* recog.c (preproces_constraints): Zero recog_op_alt before
[official-gcc.git] / gcc / except.c
blob85fb0ac9145b4a4a5a9343fa856414b1050a9033
1 /* Implements exception handling.
2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
3 Contributed by Mike Stump <mrs@cygnus.com>.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
26 be transferred to any arbitrary code associated with a function call
27 several levels up the stack.
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
48 approach, which is the default. -fno-sjlj-exceptions can be used to
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
74 In the current implementation, cleanups are handled by allocating an
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
92 __register_exceptions with the address of its local
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
100 __register_frame_info. On other targets, the information for each
101 translation unit is registered from the file generated by collect2.
102 __register_frame_info is defined in frame.c, and is responsible for
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
106 The function __throw is actually responsible for doing the
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
109 per-object-file basis for each source file compiled with
110 -fexceptions by the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
114 __throw attempts to find the appropriate exception handler for the
115 PC value stored in __eh_pc by calling __find_first_exception_table_match
116 (which is defined in libgcc2.c). If __find_first_exception_table_match
117 finds a relevant handler, __throw transfers control directly to it.
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
132 Internal implementation details:
134 To associate a user-defined handler with a block of statements, the
135 function expand_start_try_stmts is used to mark the start of the
136 block of statements with which the handler is to be associated
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
140 A call to expand_start_all_catch marks the end of the try block,
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
155 handler. expand_end_all_catch and expand_leftover_cleanups
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
163 to the topmost entry's label via expand_goto will resume normal
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
177 global variable to hold the value. (This will be changing in the
178 future.)
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
186 Internally-generated exception regions (cleanups) are marked by
187 calling expand_eh_region_start to mark the start of the region,
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
209 Cleanups can also be specified by using add_partial_entry (handler)
210 and end_protect_partials. add_partial_entry creates the start of
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
217 group of calls to add_partial_entry as the entries are queued
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
234 can be safely optimized away (along with its exception handlers)
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
247 Walking the stack:
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
253 Unwinding the stack:
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
282 should call __terminate.
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
303 On some platforms it is possible that neither __unwind_function
304 nor inlined unwinders are available. For these platforms it is not
305 possible to throw through a function call, and abort will be
306 invoked instead of performing the throw.
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
320 Future directions:
322 Currently __throw makes no differentiation between cleanups and
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
333 A two-pass scheme could then be used by __throw to iterate
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
343 __throw to be able to determine if a given user-defined
344 exception handler will actually be executed, given the type of
345 exception.
347 One scheme is to add additional information to exception_table_list
348 as to the types of exceptions accepted by each handler. __throw
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
352 There is currently no significant level of debugging support
353 available, other than to place a breakpoint on __throw. While
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
359 scheme by adding additional labels to __throw for appropriate
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
380 table, and no calls to __register_exceptions. __sjthrow is used
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
391 #include "config.h"
392 #include "defaults.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "intl.h"
410 #include "obstack.h"
412 /* One to use setjmp/longjmp method of generating code for exception
413 handling. */
415 int exceptions_via_longjmp = 2;
417 /* One to enable asynchronous exception support. */
419 int asynchronous_exceptions = 0;
421 /* One to protect cleanup actions with a handler that calls
422 __terminate, zero otherwise. */
424 int protect_cleanup_actions_with_terminate;
426 /* A list of labels used for exception handlers. Created by
427 find_exception_handler_labels for the optimization passes. */
429 rtx exception_handler_labels;
431 /* Keeps track of the label used as the context of a throw to rethrow an
432 exception to the outer exception region. */
434 struct label_node *outer_context_label_stack = NULL;
436 /* Pseudos used to hold exception return data in the interim between
437 __builtin_eh_return and the end of the function. */
439 static rtx eh_return_context;
440 static rtx eh_return_stack_adjust;
441 static rtx eh_return_handler;
443 /* This is used for targets which can call rethrow with an offset instead
444 of an address. This is subtracted from the rethrow label we are
445 interested in. */
447 static rtx first_rethrow_symbol = NULL_RTX;
448 static rtx final_rethrow = NULL_RTX;
449 static rtx last_rethrow_symbol = NULL_RTX;
452 /* Prototypes for local functions. */
454 static void push_eh_entry PROTO((struct eh_stack *));
455 static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
456 static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
457 static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
458 static rtx call_get_eh_context PROTO((void));
459 static void start_dynamic_cleanup PROTO((tree, tree));
460 static void start_dynamic_handler PROTO((void));
461 static void expand_rethrow PROTO((rtx));
462 static void output_exception_table_entry PROTO((FILE *, int));
463 static int can_throw PROTO((rtx));
464 static rtx scan_region PROTO((rtx, int, int *));
465 static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
466 static void set_insn_eh_region PROTO((rtx *, int));
467 #ifdef DONT_USE_BUILTIN_SETJMP
468 static void jumpif_rtx PROTO((rtx, rtx));
469 #endif
471 rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
473 /* Various support routines to manipulate the various data structures
474 used by the exception handling code. */
476 extern struct obstack permanent_obstack;
478 /* Generate a SYMBOL_REF for rethrow to use */
479 static rtx
480 create_rethrow_ref (region_num)
481 int region_num;
483 rtx def;
484 char *ptr;
485 char buf[60];
487 push_obstacks_nochange ();
488 end_temporary_allocation ();
490 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
491 ptr = (char *) obstack_copy0 (&permanent_obstack, buf, strlen (buf));
492 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
493 SYMBOL_REF_NEED_ADJUST (def) = 1;
495 pop_obstacks ();
496 return def;
499 /* Push a label entry onto the given STACK. */
501 void
502 push_label_entry (stack, rlabel, tlabel)
503 struct label_node **stack;
504 rtx rlabel;
505 tree tlabel;
507 struct label_node *newnode
508 = (struct label_node *) xmalloc (sizeof (struct label_node));
510 if (rlabel)
511 newnode->u.rlabel = rlabel;
512 else
513 newnode->u.tlabel = tlabel;
514 newnode->chain = *stack;
515 *stack = newnode;
518 /* Pop a label entry from the given STACK. */
521 pop_label_entry (stack)
522 struct label_node **stack;
524 rtx label;
525 struct label_node *tempnode;
527 if (! *stack)
528 return NULL_RTX;
530 tempnode = *stack;
531 label = tempnode->u.rlabel;
532 *stack = (*stack)->chain;
533 free (tempnode);
535 return label;
538 /* Return the top element of the given STACK. */
540 tree
541 top_label_entry (stack)
542 struct label_node **stack;
544 if (! *stack)
545 return NULL_TREE;
547 return (*stack)->u.tlabel;
550 /* get an exception label. These must be on the permanent obstack */
553 gen_exception_label ()
555 rtx lab;
556 lab = gen_label_rtx ();
557 return lab;
560 /* Push a new eh_node entry onto STACK. */
562 static void
563 push_eh_entry (stack)
564 struct eh_stack *stack;
566 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
567 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
569 rtx rlab = gen_exception_label ();
570 entry->finalization = NULL_TREE;
571 entry->label_used = 0;
572 entry->exception_handler_label = rlab;
573 entry->false_label = NULL_RTX;
574 if (! flag_new_exceptions)
575 entry->outer_context = gen_label_rtx ();
576 else
577 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
578 entry->rethrow_label = entry->outer_context;
580 node->entry = entry;
581 node->chain = stack->top;
582 stack->top = node;
585 /* push an existing entry onto a stack. */
586 static void
587 push_entry (stack, entry)
588 struct eh_stack *stack;
589 struct eh_entry *entry;
591 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
592 node->entry = entry;
593 node->chain = stack->top;
594 stack->top = node;
597 /* Pop an entry from the given STACK. */
599 static struct eh_entry *
600 pop_eh_entry (stack)
601 struct eh_stack *stack;
603 struct eh_node *tempnode;
604 struct eh_entry *tempentry;
606 tempnode = stack->top;
607 tempentry = tempnode->entry;
608 stack->top = stack->top->chain;
609 free (tempnode);
611 return tempentry;
614 /* Enqueue an ENTRY onto the given QUEUE. */
616 static void
617 enqueue_eh_entry (queue, entry)
618 struct eh_queue *queue;
619 struct eh_entry *entry;
621 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
623 node->entry = entry;
624 node->chain = NULL;
626 if (queue->head == NULL)
628 queue->head = node;
630 else
632 queue->tail->chain = node;
634 queue->tail = node;
637 /* Dequeue an entry from the given QUEUE. */
639 static struct eh_entry *
640 dequeue_eh_entry (queue)
641 struct eh_queue *queue;
643 struct eh_node *tempnode;
644 struct eh_entry *tempentry;
646 if (queue->head == NULL)
647 return NULL;
649 tempnode = queue->head;
650 queue->head = queue->head->chain;
652 tempentry = tempnode->entry;
653 free (tempnode);
655 return tempentry;
658 static void
659 receive_exception_label (handler_label)
660 rtx handler_label;
662 emit_label (handler_label);
664 #ifdef HAVE_exception_receiver
665 if (! exceptions_via_longjmp)
666 if (HAVE_exception_receiver)
667 emit_insn (gen_exception_receiver ());
668 #endif
670 #ifdef HAVE_nonlocal_goto_receiver
671 if (! exceptions_via_longjmp)
672 if (HAVE_nonlocal_goto_receiver)
673 emit_insn (gen_nonlocal_goto_receiver ());
674 #endif
678 struct func_eh_entry
680 int range_number; /* EH region number from EH NOTE insn's */
681 rtx rethrow_label; /* Label for rethrow */
682 struct handler_info *handlers;
686 /* table of function eh regions */
687 static struct func_eh_entry *function_eh_regions = NULL;
688 static int num_func_eh_entries = 0;
689 static int current_func_eh_entry = 0;
691 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
693 /* Add a new eh_entry for this function, and base it off of the information
694 in the EH_ENTRY parameter. A NULL parameter is invalid.
695 OUTER_CONTEXT is a label which is used for rethrowing. The number
696 returned is an number which uniquely identifies this exception range. */
698 static int
699 new_eh_region_entry (note_eh_region, rethrow)
700 int note_eh_region;
701 rtx rethrow;
703 if (current_func_eh_entry == num_func_eh_entries)
705 if (num_func_eh_entries == 0)
707 function_eh_regions =
708 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
709 num_func_eh_entries = 50;
711 else
713 num_func_eh_entries = num_func_eh_entries * 3 / 2;
714 function_eh_regions = (struct func_eh_entry *)
715 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
718 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
719 if (rethrow == NULL_RTX)
720 function_eh_regions[current_func_eh_entry].rethrow_label =
721 create_rethrow_ref (note_eh_region);
722 else
723 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
724 function_eh_regions[current_func_eh_entry].handlers = NULL;
726 return current_func_eh_entry++;
729 /* Add new handler information to an exception range. The first parameter
730 specifies the range number (returned from new_eh_entry()). The second
731 parameter specifies the handler. By default the handler is inserted at
732 the end of the list. A handler list may contain only ONE NULL_TREE
733 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
734 is always output as the LAST handler in the exception table for a region. */
736 void
737 add_new_handler (region, newhandler)
738 int region;
739 struct handler_info *newhandler;
741 struct handler_info *last;
743 newhandler->next = NULL;
744 last = function_eh_regions[region].handlers;
745 if (last == NULL)
746 function_eh_regions[region].handlers = newhandler;
747 else
749 for ( ; ; last = last->next)
751 if (last->type_info == CATCH_ALL_TYPE)
752 pedwarn ("additional handler after ...");
753 if (last->next == NULL)
754 break;
756 last->next = newhandler;
760 /* Remove a handler label. The handler label is being deleted, so all
761 regions which reference this handler should have it removed from their
762 list of possible handlers. Any region which has the final handler
763 removed can be deleted. */
765 void remove_handler (removing_label)
766 rtx removing_label;
768 struct handler_info *handler, *last;
769 int x;
770 for (x = 0 ; x < current_func_eh_entry; ++x)
772 last = NULL;
773 handler = function_eh_regions[x].handlers;
774 for ( ; handler; last = handler, handler = handler->next)
775 if (handler->handler_label == removing_label)
777 if (last)
779 last->next = handler->next;
780 handler = last;
782 else
783 function_eh_regions[x].handlers = handler->next;
788 /* This function will return a malloc'd pointer to an array of
789 void pointer representing the runtime match values that
790 currently exist in all regions. */
792 int
793 find_all_handler_type_matches (array)
794 void ***array;
796 struct handler_info *handler, *last;
797 int x,y;
798 void *val;
799 void **ptr;
800 int max_ptr;
801 int n_ptr = 0;
803 *array = NULL;
805 if (!doing_eh (0) || ! flag_new_exceptions)
806 return 0;
808 max_ptr = 100;
809 ptr = (void **)malloc (max_ptr * sizeof (void *));
811 if (ptr == NULL)
812 return 0;
814 for (x = 0 ; x < current_func_eh_entry; x++)
816 last = NULL;
817 handler = function_eh_regions[x].handlers;
818 for ( ; handler; last = handler, handler = handler->next)
820 val = handler->type_info;
821 if (val != NULL && val != CATCH_ALL_TYPE)
823 /* See if this match value has already been found. */
824 for (y = 0; y < n_ptr; y++)
825 if (ptr[y] == val)
826 break;
828 /* If we break early, we already found this value. */
829 if (y < n_ptr)
830 continue;
832 /* Do we need to allocate more space? */
833 if (n_ptr >= max_ptr)
835 max_ptr += max_ptr / 2;
836 ptr = (void **)realloc (ptr, max_ptr * sizeof (void *));
837 if (ptr == NULL)
838 return 0;
840 ptr[n_ptr] = val;
841 n_ptr++;
845 *array = ptr;
846 return n_ptr;
849 /* Create a new handler structure initialized with the handler label and
850 typeinfo fields passed in. */
852 struct handler_info *
853 get_new_handler (handler, typeinfo)
854 rtx handler;
855 void *typeinfo;
857 struct handler_info* ptr;
858 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
859 ptr->handler_label = handler;
860 ptr->handler_number = CODE_LABEL_NUMBER (handler);
861 ptr->type_info = typeinfo;
862 ptr->next = NULL;
864 return ptr;
869 /* Find the index in function_eh_regions associated with a NOTE region. If
870 the region cannot be found, a -1 is returned. This should never happen! */
872 int
873 find_func_region (insn_region)
874 int insn_region;
876 int x;
877 for (x = 0; x < current_func_eh_entry; x++)
878 if (function_eh_regions[x].range_number == insn_region)
879 return x;
881 return -1;
884 /* Get a pointer to the first handler in an exception region's list. */
886 struct handler_info *
887 get_first_handler (region)
888 int region;
890 return function_eh_regions[find_func_region (region)].handlers;
893 /* Clean out the function_eh_region table and free all memory */
895 static void
896 clear_function_eh_region ()
898 int x;
899 struct handler_info *ptr, *next;
900 for (x = 0; x < current_func_eh_entry; x++)
901 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
903 next = ptr->next;
904 free (ptr);
906 free (function_eh_regions);
907 num_func_eh_entries = 0;
908 current_func_eh_entry = 0;
911 /* Make a duplicate of an exception region by copying all the handlers
912 for an exception region. Return the new handler index. The final
913 parameter is a routine which maps old labels to new ones. */
915 int
916 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
917 int old_note_eh_region, new_note_eh_region;
918 rtx (*map) PARAMS ((rtx));
920 struct handler_info *ptr, *new_ptr;
921 int new_region, region;
923 region = find_func_region (old_note_eh_region);
924 if (region == -1)
925 fatal ("Cannot duplicate non-existant exception region.");
927 /* duplicate_eh_handlers may have been called during a symbol remap. */
928 new_region = find_func_region (new_note_eh_region);
929 if (new_region != -1)
930 return (new_region);
932 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
934 ptr = function_eh_regions[region].handlers;
936 for ( ; ptr; ptr = ptr->next)
938 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
939 add_new_handler (new_region, new_ptr);
942 return new_region;
946 /* Given a rethrow symbol, find the EH region number this is for. */
947 int
948 eh_region_from_symbol (sym)
949 rtx sym;
951 int x;
952 if (sym == last_rethrow_symbol)
953 return 1;
954 for (x = 0; x < current_func_eh_entry; x++)
955 if (function_eh_regions[x].rethrow_label == sym)
956 return function_eh_regions[x].range_number;
957 return -1;
961 /* When inlining/unrolling, we have to map the symbols passed to
962 __rethrow as well. This performs the remap. If a symbol isn't foiund,
963 the original one is returned. This is not an efficient routine,
964 so don't call it on everything!! */
965 rtx
966 rethrow_symbol_map (sym, map)
967 rtx sym;
968 rtx (*map) PARAMS ((rtx));
970 int x, y;
971 for (x = 0; x < current_func_eh_entry; x++)
972 if (function_eh_regions[x].rethrow_label == sym)
974 /* We've found the original region, now lets determine which region
975 this now maps to. */
976 rtx l1 = function_eh_regions[x].handlers->handler_label;
977 rtx l2 = map (l1);
978 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
979 x = find_func_region (y); /* Get the new permanent region */
980 if (x == -1) /* Hmm, Doesn't exist yet */
982 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
983 /* Since we're mapping it, it must be used. */
984 SYMBOL_REF_USED (function_eh_regions[x].rethrow_label) = 1;
986 return function_eh_regions[x].rethrow_label;
988 return sym;
991 int
992 rethrow_used (region)
993 int region;
995 if (flag_new_exceptions)
997 rtx lab = function_eh_regions[find_func_region (region)].rethrow_label;
998 return (SYMBOL_REF_USED (lab));
1000 return 0;
1004 /* Routine to see if exception handling is turned on.
1005 DO_WARN is non-zero if we want to inform the user that exception
1006 handling is turned off.
1008 This is used to ensure that -fexceptions has been specified if the
1009 compiler tries to use any exception-specific functions. */
1012 doing_eh (do_warn)
1013 int do_warn;
1015 if (! flag_exceptions)
1017 static int warned = 0;
1018 if (! warned && do_warn)
1020 error ("exception handling disabled, use -fexceptions to enable");
1021 warned = 1;
1023 return 0;
1025 return 1;
1028 /* Given a return address in ADDR, determine the address we should use
1029 to find the corresponding EH region. */
1032 eh_outer_context (addr)
1033 rtx addr;
1035 /* First mask out any unwanted bits. */
1036 #ifdef MASK_RETURN_ADDR
1037 expand_and (addr, MASK_RETURN_ADDR, addr);
1038 #endif
1040 /* Then adjust to find the real return address. */
1041 #if defined (RETURN_ADDR_OFFSET)
1042 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1043 #endif
1045 return addr;
1048 /* Start a new exception region for a region of code that has a
1049 cleanup action and push the HANDLER for the region onto
1050 protect_list. All of the regions created with add_partial_entry
1051 will be ended when end_protect_partials is invoked. */
1053 void
1054 add_partial_entry (handler)
1055 tree handler;
1057 expand_eh_region_start ();
1059 /* Make sure the entry is on the correct obstack. */
1060 push_obstacks_nochange ();
1061 resume_temporary_allocation ();
1063 /* Because this is a cleanup action, we may have to protect the handler
1064 with __terminate. */
1065 handler = protect_with_terminate (handler);
1067 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1068 pop_obstacks ();
1071 /* Emit code to get EH context to current function. */
1073 static rtx
1074 call_get_eh_context ()
1076 static tree fn;
1077 tree expr;
1079 if (fn == NULL_TREE)
1081 tree fntype;
1082 fn = get_identifier ("__get_eh_context");
1083 push_obstacks_nochange ();
1084 end_temporary_allocation ();
1085 fntype = build_pointer_type (build_pointer_type
1086 (build_pointer_type (void_type_node)));
1087 fntype = build_function_type (fntype, NULL_TREE);
1088 fn = build_decl (FUNCTION_DECL, fn, fntype);
1089 DECL_EXTERNAL (fn) = 1;
1090 TREE_PUBLIC (fn) = 1;
1091 DECL_ARTIFICIAL (fn) = 1;
1092 TREE_READONLY (fn) = 1;
1093 make_decl_rtl (fn, NULL_PTR, 1);
1094 assemble_external (fn);
1095 pop_obstacks ();
1098 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1099 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1100 expr, NULL_TREE, NULL_TREE);
1101 TREE_SIDE_EFFECTS (expr) = 1;
1103 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1106 /* Get a reference to the EH context.
1107 We will only generate a register for the current function EH context here,
1108 and emit a USE insn to mark that this is a EH context register.
1110 Later, emit_eh_context will emit needed call to __get_eh_context
1111 in libgcc2, and copy the value to the register we have generated. */
1114 get_eh_context ()
1116 if (current_function_ehc == 0)
1118 rtx insn;
1120 current_function_ehc = gen_reg_rtx (Pmode);
1122 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1123 current_function_ehc);
1124 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1126 REG_NOTES (insn)
1127 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1128 REG_NOTES (insn));
1130 return current_function_ehc;
1133 /* Get a reference to the dynamic handler chain. It points to the
1134 pointer to the next element in the dynamic handler chain. It ends
1135 when there are no more elements in the dynamic handler chain, when
1136 the value is &top_elt from libgcc2.c. Immediately after the
1137 pointer, is an area suitable for setjmp/longjmp when
1138 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1139 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1140 isn't defined. */
1143 get_dynamic_handler_chain ()
1145 rtx ehc, dhc, result;
1147 ehc = get_eh_context ();
1149 /* This is the offset of dynamic_handler_chain in the eh_context struct
1150 declared in eh-common.h. If its location is change, change this offset */
1151 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1153 result = copy_to_reg (dhc);
1155 /* We don't want a copy of the dcc, but rather, the single dcc. */
1156 return gen_rtx_MEM (Pmode, result);
1159 /* Get a reference to the dynamic cleanup chain. It points to the
1160 pointer to the next element in the dynamic cleanup chain.
1161 Immediately after the pointer, are two Pmode variables, one for a
1162 pointer to a function that performs the cleanup action, and the
1163 second, the argument to pass to that function. */
1166 get_dynamic_cleanup_chain ()
1168 rtx dhc, dcc, result;
1170 dhc = get_dynamic_handler_chain ();
1171 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1173 result = copy_to_reg (dcc);
1175 /* We don't want a copy of the dcc, but rather, the single dcc. */
1176 return gen_rtx_MEM (Pmode, result);
1179 #ifdef DONT_USE_BUILTIN_SETJMP
1180 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1181 LABEL is an rtx of code CODE_LABEL, in this function. */
1183 static void
1184 jumpif_rtx (x, label)
1185 rtx x;
1186 rtx label;
1188 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1190 #endif
1192 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1193 We just need to create an element for the cleanup list, and push it
1194 into the chain.
1196 A dynamic cleanup is a cleanup action implied by the presence of an
1197 element on the EH runtime dynamic cleanup stack that is to be
1198 performed when an exception is thrown. The cleanup action is
1199 performed by __sjthrow when an exception is thrown. Only certain
1200 actions can be optimized into dynamic cleanup actions. For the
1201 restrictions on what actions can be performed using this routine,
1202 see expand_eh_region_start_tree. */
1204 static void
1205 start_dynamic_cleanup (func, arg)
1206 tree func;
1207 tree arg;
1209 rtx dcc;
1210 rtx new_func, new_arg;
1211 rtx x, buf;
1212 int size;
1214 /* We allocate enough room for a pointer to the function, and
1215 one argument. */
1216 size = 2;
1218 /* XXX, FIXME: The stack space allocated this way is too long lived,
1219 but there is no allocation routine that allocates at the level of
1220 the last binding contour. */
1221 buf = assign_stack_local (BLKmode,
1222 GET_MODE_SIZE (Pmode)*(size+1),
1225 buf = change_address (buf, Pmode, NULL_RTX);
1227 /* Store dcc into the first word of the newly allocated buffer. */
1229 dcc = get_dynamic_cleanup_chain ();
1230 emit_move_insn (buf, dcc);
1232 /* Store func and arg into the cleanup list element. */
1234 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1235 GET_MODE_SIZE (Pmode)));
1236 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1237 GET_MODE_SIZE (Pmode)*2));
1238 x = expand_expr (func, new_func, Pmode, 0);
1239 if (x != new_func)
1240 emit_move_insn (new_func, x);
1242 x = expand_expr (arg, new_arg, Pmode, 0);
1243 if (x != new_arg)
1244 emit_move_insn (new_arg, x);
1246 /* Update the cleanup chain. */
1248 x = force_operand (XEXP (buf, 0), dcc);
1249 if (x != dcc)
1250 emit_move_insn (dcc, x);
1253 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1254 handler stack. This should only be used by expand_eh_region_start
1255 or expand_eh_region_start_tree. */
1257 static void
1258 start_dynamic_handler ()
1260 rtx dhc, dcc;
1261 rtx x, arg, buf;
1262 int size;
1264 #ifndef DONT_USE_BUILTIN_SETJMP
1265 /* The number of Pmode words for the setjmp buffer, when using the
1266 builtin setjmp/longjmp, see expand_builtin, case
1267 BUILT_IN_LONGJMP. */
1268 size = 5;
1269 #else
1270 #ifdef JMP_BUF_SIZE
1271 size = JMP_BUF_SIZE;
1272 #else
1273 /* Should be large enough for most systems, if it is not,
1274 JMP_BUF_SIZE should be defined with the proper value. It will
1275 also tend to be larger than necessary for most systems, a more
1276 optimal port will define JMP_BUF_SIZE. */
1277 size = FIRST_PSEUDO_REGISTER+2;
1278 #endif
1279 #endif
1280 /* XXX, FIXME: The stack space allocated this way is too long lived,
1281 but there is no allocation routine that allocates at the level of
1282 the last binding contour. */
1283 arg = assign_stack_local (BLKmode,
1284 GET_MODE_SIZE (Pmode)*(size+1),
1287 arg = change_address (arg, Pmode, NULL_RTX);
1289 /* Store dhc into the first word of the newly allocated buffer. */
1291 dhc = get_dynamic_handler_chain ();
1292 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1293 GET_MODE_SIZE (Pmode)));
1294 emit_move_insn (arg, dhc);
1296 /* Zero out the start of the cleanup chain. */
1297 emit_move_insn (dcc, const0_rtx);
1299 /* The jmpbuf starts two words into the area allocated. */
1300 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1302 #ifdef DONT_USE_BUILTIN_SETJMP
1303 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
1304 buf, Pmode);
1305 /* If we come back here for a catch, transfer control to the handler. */
1306 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1307 #else
1309 /* A label to continue execution for the no exception case. */
1310 rtx noex = gen_label_rtx();
1311 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1312 ehstack.top->entry->exception_handler_label);
1313 emit_label (noex);
1315 #endif
1317 /* We are committed to this, so update the handler chain. */
1319 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1322 /* Start an exception handling region for the given cleanup action.
1323 All instructions emitted after this point are considered to be part
1324 of the region until expand_eh_region_end is invoked. CLEANUP is
1325 the cleanup action to perform. The return value is true if the
1326 exception region was optimized away. If that case,
1327 expand_eh_region_end does not need to be called for this cleanup,
1328 nor should it be.
1330 This routine notices one particular common case in C++ code
1331 generation, and optimizes it so as to not need the exception
1332 region. It works by creating a dynamic cleanup action, instead of
1333 a using an exception region. */
1336 expand_eh_region_start_tree (decl, cleanup)
1337 tree decl;
1338 tree cleanup;
1340 /* This is the old code. */
1341 if (! doing_eh (0))
1342 return 0;
1344 /* The optimization only applies to actions protected with
1345 terminate, and only applies if we are using the setjmp/longjmp
1346 codegen method. */
1347 if (exceptions_via_longjmp
1348 && protect_cleanup_actions_with_terminate)
1350 tree func, arg;
1351 tree args;
1353 /* Ignore any UNSAVE_EXPR. */
1354 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1355 cleanup = TREE_OPERAND (cleanup, 0);
1357 /* Further, it only applies if the action is a call, if there
1358 are 2 arguments, and if the second argument is 2. */
1360 if (TREE_CODE (cleanup) == CALL_EXPR
1361 && (args = TREE_OPERAND (cleanup, 1))
1362 && (func = TREE_OPERAND (cleanup, 0))
1363 && (arg = TREE_VALUE (args))
1364 && (args = TREE_CHAIN (args))
1366 /* is the second argument 2? */
1367 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1368 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1369 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1371 /* Make sure there are no other arguments. */
1372 && TREE_CHAIN (args) == NULL_TREE)
1374 /* Arrange for returns and gotos to pop the entry we make on the
1375 dynamic cleanup stack. */
1376 expand_dcc_cleanup (decl);
1377 start_dynamic_cleanup (func, arg);
1378 return 1;
1382 expand_eh_region_start_for_decl (decl);
1383 ehstack.top->entry->finalization = cleanup;
1385 return 0;
1388 /* Just like expand_eh_region_start, except if a cleanup action is
1389 entered on the cleanup chain, the TREE_PURPOSE of the element put
1390 on the chain is DECL. DECL should be the associated VAR_DECL, if
1391 any, otherwise it should be NULL_TREE. */
1393 void
1394 expand_eh_region_start_for_decl (decl)
1395 tree decl;
1397 rtx note;
1399 /* This is the old code. */
1400 if (! doing_eh (0))
1401 return;
1403 if (exceptions_via_longjmp)
1405 /* We need a new block to record the start and end of the
1406 dynamic handler chain. We could always do this, but we
1407 really want to permit jumping into such a block, and we want
1408 to avoid any errors or performance impact in the SJ EH code
1409 for now. */
1410 expand_start_bindings (0);
1412 /* But we don't need or want a new temporary level. */
1413 pop_temp_slots ();
1415 /* Mark this block as created by expand_eh_region_start. This
1416 is so that we can pop the block with expand_end_bindings
1417 automatically. */
1418 mark_block_as_eh_region ();
1420 /* Arrange for returns and gotos to pop the entry we make on the
1421 dynamic handler stack. */
1422 expand_dhc_cleanup (decl);
1425 push_eh_entry (&ehstack);
1426 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1427 NOTE_BLOCK_NUMBER (note)
1428 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1429 if (exceptions_via_longjmp)
1430 start_dynamic_handler ();
1433 /* Start an exception handling region. All instructions emitted after
1434 this point are considered to be part of the region until
1435 expand_eh_region_end is invoked. */
1437 void
1438 expand_eh_region_start ()
1440 expand_eh_region_start_for_decl (NULL_TREE);
1443 /* End an exception handling region. The information about the region
1444 is found on the top of ehstack.
1446 HANDLER is either the cleanup for the exception region, or if we're
1447 marking the end of a try block, HANDLER is integer_zero_node.
1449 HANDLER will be transformed to rtl when expand_leftover_cleanups
1450 is invoked. */
1452 void
1453 expand_eh_region_end (handler)
1454 tree handler;
1456 struct eh_entry *entry;
1457 rtx note;
1458 int ret, r;
1460 if (! doing_eh (0))
1461 return;
1463 entry = pop_eh_entry (&ehstack);
1465 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1466 ret = NOTE_BLOCK_NUMBER (note)
1467 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1468 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1469 /* We share outer_context between regions; only emit it once. */
1470 && INSN_UID (entry->outer_context) == 0)
1472 rtx label;
1474 label = gen_label_rtx ();
1475 emit_jump (label);
1477 /* Emit a label marking the end of this exception region that
1478 is used for rethrowing into the outer context. */
1479 emit_label (entry->outer_context);
1480 expand_internal_throw ();
1482 emit_label (label);
1485 entry->finalization = handler;
1487 /* create region entry in final exception table */
1488 r = new_eh_region_entry (NOTE_BLOCK_NUMBER (note), entry->rethrow_label);
1490 enqueue_eh_entry (&ehqueue, entry);
1492 /* If we have already started ending the bindings, don't recurse.
1493 This only happens when exceptions_via_longjmp is true. */
1494 if (is_eh_region ())
1496 /* Because we don't need or want a new temporary level and
1497 because we didn't create one in expand_eh_region_start,
1498 create a fake one now to avoid removing one in
1499 expand_end_bindings. */
1500 push_temp_slots ();
1502 mark_block_as_not_eh_region ();
1504 /* Maybe do this to prevent jumping in and so on... */
1505 expand_end_bindings (NULL_TREE, 0, 0);
1509 /* End the EH region for a goto fixup. We only need them in the region-based
1510 EH scheme. */
1512 void
1513 expand_fixup_region_start ()
1515 if (! doing_eh (0) || exceptions_via_longjmp)
1516 return;
1518 expand_eh_region_start ();
1521 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1522 expanded; to avoid running it twice if it throws, we look through the
1523 ehqueue for a matching region and rethrow from its outer_context. */
1525 void
1526 expand_fixup_region_end (cleanup)
1527 tree cleanup;
1529 struct eh_node *node;
1530 int dont_issue;
1532 if (! doing_eh (0) || exceptions_via_longjmp)
1533 return;
1535 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1536 node = node->chain;
1537 if (node == 0)
1538 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1539 node = node->chain;
1540 if (node == 0)
1541 abort ();
1543 /* If the outer context label has not been issued yet, we don't want
1544 to issue it as a part of this region, unless this is the
1545 correct region for the outer context. If we did, then the label for
1546 the outer context will be WITHIN the begin/end labels,
1547 and we could get an infinte loop when it tried to rethrow, or just
1548 generally incorrect execution following a throw. */
1550 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1551 && (ehstack.top->entry != node->entry));
1553 ehstack.top->entry->outer_context = node->entry->outer_context;
1555 /* Since we are rethrowing to the OUTER region, we know we don't need
1556 a jump around sequence for this region, so we'll pretend the outer
1557 context label has been issued by setting INSN_UID to 1, then clearing
1558 it again afterwards. */
1560 if (dont_issue)
1561 INSN_UID (node->entry->outer_context) = 1;
1563 /* Just rethrow. size_zero_node is just a NOP. */
1564 expand_eh_region_end (size_zero_node);
1566 if (dont_issue)
1567 INSN_UID (node->entry->outer_context) = 0;
1570 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1571 call to __sjthrow.
1573 Otherwise, we emit a call to __throw and note that we threw
1574 something, so we know we need to generate the necessary code for
1575 __throw.
1577 Before invoking throw, the __eh_pc variable must have been set up
1578 to contain the PC being thrown from. This address is used by
1579 __throw to determine which exception region (if any) is
1580 responsible for handling the exception. */
1582 void
1583 emit_throw ()
1585 if (exceptions_via_longjmp)
1587 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1589 else
1591 #ifdef JUMP_TO_THROW
1592 emit_indirect_jump (throw_libfunc);
1593 #else
1594 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1595 #endif
1597 emit_barrier ();
1600 /* Throw the current exception. If appropriate, this is done by jumping
1601 to the next handler. */
1603 void
1604 expand_internal_throw ()
1606 emit_throw ();
1609 /* Called from expand_exception_blocks and expand_end_catch_block to
1610 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1612 void
1613 expand_leftover_cleanups ()
1615 struct eh_entry *entry;
1617 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1619 rtx prev;
1621 /* A leftover try block. Shouldn't be one here. */
1622 if (entry->finalization == integer_zero_node)
1623 abort ();
1625 /* Output the label for the start of the exception handler. */
1627 receive_exception_label (entry->exception_handler_label);
1629 /* register a handler for this cleanup region */
1630 add_new_handler (
1631 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1632 get_new_handler (entry->exception_handler_label, NULL));
1634 /* And now generate the insns for the handler. */
1635 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1637 prev = get_last_insn ();
1638 if (prev == NULL || GET_CODE (prev) != BARRIER)
1639 /* Emit code to throw to the outer context if we fall off
1640 the end of the handler. */
1641 expand_rethrow (entry->outer_context);
1643 do_pending_stack_adjust ();
1644 free (entry);
1648 /* Called at the start of a block of try statements. */
1649 void
1650 expand_start_try_stmts ()
1652 if (! doing_eh (1))
1653 return;
1655 expand_eh_region_start ();
1658 /* Called to begin a catch clause. The parameter is the object which
1659 will be passed to the runtime type check routine. */
1660 void
1661 start_catch_handler (rtime)
1662 tree rtime;
1664 rtx handler_label;
1665 int insn_region_num;
1666 int eh_region_entry;
1668 if (! doing_eh (1))
1669 return;
1671 handler_label = catchstack.top->entry->exception_handler_label;
1672 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1673 eh_region_entry = find_func_region (insn_region_num);
1675 /* If we've already issued this label, pick a new one */
1676 if (catchstack.top->entry->label_used)
1677 handler_label = gen_exception_label ();
1678 else
1679 catchstack.top->entry->label_used = 1;
1681 receive_exception_label (handler_label);
1683 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1685 if (flag_new_exceptions && ! exceptions_via_longjmp)
1686 return;
1688 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1689 issue code to compare 'rtime' to the value in eh_info, via the
1690 matching function in eh_info. If its is false, we branch around
1691 the handler we are about to issue. */
1693 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1695 rtx call_rtx, rtime_address;
1697 if (catchstack.top->entry->false_label != NULL_RTX)
1698 fatal ("Compiler Bug: Never issued previous false_label");
1699 catchstack.top->entry->false_label = gen_exception_label ();
1701 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1702 #ifdef POINTERS_EXTEND_UNSIGNED
1703 rtime_address = convert_memory_address (Pmode, rtime_address);
1704 #endif
1705 rtime_address = force_reg (Pmode, rtime_address);
1707 /* Now issue the call, and branch around handler if needed */
1708 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1709 0, SImode, 1, rtime_address, Pmode);
1711 /* Did the function return true? */
1712 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1713 GET_MODE (call_rtx), 0, 0,
1714 catchstack.top->entry->false_label);
1718 /* Called to end a catch clause. If we aren't using the new exception
1719 model tabel mechanism, we need to issue the branch-around label
1720 for the end of the catch block. */
1722 void
1723 end_catch_handler ()
1725 if (! doing_eh (1))
1726 return;
1728 if (flag_new_exceptions && ! exceptions_via_longjmp)
1730 emit_barrier ();
1731 return;
1734 /* A NULL label implies the catch clause was a catch all or cleanup */
1735 if (catchstack.top->entry->false_label == NULL_RTX)
1736 return;
1738 emit_label (catchstack.top->entry->false_label);
1739 catchstack.top->entry->false_label = NULL_RTX;
1742 /* Generate RTL for the start of a group of catch clauses.
1744 It is responsible for starting a new instruction sequence for the
1745 instructions in the catch block, and expanding the handlers for the
1746 internally-generated exception regions nested within the try block
1747 corresponding to this catch block. */
1749 void
1750 expand_start_all_catch ()
1752 struct eh_entry *entry;
1753 tree label;
1754 rtx outer_context;
1756 if (! doing_eh (1))
1757 return;
1759 outer_context = ehstack.top->entry->outer_context;
1761 /* End the try block. */
1762 expand_eh_region_end (integer_zero_node);
1764 emit_line_note (input_filename, lineno);
1765 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1767 /* The label for the exception handling block that we will save.
1768 This is Lresume in the documentation. */
1769 expand_label (label);
1771 /* Push the label that points to where normal flow is resumed onto
1772 the top of the label stack. */
1773 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1775 /* Start a new sequence for all the catch blocks. We will add this
1776 to the global sequence catch_clauses when we have completed all
1777 the handlers in this handler-seq. */
1778 start_sequence ();
1780 entry = dequeue_eh_entry (&ehqueue);
1781 for ( ; entry->finalization != integer_zero_node;
1782 entry = dequeue_eh_entry (&ehqueue))
1784 rtx prev;
1786 /* Emit the label for the cleanup handler for this region, and
1787 expand the code for the handler.
1789 Note that a catch region is handled as a side-effect here;
1790 for a try block, entry->finalization will contain
1791 integer_zero_node, so no code will be generated in the
1792 expand_expr call below. But, the label for the handler will
1793 still be emitted, so any code emitted after this point will
1794 end up being the handler. */
1796 receive_exception_label (entry->exception_handler_label);
1798 /* register a handler for this cleanup region */
1799 add_new_handler (
1800 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1801 get_new_handler (entry->exception_handler_label, NULL));
1803 /* And now generate the insns for the cleanup handler. */
1804 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1806 prev = get_last_insn ();
1807 if (prev == NULL || GET_CODE (prev) != BARRIER)
1808 /* Code to throw out to outer context when we fall off end
1809 of the handler. We can't do this here for catch blocks,
1810 so it's done in expand_end_all_catch instead. */
1811 expand_rethrow (entry->outer_context);
1813 do_pending_stack_adjust ();
1814 free (entry);
1817 /* At this point, all the cleanups are done, and the ehqueue now has
1818 the current exception region at its head. We dequeue it, and put it
1819 on the catch stack. */
1821 push_entry (&catchstack, entry);
1823 /* If we are not doing setjmp/longjmp EH, because we are reordered
1824 out of line, we arrange to rethrow in the outer context. We need to
1825 do this because we are not physically within the region, if any, that
1826 logically contains this catch block. */
1827 if (! exceptions_via_longjmp)
1829 expand_eh_region_start ();
1830 ehstack.top->entry->outer_context = outer_context;
1835 /* Finish up the catch block. At this point all the insns for the
1836 catch clauses have already been generated, so we only have to add
1837 them to the catch_clauses list. We also want to make sure that if
1838 we fall off the end of the catch clauses that we rethrow to the
1839 outer EH region. */
1841 void
1842 expand_end_all_catch ()
1844 rtx new_catch_clause;
1845 struct eh_entry *entry;
1847 if (! doing_eh (1))
1848 return;
1850 /* Dequeue the current catch clause region. */
1851 entry = pop_eh_entry (&catchstack);
1852 free (entry);
1854 if (! exceptions_via_longjmp)
1856 rtx outer_context = ehstack.top->entry->outer_context;
1858 /* Finish the rethrow region. size_zero_node is just a NOP. */
1859 expand_eh_region_end (size_zero_node);
1860 /* New exceptions handling models will never have a fall through
1861 of a catch clause */
1862 if (!flag_new_exceptions)
1863 expand_rethrow (outer_context);
1865 else
1866 expand_rethrow (NULL_RTX);
1868 /* Code to throw out to outer context, if we fall off end of catch
1869 handlers. This is rethrow (Lresume, same id, same obj) in the
1870 documentation. We use Lresume because we know that it will throw
1871 to the correct context.
1873 In other words, if the catch handler doesn't exit or return, we
1874 do a "throw" (using the address of Lresume as the point being
1875 thrown from) so that the outer EH region can then try to process
1876 the exception. */
1878 /* Now we have the complete catch sequence. */
1879 new_catch_clause = get_insns ();
1880 end_sequence ();
1882 /* This level of catch blocks is done, so set up the successful
1883 catch jump label for the next layer of catch blocks. */
1884 pop_label_entry (&caught_return_label_stack);
1885 pop_label_entry (&outer_context_label_stack);
1887 /* Add the new sequence of catches to the main one for this function. */
1888 push_to_sequence (catch_clauses);
1889 emit_insns (new_catch_clause);
1890 catch_clauses = get_insns ();
1891 end_sequence ();
1893 /* Here we fall through into the continuation code. */
1896 /* Rethrow from the outer context LABEL. */
1898 static void
1899 expand_rethrow (label)
1900 rtx label;
1902 if (exceptions_via_longjmp)
1903 emit_throw ();
1904 else
1905 if (flag_new_exceptions)
1907 rtx insn, val;
1908 if (label == NULL_RTX)
1909 label = last_rethrow_symbol;
1910 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1911 SYMBOL_REF_USED (label) = 1;
1913 /* Search backwards for the actual call insn. */
1914 insn = get_last_insn ();
1915 while (GET_CODE (insn) != CALL_INSN)
1916 insn = PREV_INSN (insn);
1917 delete_insns_since (insn);
1919 /* Mark the label/symbol on the call. */
1920 val = GEN_INT (eh_region_from_symbol (label));
1921 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, val,
1922 REG_NOTES (insn));
1923 emit_barrier ();
1925 else
1926 emit_jump (label);
1929 /* End all the pending exception regions on protect_list. The handlers
1930 will be emitted when expand_leftover_cleanups is invoked. */
1932 void
1933 end_protect_partials ()
1935 while (protect_list)
1937 expand_eh_region_end (TREE_VALUE (protect_list));
1938 protect_list = TREE_CHAIN (protect_list);
1942 /* Arrange for __terminate to be called if there is an unhandled throw
1943 from within E. */
1945 tree
1946 protect_with_terminate (e)
1947 tree e;
1949 /* We only need to do this when using setjmp/longjmp EH and the
1950 language requires it, as otherwise we protect all of the handlers
1951 at once, if we need to. */
1952 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1954 tree handler, result;
1956 /* All cleanups must be on the function_obstack. */
1957 push_obstacks_nochange ();
1958 resume_temporary_allocation ();
1960 handler = make_node (RTL_EXPR);
1961 TREE_TYPE (handler) = void_type_node;
1962 RTL_EXPR_RTL (handler) = const0_rtx;
1963 TREE_SIDE_EFFECTS (handler) = 1;
1964 start_sequence_for_rtl_expr (handler);
1966 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1967 emit_barrier ();
1969 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1970 end_sequence ();
1972 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1973 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1974 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1975 TREE_READONLY (result) = TREE_READONLY (e);
1977 pop_obstacks ();
1979 e = result;
1982 return e;
1985 /* The exception table that we build that is used for looking up and
1986 dispatching exceptions, the current number of entries, and its
1987 maximum size before we have to extend it.
1989 The number in eh_table is the code label number of the exception
1990 handler for the region. This is added by add_eh_table_entry and
1991 used by output_exception_table_entry. */
1993 static int *eh_table = NULL;
1994 static int eh_table_size = 0;
1995 static int eh_table_max_size = 0;
1997 /* Note the need for an exception table entry for region N. If we
1998 don't need to output an explicit exception table, avoid all of the
1999 extra work.
2001 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2002 (Or NOTE_INSN_EH_REGION_END sometimes)
2003 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
2004 label number of the exception handler for the region. */
2006 void
2007 add_eh_table_entry (n)
2008 int n;
2010 #ifndef OMIT_EH_TABLE
2011 if (eh_table_size >= eh_table_max_size)
2013 if (eh_table)
2015 eh_table_max_size += eh_table_max_size>>1;
2017 if (eh_table_max_size < 0)
2018 abort ();
2020 eh_table = (int *) xrealloc (eh_table,
2021 eh_table_max_size * sizeof (int));
2023 else
2025 eh_table_max_size = 252;
2026 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2029 eh_table[eh_table_size++] = n;
2030 #endif
2033 /* Return a non-zero value if we need to output an exception table.
2035 On some platforms, we don't have to output a table explicitly.
2036 This routine doesn't mean we don't have one. */
2039 exception_table_p ()
2041 if (eh_table)
2042 return 1;
2044 return 0;
2047 /* Output the entry of the exception table corresponding to the
2048 exception region numbered N to file FILE.
2050 N is the code label number corresponding to the handler of the
2051 region. */
2053 static void
2054 output_exception_table_entry (file, n)
2055 FILE *file;
2056 int n;
2058 char buf[256];
2059 rtx sym;
2060 struct handler_info *handler = get_first_handler (n);
2061 int index = find_func_region (n);
2062 rtx rethrow;
2064 /* form and emit the rethrow label, if needed */
2065 rethrow = function_eh_regions[index].rethrow_label;
2066 if (rethrow != NULL_RTX && !flag_new_exceptions)
2067 rethrow = NULL_RTX;
2068 if (rethrow != NULL_RTX && handler == NULL)
2069 if (! SYMBOL_REF_USED (rethrow))
2070 rethrow = NULL_RTX;
2073 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2075 /* rethrow label should indicate the LAST entry for a region */
2076 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2078 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2079 assemble_label(buf);
2080 rethrow = NULL_RTX;
2083 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2084 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2085 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2087 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2088 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2089 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2091 if (handler == NULL)
2092 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2093 else
2095 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2096 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2097 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2100 if (flag_new_exceptions)
2102 if (handler == NULL || handler->type_info == NULL)
2103 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2104 else
2105 if (handler->type_info == CATCH_ALL_TYPE)
2106 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2107 POINTER_SIZE / BITS_PER_UNIT, 1);
2108 else
2109 output_constant ((tree)(handler->type_info),
2110 POINTER_SIZE / BITS_PER_UNIT);
2112 putc ('\n', file); /* blank line */
2113 /* We only output the first label under the old scheme */
2114 if (! flag_new_exceptions || handler == NULL)
2115 break;
2119 /* Output the exception table if we have and need one. */
2121 static short language_code = 0;
2122 static short version_code = 0;
2124 /* This routine will set the language code for exceptions. */
2125 void
2126 set_exception_lang_code (code)
2127 int code;
2129 language_code = code;
2132 /* This routine will set the language version code for exceptions. */
2133 void
2134 set_exception_version_code (code)
2135 int code;
2137 version_code = code;
2141 void
2142 output_exception_table ()
2144 int i;
2145 char buf[256];
2146 extern FILE *asm_out_file;
2148 if (! doing_eh (0) || ! eh_table)
2149 return;
2151 exception_section ();
2153 /* Beginning marker for table. */
2154 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2155 assemble_label ("__EXCEPTION_TABLE__");
2157 if (flag_new_exceptions)
2159 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2160 POINTER_SIZE / BITS_PER_UNIT, 1);
2161 assemble_integer (GEN_INT (language_code), 2 , 1);
2162 assemble_integer (GEN_INT (version_code), 2 , 1);
2164 /* Add enough padding to make sure table aligns on a pointer boundry. */
2165 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2166 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2168 if (i != 0)
2169 assemble_integer (const0_rtx, i , 1);
2171 /* Generate the label for offset calculations on rethrows */
2172 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2173 assemble_label(buf);
2176 for (i = 0; i < eh_table_size; ++i)
2177 output_exception_table_entry (asm_out_file, eh_table[i]);
2179 free (eh_table);
2180 clear_function_eh_region ();
2182 /* Ending marker for table. */
2183 /* Generate the label for end of table. */
2184 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2185 assemble_label(buf);
2186 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2188 /* for binary compatability, the old __throw checked the second
2189 position for a -1, so we should output at least 2 -1's */
2190 if (! flag_new_exceptions)
2191 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2193 putc ('\n', asm_out_file); /* blank line */
2196 /* Emit code to get EH context.
2198 We have to scan thru the code to find possible EH context registers.
2199 Inlined functions may use it too, and thus we'll have to be able
2200 to change them too.
2202 This is done only if using exceptions_via_longjmp. */
2204 void
2205 emit_eh_context ()
2207 rtx insn;
2208 rtx ehc = 0;
2210 if (! doing_eh (0))
2211 return;
2213 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2214 if (GET_CODE (insn) == INSN
2215 && GET_CODE (PATTERN (insn)) == USE)
2217 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2218 if (reg)
2220 rtx insns;
2222 start_sequence ();
2224 /* If this is the first use insn, emit the call here. This
2225 will always be at the top of our function, because if
2226 expand_inline_function notices a REG_EH_CONTEXT note, it
2227 adds a use insn to this function as well. */
2228 if (ehc == 0)
2229 ehc = call_get_eh_context ();
2231 emit_move_insn (XEXP (reg, 0), ehc);
2232 insns = get_insns ();
2233 end_sequence ();
2235 emit_insns_before (insns, insn);
2237 /* At -O0, we must make the context register stay alive so
2238 that the stupid.c register allocator doesn't get confused. */
2239 if (obey_regdecls != 0)
2241 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2242 emit_insn_before (insns, get_last_insn ());
2248 /* Scan the current insns and build a list of handler labels. The
2249 resulting list is placed in the global variable exception_handler_labels.
2251 It is called after the last exception handling region is added to
2252 the current function (when the rtl is almost all built for the
2253 current function) and before the jump optimization pass. */
2255 void
2256 find_exception_handler_labels ()
2258 rtx insn;
2260 exception_handler_labels = NULL_RTX;
2262 /* If we aren't doing exception handling, there isn't much to check. */
2263 if (! doing_eh (0))
2264 return;
2266 /* For each start of a region, add its label to the list. */
2268 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2270 struct handler_info* ptr;
2271 if (GET_CODE (insn) == NOTE
2272 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2274 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
2275 for ( ; ptr; ptr = ptr->next)
2277 /* make sure label isn't in the list already */
2278 rtx x;
2279 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2280 if (XEXP (x, 0) == ptr->handler_label)
2281 break;
2282 if (! x)
2283 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2284 ptr->handler_label, exception_handler_labels);
2290 /* Return a value of 1 if the parameter label number is an exception handler
2291 label. Return 0 otherwise. */
2294 is_exception_handler_label (lab)
2295 int lab;
2297 rtx x;
2298 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2299 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2300 return 1;
2301 return 0;
2304 /* Perform sanity checking on the exception_handler_labels list.
2306 Can be called after find_exception_handler_labels is called to
2307 build the list of exception handlers for the current function and
2308 before we finish processing the current function. */
2310 void
2311 check_exception_handler_labels ()
2313 rtx insn, insn2;
2315 /* If we aren't doing exception handling, there isn't much to check. */
2316 if (! doing_eh (0))
2317 return;
2319 /* Make sure there is no more than 1 copy of a label */
2320 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2322 int count = 0;
2323 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2324 if (XEXP (insn, 0) == XEXP (insn2, 0))
2325 count++;
2326 if (count != 1)
2327 warning ("Counted %d copies of EH region %d in list.\n", count,
2328 CODE_LABEL_NUMBER (insn));
2333 /* This group of functions initializes the exception handling data
2334 structures at the start of the compilation, initializes the data
2335 structures at the start of a function, and saves and restores the
2336 exception handling data structures for the start/end of a nested
2337 function. */
2339 /* Toplevel initialization for EH things. */
2341 void
2342 init_eh ()
2344 first_rethrow_symbol = create_rethrow_ref (0);
2345 final_rethrow = gen_exception_label ();
2346 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2349 /* Initialize the per-function EH information. */
2351 void
2352 init_eh_for_function ()
2354 current_function->eh = (struct eh_status *) xmalloc (sizeof (struct eh_status));
2356 ehstack.top = 0;
2357 catchstack.top = 0;
2358 ehqueue.head = ehqueue.tail = 0;
2359 catch_clauses = NULL_RTX;
2360 false_label_stack = 0;
2361 caught_return_label_stack = 0;
2362 protect_list = NULL_TREE;
2363 current_function_ehc = NULL_RTX;
2364 eh_return_context = NULL_RTX;
2365 eh_return_stack_adjust = NULL_RTX;
2366 eh_return_handler = NULL_RTX;
2367 eh_return_stub_label = NULL_RTX;
2370 /* This section is for the exception handling specific optimization
2371 pass. First are the internal routines, and then the main
2372 optimization pass. */
2374 /* Determine if the given INSN can throw an exception. */
2376 static int
2377 can_throw (insn)
2378 rtx insn;
2380 /* Calls can always potentially throw exceptions. */
2381 if (GET_CODE (insn) == CALL_INSN)
2382 return 1;
2384 if (asynchronous_exceptions)
2386 /* If we wanted asynchronous exceptions, then everything but NOTEs
2387 and CODE_LABELs could throw. */
2388 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2389 return 1;
2392 return 0;
2395 /* Scan a exception region looking for the matching end and then
2396 remove it if possible. INSN is the start of the region, N is the
2397 region number, and DELETE_OUTER is to note if anything in this
2398 region can throw.
2400 Regions are removed if they cannot possibly catch an exception.
2401 This is determined by invoking can_throw on each insn within the
2402 region; if can_throw returns true for any of the instructions, the
2403 region can catch an exception, since there is an insn within the
2404 region that is capable of throwing an exception.
2406 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2407 calls abort if it can't find one.
2409 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2410 correspond to the region number, or if DELETE_OUTER is NULL. */
2412 static rtx
2413 scan_region (insn, n, delete_outer)
2414 rtx insn;
2415 int n;
2416 int *delete_outer;
2418 rtx start = insn;
2420 /* Assume we can delete the region. */
2421 int delete = 1;
2423 int r = find_func_region (n);
2424 /* Can't delete something which is rethrown to. */
2425 if (SYMBOL_REF_USED((function_eh_regions[r].rethrow_label)))
2426 delete = 0;
2428 if (insn == NULL_RTX
2429 || GET_CODE (insn) != NOTE
2430 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2431 || NOTE_BLOCK_NUMBER (insn) != n
2432 || delete_outer == NULL)
2433 abort ();
2435 insn = NEXT_INSN (insn);
2437 /* Look for the matching end. */
2438 while (! (GET_CODE (insn) == NOTE
2439 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2441 /* If anything can throw, we can't remove the region. */
2442 if (delete && can_throw (insn))
2444 delete = 0;
2447 /* Watch out for and handle nested regions. */
2448 if (GET_CODE (insn) == NOTE
2449 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2451 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2454 insn = NEXT_INSN (insn);
2457 /* The _BEG/_END NOTEs must match and nest. */
2458 if (NOTE_BLOCK_NUMBER (insn) != n)
2459 abort ();
2461 /* If anything in this exception region can throw, we can throw. */
2462 if (! delete)
2463 *delete_outer = 0;
2464 else
2466 /* Delete the start and end of the region. */
2467 delete_insn (start);
2468 delete_insn (insn);
2470 /* We no longer removed labels here, since flow will now remove any
2471 handler which cannot be called any more. */
2473 #if 0
2474 /* Only do this part if we have built the exception handler
2475 labels. */
2476 if (exception_handler_labels)
2478 rtx x, *prev = &exception_handler_labels;
2480 /* Find it in the list of handlers. */
2481 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2483 rtx label = XEXP (x, 0);
2484 if (CODE_LABEL_NUMBER (label) == n)
2486 /* If we are the last reference to the handler,
2487 delete it. */
2488 if (--LABEL_NUSES (label) == 0)
2489 delete_insn (label);
2491 if (optimize)
2493 /* Remove it from the list of exception handler
2494 labels, if we are optimizing. If we are not, then
2495 leave it in the list, as we are not really going to
2496 remove the region. */
2497 *prev = XEXP (x, 1);
2498 XEXP (x, 1) = 0;
2499 XEXP (x, 0) = 0;
2502 break;
2504 prev = &XEXP (x, 1);
2507 #endif
2509 return insn;
2512 /* Perform various interesting optimizations for exception handling
2513 code.
2515 We look for empty exception regions and make them go (away). The
2516 jump optimization code will remove the handler if nothing else uses
2517 it. */
2519 void
2520 exception_optimize ()
2522 rtx insn;
2523 int n;
2525 /* Remove empty regions. */
2526 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2528 if (GET_CODE (insn) == NOTE
2529 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2531 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2532 insn, we will indirectly skip through all the insns
2533 inbetween. We are also guaranteed that the value of insn
2534 returned will be valid, as otherwise scan_region won't
2535 return. */
2536 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2541 /* Various hooks for the DWARF 2 __throw routine. */
2543 /* Do any necessary initialization to access arbitrary stack frames.
2544 On the SPARC, this means flushing the register windows. */
2546 void
2547 expand_builtin_unwind_init ()
2549 /* Set this so all the registers get saved in our frame; we need to be
2550 able to copy the saved values for any registers from frames we unwind. */
2551 current_function_has_nonlocal_label = 1;
2553 #ifdef SETUP_FRAME_ADDRESSES
2554 SETUP_FRAME_ADDRESSES ();
2555 #endif
2558 /* Given a value extracted from the return address register or stack slot,
2559 return the actual address encoded in that value. */
2562 expand_builtin_extract_return_addr (addr_tree)
2563 tree addr_tree;
2565 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2566 return eh_outer_context (addr);
2569 /* Given an actual address in addr_tree, do any necessary encoding
2570 and return the value to be stored in the return address register or
2571 stack slot so the epilogue will return to that address. */
2574 expand_builtin_frob_return_addr (addr_tree)
2575 tree addr_tree;
2577 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2578 #ifdef RETURN_ADDR_OFFSET
2579 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2580 #endif
2581 return addr;
2584 /* Choose three registers for communication between the main body of
2585 __throw and the epilogue (or eh stub) and the exception handler.
2586 We must do this with hard registers because the epilogue itself
2587 will be generated after reload, at which point we may not reference
2588 pseudos at all.
2590 The first passes the exception context to the handler. For this
2591 we use the return value register for a void*.
2593 The second holds the stack pointer value to be restored. For
2594 this we use the static chain register if it exists and is different
2595 from the previous, otherwise some arbitrary call-clobbered register.
2597 The third holds the address of the handler itself. Here we use
2598 some arbitrary call-clobbered register. */
2600 static void
2601 eh_regs (pcontext, psp, pra, outgoing)
2602 rtx *pcontext, *psp, *pra;
2603 int outgoing;
2605 rtx rcontext, rsp, rra;
2606 int i;
2608 #ifdef FUNCTION_OUTGOING_VALUE
2609 if (outgoing)
2610 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2611 current_function_decl);
2612 else
2613 #endif
2614 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2615 current_function_decl);
2617 #ifdef STATIC_CHAIN_REGNUM
2618 if (outgoing)
2619 rsp = static_chain_incoming_rtx;
2620 else
2621 rsp = static_chain_rtx;
2622 if (REGNO (rsp) == REGNO (rcontext))
2623 #endif /* STATIC_CHAIN_REGNUM */
2624 rsp = NULL_RTX;
2626 if (rsp == NULL_RTX)
2628 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2629 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2630 break;
2631 if (i == FIRST_PSEUDO_REGISTER)
2632 abort();
2634 rsp = gen_rtx_REG (Pmode, i);
2637 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2638 if (call_used_regs[i] && ! fixed_regs[i]
2639 && i != REGNO (rcontext) && i != REGNO (rsp))
2640 break;
2641 if (i == FIRST_PSEUDO_REGISTER)
2642 abort();
2644 rra = gen_rtx_REG (Pmode, i);
2646 *pcontext = rcontext;
2647 *psp = rsp;
2648 *pra = rra;
2651 /* Retrieve the register which contains the pointer to the eh_context
2652 structure set the __throw. */
2654 rtx
2655 get_reg_for_handler ()
2657 rtx reg1;
2658 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2659 current_function_decl);
2660 return reg1;
2663 /* Set up the epilogue with the magic bits we'll need to return to the
2664 exception handler. */
2666 void
2667 expand_builtin_eh_return (context, stack, handler)
2668 tree context, stack, handler;
2670 if (eh_return_context)
2671 error("Duplicate call to __builtin_eh_return");
2673 eh_return_context
2674 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2675 eh_return_stack_adjust
2676 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2677 eh_return_handler
2678 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
2681 void
2682 expand_eh_return ()
2684 rtx reg1, reg2, reg3;
2685 rtx stub_start, after_stub;
2686 rtx ra, tmp;
2688 if (!eh_return_context)
2689 return;
2691 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2693 eh_regs (&reg1, &reg2, &reg3, 1);
2694 #ifdef POINTERS_EXTEND_UNSIGNED
2695 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2696 eh_return_stack_adjust =
2697 convert_memory_address (Pmode, eh_return_stack_adjust);
2698 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2699 #endif
2700 emit_move_insn (reg1, eh_return_context);
2701 emit_move_insn (reg2, eh_return_stack_adjust);
2702 emit_move_insn (reg3, eh_return_handler);
2704 /* Talk directly to the target's epilogue code when possible. */
2706 #ifdef HAVE_eh_epilogue
2707 if (HAVE_eh_epilogue)
2709 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2710 return;
2712 #endif
2714 /* Otherwise, use the same stub technique we had before. */
2716 eh_return_stub_label = stub_start = gen_label_rtx ();
2717 after_stub = gen_label_rtx ();
2719 /* Set the return address to the stub label. */
2721 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2722 0, hard_frame_pointer_rtx);
2723 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2724 abort();
2726 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2727 #ifdef RETURN_ADDR_OFFSET
2728 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2729 #endif
2730 tmp = force_operand (tmp, ra);
2731 if (tmp != ra)
2732 emit_move_insn (ra, tmp);
2734 /* Indicate that the registers are in fact used. */
2735 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2736 emit_insn (gen_rtx_USE (VOIDmode, reg2));
2737 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2738 if (GET_CODE (ra) == REG)
2739 emit_insn (gen_rtx_USE (VOIDmode, ra));
2741 /* Generate the stub. */
2743 emit_jump (after_stub);
2744 emit_label (stub_start);
2746 eh_regs (&reg1, &reg2, &reg3, 0);
2747 adjust_stack (reg2);
2748 emit_indirect_jump (reg3);
2750 emit_label (after_stub);
2754 /* This contains the code required to verify whether arbitrary instructions
2755 are in the same exception region. */
2757 static int *insn_eh_region = (int *)0;
2758 static int maximum_uid;
2760 static void
2761 set_insn_eh_region (first, region_num)
2762 rtx *first;
2763 int region_num;
2765 rtx insn;
2766 int rnum;
2768 for (insn = *first; insn; insn = NEXT_INSN (insn))
2770 if ((GET_CODE (insn) == NOTE) &&
2771 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2773 rnum = NOTE_BLOCK_NUMBER (insn);
2774 insn_eh_region[INSN_UID (insn)] = rnum;
2775 insn = NEXT_INSN (insn);
2776 set_insn_eh_region (&insn, rnum);
2777 /* Upon return, insn points to the EH_REGION_END of nested region */
2778 continue;
2780 insn_eh_region[INSN_UID (insn)] = region_num;
2781 if ((GET_CODE (insn) == NOTE) &&
2782 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2783 break;
2785 *first = insn;
2788 /* Free the insn table, an make sure it cannot be used again. */
2790 void
2791 free_insn_eh_region ()
2793 if (!doing_eh (0))
2794 return;
2796 if (insn_eh_region)
2798 free (insn_eh_region);
2799 insn_eh_region = (int *)0;
2803 /* Initialize the table. max_uid must be calculated and handed into
2804 this routine. If it is unavailable, passing a value of 0 will
2805 cause this routine to calculate it as well. */
2807 void
2808 init_insn_eh_region (first, max_uid)
2809 rtx first;
2810 int max_uid;
2812 rtx insn;
2814 if (!doing_eh (0))
2815 return;
2817 if (insn_eh_region)
2818 free_insn_eh_region();
2820 if (max_uid == 0)
2821 for (insn = first; insn; insn = NEXT_INSN (insn))
2822 if (INSN_UID (insn) > max_uid) /* find largest UID */
2823 max_uid = INSN_UID (insn);
2825 maximum_uid = max_uid;
2826 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2827 insn = first;
2828 set_insn_eh_region (&insn, 0);
2832 /* Check whether 2 instructions are within the same region. */
2834 int
2835 in_same_eh_region (insn1, insn2)
2836 rtx insn1, insn2;
2838 int ret, uid1, uid2;
2840 /* If no exceptions, instructions are always in same region. */
2841 if (!doing_eh (0))
2842 return 1;
2844 /* If the table isn't allocated, assume the worst. */
2845 if (!insn_eh_region)
2846 return 0;
2848 uid1 = INSN_UID (insn1);
2849 uid2 = INSN_UID (insn2);
2851 /* if instructions have been allocated beyond the end, either
2852 the table is out of date, or this is a late addition, or
2853 something... Assume the worst. */
2854 if (uid1 > maximum_uid || uid2 > maximum_uid)
2855 return 0;
2857 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2858 return ret;