* recog.c (preproces_constraints): Zero recog_op_alt before
[official-gcc.git] / gcc / stupid.c
blobb2cd170c8c348705998ed4ba11036783f553f16d
1 /* Dummy data flow analysis for GNU compiler in nonoptimizing mode.
2 Copyright (C) 1987, 91, 94-96, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file performs stupid register allocation, which is used
23 when cc1 gets the -noreg switch (which is when cc does not get -O).
25 Stupid register allocation goes in place of the flow_analysis,
26 local_alloc and global_alloc passes. combine_instructions cannot
27 be done with stupid allocation because the data flow info that it needs
28 is not computed here.
30 In stupid allocation, the only user-defined variables that can
31 go in registers are those declared "register". They are assumed
32 to have a life span equal to their scope. Other user variables
33 are given stack slots in the rtl-generation pass and are not
34 represented as pseudo regs. A compiler-generated temporary
35 is assumed to live from its first mention to its last mention.
37 Since each pseudo-reg's life span is just an interval, it can be
38 represented as a pair of numbers, each of which identifies an insn by
39 its position in the function (number of insns before it). The first
40 thing done for stupid allocation is to compute such a number for each
41 insn. It is called the suid. Then the life-interval of each
42 pseudo reg is computed. Then the pseudo regs are ordered by priority
43 and assigned hard regs in priority order. */
45 #include "config.h"
46 #include "system.h"
48 #include "rtl.h"
49 #include "hard-reg-set.h"
50 #include "basic-block.h"
51 #include "regs.h"
52 #include "insn-config.h"
53 #include "reload.h"
54 #include "flags.h"
55 #include "toplev.h"
57 /* Vector mapping INSN_UIDs to suids.
58 The suids are like uids but increase monotonically always.
59 We use them to see whether a subroutine call came
60 between a variable's birth and its death. */
62 static int *uid_suid;
64 /* Get the suid of an insn. */
66 #define INSN_SUID(INSN) (uid_suid[INSN_UID (INSN)])
68 /* Record the suid of the last CALL_INSN
69 so we can tell whether a pseudo reg crosses any calls. */
71 static int last_call_suid;
73 /* Record the suid of the last NOTE_INSN_SETJMP
74 so we can tell whether a pseudo reg crosses any setjmp. */
76 static int last_setjmp_suid;
78 /* Element N is suid of insn where life span of pseudo reg N ends.
79 Element is 0 if register N has not been seen yet on backward scan. */
81 static int *reg_where_dead;
83 /* Likewise, but point to the insn_chain structure of the insn at which
84 the reg dies. */
85 static struct insn_chain **reg_where_dead_chain;
87 /* Element N is suid of insn where life span of pseudo reg N begins. */
88 static int *reg_where_born_exact;
90 /* Element N is 1 if the birth of pseudo reg N is due to a CLOBBER,
91 0 otherwise. */
92 static int *reg_where_born_clobber;
94 /* Return the suid of the insn where the register is born, or the suid
95 of the insn before if the birth is due to a CLOBBER. */
96 #define REG_WHERE_BORN(N) \
97 (reg_where_born_exact[(N)] - reg_where_born_clobber[(N)])
99 /* Numbers of pseudo-regs to be allocated, highest priority first. */
101 static int *reg_order;
103 /* Indexed by reg number (hard or pseudo), nonzero if register is live
104 at the current point in the instruction stream. */
106 static char *regs_live;
108 /* Indexed by reg number, nonzero if reg was used in a SUBREG that changes
109 its size. */
111 static char *regs_change_size;
113 /* Indexed by reg number, nonzero if reg crosses a setjmp. */
115 static char *regs_crosses_setjmp;
117 /* Indexed by insn's suid, the set of hard regs live after that insn. */
119 static HARD_REG_SET *after_insn_hard_regs;
121 /* Record that hard reg REGNO is live after insn INSN. */
123 #define MARK_LIVE_AFTER(INSN,REGNO) \
124 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (INSN)], (REGNO))
126 static int stupid_reg_compare PROTO((const GENERIC_PTR,const GENERIC_PTR));
127 static int stupid_find_reg PROTO((int, enum reg_class, enum machine_mode,
128 int, int, int));
129 static void stupid_mark_refs PROTO((rtx, struct insn_chain *));
130 static void find_clobbered_regs PROTO((rtx, rtx));
132 /* For communication between stupid_life_analysis and find_clobbered_regs. */
133 static struct insn_chain *current_chain;
135 /* This function, called via note_stores, marks any hard registers that are
136 clobbered in an insn as being live in the live_after and live_before fields
137 of the appropriate insn_chain structure. */
139 static void
140 find_clobbered_regs (reg, setter)
141 rtx reg, setter;
143 int regno, nregs;
144 if (setter == 0 || GET_CODE (setter) != CLOBBER)
145 return;
147 if (GET_CODE (reg) == SUBREG)
148 reg = SUBREG_REG (reg);
150 if (GET_CODE (reg) != REG)
151 return;
152 regno = REGNO (reg);
153 if (regno >= FIRST_PSEUDO_REGISTER)
154 return;
156 if (GET_MODE (reg) == VOIDmode)
157 abort ();
158 else
159 nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
160 while (nregs-- > 0)
162 SET_REGNO_REG_SET (current_chain->live_after, regno);
163 SET_REGNO_REG_SET (current_chain->live_before, regno++);
167 /* Stupid life analysis is for the case where only variables declared
168 `register' go in registers. For this case, we mark all
169 pseudo-registers that belong to register variables as
170 dying in the last instruction of the function, and all other
171 pseudo registers as dying in the last place they are referenced.
172 Hard registers are marked as dying in the last reference before
173 the end or before each store into them. */
175 void
176 stupid_life_analysis (f, nregs, file)
177 rtx f;
178 int nregs;
179 FILE *file;
181 register int i;
182 register rtx last, insn;
183 int max_uid, max_suid;
185 current_function_has_computed_jump = 0;
187 bzero (regs_ever_live, sizeof regs_ever_live);
189 regs_live = (char *) xmalloc (nregs);
191 /* First find the last real insn, and count the number of insns,
192 and assign insns their suids. */
194 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
195 if (INSN_UID (insn) > i)
196 i = INSN_UID (insn);
198 max_uid = i + 1;
199 uid_suid = (int *) xmalloc ((i + 1) * sizeof (int));
201 /* Compute the mapping from uids to suids.
202 Suids are numbers assigned to insns, like uids,
203 except that suids increase monotonically through the code. */
205 last = 0; /* In case of empty function body */
206 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
208 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
209 last = insn;
211 INSN_SUID (insn) = ++i;
214 last_call_suid = i + 1;
215 last_setjmp_suid = i + 1;
216 max_suid = i + 1;
218 max_regno = nregs;
220 /* Allocate tables to record info about regs. */
222 reg_where_dead = (int *) xmalloc (nregs * sizeof (int));
223 bzero ((char *) reg_where_dead, nregs * sizeof (int));
225 reg_where_born_exact = (int *) xmalloc (nregs * sizeof (int));
226 bzero ((char *) reg_where_born_exact, nregs * sizeof (int));
228 reg_where_born_clobber = (int *) xmalloc (nregs * sizeof (int));
229 bzero ((char *) reg_where_born_clobber, nregs * sizeof (int));
231 reg_where_dead_chain = (struct insn_chain **) xmalloc (nregs * sizeof (struct insn_chain *));
232 bzero ((char *) reg_where_dead_chain, nregs * sizeof (struct insn_chain *));
234 reg_order = (int *) xmalloc (nregs * sizeof (int));
235 bzero ((char *) reg_order, nregs * sizeof (int));
237 regs_change_size = (char *) xmalloc (nregs * sizeof (char));
238 bzero ((char *) regs_change_size, nregs * sizeof (char));
240 regs_crosses_setjmp = (char *) xmalloc (nregs * sizeof (char));
241 bzero ((char *) regs_crosses_setjmp, nregs * sizeof (char));
243 /* Allocate the reg_renumber array */
244 allocate_reg_info (max_regno, FALSE, TRUE);
245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
246 reg_renumber[i] = i;
248 after_insn_hard_regs
249 = (HARD_REG_SET *) xmalloc (max_suid * sizeof (HARD_REG_SET));
251 bzero ((char *) after_insn_hard_regs, max_suid * sizeof (HARD_REG_SET));
253 /* Allocate and zero out many data structures
254 that will record the data from lifetime analysis. */
256 allocate_reg_life_data ();
257 allocate_bb_life_data ();
259 for (i = 0; i < max_regno; i++)
260 REG_N_DEATHS (i) = 1;
262 bzero (regs_live, nregs);
264 /* Find where each pseudo register is born and dies,
265 by scanning all insns from the end to the start
266 and noting all mentions of the registers.
268 Also find where each hard register is live
269 and record that info in after_insn_hard_regs.
270 regs_live[I] is 1 if hard reg I is live
271 at the current point in the scan.
273 Build reload_insn_chain while we're walking the insns. */
275 reload_insn_chain = 0;
276 for (insn = last; insn; insn = PREV_INSN (insn))
278 register HARD_REG_SET *p = after_insn_hard_regs + INSN_SUID (insn);
279 struct insn_chain *chain;
281 /* Copy the info in regs_live into the element of after_insn_hard_regs
282 for the current position in the rtl code. */
284 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
285 if (regs_live[i])
286 SET_HARD_REG_BIT (*p, i);
288 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != BARRIER)
290 chain = new_insn_chain ();
291 if (reload_insn_chain)
292 reload_insn_chain->prev = chain;
293 chain->next = reload_insn_chain;
294 chain->prev = 0;
295 reload_insn_chain = chain;
296 chain->block = 0;
297 chain->insn = insn;
298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
299 if (regs_live[i])
300 SET_REGNO_REG_SET (chain->live_before, i);
303 /* Update which hard regs are currently live
304 and also the birth and death suids of pseudo regs
305 based on the pattern of this insn. */
307 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
308 stupid_mark_refs (PATTERN (insn), chain);
310 if (GET_CODE (insn) == NOTE
311 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
312 last_setjmp_suid = INSN_SUID (insn);
314 /* Mark all call-clobbered regs as dead after each call insn so that
315 a pseudo whose life span includes this insn will not go in one of
316 them. If the function contains a non-local goto, mark all hard
317 registers dead (except for stack related bits).
319 Then mark those regs as all dead for the continuing scan
320 of the insns before the call. */
322 if (GET_CODE (insn) == CALL_INSN)
324 last_call_suid = INSN_SUID (insn);
326 if (current_function_has_nonlocal_label)
328 IOR_COMPL_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
329 fixed_reg_set);
330 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
331 if (! fixed_regs[i])
332 regs_live[i] = 0;
334 else
336 IOR_HARD_REG_SET (after_insn_hard_regs[last_call_suid],
337 call_used_reg_set);
338 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
339 if (call_used_regs[i])
340 regs_live[i] = 0;
343 /* It is important that this be done after processing the insn's
344 pattern because we want the function result register to still
345 be live if it's also used to pass arguments. */
346 stupid_mark_refs (CALL_INSN_FUNCTION_USAGE (insn), chain);
349 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != BARRIER)
351 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
352 if (regs_live[i])
353 SET_REGNO_REG_SET (chain->live_after, i);
355 /* The regs_live array doesn't say anything about hard registers
356 clobbered by this insn. So we need an extra pass over the
357 pattern. */
358 current_chain = chain;
359 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
360 note_stores (PATTERN (insn), find_clobbered_regs);
363 if (GET_CODE (insn) == JUMP_INSN && computed_jump_p (insn))
364 current_function_has_computed_jump = 1;
367 /* Now decide the order in which to allocate the pseudo registers. */
369 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
370 reg_order[i] = i;
372 qsort (&reg_order[LAST_VIRTUAL_REGISTER + 1],
373 max_regno - LAST_VIRTUAL_REGISTER - 1, sizeof (int),
374 stupid_reg_compare);
376 /* Now, in that order, try to find hard registers for those pseudo regs. */
378 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
380 register int r = reg_order[i];
382 /* Some regnos disappear from the rtl. Ignore them to avoid crash.
383 Also don't allocate registers that cross a setjmp, or live across
384 a call if this function receives a nonlocal goto.
385 Also ignore registers we didn't see during the scan. */
386 if (regno_reg_rtx[r] == 0 || regs_crosses_setjmp[r]
387 || (reg_where_born_exact[r] == 0 && reg_where_dead[r] == 0)
388 || (REG_N_CALLS_CROSSED (r) > 0
389 && current_function_has_nonlocal_label))
390 continue;
392 /* Now find the best hard-register class for this pseudo register */
393 if (N_REG_CLASSES > 1)
394 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
395 reg_preferred_class (r),
396 PSEUDO_REGNO_MODE (r),
397 REG_WHERE_BORN (r),
398 reg_where_dead[r],
399 regs_change_size[r]);
401 /* If no reg available in that class, try alternate class. */
402 if (reg_renumber[r] == -1 && reg_alternate_class (r) != NO_REGS)
403 reg_renumber[r] = stupid_find_reg (REG_N_CALLS_CROSSED (r),
404 reg_alternate_class (r),
405 PSEUDO_REGNO_MODE (r),
406 REG_WHERE_BORN (r),
407 reg_where_dead[r],
408 regs_change_size[r]);
411 /* Fill in the pseudo reg life information into the insn chain. */
412 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
414 struct insn_chain *chain;
415 int regno;
417 regno = reg_renumber[i];
418 if (regno < 0)
419 continue;
421 chain = reg_where_dead_chain[i];
422 if (reg_where_dead[i] > INSN_SUID (chain->insn))
423 SET_REGNO_REG_SET (chain->live_after, i);
425 while (INSN_SUID (chain->insn) > reg_where_born_exact[i])
427 SET_REGNO_REG_SET (chain->live_before, i);
428 chain = chain->prev;
429 if (!chain)
430 break;
431 SET_REGNO_REG_SET (chain->live_after, i);
434 if (INSN_SUID (chain->insn) == reg_where_born_exact[i]
435 && reg_where_born_clobber[i])
436 SET_REGNO_REG_SET (chain->live_before, i);
439 if (file)
440 dump_flow_info (file);
442 free (regs_live);
443 free (uid_suid);
444 free (reg_where_dead);
445 free (reg_where_born_exact);
446 free (reg_where_born_clobber);
447 free (reg_where_dead_chain);
448 free (reg_order);
449 free (regs_change_size);
450 free (regs_crosses_setjmp);
451 free (after_insn_hard_regs);
454 /* Comparison function for qsort.
455 Returns -1 (1) if register *R1P is higher priority than *R2P. */
457 static int
458 stupid_reg_compare (r1p, r2p)
459 const GENERIC_PTR r1p;
460 const GENERIC_PTR r2p;
462 register int r1 = *(int *)r1p, r2 = *(int *)r2p;
463 register int len1 = reg_where_dead[r1] - REG_WHERE_BORN (r1);
464 register int len2 = reg_where_dead[r2] - REG_WHERE_BORN (r2);
465 int tem;
467 tem = len2 - len1;
468 if (tem != 0)
469 return tem;
471 tem = REG_N_REFS (r1) - REG_N_REFS (r2);
472 if (tem != 0)
473 return tem;
475 /* If regs are equally good, sort by regno,
476 so that the results of qsort leave nothing to chance. */
477 return r1 - r2;
480 /* Find a block of SIZE words of hard registers in reg_class CLASS
481 that can hold a value of machine-mode MODE
482 (but actually we test only the first of the block for holding MODE)
483 currently free from after insn whose suid is BORN_INSN
484 through the insn whose suid is DEAD_INSN,
485 and return the number of the first of them.
486 Return -1 if such a block cannot be found.
488 If CALL_PRESERVED is nonzero, insist on registers preserved
489 over subroutine calls, and return -1 if cannot find such.
491 If CHANGES_SIZE is nonzero, it means this register was used as the
492 operand of a SUBREG that changes its size. */
494 static int
495 stupid_find_reg (call_preserved, class, mode,
496 born_insn, dead_insn, changes_size)
497 int call_preserved;
498 enum reg_class class;
499 enum machine_mode mode;
500 int born_insn, dead_insn;
501 int changes_size ATTRIBUTE_UNUSED;
503 register int i, ins;
504 #ifdef HARD_REG_SET
505 register /* Declare them register if they are scalars. */
506 #endif
507 HARD_REG_SET used, this_reg;
508 #ifdef ELIMINABLE_REGS
509 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
510 #endif
512 /* If this register's life is more than 5,000 insns, we probably
513 can't allocate it, so don't waste the time trying. This avoids
514 quadratic behavior on programs that have regularly-occurring
515 SAVE_EXPRs. */
516 if (dead_insn > born_insn + 5000)
517 return -1;
519 COPY_HARD_REG_SET (used,
520 call_preserved ? call_used_reg_set : fixed_reg_set);
522 #ifdef ELIMINABLE_REGS
523 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
524 SET_HARD_REG_BIT (used, eliminables[i].from);
525 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
526 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
527 #endif
528 #else
529 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
530 #endif
532 for (ins = born_insn; ins < dead_insn; ins++)
533 IOR_HARD_REG_SET (used, after_insn_hard_regs[ins]);
535 #ifdef STACK_REGS
536 if (current_function_has_computed_jump)
537 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
538 SET_HARD_REG_BIT (used, i);
539 #endif
541 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
543 #ifdef CLASS_CANNOT_CHANGE_SIZE
544 if (changes_size)
545 IOR_HARD_REG_SET (used,
546 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
547 #endif
549 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
551 #ifdef REG_ALLOC_ORDER
552 int regno = reg_alloc_order[i];
553 #else
554 int regno = i;
555 #endif
557 /* If a register has screwy overlap problems,
558 don't use it at all if not optimizing.
559 Actually this is only for the 387 stack register,
560 and it's because subsequent code won't work. */
561 #ifdef OVERLAPPING_REGNO_P
562 if (OVERLAPPING_REGNO_P (regno))
563 continue;
564 #endif
566 if (! TEST_HARD_REG_BIT (used, regno)
567 && HARD_REGNO_MODE_OK (regno, mode))
569 register int j;
570 register int size1 = HARD_REGNO_NREGS (regno, mode);
571 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
572 if (j == size1)
574 CLEAR_HARD_REG_SET (this_reg);
575 while (--j >= 0)
576 SET_HARD_REG_BIT (this_reg, regno + j);
577 for (ins = born_insn; ins < dead_insn; ins++)
579 IOR_HARD_REG_SET (after_insn_hard_regs[ins], this_reg);
581 return regno;
583 #ifndef REG_ALLOC_ORDER
584 i += j; /* Skip starting points we know will lose */
585 #endif
589 return -1;
592 /* Walk X, noting all assignments and references to registers
593 and recording what they imply about life spans.
594 INSN is the current insn, supplied so we can find its suid. */
596 static void
597 stupid_mark_refs (x, chain)
598 rtx x;
599 struct insn_chain *chain;
601 register RTX_CODE code;
602 register char *fmt;
603 register int regno, i;
604 rtx insn = chain->insn;
606 if (x == 0)
607 return;
609 code = GET_CODE (x);
611 if (code == SET || code == CLOBBER)
613 if (SET_DEST (x) != 0
614 && (GET_CODE (SET_DEST (x)) == REG
615 || (GET_CODE (SET_DEST (x)) == SUBREG
616 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
617 && (REGNO (SUBREG_REG (SET_DEST (x)))
618 >= FIRST_PSEUDO_REGISTER))))
620 /* Register is being assigned. */
621 /* If setting a SUBREG, we treat the entire reg as being set. */
622 if (GET_CODE (SET_DEST (x)) == SUBREG)
623 regno = REGNO (SUBREG_REG (SET_DEST (x)));
624 else
625 regno = REGNO (SET_DEST (x));
627 /* For hard regs, update the where-live info. */
628 if (regno < FIRST_PSEUDO_REGISTER)
630 register int j
631 = HARD_REGNO_NREGS (regno, GET_MODE (SET_DEST (x)));
633 while (--j >= 0)
635 regs_ever_live[regno+j] = 1;
636 regs_live[regno+j] = 0;
638 /* The following line is for unused outputs;
639 they do get stored even though never used again. */
640 MARK_LIVE_AFTER (insn, regno+j);
642 /* When a hard reg is clobbered, mark it in use
643 just before this insn, so it is live all through. */
644 if (code == CLOBBER && INSN_SUID (insn) > 0)
645 SET_HARD_REG_BIT (after_insn_hard_regs[INSN_SUID (insn) - 1],
646 regno+j);
649 /* For pseudo regs, record where born, where dead, number of
650 times used, and whether live across a call. */
651 else
653 /* Update the life-interval bounds of this pseudo reg. */
655 /* When a pseudo-reg is CLOBBERed, it is born just before
656 the clobbering insn. When setting, just after. */
657 int where_born = INSN_SUID (insn) - (code == CLOBBER);
659 reg_where_born_exact[regno] = INSN_SUID (insn);
660 reg_where_born_clobber[regno] = (code == CLOBBER);
662 if (reg_where_dead_chain[regno] == 0)
663 reg_where_dead_chain[regno] = chain;
665 /* The reg must live at least one insn even
666 in it is never again used--because it has to go
667 in SOME hard reg. Mark it as dying after the current
668 insn so that it will conflict with any other outputs of
669 this insn. */
670 if (reg_where_dead[regno] < where_born + 2)
672 reg_where_dead[regno] = where_born + 2;
673 regs_live[regno] = 1;
676 /* Count the refs of this reg. */
677 REG_N_REFS (regno)++;
679 if (last_call_suid < reg_where_dead[regno])
680 REG_N_CALLS_CROSSED (regno) += 1;
682 if (last_setjmp_suid < reg_where_dead[regno])
683 regs_crosses_setjmp[regno] = 1;
685 /* If this register is clobbered or it is only used in
686 this insn and is only set, mark it unused. We have
687 to do this even when not optimizing so that MD patterns
688 which count on this behavior (e.g., it not causing an
689 output reload on an insn setting CC) will operate
690 correctly. */
691 if (GET_CODE (SET_DEST (x)) == REG
692 && (code == CLOBBER
693 || (REGNO_FIRST_UID (regno) == INSN_UID (insn)
694 && REGNO_LAST_UID (regno) == INSN_UID (insn)
695 && ! reg_mentioned_p (SET_DEST (x),
696 SET_SRC (x)))))
697 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_UNUSED,
698 SET_DEST (x),
699 REG_NOTES (insn));
703 /* Record references from the value being set,
704 or from addresses in the place being set if that's not a reg.
705 If setting a SUBREG, we treat the entire reg as *used*. */
706 if (code == SET)
708 stupid_mark_refs (SET_SRC (x), chain);
709 if (GET_CODE (SET_DEST (x)) != REG)
710 stupid_mark_refs (SET_DEST (x), chain);
712 return;
715 else if (code == SUBREG
716 && GET_CODE (SUBREG_REG (x)) == REG
717 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
718 && (GET_MODE_SIZE (GET_MODE (x))
719 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
720 && (INTEGRAL_MODE_P (GET_MODE (x))
721 || INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (x)))))
722 regs_change_size[REGNO (SUBREG_REG (x))] = 1;
724 /* Register value being used, not set. */
726 else if (code == REG)
728 regno = REGNO (x);
729 if (regno < FIRST_PSEUDO_REGISTER)
731 /* Hard reg: mark it live for continuing scan of previous insns. */
732 register int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
733 while (--j >= 0)
735 regs_ever_live[regno+j] = 1;
736 regs_live[regno+j] = 1;
739 else
741 /* Pseudo reg: record first use, last use and number of uses. */
743 reg_where_born_exact[regno] = INSN_SUID (insn);
744 reg_where_born_clobber[regno] = 0;
745 REG_N_REFS (regno)++;
746 if (regs_live[regno] == 0)
748 regs_live[regno] = 1;
749 reg_where_dead[regno] = INSN_SUID (insn);
750 reg_where_dead_chain[regno] = chain;
753 return;
756 /* Recursive scan of all other rtx's. */
758 fmt = GET_RTX_FORMAT (code);
759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
761 if (fmt[i] == 'e')
762 stupid_mark_refs (XEXP (x, i), chain);
763 if (fmt[i] == 'E')
765 register int j;
766 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
767 stupid_mark_refs (XVECEXP (x, i, j), chain);