0);
937 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses
) == 0);
938 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses
) == 0);
939 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs
) == 0);
940 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs
) == 0);
944 /* Add DEF_P to the list of pointers to operands. */
947 append_def (tree
*def_p
)
949 VARRAY_PUSH_TREE_PTR (build_defs
, def_p
);
953 /* Add USE_P to the list of pointers to operands. */
956 append_use (tree
*use_p
)
958 VARRAY_PUSH_TREE_PTR (build_uses
, use_p
);
962 /* Add a new virtual may def for variable VAR to the build array. */
965 append_v_may_def (tree var
)
967 var_ann_t ann
= get_var_ann (var
);
969 /* Don't allow duplicate entries. */
970 if (ann
->in_v_may_def_list
)
972 ann
->in_v_may_def_list
= 1;
974 VARRAY_PUSH_TREE (build_v_may_defs
, var
);
978 /* Add VAR to the list of virtual uses. */
981 append_vuse (tree var
)
984 /* Don't allow duplicate entries. */
985 if (TREE_CODE (var
) != SSA_NAME
)
987 var_ann_t ann
= get_var_ann (var
);
989 if (ann
->in_vuse_list
|| ann
->in_v_may_def_list
)
991 ann
->in_vuse_list
= 1;
994 VARRAY_PUSH_TREE (build_vuses
, var
);
998 /* Add VAR to the list of virtual must definitions for INFO. */
1001 append_v_must_def (tree var
)
1005 /* Don't allow duplicate entries. */
1006 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_v_must_defs
); i
++)
1007 if (var
== VARRAY_TREE (build_v_must_defs
, i
))
1010 VARRAY_PUSH_TREE (build_v_must_defs
, var
);
1014 /* Parse STMT looking for operands. OLD_OPS is the original stmt operand
1015 cache for STMT, if it existed before. When finished, the various build_*
1016 operand vectors will have potential operands. in them. */
1019 parse_ssa_operands (tree stmt
)
1021 enum tree_code code
;
1023 code
= TREE_CODE (stmt
);
1027 /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
1028 either only part of LHS is modified or if the RHS might throw,
1029 otherwise, use V_MUST_DEF.
1031 ??? If it might throw, we should represent somehow that it is killed
1032 on the fallthrough path. */
1034 tree lhs
= TREE_OPERAND (stmt
, 0);
1035 int lhs_flags
= opf_is_def
;
1037 get_expr_operands (stmt
, &TREE_OPERAND (stmt
, 1), opf_none
);
1039 /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
1040 or not the entire LHS is modified; that depends on what's
1041 inside the VIEW_CONVERT_EXPR. */
1042 if (TREE_CODE (lhs
) == VIEW_CONVERT_EXPR
)
1043 lhs
= TREE_OPERAND (lhs
, 0);
1045 if (TREE_CODE (lhs
) != ARRAY_REF
&& TREE_CODE (lhs
) != ARRAY_RANGE_REF
1046 && TREE_CODE (lhs
) != BIT_FIELD_REF
1047 && TREE_CODE (lhs
) != REALPART_EXPR
1048 && TREE_CODE (lhs
) != IMAGPART_EXPR
)
1049 lhs_flags
|= opf_kill_def
;
1051 get_expr_operands (stmt
, &TREE_OPERAND (stmt
, 0), lhs_flags
);
1056 get_expr_operands (stmt
, &COND_EXPR_COND (stmt
), opf_none
);
1060 get_expr_operands (stmt
, &SWITCH_COND (stmt
), opf_none
);
1064 get_asm_expr_operands (stmt
);
1068 get_expr_operands (stmt
, &TREE_OPERAND (stmt
, 0), opf_none
);
1072 get_expr_operands (stmt
, &GOTO_DESTINATION (stmt
), opf_none
);
1076 get_expr_operands (stmt
, &LABEL_EXPR_LABEL (stmt
), opf_none
);
1079 /* These nodes contain no variable references. */
1081 case CASE_LABEL_EXPR
:
1082 case TRY_CATCH_EXPR
:
1083 case TRY_FINALLY_EXPR
:
1084 case EH_FILTER_EXPR
:
1090 /* Notice that if get_expr_operands tries to use &STMT as the operand
1091 pointer (which may only happen for USE operands), we will abort in
1092 append_use. This default will handle statements like empty
1093 statements, or CALL_EXPRs that may appear on the RHS of a statement
1094 or as statements themselves. */
1095 get_expr_operands (stmt
, &stmt
, opf_none
);
1100 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
1101 original operands, and if ANN is non-null, appropriate stmt flags are set
1102 in the stmt's annotation. If ANN is NULL, this is not considered a "real"
1103 stmt, and none of the operands will be entered into their respective
1104 immediate uses tables. This is to allow stmts to be processed when they
1105 are not actually in the CFG.
1107 Note that some fields in old_ops may change to NULL, although none of the
1108 memory they originally pointed to will be destroyed. It is appropriate
1109 to call free_stmt_operands() on the value returned in old_ops.
1111 The rationale for this: Certain optimizations wish to examine the difference
1112 between new_ops and old_ops after processing. If a set of operands don't
1113 change, new_ops will simply assume the pointer in old_ops, and the old_ops
1114 pointer will be set to NULL, indicating no memory needs to be cleared.
1115 Usage might appear something like:
1117 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
1118 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
1119 <* compare old_ops_copy and new_ops *>
1120 free_ssa_operands (old_ops); */
1123 build_ssa_operands (tree stmt
, stmt_ann_t ann
, stmt_operands_p old_ops
,
1124 stmt_operands_p new_ops
)
1126 tree_ann_t saved_ann
= stmt
->common
.ann
;
1128 /* Replace stmt's annotation with the one passed in for the duration
1129 of the operand building process. This allows "fake" stmts to be built
1130 and not be included in other data structures which can be built here. */
1131 stmt
->common
.ann
= (tree_ann_t
) ann
;
1133 parse_old_ops
= old_ops
;
1135 /* Initially assume that the statement has no volatile operands, nor
1136 makes aliased loads or stores. */
1139 ann
->has_volatile_ops
= false;
1140 ann
->makes_aliased_stores
= false;
1141 ann
->makes_aliased_loads
= false;
1144 start_ssa_stmt_operands ();
1146 parse_ssa_operands (stmt
);
1148 parse_old_ops
= NULL
;
1151 finalize_ssa_stmt_operands (stmt
, old_ops
, new_ops
);
1153 finalize_ssa_stmt_operands (NULL
, old_ops
, new_ops
);
1154 stmt
->common
.ann
= saved_ann
;
1158 /* Free any operands vectors in OPS. */
1161 free_ssa_operands (stmt_operands_p ops
)
1164 free_defs (&(ops
->def_ops
));
1166 free_uses (&(ops
->use_ops
));
1168 free_vuses (&(ops
->vuse_ops
));
1169 if (ops
->v_may_def_ops
)
1170 free_v_may_defs (&(ops
->v_may_def_ops
));
1171 if (ops
->v_must_def_ops
)
1172 free_v_must_defs (&(ops
->v_must_def_ops
));
1176 /* Swap operands EXP0 and EXP1 in STMT. */
1179 swap_tree_operands (tree
*exp0
, tree
*exp1
)
1185 /* If the operand cache is active, attempt to preserve the relative positions
1186 of these two operands in their respective immediate use lists. */
1187 if (build_defs
!= NULL
&& op0
!= op1
&& parse_old_ops
!= NULL
)
1189 unsigned x
, use0
, use1
;
1190 use_optype uses
= parse_old_ops
->use_ops
;
1191 use0
= use1
= NUM_USES (uses
);
1192 /* Find the 2 operands in the cache, if they are there. */
1193 for (x
= 0; x
< NUM_USES (uses
); x
++)
1194 if (USE_OP_PTR (uses
, x
)->use
== exp0
)
1199 for (x
= 0; x
< NUM_USES (uses
); x
++)
1200 if (USE_OP_PTR (uses
, x
)->use
== exp1
)
1205 /* If both uses don't have operand entries, there isnt much we can do
1206 at this point. Presumably we dont need to worry about it. */
1207 if (use0
!= NUM_USES (uses
) && use1
!= NUM_USES (uses
))
1209 tree
*tmp
= USE_OP_PTR (uses
, use1
)->use
;
1210 gcc_assert (use0
!= use1
);
1212 USE_OP_PTR (uses
, use1
)->use
= USE_OP_PTR (uses
, use0
)->use
;
1213 USE_OP_PTR (uses
, use0
)->use
= tmp
;
1217 /* Now swap the data. */
1222 /* Get the operands of statement STMT. Note that repeated calls to
1223 get_stmt_operands for the same statement will do nothing until the
1224 statement is marked modified by a call to mark_stmt_modified(). */
1227 update_stmt_operands (tree stmt
)
1230 stmt_operands_t old_operands
;
1232 /* If get_stmt_operands is called before SSA is initialized, dont
1234 if (build_defs
== NULL
)
1236 /* The optimizers cannot handle statements that are nothing but a
1237 _DECL. This indicates a bug in the gimplifier. */
1238 gcc_assert (!SSA_VAR_P (stmt
));
1240 ann
= get_stmt_ann (stmt
);
1242 gcc_assert (ann
->modified
);
1244 timevar_push (TV_TREE_OPS
);
1246 old_operands
= ann
->operands
;
1247 memset (&(ann
->operands
), 0, sizeof (stmt_operands_t
));
1249 build_ssa_operands (stmt
, ann
, &old_operands
, &(ann
->operands
));
1250 free_ssa_operands (&old_operands
);
1252 /* Clear the modified bit for STMT. Subsequent calls to
1253 get_stmt_operands for this statement will do nothing until the
1254 statement is marked modified by a call to mark_stmt_modified(). */
1257 timevar_pop (TV_TREE_OPS
);
1261 /* Recursively scan the expression pointed by EXPR_P in statement referred to
1262 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
1266 get_expr_operands (tree stmt
, tree
*expr_p
, int flags
)
1268 enum tree_code code
;
1269 enum tree_code_class
class;
1270 tree expr
= *expr_p
;
1271 stmt_ann_t s_ann
= stmt_ann (stmt
);
1276 code
= TREE_CODE (expr
);
1277 class = TREE_CODE_CLASS (code
);
1282 /* We could have the address of a component, array member,
1283 etc which has interesting variable references. */
1284 /* Taking the address of a variable does not represent a
1285 reference to it, but the fact that the stmt takes its address will be
1286 of interest to some passes (e.g. alias resolution). */
1287 add_stmt_operand (expr_p
, s_ann
, 0);
1289 /* If the address is invariant, there may be no interesting variable
1290 references inside. */
1291 if (is_gimple_min_invariant (expr
))
1294 /* There should be no VUSEs created, since the referenced objects are
1295 not really accessed. The only operands that we should find here
1296 are ARRAY_REF indices which will always be real operands (GIMPLE
1297 does not allow non-registers as array indices). */
1298 flags
|= opf_no_vops
;
1300 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1311 /* Add the subvars for a variable if it has subvars, to DEFS or USES.
1312 Otherwise, add the variable itself.
1313 Whether it goes to USES or DEFS depends on the operand flags. */
1314 if (var_can_have_subvars (expr
)
1315 && (svars
= get_subvars_for_var (expr
)))
1318 for (sv
= svars
; sv
; sv
= sv
->next
)
1319 add_stmt_operand (&sv
->var
, s_ann
, flags
);
1323 add_stmt_operand (expr_p
, s_ann
, flags
);
1327 case MISALIGNED_INDIRECT_REF
:
1328 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), flags
);
1331 case ALIGN_INDIRECT_REF
:
1333 get_indirect_ref_operands (stmt
, expr
, flags
);
1337 case ARRAY_RANGE_REF
:
1338 /* Treat array references as references to the virtual variable
1339 representing the array. The virtual variable for an ARRAY_REF
1340 is the VAR_DECL for the array. */
1342 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1343 according to the value of IS_DEF. Recurse if the LHS of the
1344 ARRAY_REF node is not a regular variable. */
1345 if (SSA_VAR_P (TREE_OPERAND (expr
, 0)))
1346 add_stmt_operand (expr_p
, s_ann
, flags
);
1348 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1350 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1351 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1352 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 3), opf_none
);
1360 HOST_WIDE_INT offset
, size
;
1361 /* This component ref becomes an access to all of the subvariables
1362 it can touch, if we can determine that, but *NOT* the real one.
1363 If we can't determine which fields we could touch, the recursion
1364 will eventually get to a variable and add *all* of its subvars, or
1365 whatever is the minimum correct subset. */
1367 ref
= okay_component_ref_for_subvars (expr
, &offset
, &size
);
1370 subvar_t svars
= get_subvars_for_var (ref
);
1372 for (sv
= svars
; sv
; sv
= sv
->next
)
1375 if (overlap_subvar (offset
, size
, sv
, &exact
))
1378 flags
&= ~opf_kill_def
;
1379 add_stmt_operand (&sv
->var
, s_ann
, flags
);
1384 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0),
1385 flags
& ~opf_kill_def
);
1387 if (code
== COMPONENT_REF
)
1388 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1391 case WITH_SIZE_EXPR
:
1392 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1393 and an rvalue reference to its second argument. */
1394 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1395 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1399 get_call_expr_operands (stmt
, expr
);
1404 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), opf_none
);
1405 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1406 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1414 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1416 op
= TREE_OPERAND (expr
, 0);
1417 if (TREE_CODE (op
) == WITH_SIZE_EXPR
)
1418 op
= TREE_OPERAND (expr
, 0);
1419 if (TREE_CODE (op
) == ARRAY_REF
1420 || TREE_CODE (op
) == ARRAY_RANGE_REF
1421 || TREE_CODE (op
) == REALPART_EXPR
1422 || TREE_CODE (op
) == IMAGPART_EXPR
)
1423 subflags
= opf_is_def
;
1425 subflags
= opf_is_def
| opf_kill_def
;
1427 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), subflags
);
1433 /* General aggregate CONSTRUCTORs have been decomposed, but they
1434 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1437 for (t
= TREE_OPERAND (expr
, 0); t
; t
= TREE_CHAIN (t
))
1438 get_expr_operands (stmt
, &TREE_VALUE (t
), opf_none
);
1443 case TRUTH_NOT_EXPR
:
1445 case VIEW_CONVERT_EXPR
:
1447 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1450 case TRUTH_AND_EXPR
:
1452 case TRUTH_XOR_EXPR
:
1458 tree op0
= TREE_OPERAND (expr
, 0);
1459 tree op1
= TREE_OPERAND (expr
, 1);
1461 /* If it would be profitable to swap the operands, then do so to
1462 canonicalize the statement, enabling better optimization.
1464 By placing canonicalization of such expressions here we
1465 transparently keep statements in canonical form, even
1466 when the statement is modified. */
1467 if (tree_swap_operands_p (op0
, op1
, false))
1469 /* For relationals we need to swap the operands
1470 and change the code. */
1476 TREE_SET_CODE (expr
, swap_tree_comparison (code
));
1477 swap_tree_operands (&TREE_OPERAND (expr
, 0),
1478 &TREE_OPERAND (expr
, 1));
1481 /* For a commutative operator we can just swap the operands. */
1482 else if (commutative_tree_code (code
))
1484 swap_tree_operands (&TREE_OPERAND (expr
, 0),
1485 &TREE_OPERAND (expr
, 1));
1489 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1490 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), flags
);
1494 case REALIGN_LOAD_EXPR
:
1496 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1497 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), flags
);
1498 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), flags
);
1507 /* Expressions that make no memory references. */
1511 if (class == tcc_unary
)
1513 if (class == tcc_binary
|| class == tcc_comparison
)
1515 if (class == tcc_constant
|| class == tcc_type
)
1519 /* If we get here, something has gone wrong. */
1520 #ifdef ENABLE_CHECKING
1521 fprintf (stderr
, "unhandled expression in get_expr_operands():\n");
1523 fputs ("\n", stderr
);
1524 internal_error ("internal error");
1530 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1533 get_asm_expr_operands (tree stmt
)
1535 stmt_ann_t s_ann
= stmt_ann (stmt
);
1536 int noutputs
= list_length (ASM_OUTPUTS (stmt
));
1537 const char **oconstraints
1538 = (const char **) alloca ((noutputs
) * sizeof (const char *));
1541 const char *constraint
;
1542 bool allows_mem
, allows_reg
, is_inout
;
1544 for (i
=0, link
= ASM_OUTPUTS (stmt
); link
; ++i
, link
= TREE_CHAIN (link
))
1546 oconstraints
[i
] = constraint
1547 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1548 parse_output_constraint (&constraint
, i
, 0, 0,
1549 &allows_mem
, &allows_reg
, &is_inout
);
1551 /* This should have been split in gimplify_asm_expr. */
1552 gcc_assert (!allows_reg
|| !is_inout
);
1554 /* Memory operands are addressable. Note that STMT needs the
1555 address of this operand. */
1556 if (!allows_reg
&& allows_mem
)
1558 tree t
= get_base_address (TREE_VALUE (link
));
1559 if (t
&& DECL_P (t
))
1560 note_addressable (t
, s_ann
);
1563 get_expr_operands (stmt
, &TREE_VALUE (link
), opf_is_def
);
1566 for (link
= ASM_INPUTS (stmt
); link
; link
= TREE_CHAIN (link
))
1569 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1570 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
1571 oconstraints
, &allows_mem
, &allows_reg
);
1573 /* Memory operands are addressable. Note that STMT needs the
1574 address of this operand. */
1575 if (!allows_reg
&& allows_mem
)
1577 tree t
= get_base_address (TREE_VALUE (link
));
1578 if (t
&& DECL_P (t
))
1579 note_addressable (t
, s_ann
);
1582 get_expr_operands (stmt
, &TREE_VALUE (link
), 0);
1586 /* Clobber memory for asm ("" : : : "memory"); */
1587 for (link
= ASM_CLOBBERS (stmt
); link
; link
= TREE_CHAIN (link
))
1588 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link
)), "memory") == 0)
1593 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1594 decided to group them). */
1596 add_stmt_operand (&global_var
, s_ann
, opf_is_def
);
1598 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars
, 0, i
, bi
)
1600 tree var
= referenced_var (i
);
1601 add_stmt_operand (&var
, s_ann
, opf_is_def
);
1604 /* Now clobber all addressables. */
1605 EXECUTE_IF_SET_IN_BITMAP (addressable_vars
, 0, i
, bi
)
1607 tree var
= referenced_var (i
);
1609 /* Subvars are explicitly represented in this list, so
1610 we don't need the original to be added to the clobber
1611 ops, but the original *will* be in this list because
1612 we keep the addressability of the original
1613 variable up-to-date so we don't screw up the rest of
1615 if (var_can_have_subvars (var
)
1616 && get_subvars_for_var (var
) != NULL
)
1619 add_stmt_operand (&var
, s_ann
, opf_is_def
);
1626 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1627 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1630 get_indirect_ref_operands (tree stmt
, tree expr
, int flags
)
1632 tree
*pptr
= &TREE_OPERAND (expr
, 0);
1634 stmt_ann_t s_ann
= stmt_ann (stmt
);
1636 /* Stores into INDIRECT_REF operands are never killing definitions. */
1637 flags
&= ~opf_kill_def
;
1639 if (SSA_VAR_P (ptr
))
1641 struct ptr_info_def
*pi
= NULL
;
1643 /* If PTR has flow-sensitive points-to information, use it. */
1644 if (TREE_CODE (ptr
) == SSA_NAME
1645 && (pi
= SSA_NAME_PTR_INFO (ptr
)) != NULL
1646 && pi
->name_mem_tag
)
1648 /* PTR has its own memory tag. Use it. */
1649 add_stmt_operand (&pi
->name_mem_tag
, s_ann
, flags
);
1653 /* If PTR is not an SSA_NAME or it doesn't have a name
1654 tag, use its type memory tag. */
1657 /* If we are emitting debugging dumps, display a warning if
1658 PTR is an SSA_NAME with no flow-sensitive alias
1659 information. That means that we may need to compute
1662 && TREE_CODE (ptr
) == SSA_NAME
1666 "NOTE: no flow-sensitive alias info for ");
1667 print_generic_expr (dump_file
, ptr
, dump_flags
);
1668 fprintf (dump_file
, " in ");
1669 print_generic_stmt (dump_file
, stmt
, dump_flags
);
1672 if (TREE_CODE (ptr
) == SSA_NAME
)
1673 ptr
= SSA_NAME_VAR (ptr
);
1674 v_ann
= var_ann (ptr
);
1675 if (v_ann
->type_mem_tag
)
1676 add_stmt_operand (&v_ann
->type_mem_tag
, s_ann
, flags
);
1680 /* If a constant is used as a pointer, we can't generate a real
1681 operand for it but we mark the statement volatile to prevent
1682 optimizations from messing things up. */
1683 else if (TREE_CODE (ptr
) == INTEGER_CST
)
1686 s_ann
->has_volatile_ops
= true;
1690 /* Everything else *should* have been folded elsewhere, but users
1691 are smarter than we in finding ways to write invalid code. We
1692 cannot just abort here. If we were absolutely certain that we
1693 do handle all valid cases, then we could just do nothing here.
1694 That seems optimistic, so attempt to do something logical... */
1695 else if ((TREE_CODE (ptr
) == PLUS_EXPR
|| TREE_CODE (ptr
) == MINUS_EXPR
)
1696 && TREE_CODE (TREE_OPERAND (ptr
, 0)) == ADDR_EXPR
1697 && TREE_CODE (TREE_OPERAND (ptr
, 1)) == INTEGER_CST
)
1699 /* Make sure we know the object is addressable. */
1700 pptr
= &TREE_OPERAND (ptr
, 0);
1701 add_stmt_operand (pptr
, s_ann
, 0);
1703 /* Mark the object itself with a VUSE. */
1704 pptr
= &TREE_OPERAND (*pptr
, 0);
1705 get_expr_operands (stmt
, pptr
, flags
);
1709 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1713 /* Add a USE operand for the base pointer. */
1714 get_expr_operands (stmt
, pptr
, opf_none
);
1717 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1720 get_call_expr_operands (tree stmt
, tree expr
)
1723 int call_flags
= call_expr_flags (expr
);
1725 /* If aliases have been computed already, add V_MAY_DEF or V_USE
1726 operands for all the symbols that have been found to be
1729 Note that if aliases have not been computed, the global effects
1730 of calls will not be included in the SSA web. This is fine
1731 because no optimizer should run before aliases have been
1732 computed. By not bothering with virtual operands for CALL_EXPRs
1733 we avoid adding superfluous virtual operands, which can be a
1734 significant compile time sink (See PR 15855). */
1735 if (aliases_computed_p
1736 && !bitmap_empty_p (call_clobbered_vars
)
1737 && !(call_flags
& ECF_NOVOPS
))
1739 /* A 'pure' or a 'const' function never call-clobbers anything.
1740 A 'noreturn' function might, but since we don't return anyway
1741 there is no point in recording that. */
1742 if (TREE_SIDE_EFFECTS (expr
)
1743 && !(call_flags
& (ECF_PURE
| ECF_CONST
| ECF_NORETURN
)))
1744 add_call_clobber_ops (stmt
);
1745 else if (!(call_flags
& ECF_CONST
))
1746 add_call_read_ops (stmt
);
1749 /* Find uses in the called function. */
1750 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), opf_none
);
1752 for (op
= TREE_OPERAND (expr
, 1); op
; op
= TREE_CHAIN (op
))
1753 get_expr_operands (stmt
, &TREE_VALUE (op
), opf_none
);
1755 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1760 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1761 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1762 the statement's real operands, otherwise it is added to virtual
1766 add_stmt_operand (tree
*var_p
, stmt_ann_t s_ann
, int flags
)
1775 /* If the operand is an ADDR_EXPR, add its operand to the list of
1776 variables that have had their address taken in this statement. */
1777 if (TREE_CODE (var
) == ADDR_EXPR
)
1779 note_addressable (TREE_OPERAND (var
, 0), s_ann
);
1783 /* If the original variable is not a scalar, it will be added to the list
1784 of virtual operands. In that case, use its base symbol as the virtual
1785 variable representing it. */
1786 is_real_op
= is_gimple_reg (var
);
1787 if (!is_real_op
&& !DECL_P (var
))
1788 var
= get_virtual_var (var
);
1790 /* If VAR is not a variable that we care to optimize, do nothing. */
1791 if (var
== NULL_TREE
|| !SSA_VAR_P (var
))
1794 sym
= (TREE_CODE (var
) == SSA_NAME
? SSA_NAME_VAR (var
) : var
);
1795 v_ann
= var_ann (sym
);
1797 /* Mark statements with volatile operands. Optimizers should back
1798 off from statements having volatile operands. */
1799 if (TREE_THIS_VOLATILE (sym
) && s_ann
)
1800 s_ann
->has_volatile_ops
= true;
1802 /* If the variable cannot be modified and this is a V_MAY_DEF change
1803 it into a VUSE. This happens when read-only variables are marked
1804 call-clobbered and/or aliased to writeable variables. So we only
1805 check that this only happens on stores, and not writes to GIMPLE
1808 FIXME: The C++ FE is emitting assignments in the IL stream for
1809 read-only globals. This is wrong, but for the time being disable
1810 this transformation on V_MUST_DEF operands (otherwise, we
1811 mis-optimize SPEC2000's eon). */
1812 if ((flags
& opf_is_def
)
1813 && !(flags
& opf_kill_def
)
1814 && unmodifiable_var_p (var
))
1816 gcc_assert (!is_real_op
);
1817 flags
&= ~opf_is_def
;
1822 /* The variable is a GIMPLE register. Add it to real operands. */
1823 if (flags
& opf_is_def
)
1830 varray_type aliases
;
1832 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1833 virtual operands, unless the caller has specifically requested
1834 not to add virtual operands (used when adding operands inside an
1835 ADDR_EXPR expression). */
1836 if (flags
& opf_no_vops
)
1839 aliases
= v_ann
->may_aliases
;
1841 if (aliases
== NULL
)
1843 /* The variable is not aliased or it is an alias tag. */
1844 if (flags
& opf_is_def
)
1846 if (flags
& opf_kill_def
)
1848 /* Only regular variables or struct fields may get a
1849 V_MUST_DEF operand. */
1850 gcc_assert (v_ann
->mem_tag_kind
== NOT_A_TAG
1851 || v_ann
->mem_tag_kind
== STRUCT_FIELD
);
1852 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1853 variable definitions. */
1854 append_v_must_def (var
);
1858 /* Add a V_MAY_DEF for call-clobbered variables and
1860 append_v_may_def (var
);
1866 if (s_ann
&& v_ann
->is_alias_tag
)
1867 s_ann
->makes_aliased_loads
= 1;
1874 /* The variable is aliased. Add its aliases to the virtual
1876 gcc_assert (VARRAY_ACTIVE_SIZE (aliases
) != 0);
1878 if (flags
& opf_is_def
)
1880 bool added_may_defs_p
= false;
1882 /* If the variable is also an alias tag, add a virtual
1883 operand for it, otherwise we will miss representing
1884 references to the members of the variable's alias set.
1885 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1886 if (v_ann
->is_alias_tag
)
1888 added_may_defs_p
= true;
1889 append_v_may_def (var
);
1892 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (aliases
); i
++)
1894 /* While VAR may be modifiable, some of its aliases
1895 may not be. If that's the case, we don't really
1896 need to add them a V_MAY_DEF for them. */
1897 tree alias
= VARRAY_TREE (aliases
, i
);
1899 if (unmodifiable_var_p (alias
))
1900 append_vuse (alias
);
1903 append_v_may_def (alias
);
1904 added_may_defs_p
= true;
1908 if (s_ann
&& added_may_defs_p
)
1909 s_ann
->makes_aliased_stores
= 1;
1913 /* Similarly, append a virtual uses for VAR itself, when
1914 it is an alias tag. */
1915 if (v_ann
->is_alias_tag
)
1918 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (aliases
); i
++)
1919 append_vuse (VARRAY_TREE (aliases
, i
));
1922 s_ann
->makes_aliased_loads
= 1;
1929 /* Record that VAR had its address taken in the statement with annotations
1933 note_addressable (tree var
, stmt_ann_t s_ann
)
1937 HOST_WIDE_INT offset
;
1943 /* If this is a COMPONENT_REF, and we know exactly what it touches, we only
1944 take the address of the subvariables it will touch.
1945 Otherwise, we take the address of all the subvariables, plus the real
1948 if (var
&& TREE_CODE (var
) == COMPONENT_REF
1949 && (ref
= okay_component_ref_for_subvars (var
, &offset
, &size
)))
1952 svars
= get_subvars_for_var (ref
);
1954 if (s_ann
->addresses_taken
== NULL
)
1955 s_ann
->addresses_taken
= BITMAP_GGC_ALLOC ();
1957 for (sv
= svars
; sv
; sv
= sv
->next
)
1959 if (overlap_subvar (offset
, size
, sv
, NULL
))
1960 bitmap_set_bit (s_ann
->addresses_taken
, var_ann (sv
->var
)->uid
);
1965 var
= get_base_address (var
);
1966 if (var
&& SSA_VAR_P (var
))
1968 if (s_ann
->addresses_taken
== NULL
)
1969 s_ann
->addresses_taken
= BITMAP_GGC_ALLOC ();
1972 if (var_can_have_subvars (var
)
1973 && (svars
= get_subvars_for_var (var
)))
1976 for (sv
= svars
; sv
; sv
= sv
->next
)
1977 bitmap_set_bit (s_ann
->addresses_taken
, var_ann (sv
->var
)->uid
);
1980 bitmap_set_bit (s_ann
->addresses_taken
, var_ann (var
)->uid
);
1984 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1985 clobbered variables in the function. */
1988 add_call_clobber_ops (tree stmt
)
1993 stmt_ann_t s_ann
= stmt_ann (stmt
);
1994 struct stmt_ann_d empty_ann
;
1996 /* Functions that are not const, pure or never return may clobber
1997 call-clobbered variables. */
1999 s_ann
->makes_clobbering_call
= true;
2001 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
2002 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
2005 add_stmt_operand (&global_var
, s_ann
, opf_is_def
);
2009 /* If cache is valid, copy the elements into the build vectors. */
2010 if (ssa_call_clobbered_cache_valid
)
2012 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (clobbered_vuses
); i
++)
2014 t
= VARRAY_TREE (clobbered_vuses
, i
);
2015 gcc_assert (TREE_CODE (t
) != SSA_NAME
);
2016 var_ann (t
)->in_vuse_list
= 1;
2017 VARRAY_PUSH_TREE (build_vuses
, t
);
2019 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (clobbered_v_may_defs
); i
++)
2021 t
= VARRAY_TREE (clobbered_v_may_defs
, i
);
2022 gcc_assert (TREE_CODE (t
) != SSA_NAME
);
2023 var_ann (t
)->in_v_may_def_list
= 1;
2024 VARRAY_PUSH_TREE (build_v_may_defs
, t
);
2028 s_ann
->makes_aliased_loads
= clobbered_aliased_loads
;
2029 s_ann
->makes_aliased_stores
= clobbered_aliased_stores
;
2034 memset (&empty_ann
, 0, sizeof (struct stmt_ann_d
));
2036 /* Add a V_MAY_DEF operand for every call clobbered variable. */
2037 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars
, 0, i
, bi
)
2039 tree var
= referenced_var (i
);
2040 if (unmodifiable_var_p (var
))
2041 add_stmt_operand (&var
, &empty_ann
, opf_none
);
2043 add_stmt_operand (&var
, &empty_ann
, opf_is_def
);
2046 clobbered_aliased_loads
= empty_ann
.makes_aliased_loads
;
2047 clobbered_aliased_stores
= empty_ann
.makes_aliased_stores
;
2049 /* Set the flags for a stmt's annotation. */
2052 s_ann
->makes_aliased_loads
= empty_ann
.makes_aliased_loads
;
2053 s_ann
->makes_aliased_stores
= empty_ann
.makes_aliased_stores
;
2056 /* Prepare empty cache vectors. */
2057 if (clobbered_v_may_defs
)
2059 VARRAY_POP_ALL (clobbered_vuses
);
2060 VARRAY_POP_ALL (clobbered_v_may_defs
);
2064 VARRAY_TREE_INIT (clobbered_v_may_defs
, 10, "clobbered_v_may_defs");
2065 VARRAY_TREE_INIT (clobbered_vuses
, 10, "clobbered_vuses");
2068 /* Now fill the clobbered cache with the values that have been found. */
2069 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_vuses
); i
++)
2070 VARRAY_PUSH_TREE (clobbered_vuses
, VARRAY_TREE (build_vuses
, i
));
2071 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_v_may_defs
); i
++)
2072 VARRAY_PUSH_TREE (clobbered_v_may_defs
, VARRAY_TREE (build_v_may_defs
, i
));
2074 ssa_call_clobbered_cache_valid
= true;
2078 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
2082 add_call_read_ops (tree stmt
)
2087 stmt_ann_t s_ann
= stmt_ann (stmt
);
2088 struct stmt_ann_d empty_ann
;
2090 /* if the function is not pure, it may reference memory. Add
2091 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
2092 for the heuristic used to decide whether to create .GLOBAL_VAR. */
2095 add_stmt_operand (&global_var
, s_ann
, opf_none
);
2099 /* If cache is valid, copy the elements into the build vector. */
2100 if (ssa_ro_call_cache_valid
)
2102 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (ro_call_vuses
); i
++)
2104 t
= VARRAY_TREE (ro_call_vuses
, i
);
2105 gcc_assert (TREE_CODE (t
) != SSA_NAME
);
2106 var_ann (t
)->in_vuse_list
= 1;
2107 VARRAY_PUSH_TREE (build_vuses
, t
);
2110 s_ann
->makes_aliased_loads
= ro_call_aliased_loads
;
2114 memset (&empty_ann
, 0, sizeof (struct stmt_ann_d
));
2116 /* Add a VUSE for each call-clobbered variable. */
2117 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars
, 0, i
, bi
)
2119 tree var
= referenced_var (i
);
2120 add_stmt_operand (&var
, &empty_ann
, opf_none
);
2123 ro_call_aliased_loads
= empty_ann
.makes_aliased_loads
;
2125 s_ann
->makes_aliased_loads
= empty_ann
.makes_aliased_loads
;
2127 /* Prepare empty cache vectors. */
2129 VARRAY_POP_ALL (ro_call_vuses
);
2131 VARRAY_TREE_INIT (ro_call_vuses
, 10, "ro_call_vuses");
2133 /* Now fill the clobbered cache with the values that have been found. */
2134 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_vuses
); i
++)
2135 VARRAY_PUSH_TREE (ro_call_vuses
, VARRAY_TREE (build_vuses
, i
));
2137 ssa_ro_call_cache_valid
= true;
2140 /* Copies virtual operands from SRC to DST. */
2143 copy_virtual_operands (tree dst
, tree src
)
2146 vuse_optype vuses
= STMT_VUSE_OPS (src
);
2147 v_may_def_optype v_may_defs
= STMT_V_MAY_DEF_OPS (src
);
2148 v_must_def_optype v_must_defs
= STMT_V_MUST_DEF_OPS (src
);
2149 vuse_optype
*vuses_new
= &stmt_ann (dst
)->operands
.vuse_ops
;
2150 v_may_def_optype
*v_may_defs_new
= &stmt_ann (dst
)->operands
.v_may_def_ops
;
2151 v_must_def_optype
*v_must_defs_new
= &stmt_ann (dst
)->operands
.v_must_def_ops
;
2155 *vuses_new
= allocate_vuse_optype (NUM_VUSES (vuses
));
2156 for (i
= 0; i
< NUM_VUSES (vuses
); i
++)
2157 initialize_vuse_operand (*vuses_new
, i
, VUSE_OP (vuses
, i
), dst
, NULL
);
2162 *v_may_defs_new
= allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs
));
2163 for (i
= 0; i
< NUM_V_MAY_DEFS (v_may_defs
); i
++)
2165 initialize_v_may_def_operand (*v_may_defs_new
, i
,
2166 V_MAY_DEF_RESULT (v_may_defs
, i
),
2167 V_MAY_DEF_OP (v_may_defs
, i
), dst
,
2175 = allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs
));
2176 for (i
= 0; i
< NUM_V_MUST_DEFS (v_must_defs
); i
++)
2178 initialize_v_must_def_operand (*v_must_defs_new
, i
,
2179 V_MUST_DEF_RESULT (v_must_defs
, i
),
2180 V_MUST_DEF_KILL (v_must_defs
, i
), dst
,
2187 /* Specifically for use in DOM's expression analysis. Given a store, we
2188 create an artificial stmt which looks like a load from the store, this can
2189 be used to eliminate redundant loads. OLD_OPS are the operands from the
2190 store stmt, and NEW_STMT is the new load which represents a load of the
2194 create_ssa_artficial_load_stmt (stmt_operands_p old_ops
, tree new_stmt
)
2198 stmt_operands_t tmp
;
2201 memset (&tmp
, 0, sizeof (stmt_operands_t
));
2202 ann
= get_stmt_ann (new_stmt
);
2204 /* Free operands just in case is was an existing stmt. */
2205 free_ssa_operands (&(ann
->operands
));
2207 build_ssa_operands (new_stmt
, NULL
, &tmp
, &(ann
->operands
));
2208 free_vuses (&(ann
->operands
.vuse_ops
));
2209 free_v_may_defs (&(ann
->operands
.v_may_def_ops
));
2210 free_v_must_defs (&(ann
->operands
.v_must_def_ops
));
2212 /* For each VDEF on the original statement, we want to create a
2213 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
2215 for (j
= 0; j
< NUM_V_MAY_DEFS (old_ops
->v_may_def_ops
); j
++)
2217 op
= V_MAY_DEF_RESULT (old_ops
->v_may_def_ops
, j
);
2221 for (j
= 0; j
< NUM_V_MUST_DEFS (old_ops
->v_must_def_ops
); j
++)
2223 op
= V_MUST_DEF_RESULT (old_ops
->v_must_def_ops
, j
);
2227 /* Now set the vuses for this new stmt. */
2228 ann
->operands
.vuse_ops
= finalize_ssa_vuses (&(tmp
.vuse_ops
), NULL
);
2233 /* Issue immediate use error for VAR to debug file F. */
2235 verify_abort (FILE *f
, ssa_imm_use_t
*var
)
2241 if (stmt_modified_p(stmt
))
2243 fprintf (f
, " STMT MODIFIED. - <%p> ", (void *)stmt
);
2244 print_generic_stmt (f
, stmt
, TDF_SLIM
);
2247 fprintf (f
, " IMM ERROR : (use_p : tree - %p:%p)", (void *)var
,
2249 print_generic_expr (f
, USE_FROM_PTR (var
), TDF_SLIM
);
2254 /* Scan the immediate_use list for VAR making sure its linked properly.
2255 return RTUE iof there is a problem. */
2258 verify_imm_links (FILE *f
, tree var
)
2260 ssa_imm_use_t
*ptr
, *prev
;
2261 ssa_imm_use_t
*list
;
2264 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
2266 list
= &(SSA_NAME_IMM_USE_NODE (var
));
2267 gcc_assert (list
->use
== NULL
);
2269 if (list
->prev
== NULL
)
2271 gcc_assert (list
->next
== NULL
);
2277 for (ptr
= list
->next
; ptr
!= list
; )
2279 if (prev
!= ptr
->prev
)
2281 verify_abort (f
, ptr
);
2285 if (ptr
->use
== NULL
)
2287 verify_abort (f
, ptr
); /* 2 roots, or SAFE guard node. */
2291 if (*(ptr
->use
) != var
)
2293 verify_abort (f
, ptr
);
2299 /* Avoid infinite loops. */
2300 if (count
++ > 30000)
2302 verify_abort (f
, ptr
);
2307 /* Verify list in the other direction. */
2309 for (ptr
= list
->prev
; ptr
!= list
; )
2311 if (prev
!= ptr
->next
)
2313 verify_abort (f
, ptr
);
2320 verify_abort (f
, ptr
);
2327 verify_abort (f
, ptr
);
2335 /* Dump all the immediate uses to FILE. */
2338 dump_immediate_uses_for (FILE *file
, tree var
)
2340 imm_use_iterator iter
;
2341 use_operand_p use_p
;
2343 gcc_assert (var
&& TREE_CODE (var
) == SSA_NAME
);
2345 print_generic_expr (file
, var
, TDF_SLIM
);
2346 fprintf (file
, " : -->");
2347 if (has_zero_uses (var
))
2348 fprintf (file
, " no uses.\n");
2350 if (has_single_use (var
))
2351 fprintf (file
, " single use.\n");
2353 fprintf (file
, "%d uses.\n", num_imm_uses (var
));
2355 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
2357 print_generic_stmt (file
, USE_STMT (use_p
), TDF_SLIM
);
2359 fprintf(file
, "\n");
2362 /* Dump all the immediate uses to FILE. */
2365 dump_immediate_uses (FILE *file
)
2370 fprintf (file
, "Immediate_uses: \n\n");
2371 for (x
= 1; x
< num_ssa_names
; x
++)
2376 dump_immediate_uses_for (file
, var
);
2381 /* Dump def-use edges on stderr. */
2384 debug_immediate_uses (void)
2386 dump_immediate_uses (stderr
);
2389 /* Dump def-use edges on stderr. */
2392 debug_immediate_uses_for (tree var
)
2394 dump_immediate_uses_for (stderr
, var
);
2397 #include "gt-tree-ssa-operands.h"