* recog.c (preproces_constraints): Zero recog_op_alt before
[official-gcc.git] / gcc / local-alloc.c
blobd1df595c4c1110d5acf444ca1448dc38a159a951
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "insn-attr.h"
71 #include "recog.h"
72 #include "output.h"
73 #include "toplev.h"
75 /* Next quantity number available for allocation. */
77 static int next_qty;
79 /* In all the following vectors indexed by quantity number. */
81 /* Element Q is the hard reg number chosen for quantity Q,
82 or -1 if none was found. */
84 static short *qty_phys_reg;
86 /* We maintain two hard register sets that indicate suggested hard registers
87 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
88 that are tied to the quantity by a simple copy. The second contains all
89 hard registers that are tied to the quantity via an arithmetic operation.
91 The former register set is given priority for allocation. This tends to
92 eliminate copy insns. */
94 /* Element Q is a set of hard registers that are suggested for quantity Q by
95 copy insns. */
97 static HARD_REG_SET *qty_phys_copy_sugg;
99 /* Element Q is a set of hard registers that are suggested for quantity Q by
100 arithmetic insns. */
102 static HARD_REG_SET *qty_phys_sugg;
104 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
106 static short *qty_phys_num_copy_sugg;
108 /* Element Q is the number of suggested registers in qty_phys_sugg. */
110 static short *qty_phys_num_sugg;
112 /* Element Q is the number of refs to quantity Q. */
114 static int *qty_n_refs;
116 /* Element Q is a reg class contained in (smaller than) the
117 preferred classes of all the pseudo regs that are tied in quantity Q.
118 This is the preferred class for allocating that quantity. */
120 static enum reg_class *qty_min_class;
122 /* Insn number (counting from head of basic block)
123 where quantity Q was born. -1 if birth has not been recorded. */
125 static int *qty_birth;
127 /* Insn number (counting from head of basic block)
128 where quantity Q died. Due to the way tying is done,
129 and the fact that we consider in this pass only regs that die but once,
130 a quantity can die only once. Each quantity's life span
131 is a set of consecutive insns. -1 if death has not been recorded. */
133 static int *qty_death;
135 /* Number of words needed to hold the data in quantity Q.
136 This depends on its machine mode. It is used for these purposes:
137 1. It is used in computing the relative importances of qtys,
138 which determines the order in which we look for regs for them.
139 2. It is used in rules that prevent tying several registers of
140 different sizes in a way that is geometrically impossible
141 (see combine_regs). */
143 static int *qty_size;
145 /* This holds the mode of the registers that are tied to qty Q,
146 or VOIDmode if registers with differing modes are tied together. */
148 static enum machine_mode *qty_mode;
150 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
152 static int *qty_n_calls_crossed;
154 /* Register class within which we allocate qty Q if we can't get
155 its preferred class. */
157 static enum reg_class *qty_alternate_class;
159 /* Element Q is nonzero if this quantity has been used in a SUBREG
160 that changes its size. */
162 static char *qty_changes_size;
164 /* Element Q is the register number of one pseudo register whose
165 reg_qty value is Q. This register should be the head of the chain
166 maintained in reg_next_in_qty. */
168 static int *qty_first_reg;
170 /* If (REG N) has been assigned a quantity number, is a register number
171 of another register assigned the same quantity number, or -1 for the
172 end of the chain. qty_first_reg point to the head of this chain. */
174 static int *reg_next_in_qty;
176 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
177 if it is >= 0,
178 of -1 if this register cannot be allocated by local-alloc,
179 or -2 if not known yet.
181 Note that if we see a use or death of pseudo register N with
182 reg_qty[N] == -2, register N must be local to the current block. If
183 it were used in more than one block, we would have reg_qty[N] == -1.
184 This relies on the fact that if reg_basic_block[N] is >= 0, register N
185 will not appear in any other block. We save a considerable number of
186 tests by exploiting this.
188 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
189 be referenced. */
191 static int *reg_qty;
193 /* The offset (in words) of register N within its quantity.
194 This can be nonzero if register N is SImode, and has been tied
195 to a subreg of a DImode register. */
197 static char *reg_offset;
199 /* Vector of substitutions of register numbers,
200 used to map pseudo regs into hardware regs.
201 This is set up as a result of register allocation.
202 Element N is the hard reg assigned to pseudo reg N,
203 or is -1 if no hard reg was assigned.
204 If N is a hard reg number, element N is N. */
206 short *reg_renumber;
208 /* Set of hard registers live at the current point in the scan
209 of the instructions in a basic block. */
211 static HARD_REG_SET regs_live;
213 /* Each set of hard registers indicates registers live at a particular
214 point in the basic block. For N even, regs_live_at[N] says which
215 hard registers are needed *after* insn N/2 (i.e., they may not
216 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
218 If an object is to conflict with the inputs of insn J but not the
219 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
220 if it is to conflict with the outputs of insn J but not the inputs of
221 insn J + 1, it is said to die at index J*2 + 1. */
223 static HARD_REG_SET *regs_live_at;
225 /* Communicate local vars `insn_number' and `insn'
226 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
227 static int this_insn_number;
228 static rtx this_insn;
230 /* Used to communicate changes made by update_equiv_regs to
231 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
232 found or created, so that we can keep track of what memory accesses might
233 be created later, e.g. by reload. */
235 static rtx *reg_equiv_replacement;
237 /* Used for communication between update_equiv_regs and no_equiv. */
238 static rtx *reg_equiv_init_insns;
240 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
241 static int recorded_label_ref;
243 static void alloc_qty PROTO((int, enum machine_mode, int, int));
244 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
245 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
246 static int contains_replace_regs PROTO((rtx, char *));
247 static int memref_referenced_p PROTO((rtx, rtx));
248 static int memref_used_between_p PROTO((rtx, rtx, rtx));
249 static void update_equiv_regs PROTO((void));
250 static void no_equiv PROTO((rtx, rtx));
251 static void block_alloc PROTO((int));
252 static int qty_sugg_compare PROTO((int, int));
253 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
254 static int qty_compare PROTO((int, int));
255 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
256 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
257 static int reg_meets_class_p PROTO((int, enum reg_class));
258 static void update_qty_class PROTO((int, int));
259 static void reg_is_set PROTO((rtx, rtx));
260 static void reg_is_born PROTO((rtx, int));
261 static void wipe_dead_reg PROTO((rtx, int));
262 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
263 int, int, int, int, int));
264 static void mark_life PROTO((int, enum machine_mode, int));
265 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
266 static int no_conflict_p PROTO((rtx, rtx, rtx));
267 static int requires_inout PROTO((const char *));
269 /* Allocate a new quantity (new within current basic block)
270 for register number REGNO which is born at index BIRTH
271 within the block. MODE and SIZE are info on reg REGNO. */
273 static void
274 alloc_qty (regno, mode, size, birth)
275 int regno;
276 enum machine_mode mode;
277 int size, birth;
279 register int qty = next_qty++;
281 reg_qty[regno] = qty;
282 reg_offset[regno] = 0;
283 reg_next_in_qty[regno] = -1;
285 qty_first_reg[qty] = regno;
286 qty_size[qty] = size;
287 qty_mode[qty] = mode;
288 qty_birth[qty] = birth;
289 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
290 qty_min_class[qty] = reg_preferred_class (regno);
291 qty_alternate_class[qty] = reg_alternate_class (regno);
292 qty_n_refs[qty] = REG_N_REFS (regno);
293 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
296 /* Main entry point of this file. */
299 local_alloc ()
301 register int b, i;
302 int max_qty;
304 /* We need to keep track of whether or not we recorded a LABEL_REF so
305 that we know if the jump optimizer needs to be rerun. */
306 recorded_label_ref = 0;
308 /* Leaf functions and non-leaf functions have different needs.
309 If defined, let the machine say what kind of ordering we
310 should use. */
311 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
312 ORDER_REGS_FOR_LOCAL_ALLOC;
313 #endif
315 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
316 registers. */
317 update_equiv_regs ();
319 /* This sets the maximum number of quantities we can have. Quantity
320 numbers start at zero and we can have one for each pseudo. */
321 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
323 /* Allocate vectors of temporary data.
324 See the declarations of these variables, above,
325 for what they mean. */
327 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
328 qty_phys_copy_sugg
329 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
330 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
331 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
332 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
333 qty_birth = (int *) alloca (max_qty * sizeof (int));
334 qty_death = (int *) alloca (max_qty * sizeof (int));
335 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
336 qty_size = (int *) alloca (max_qty * sizeof (int));
337 qty_mode
338 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
339 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
340 qty_min_class
341 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
342 qty_alternate_class
343 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
344 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
345 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
347 reg_qty = (int *) xmalloc (max_regno * sizeof (int));
348 reg_offset = (char *) xmalloc (max_regno * sizeof (char));
349 reg_next_in_qty = (int *) xmalloc(max_regno * sizeof (int));
351 /* Allocate the reg_renumber array */
352 allocate_reg_info (max_regno, FALSE, TRUE);
354 /* Determine which pseudo-registers can be allocated by local-alloc.
355 In general, these are the registers used only in a single block and
356 which only die once. However, if a register's preferred class has only
357 a few entries, don't allocate this register here unless it is preferred
358 or nothing since retry_global_alloc won't be able to move it to
359 GENERAL_REGS if a reload register of this class is needed.
361 We need not be concerned with which block actually uses the register
362 since we will never see it outside that block. */
364 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
366 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
367 && (reg_alternate_class (i) == NO_REGS
368 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
369 reg_qty[i] = -2;
370 else
371 reg_qty[i] = -1;
374 /* Force loop below to initialize entire quantity array. */
375 next_qty = max_qty;
377 /* Allocate each block's local registers, block by block. */
379 for (b = 0; b < n_basic_blocks; b++)
381 /* NEXT_QTY indicates which elements of the `qty_...'
382 vectors might need to be initialized because they were used
383 for the previous block; it is set to the entire array before
384 block 0. Initialize those, with explicit loop if there are few,
385 else with bzero and bcopy. Do not initialize vectors that are
386 explicit set by `alloc_qty'. */
388 if (next_qty < 6)
390 for (i = 0; i < next_qty; i++)
392 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
393 qty_phys_num_copy_sugg[i] = 0;
394 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
395 qty_phys_num_sugg[i] = 0;
398 else
400 #define CLEAR(vector) \
401 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
403 CLEAR (qty_phys_copy_sugg);
404 CLEAR (qty_phys_num_copy_sugg);
405 CLEAR (qty_phys_sugg);
406 CLEAR (qty_phys_num_sugg);
409 next_qty = 0;
411 block_alloc (b);
412 #ifdef USE_C_ALLOCA
413 alloca (0);
414 #endif
417 free (reg_qty);
418 free (reg_offset);
419 free (reg_next_in_qty);
420 return recorded_label_ref;
423 /* Depth of loops we are in while in update_equiv_regs. */
424 static int loop_depth;
426 /* Used for communication between the following two functions: contains
427 a MEM that we wish to ensure remains unchanged. */
428 static rtx equiv_mem;
430 /* Set nonzero if EQUIV_MEM is modified. */
431 static int equiv_mem_modified;
433 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
434 Called via note_stores. */
436 static void
437 validate_equiv_mem_from_store (dest, set)
438 rtx dest;
439 rtx set ATTRIBUTE_UNUSED;
441 if ((GET_CODE (dest) == REG
442 && reg_overlap_mentioned_p (dest, equiv_mem))
443 || (GET_CODE (dest) == MEM
444 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
445 equiv_mem_modified = 1;
448 /* Verify that no store between START and the death of REG invalidates
449 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
450 by storing into an overlapping memory location, or with a non-const
451 CALL_INSN.
453 Return 1 if MEMREF remains valid. */
455 static int
456 validate_equiv_mem (start, reg, memref)
457 rtx start;
458 rtx reg;
459 rtx memref;
461 rtx insn;
462 rtx note;
464 equiv_mem = memref;
465 equiv_mem_modified = 0;
467 /* If the memory reference has side effects or is volatile, it isn't a
468 valid equivalence. */
469 if (side_effects_p (memref))
470 return 0;
472 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
474 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
475 continue;
477 if (find_reg_note (insn, REG_DEAD, reg))
478 return 1;
480 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
481 && ! CONST_CALL_P (insn))
482 return 0;
484 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
486 /* If a register mentioned in MEMREF is modified via an
487 auto-increment, we lose the equivalence. Do the same if one
488 dies; although we could extend the life, it doesn't seem worth
489 the trouble. */
491 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
492 if ((REG_NOTE_KIND (note) == REG_INC
493 || REG_NOTE_KIND (note) == REG_DEAD)
494 && GET_CODE (XEXP (note, 0)) == REG
495 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
496 return 0;
499 return 0;
502 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
504 static int
505 contains_replace_regs (x, reg_equiv_replace)
506 rtx x;
507 char *reg_equiv_replace;
509 int i, j;
510 char *fmt;
511 enum rtx_code code = GET_CODE (x);
513 switch (code)
515 case CONST_INT:
516 case CONST:
517 case LABEL_REF:
518 case SYMBOL_REF:
519 case CONST_DOUBLE:
520 case PC:
521 case CC0:
522 case HIGH:
523 case LO_SUM:
524 return 0;
526 case REG:
527 return reg_equiv_replace[REGNO (x)];
529 default:
530 break;
533 fmt = GET_RTX_FORMAT (code);
534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535 switch (fmt[i])
537 case 'e':
538 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
539 return 1;
540 break;
541 case 'E':
542 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
543 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
544 return 1;
545 break;
548 return 0;
551 /* TRUE if X references a memory location that would be affected by a store
552 to MEMREF. */
554 static int
555 memref_referenced_p (memref, x)
556 rtx x;
557 rtx memref;
559 int i, j;
560 char *fmt;
561 enum rtx_code code = GET_CODE (x);
563 switch (code)
565 case CONST_INT:
566 case CONST:
567 case LABEL_REF:
568 case SYMBOL_REF:
569 case CONST_DOUBLE:
570 case PC:
571 case CC0:
572 case HIGH:
573 case LO_SUM:
574 return 0;
576 case REG:
577 return (reg_equiv_replacement[REGNO (x)]
578 && memref_referenced_p (memref,
579 reg_equiv_replacement[REGNO (x)]));
581 case MEM:
582 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
583 return 1;
584 break;
586 case SET:
587 /* If we are setting a MEM, it doesn't count (its address does), but any
588 other SET_DEST that has a MEM in it is referencing the MEM. */
589 if (GET_CODE (SET_DEST (x)) == MEM)
591 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
592 return 1;
594 else if (memref_referenced_p (memref, SET_DEST (x)))
595 return 1;
597 return memref_referenced_p (memref, SET_SRC (x));
599 default:
600 break;
603 fmt = GET_RTX_FORMAT (code);
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 switch (fmt[i])
607 case 'e':
608 if (memref_referenced_p (memref, XEXP (x, i)))
609 return 1;
610 break;
611 case 'E':
612 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
613 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
614 return 1;
615 break;
618 return 0;
621 /* TRUE if some insn in the range (START, END] references a memory location
622 that would be affected by a store to MEMREF. */
624 static int
625 memref_used_between_p (memref, start, end)
626 rtx memref;
627 rtx start;
628 rtx end;
630 rtx insn;
632 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
633 insn = NEXT_INSN (insn))
634 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
635 && memref_referenced_p (memref, PATTERN (insn)))
636 return 1;
638 return 0;
641 /* Return nonzero if the rtx X is invariant over the current function. */
643 function_invariant_p (x)
644 rtx x;
646 if (CONSTANT_P (x))
647 return 1;
648 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
649 return 1;
650 if (GET_CODE (x) == PLUS
651 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
652 && CONSTANT_P (XEXP (x, 1)))
653 return 1;
654 return 0;
657 /* Find registers that are equivalent to a single value throughout the
658 compilation (either because they can be referenced in memory or are set once
659 from a single constant). Lower their priority for a register.
661 If such a register is only referenced once, try substituting its value
662 into the using insn. If it succeeds, we can eliminate the register
663 completely. */
665 static void
666 update_equiv_regs ()
668 /* Set when an attempt should be made to replace a register with the
669 associated reg_equiv_replacement entry at the end of this function. */
670 char *reg_equiv_replace
671 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
672 rtx insn;
673 int block, depth;
675 reg_equiv_init_insns = (rtx *) alloca (max_regno * sizeof (rtx));
676 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx));
678 bzero ((char *) reg_equiv_init_insns, max_regno * sizeof (rtx));
679 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx));
680 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
682 init_alias_analysis ();
684 loop_depth = 1;
686 /* Scan the insns and find which registers have equivalences. Do this
687 in a separate scan of the insns because (due to -fcse-follow-jumps)
688 a register can be set below its use. */
689 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
691 rtx note;
692 rtx set;
693 rtx dest, src;
694 int regno;
696 if (GET_CODE (insn) == NOTE)
698 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
699 loop_depth++;
700 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
701 loop_depth--;
704 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
705 continue;
707 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
708 if (REG_NOTE_KIND (note) == REG_INC)
709 no_equiv (XEXP (note, 0), note);
711 set = single_set (insn);
713 /* If this insn contains more (or less) than a single SET,
714 only mark all destinations as having no known equivalence. */
715 if (set == 0)
717 note_stores (PATTERN (insn), no_equiv);
718 continue;
720 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
722 int i;
724 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
726 rtx part = XVECEXP (PATTERN (insn), 0, i);
727 if (part != set)
728 note_stores (part, no_equiv);
732 dest = SET_DEST (set);
733 src = SET_SRC (set);
735 /* If this sets a MEM to the contents of a REG that is only used
736 in a single basic block, see if the register is always equivalent
737 to that memory location and if moving the store from INSN to the
738 insn that set REG is safe. If so, put a REG_EQUIV note on the
739 initializing insn.
741 Don't add a REG_EQUIV note if the insn already has one. The existing
742 REG_EQUIV is likely more useful than the one we are adding.
744 If one of the regs in the address is marked as reg_equiv_replace,
745 then we can't add this REG_EQUIV note. The reg_equiv_replace
746 optimization may move the set of this register immediately before
747 insn, which puts it after reg_equiv_init_insns[regno], and hence
748 the mention in the REG_EQUIV note would be to an uninitialized
749 pseudo. */
750 /* ????? This test isn't good enough; we might see a MEM with a use of
751 a pseudo register before we see its setting insn that will cause
752 reg_equiv_replace for that pseudo to be set.
753 Equivalences to MEMs should be made in another pass, after the
754 reg_equiv_replace information has been gathered. */
756 if (GET_CODE (dest) == MEM && GET_CODE (src) == REG
757 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
758 && REG_BASIC_BLOCK (regno) >= 0
759 && REG_N_SETS (regno) == 1
760 && reg_equiv_init_insns[regno] != 0
761 && reg_equiv_init_insns[regno] != const0_rtx
762 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
763 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace))
765 rtx init_insn = XEXP (reg_equiv_init_insns[regno], 0);
766 if (validate_equiv_mem (init_insn, src, dest)
767 && ! memref_used_between_p (dest, init_insn, insn))
768 REG_NOTES (init_insn)
769 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
772 /* We only handle the case of a pseudo register being set
773 once, or always to the same value. */
774 /* ??? The mn10200 port breaks if we add equivalences for
775 values that need an ADDRESS_REGS register and set them equivalent
776 to a MEM of a pseudo. The actual problem is in the over-conservative
777 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
778 calculate_needs, but we traditionally work around this problem
779 here by rejecting equivalences when the destination is in a register
780 that's likely spilled. This is fragile, of course, since the
781 preferred class of a pseudo depends on all instructions that set
782 or use it. */
784 if (GET_CODE (dest) != REG
785 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
786 || reg_equiv_init_insns[regno] == const0_rtx
787 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
788 && GET_CODE (src) == MEM))
790 /* This might be seting a SUBREG of a pseudo, a pseudo that is
791 also set somewhere else to a constant. */
792 note_stores (set, no_equiv);
793 continue;
795 /* Don't handle the equivalence if the source is in a register
796 class that's likely to be spilled. */
797 if (GET_CODE (src) == REG
798 && REGNO (src) >= FIRST_PSEUDO_REGISTER
799 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src))))
801 no_equiv (dest, set);
802 continue;
805 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
807 if (REG_N_SETS (regno) != 1
808 && (! note
809 || ! function_invariant_p (XEXP (note, 0))
810 || (reg_equiv_replacement[regno]
811 && ! rtx_equal_p (XEXP (note, 0),
812 reg_equiv_replacement[regno]))))
814 no_equiv (dest, set);
815 continue;
817 /* Record this insn as initializing this register. */
818 reg_equiv_init_insns[regno]
819 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init_insns[regno]);
821 /* If this register is known to be equal to a constant, record that
822 it is always equivalent to the constant. */
823 if (note && function_invariant_p (XEXP (note, 0)))
824 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
826 /* If this insn introduces a "constant" register, decrease the priority
827 of that register. Record this insn if the register is only used once
828 more and the equivalence value is the same as our source.
830 The latter condition is checked for two reasons: First, it is an
831 indication that it may be more efficient to actually emit the insn
832 as written (if no registers are available, reload will substitute
833 the equivalence). Secondly, it avoids problems with any registers
834 dying in this insn whose death notes would be missed.
836 If we don't have a REG_EQUIV note, see if this insn is loading
837 a register used only in one basic block from a MEM. If so, and the
838 MEM remains unchanged for the life of the register, add a REG_EQUIV
839 note. */
841 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
843 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
844 && GET_CODE (SET_SRC (set)) == MEM
845 && validate_equiv_mem (insn, dest, SET_SRC (set)))
846 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
847 REG_NOTES (insn));
849 if (note)
851 int regno = REGNO (dest);
853 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
854 We might end up substituting the LABEL_REF for uses of the
855 pseudo here or later. That kind of transformation may turn an
856 indirect jump into a direct jump, in which case we must rerun the
857 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
858 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
859 || (GET_CODE (XEXP (note, 0)) == CONST
860 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
861 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
862 == LABEL_REF)))
863 recorded_label_ref = 1;
866 reg_equiv_replacement[regno] = XEXP (note, 0);
868 /* Don't mess with things live during setjmp. */
869 if (REG_LIVE_LENGTH (regno) >= 0)
871 /* Note that the statement below does not affect the priority
872 in local-alloc! */
873 REG_LIVE_LENGTH (regno) *= 2;
876 /* If the register is referenced exactly twice, meaning it is
877 set once and used once, indicate that the reference may be
878 replaced by the equivalence we computed above. If the
879 register is only used in one basic block, this can't succeed
880 or combine would have done it.
882 It would be nice to use "loop_depth * 2" in the compare
883 below. Unfortunately, LOOP_DEPTH need not be constant within
884 a basic block so this would be too complicated.
886 This case normally occurs when a parameter is read from
887 memory and then used exactly once, not in a loop. */
889 if (REG_N_REFS (regno) == 2
890 && REG_BASIC_BLOCK (regno) < 0
891 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
892 reg_equiv_replace[regno] = 1;
897 /* Now scan all regs killed in an insn to see if any of them are
898 registers only used that once. If so, see if we can replace the
899 reference with the equivalent from. If we can, delete the
900 initializing reference and this register will go away. If we
901 can't replace the reference, and the instruction is not in a
902 loop, then move the register initialization just before the use,
903 so that they are in the same basic block. */
904 block = -1;
905 depth = 0;
906 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
908 rtx link;
910 /* Keep track of which basic block we are in. */
911 if (block + 1 < n_basic_blocks
912 && BLOCK_HEAD (block + 1) == insn)
913 ++block;
915 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
917 if (GET_CODE (insn) == NOTE)
919 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
920 ++depth;
921 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
923 --depth;
924 if (depth < 0)
925 abort ();
929 continue;
932 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
934 if (REG_NOTE_KIND (link) == REG_DEAD
935 /* Make sure this insn still refers to the register. */
936 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
938 int regno = REGNO (XEXP (link, 0));
939 rtx equiv_insn;
941 if (! reg_equiv_replace[regno])
942 continue;
944 /* reg_equiv_replace[REGNO] gets set only when
945 REG_N_REFS[REGNO] is 2, i.e. the register is set
946 once and used once. (If it were only set, but not used,
947 flow would have deleted the setting insns.) Hence
948 there can only be one insn in reg_equiv_init_insns. */
949 equiv_insn = XEXP (reg_equiv_init_insns[regno], 0);
951 if (validate_replace_rtx (regno_reg_rtx[regno],
952 reg_equiv_replacement[regno], insn))
954 remove_death (regno, insn);
955 REG_N_REFS (regno) = 0;
956 PUT_CODE (equiv_insn, NOTE);
957 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
958 NOTE_SOURCE_FILE (equiv_insn) = 0;
960 /* If we aren't in a loop, and there are no calls in
961 INSN or in the initialization of the register, then
962 move the initialization of the register to just
963 before INSN. Update the flow information. */
964 else if (depth == 0
965 && GET_CODE (equiv_insn) == INSN
966 && GET_CODE (insn) == INSN
967 && REG_BASIC_BLOCK (regno) < 0)
969 int l;
971 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
972 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
974 PUT_CODE (equiv_insn, NOTE);
975 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
976 NOTE_SOURCE_FILE (equiv_insn) = 0;
977 REG_NOTES (equiv_insn) = 0;
979 if (block < 0)
980 REG_BASIC_BLOCK (regno) = 0;
981 else
982 REG_BASIC_BLOCK (regno) = block;
983 REG_N_CALLS_CROSSED (regno) = 0;
984 REG_LIVE_LENGTH (regno) = 2;
986 if (block >= 0 && insn == BLOCK_HEAD (block))
987 BLOCK_HEAD (block) = PREV_INSN (insn);
989 for (l = 0; l < n_basic_blocks; l++)
990 CLEAR_REGNO_REG_SET (BASIC_BLOCK (l)->global_live_at_start,
991 regno);
998 /* Mark REG as having no known equivalence.
999 Some instructions might have been proceessed before and furnished
1000 with REG_EQUIV notes for this register; these notes will have to be
1001 removed.
1002 STORE is the piece of RTL that does the non-constant / conflicting
1003 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1004 but needs to be there because this function is called from note_stores. */
1005 static void
1006 no_equiv (reg, store)
1007 rtx reg, store ATTRIBUTE_UNUSED;
1009 int regno;
1010 rtx list;
1012 if (GET_CODE (reg) != REG)
1013 return;
1014 regno = REGNO (reg);
1015 list = reg_equiv_init_insns[regno];
1016 if (list == const0_rtx)
1017 return;
1018 for (; list; list = XEXP (list, 1))
1020 rtx insn = XEXP (list, 0);
1021 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1023 reg_equiv_init_insns[regno] = const0_rtx;
1024 reg_equiv_replacement[regno] = NULL_RTX;
1027 /* Allocate hard regs to the pseudo regs used only within block number B.
1028 Only the pseudos that die but once can be handled. */
1030 static void
1031 block_alloc (b)
1032 int b;
1034 register int i, q;
1035 register rtx insn;
1036 rtx note;
1037 int insn_number = 0;
1038 int insn_count = 0;
1039 int max_uid = get_max_uid ();
1040 int *qty_order;
1041 int no_conflict_combined_regno = -1;
1043 /* Count the instructions in the basic block. */
1045 insn = BLOCK_END (b);
1046 while (1)
1048 if (GET_CODE (insn) != NOTE)
1049 if (++insn_count > max_uid)
1050 abort ();
1051 if (insn == BLOCK_HEAD (b))
1052 break;
1053 insn = PREV_INSN (insn);
1056 /* +2 to leave room for a post_mark_life at the last insn and for
1057 the birth of a CLOBBER in the first insn. */
1058 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1059 * sizeof (HARD_REG_SET));
1060 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1062 /* Initialize table of hardware registers currently live. */
1064 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1066 /* This loop scans the instructions of the basic block
1067 and assigns quantities to registers.
1068 It computes which registers to tie. */
1070 insn = BLOCK_HEAD (b);
1071 while (1)
1073 register rtx body = PATTERN (insn);
1075 if (GET_CODE (insn) != NOTE)
1076 insn_number++;
1078 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1080 register rtx link, set;
1081 register int win = 0;
1082 register rtx r0, r1;
1083 int combined_regno = -1;
1084 int i;
1086 this_insn_number = insn_number;
1087 this_insn = insn;
1089 extract_insn (insn);
1090 which_alternative = -1;
1092 /* Is this insn suitable for tying two registers?
1093 If so, try doing that.
1094 Suitable insns are those with at least two operands and where
1095 operand 0 is an output that is a register that is not
1096 earlyclobber.
1098 We can tie operand 0 with some operand that dies in this insn.
1099 First look for operands that are required to be in the same
1100 register as operand 0. If we find such, only try tying that
1101 operand or one that can be put into that operand if the
1102 operation is commutative. If we don't find an operand
1103 that is required to be in the same register as operand 0,
1104 we can tie with any operand.
1106 Subregs in place of regs are also ok.
1108 If tying is done, WIN is set nonzero. */
1110 if (1
1111 #ifdef REGISTER_CONSTRAINTS
1112 && recog_n_operands > 1
1113 && recog_constraints[0][0] == '='
1114 && recog_constraints[0][1] != '&'
1115 #else
1116 && GET_CODE (PATTERN (insn)) == SET
1117 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1118 #endif
1121 #ifdef REGISTER_CONSTRAINTS
1122 /* If non-negative, is an operand that must match operand 0. */
1123 int must_match_0 = -1;
1124 /* Counts number of alternatives that require a match with
1125 operand 0. */
1126 int n_matching_alts = 0;
1128 for (i = 1; i < recog_n_operands; i++)
1130 const char *p = recog_constraints[i];
1131 int this_match = (requires_inout (p));
1133 n_matching_alts += this_match;
1134 if (this_match == recog_n_alternatives)
1135 must_match_0 = i;
1137 #endif
1139 r0 = recog_operand[0];
1140 for (i = 1; i < recog_n_operands; i++)
1142 #ifdef REGISTER_CONSTRAINTS
1143 /* Skip this operand if we found an operand that
1144 must match operand 0 and this operand isn't it
1145 and can't be made to be it by commutativity. */
1147 if (must_match_0 >= 0 && i != must_match_0
1148 && ! (i == must_match_0 + 1
1149 && recog_constraints[i-1][0] == '%')
1150 && ! (i == must_match_0 - 1
1151 && recog_constraints[i][0] == '%'))
1152 continue;
1154 /* Likewise if each alternative has some operand that
1155 must match operand zero. In that case, skip any
1156 operand that doesn't list operand 0 since we know that
1157 the operand always conflicts with operand 0. We
1158 ignore commutatity in this case to keep things simple. */
1159 if (n_matching_alts == recog_n_alternatives
1160 && 0 == requires_inout (recog_constraints[i]))
1161 continue;
1162 #endif
1164 r1 = recog_operand[i];
1166 /* If the operand is an address, find a register in it.
1167 There may be more than one register, but we only try one
1168 of them. */
1169 if (
1170 #ifdef REGISTER_CONSTRAINTS
1171 recog_constraints[i][0] == 'p'
1172 #else
1173 recog_operand_address_p[i]
1174 #endif
1176 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1177 r1 = XEXP (r1, 0);
1179 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1181 /* We have two priorities for hard register preferences.
1182 If we have a move insn or an insn whose first input
1183 can only be in the same register as the output, give
1184 priority to an equivalence found from that insn. */
1185 int may_save_copy
1186 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1187 #ifdef REGISTER_CONSTRAINTS
1188 || (r1 == recog_operand[i] && must_match_0 >= 0)
1189 #endif
1192 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1193 win = combine_regs (r1, r0, may_save_copy,
1194 insn_number, insn, 0);
1196 if (win)
1197 break;
1201 /* Recognize an insn sequence with an ultimate result
1202 which can safely overlap one of the inputs.
1203 The sequence begins with a CLOBBER of its result,
1204 and ends with an insn that copies the result to itself
1205 and has a REG_EQUAL note for an equivalent formula.
1206 That note indicates what the inputs are.
1207 The result and the input can overlap if each insn in
1208 the sequence either doesn't mention the input
1209 or has a REG_NO_CONFLICT note to inhibit the conflict.
1211 We do the combining test at the CLOBBER so that the
1212 destination register won't have had a quantity number
1213 assigned, since that would prevent combining. */
1215 if (GET_CODE (PATTERN (insn)) == CLOBBER
1216 && (r0 = XEXP (PATTERN (insn), 0),
1217 GET_CODE (r0) == REG)
1218 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1219 && XEXP (link, 0) != 0
1220 && GET_CODE (XEXP (link, 0)) == INSN
1221 && (set = single_set (XEXP (link, 0))) != 0
1222 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1223 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1224 NULL_RTX)) != 0)
1226 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1227 /* Check that we have such a sequence. */
1228 && no_conflict_p (insn, r0, r1))
1229 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1230 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1231 && (r1 = XEXP (XEXP (note, 0), 0),
1232 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1233 && no_conflict_p (insn, r0, r1))
1234 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1236 /* Here we care if the operation to be computed is
1237 commutative. */
1238 else if ((GET_CODE (XEXP (note, 0)) == EQ
1239 || GET_CODE (XEXP (note, 0)) == NE
1240 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1241 && (r1 = XEXP (XEXP (note, 0), 1),
1242 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1243 && no_conflict_p (insn, r0, r1))
1244 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1246 /* If we did combine something, show the register number
1247 in question so that we know to ignore its death. */
1248 if (win)
1249 no_conflict_combined_regno = REGNO (r1);
1252 /* If registers were just tied, set COMBINED_REGNO
1253 to the number of the register used in this insn
1254 that was tied to the register set in this insn.
1255 This register's qty should not be "killed". */
1257 if (win)
1259 while (GET_CODE (r1) == SUBREG)
1260 r1 = SUBREG_REG (r1);
1261 combined_regno = REGNO (r1);
1264 /* Mark the death of everything that dies in this instruction,
1265 except for anything that was just combined. */
1267 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1268 if (REG_NOTE_KIND (link) == REG_DEAD
1269 && GET_CODE (XEXP (link, 0)) == REG
1270 && combined_regno != REGNO (XEXP (link, 0))
1271 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1272 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1273 wipe_dead_reg (XEXP (link, 0), 0);
1275 /* Allocate qty numbers for all registers local to this block
1276 that are born (set) in this instruction.
1277 A pseudo that already has a qty is not changed. */
1279 note_stores (PATTERN (insn), reg_is_set);
1281 /* If anything is set in this insn and then unused, mark it as dying
1282 after this insn, so it will conflict with our outputs. This
1283 can't match with something that combined, and it doesn't matter
1284 if it did. Do this after the calls to reg_is_set since these
1285 die after, not during, the current insn. */
1287 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1288 if (REG_NOTE_KIND (link) == REG_UNUSED
1289 && GET_CODE (XEXP (link, 0)) == REG)
1290 wipe_dead_reg (XEXP (link, 0), 1);
1292 /* If this is an insn that has a REG_RETVAL note pointing at a
1293 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1294 block, so clear any register number that combined within it. */
1295 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1296 && GET_CODE (XEXP (note, 0)) == INSN
1297 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1298 no_conflict_combined_regno = -1;
1301 /* Set the registers live after INSN_NUMBER. Note that we never
1302 record the registers live before the block's first insn, since no
1303 pseudos we care about are live before that insn. */
1305 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1306 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1308 if (insn == BLOCK_END (b))
1309 break;
1311 insn = NEXT_INSN (insn);
1314 /* Now every register that is local to this basic block
1315 should have been given a quantity, or else -1 meaning ignore it.
1316 Every quantity should have a known birth and death.
1318 Order the qtys so we assign them registers in order of the
1319 number of suggested registers they need so we allocate those with
1320 the most restrictive needs first. */
1322 qty_order = (int *) alloca (next_qty * sizeof (int));
1323 for (i = 0; i < next_qty; i++)
1324 qty_order[i] = i;
1326 #define EXCHANGE(I1, I2) \
1327 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1329 switch (next_qty)
1331 case 3:
1332 /* Make qty_order[2] be the one to allocate last. */
1333 if (qty_sugg_compare (0, 1) > 0)
1334 EXCHANGE (0, 1);
1335 if (qty_sugg_compare (1, 2) > 0)
1336 EXCHANGE (2, 1);
1338 /* ... Fall through ... */
1339 case 2:
1340 /* Put the best one to allocate in qty_order[0]. */
1341 if (qty_sugg_compare (0, 1) > 0)
1342 EXCHANGE (0, 1);
1344 /* ... Fall through ... */
1346 case 1:
1347 case 0:
1348 /* Nothing to do here. */
1349 break;
1351 default:
1352 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1355 /* Try to put each quantity in a suggested physical register, if it has one.
1356 This may cause registers to be allocated that otherwise wouldn't be, but
1357 this seems acceptable in local allocation (unlike global allocation). */
1358 for (i = 0; i < next_qty; i++)
1360 q = qty_order[i];
1361 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1362 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1363 0, 1, qty_birth[q], qty_death[q]);
1364 else
1365 qty_phys_reg[q] = -1;
1368 /* Order the qtys so we assign them registers in order of
1369 decreasing length of life. Normally call qsort, but if we
1370 have only a very small number of quantities, sort them ourselves. */
1372 for (i = 0; i < next_qty; i++)
1373 qty_order[i] = i;
1375 #define EXCHANGE(I1, I2) \
1376 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1378 switch (next_qty)
1380 case 3:
1381 /* Make qty_order[2] be the one to allocate last. */
1382 if (qty_compare (0, 1) > 0)
1383 EXCHANGE (0, 1);
1384 if (qty_compare (1, 2) > 0)
1385 EXCHANGE (2, 1);
1387 /* ... Fall through ... */
1388 case 2:
1389 /* Put the best one to allocate in qty_order[0]. */
1390 if (qty_compare (0, 1) > 0)
1391 EXCHANGE (0, 1);
1393 /* ... Fall through ... */
1395 case 1:
1396 case 0:
1397 /* Nothing to do here. */
1398 break;
1400 default:
1401 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1404 /* Now for each qty that is not a hardware register,
1405 look for a hardware register to put it in.
1406 First try the register class that is cheapest for this qty,
1407 if there is more than one class. */
1409 for (i = 0; i < next_qty; i++)
1411 q = qty_order[i];
1412 if (qty_phys_reg[q] < 0)
1414 #ifdef INSN_SCHEDULING
1415 /* These values represent the adjusted lifetime of a qty so
1416 that it conflicts with qtys which appear near the start/end
1417 of this qty's lifetime.
1419 The purpose behind extending the lifetime of this qty is to
1420 discourage the register allocator from creating false
1421 dependencies.
1423 The adjustment value is choosen to indicate that this qty
1424 conflicts with all the qtys in the instructions immediately
1425 before and after the lifetime of this qty.
1427 Experiments have shown that higher values tend to hurt
1428 overall code performance.
1430 If allocation using the extended lifetime fails we will try
1431 again with the qty's unadjusted lifetime. */
1432 int fake_birth = MAX (0, qty_birth[q] - 2 + qty_birth[q] % 2);
1433 int fake_death = MIN (insn_number * 2 + 1,
1434 qty_death[q] + 2 - qty_death[q] % 2);
1435 #endif
1437 if (N_REG_CLASSES > 1)
1439 #ifdef INSN_SCHEDULING
1440 /* We try to avoid using hard registers allocated to qtys which
1441 are born immediately after this qty or die immediately before
1442 this qty.
1444 This optimization is only appropriate when we will run
1445 a scheduling pass after reload and we are not optimizing
1446 for code size. */
1447 if (flag_schedule_insns_after_reload
1448 && !optimize_size
1449 && !SMALL_REGISTER_CLASSES)
1452 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1453 qty_mode[q], q, 0, 0,
1454 fake_birth, fake_death);
1455 if (qty_phys_reg[q] >= 0)
1456 continue;
1458 #endif
1459 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1460 qty_mode[q], q, 0, 0,
1461 qty_birth[q], qty_death[q]);
1462 if (qty_phys_reg[q] >= 0)
1463 continue;
1466 #ifdef INSN_SCHEDULING
1467 /* Similarly, avoid false dependencies. */
1468 if (flag_schedule_insns_after_reload
1469 && !optimize_size
1470 && !SMALL_REGISTER_CLASSES
1471 && qty_alternate_class[q] != NO_REGS)
1472 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1473 qty_mode[q], q, 0, 0,
1474 fake_birth, fake_death);
1475 #endif
1476 if (qty_alternate_class[q] != NO_REGS)
1477 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1478 qty_mode[q], q, 0, 0,
1479 qty_birth[q], qty_death[q]);
1483 /* Now propagate the register assignments
1484 to the pseudo regs belonging to the qtys. */
1486 for (q = 0; q < next_qty; q++)
1487 if (qty_phys_reg[q] >= 0)
1489 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1490 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1494 /* Compare two quantities' priority for getting real registers.
1495 We give shorter-lived quantities higher priority.
1496 Quantities with more references are also preferred, as are quantities that
1497 require multiple registers. This is the identical prioritization as
1498 done by global-alloc.
1500 We used to give preference to registers with *longer* lives, but using
1501 the same algorithm in both local- and global-alloc can speed up execution
1502 of some programs by as much as a factor of three! */
1504 /* Note that the quotient will never be bigger than
1505 the value of floor_log2 times the maximum number of
1506 times a register can occur in one insn (surely less than 100).
1507 Multiplying this by 10000 can't overflow.
1508 QTY_CMP_PRI is also used by qty_sugg_compare. */
1510 #define QTY_CMP_PRI(q) \
1511 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1512 / (qty_death[q] - qty_birth[q])) * 10000))
1514 static int
1515 qty_compare (q1, q2)
1516 int q1, q2;
1518 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1521 static int
1522 qty_compare_1 (q1p, q2p)
1523 const GENERIC_PTR q1p;
1524 const GENERIC_PTR q2p;
1526 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1527 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1529 if (tem != 0)
1530 return tem;
1532 /* If qtys are equally good, sort by qty number,
1533 so that the results of qsort leave nothing to chance. */
1534 return q1 - q2;
1537 /* Compare two quantities' priority for getting real registers. This version
1538 is called for quantities that have suggested hard registers. First priority
1539 goes to quantities that have copy preferences, then to those that have
1540 normal preferences. Within those groups, quantities with the lower
1541 number of preferences have the highest priority. Of those, we use the same
1542 algorithm as above. */
1544 #define QTY_CMP_SUGG(q) \
1545 (qty_phys_num_copy_sugg[q] \
1546 ? qty_phys_num_copy_sugg[q] \
1547 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1549 static int
1550 qty_sugg_compare (q1, q2)
1551 int q1, q2;
1553 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1555 if (tem != 0)
1556 return tem;
1558 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1561 static int
1562 qty_sugg_compare_1 (q1p, q2p)
1563 const GENERIC_PTR q1p;
1564 const GENERIC_PTR q2p;
1566 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1567 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1569 if (tem != 0)
1570 return tem;
1572 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1573 if (tem != 0)
1574 return tem;
1576 /* If qtys are equally good, sort by qty number,
1577 so that the results of qsort leave nothing to chance. */
1578 return q1 - q2;
1581 #undef QTY_CMP_SUGG
1582 #undef QTY_CMP_PRI
1584 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1585 Returns 1 if have done so, or 0 if cannot.
1587 Combining registers means marking them as having the same quantity
1588 and adjusting the offsets within the quantity if either of
1589 them is a SUBREG).
1591 We don't actually combine a hard reg with a pseudo; instead
1592 we just record the hard reg as the suggestion for the pseudo's quantity.
1593 If we really combined them, we could lose if the pseudo lives
1594 across an insn that clobbers the hard reg (eg, movstr).
1596 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1597 there is no REG_DEAD note on INSN. This occurs during the processing
1598 of REG_NO_CONFLICT blocks.
1600 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1601 SETREG or if the input and output must share a register.
1602 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1604 There are elaborate checks for the validity of combining. */
1607 static int
1608 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1609 rtx usedreg, setreg;
1610 int may_save_copy;
1611 int insn_number;
1612 rtx insn;
1613 int already_dead;
1615 register int ureg, sreg;
1616 register int offset = 0;
1617 int usize, ssize;
1618 register int sqty;
1620 /* Determine the numbers and sizes of registers being used. If a subreg
1621 is present that does not change the entire register, don't consider
1622 this a copy insn. */
1624 while (GET_CODE (usedreg) == SUBREG)
1626 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1627 may_save_copy = 0;
1628 offset += SUBREG_WORD (usedreg);
1629 usedreg = SUBREG_REG (usedreg);
1631 if (GET_CODE (usedreg) != REG)
1632 return 0;
1633 ureg = REGNO (usedreg);
1634 usize = REG_SIZE (usedreg);
1636 while (GET_CODE (setreg) == SUBREG)
1638 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1639 may_save_copy = 0;
1640 offset -= SUBREG_WORD (setreg);
1641 setreg = SUBREG_REG (setreg);
1643 if (GET_CODE (setreg) != REG)
1644 return 0;
1645 sreg = REGNO (setreg);
1646 ssize = REG_SIZE (setreg);
1648 /* If UREG is a pseudo-register that hasn't already been assigned a
1649 quantity number, it means that it is not local to this block or dies
1650 more than once. In either event, we can't do anything with it. */
1651 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1652 /* Do not combine registers unless one fits within the other. */
1653 || (offset > 0 && usize + offset > ssize)
1654 || (offset < 0 && usize + offset < ssize)
1655 /* Do not combine with a smaller already-assigned object
1656 if that smaller object is already combined with something bigger. */
1657 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1658 && usize < qty_size[reg_qty[ureg]])
1659 /* Can't combine if SREG is not a register we can allocate. */
1660 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1661 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1662 These have already been taken care of. This probably wouldn't
1663 combine anyway, but don't take any chances. */
1664 || (ureg >= FIRST_PSEUDO_REGISTER
1665 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1666 /* Don't tie something to itself. In most cases it would make no
1667 difference, but it would screw up if the reg being tied to itself
1668 also dies in this insn. */
1669 || ureg == sreg
1670 /* Don't try to connect two different hardware registers. */
1671 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1672 /* Don't use a hard reg that might be spilled. */
1673 || (ureg < FIRST_PSEUDO_REGISTER
1674 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (ureg)))
1675 || (sreg < FIRST_PSEUDO_REGISTER
1676 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (sreg)))
1677 /* Don't connect two different machine modes if they have different
1678 implications as to which registers may be used. */
1679 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1680 return 0;
1682 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1683 qty_phys_sugg for the pseudo instead of tying them.
1685 Return "failure" so that the lifespan of UREG is terminated here;
1686 that way the two lifespans will be disjoint and nothing will prevent
1687 the pseudo reg from being given this hard reg. */
1689 if (ureg < FIRST_PSEUDO_REGISTER)
1691 /* Allocate a quantity number so we have a place to put our
1692 suggestions. */
1693 if (reg_qty[sreg] == -2)
1694 reg_is_born (setreg, 2 * insn_number);
1696 if (reg_qty[sreg] >= 0)
1698 if (may_save_copy
1699 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1701 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1702 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1704 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1706 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1707 qty_phys_num_sugg[reg_qty[sreg]]++;
1710 return 0;
1713 /* Similarly for SREG a hard register and UREG a pseudo register. */
1715 if (sreg < FIRST_PSEUDO_REGISTER)
1717 if (may_save_copy
1718 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1720 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1721 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1723 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1725 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1726 qty_phys_num_sugg[reg_qty[ureg]]++;
1728 return 0;
1731 /* At this point we know that SREG and UREG are both pseudos.
1732 Do nothing if SREG already has a quantity or is a register that we
1733 don't allocate. */
1734 if (reg_qty[sreg] >= -1
1735 /* If we are not going to let any regs live across calls,
1736 don't tie a call-crossing reg to a non-call-crossing reg. */
1737 || (current_function_has_nonlocal_label
1738 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1739 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1740 return 0;
1742 /* We don't already know about SREG, so tie it to UREG
1743 if this is the last use of UREG, provided the classes they want
1744 are compatible. */
1746 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1747 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1749 /* Add SREG to UREG's quantity. */
1750 sqty = reg_qty[ureg];
1751 reg_qty[sreg] = sqty;
1752 reg_offset[sreg] = reg_offset[ureg] + offset;
1753 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1754 qty_first_reg[sqty] = sreg;
1756 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1757 update_qty_class (sqty, sreg);
1759 /* Update info about quantity SQTY. */
1760 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1761 qty_n_refs[sqty] += REG_N_REFS (sreg);
1762 if (usize < ssize)
1764 register int i;
1766 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1767 reg_offset[i] -= offset;
1769 qty_size[sqty] = ssize;
1770 qty_mode[sqty] = GET_MODE (setreg);
1773 else
1774 return 0;
1776 return 1;
1779 /* Return 1 if the preferred class of REG allows it to be tied
1780 to a quantity or register whose class is CLASS.
1781 True if REG's reg class either contains or is contained in CLASS. */
1783 static int
1784 reg_meets_class_p (reg, class)
1785 int reg;
1786 enum reg_class class;
1788 register enum reg_class rclass = reg_preferred_class (reg);
1789 return (reg_class_subset_p (rclass, class)
1790 || reg_class_subset_p (class, rclass));
1793 /* Update the class of QTY assuming that REG is being tied to it. */
1795 static void
1796 update_qty_class (qty, reg)
1797 int qty;
1798 int reg;
1800 enum reg_class rclass = reg_preferred_class (reg);
1801 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1802 qty_min_class[qty] = rclass;
1804 rclass = reg_alternate_class (reg);
1805 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1806 qty_alternate_class[qty] = rclass;
1808 if (REG_CHANGES_SIZE (reg))
1809 qty_changes_size[qty] = 1;
1812 /* Handle something which alters the value of an rtx REG.
1814 REG is whatever is set or clobbered. SETTER is the rtx that
1815 is modifying the register.
1817 If it is not really a register, we do nothing.
1818 The file-global variables `this_insn' and `this_insn_number'
1819 carry info from `block_alloc'. */
1821 static void
1822 reg_is_set (reg, setter)
1823 rtx reg;
1824 rtx setter;
1826 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1827 a hard register. These may actually not exist any more. */
1829 if (GET_CODE (reg) != SUBREG
1830 && GET_CODE (reg) != REG)
1831 return;
1833 /* Mark this register as being born. If it is used in a CLOBBER, mark
1834 it as being born halfway between the previous insn and this insn so that
1835 it conflicts with our inputs but not the outputs of the previous insn. */
1837 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1840 /* Handle beginning of the life of register REG.
1841 BIRTH is the index at which this is happening. */
1843 static void
1844 reg_is_born (reg, birth)
1845 rtx reg;
1846 int birth;
1848 register int regno;
1850 if (GET_CODE (reg) == SUBREG)
1851 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1852 else
1853 regno = REGNO (reg);
1855 if (regno < FIRST_PSEUDO_REGISTER)
1857 mark_life (regno, GET_MODE (reg), 1);
1859 /* If the register was to have been born earlier that the present
1860 insn, mark it as live where it is actually born. */
1861 if (birth < 2 * this_insn_number)
1862 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1864 else
1866 if (reg_qty[regno] == -2)
1867 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
1869 /* If this register has a quantity number, show that it isn't dead. */
1870 if (reg_qty[regno] >= 0)
1871 qty_death[reg_qty[regno]] = -1;
1875 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1876 REG is an output that is dying (i.e., it is never used), otherwise it
1877 is an input (the normal case).
1878 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1880 static void
1881 wipe_dead_reg (reg, output_p)
1882 register rtx reg;
1883 int output_p;
1885 register int regno = REGNO (reg);
1887 /* If this insn has multiple results,
1888 and the dead reg is used in one of the results,
1889 extend its life to after this insn,
1890 so it won't get allocated together with any other result of this insn.
1892 It is unsafe to use !single_set here since it will ignore an unused
1893 output. Just because an output is unused does not mean the compiler
1894 can assume the side effect will not occur. Consider if REG appears
1895 in the address of an output and we reload the output. If we allocate
1896 REG to the same hard register as an unused output we could set the hard
1897 register before the output reload insn. */
1898 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
1899 && multiple_sets (this_insn))
1901 int i;
1902 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
1904 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
1905 if (GET_CODE (set) == SET
1906 && GET_CODE (SET_DEST (set)) != REG
1907 && !rtx_equal_p (reg, SET_DEST (set))
1908 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1909 output_p = 1;
1913 /* If this register is used in an auto-increment address, then extend its
1914 life to after this insn, so that it won't get allocated together with
1915 the result of this insn. */
1916 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
1917 output_p = 1;
1919 if (regno < FIRST_PSEUDO_REGISTER)
1921 mark_life (regno, GET_MODE (reg), 0);
1923 /* If a hard register is dying as an output, mark it as in use at
1924 the beginning of this insn (the above statement would cause this
1925 not to happen). */
1926 if (output_p)
1927 post_mark_life (regno, GET_MODE (reg), 1,
1928 2 * this_insn_number, 2 * this_insn_number+ 1);
1931 else if (reg_qty[regno] >= 0)
1932 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
1935 /* Find a block of SIZE words of hard regs in reg_class CLASS
1936 that can hold something of machine-mode MODE
1937 (but actually we test only the first of the block for holding MODE)
1938 and still free between insn BORN_INDEX and insn DEAD_INDEX,
1939 and return the number of the first of them.
1940 Return -1 if such a block cannot be found.
1941 If QTY crosses calls, insist on a register preserved by calls,
1942 unless ACCEPT_CALL_CLOBBERED is nonzero.
1944 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
1945 register is available. If not, return -1. */
1947 static int
1948 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
1949 born_index, dead_index)
1950 enum reg_class class;
1951 enum machine_mode mode;
1952 int qty;
1953 int accept_call_clobbered;
1954 int just_try_suggested;
1955 int born_index, dead_index;
1957 register int i, ins;
1958 #ifdef HARD_REG_SET
1959 register /* Declare it register if it's a scalar. */
1960 #endif
1961 HARD_REG_SET used, first_used;
1962 #ifdef ELIMINABLE_REGS
1963 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
1964 #endif
1966 /* Validate our parameters. */
1967 if (born_index < 0 || born_index > dead_index)
1968 abort ();
1970 /* Don't let a pseudo live in a reg across a function call
1971 if we might get a nonlocal goto. */
1972 if (current_function_has_nonlocal_label
1973 && qty_n_calls_crossed[qty] > 0)
1974 return -1;
1976 if (accept_call_clobbered)
1977 COPY_HARD_REG_SET (used, call_fixed_reg_set);
1978 else if (qty_n_calls_crossed[qty] == 0)
1979 COPY_HARD_REG_SET (used, fixed_reg_set);
1980 else
1981 COPY_HARD_REG_SET (used, call_used_reg_set);
1983 if (accept_call_clobbered)
1984 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
1986 for (ins = born_index; ins < dead_index; ins++)
1987 IOR_HARD_REG_SET (used, regs_live_at[ins]);
1989 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
1991 /* Don't use the frame pointer reg in local-alloc even if
1992 we may omit the frame pointer, because if we do that and then we
1993 need a frame pointer, reload won't know how to move the pseudo
1994 to another hard reg. It can move only regs made by global-alloc.
1996 This is true of any register that can be eliminated. */
1997 #ifdef ELIMINABLE_REGS
1998 for (i = 0; i < (int)(sizeof eliminables / sizeof eliminables[0]); i++)
1999 SET_HARD_REG_BIT (used, eliminables[i].from);
2000 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2001 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2002 that it might be eliminated into. */
2003 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2004 #endif
2005 #else
2006 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2007 #endif
2009 #ifdef CLASS_CANNOT_CHANGE_SIZE
2010 if (qty_changes_size[qty])
2011 IOR_HARD_REG_SET (used,
2012 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2013 #endif
2015 /* Normally, the registers that can be used for the first register in
2016 a multi-register quantity are the same as those that can be used for
2017 subsequent registers. However, if just trying suggested registers,
2018 restrict our consideration to them. If there are copy-suggested
2019 register, try them. Otherwise, try the arithmetic-suggested
2020 registers. */
2021 COPY_HARD_REG_SET (first_used, used);
2023 if (just_try_suggested)
2025 if (qty_phys_num_copy_sugg[qty] != 0)
2026 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2027 else
2028 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2031 /* If all registers are excluded, we can't do anything. */
2032 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2034 /* If at least one would be suitable, test each hard reg. */
2036 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2038 #ifdef REG_ALLOC_ORDER
2039 int regno = reg_alloc_order[i];
2040 #else
2041 int regno = i;
2042 #endif
2043 if (! TEST_HARD_REG_BIT (first_used, regno)
2044 && HARD_REGNO_MODE_OK (regno, mode)
2045 && (qty_n_calls_crossed[qty] == 0
2046 || accept_call_clobbered
2047 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2049 register int j;
2050 register int size1 = HARD_REGNO_NREGS (regno, mode);
2051 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2052 if (j == size1)
2054 /* Mark that this register is in use between its birth and death
2055 insns. */
2056 post_mark_life (regno, mode, 1, born_index, dead_index);
2057 return regno;
2059 #ifndef REG_ALLOC_ORDER
2060 i += j; /* Skip starting points we know will lose */
2061 #endif
2065 fail:
2067 /* If we are just trying suggested register, we have just tried copy-
2068 suggested registers, and there are arithmetic-suggested registers,
2069 try them. */
2071 /* If it would be profitable to allocate a call-clobbered register
2072 and save and restore it around calls, do that. */
2073 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2074 && qty_phys_num_sugg[qty] != 0)
2076 /* Don't try the copy-suggested regs again. */
2077 qty_phys_num_copy_sugg[qty] = 0;
2078 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2079 born_index, dead_index);
2082 /* We need not check to see if the current function has nonlocal
2083 labels because we don't put any pseudos that are live over calls in
2084 registers in that case. */
2086 if (! accept_call_clobbered
2087 && flag_caller_saves
2088 && ! just_try_suggested
2089 && qty_n_calls_crossed[qty] != 0
2090 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2092 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2093 if (i >= 0)
2094 caller_save_needed = 1;
2095 return i;
2097 return -1;
2100 /* Mark that REGNO with machine-mode MODE is live starting from the current
2101 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2102 is zero). */
2104 static void
2105 mark_life (regno, mode, life)
2106 register int regno;
2107 enum machine_mode mode;
2108 int life;
2110 register int j = HARD_REGNO_NREGS (regno, mode);
2111 if (life)
2112 while (--j >= 0)
2113 SET_HARD_REG_BIT (regs_live, regno + j);
2114 else
2115 while (--j >= 0)
2116 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2119 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2120 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2121 to insn number DEATH (exclusive). */
2123 static void
2124 post_mark_life (regno, mode, life, birth, death)
2125 int regno;
2126 enum machine_mode mode;
2127 int life, birth, death;
2129 register int j = HARD_REGNO_NREGS (regno, mode);
2130 #ifdef HARD_REG_SET
2131 register /* Declare it register if it's a scalar. */
2132 #endif
2133 HARD_REG_SET this_reg;
2135 CLEAR_HARD_REG_SET (this_reg);
2136 while (--j >= 0)
2137 SET_HARD_REG_BIT (this_reg, regno + j);
2139 if (life)
2140 while (birth < death)
2142 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2143 birth++;
2145 else
2146 while (birth < death)
2148 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2149 birth++;
2153 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2154 is the register being clobbered, and R1 is a register being used in
2155 the equivalent expression.
2157 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2158 in which it is used, return 1.
2160 Otherwise, return 0. */
2162 static int
2163 no_conflict_p (insn, r0, r1)
2164 rtx insn, r0, r1;
2166 int ok = 0;
2167 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2168 rtx p, last;
2170 /* If R1 is a hard register, return 0 since we handle this case
2171 when we scan the insns that actually use it. */
2173 if (note == 0
2174 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2175 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2176 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2177 return 0;
2179 last = XEXP (note, 0);
2181 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2182 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2184 if (find_reg_note (p, REG_DEAD, r1))
2185 ok = 1;
2187 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2188 some earlier optimization pass has inserted instructions into
2189 the sequence, and it is not safe to perform this optimization.
2190 Note that emit_no_conflict_block always ensures that this is
2191 true when these sequences are created. */
2192 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2193 return 0;
2196 return ok;
2199 #ifdef REGISTER_CONSTRAINTS
2201 /* Return the number of alternatives for which the constraint string P
2202 indicates that the operand must be equal to operand 0 and that no register
2203 is acceptable. */
2205 static int
2206 requires_inout (p)
2207 const char *p;
2209 char c;
2210 int found_zero = 0;
2211 int reg_allowed = 0;
2212 int num_matching_alts = 0;
2214 while ((c = *p++))
2215 switch (c)
2217 case '=': case '+': case '?':
2218 case '#': case '&': case '!':
2219 case '*': case '%':
2220 case '1': case '2': case '3': case '4':
2221 case 'm': case '<': case '>': case 'V': case 'o':
2222 case 'E': case 'F': case 'G': case 'H':
2223 case 's': case 'i': case 'n':
2224 case 'I': case 'J': case 'K': case 'L':
2225 case 'M': case 'N': case 'O': case 'P':
2226 #ifdef EXTRA_CONSTRAINT
2227 case 'Q': case 'R': case 'S': case 'T': case 'U':
2228 #endif
2229 case 'X':
2230 /* These don't say anything we care about. */
2231 break;
2233 case ',':
2234 if (found_zero && ! reg_allowed)
2235 num_matching_alts++;
2237 found_zero = reg_allowed = 0;
2238 break;
2240 case '0':
2241 found_zero = 1;
2242 break;
2244 case 'p':
2245 case 'g': case 'r':
2246 default:
2247 reg_allowed = 1;
2248 break;
2251 if (found_zero && ! reg_allowed)
2252 num_matching_alts++;
2254 return num_matching_alts;
2256 #endif /* REGISTER_CONSTRAINTS */
2258 void
2259 dump_local_alloc (file)
2260 FILE *file;
2262 register int i;
2263 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2264 if (reg_renumber[i] != -1)
2265 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);