1 /* Build expressions with type checking for C compiler.
2 Copyright (C) 1987, 88, 91-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file is part of the C front end.
23 It contains routines to build C expressions given their operands,
24 including computing the types of the result, C-specific error checks,
25 and some optimization.
27 There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
28 and to process initializations in declarations (since they work
29 like a strange sort of assignment). */
43 /* Nonzero if we've already printed a "missing braces around initializer"
44 message within this initializer. */
45 static int missing_braces_mentioned
;
47 static tree qualify_type
PROTO((tree
, tree
));
48 static int comp_target_types
PROTO((tree
, tree
));
49 static int function_types_compatible_p
PROTO((tree
, tree
));
50 static int type_lists_compatible_p
PROTO((tree
, tree
));
51 static int self_promoting_type_p
PROTO((tree
));
52 static tree decl_constant_value
PROTO((tree
));
53 static tree lookup_field
PROTO((tree
, tree
, tree
*));
54 static tree convert_arguments
PROTO((tree
, tree
, tree
, tree
));
55 static tree pointer_int_sum
PROTO((enum tree_code
, tree
, tree
));
56 static tree pointer_diff
PROTO((tree
, tree
));
57 static tree unary_complex_lvalue
PROTO((enum tree_code
, tree
));
58 static void pedantic_lvalue_warning
PROTO((enum tree_code
));
59 static tree internal_build_compound_expr
PROTO((tree
, int));
60 static tree convert_for_assignment
PROTO((tree
, tree
, const char *, tree
,
62 static void warn_for_assignment
PROTO((const char *, const char *,
64 static tree valid_compound_expr_initializer
PROTO((tree
, tree
));
65 static void push_string
PROTO((const char *));
66 static void push_member_name
PROTO((tree
));
67 static void push_array_bounds
PROTO((int));
68 static int spelling_length
PROTO((void));
69 static char *print_spelling
PROTO((char *));
70 static void warning_init
PROTO((const char *));
71 static tree digest_init
PROTO((tree
, tree
, int, int));
72 static void check_init_type_bitfields
PROTO((tree
));
73 static void output_init_element
PROTO((tree
, tree
, tree
, int));
74 static void output_pending_init_elements
PROTO((int));
75 static void add_pending_init
PROTO((tree
, tree
));
76 static int pending_init_member
PROTO((tree
));
78 /* Do `exp = require_complete_type (exp);' to make sure exp
79 does not have an incomplete type. (That includes void types.) */
82 require_complete_type (value
)
85 tree type
= TREE_TYPE (value
);
87 if (TREE_CODE (value
) == ERROR_MARK
)
88 return error_mark_node
;
90 /* First, detect a valid value with a complete type. */
91 if (TYPE_SIZE (type
) != 0
92 && type
!= void_type_node
)
95 incomplete_type_error (value
, type
);
96 return error_mark_node
;
99 /* Print an error message for invalid use of an incomplete type.
100 VALUE is the expression that was used (or 0 if that isn't known)
101 and TYPE is the type that was invalid. */
104 incomplete_type_error (value
, type
)
108 const char *type_code_string
;
110 /* Avoid duplicate error message. */
111 if (TREE_CODE (type
) == ERROR_MARK
)
114 if (value
!= 0 && (TREE_CODE (value
) == VAR_DECL
115 || TREE_CODE (value
) == PARM_DECL
))
116 error ("`%s' has an incomplete type",
117 IDENTIFIER_POINTER (DECL_NAME (value
)));
121 /* We must print an error message. Be clever about what it says. */
123 switch (TREE_CODE (type
))
126 type_code_string
= "struct";
130 type_code_string
= "union";
134 type_code_string
= "enum";
138 error ("invalid use of void expression");
142 if (TYPE_DOMAIN (type
))
144 type
= TREE_TYPE (type
);
147 error ("invalid use of array with unspecified bounds");
154 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
155 error ("invalid use of undefined type `%s %s'",
156 type_code_string
, IDENTIFIER_POINTER (TYPE_NAME (type
)));
158 /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
159 error ("invalid use of incomplete typedef `%s'",
160 IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
))));
164 /* Return a variant of TYPE which has all the type qualifiers of LIKE
165 as well as those of TYPE. */
168 qualify_type (type
, like
)
171 return c_build_qualified_type (type
, TYPE_QUALS (like
));
174 /* Return the common type of two types.
175 We assume that comptypes has already been done and returned 1;
176 if that isn't so, this may crash. In particular, we assume that qualifiers
179 This is the type for the result of most arithmetic operations
180 if the operands have the given two types. */
186 register enum tree_code code1
;
187 register enum tree_code code2
;
190 /* Save time if the two types are the same. */
192 if (t1
== t2
) return t1
;
194 /* If one type is nonsense, use the other. */
195 if (t1
== error_mark_node
)
197 if (t2
== error_mark_node
)
200 /* Merge the attributes. */
201 attributes
= merge_machine_type_attributes (t1
, t2
);
203 /* Treat an enum type as the unsigned integer type of the same width. */
205 if (TREE_CODE (t1
) == ENUMERAL_TYPE
)
206 t1
= type_for_size (TYPE_PRECISION (t1
), 1);
207 if (TREE_CODE (t2
) == ENUMERAL_TYPE
)
208 t2
= type_for_size (TYPE_PRECISION (t2
), 1);
210 code1
= TREE_CODE (t1
);
211 code2
= TREE_CODE (t2
);
213 /* If one type is complex, form the common type of the non-complex
214 components, then make that complex. Use T1 or T2 if it is the
216 if (code1
== COMPLEX_TYPE
|| code2
== COMPLEX_TYPE
)
218 tree subtype1
= code1
== COMPLEX_TYPE
? TREE_TYPE (t1
) : t1
;
219 tree subtype2
= code2
== COMPLEX_TYPE
? TREE_TYPE (t2
) : t2
;
220 tree subtype
= common_type (subtype1
, subtype2
);
222 if (code1
== COMPLEX_TYPE
&& TREE_TYPE (t1
) == subtype
)
223 return build_type_attribute_variant (t1
, attributes
);
224 else if (code2
== COMPLEX_TYPE
&& TREE_TYPE (t2
) == subtype
)
225 return build_type_attribute_variant (t2
, attributes
);
227 return build_type_attribute_variant (build_complex_type (subtype
),
235 /* If only one is real, use it as the result. */
237 if (code1
== REAL_TYPE
&& code2
!= REAL_TYPE
)
238 return build_type_attribute_variant (t1
, attributes
);
240 if (code2
== REAL_TYPE
&& code1
!= REAL_TYPE
)
241 return build_type_attribute_variant (t2
, attributes
);
243 /* Both real or both integers; use the one with greater precision. */
245 if (TYPE_PRECISION (t1
) > TYPE_PRECISION (t2
))
246 return build_type_attribute_variant (t1
, attributes
);
247 else if (TYPE_PRECISION (t2
) > TYPE_PRECISION (t1
))
248 return build_type_attribute_variant (t2
, attributes
);
250 /* Same precision. Prefer longs to ints even when same size. */
252 if (TYPE_MAIN_VARIANT (t1
) == long_unsigned_type_node
253 || TYPE_MAIN_VARIANT (t2
) == long_unsigned_type_node
)
254 return build_type_attribute_variant (long_unsigned_type_node
,
257 if (TYPE_MAIN_VARIANT (t1
) == long_integer_type_node
258 || TYPE_MAIN_VARIANT (t2
) == long_integer_type_node
)
260 /* But preserve unsignedness from the other type,
261 since long cannot hold all the values of an unsigned int. */
262 if (TREE_UNSIGNED (t1
) || TREE_UNSIGNED (t2
))
263 t1
= long_unsigned_type_node
;
265 t1
= long_integer_type_node
;
266 return build_type_attribute_variant (t1
, attributes
);
269 /* Likewise, prefer long double to double even if same size. */
270 if (TYPE_MAIN_VARIANT (t1
) == long_double_type_node
271 || TYPE_MAIN_VARIANT (t2
) == long_double_type_node
)
272 return build_type_attribute_variant (long_double_type_node
,
275 /* Otherwise prefer the unsigned one. */
277 if (TREE_UNSIGNED (t1
))
278 return build_type_attribute_variant (t1
, attributes
);
280 return build_type_attribute_variant (t2
, attributes
);
283 /* For two pointers, do this recursively on the target type,
284 and combine the qualifiers of the two types' targets. */
285 /* This code was turned off; I don't know why.
286 But ANSI C specifies doing this with the qualifiers.
287 So I turned it on again. */
289 tree pointed_to_1
= TREE_TYPE (t1
);
290 tree pointed_to_2
= TREE_TYPE (t2
);
291 tree target
= common_type (TYPE_MAIN_VARIANT (pointed_to_1
),
292 TYPE_MAIN_VARIANT (pointed_to_2
));
293 t1
= build_pointer_type (c_build_qualified_type
295 TYPE_QUALS (pointed_to_1
) |
296 TYPE_QUALS (pointed_to_2
)));
297 return build_type_attribute_variant (t1
, attributes
);
300 t1
= build_pointer_type (common_type (TREE_TYPE (t1
), TREE_TYPE (t2
)));
301 return build_type_attribute_variant (t1
, attributes
);
306 tree elt
= common_type (TREE_TYPE (t1
), TREE_TYPE (t2
));
307 /* Save space: see if the result is identical to one of the args. */
308 if (elt
== TREE_TYPE (t1
) && TYPE_DOMAIN (t1
))
309 return build_type_attribute_variant (t1
, attributes
);
310 if (elt
== TREE_TYPE (t2
) && TYPE_DOMAIN (t2
))
311 return build_type_attribute_variant (t2
, attributes
);
312 /* Merge the element types, and have a size if either arg has one. */
313 t1
= build_array_type (elt
, TYPE_DOMAIN (TYPE_DOMAIN (t1
) ? t1
: t2
));
314 return build_type_attribute_variant (t1
, attributes
);
318 /* Function types: prefer the one that specified arg types.
319 If both do, merge the arg types. Also merge the return types. */
321 tree valtype
= common_type (TREE_TYPE (t1
), TREE_TYPE (t2
));
322 tree p1
= TYPE_ARG_TYPES (t1
);
323 tree p2
= TYPE_ARG_TYPES (t2
);
328 /* Save space: see if the result is identical to one of the args. */
329 if (valtype
== TREE_TYPE (t1
) && ! TYPE_ARG_TYPES (t2
))
330 return build_type_attribute_variant (t1
, attributes
);
331 if (valtype
== TREE_TYPE (t2
) && ! TYPE_ARG_TYPES (t1
))
332 return build_type_attribute_variant (t2
, attributes
);
334 /* Simple way if one arg fails to specify argument types. */
335 if (TYPE_ARG_TYPES (t1
) == 0)
337 t1
= build_function_type (valtype
, TYPE_ARG_TYPES (t2
));
338 return build_type_attribute_variant (t1
, attributes
);
340 if (TYPE_ARG_TYPES (t2
) == 0)
342 t1
= build_function_type (valtype
, TYPE_ARG_TYPES (t1
));
343 return build_type_attribute_variant (t1
, attributes
);
346 /* If both args specify argument types, we must merge the two
347 lists, argument by argument. */
349 len
= list_length (p1
);
352 for (i
= 0; i
< len
; i
++)
353 newargs
= tree_cons (NULL_TREE
, NULL_TREE
, newargs
);
358 p1
= TREE_CHAIN (p1
), p2
= TREE_CHAIN (p2
), n
= TREE_CHAIN (n
))
360 /* A null type means arg type is not specified.
361 Take whatever the other function type has. */
362 if (TREE_VALUE (p1
) == 0)
364 TREE_VALUE (n
) = TREE_VALUE (p2
);
367 if (TREE_VALUE (p2
) == 0)
369 TREE_VALUE (n
) = TREE_VALUE (p1
);
373 /* Given wait (union {union wait *u; int *i} *)
374 and wait (union wait *),
375 prefer union wait * as type of parm. */
376 if (TREE_CODE (TREE_VALUE (p1
)) == UNION_TYPE
377 && TREE_VALUE (p1
) != TREE_VALUE (p2
))
380 for (memb
= TYPE_FIELDS (TREE_VALUE (p1
));
381 memb
; memb
= TREE_CHAIN (memb
))
382 if (comptypes (TREE_TYPE (memb
), TREE_VALUE (p2
)))
384 TREE_VALUE (n
) = TREE_VALUE (p2
);
386 pedwarn ("function types not truly compatible in ANSI C");
390 if (TREE_CODE (TREE_VALUE (p2
)) == UNION_TYPE
391 && TREE_VALUE (p2
) != TREE_VALUE (p1
))
394 for (memb
= TYPE_FIELDS (TREE_VALUE (p2
));
395 memb
; memb
= TREE_CHAIN (memb
))
396 if (comptypes (TREE_TYPE (memb
), TREE_VALUE (p1
)))
398 TREE_VALUE (n
) = TREE_VALUE (p1
);
400 pedwarn ("function types not truly compatible in ANSI C");
404 TREE_VALUE (n
) = common_type (TREE_VALUE (p1
), TREE_VALUE (p2
));
408 t1
= build_function_type (valtype
, newargs
);
409 /* ... falls through ... */
413 return build_type_attribute_variant (t1
, attributes
);
418 /* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
419 or various other operations. Return 2 if they are compatible
420 but a warning may be needed if you use them together. */
423 comptypes (type1
, type2
)
426 register tree t1
= type1
;
427 register tree t2
= type2
;
430 /* Suppress errors caused by previously reported errors. */
432 if (t1
== t2
|| !t1
|| !t2
433 || TREE_CODE (t1
) == ERROR_MARK
|| TREE_CODE (t2
) == ERROR_MARK
)
436 /* Treat an enum type as the integer type of the same width and
439 if (TREE_CODE (t1
) == ENUMERAL_TYPE
)
440 t1
= type_for_size (TYPE_PRECISION (t1
), TREE_UNSIGNED (t1
));
441 if (TREE_CODE (t2
) == ENUMERAL_TYPE
)
442 t2
= type_for_size (TYPE_PRECISION (t2
), TREE_UNSIGNED (t2
));
447 /* Different classes of types can't be compatible. */
449 if (TREE_CODE (t1
) != TREE_CODE (t2
)) return 0;
451 /* Qualifiers must match. */
453 if (TYPE_QUALS (t1
) != TYPE_QUALS (t2
))
456 /* Allow for two different type nodes which have essentially the same
457 definition. Note that we already checked for equality of the type
458 qualifiers (just above). */
460 if (TYPE_MAIN_VARIANT (t1
) == TYPE_MAIN_VARIANT (t2
))
463 #ifndef COMP_TYPE_ATTRIBUTES
464 #define COMP_TYPE_ATTRIBUTES(t1,t2) 1
467 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
468 if (! (attrval
= COMP_TYPE_ATTRIBUTES (t1
, t2
)))
471 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
474 switch (TREE_CODE (t1
))
477 val
= (TREE_TYPE (t1
) == TREE_TYPE (t2
)
478 ? 1 : comptypes (TREE_TYPE (t1
), TREE_TYPE (t2
)));
482 val
= function_types_compatible_p (t1
, t2
);
487 tree d1
= TYPE_DOMAIN (t1
);
488 tree d2
= TYPE_DOMAIN (t2
);
491 /* Target types must match incl. qualifiers. */
492 if (TREE_TYPE (t1
) != TREE_TYPE (t2
)
493 && 0 == (val
= comptypes (TREE_TYPE (t1
), TREE_TYPE (t2
))))
496 /* Sizes must match unless one is missing or variable. */
497 if (d1
== 0 || d2
== 0 || d1
== d2
498 || TREE_CODE (TYPE_MIN_VALUE (d1
)) != INTEGER_CST
499 || TREE_CODE (TYPE_MIN_VALUE (d2
)) != INTEGER_CST
500 || TREE_CODE (TYPE_MAX_VALUE (d1
)) != INTEGER_CST
501 || TREE_CODE (TYPE_MAX_VALUE (d2
)) != INTEGER_CST
)
504 if (! ((TREE_INT_CST_LOW (TYPE_MIN_VALUE (d1
))
505 == TREE_INT_CST_LOW (TYPE_MIN_VALUE (d2
)))
506 && (TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d1
))
507 == TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d2
)))
508 && (TREE_INT_CST_LOW (TYPE_MAX_VALUE (d1
))
509 == TREE_INT_CST_LOW (TYPE_MAX_VALUE (d2
)))
510 && (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d1
))
511 == TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d2
)))))
517 if (maybe_objc_comptypes (t1
, t2
, 0) == 1)
524 return attrval
== 2 && val
== 1 ? 2 : val
;
527 /* Return 1 if TTL and TTR are pointers to types that are equivalent,
528 ignoring their qualifiers. */
531 comp_target_types (ttl
, ttr
)
536 /* Give maybe_objc_comptypes a crack at letting these types through. */
537 if ((val
= maybe_objc_comptypes (ttl
, ttr
, 1)) >= 0)
540 val
= comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl
)),
541 TYPE_MAIN_VARIANT (TREE_TYPE (ttr
)));
543 if (val
== 2 && pedantic
)
544 pedwarn ("types are not quite compatible");
548 /* Subroutines of `comptypes'. */
550 /* Return 1 if two function types F1 and F2 are compatible.
551 If either type specifies no argument types,
552 the other must specify a fixed number of self-promoting arg types.
553 Otherwise, if one type specifies only the number of arguments,
554 the other must specify that number of self-promoting arg types.
555 Otherwise, the argument types must match. */
558 function_types_compatible_p (f1
, f2
)
562 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
566 if (!(TREE_TYPE (f1
) == TREE_TYPE (f2
)
567 || (val
= comptypes (TREE_TYPE (f1
), TREE_TYPE (f2
)))))
570 args1
= TYPE_ARG_TYPES (f1
);
571 args2
= TYPE_ARG_TYPES (f2
);
573 /* An unspecified parmlist matches any specified parmlist
574 whose argument types don't need default promotions. */
578 if (!self_promoting_args_p (args2
))
580 /* If one of these types comes from a non-prototype fn definition,
581 compare that with the other type's arglist.
582 If they don't match, ask for a warning (but no error). */
583 if (TYPE_ACTUAL_ARG_TYPES (f1
)
584 && 1 != type_lists_compatible_p (args2
, TYPE_ACTUAL_ARG_TYPES (f1
)))
590 if (!self_promoting_args_p (args1
))
592 if (TYPE_ACTUAL_ARG_TYPES (f2
)
593 && 1 != type_lists_compatible_p (args1
, TYPE_ACTUAL_ARG_TYPES (f2
)))
598 /* Both types have argument lists: compare them and propagate results. */
599 val1
= type_lists_compatible_p (args1
, args2
);
600 return val1
!= 1 ? val1
: val
;
603 /* Check two lists of types for compatibility,
604 returning 0 for incompatible, 1 for compatible,
605 or 2 for compatible with warning. */
608 type_lists_compatible_p (args1
, args2
)
611 /* 1 if no need for warning yet, 2 if warning cause has been seen. */
617 if (args1
== 0 && args2
== 0)
619 /* If one list is shorter than the other,
620 they fail to match. */
621 if (args1
== 0 || args2
== 0)
623 /* A null pointer instead of a type
624 means there is supposed to be an argument
625 but nothing is specified about what type it has.
626 So match anything that self-promotes. */
627 if (TREE_VALUE (args1
) == 0)
629 if (! self_promoting_type_p (TREE_VALUE (args2
)))
632 else if (TREE_VALUE (args2
) == 0)
634 if (! self_promoting_type_p (TREE_VALUE (args1
)))
637 else if (! (newval
= comptypes (TREE_VALUE (args1
), TREE_VALUE (args2
))))
639 /* Allow wait (union {union wait *u; int *i} *)
640 and wait (union wait *) to be compatible. */
641 if (TREE_CODE (TREE_VALUE (args1
)) == UNION_TYPE
642 && (TYPE_NAME (TREE_VALUE (args1
)) == 0
643 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args1
)))
644 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args1
))) == INTEGER_CST
645 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1
)),
646 TYPE_SIZE (TREE_VALUE (args2
))))
649 for (memb
= TYPE_FIELDS (TREE_VALUE (args1
));
650 memb
; memb
= TREE_CHAIN (memb
))
651 if (comptypes (TREE_TYPE (memb
), TREE_VALUE (args2
)))
656 else if (TREE_CODE (TREE_VALUE (args2
)) == UNION_TYPE
657 && (TYPE_NAME (TREE_VALUE (args2
)) == 0
658 || TYPE_TRANSPARENT_UNION (TREE_VALUE (args2
)))
659 && TREE_CODE (TYPE_SIZE (TREE_VALUE (args2
))) == INTEGER_CST
660 && tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2
)),
661 TYPE_SIZE (TREE_VALUE (args1
))))
664 for (memb
= TYPE_FIELDS (TREE_VALUE (args2
));
665 memb
; memb
= TREE_CHAIN (memb
))
666 if (comptypes (TREE_TYPE (memb
), TREE_VALUE (args1
)))
675 /* comptypes said ok, but record if it said to warn. */
679 args1
= TREE_CHAIN (args1
);
680 args2
= TREE_CHAIN (args2
);
684 /* Return 1 if PARMS specifies a fixed number of parameters
685 and none of their types is affected by default promotions. */
688 self_promoting_args_p (parms
)
692 for (t
= parms
; t
; t
= TREE_CHAIN (t
))
694 register tree type
= TREE_VALUE (t
);
696 if (TREE_CHAIN (t
) == 0 && type
!= void_type_node
)
702 if (TYPE_MAIN_VARIANT (type
) == float_type_node
)
705 if (C_PROMOTING_INTEGER_TYPE_P (type
))
711 /* Return 1 if TYPE is not affected by default promotions. */
714 self_promoting_type_p (type
)
717 if (TYPE_MAIN_VARIANT (type
) == float_type_node
)
720 if (C_PROMOTING_INTEGER_TYPE_P (type
))
726 /* Compute the value of the `sizeof' operator. */
732 enum tree_code code
= TREE_CODE (type
);
735 if (code
== FUNCTION_TYPE
)
737 if (pedantic
|| warn_pointer_arith
)
738 pedwarn ("sizeof applied to a function type");
741 if (code
== VOID_TYPE
)
743 if (pedantic
|| warn_pointer_arith
)
744 pedwarn ("sizeof applied to a void type");
747 if (code
== ERROR_MARK
)
749 if (TYPE_SIZE (type
) == 0)
751 error ("sizeof applied to an incomplete type");
755 /* Convert in case a char is more than one unit. */
756 t
= size_binop (CEIL_DIV_EXPR
, TYPE_SIZE (type
),
757 size_int (TYPE_PRECISION (char_type_node
)));
758 t
= convert (sizetype
, t
);
759 /* size_binop does not put the constant in range, so do it now. */
760 if (TREE_CODE (t
) == INTEGER_CST
&& force_fit_type (t
, 0))
761 TREE_CONSTANT_OVERFLOW (t
) = TREE_OVERFLOW (t
) = 1;
766 c_sizeof_nowarn (type
)
769 enum tree_code code
= TREE_CODE (type
);
772 if (code
== FUNCTION_TYPE
774 || code
== ERROR_MARK
)
776 if (TYPE_SIZE (type
) == 0)
779 /* Convert in case a char is more than one unit. */
780 t
= size_binop (CEIL_DIV_EXPR
, TYPE_SIZE (type
),
781 size_int (TYPE_PRECISION (char_type_node
)));
782 t
= convert (sizetype
, t
);
783 force_fit_type (t
, 0);
787 /* Compute the size to increment a pointer by. */
790 c_size_in_bytes (type
)
793 enum tree_code code
= TREE_CODE (type
);
796 if (code
== FUNCTION_TYPE
)
798 if (code
== VOID_TYPE
)
800 if (code
== ERROR_MARK
)
802 if (TYPE_SIZE (type
) == 0)
804 error ("arithmetic on pointer to an incomplete type");
808 /* Convert in case a char is more than one unit. */
809 t
= size_binop (CEIL_DIV_EXPR
, TYPE_SIZE (type
),
810 size_int (BITS_PER_UNIT
));
811 t
= convert (sizetype
, t
);
812 force_fit_type (t
, 0);
816 /* Implement the __alignof keyword: Return the minimum required
817 alignment of TYPE, measured in bytes. */
823 enum tree_code code
= TREE_CODE (type
);
825 if (code
== FUNCTION_TYPE
)
826 return size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
828 if (code
== VOID_TYPE
|| code
== ERROR_MARK
)
831 return size_int (TYPE_ALIGN (type
) / BITS_PER_UNIT
);
834 /* Implement the __alignof keyword: Return the minimum required
835 alignment of EXPR, measured in bytes. For VAR_DECL's and
836 FIELD_DECL's return DECL_ALIGN (which can be set from an
837 "aligned" __attribute__ specification). */
840 c_alignof_expr (expr
)
843 if (TREE_CODE (expr
) == VAR_DECL
)
844 return size_int (DECL_ALIGN (expr
) / BITS_PER_UNIT
);
846 if (TREE_CODE (expr
) == COMPONENT_REF
847 && DECL_C_BIT_FIELD (TREE_OPERAND (expr
, 1)))
849 error ("`__alignof' applied to a bit-field");
852 else if (TREE_CODE (expr
) == COMPONENT_REF
853 && TREE_CODE (TREE_OPERAND (expr
, 1)) == FIELD_DECL
)
854 return size_int (DECL_ALIGN (TREE_OPERAND (expr
, 1)) / BITS_PER_UNIT
);
856 if (TREE_CODE (expr
) == INDIRECT_REF
)
858 tree t
= TREE_OPERAND (expr
, 0);
860 int bestalign
= TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t
)));
862 while (TREE_CODE (t
) == NOP_EXPR
863 && TREE_CODE (TREE_TYPE (TREE_OPERAND (t
, 0))) == POINTER_TYPE
)
867 t
= TREE_OPERAND (t
, 0);
868 thisalign
= TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t
)));
869 if (thisalign
> bestalign
)
870 best
= t
, bestalign
= thisalign
;
872 return c_alignof (TREE_TYPE (TREE_TYPE (best
)));
875 return c_alignof (TREE_TYPE (expr
));
878 /* Return either DECL or its known constant value (if it has one). */
881 decl_constant_value (decl
)
884 if (/* Don't change a variable array bound or initial value to a constant
885 in a place where a variable is invalid. */
886 current_function_decl
!= 0
888 && ! TREE_THIS_VOLATILE (decl
)
889 && TREE_READONLY (decl
) && ! ITERATOR_P (decl
)
890 && DECL_INITIAL (decl
) != 0
891 && TREE_CODE (DECL_INITIAL (decl
)) != ERROR_MARK
892 /* This is invalid if initial value is not constant.
893 If it has either a function call, a memory reference,
894 or a variable, then re-evaluating it could give different results. */
895 && TREE_CONSTANT (DECL_INITIAL (decl
))
896 /* Check for cases where this is sub-optimal, even though valid. */
897 && TREE_CODE (DECL_INITIAL (decl
)) != CONSTRUCTOR
898 && DECL_MODE (decl
) != BLKmode
)
899 return DECL_INITIAL (decl
);
903 /* Perform default promotions for C data used in expressions.
904 Arrays and functions are converted to pointers;
905 enumeral types or short or char, to int.
906 In addition, manifest constants symbols are replaced by their values. */
909 default_conversion (exp
)
912 register tree type
= TREE_TYPE (exp
);
913 register enum tree_code code
= TREE_CODE (type
);
915 /* Constants can be used directly unless they're not loadable. */
916 if (TREE_CODE (exp
) == CONST_DECL
)
917 exp
= DECL_INITIAL (exp
);
919 /* Replace a nonvolatile const static variable with its value unless
920 it is an array, in which case we must be sure that taking the
921 address of the array produces consistent results. */
922 else if (optimize
&& TREE_CODE (exp
) == VAR_DECL
&& code
!= ARRAY_TYPE
)
924 exp
= decl_constant_value (exp
);
925 type
= TREE_TYPE (exp
);
928 /* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
930 /* Do not use STRIP_NOPS here! It will remove conversions from pointer
931 to integer and cause infinite recursion. */
932 while (TREE_CODE (exp
) == NON_LVALUE_EXPR
933 || (TREE_CODE (exp
) == NOP_EXPR
934 && TREE_TYPE (TREE_OPERAND (exp
, 0)) == TREE_TYPE (exp
)))
935 exp
= TREE_OPERAND (exp
, 0);
937 /* Normally convert enums to int,
938 but convert wide enums to something wider. */
939 if (code
== ENUMERAL_TYPE
)
941 type
= type_for_size (MAX (TYPE_PRECISION (type
),
942 TYPE_PRECISION (integer_type_node
)),
944 || (TYPE_PRECISION (type
)
945 >= TYPE_PRECISION (integer_type_node
)))
946 && TREE_UNSIGNED (type
)));
947 return convert (type
, exp
);
950 if (TREE_CODE (exp
) == COMPONENT_REF
951 && DECL_C_BIT_FIELD (TREE_OPERAND (exp
, 1)))
953 tree width
= DECL_SIZE (TREE_OPERAND (exp
, 1));
954 HOST_WIDE_INT low
= TREE_INT_CST_LOW (width
);
956 /* If it's thinner than an int, promote it like a
957 C_PROMOTING_INTEGER_TYPE_P, otherwise leave it alone. */
959 if (low
< TYPE_PRECISION (integer_type_node
))
961 if (flag_traditional
&& TREE_UNSIGNED (type
))
962 return convert (unsigned_type_node
, exp
);
964 return convert (integer_type_node
, exp
);
968 if (C_PROMOTING_INTEGER_TYPE_P (type
))
970 /* Traditionally, unsignedness is preserved in default promotions.
971 Also preserve unsignedness if not really getting any wider. */
972 if (TREE_UNSIGNED (type
)
974 || TYPE_PRECISION (type
) == TYPE_PRECISION (integer_type_node
)))
975 return convert (unsigned_type_node
, exp
);
976 return convert (integer_type_node
, exp
);
978 if (flag_traditional
&& !flag_allow_single_precision
979 && TYPE_MAIN_VARIANT (type
) == float_type_node
)
980 return convert (double_type_node
, exp
);
981 if (code
== VOID_TYPE
)
983 error ("void value not ignored as it ought to be");
984 return error_mark_node
;
986 if (code
== FUNCTION_TYPE
)
988 return build_unary_op (ADDR_EXPR
, exp
, 0);
990 if (code
== ARRAY_TYPE
)
993 tree restype
= TREE_TYPE (type
);
998 if (TREE_CODE_CLASS (TREE_CODE (exp
)) == 'r'
999 || TREE_CODE_CLASS (TREE_CODE (exp
)) == 'd')
1001 constp
= TREE_READONLY (exp
);
1002 volatilep
= TREE_THIS_VOLATILE (exp
);
1005 if (TYPE_QUALS (type
) || constp
|| volatilep
)
1007 = c_build_qualified_type (restype
,
1009 | (constp
* TYPE_QUAL_CONST
)
1010 | (volatilep
* TYPE_QUAL_VOLATILE
));
1012 if (TREE_CODE (exp
) == INDIRECT_REF
)
1013 return convert (TYPE_POINTER_TO (restype
),
1014 TREE_OPERAND (exp
, 0));
1016 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
1018 tree op1
= default_conversion (TREE_OPERAND (exp
, 1));
1019 return build (COMPOUND_EXPR
, TREE_TYPE (op1
),
1020 TREE_OPERAND (exp
, 0), op1
);
1023 if (! lvalue_p (exp
)
1024 && ! (TREE_CODE (exp
) == CONSTRUCTOR
&& TREE_STATIC (exp
)))
1026 error ("invalid use of non-lvalue array");
1027 return error_mark_node
;
1030 ptrtype
= build_pointer_type (restype
);
1032 if (TREE_CODE (exp
) == VAR_DECL
)
1034 /* ??? This is not really quite correct
1035 in that the type of the operand of ADDR_EXPR
1036 is not the target type of the type of the ADDR_EXPR itself.
1037 Question is, can this lossage be avoided? */
1038 adr
= build1 (ADDR_EXPR
, ptrtype
, exp
);
1039 if (mark_addressable (exp
) == 0)
1040 return error_mark_node
;
1041 TREE_CONSTANT (adr
) = staticp (exp
);
1042 TREE_SIDE_EFFECTS (adr
) = 0; /* Default would be, same as EXP. */
1045 /* This way is better for a COMPONENT_REF since it can
1046 simplify the offset for a component. */
1047 adr
= build_unary_op (ADDR_EXPR
, exp
, 1);
1048 return convert (ptrtype
, adr
);
1053 /* Look up component name in the structure type definition.
1055 If this component name is found indirectly within an anonymous union,
1056 store in *INDIRECT the component which directly contains
1057 that anonymous union. Otherwise, set *INDIRECT to 0. */
1060 lookup_field (type
, component
, indirect
)
1061 tree type
, component
;
1066 /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
1067 to the field elements. Use a binary search on this array to quickly
1068 find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
1069 will always be set for structures which have many elements. */
1071 if (TYPE_LANG_SPECIFIC (type
))
1074 tree
*field_array
= &TYPE_LANG_SPECIFIC (type
)->elts
[0];
1076 field
= TYPE_FIELDS (type
);
1078 top
= TYPE_LANG_SPECIFIC (type
)->len
;
1079 while (top
- bot
> 1)
1081 half
= (top
- bot
+ 1) >> 1;
1082 field
= field_array
[bot
+half
];
1084 if (DECL_NAME (field
) == NULL_TREE
)
1086 /* Step through all anon unions in linear fashion. */
1087 while (DECL_NAME (field_array
[bot
]) == NULL_TREE
)
1089 tree anon
= 0, junk
;
1091 field
= field_array
[bot
++];
1092 if (TREE_CODE (TREE_TYPE (field
)) == RECORD_TYPE
1093 || TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
)
1094 anon
= lookup_field (TREE_TYPE (field
), component
, &junk
);
1096 if (anon
!= NULL_TREE
)
1103 /* Entire record is only anon unions. */
1107 /* Restart the binary search, with new lower bound. */
1111 if (DECL_NAME (field
) == component
)
1113 if (DECL_NAME (field
) < component
)
1119 if (DECL_NAME (field_array
[bot
]) == component
)
1120 field
= field_array
[bot
];
1121 else if (DECL_NAME (field
) != component
)
1126 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1128 if (DECL_NAME (field
) == NULL_TREE
)
1133 if (TREE_CODE (TREE_TYPE (field
)) == RECORD_TYPE
1134 || TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
)
1135 anon
= lookup_field (TREE_TYPE (field
), component
, &junk
);
1137 if (anon
!= NULL_TREE
)
1144 if (DECL_NAME (field
) == component
)
1149 *indirect
= NULL_TREE
;
1153 /* Make an expression to refer to the COMPONENT field of
1154 structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
1157 build_component_ref (datum
, component
)
1158 tree datum
, component
;
1160 register tree type
= TREE_TYPE (datum
);
1161 register enum tree_code code
= TREE_CODE (type
);
1162 register tree field
= NULL
;
1165 /* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
1166 unless we are not to support things not strictly ANSI. */
1167 switch (TREE_CODE (datum
))
1171 tree value
= build_component_ref (TREE_OPERAND (datum
, 1), component
);
1172 return build (COMPOUND_EXPR
, TREE_TYPE (value
),
1173 TREE_OPERAND (datum
, 0), value
);
1176 return build_conditional_expr
1177 (TREE_OPERAND (datum
, 0),
1178 build_component_ref (TREE_OPERAND (datum
, 1), component
),
1179 build_component_ref (TREE_OPERAND (datum
, 2), component
));
1185 /* See if there is a field or component with name COMPONENT. */
1187 if (code
== RECORD_TYPE
|| code
== UNION_TYPE
)
1191 if (TYPE_SIZE (type
) == 0)
1193 incomplete_type_error (NULL_TREE
, type
);
1194 return error_mark_node
;
1197 field
= lookup_field (type
, component
, &indirect
);
1201 error (code
== RECORD_TYPE
1202 ? "structure has no member named `%s'"
1203 : "union has no member named `%s'",
1204 IDENTIFIER_POINTER (component
));
1205 return error_mark_node
;
1207 if (TREE_TYPE (field
) == error_mark_node
)
1208 return error_mark_node
;
1210 /* If FIELD was found buried within an anonymous union,
1211 make one COMPONENT_REF to get that anonymous union,
1212 then fall thru to make a second COMPONENT_REF to get FIELD. */
1215 ref
= build (COMPONENT_REF
, TREE_TYPE (indirect
), datum
, indirect
);
1216 if (TREE_READONLY (datum
) || TREE_READONLY (indirect
))
1217 TREE_READONLY (ref
) = 1;
1218 if (TREE_THIS_VOLATILE (datum
) || TREE_THIS_VOLATILE (indirect
))
1219 TREE_THIS_VOLATILE (ref
) = 1;
1223 ref
= build (COMPONENT_REF
, TREE_TYPE (field
), datum
, field
);
1225 if (TREE_READONLY (datum
) || TREE_READONLY (field
))
1226 TREE_READONLY (ref
) = 1;
1227 if (TREE_THIS_VOLATILE (datum
) || TREE_THIS_VOLATILE (field
))
1228 TREE_THIS_VOLATILE (ref
) = 1;
1232 else if (code
!= ERROR_MARK
)
1233 error ("request for member `%s' in something not a structure or union",
1234 IDENTIFIER_POINTER (component
));
1236 return error_mark_node
;
1239 /* Given an expression PTR for a pointer, return an expression
1240 for the value pointed to.
1241 ERRORSTRING is the name of the operator to appear in error messages. */
1244 build_indirect_ref (ptr
, errorstring
)
1246 const char *errorstring
;
1248 register tree pointer
= default_conversion (ptr
);
1249 register tree type
= TREE_TYPE (pointer
);
1251 if (TREE_CODE (type
) == POINTER_TYPE
)
1253 if (TREE_CODE (pointer
) == ADDR_EXPR
1255 && (TREE_TYPE (TREE_OPERAND (pointer
, 0))
1256 == TREE_TYPE (type
)))
1257 return TREE_OPERAND (pointer
, 0);
1260 tree t
= TREE_TYPE (type
);
1261 register tree ref
= build1 (INDIRECT_REF
,
1262 TYPE_MAIN_VARIANT (t
), pointer
);
1264 if (TYPE_SIZE (t
) == 0 && TREE_CODE (t
) != ARRAY_TYPE
)
1266 error ("dereferencing pointer to incomplete type");
1267 return error_mark_node
;
1269 if (TREE_CODE (t
) == VOID_TYPE
&& skip_evaluation
== 0)
1270 warning ("dereferencing `void *' pointer");
1272 /* We *must* set TREE_READONLY when dereferencing a pointer to const,
1273 so that we get the proper error message if the result is used
1274 to assign to. Also, &* is supposed to be a no-op.
1275 And ANSI C seems to specify that the type of the result
1276 should be the const type. */
1277 /* A de-reference of a pointer to const is not a const. It is valid
1278 to change it via some other pointer. */
1279 TREE_READONLY (ref
) = TYPE_READONLY (t
);
1280 TREE_SIDE_EFFECTS (ref
)
1281 = TYPE_VOLATILE (t
) || TREE_SIDE_EFFECTS (pointer
) || flag_volatile
;
1282 TREE_THIS_VOLATILE (ref
) = TYPE_VOLATILE (t
);
1286 else if (TREE_CODE (pointer
) != ERROR_MARK
)
1287 error ("invalid type argument of `%s'", errorstring
);
1288 return error_mark_node
;
1291 /* This handles expressions of the form "a[i]", which denotes
1294 This is logically equivalent in C to *(a+i), but we may do it differently.
1295 If A is a variable or a member, we generate a primitive ARRAY_REF.
1296 This avoids forcing the array out of registers, and can work on
1297 arrays that are not lvalues (for example, members of structures returned
1301 build_array_ref (array
, index
)
1306 error ("subscript missing in array reference");
1307 return error_mark_node
;
1310 if (TREE_TYPE (array
) == error_mark_node
1311 || TREE_TYPE (index
) == error_mark_node
)
1312 return error_mark_node
;
1314 if (TREE_CODE (TREE_TYPE (array
)) == ARRAY_TYPE
1315 && TREE_CODE (array
) != INDIRECT_REF
)
1319 /* Subscripting with type char is likely to lose
1320 on a machine where chars are signed.
1321 So warn on any machine, but optionally.
1322 Don't warn for unsigned char since that type is safe.
1323 Don't warn for signed char because anyone who uses that
1324 must have done so deliberately. */
1325 if (warn_char_subscripts
1326 && TYPE_MAIN_VARIANT (TREE_TYPE (index
)) == char_type_node
)
1327 warning ("array subscript has type `char'");
1329 /* Apply default promotions *after* noticing character types. */
1330 index
= default_conversion (index
);
1332 /* Require integer *after* promotion, for sake of enums. */
1333 if (TREE_CODE (TREE_TYPE (index
)) != INTEGER_TYPE
)
1335 error ("array subscript is not an integer");
1336 return error_mark_node
;
1339 /* An array that is indexed by a non-constant
1340 cannot be stored in a register; we must be able to do
1341 address arithmetic on its address.
1342 Likewise an array of elements of variable size. */
1343 if (TREE_CODE (index
) != INTEGER_CST
1344 || (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array
))) != 0
1345 && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array
)))) != INTEGER_CST
))
1347 if (mark_addressable (array
) == 0)
1348 return error_mark_node
;
1350 /* An array that is indexed by a constant value which is not within
1351 the array bounds cannot be stored in a register either; because we
1352 would get a crash in store_bit_field/extract_bit_field when trying
1353 to access a non-existent part of the register. */
1354 if (TREE_CODE (index
) == INTEGER_CST
1355 && TYPE_VALUES (TREE_TYPE (array
))
1356 && ! int_fits_type_p (index
, TYPE_VALUES (TREE_TYPE (array
))))
1358 if (mark_addressable (array
) == 0)
1359 return error_mark_node
;
1362 if (pedantic
&& !lvalue_p (array
))
1364 if (DECL_REGISTER (array
))
1365 pedwarn ("ANSI C forbids subscripting `register' array");
1367 pedwarn ("ANSI C forbids subscripting non-lvalue array");
1373 while (TREE_CODE (foo
) == COMPONENT_REF
)
1374 foo
= TREE_OPERAND (foo
, 0);
1375 if (TREE_CODE (foo
) == VAR_DECL
&& DECL_REGISTER (foo
))
1376 pedwarn ("ANSI C forbids subscripting non-lvalue array");
1379 type
= TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array
)));
1380 rval
= build (ARRAY_REF
, type
, array
, index
);
1381 /* Array ref is const/volatile if the array elements are
1382 or if the array is. */
1383 TREE_READONLY (rval
)
1384 |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array
)))
1385 | TREE_READONLY (array
));
1386 TREE_SIDE_EFFECTS (rval
)
1387 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array
)))
1388 | TREE_SIDE_EFFECTS (array
));
1389 TREE_THIS_VOLATILE (rval
)
1390 |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array
)))
1391 /* This was added by rms on 16 Nov 91.
1392 It fixes vol struct foo *a; a->elts[1]
1393 in an inline function.
1394 Hope it doesn't break something else. */
1395 | TREE_THIS_VOLATILE (array
));
1396 return require_complete_type (fold (rval
));
1400 tree ar
= default_conversion (array
);
1401 tree ind
= default_conversion (index
);
1403 /* Do the same warning check as above, but only on the part that's
1404 syntactically the index and only if it is also semantically
1406 if (warn_char_subscripts
1407 && TREE_CODE (TREE_TYPE (index
)) == INTEGER_TYPE
1408 && TYPE_MAIN_VARIANT (TREE_TYPE (index
)) == char_type_node
)
1409 warning ("subscript has type `char'");
1411 /* Put the integer in IND to simplify error checking. */
1412 if (TREE_CODE (TREE_TYPE (ar
)) == INTEGER_TYPE
)
1419 if (ar
== error_mark_node
)
1422 if (TREE_CODE (TREE_TYPE (ar
)) != POINTER_TYPE
1423 || TREE_CODE (TREE_TYPE (TREE_TYPE (ar
))) == FUNCTION_TYPE
)
1425 error ("subscripted value is neither array nor pointer");
1426 return error_mark_node
;
1428 if (TREE_CODE (TREE_TYPE (ind
)) != INTEGER_TYPE
)
1430 error ("array subscript is not an integer");
1431 return error_mark_node
;
1434 return build_indirect_ref (build_binary_op (PLUS_EXPR
, ar
, ind
, 0),
1439 /* Build a function call to function FUNCTION with parameters PARAMS.
1440 PARAMS is a list--a chain of TREE_LIST nodes--in which the
1441 TREE_VALUE of each node is a parameter-expression.
1442 FUNCTION's data type may be a function type or a pointer-to-function. */
1445 build_function_call (function
, params
)
1446 tree function
, params
;
1448 register tree fntype
, fundecl
= 0;
1449 register tree coerced_params
;
1450 tree name
= NULL_TREE
, assembler_name
= NULL_TREE
;
1452 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1453 STRIP_TYPE_NOPS (function
);
1455 /* Convert anything with function type to a pointer-to-function. */
1456 if (TREE_CODE (function
) == FUNCTION_DECL
)
1458 name
= DECL_NAME (function
);
1459 assembler_name
= DECL_ASSEMBLER_NAME (function
);
1461 /* Differs from default_conversion by not setting TREE_ADDRESSABLE
1462 (because calling an inline function does not mean the function
1463 needs to be separately compiled). */
1464 fntype
= build_type_variant (TREE_TYPE (function
),
1465 TREE_READONLY (function
),
1466 TREE_THIS_VOLATILE (function
));
1468 function
= build1 (ADDR_EXPR
, build_pointer_type (fntype
), function
);
1471 function
= default_conversion (function
);
1473 fntype
= TREE_TYPE (function
);
1475 if (TREE_CODE (fntype
) == ERROR_MARK
)
1476 return error_mark_node
;
1478 if (!(TREE_CODE (fntype
) == POINTER_TYPE
1479 && TREE_CODE (TREE_TYPE (fntype
)) == FUNCTION_TYPE
))
1481 error ("called object is not a function");
1482 return error_mark_node
;
1485 /* fntype now gets the type of function pointed to. */
1486 fntype
= TREE_TYPE (fntype
);
1488 /* Convert the parameters to the types declared in the
1489 function prototype, or apply default promotions. */
1492 = convert_arguments (TYPE_ARG_TYPES (fntype
), params
, name
, fundecl
);
1494 /* Check for errors in format strings. */
1496 if (warn_format
&& (name
|| assembler_name
))
1497 check_function_format (name
, assembler_name
, coerced_params
);
1499 /* Recognize certain built-in functions so we can make tree-codes
1500 other than CALL_EXPR. We do this when it enables fold-const.c
1501 to do something useful. */
1503 if (TREE_CODE (function
) == ADDR_EXPR
1504 && TREE_CODE (TREE_OPERAND (function
, 0)) == FUNCTION_DECL
1505 && DECL_BUILT_IN (TREE_OPERAND (function
, 0)))
1506 switch (DECL_FUNCTION_CODE (TREE_OPERAND (function
, 0)))
1511 if (coerced_params
== 0)
1512 return integer_zero_node
;
1513 return build_unary_op (ABS_EXPR
, TREE_VALUE (coerced_params
), 0);
1519 register tree result
1520 = build (CALL_EXPR
, TREE_TYPE (fntype
),
1521 function
, coerced_params
, NULL_TREE
);
1523 TREE_SIDE_EFFECTS (result
) = 1;
1524 if (TREE_TYPE (result
) == void_type_node
)
1526 return require_complete_type (result
);
1530 /* Convert the argument expressions in the list VALUES
1531 to the types in the list TYPELIST. The result is a list of converted
1532 argument expressions.
1534 If TYPELIST is exhausted, or when an element has NULL as its type,
1535 perform the default conversions.
1537 PARMLIST is the chain of parm decls for the function being called.
1538 It may be 0, if that info is not available.
1539 It is used only for generating error messages.
1541 NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
1543 This is also where warnings about wrong number of args are generated.
1545 Both VALUES and the returned value are chains of TREE_LIST nodes
1546 with the elements of the list in the TREE_VALUE slots of those nodes. */
1549 convert_arguments (typelist
, values
, name
, fundecl
)
1550 tree typelist
, values
, name
, fundecl
;
1552 register tree typetail
, valtail
;
1553 register tree result
= NULL
;
1556 /* Scan the given expressions and types, producing individual
1557 converted arguments and pushing them on RESULT in reverse order. */
1559 for (valtail
= values
, typetail
= typelist
, parmnum
= 0;
1561 valtail
= TREE_CHAIN (valtail
), parmnum
++)
1563 register tree type
= typetail
? TREE_VALUE (typetail
) : 0;
1564 register tree val
= TREE_VALUE (valtail
);
1566 if (type
== void_type_node
)
1569 error ("too many arguments to function `%s'",
1570 IDENTIFIER_POINTER (name
));
1572 error ("too many arguments to function");
1576 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
1577 /* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
1578 to convert automatically to a pointer. */
1579 if (TREE_CODE (val
) == NON_LVALUE_EXPR
)
1580 val
= TREE_OPERAND (val
, 0);
1582 if (TREE_CODE (TREE_TYPE (val
)) == ARRAY_TYPE
1583 || TREE_CODE (TREE_TYPE (val
)) == FUNCTION_TYPE
)
1584 val
= default_conversion (val
);
1586 val
= require_complete_type (val
);
1590 /* Formal parm type is specified by a function prototype. */
1593 if (TYPE_SIZE (type
) == 0)
1595 error ("type of formal parameter %d is incomplete", parmnum
+ 1);
1600 /* Optionally warn about conversions that
1601 differ from the default conversions. */
1602 if (warn_conversion
)
1604 int formal_prec
= TYPE_PRECISION (type
);
1606 if (INTEGRAL_TYPE_P (type
)
1607 && TREE_CODE (TREE_TYPE (val
)) == REAL_TYPE
)
1608 warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name
, parmnum
+ 1);
1609 else if (TREE_CODE (type
) == COMPLEX_TYPE
1610 && TREE_CODE (TREE_TYPE (val
)) == REAL_TYPE
)
1611 warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name
, parmnum
+ 1);
1612 else if (TREE_CODE (type
) == REAL_TYPE
1613 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
1614 warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name
, parmnum
+ 1);
1615 else if (TREE_CODE (type
) == REAL_TYPE
1616 && TREE_CODE (TREE_TYPE (val
)) == COMPLEX_TYPE
)
1617 warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name
, parmnum
+ 1);
1618 /* ??? At some point, messages should be written about
1619 conversions between complex types, but that's too messy
1621 else if (TREE_CODE (type
) == REAL_TYPE
1622 && TREE_CODE (TREE_TYPE (val
)) == REAL_TYPE
)
1624 /* Warn if any argument is passed as `float',
1625 since without a prototype it would be `double'. */
1626 if (formal_prec
== TYPE_PRECISION (float_type_node
))
1627 warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name
, parmnum
+ 1);
1629 /* Detect integer changing in width or signedness. */
1630 else if (INTEGRAL_TYPE_P (type
)
1631 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
1633 tree would_have_been
= default_conversion (val
);
1634 tree type1
= TREE_TYPE (would_have_been
);
1636 if (TREE_CODE (type
) == ENUMERAL_TYPE
1637 && type
== TREE_TYPE (val
))
1638 /* No warning if function asks for enum
1639 and the actual arg is that enum type. */
1641 else if (formal_prec
!= TYPE_PRECISION (type1
))
1642 warn_for_assignment ("%s with different width due to prototype", (char *) 0, name
, parmnum
+ 1);
1643 else if (TREE_UNSIGNED (type
) == TREE_UNSIGNED (type1
))
1645 /* Don't complain if the formal parameter type
1646 is an enum, because we can't tell now whether
1647 the value was an enum--even the same enum. */
1648 else if (TREE_CODE (type
) == ENUMERAL_TYPE
)
1650 else if (TREE_CODE (val
) == INTEGER_CST
1651 && int_fits_type_p (val
, type
))
1652 /* Change in signedness doesn't matter
1653 if a constant value is unaffected. */
1655 /* Likewise for a constant in a NOP_EXPR. */
1656 else if (TREE_CODE (val
) == NOP_EXPR
1657 && TREE_CODE (TREE_OPERAND (val
, 0)) == INTEGER_CST
1658 && int_fits_type_p (TREE_OPERAND (val
, 0), type
))
1660 #if 0 /* We never get such tree structure here. */
1661 else if (TREE_CODE (TREE_TYPE (val
)) == ENUMERAL_TYPE
1662 && int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val
)), type
)
1663 && int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val
)), type
))
1664 /* Change in signedness doesn't matter
1665 if an enum value is unaffected. */
1668 /* If the value is extended from a narrower
1669 unsigned type, it doesn't matter whether we
1670 pass it as signed or unsigned; the value
1671 certainly is the same either way. */
1672 else if (TYPE_PRECISION (TREE_TYPE (val
)) < TYPE_PRECISION (type
)
1673 && TREE_UNSIGNED (TREE_TYPE (val
)))
1675 else if (TREE_UNSIGNED (type
))
1676 warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name
, parmnum
+ 1);
1678 warn_for_assignment ("%s as signed due to prototype", (char *) 0, name
, parmnum
+ 1);
1682 parmval
= convert_for_assignment (type
, val
,
1683 (char *) 0, /* arg passing */
1684 fundecl
, name
, parmnum
+ 1);
1686 if (PROMOTE_PROTOTYPES
1687 && (TREE_CODE (type
) == INTEGER_TYPE
1688 || TREE_CODE (type
) == ENUMERAL_TYPE
)
1689 && (TYPE_PRECISION (type
) < TYPE_PRECISION (integer_type_node
)))
1690 parmval
= default_conversion (parmval
);
1692 result
= tree_cons (NULL_TREE
, parmval
, result
);
1694 else if (TREE_CODE (TREE_TYPE (val
)) == REAL_TYPE
1695 && (TYPE_PRECISION (TREE_TYPE (val
))
1696 < TYPE_PRECISION (double_type_node
)))
1697 /* Convert `float' to `double'. */
1698 result
= tree_cons (NULL_TREE
, convert (double_type_node
, val
), result
);
1700 /* Convert `short' and `char' to full-size `int'. */
1701 result
= tree_cons (NULL_TREE
, default_conversion (val
), result
);
1704 typetail
= TREE_CHAIN (typetail
);
1707 if (typetail
!= 0 && TREE_VALUE (typetail
) != void_type_node
)
1710 error ("too few arguments to function `%s'",
1711 IDENTIFIER_POINTER (name
));
1713 error ("too few arguments to function");
1716 return nreverse (result
);
1719 /* This is the entry point used by the parser
1720 for binary operators in the input.
1721 In addition to constructing the expression,
1722 we check for operands that were written with other binary operators
1723 in a way that is likely to confuse the user. */
1726 parser_build_binary_op (code
, arg1
, arg2
)
1727 enum tree_code code
;
1730 tree result
= build_binary_op (code
, arg1
, arg2
, 1);
1733 char class1
= TREE_CODE_CLASS (TREE_CODE (arg1
));
1734 char class2
= TREE_CODE_CLASS (TREE_CODE (arg2
));
1735 enum tree_code code1
= ERROR_MARK
;
1736 enum tree_code code2
= ERROR_MARK
;
1738 if (class1
== 'e' || class1
== '1'
1739 || class1
== '2' || class1
== '<')
1740 code1
= C_EXP_ORIGINAL_CODE (arg1
);
1741 if (class2
== 'e' || class2
== '1'
1742 || class2
== '2' || class2
== '<')
1743 code2
= C_EXP_ORIGINAL_CODE (arg2
);
1745 /* Check for cases such as x+y<<z which users are likely
1746 to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
1747 is cleared to prevent these warnings. */
1748 if (warn_parentheses
)
1750 if (code
== LSHIFT_EXPR
|| code
== RSHIFT_EXPR
)
1752 if (code1
== PLUS_EXPR
|| code1
== MINUS_EXPR
1753 || code2
== PLUS_EXPR
|| code2
== MINUS_EXPR
)
1754 warning ("suggest parentheses around + or - inside shift");
1757 if (code
== TRUTH_ORIF_EXPR
)
1759 if (code1
== TRUTH_ANDIF_EXPR
1760 || code2
== TRUTH_ANDIF_EXPR
)
1761 warning ("suggest parentheses around && within ||");
1764 if (code
== BIT_IOR_EXPR
)
1766 if (code1
== BIT_AND_EXPR
|| code1
== BIT_XOR_EXPR
1767 || code1
== PLUS_EXPR
|| code1
== MINUS_EXPR
1768 || code2
== BIT_AND_EXPR
|| code2
== BIT_XOR_EXPR
1769 || code2
== PLUS_EXPR
|| code2
== MINUS_EXPR
)
1770 warning ("suggest parentheses around arithmetic in operand of |");
1771 /* Check cases like x|y==z */
1772 if (TREE_CODE_CLASS (code1
) == '<' || TREE_CODE_CLASS (code2
) == '<')
1773 warning ("suggest parentheses around comparison in operand of |");
1776 if (code
== BIT_XOR_EXPR
)
1778 if (code1
== BIT_AND_EXPR
1779 || code1
== PLUS_EXPR
|| code1
== MINUS_EXPR
1780 || code2
== BIT_AND_EXPR
1781 || code2
== PLUS_EXPR
|| code2
== MINUS_EXPR
)
1782 warning ("suggest parentheses around arithmetic in operand of ^");
1783 /* Check cases like x^y==z */
1784 if (TREE_CODE_CLASS (code1
) == '<' || TREE_CODE_CLASS (code2
) == '<')
1785 warning ("suggest parentheses around comparison in operand of ^");
1788 if (code
== BIT_AND_EXPR
)
1790 if (code1
== PLUS_EXPR
|| code1
== MINUS_EXPR
1791 || code2
== PLUS_EXPR
|| code2
== MINUS_EXPR
)
1792 warning ("suggest parentheses around + or - in operand of &");
1793 /* Check cases like x&y==z */
1794 if (TREE_CODE_CLASS (code1
) == '<' || TREE_CODE_CLASS (code2
) == '<')
1795 warning ("suggest parentheses around comparison in operand of &");
1799 /* Similarly, check for cases like 1<=i<=10 that are probably errors. */
1800 if (TREE_CODE_CLASS (code
) == '<' && extra_warnings
1801 && (TREE_CODE_CLASS (code1
) == '<' || TREE_CODE_CLASS (code2
) == '<'))
1802 warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
1804 unsigned_conversion_warning (result
, arg1
);
1805 unsigned_conversion_warning (result
, arg2
);
1806 overflow_warning (result
);
1808 class = TREE_CODE_CLASS (TREE_CODE (result
));
1810 /* Record the code that was specified in the source,
1811 for the sake of warnings about confusing nesting. */
1812 if (class == 'e' || class == '1'
1813 || class == '2' || class == '<')
1814 C_SET_EXP_ORIGINAL_CODE (result
, code
);
1817 int flag
= TREE_CONSTANT (result
);
1818 /* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
1819 so that convert_for_assignment wouldn't strip it.
1820 That way, we got warnings for things like p = (1 - 1).
1821 But it turns out we should not get those warnings. */
1822 result
= build1 (NON_LVALUE_EXPR
, TREE_TYPE (result
), result
);
1823 C_SET_EXP_ORIGINAL_CODE (result
, code
);
1824 TREE_CONSTANT (result
) = flag
;
1830 /* Build a binary-operation expression without default conversions.
1831 CODE is the kind of expression to build.
1832 This function differs from `build' in several ways:
1833 the data type of the result is computed and recorded in it,
1834 warnings are generated if arg data types are invalid,
1835 special handling for addition and subtraction of pointers is known,
1836 and some optimization is done (operations on narrow ints
1837 are done in the narrower type when that gives the same result).
1838 Constant folding is also done before the result is returned.
1840 Note that the operands will never have enumeral types, or function
1841 or array types, because either they will have the default conversions
1842 performed or they have both just been converted to some other type in which
1843 the arithmetic is to be done. */
1846 build_binary_op (code
, orig_op0
, orig_op1
, convert_p
)
1847 enum tree_code code
;
1848 tree orig_op0
, orig_op1
;
1852 register enum tree_code code0
, code1
;
1855 /* Expression code to give to the expression when it is built.
1856 Normally this is CODE, which is what the caller asked for,
1857 but in some special cases we change it. */
1858 register enum tree_code resultcode
= code
;
1860 /* Data type in which the computation is to be performed.
1861 In the simplest cases this is the common type of the arguments. */
1862 register tree result_type
= NULL
;
1864 /* Nonzero means operands have already been type-converted
1865 in whatever way is necessary.
1866 Zero means they need to be converted to RESULT_TYPE. */
1869 /* Nonzero means create the expression with this type, rather than
1871 tree build_type
= 0;
1873 /* Nonzero means after finally constructing the expression
1874 convert it to this type. */
1875 tree final_type
= 0;
1877 /* Nonzero if this is an operation like MIN or MAX which can
1878 safely be computed in short if both args are promoted shorts.
1879 Also implies COMMON.
1880 -1 indicates a bitwise operation; this makes a difference
1881 in the exact conditions for when it is safe to do the operation
1882 in a narrower mode. */
1885 /* Nonzero if this is a comparison operation;
1886 if both args are promoted shorts, compare the original shorts.
1887 Also implies COMMON. */
1888 int short_compare
= 0;
1890 /* Nonzero if this is a right-shift operation, which can be computed on the
1891 original short and then promoted if the operand is a promoted short. */
1892 int short_shift
= 0;
1894 /* Nonzero means set RESULT_TYPE to the common type of the args. */
1899 op0
= default_conversion (orig_op0
);
1900 op1
= default_conversion (orig_op1
);
1908 type0
= TREE_TYPE (op0
);
1909 type1
= TREE_TYPE (op1
);
1911 /* The expression codes of the data types of the arguments tell us
1912 whether the arguments are integers, floating, pointers, etc. */
1913 code0
= TREE_CODE (type0
);
1914 code1
= TREE_CODE (type1
);
1916 /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
1917 STRIP_TYPE_NOPS (op0
);
1918 STRIP_TYPE_NOPS (op1
);
1920 /* If an error was already reported for one of the arguments,
1921 avoid reporting another error. */
1923 if (code0
== ERROR_MARK
|| code1
== ERROR_MARK
)
1924 return error_mark_node
;
1929 /* Handle the pointer + int case. */
1930 if (code0
== POINTER_TYPE
&& code1
== INTEGER_TYPE
)
1931 return pointer_int_sum (PLUS_EXPR
, op0
, op1
);
1932 else if (code1
== POINTER_TYPE
&& code0
== INTEGER_TYPE
)
1933 return pointer_int_sum (PLUS_EXPR
, op1
, op0
);
1939 /* Subtraction of two similar pointers.
1940 We must subtract them as integers, then divide by object size. */
1941 if (code0
== POINTER_TYPE
&& code1
== POINTER_TYPE
1942 && comp_target_types (type0
, type1
))
1943 return pointer_diff (op0
, op1
);
1944 /* Handle pointer minus int. Just like pointer plus int. */
1945 else if (code0
== POINTER_TYPE
&& code1
== INTEGER_TYPE
)
1946 return pointer_int_sum (MINUS_EXPR
, op0
, op1
);
1955 case TRUNC_DIV_EXPR
:
1957 case FLOOR_DIV_EXPR
:
1958 case ROUND_DIV_EXPR
:
1959 case EXACT_DIV_EXPR
:
1960 if ((code0
== INTEGER_TYPE
|| code0
== REAL_TYPE
1961 || code0
== COMPLEX_TYPE
)
1962 && (code1
== INTEGER_TYPE
|| code1
== REAL_TYPE
1963 || code1
== COMPLEX_TYPE
))
1965 if (!(code0
== INTEGER_TYPE
&& code1
== INTEGER_TYPE
))
1966 resultcode
= RDIV_EXPR
;
1969 /* Although it would be tempting to shorten always here, that
1970 loses on some targets, since the modulo instruction is
1971 undefined if the quotient can't be represented in the
1972 computation mode. We shorten only if unsigned or if
1973 dividing by something we know != -1. */
1974 shorten
= (TREE_UNSIGNED (TREE_TYPE (orig_op0
))
1975 || (TREE_CODE (op1
) == INTEGER_CST
1976 && (TREE_INT_CST_LOW (op1
) != -1
1977 || TREE_INT_CST_HIGH (op1
) != -1)));
1984 case BIT_ANDTC_EXPR
:
1987 if (code0
== INTEGER_TYPE
&& code1
== INTEGER_TYPE
)
1989 /* If one operand is a constant, and the other is a short type
1990 that has been converted to an int,
1991 really do the work in the short type and then convert the
1992 result to int. If we are lucky, the constant will be 0 or 1
1993 in the short type, making the entire operation go away. */
1994 if (TREE_CODE (op0
) == INTEGER_CST
1995 && TREE_CODE (op1
) == NOP_EXPR
1996 && TYPE_PRECISION (type1
) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1
, 0)))
1997 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1
, 0))))
1999 final_type
= result_type
;
2000 op1
= TREE_OPERAND (op1
, 0);
2001 result_type
= TREE_TYPE (op1
);
2003 if (TREE_CODE (op1
) == INTEGER_CST
2004 && TREE_CODE (op0
) == NOP_EXPR
2005 && TYPE_PRECISION (type0
) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0
, 0)))
2006 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0
, 0))))
2008 final_type
= result_type
;
2009 op0
= TREE_OPERAND (op0
, 0);
2010 result_type
= TREE_TYPE (op0
);
2014 case TRUNC_MOD_EXPR
:
2015 case FLOOR_MOD_EXPR
:
2016 if (code0
== INTEGER_TYPE
&& code1
== INTEGER_TYPE
)
2018 /* Although it would be tempting to shorten always here, that loses
2019 on some targets, since the modulo instruction is undefined if the
2020 quotient can't be represented in the computation mode. We shorten
2021 only if unsigned or if dividing by something we know != -1. */
2022 shorten
= (TREE_UNSIGNED (TREE_TYPE (orig_op0
))
2023 || (TREE_CODE (op1
) == INTEGER_CST
2024 && (TREE_INT_CST_LOW (op1
) != -1
2025 || TREE_INT_CST_HIGH (op1
) != -1)));
2030 case TRUTH_ANDIF_EXPR
:
2031 case TRUTH_ORIF_EXPR
:
2032 case TRUTH_AND_EXPR
:
2034 case TRUTH_XOR_EXPR
:
2035 if ((code0
== INTEGER_TYPE
|| code0
== POINTER_TYPE
2036 || code0
== REAL_TYPE
|| code0
== COMPLEX_TYPE
)
2037 && (code1
== INTEGER_TYPE
|| code1
== POINTER_TYPE
2038 || code1
== REAL_TYPE
|| code1
== COMPLEX_TYPE
))
2040 /* Result of these operations is always an int,
2041 but that does not mean the operands should be
2042 converted to ints! */
2043 result_type
= integer_type_node
;
2044 op0
= truthvalue_conversion (op0
);
2045 op1
= truthvalue_conversion (op1
);
2050 /* Shift operations: result has same type as first operand;
2051 always convert second operand to int.
2052 Also set SHORT_SHIFT if shifting rightward. */
2055 if (code0
== INTEGER_TYPE
&& code1
== INTEGER_TYPE
)
2057 if (TREE_CODE (op1
) == INTEGER_CST
&& skip_evaluation
== 0)
2059 if (tree_int_cst_sgn (op1
) < 0)
2060 warning ("right shift count is negative");
2063 if (TREE_INT_CST_LOW (op1
) | TREE_INT_CST_HIGH (op1
))
2065 if (TREE_INT_CST_HIGH (op1
) != 0
2066 || ((unsigned HOST_WIDE_INT
) TREE_INT_CST_LOW (op1
)
2067 >= TYPE_PRECISION (type0
)))
2068 warning ("right shift count >= width of type");
2071 /* Use the type of the value to be shifted.
2072 This is what most traditional C compilers do. */
2073 result_type
= type0
;
2074 /* Unless traditional, convert the shift-count to an integer,
2075 regardless of size of value being shifted. */
2076 if (! flag_traditional
)
2078 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1
)) != integer_type_node
)
2079 op1
= convert (integer_type_node
, op1
);
2080 /* Avoid converting op1 to result_type later. */
2087 if (code0
== INTEGER_TYPE
&& code1
== INTEGER_TYPE
)
2089 if (TREE_CODE (op1
) == INTEGER_CST
&& skip_evaluation
== 0)
2091 if (tree_int_cst_sgn (op1
) < 0)
2092 warning ("left shift count is negative");
2093 else if (TREE_INT_CST_HIGH (op1
) != 0
2094 || ((unsigned HOST_WIDE_INT
) TREE_INT_CST_LOW (op1
)
2095 >= TYPE_PRECISION (type0
)))
2096 warning ("left shift count >= width of type");
2098 /* Use the type of the value to be shifted.
2099 This is what most traditional C compilers do. */
2100 result_type
= type0
;
2101 /* Unless traditional, convert the shift-count to an integer,
2102 regardless of size of value being shifted. */
2103 if (! flag_traditional
)
2105 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1
)) != integer_type_node
)
2106 op1
= convert (integer_type_node
, op1
);
2107 /* Avoid converting op1 to result_type later. */
2115 if (code0
== INTEGER_TYPE
&& code1
== INTEGER_TYPE
)
2117 if (TREE_CODE (op1
) == INTEGER_CST
&& skip_evaluation
== 0)
2119 if (tree_int_cst_sgn (op1
) < 0)
2120 warning ("shift count is negative");
2121 else if (TREE_INT_CST_HIGH (op1
) != 0
2122 || ((unsigned HOST_WIDE_INT
) TREE_INT_CST_LOW (op1
)
2123 >= TYPE_PRECISION (type0
)))
2124 warning ("shift count >= width of type");
2126 /* Use the type of the value to be shifted.
2127 This is what most traditional C compilers do. */
2128 result_type
= type0
;
2129 /* Unless traditional, convert the shift-count to an integer,
2130 regardless of size of value being shifted. */
2131 if (! flag_traditional
)
2133 if (TYPE_MAIN_VARIANT (TREE_TYPE (op1
)) != integer_type_node
)
2134 op1
= convert (integer_type_node
, op1
);
2135 /* Avoid converting op1 to result_type later. */
2143 /* Result of comparison is always int,
2144 but don't convert the args to int! */
2145 build_type
= integer_type_node
;
2146 if ((code0
== INTEGER_TYPE
|| code0
== REAL_TYPE
2147 || code0
== COMPLEX_TYPE
)
2148 && (code1
== INTEGER_TYPE
|| code1
== REAL_TYPE
2149 || code1
== COMPLEX_TYPE
))
2151 else if (code0
== POINTER_TYPE
&& code1
== POINTER_TYPE
)
2153 register tree tt0
= TREE_TYPE (type0
);
2154 register tree tt1
= TREE_TYPE (type1
);
2155 /* Anything compares with void *. void * compares with anything.
2156 Otherwise, the targets must be compatible
2157 and both must be object or both incomplete. */
2158 if (comp_target_types (type0
, type1
))
2159 result_type
= common_type (type0
, type1
);
2160 else if (TYPE_MAIN_VARIANT (tt0
) == void_type_node
)
2162 /* op0 != orig_op0 detects the case of something
2163 whose value is 0 but which isn't a valid null ptr const. */
2164 if (pedantic
&& (!integer_zerop (op0
) || op0
!= orig_op0
)
2165 && TREE_CODE (tt1
) == FUNCTION_TYPE
)
2166 pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2168 else if (TYPE_MAIN_VARIANT (tt1
) == void_type_node
)
2170 if (pedantic
&& (!integer_zerop (op1
) || op1
!= orig_op1
)
2171 && TREE_CODE (tt0
) == FUNCTION_TYPE
)
2172 pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
2175 pedwarn ("comparison of distinct pointer types lacks a cast");
2177 if (result_type
== NULL_TREE
)
2178 result_type
= ptr_type_node
;
2180 else if (code0
== POINTER_TYPE
&& TREE_CODE (op1
) == INTEGER_CST
2181 && integer_zerop (op1
))
2182 result_type
= type0
;
2183 else if (code1
== POINTER_TYPE
&& TREE_CODE (op0
) == INTEGER_CST
2184 && integer_zerop (op0
))
2185 result_type
= type1
;
2186 else if (code0
== POINTER_TYPE
&& code1
== INTEGER_TYPE
)
2188 result_type
= type0
;
2189 if (! flag_traditional
)
2190 pedwarn ("comparison between pointer and integer");
2192 else if (code0
== INTEGER_TYPE
&& code1
== POINTER_TYPE
)
2194 result_type
= type1
;
2195 if (! flag_traditional
)
2196 pedwarn ("comparison between pointer and integer");
2202 if ((code0
== INTEGER_TYPE
|| code0
== REAL_TYPE
)
2203 && (code1
== INTEGER_TYPE
|| code1
== REAL_TYPE
))
2205 else if (code0
== POINTER_TYPE
&& code1
== POINTER_TYPE
)
2207 if (comp_target_types (type0
, type1
))
2209 result_type
= common_type (type0
, type1
);
2211 && TREE_CODE (TREE_TYPE (type0
)) == FUNCTION_TYPE
)
2212 pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2216 result_type
= ptr_type_node
;
2217 pedwarn ("comparison of distinct pointer types lacks a cast");
2226 build_type
= integer_type_node
;
2227 if ((code0
== INTEGER_TYPE
|| code0
== REAL_TYPE
)
2228 && (code1
== INTEGER_TYPE
|| code1
== REAL_TYPE
))
2230 else if (code0
== POINTER_TYPE
&& code1
== POINTER_TYPE
)
2232 if (comp_target_types (type0
, type1
))
2234 result_type
= common_type (type0
, type1
);
2235 if ((TYPE_SIZE (TREE_TYPE (type0
)) != 0)
2236 != (TYPE_SIZE (TREE_TYPE (type1
)) != 0))
2237 pedwarn ("comparison of complete and incomplete pointers");
2239 && TREE_CODE (TREE_TYPE (type0
)) == FUNCTION_TYPE
)
2240 pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
2244 result_type
= ptr_type_node
;
2245 pedwarn ("comparison of distinct pointer types lacks a cast");
2248 else if (code0
== POINTER_TYPE
&& TREE_CODE (op1
) == INTEGER_CST
2249 && integer_zerop (op1
))
2251 result_type
= type0
;
2252 if (pedantic
|| extra_warnings
)
2253 pedwarn ("ordered comparison of pointer with integer zero");
2255 else if (code1
== POINTER_TYPE
&& TREE_CODE (op0
) == INTEGER_CST
2256 && integer_zerop (op0
))
2258 result_type
= type1
;
2260 pedwarn ("ordered comparison of pointer with integer zero");
2262 else if (code0
== POINTER_TYPE
&& code1
== INTEGER_TYPE
)
2264 result_type
= type0
;
2265 if (! flag_traditional
)
2266 pedwarn ("comparison between pointer and integer");
2268 else if (code0
== INTEGER_TYPE
&& code1
== POINTER_TYPE
)
2270 result_type
= type1
;
2271 if (! flag_traditional
)
2272 pedwarn ("comparison between pointer and integer");
2280 if ((code0
== INTEGER_TYPE
|| code0
== REAL_TYPE
|| code0
== COMPLEX_TYPE
)
2282 (code1
== INTEGER_TYPE
|| code1
== REAL_TYPE
|| code1
== COMPLEX_TYPE
))
2284 int none_complex
= (code0
!= COMPLEX_TYPE
&& code1
!= COMPLEX_TYPE
);
2286 if (shorten
|| common
|| short_compare
)
2287 result_type
= common_type (type0
, type1
);
2289 /* For certain operations (which identify themselves by shorten != 0)
2290 if both args were extended from the same smaller type,
2291 do the arithmetic in that type and then extend.
2293 shorten !=0 and !=1 indicates a bitwise operation.
2294 For them, this optimization is safe only if
2295 both args are zero-extended or both are sign-extended.
2296 Otherwise, we might change the result.
2297 Eg, (short)-1 | (unsigned short)-1 is (int)-1
2298 but calculated in (unsigned short) it would be (unsigned short)-1. */
2300 if (shorten
&& none_complex
)
2302 int unsigned0
, unsigned1
;
2303 tree arg0
= get_narrower (op0
, &unsigned0
);
2304 tree arg1
= get_narrower (op1
, &unsigned1
);
2305 /* UNS is 1 if the operation to be done is an unsigned one. */
2306 int uns
= TREE_UNSIGNED (result_type
);
2309 final_type
= result_type
;
2311 /* Handle the case that OP0 (or OP1) does not *contain* a conversion
2312 but it *requires* conversion to FINAL_TYPE. */
2314 if ((TYPE_PRECISION (TREE_TYPE (op0
))
2315 == TYPE_PRECISION (TREE_TYPE (arg0
)))
2316 && TREE_TYPE (op0
) != final_type
)
2317 unsigned0
= TREE_UNSIGNED (TREE_TYPE (op0
));
2318 if ((TYPE_PRECISION (TREE_TYPE (op1
))
2319 == TYPE_PRECISION (TREE_TYPE (arg1
)))
2320 && TREE_TYPE (op1
) != final_type
)
2321 unsigned1
= TREE_UNSIGNED (TREE_TYPE (op1
));
2323 /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
2325 /* For bitwise operations, signedness of nominal type
2326 does not matter. Consider only how operands were extended. */
2330 /* Note that in all three cases below we refrain from optimizing
2331 an unsigned operation on sign-extended args.
2332 That would not be valid. */
2334 /* Both args variable: if both extended in same way
2335 from same width, do it in that width.
2336 Do it unsigned if args were zero-extended. */
2337 if ((TYPE_PRECISION (TREE_TYPE (arg0
))
2338 < TYPE_PRECISION (result_type
))
2339 && (TYPE_PRECISION (TREE_TYPE (arg1
))
2340 == TYPE_PRECISION (TREE_TYPE (arg0
)))
2341 && unsigned0
== unsigned1
2342 && (unsigned0
|| !uns
))
2344 = signed_or_unsigned_type (unsigned0
,
2345 common_type (TREE_TYPE (arg0
), TREE_TYPE (arg1
)));
2346 else if (TREE_CODE (arg0
) == INTEGER_CST
2347 && (unsigned1
|| !uns
)
2348 && (TYPE_PRECISION (TREE_TYPE (arg1
))
2349 < TYPE_PRECISION (result_type
))
2350 && (type
= signed_or_unsigned_type (unsigned1
,
2352 int_fits_type_p (arg0
, type
)))
2354 else if (TREE_CODE (arg1
) == INTEGER_CST
2355 && (unsigned0
|| !uns
)
2356 && (TYPE_PRECISION (TREE_TYPE (arg0
))
2357 < TYPE_PRECISION (result_type
))
2358 && (type
= signed_or_unsigned_type (unsigned0
,
2360 int_fits_type_p (arg1
, type
)))
2364 /* Shifts can be shortened if shifting right. */
2369 tree arg0
= get_narrower (op0
, &unsigned_arg
);
2371 final_type
= result_type
;
2373 if (arg0
== op0
&& final_type
== TREE_TYPE (op0
))
2374 unsigned_arg
= TREE_UNSIGNED (TREE_TYPE (op0
));
2376 if (TYPE_PRECISION (TREE_TYPE (arg0
)) < TYPE_PRECISION (result_type
)
2377 /* We can shorten only if the shift count is less than the
2378 number of bits in the smaller type size. */
2379 && TREE_INT_CST_HIGH (op1
) == 0
2380 && TYPE_PRECISION (TREE_TYPE (arg0
)) > TREE_INT_CST_LOW (op1
)
2381 /* If arg is sign-extended and then unsigned-shifted,
2382 we can simulate this with a signed shift in arg's type
2383 only if the extended result is at least twice as wide
2384 as the arg. Otherwise, the shift could use up all the
2385 ones made by sign-extension and bring in zeros.
2386 We can't optimize that case at all, but in most machines
2387 it never happens because available widths are 2**N. */
2388 && (!TREE_UNSIGNED (final_type
)
2390 || 2 * TYPE_PRECISION (TREE_TYPE (arg0
)) <= TYPE_PRECISION (result_type
)))
2392 /* Do an unsigned shift if the operand was zero-extended. */
2394 = signed_or_unsigned_type (unsigned_arg
,
2396 /* Convert value-to-be-shifted to that type. */
2397 if (TREE_TYPE (op0
) != result_type
)
2398 op0
= convert (result_type
, op0
);
2403 /* Comparison operations are shortened too but differently.
2404 They identify themselves by setting short_compare = 1. */
2408 /* Don't write &op0, etc., because that would prevent op0
2409 from being kept in a register.
2410 Instead, make copies of the our local variables and
2411 pass the copies by reference, then copy them back afterward. */
2412 tree xop0
= op0
, xop1
= op1
, xresult_type
= result_type
;
2413 enum tree_code xresultcode
= resultcode
;
2415 = shorten_compare (&xop0
, &xop1
, &xresult_type
, &xresultcode
);
2418 op0
= xop0
, op1
= xop1
;
2420 resultcode
= xresultcode
;
2422 if ((warn_sign_compare
< 0 ? extra_warnings
: warn_sign_compare
!= 0)
2423 && skip_evaluation
== 0)
2425 int op0_signed
= ! TREE_UNSIGNED (TREE_TYPE (orig_op0
));
2426 int op1_signed
= ! TREE_UNSIGNED (TREE_TYPE (orig_op1
));
2428 int unsignedp0
, unsignedp1
;
2429 tree primop0
= get_narrower (op0
, &unsignedp0
);
2430 tree primop1
= get_narrower (op1
, &unsignedp1
);
2432 /* Avoid spurious warnings for comparison with enumerators. */
2436 STRIP_TYPE_NOPS (xop0
);
2437 STRIP_TYPE_NOPS (xop1
);
2439 /* Give warnings for comparisons between signed and unsigned
2440 quantities that may fail. */
2441 /* Do the checking based on the original operand trees, so that
2442 casts will be considered, but default promotions won't be. */
2444 /* Do not warn if the comparison is being done in a signed type,
2445 since the signed type will only be chosen if it can represent
2446 all the values of the unsigned type. */
2447 if (! TREE_UNSIGNED (result_type
))
2449 /* Do not warn if both operands are unsigned. */
2450 else if (op0_signed
== op1_signed
)
2452 /* Do not warn if the signed quantity is an unsuffixed
2453 integer literal (or some static constant expression
2454 involving such literals) and it is non-negative. */
2455 else if ((op0_signed
&& TREE_CODE (xop0
) == INTEGER_CST
2456 && tree_int_cst_sgn (xop0
) >= 0)
2457 || (op1_signed
&& TREE_CODE (xop1
) == INTEGER_CST
2458 && tree_int_cst_sgn (xop1
) >= 0))
2460 /* Do not warn if the comparison is an equality operation,
2461 the unsigned quantity is an integral constant and it does
2462 not use the most significant bit of result_type. */
2463 else if ((resultcode
== EQ_EXPR
|| resultcode
== NE_EXPR
)
2464 && ((op0_signed
&& TREE_CODE (xop1
) == INTEGER_CST
2465 && int_fits_type_p (xop1
, signed_type (result_type
)))
2466 || (op1_signed
&& TREE_CODE (xop0
) == INTEGER_CST
2467 && int_fits_type_p (xop0
, signed_type (result_type
)))))
2470 warning ("comparison between signed and unsigned");
2472 /* Warn if two unsigned values are being compared in a size
2473 larger than their original size, and one (and only one) is the
2474 result of a `~' operator. This comparison will always fail.
2476 Also warn if one operand is a constant, and the constant
2477 does not have all bits set that are set in the ~ operand
2478 when it is extended. */
2480 if ((TREE_CODE (primop0
) == BIT_NOT_EXPR
)
2481 != (TREE_CODE (primop1
) == BIT_NOT_EXPR
))
2483 if (TREE_CODE (primop0
) == BIT_NOT_EXPR
)
2484 primop0
= get_narrower (TREE_OPERAND (primop0
, 0),
2487 primop1
= get_narrower (TREE_OPERAND (primop1
, 0),
2490 if (TREE_CODE (primop0
) == INTEGER_CST
2491 || TREE_CODE (primop1
) == INTEGER_CST
)
2494 long constant
, mask
;
2495 int unsignedp
, bits
;
2497 if (TREE_CODE (primop0
) == INTEGER_CST
)
2500 unsignedp
= unsignedp1
;
2501 constant
= TREE_INT_CST_LOW (primop0
);
2506 unsignedp
= unsignedp0
;
2507 constant
= TREE_INT_CST_LOW (primop1
);
2510 bits
= TYPE_PRECISION (TREE_TYPE (primop
));
2511 if (bits
< TYPE_PRECISION (result_type
)
2512 && bits
< HOST_BITS_PER_LONG
&& unsignedp
)
2514 mask
= (~0L) << bits
;
2515 if ((mask
& constant
) != mask
)
2516 warning ("comparison of promoted ~unsigned with constant");
2519 else if (unsignedp0
&& unsignedp1
2520 && (TYPE_PRECISION (TREE_TYPE (primop0
))
2521 < TYPE_PRECISION (result_type
))
2522 && (TYPE_PRECISION (TREE_TYPE (primop1
))
2523 < TYPE_PRECISION (result_type
)))
2524 warning ("comparison of promoted ~unsigned with unsigned");
2530 /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
2531 If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
2532 Then the expression will be built.
2533 It will be given type FINAL_TYPE if that is nonzero;
2534 otherwise, it will be given type RESULT_TYPE. */
2538 binary_op_error (code
);
2539 return error_mark_node
;
2544 if (TREE_TYPE (op0
) != result_type
)
2545 op0
= convert (result_type
, op0
);
2546 if (TREE_TYPE (op1
) != result_type
)
2547 op1
= convert (result_type
, op1
);
2550 if (build_type
== NULL_TREE
)
2551 build_type
= result_type
;
2554 register tree result
= build (resultcode
, build_type
, op0
, op1
);
2555 register tree folded
;
2557 folded
= fold (result
);
2558 if (folded
== result
)
2559 TREE_CONSTANT (folded
) = TREE_CONSTANT (op0
) & TREE_CONSTANT (op1
);
2560 if (final_type
!= 0)
2561 return convert (final_type
, folded
);
2566 /* Return a tree for the sum or difference (RESULTCODE says which)
2567 of pointer PTROP and integer INTOP. */
2570 pointer_int_sum (resultcode
, ptrop
, intop
)
2571 enum tree_code resultcode
;
2572 register tree ptrop
, intop
;
2576 register tree result
;
2577 register tree folded
;
2579 /* The result is a pointer of the same type that is being added. */
2581 register tree result_type
= TREE_TYPE (ptrop
);
2583 if (TREE_CODE (TREE_TYPE (result_type
)) == VOID_TYPE
)
2585 if (pedantic
|| warn_pointer_arith
)
2586 pedwarn ("pointer of type `void *' used in arithmetic");
2587 size_exp
= integer_one_node
;
2589 else if (TREE_CODE (TREE_TYPE (result_type
)) == FUNCTION_TYPE
)
2591 if (pedantic
|| warn_pointer_arith
)
2592 pedwarn ("pointer to a function used in arithmetic");
2593 size_exp
= integer_one_node
;
2596 size_exp
= c_size_in_bytes (TREE_TYPE (result_type
));
2598 /* If what we are about to multiply by the size of the elements
2599 contains a constant term, apply distributive law
2600 and multiply that constant term separately.
2601 This helps produce common subexpressions. */
2603 if ((TREE_CODE (intop
) == PLUS_EXPR
|| TREE_CODE (intop
) == MINUS_EXPR
)
2604 && ! TREE_CONSTANT (intop
)
2605 && TREE_CONSTANT (TREE_OPERAND (intop
, 1))
2606 && TREE_CONSTANT (size_exp
)
2607 /* If the constant comes from pointer subtraction,
2608 skip this optimization--it would cause an error. */
2609 && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop
, 0))) == INTEGER_TYPE
2610 /* If the constant is unsigned, and smaller than the pointer size,
2611 then we must skip this optimization. This is because it could cause
2612 an overflow error if the constant is negative but INTOP is not. */
2613 && (! TREE_UNSIGNED (TREE_TYPE (intop
))
2614 || (TYPE_PRECISION (TREE_TYPE (intop
))
2615 == TYPE_PRECISION (TREE_TYPE (ptrop
)))))
2617 enum tree_code subcode
= resultcode
;
2618 tree int_type
= TREE_TYPE (intop
);
2619 if (TREE_CODE (intop
) == MINUS_EXPR
)
2620 subcode
= (subcode
== PLUS_EXPR
? MINUS_EXPR
: PLUS_EXPR
);
2621 /* Convert both subexpression types to the type of intop,
2622 because weird cases involving pointer arithmetic
2623 can result in a sum or difference with different type args. */
2624 ptrop
= build_binary_op (subcode
, ptrop
,
2625 convert (int_type
, TREE_OPERAND (intop
, 1)), 1);
2626 intop
= convert (int_type
, TREE_OPERAND (intop
, 0));
2629 /* Convert the integer argument to a type the same size as sizetype
2630 so the multiply won't overflow spuriously. */
2632 if (TYPE_PRECISION (TREE_TYPE (intop
)) != TYPE_PRECISION (sizetype
)
2633 || TREE_UNSIGNED (TREE_TYPE (intop
)) != TREE_UNSIGNED (sizetype
))
2634 intop
= convert (type_for_size (TYPE_PRECISION (sizetype
),
2635 TREE_UNSIGNED (sizetype
)), intop
);
2637 /* Replace the integer argument with a suitable product by the object size.
2638 Do this multiplication as signed, then convert to the appropriate
2639 pointer type (actually unsigned integral). */
2641 intop
= convert (result_type
,
2642 build_binary_op (MULT_EXPR
, intop
,
2643 convert (TREE_TYPE (intop
), size_exp
), 1));
2645 /* Create the sum or difference. */
2647 result
= build (resultcode
, result_type
, ptrop
, intop
);
2649 folded
= fold (result
);
2650 if (folded
== result
)
2651 TREE_CONSTANT (folded
) = TREE_CONSTANT (ptrop
) & TREE_CONSTANT (intop
);
2655 /* Return a tree for the difference of pointers OP0 and OP1.
2656 The resulting tree has type int. */
2659 pointer_diff (op0
, op1
)
2660 register tree op0
, op1
;
2662 register tree result
, folded
;
2663 tree restype
= ptrdiff_type_node
;
2665 tree target_type
= TREE_TYPE (TREE_TYPE (op0
));
2667 if (pedantic
|| warn_pointer_arith
)
2669 if (TREE_CODE (target_type
) == VOID_TYPE
)
2670 pedwarn ("pointer of type `void *' used in subtraction");
2671 if (TREE_CODE (target_type
) == FUNCTION_TYPE
)
2672 pedwarn ("pointer to a function used in subtraction");
2675 /* First do the subtraction as integers;
2676 then drop through to build the divide operator.
2677 Do not do default conversions on the minus operator
2678 in case restype is a short type. */
2680 op0
= build_binary_op (MINUS_EXPR
, convert (restype
, op0
),
2681 convert (restype
, op1
), 0);
2682 /* This generates an error if op1 is pointer to incomplete type. */
2683 if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (op1
))) == 0)
2684 error ("arithmetic on pointer to an incomplete type");
2686 /* This generates an error if op0 is pointer to incomplete type. */
2687 op1
= c_size_in_bytes (target_type
);
2689 /* Divide by the size, in easiest possible way. */
2691 result
= build (EXACT_DIV_EXPR
, restype
, op0
, convert (restype
, op1
));
2693 folded
= fold (result
);
2694 if (folded
== result
)
2695 TREE_CONSTANT (folded
) = TREE_CONSTANT (op0
) & TREE_CONSTANT (op1
);
2699 /* Construct and perhaps optimize a tree representation
2700 for a unary operation. CODE, a tree_code, specifies the operation
2701 and XARG is the operand. NOCONVERT nonzero suppresses
2702 the default promotions (such as from short to int). */
2705 build_unary_op (code
, xarg
, noconvert
)
2706 enum tree_code code
;
2710 /* No default_conversion here. It causes trouble for ADDR_EXPR. */
2711 register tree arg
= xarg
;
2712 register tree argtype
= 0;
2713 register enum tree_code typecode
= TREE_CODE (TREE_TYPE (arg
));
2716 if (typecode
== ERROR_MARK
)
2717 return error_mark_node
;
2718 if (typecode
== ENUMERAL_TYPE
)
2719 typecode
= INTEGER_TYPE
;
2724 /* This is used for unary plus, because a CONVERT_EXPR
2725 is enough to prevent anybody from looking inside for
2726 associativity, but won't generate any code. */
2727 if (!(typecode
== INTEGER_TYPE
|| typecode
== REAL_TYPE
2728 || typecode
== COMPLEX_TYPE
))
2730 error ("wrong type argument to unary plus");
2731 return error_mark_node
;
2733 else if (!noconvert
)
2734 arg
= default_conversion (arg
);
2738 if (!(typecode
== INTEGER_TYPE
|| typecode
== REAL_TYPE
2739 || typecode
== COMPLEX_TYPE
))
2741 error ("wrong type argument to unary minus");
2742 return error_mark_node
;
2744 else if (!noconvert
)
2745 arg
= default_conversion (arg
);
2749 if (typecode
== COMPLEX_TYPE
)
2753 arg
= default_conversion (arg
);
2755 else if (typecode
!= INTEGER_TYPE
)
2757 error ("wrong type argument to bit-complement");
2758 return error_mark_node
;
2760 else if (!noconvert
)
2761 arg
= default_conversion (arg
);
2765 if (!(typecode
== INTEGER_TYPE
|| typecode
== REAL_TYPE
2766 || typecode
== COMPLEX_TYPE
))
2768 error ("wrong type argument to abs");
2769 return error_mark_node
;
2771 else if (!noconvert
)
2772 arg
= default_conversion (arg
);
2776 /* Conjugating a real value is a no-op, but allow it anyway. */
2777 if (!(typecode
== INTEGER_TYPE
|| typecode
== REAL_TYPE
2778 || typecode
== COMPLEX_TYPE
))
2780 error ("wrong type argument to conjugation");
2781 return error_mark_node
;
2783 else if (!noconvert
)
2784 arg
= default_conversion (arg
);
2787 case TRUTH_NOT_EXPR
:
2788 if (typecode
!= INTEGER_TYPE
2789 && typecode
!= REAL_TYPE
&& typecode
!= POINTER_TYPE
2790 && typecode
!= COMPLEX_TYPE
2791 /* These will convert to a pointer. */
2792 && typecode
!= ARRAY_TYPE
&& typecode
!= FUNCTION_TYPE
)
2794 error ("wrong type argument to unary exclamation mark");
2795 return error_mark_node
;
2797 arg
= truthvalue_conversion (arg
);
2798 return invert_truthvalue (arg
);
2804 if (TREE_CODE (arg
) == COMPLEX_CST
)
2805 return TREE_REALPART (arg
);
2806 else if (TREE_CODE (TREE_TYPE (arg
)) == COMPLEX_TYPE
)
2807 return fold (build1 (REALPART_EXPR
, TREE_TYPE (TREE_TYPE (arg
)), arg
));
2812 if (TREE_CODE (arg
) == COMPLEX_CST
)
2813 return TREE_IMAGPART (arg
);
2814 else if (TREE_CODE (TREE_TYPE (arg
)) == COMPLEX_TYPE
)
2815 return fold (build1 (IMAGPART_EXPR
, TREE_TYPE (TREE_TYPE (arg
)), arg
));
2817 return convert (TREE_TYPE (arg
), integer_zero_node
);
2819 case PREINCREMENT_EXPR
:
2820 case POSTINCREMENT_EXPR
:
2821 case PREDECREMENT_EXPR
:
2822 case POSTDECREMENT_EXPR
:
2823 /* Handle complex lvalues (when permitted)
2824 by reduction to simpler cases. */
2826 val
= unary_complex_lvalue (code
, arg
);
2830 /* Increment or decrement the real part of the value,
2831 and don't change the imaginary part. */
2832 if (typecode
== COMPLEX_TYPE
)
2836 arg
= stabilize_reference (arg
);
2837 real
= build_unary_op (REALPART_EXPR
, arg
, 1);
2838 imag
= build_unary_op (IMAGPART_EXPR
, arg
, 1);
2839 return build (COMPLEX_EXPR
, TREE_TYPE (arg
),
2840 build_unary_op (code
, real
, 1), imag
);
2843 /* Report invalid types. */
2845 if (typecode
!= POINTER_TYPE
2846 && typecode
!= INTEGER_TYPE
&& typecode
!= REAL_TYPE
)
2848 error (code
== PREINCREMENT_EXPR
|| code
== POSTINCREMENT_EXPR
2849 ? "wrong type argument to increment"
2850 : "wrong type argument to decrement");
2851 return error_mark_node
;
2856 tree result_type
= TREE_TYPE (arg
);
2858 arg
= get_unwidened (arg
, 0);
2859 argtype
= TREE_TYPE (arg
);
2861 /* Compute the increment. */
2863 if (typecode
== POINTER_TYPE
)
2865 /* If pointer target is an undefined struct,
2866 we just cannot know how to do the arithmetic. */
2867 if (TYPE_SIZE (TREE_TYPE (result_type
)) == 0)
2868 error (code
== PREINCREMENT_EXPR
|| code
== POSTINCREMENT_EXPR
2869 ? "increment of pointer to unknown structure"
2870 : "decrement of pointer to unknown structure");
2871 else if ((pedantic
|| warn_pointer_arith
)
2872 && (TREE_CODE (TREE_TYPE (result_type
)) == FUNCTION_TYPE
2873 || TREE_CODE (TREE_TYPE (result_type
)) == VOID_TYPE
))
2874 pedwarn (code
== PREINCREMENT_EXPR
|| code
== POSTINCREMENT_EXPR
2875 ? "wrong type argument to increment"
2876 : "wrong type argument to decrement");
2877 inc
= c_size_in_bytes (TREE_TYPE (result_type
));
2880 inc
= integer_one_node
;
2882 inc
= convert (argtype
, inc
);
2884 /* Handle incrementing a cast-expression. */
2887 switch (TREE_CODE (arg
))
2892 case FIX_TRUNC_EXPR
:
2893 case FIX_FLOOR_EXPR
:
2894 case FIX_ROUND_EXPR
:
2896 pedantic_lvalue_warning (CONVERT_EXPR
);
2897 /* If the real type has the same machine representation
2898 as the type it is cast to, we can make better output
2899 by adding directly to the inside of the cast. */
2900 if ((TREE_CODE (TREE_TYPE (arg
))
2901 == TREE_CODE (TREE_TYPE (TREE_OPERAND (arg
, 0))))
2902 && (TYPE_MODE (TREE_TYPE (arg
))
2903 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg
, 0)))))
2904 arg
= TREE_OPERAND (arg
, 0);
2907 tree incremented
, modify
, value
;
2908 arg
= stabilize_reference (arg
);
2909 if (code
== PREINCREMENT_EXPR
|| code
== PREDECREMENT_EXPR
)
2912 value
= save_expr (arg
);
2913 incremented
= build (((code
== PREINCREMENT_EXPR
2914 || code
== POSTINCREMENT_EXPR
)
2915 ? PLUS_EXPR
: MINUS_EXPR
),
2916 argtype
, value
, inc
);
2917 TREE_SIDE_EFFECTS (incremented
) = 1;
2918 modify
= build_modify_expr (arg
, NOP_EXPR
, incremented
);
2919 value
= build (COMPOUND_EXPR
, TREE_TYPE (arg
), modify
, value
);
2920 TREE_USED (value
) = 1;
2930 /* Complain about anything else that is not a true lvalue. */
2931 if (!lvalue_or_else (arg
, ((code
== PREINCREMENT_EXPR
2932 || code
== POSTINCREMENT_EXPR
)
2933 ? "invalid lvalue in increment"
2934 : "invalid lvalue in decrement")))
2935 return error_mark_node
;
2937 /* Report a read-only lvalue. */
2938 if (TREE_READONLY (arg
))
2939 readonly_warning (arg
,
2940 ((code
== PREINCREMENT_EXPR
2941 || code
== POSTINCREMENT_EXPR
)
2942 ? "increment" : "decrement"));
2944 val
= build (code
, TREE_TYPE (arg
), arg
, inc
);
2945 TREE_SIDE_EFFECTS (val
) = 1;
2946 val
= convert (result_type
, val
);
2947 if (TREE_CODE (val
) != code
)
2948 TREE_NO_UNUSED_WARNING (val
) = 1;
2953 /* Note that this operation never does default_conversion
2954 regardless of NOCONVERT. */
2956 /* Let &* cancel out to simplify resulting code. */
2957 if (TREE_CODE (arg
) == INDIRECT_REF
)
2959 /* Don't let this be an lvalue. */
2960 if (lvalue_p (TREE_OPERAND (arg
, 0)))
2961 return non_lvalue (TREE_OPERAND (arg
, 0));
2962 return TREE_OPERAND (arg
, 0);
2965 /* For &x[y], return x+y */
2966 if (TREE_CODE (arg
) == ARRAY_REF
)
2968 if (mark_addressable (TREE_OPERAND (arg
, 0)) == 0)
2969 return error_mark_node
;
2970 return build_binary_op (PLUS_EXPR
, TREE_OPERAND (arg
, 0),
2971 TREE_OPERAND (arg
, 1), 1);
2974 /* Handle complex lvalues (when permitted)
2975 by reduction to simpler cases. */
2976 val
= unary_complex_lvalue (code
, arg
);
2980 #if 0 /* Turned off because inconsistent;
2981 float f; *&(int)f = 3.4 stores in int format
2982 whereas (int)f = 3.4 stores in float format. */
2983 /* Address of a cast is just a cast of the address
2984 of the operand of the cast. */
2985 switch (TREE_CODE (arg
))
2990 case FIX_TRUNC_EXPR
:
2991 case FIX_FLOOR_EXPR
:
2992 case FIX_ROUND_EXPR
:
2995 pedwarn ("ANSI C forbids the address of a cast expression");
2996 return convert (build_pointer_type (TREE_TYPE (arg
)),
2997 build_unary_op (ADDR_EXPR
, TREE_OPERAND (arg
, 0),
3002 /* Allow the address of a constructor if all the elements
3004 if (TREE_CODE (arg
) == CONSTRUCTOR
&& TREE_CONSTANT (arg
))
3006 /* Anything not already handled and not a true memory reference
3008 else if (typecode
!= FUNCTION_TYPE
3009 && !lvalue_or_else (arg
, "invalid lvalue in unary `&'"))
3010 return error_mark_node
;
3012 /* Ordinary case; arg is a COMPONENT_REF or a decl. */
3013 argtype
= TREE_TYPE (arg
);
3014 /* If the lvalue is const or volatile, merge that into the type
3015 to which the address will point. Note that you can't get a
3016 restricted pointer by taking the address of something, so we
3017 only have to deal with `const' and `volatile' here. */
3018 if (TREE_CODE_CLASS (TREE_CODE (arg
)) == 'd'
3019 || TREE_CODE_CLASS (TREE_CODE (arg
)) == 'r')
3021 if (TREE_READONLY (arg
) || TREE_THIS_VOLATILE (arg
))
3022 argtype
= c_build_type_variant (argtype
,
3023 TREE_READONLY (arg
),
3024 TREE_THIS_VOLATILE (arg
));
3027 argtype
= build_pointer_type (argtype
);
3029 if (mark_addressable (arg
) == 0)
3030 return error_mark_node
;
3035 if (TREE_CODE (arg
) == COMPONENT_REF
)
3037 tree field
= TREE_OPERAND (arg
, 1);
3039 addr
= build_unary_op (ADDR_EXPR
, TREE_OPERAND (arg
, 0), 0);
3041 if (DECL_C_BIT_FIELD (field
))
3043 error ("attempt to take address of bit-field structure member `%s'",
3044 IDENTIFIER_POINTER (DECL_NAME (field
)));
3045 return error_mark_node
;
3048 addr
= convert (argtype
, addr
);
3050 if (! integer_zerop (DECL_FIELD_BITPOS (field
)))
3053 = size_binop (EASY_DIV_EXPR
, DECL_FIELD_BITPOS (field
),
3054 size_int (BITS_PER_UNIT
));
3055 int flag
= TREE_CONSTANT (addr
);
3056 addr
= fold (build (PLUS_EXPR
, argtype
,
3057 addr
, convert (argtype
, offset
)));
3058 TREE_CONSTANT (addr
) = flag
;
3062 addr
= build1 (code
, argtype
, arg
);
3064 /* Address of a static or external variable or
3065 file-scope function counts as a constant. */
3067 && ! (TREE_CODE (arg
) == FUNCTION_DECL
3068 && DECL_CONTEXT (arg
) != 0))
3069 TREE_CONSTANT (addr
) = 1;
3078 argtype
= TREE_TYPE (arg
);
3079 return fold (build1 (code
, argtype
, arg
));
3083 /* If CONVERSIONS is a conversion expression or a nested sequence of such,
3084 convert ARG with the same conversions in the same order
3085 and return the result. */
3088 convert_sequence (conversions
, arg
)
3092 switch (TREE_CODE (conversions
))
3097 case FIX_TRUNC_EXPR
:
3098 case FIX_FLOOR_EXPR
:
3099 case FIX_ROUND_EXPR
:
3101 return convert (TREE_TYPE (conversions
),
3102 convert_sequence (TREE_OPERAND (conversions
, 0),
3111 /* Return nonzero if REF is an lvalue valid for this language.
3112 Lvalues can be assigned, unless their type has TYPE_READONLY.
3113 Lvalues can have their address taken, unless they have DECL_REGISTER. */
3119 register enum tree_code code
= TREE_CODE (ref
);
3126 return lvalue_p (TREE_OPERAND (ref
, 0));
3137 return (TREE_CODE (TREE_TYPE (ref
)) != FUNCTION_TYPE
3138 && TREE_CODE (TREE_TYPE (ref
)) != METHOD_TYPE
);
3142 return TREE_CODE (TREE_TYPE (ref
)) == ARRAY_TYPE
;
3149 /* Return nonzero if REF is an lvalue valid for this language;
3150 otherwise, print an error message and return zero. */
3153 lvalue_or_else (ref
, msgid
)
3157 int win
= lvalue_p (ref
);
3163 /* Apply unary lvalue-demanding operator CODE to the expression ARG
3164 for certain kinds of expressions which are not really lvalues
3165 but which we can accept as lvalues.
3167 If ARG is not a kind of expression we can handle, return zero. */
3170 unary_complex_lvalue (code
, arg
)
3171 enum tree_code code
;
3174 /* Handle (a, b) used as an "lvalue". */
3175 if (TREE_CODE (arg
) == COMPOUND_EXPR
)
3177 tree real_result
= build_unary_op (code
, TREE_OPERAND (arg
, 1), 0);
3179 /* If this returns a function type, it isn't really being used as
3180 an lvalue, so don't issue a warning about it. */
3181 if (TREE_CODE (TREE_TYPE (arg
)) != FUNCTION_TYPE
)
3182 pedantic_lvalue_warning (COMPOUND_EXPR
);
3184 return build (COMPOUND_EXPR
, TREE_TYPE (real_result
),
3185 TREE_OPERAND (arg
, 0), real_result
);
3188 /* Handle (a ? b : c) used as an "lvalue". */
3189 if (TREE_CODE (arg
) == COND_EXPR
)
3191 pedantic_lvalue_warning (COND_EXPR
);
3192 if (TREE_CODE (TREE_TYPE (arg
)) != FUNCTION_TYPE
)
3193 pedantic_lvalue_warning (COMPOUND_EXPR
);
3195 return (build_conditional_expr
3196 (TREE_OPERAND (arg
, 0),
3197 build_unary_op (code
, TREE_OPERAND (arg
, 1), 0),
3198 build_unary_op (code
, TREE_OPERAND (arg
, 2), 0)));
3204 /* If pedantic, warn about improper lvalue. CODE is either COND_EXPR
3205 COMPOUND_EXPR, or CONVERT_EXPR (for casts). */
3208 pedantic_lvalue_warning (code
)
3209 enum tree_code code
;
3212 pedwarn (code
== COND_EXPR
3213 ? "ANSI C forbids use of conditional expressions as lvalues"
3214 : code
== COMPOUND_EXPR
3215 ? "ANSI C forbids use of compound expressions as lvalues"
3216 : "ANSI C forbids use of cast expressions as lvalues");
3219 /* Warn about storing in something that is `const'. */
3222 readonly_warning (arg
, msgid
)
3226 /* Forbid assignments to iterators. */
3227 if (TREE_CODE (arg
) == VAR_DECL
&& ITERATOR_P (arg
))
3228 pedwarn ("%s of iterator `%s'", _(msgid
),
3229 IDENTIFIER_POINTER (DECL_NAME (arg
)));
3231 if (TREE_CODE (arg
) == COMPONENT_REF
)
3233 if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg
, 0))))
3234 readonly_warning (TREE_OPERAND (arg
, 0), msgid
);
3236 pedwarn ("%s of read-only member `%s'", _(msgid
),
3237 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (arg
, 1))));
3239 else if (TREE_CODE (arg
) == VAR_DECL
)
3240 pedwarn ("%s of read-only variable `%s'", _(msgid
),
3241 IDENTIFIER_POINTER (DECL_NAME (arg
)));
3243 pedwarn ("%s of read-only location", _(msgid
));
3246 /* Mark EXP saying that we need to be able to take the
3247 address of it; it should not be allocated in a register.
3248 Value is 1 if successful. */
3251 mark_addressable (exp
)
3254 register tree x
= exp
;
3256 switch (TREE_CODE (x
))
3259 if (DECL_C_BIT_FIELD (TREE_OPERAND (x
, 1)))
3261 error ("cannot take address of bitfield `%s'",
3262 IDENTIFIER_POINTER (DECL_NAME (TREE_OPERAND (x
, 1))));
3266 /* ... fall through ... */
3272 x
= TREE_OPERAND (x
, 0);
3276 TREE_ADDRESSABLE (x
) = 1;
3283 if (DECL_REGISTER (x
) && !TREE_ADDRESSABLE (x
)
3284 && DECL_NONLOCAL (x
))
3286 if (TREE_PUBLIC (x
))
3288 error ("global register variable `%s' used in nested function",
3289 IDENTIFIER_POINTER (DECL_NAME (x
)));
3292 pedwarn ("register variable `%s' used in nested function",
3293 IDENTIFIER_POINTER (DECL_NAME (x
)));
3295 else if (DECL_REGISTER (x
) && !TREE_ADDRESSABLE (x
))
3297 if (TREE_PUBLIC (x
))
3299 error ("address of global register variable `%s' requested",
3300 IDENTIFIER_POINTER (DECL_NAME (x
)));
3304 /* If we are making this addressable due to its having
3305 volatile components, give a different error message. Also
3306 handle the case of an unnamed parameter by not trying
3307 to give the name. */
3309 else if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (x
)))
3311 error ("cannot put object with volatile field into register");
3315 pedwarn ("address of register variable `%s' requested",
3316 IDENTIFIER_POINTER (DECL_NAME (x
)));
3318 put_var_into_stack (x
);
3322 TREE_ADDRESSABLE (x
) = 1;
3323 #if 0 /* poplevel deals with this now. */
3324 if (DECL_CONTEXT (x
) == 0)
3325 TREE_ADDRESSABLE (DECL_ASSEMBLER_NAME (x
)) = 1;
3333 /* Build and return a conditional expression IFEXP ? OP1 : OP2. */
3336 build_conditional_expr (ifexp
, op1
, op2
)
3337 tree ifexp
, op1
, op2
;
3339 register tree type1
;
3340 register tree type2
;
3341 register enum tree_code code1
;
3342 register enum tree_code code2
;
3343 register tree result_type
= NULL
;
3344 tree orig_op1
= op1
, orig_op2
= op2
;
3346 ifexp
= truthvalue_conversion (default_conversion (ifexp
));
3348 #if 0 /* Produces wrong result if within sizeof. */
3349 /* Don't promote the operands separately if they promote
3350 the same way. Return the unpromoted type and let the combined
3351 value get promoted if necessary. */
3353 if (TREE_TYPE (op1
) == TREE_TYPE (op2
)
3354 && TREE_CODE (TREE_TYPE (op1
)) != ARRAY_TYPE
3355 && TREE_CODE (TREE_TYPE (op1
)) != ENUMERAL_TYPE
3356 && TREE_CODE (TREE_TYPE (op1
)) != FUNCTION_TYPE
)
3358 if (TREE_CODE (ifexp
) == INTEGER_CST
)
3359 return pedantic_non_lvalue (integer_zerop (ifexp
) ? op2
: op1
);
3361 return fold (build (COND_EXPR
, TREE_TYPE (op1
), ifexp
, op1
, op2
));
3365 /* Promote both alternatives. */
3367 if (TREE_CODE (TREE_TYPE (op1
)) != VOID_TYPE
)
3368 op1
= default_conversion (op1
);
3369 if (TREE_CODE (TREE_TYPE (op2
)) != VOID_TYPE
)
3370 op2
= default_conversion (op2
);
3372 if (TREE_CODE (ifexp
) == ERROR_MARK
3373 || TREE_CODE (TREE_TYPE (op1
)) == ERROR_MARK
3374 || TREE_CODE (TREE_TYPE (op2
)) == ERROR_MARK
)
3375 return error_mark_node
;
3377 type1
= TREE_TYPE (op1
);
3378 code1
= TREE_CODE (type1
);
3379 type2
= TREE_TYPE (op2
);
3380 code2
= TREE_CODE (type2
);
3382 /* Quickly detect the usual case where op1 and op2 have the same type
3384 if (TYPE_MAIN_VARIANT (type1
) == TYPE_MAIN_VARIANT (type2
))
3387 result_type
= type1
;
3389 result_type
= TYPE_MAIN_VARIANT (type1
);
3391 else if ((code1
== INTEGER_TYPE
|| code1
== REAL_TYPE
)
3392 && (code2
== INTEGER_TYPE
|| code2
== REAL_TYPE
))
3394 result_type
= common_type (type1
, type2
);
3396 else if (code1
== VOID_TYPE
|| code2
== VOID_TYPE
)
3398 if (pedantic
&& (code1
!= VOID_TYPE
|| code2
!= VOID_TYPE
))
3399 pedwarn ("ANSI C forbids conditional expr with only one void side");
3400 result_type
= void_type_node
;
3402 else if (code1
== POINTER_TYPE
&& code2
== POINTER_TYPE
)
3404 if (comp_target_types (type1
, type2
))
3405 result_type
= common_type (type1
, type2
);
3406 else if (integer_zerop (op1
) && TREE_TYPE (type1
) == void_type_node
3407 && TREE_CODE (orig_op1
) != NOP_EXPR
)
3408 result_type
= qualify_type (type2
, type1
);
3409 else if (integer_zerop (op2
) && TREE_TYPE (type2
) == void_type_node
3410 && TREE_CODE (orig_op2
) != NOP_EXPR
)
3411 result_type
= qualify_type (type1
, type2
);
3412 else if (TYPE_MAIN_VARIANT (TREE_TYPE (type1
)) == void_type_node
)
3414 if (pedantic
&& TREE_CODE (TREE_TYPE (type2
)) == FUNCTION_TYPE
)
3415 pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3416 result_type
= qualify_type (type1
, type2
);
3418 else if (TYPE_MAIN_VARIANT (TREE_TYPE (type2
)) == void_type_node
)
3420 if (pedantic
&& TREE_CODE (TREE_TYPE (type1
)) == FUNCTION_TYPE
)
3421 pedwarn ("ANSI C forbids conditional expr between `void *' and function pointer");
3422 result_type
= qualify_type (type2
, type1
);
3426 pedwarn ("pointer type mismatch in conditional expression");
3427 result_type
= build_pointer_type (void_type_node
);
3430 else if (code1
== POINTER_TYPE
&& code2
== INTEGER_TYPE
)
3432 if (! integer_zerop (op2
))
3433 pedwarn ("pointer/integer type mismatch in conditional expression");
3436 op2
= null_pointer_node
;
3437 #if 0 /* The spec seems to say this is permitted. */
3438 if (pedantic
&& TREE_CODE (type1
) == FUNCTION_TYPE
)
3439 pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3442 result_type
= type1
;
3444 else if (code2
== POINTER_TYPE
&& code1
== INTEGER_TYPE
)
3446 if (!integer_zerop (op1
))
3447 pedwarn ("pointer/integer type mismatch in conditional expression");
3450 op1
= null_pointer_node
;
3451 #if 0 /* The spec seems to say this is permitted. */
3452 if (pedantic
&& TREE_CODE (type2
) == FUNCTION_TYPE
)
3453 pedwarn ("ANSI C forbids conditional expr between 0 and function pointer");
3456 result_type
= type2
;
3461 if (flag_cond_mismatch
)
3462 result_type
= void_type_node
;
3465 error ("type mismatch in conditional expression");
3466 return error_mark_node
;
3470 /* Merge const and volatile flags of the incoming types. */
3472 = build_type_variant (result_type
,
3473 TREE_READONLY (op1
) || TREE_READONLY (op2
),
3474 TREE_THIS_VOLATILE (op1
) || TREE_THIS_VOLATILE (op2
));
3476 if (result_type
!= TREE_TYPE (op1
))
3477 op1
= convert_and_check (result_type
, op1
);
3478 if (result_type
!= TREE_TYPE (op2
))
3479 op2
= convert_and_check (result_type
, op2
);
3482 if (code1
== RECORD_TYPE
|| code1
== UNION_TYPE
)
3484 result_type
= TREE_TYPE (op1
);
3485 if (TREE_CONSTANT (ifexp
))
3486 return pedantic_non_lvalue (integer_zerop (ifexp
) ? op2
: op1
);
3488 if (TYPE_MODE (result_type
) == BLKmode
)
3490 register tree tempvar
3491 = build_decl (VAR_DECL
, NULL_TREE
, result_type
);
3492 register tree xop1
= build_modify_expr (tempvar
, op1
);
3493 register tree xop2
= build_modify_expr (tempvar
, op2
);
3494 register tree result
= fold (build (COND_EXPR
, result_type
,
3495 ifexp
, xop1
, xop2
));
3497 layout_decl (tempvar
, TYPE_ALIGN (result_type
));
3498 /* No way to handle variable-sized objects here.
3499 I fear that the entire handling of BLKmode conditional exprs
3500 needs to be redone. */
3501 if (TREE_CODE (DECL_SIZE (tempvar
)) != INTEGER_CST
)
3504 = assign_stack_local (DECL_MODE (tempvar
),
3505 (TREE_INT_CST_LOW (DECL_SIZE (tempvar
))
3506 + BITS_PER_UNIT
- 1)
3510 TREE_SIDE_EFFECTS (result
)
3511 = TREE_SIDE_EFFECTS (ifexp
) | TREE_SIDE_EFFECTS (op1
)
3512 | TREE_SIDE_EFFECTS (op2
);
3513 return build (COMPOUND_EXPR
, result_type
, result
, tempvar
);
3518 if (TREE_CODE (ifexp
) == INTEGER_CST
)
3519 return pedantic_non_lvalue (integer_zerop (ifexp
) ? op2
: op1
);
3521 return fold (build (COND_EXPR
, result_type
, ifexp
, op1
, op2
));
3524 /* Given a list of expressions, return a compound expression
3525 that performs them all and returns the value of the last of them. */
3528 build_compound_expr (list
)
3531 return internal_build_compound_expr (list
, TRUE
);
3535 internal_build_compound_expr (list
, first_p
)
3541 if (TREE_CHAIN (list
) == 0)
3543 #if 0 /* If something inside inhibited lvalueness, we should not override. */
3544 /* Consider (x, y+0), which is not an lvalue since y+0 is not. */
3546 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3547 if (TREE_CODE (list
) == NON_LVALUE_EXPR
)
3548 list
= TREE_OPERAND (list
, 0);
3551 /* Don't let (0, 0) be null pointer constant. */
3552 if (!first_p
&& integer_zerop (TREE_VALUE (list
)))
3553 return non_lvalue (TREE_VALUE (list
));
3554 return TREE_VALUE (list
);
3557 if (TREE_CHAIN (list
) != 0 && TREE_CHAIN (TREE_CHAIN (list
)) == 0)
3559 /* Convert arrays to pointers when there really is a comma operator. */
3560 if (TREE_CODE (TREE_TYPE (TREE_VALUE (TREE_CHAIN (list
)))) == ARRAY_TYPE
)
3561 TREE_VALUE (TREE_CHAIN (list
))
3562 = default_conversion (TREE_VALUE (TREE_CHAIN (list
)));
3565 rest
= internal_build_compound_expr (TREE_CHAIN (list
), FALSE
);
3567 if (! TREE_SIDE_EFFECTS (TREE_VALUE (list
)))
3569 /* The left-hand operand of a comma expression is like an expression
3570 statement: with -W or -Wunused, we should warn if it doesn't have
3571 any side-effects, unless it was explicitly cast to (void). */
3572 if ((extra_warnings
|| warn_unused
)
3573 && ! (TREE_CODE (TREE_VALUE (list
)) == CONVERT_EXPR
3574 && TREE_TYPE (TREE_VALUE (list
)) == void_type_node
))
3575 warning ("left-hand operand of comma expression has no effect");
3577 /* When pedantic, a compound expression can be neither an lvalue
3578 nor an integer constant expression. */
3583 /* With -Wunused, we should also warn if the left-hand operand does have
3584 side-effects, but computes a value which is not used. For example, in
3585 `foo() + bar(), baz()' the result of the `+' operator is not used,
3586 so we should issue a warning. */
3587 else if (warn_unused
)
3588 warn_if_unused_value (TREE_VALUE (list
));
3590 return build (COMPOUND_EXPR
, TREE_TYPE (rest
), TREE_VALUE (list
), rest
);
3593 /* Build an expression representing a cast to type TYPE of expression EXPR. */
3596 build_c_cast (type
, expr
)
3600 register tree value
= expr
;
3602 if (type
== error_mark_node
|| expr
== error_mark_node
)
3603 return error_mark_node
;
3604 type
= TYPE_MAIN_VARIANT (type
);
3607 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3608 if (TREE_CODE (value
) == NON_LVALUE_EXPR
)
3609 value
= TREE_OPERAND (value
, 0);
3612 if (TREE_CODE (type
) == ARRAY_TYPE
)
3614 error ("cast specifies array type");
3615 return error_mark_node
;
3618 if (TREE_CODE (type
) == FUNCTION_TYPE
)
3620 error ("cast specifies function type");
3621 return error_mark_node
;
3624 if (type
== TREE_TYPE (value
))
3628 if (TREE_CODE (type
) == RECORD_TYPE
3629 || TREE_CODE (type
) == UNION_TYPE
)
3630 pedwarn ("ANSI C forbids casting nonscalar to the same type");
3633 else if (TREE_CODE (type
) == UNION_TYPE
)
3636 if (TREE_CODE (TREE_TYPE (value
)) == ARRAY_TYPE
3637 || TREE_CODE (TREE_TYPE (value
)) == FUNCTION_TYPE
)
3638 value
= default_conversion (value
);
3640 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
3641 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field
)),
3642 TYPE_MAIN_VARIANT (TREE_TYPE (value
))))
3651 pedwarn ("ANSI C forbids casts to union type");
3652 if (TYPE_NAME (type
) != 0)
3654 if (TREE_CODE (TYPE_NAME (type
)) == IDENTIFIER_NODE
)
3655 name
= IDENTIFIER_POINTER (TYPE_NAME (type
));
3657 name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type
)));
3661 t
= digest_init (type
, build (CONSTRUCTOR
, type
, NULL_TREE
,
3662 build_tree_list (field
, value
)),
3664 TREE_CONSTANT (t
) = TREE_CONSTANT (value
);
3667 error ("cast to union type from type not present in union");
3668 return error_mark_node
;
3674 /* If casting to void, avoid the error that would come
3675 from default_conversion in the case of a non-lvalue array. */
3676 if (type
== void_type_node
)
3677 return build1 (CONVERT_EXPR
, type
, value
);
3679 /* Convert functions and arrays to pointers,
3680 but don't convert any other types. */
3681 if (TREE_CODE (TREE_TYPE (value
)) == FUNCTION_TYPE
3682 || TREE_CODE (TREE_TYPE (value
)) == ARRAY_TYPE
)
3683 value
= default_conversion (value
);
3684 otype
= TREE_TYPE (value
);
3686 /* Optionally warn about potentially worrisome casts. */
3689 && TREE_CODE (type
) == POINTER_TYPE
3690 && TREE_CODE (otype
) == POINTER_TYPE
)
3692 /* Go to the innermost object being pointed to. */
3693 tree in_type
= type
;
3694 tree in_otype
= otype
;
3696 while (TREE_CODE (in_type
) == POINTER_TYPE
)
3697 in_type
= TREE_TYPE (in_type
);
3698 while (TREE_CODE (in_otype
) == POINTER_TYPE
)
3699 in_otype
= TREE_TYPE (in_otype
);
3701 if (TYPE_QUALS (in_otype
) & ~TYPE_QUALS (in_type
))
3702 /* There are qualifiers present in IN_OTYPE that are not
3703 present in IN_TYPE. */
3704 pedwarn ("cast discards qualifiers from pointer target type");
3707 /* Warn about possible alignment problems. */
3708 if (STRICT_ALIGNMENT
&& warn_cast_align
3709 && TREE_CODE (type
) == POINTER_TYPE
3710 && TREE_CODE (otype
) == POINTER_TYPE
3711 && TREE_CODE (TREE_TYPE (otype
)) != VOID_TYPE
3712 && TREE_CODE (TREE_TYPE (otype
)) != FUNCTION_TYPE
3713 /* Don't warn about opaque types, where the actual alignment
3714 restriction is unknown. */
3715 && !((TREE_CODE (TREE_TYPE (otype
)) == UNION_TYPE
3716 || TREE_CODE (TREE_TYPE (otype
)) == RECORD_TYPE
)
3717 && TYPE_MODE (TREE_TYPE (otype
)) == VOIDmode
)
3718 && TYPE_ALIGN (TREE_TYPE (type
)) > TYPE_ALIGN (TREE_TYPE (otype
)))
3719 warning ("cast increases required alignment of target type");
3721 if (TREE_CODE (type
) == INTEGER_TYPE
3722 && TREE_CODE (otype
) == POINTER_TYPE
3723 && TYPE_PRECISION (type
) != TYPE_PRECISION (otype
)
3724 && !TREE_CONSTANT (value
))
3725 warning ("cast from pointer to integer of different size");
3727 if (warn_bad_function_cast
3728 && TREE_CODE (value
) == CALL_EXPR
3729 && TREE_CODE (type
) != TREE_CODE (otype
))
3730 warning ("cast does not match function type");
3732 if (TREE_CODE (type
) == POINTER_TYPE
3733 && TREE_CODE (otype
) == INTEGER_TYPE
3734 && TYPE_PRECISION (type
) != TYPE_PRECISION (otype
)
3736 /* Don't warn about converting 0 to pointer,
3737 provided the 0 was explicit--not cast or made by folding. */
3738 && !(TREE_CODE (value
) == INTEGER_CST
&& integer_zerop (value
))
3740 /* Don't warn about converting any constant. */
3741 && !TREE_CONSTANT (value
))
3742 warning ("cast to pointer from integer of different size");
3745 value
= convert (type
, value
);
3747 /* Ignore any integer overflow caused by the cast. */
3748 if (TREE_CODE (value
) == INTEGER_CST
)
3750 TREE_OVERFLOW (value
) = TREE_OVERFLOW (ovalue
);
3751 TREE_CONSTANT_OVERFLOW (value
) = TREE_CONSTANT_OVERFLOW (ovalue
);
3755 /* Pedantically, don't ley (void *) (FOO *) 0 be a null pointer constant. */
3756 if (pedantic
&& TREE_CODE (value
) == INTEGER_CST
3757 && TREE_CODE (expr
) == INTEGER_CST
3758 && TREE_CODE (TREE_TYPE (expr
)) != INTEGER_TYPE
)
3759 value
= non_lvalue (value
);
3761 /* If pedantic, don't let a cast be an lvalue. */
3762 if (value
== expr
&& pedantic
)
3763 value
= non_lvalue (value
);
3768 /* Build an assignment expression of lvalue LHS from value RHS.
3769 MODIFYCODE is the code for a binary operator that we use
3770 to combine the old value of LHS with RHS to get the new value.
3771 Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment. */
3774 build_modify_expr (lhs
, modifycode
, rhs
)
3776 enum tree_code modifycode
;
3778 register tree result
;
3780 tree lhstype
= TREE_TYPE (lhs
);
3781 tree olhstype
= lhstype
;
3783 /* Types that aren't fully specified cannot be used in assignments. */
3784 lhs
= require_complete_type (lhs
);
3786 /* Avoid duplicate error messages from operands that had errors. */
3787 if (TREE_CODE (lhs
) == ERROR_MARK
|| TREE_CODE (rhs
) == ERROR_MARK
)
3788 return error_mark_node
;
3790 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3791 /* Do not use STRIP_NOPS here. We do not want an enumerator
3792 whose value is 0 to count as a null pointer constant. */
3793 if (TREE_CODE (rhs
) == NON_LVALUE_EXPR
)
3794 rhs
= TREE_OPERAND (rhs
, 0);
3798 /* Handle control structure constructs used as "lvalues". */
3800 switch (TREE_CODE (lhs
))
3802 /* Handle (a, b) used as an "lvalue". */
3804 pedantic_lvalue_warning (COMPOUND_EXPR
);
3805 newrhs
= build_modify_expr (TREE_OPERAND (lhs
, 1),
3807 if (TREE_CODE (newrhs
) == ERROR_MARK
)
3808 return error_mark_node
;
3809 return build (COMPOUND_EXPR
, lhstype
,
3810 TREE_OPERAND (lhs
, 0), newrhs
);
3812 /* Handle (a ? b : c) used as an "lvalue". */
3814 pedantic_lvalue_warning (COND_EXPR
);
3815 rhs
= save_expr (rhs
);
3817 /* Produce (a ? (b = rhs) : (c = rhs))
3818 except that the RHS goes through a save-expr
3819 so the code to compute it is only emitted once. */
3821 = build_conditional_expr (TREE_OPERAND (lhs
, 0),
3822 build_modify_expr (TREE_OPERAND (lhs
, 1),
3824 build_modify_expr (TREE_OPERAND (lhs
, 2),
3826 if (TREE_CODE (cond
) == ERROR_MARK
)
3828 /* Make sure the code to compute the rhs comes out
3829 before the split. */
3830 return build (COMPOUND_EXPR
, TREE_TYPE (lhs
),
3831 /* But cast it to void to avoid an "unused" error. */
3832 convert (void_type_node
, rhs
), cond
);
3838 /* If a binary op has been requested, combine the old LHS value with the RHS
3839 producing the value we should actually store into the LHS. */
3841 if (modifycode
!= NOP_EXPR
)
3843 lhs
= stabilize_reference (lhs
);
3844 newrhs
= build_binary_op (modifycode
, lhs
, rhs
, 1);
3847 /* Handle a cast used as an "lvalue".
3848 We have already performed any binary operator using the value as cast.
3849 Now convert the result to the cast type of the lhs,
3850 and then true type of the lhs and store it there;
3851 then convert result back to the cast type to be the value
3852 of the assignment. */
3854 switch (TREE_CODE (lhs
))
3859 case FIX_TRUNC_EXPR
:
3860 case FIX_FLOOR_EXPR
:
3861 case FIX_ROUND_EXPR
:
3863 if (TREE_CODE (TREE_TYPE (newrhs
)) == ARRAY_TYPE
3864 || TREE_CODE (TREE_TYPE (newrhs
)) == FUNCTION_TYPE
)
3865 newrhs
= default_conversion (newrhs
);
3867 tree inner_lhs
= TREE_OPERAND (lhs
, 0);
3869 result
= build_modify_expr (inner_lhs
, NOP_EXPR
,
3870 convert (TREE_TYPE (inner_lhs
),
3871 convert (lhstype
, newrhs
)));
3872 if (TREE_CODE (result
) == ERROR_MARK
)
3874 pedantic_lvalue_warning (CONVERT_EXPR
);
3875 return convert (TREE_TYPE (lhs
), result
);
3882 /* Now we have handled acceptable kinds of LHS that are not truly lvalues.
3883 Reject anything strange now. */
3885 if (!lvalue_or_else (lhs
, "invalid lvalue in assignment"))
3886 return error_mark_node
;
3888 /* Warn about storing in something that is `const'. */
3890 if (TREE_READONLY (lhs
) || TYPE_READONLY (lhstype
)
3891 || ((TREE_CODE (lhstype
) == RECORD_TYPE
3892 || TREE_CODE (lhstype
) == UNION_TYPE
)
3893 && C_TYPE_FIELDS_READONLY (lhstype
)))
3894 readonly_warning (lhs
, "assignment");
3896 /* If storing into a structure or union member,
3897 it has probably been given type `int'.
3898 Compute the type that would go with
3899 the actual amount of storage the member occupies. */
3901 if (TREE_CODE (lhs
) == COMPONENT_REF
3902 && (TREE_CODE (lhstype
) == INTEGER_TYPE
3903 || TREE_CODE (lhstype
) == REAL_TYPE
3904 || TREE_CODE (lhstype
) == ENUMERAL_TYPE
))
3905 lhstype
= TREE_TYPE (get_unwidened (lhs
, 0));
3907 /* If storing in a field that is in actuality a short or narrower than one,
3908 we must store in the field in its actual type. */
3910 if (lhstype
!= TREE_TYPE (lhs
))
3912 lhs
= copy_node (lhs
);
3913 TREE_TYPE (lhs
) = lhstype
;
3916 /* Convert new value to destination type. */
3918 newrhs
= convert_for_assignment (lhstype
, newrhs
, _("assignment"),
3919 NULL_TREE
, NULL_TREE
, 0);
3920 if (TREE_CODE (newrhs
) == ERROR_MARK
)
3921 return error_mark_node
;
3923 result
= build (MODIFY_EXPR
, lhstype
, lhs
, newrhs
);
3924 TREE_SIDE_EFFECTS (result
) = 1;
3926 /* If we got the LHS in a different type for storing in,
3927 convert the result back to the nominal type of LHS
3928 so that the value we return always has the same type
3929 as the LHS argument. */
3931 if (olhstype
== TREE_TYPE (result
))
3933 return convert_for_assignment (olhstype
, result
, _("assignment"),
3934 NULL_TREE
, NULL_TREE
, 0);
3937 /* Convert value RHS to type TYPE as preparation for an assignment
3938 to an lvalue of type TYPE.
3939 The real work of conversion is done by `convert'.
3940 The purpose of this function is to generate error messages
3941 for assignments that are not allowed in C.
3942 ERRTYPE is a string to use in error messages:
3943 "assignment", "return", etc. If it is null, this is parameter passing
3944 for a function call (and different error messages are output).
3946 FUNNAME is the name of the function being called,
3947 as an IDENTIFIER_NODE, or null.
3948 PARMNUM is the number of the argument, for printing in error messages. */
3951 convert_for_assignment (type
, rhs
, errtype
, fundecl
, funname
, parmnum
)
3953 const char *errtype
;
3954 tree fundecl
, funname
;
3957 register enum tree_code codel
= TREE_CODE (type
);
3958 register tree rhstype
;
3959 register enum tree_code coder
;
3961 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
3962 /* Do not use STRIP_NOPS here. We do not want an enumerator
3963 whose value is 0 to count as a null pointer constant. */
3964 if (TREE_CODE (rhs
) == NON_LVALUE_EXPR
)
3965 rhs
= TREE_OPERAND (rhs
, 0);
3967 if (TREE_CODE (TREE_TYPE (rhs
)) == ARRAY_TYPE
3968 || TREE_CODE (TREE_TYPE (rhs
)) == FUNCTION_TYPE
)
3969 rhs
= default_conversion (rhs
);
3970 else if (optimize
&& TREE_CODE (rhs
) == VAR_DECL
)
3971 rhs
= decl_constant_value (rhs
);
3973 rhstype
= TREE_TYPE (rhs
);
3974 coder
= TREE_CODE (rhstype
);
3976 if (coder
== ERROR_MARK
)
3977 return error_mark_node
;
3979 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (rhstype
))
3981 overflow_warning (rhs
);
3982 /* Check for Objective-C protocols. This will issue a warning if
3983 there are protocol violations. No need to use the return value. */
3984 maybe_objc_comptypes (type
, rhstype
, 0);
3988 if (coder
== VOID_TYPE
)
3990 error ("void value not ignored as it ought to be");
3991 return error_mark_node
;
3993 /* Arithmetic types all interconvert, and enum is treated like int. */
3994 if ((codel
== INTEGER_TYPE
|| codel
== REAL_TYPE
|| codel
== ENUMERAL_TYPE
3995 || codel
== COMPLEX_TYPE
)
3996 && (coder
== INTEGER_TYPE
|| coder
== REAL_TYPE
|| coder
== ENUMERAL_TYPE
3997 || coder
== COMPLEX_TYPE
))
3998 return convert_and_check (type
, rhs
);
4000 /* Conversion to a transparent union from its member types.
4001 This applies only to function arguments. */
4002 else if (codel
== UNION_TYPE
&& TYPE_TRANSPARENT_UNION (type
) && ! errtype
)
4005 tree marginal_memb_type
= 0;
4007 for (memb_types
= TYPE_FIELDS (type
); memb_types
;
4008 memb_types
= TREE_CHAIN (memb_types
))
4010 tree memb_type
= TREE_TYPE (memb_types
);
4012 if (comptypes (TYPE_MAIN_VARIANT (memb_type
),
4013 TYPE_MAIN_VARIANT (rhstype
)))
4016 if (TREE_CODE (memb_type
) != POINTER_TYPE
)
4019 if (coder
== POINTER_TYPE
)
4021 register tree ttl
= TREE_TYPE (memb_type
);
4022 register tree ttr
= TREE_TYPE (rhstype
);
4024 /* Any non-function converts to a [const][volatile] void *
4025 and vice versa; otherwise, targets must be the same.
4026 Meanwhile, the lhs target must have all the qualifiers of
4028 if (TYPE_MAIN_VARIANT (ttl
) == void_type_node
4029 || TYPE_MAIN_VARIANT (ttr
) == void_type_node
4030 || comp_target_types (memb_type
, rhstype
))
4032 /* If this type won't generate any warnings, use it. */
4033 if (TYPE_QUALS (ttl
) == TYPE_QUALS (ttr
)
4034 || ((TREE_CODE (ttr
) == FUNCTION_TYPE
4035 && TREE_CODE (ttl
) == FUNCTION_TYPE
)
4036 ? ((TYPE_QUALS (ttl
) | TYPE_QUALS (ttr
))
4037 == TYPE_QUALS (ttr
))
4038 : ((TYPE_QUALS (ttl
) | TYPE_QUALS (ttr
))
4039 == TYPE_QUALS (ttl
))))
4042 /* Keep looking for a better type, but remember this one. */
4043 if (! marginal_memb_type
)
4044 marginal_memb_type
= memb_type
;
4048 /* Can convert integer zero to any pointer type. */
4049 if (integer_zerop (rhs
)
4050 || (TREE_CODE (rhs
) == NOP_EXPR
4051 && integer_zerop (TREE_OPERAND (rhs
, 0))))
4053 rhs
= null_pointer_node
;
4058 if (memb_types
|| marginal_memb_type
)
4062 /* We have only a marginally acceptable member type;
4063 it needs a warning. */
4064 register tree ttl
= TREE_TYPE (marginal_memb_type
);
4065 register tree ttr
= TREE_TYPE (rhstype
);
4067 /* Const and volatile mean something different for function
4068 types, so the usual warnings are not appropriate. */
4069 if (TREE_CODE (ttr
) == FUNCTION_TYPE
4070 && TREE_CODE (ttl
) == FUNCTION_TYPE
)
4072 /* Because const and volatile on functions are
4073 restrictions that say the function will not do
4074 certain things, it is okay to use a const or volatile
4075 function where an ordinary one is wanted, but not
4077 if (TYPE_QUALS (ttl
) & ~TYPE_QUALS (ttr
))
4078 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4079 errtype
, funname
, parmnum
);
4081 else if (TYPE_QUALS (ttr
) & ~TYPE_QUALS (ttl
))
4082 warn_for_assignment ("%s discards qualifiers from pointer target type",
4087 if (pedantic
&& ! DECL_IN_SYSTEM_HEADER (fundecl
))
4088 pedwarn ("ANSI C prohibits argument conversion to union type");
4090 return build1 (NOP_EXPR
, type
, rhs
);
4094 /* Conversions among pointers */
4095 else if (codel
== POINTER_TYPE
&& coder
== POINTER_TYPE
)
4097 register tree ttl
= TREE_TYPE (type
);
4098 register tree ttr
= TREE_TYPE (rhstype
);
4100 /* Any non-function converts to a [const][volatile] void *
4101 and vice versa; otherwise, targets must be the same.
4102 Meanwhile, the lhs target must have all the qualifiers of the rhs. */
4103 if (TYPE_MAIN_VARIANT (ttl
) == void_type_node
4104 || TYPE_MAIN_VARIANT (ttr
) == void_type_node
4105 || comp_target_types (type
, rhstype
)
4106 || (unsigned_type (TYPE_MAIN_VARIANT (ttl
))
4107 == unsigned_type (TYPE_MAIN_VARIANT (ttr
))))
4110 && ((TYPE_MAIN_VARIANT (ttl
) == void_type_node
4111 && TREE_CODE (ttr
) == FUNCTION_TYPE
)
4113 (TYPE_MAIN_VARIANT (ttr
) == void_type_node
4114 /* Check TREE_CODE to catch cases like (void *) (char *) 0
4115 which are not ANSI null ptr constants. */
4116 && (!integer_zerop (rhs
) || TREE_CODE (rhs
) == NOP_EXPR
)
4117 && TREE_CODE (ttl
) == FUNCTION_TYPE
)))
4118 warn_for_assignment ("ANSI forbids %s between function pointer and `void *'",
4119 errtype
, funname
, parmnum
);
4120 /* Const and volatile mean something different for function types,
4121 so the usual warnings are not appropriate. */
4122 else if (TREE_CODE (ttr
) != FUNCTION_TYPE
4123 && TREE_CODE (ttl
) != FUNCTION_TYPE
)
4125 if (TYPE_QUALS (ttr
) & ~TYPE_QUALS (ttl
))
4126 warn_for_assignment ("%s discards qualifiers from pointer target type",
4127 errtype
, funname
, parmnum
);
4128 /* If this is not a case of ignoring a mismatch in signedness,
4130 else if (TYPE_MAIN_VARIANT (ttl
) == void_type_node
4131 || TYPE_MAIN_VARIANT (ttr
) == void_type_node
4132 || comp_target_types (type
, rhstype
))
4134 /* If there is a mismatch, do warn. */
4136 warn_for_assignment ("pointer targets in %s differ in signedness",
4137 errtype
, funname
, parmnum
);
4139 else if (TREE_CODE (ttl
) == FUNCTION_TYPE
4140 && TREE_CODE (ttr
) == FUNCTION_TYPE
)
4142 /* Because const and volatile on functions are restrictions
4143 that say the function will not do certain things,
4144 it is okay to use a const or volatile function
4145 where an ordinary one is wanted, but not vice-versa. */
4146 if (TYPE_QUALS (ttl
) & ~TYPE_QUALS (ttr
))
4147 warn_for_assignment ("%s makes qualified function pointer from unqualified",
4148 errtype
, funname
, parmnum
);
4152 warn_for_assignment ("%s from incompatible pointer type",
4153 errtype
, funname
, parmnum
);
4154 return convert (type
, rhs
);
4156 else if (codel
== POINTER_TYPE
&& coder
== INTEGER_TYPE
)
4158 /* An explicit constant 0 can convert to a pointer,
4159 or one that results from arithmetic, even including
4160 a cast to integer type. */
4161 if (! (TREE_CODE (rhs
) == INTEGER_CST
&& integer_zerop (rhs
))
4163 ! (TREE_CODE (rhs
) == NOP_EXPR
4164 && TREE_CODE (TREE_TYPE (rhs
)) == INTEGER_TYPE
4165 && TREE_CODE (TREE_OPERAND (rhs
, 0)) == INTEGER_CST
4166 && integer_zerop (TREE_OPERAND (rhs
, 0))))
4168 warn_for_assignment ("%s makes pointer from integer without a cast",
4169 errtype
, funname
, parmnum
);
4170 return convert (type
, rhs
);
4172 return null_pointer_node
;
4174 else if (codel
== INTEGER_TYPE
&& coder
== POINTER_TYPE
)
4176 warn_for_assignment ("%s makes integer from pointer without a cast",
4177 errtype
, funname
, parmnum
);
4178 return convert (type
, rhs
);
4185 tree selector
= maybe_building_objc_message_expr ();
4187 if (selector
&& parmnum
> 2)
4188 error ("incompatible type for argument %d of `%s'",
4189 parmnum
- 2, IDENTIFIER_POINTER (selector
));
4191 error ("incompatible type for argument %d of `%s'",
4192 parmnum
, IDENTIFIER_POINTER (funname
));
4195 error ("incompatible type for argument %d of indirect function call",
4199 error ("incompatible types in %s", errtype
);
4201 return error_mark_node
;
4204 /* Print a warning using MSGID.
4205 It gets OPNAME as its one parameter.
4206 If OPNAME is null, it is replaced by "passing arg ARGNUM of `FUNCTION'".
4207 FUNCTION and ARGNUM are handled specially if we are building an
4208 Objective-C selector. */
4211 warn_for_assignment (msgid
, opname
, function
, argnum
)
4219 tree selector
= maybe_building_objc_message_expr ();
4222 if (selector
&& argnum
> 2)
4224 function
= selector
;
4229 /* Function name is known; supply it. */
4230 const char *argstring
= _("passing arg %d of `%s'");
4231 new_opname
= (char *) alloca (IDENTIFIER_LENGTH (function
)
4232 + strlen (argstring
) + 1 + 25
4234 sprintf (new_opname
, argstring
, argnum
,
4235 IDENTIFIER_POINTER (function
));
4239 /* Function name unknown (call through ptr); just give arg number.*/
4240 const char *argnofun
= _("passing arg %d of pointer to function");
4241 new_opname
= (char *) alloca (strlen (argnofun
) + 1 + 25 /*%d*/ + 1);
4242 sprintf (new_opname
, argnofun
, argnum
);
4244 opname
= new_opname
;
4246 pedwarn (msgid
, opname
);
4249 /* If VALUE is a compound expr all of whose expressions are constant, then
4250 return its value. Otherwise, return error_mark_node.
4252 This is for handling COMPOUND_EXPRs as initializer elements
4253 which is allowed with a warning when -pedantic is specified. */
4256 valid_compound_expr_initializer (value
, endtype
)
4260 if (TREE_CODE (value
) == COMPOUND_EXPR
)
4262 if (valid_compound_expr_initializer (TREE_OPERAND (value
, 0), endtype
)
4264 return error_mark_node
;
4265 return valid_compound_expr_initializer (TREE_OPERAND (value
, 1),
4268 else if (! TREE_CONSTANT (value
)
4269 && ! initializer_constant_valid_p (value
, endtype
))
4270 return error_mark_node
;
4275 /* Perform appropriate conversions on the initial value of a variable,
4276 store it in the declaration DECL,
4277 and print any error messages that are appropriate.
4278 If the init is invalid, store an ERROR_MARK. */
4281 store_init_value (decl
, init
)
4284 register tree value
, type
;
4286 /* If variable's type was invalidly declared, just ignore it. */
4288 type
= TREE_TYPE (decl
);
4289 if (TREE_CODE (type
) == ERROR_MARK
)
4292 /* Digest the specified initializer into an expression. */
4294 value
= digest_init (type
, init
, TREE_STATIC (decl
),
4295 TREE_STATIC (decl
) || pedantic
);
4297 /* Store the expression if valid; else report error. */
4300 /* Note that this is the only place we can detect the error
4301 in a case such as struct foo bar = (struct foo) { x, y };
4302 where there is one initial value which is a constructor expression. */
4303 if (value
== error_mark_node
)
4305 else if (TREE_STATIC (decl
) && ! TREE_CONSTANT (value
))
4307 error ("initializer for static variable is not constant");
4308 value
= error_mark_node
;
4310 else if (TREE_STATIC (decl
)
4311 && initializer_constant_valid_p (value
, TREE_TYPE (value
)) == 0)
4313 error ("initializer for static variable uses complicated arithmetic");
4314 value
= error_mark_node
;
4318 if (pedantic
&& TREE_CODE (value
) == CONSTRUCTOR
)
4320 if (! TREE_CONSTANT (value
))
4321 pedwarn ("aggregate initializer is not constant");
4322 else if (! TREE_STATIC (value
))
4323 pedwarn ("aggregate initializer uses complicated arithmetic");
4328 DECL_INITIAL (decl
) = value
;
4330 /* ANSI wants warnings about out-of-range constant initializers. */
4331 STRIP_TYPE_NOPS (value
);
4332 constant_expression_warning (value
);
4335 /* Methods for storing and printing names for error messages. */
4337 /* Implement a spelling stack that allows components of a name to be pushed
4338 and popped. Each element on the stack is this structure. */
4350 #define SPELLING_STRING 1
4351 #define SPELLING_MEMBER 2
4352 #define SPELLING_BOUNDS 3
4354 static struct spelling
*spelling
; /* Next stack element (unused). */
4355 static struct spelling
*spelling_base
; /* Spelling stack base. */
4356 static int spelling_size
; /* Size of the spelling stack. */
4358 /* Macros to save and restore the spelling stack around push_... functions.
4359 Alternative to SAVE_SPELLING_STACK. */
4361 #define SPELLING_DEPTH() (spelling - spelling_base)
4362 #define RESTORE_SPELLING_DEPTH(depth) (spelling = spelling_base + depth)
4364 /* Save and restore the spelling stack around arbitrary C code. */
4366 #define SAVE_SPELLING_DEPTH(code) \
4368 int __depth = SPELLING_DEPTH (); \
4370 RESTORE_SPELLING_DEPTH (__depth); \
4373 /* Push an element on the spelling stack with type KIND and assign VALUE
4376 #define PUSH_SPELLING(KIND, VALUE, MEMBER) \
4378 int depth = SPELLING_DEPTH (); \
4380 if (depth >= spelling_size) \
4382 spelling_size += 10; \
4383 if (spelling_base == 0) \
4385 = (struct spelling *) xmalloc (spelling_size * sizeof (struct spelling)); \
4388 = (struct spelling *) xrealloc (spelling_base, \
4389 spelling_size * sizeof (struct spelling)); \
4390 RESTORE_SPELLING_DEPTH (depth); \
4393 spelling->kind = (KIND); \
4394 spelling->MEMBER = (VALUE); \
4398 /* Push STRING on the stack. Printed literally. */
4401 push_string (string
)
4404 PUSH_SPELLING (SPELLING_STRING
, string
, u
.s
);
4407 /* Push a member name on the stack. Printed as '.' STRING. */
4410 push_member_name (decl
)
4415 = DECL_NAME (decl
) ? IDENTIFIER_POINTER (DECL_NAME (decl
)) : "<anonymous>";
4416 PUSH_SPELLING (SPELLING_MEMBER
, string
, u
.s
);
4419 /* Push an array bounds on the stack. Printed as [BOUNDS]. */
4422 push_array_bounds (bounds
)
4425 PUSH_SPELLING (SPELLING_BOUNDS
, bounds
, u
.i
);
4428 /* Compute the maximum size in bytes of the printed spelling. */
4433 register int size
= 0;
4434 register struct spelling
*p
;
4436 for (p
= spelling_base
; p
< spelling
; p
++)
4438 if (p
->kind
== SPELLING_BOUNDS
)
4441 size
+= strlen (p
->u
.s
) + 1;
4447 /* Print the spelling to BUFFER and return it. */
4450 print_spelling (buffer
)
4451 register char *buffer
;
4453 register char *d
= buffer
;
4454 register struct spelling
*p
;
4456 for (p
= spelling_base
; p
< spelling
; p
++)
4457 if (p
->kind
== SPELLING_BOUNDS
)
4459 sprintf (d
, "[%d]", p
->u
.i
);
4464 register const char *s
;
4465 if (p
->kind
== SPELLING_MEMBER
)
4467 for (s
= p
->u
.s
; (*d
= *s
++); d
++)
4474 /* Issue an error message for a bad initializer component.
4475 MSGID identifies the message.
4476 The component name is taken from the spelling stack. */
4485 ofwhat
= print_spelling ((char *) alloca (spelling_length () + 1));
4487 error ("(near initialization for `%s')", ofwhat
);
4490 /* Issue a pedantic warning for a bad initializer component.
4491 MSGID identifies the message.
4492 The component name is taken from the spelling stack. */
4495 pedwarn_init (msgid
)
4501 ofwhat
= print_spelling ((char *) alloca (spelling_length () + 1));
4503 pedwarn ("(near initialization for `%s')", ofwhat
);
4506 /* Issue a warning for a bad initializer component.
4507 MSGID identifies the message.
4508 The component name is taken from the spelling stack. */
4511 warning_init (msgid
)
4517 ofwhat
= print_spelling ((char *) alloca (spelling_length () + 1));
4519 warning ("(near initialization for `%s')", ofwhat
);
4522 /* Digest the parser output INIT as an initializer for type TYPE.
4523 Return a C expression of type TYPE to represent the initial value.
4525 The arguments REQUIRE_CONSTANT and CONSTRUCTOR_CONSTANT request errors
4526 if non-constant initializers or elements are seen. CONSTRUCTOR_CONSTANT
4527 applies only to elements of constructors. */
4530 digest_init (type
, init
, require_constant
, constructor_constant
)
4532 int require_constant
, constructor_constant
;
4534 enum tree_code code
= TREE_CODE (type
);
4535 tree inside_init
= init
;
4537 if (init
== error_mark_node
)
4540 /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
4541 /* Do not use STRIP_NOPS here. We do not want an enumerator
4542 whose value is 0 to count as a null pointer constant. */
4543 if (TREE_CODE (init
) == NON_LVALUE_EXPR
)
4544 inside_init
= TREE_OPERAND (init
, 0);
4546 /* Initialization of an array of chars from a string constant
4547 optionally enclosed in braces. */
4549 if (code
== ARRAY_TYPE
)
4551 tree typ1
= TYPE_MAIN_VARIANT (TREE_TYPE (type
));
4552 if ((typ1
== char_type_node
4553 || typ1
== signed_char_type_node
4554 || typ1
== unsigned_char_type_node
4555 || typ1
== unsigned_wchar_type_node
4556 || typ1
== signed_wchar_type_node
)
4557 && ((inside_init
&& TREE_CODE (inside_init
) == STRING_CST
)))
4559 if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init
)),
4560 TYPE_MAIN_VARIANT (type
)))
4563 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init
)))
4565 && TYPE_PRECISION (typ1
) == TYPE_PRECISION (char_type_node
))
4567 error_init ("char-array initialized from wide string");
4568 return error_mark_node
;
4570 if ((TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init
)))
4572 && TYPE_PRECISION (typ1
) != TYPE_PRECISION (char_type_node
))
4574 error_init ("int-array initialized from non-wide string");
4575 return error_mark_node
;
4578 TREE_TYPE (inside_init
) = type
;
4579 if (TYPE_DOMAIN (type
) != 0
4580 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
4582 register int size
= TREE_INT_CST_LOW (TYPE_SIZE (type
));
4583 size
= (size
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
4584 /* Subtract 1 (or sizeof (wchar_t))
4585 because it's ok to ignore the terminating null char
4586 that is counted in the length of the constant. */
4587 if (size
< TREE_STRING_LENGTH (inside_init
)
4588 - (TYPE_PRECISION (typ1
) != TYPE_PRECISION (char_type_node
)
4589 ? TYPE_PRECISION (wchar_type_node
) / BITS_PER_UNIT
4591 pedwarn_init ("initializer-string for array of chars is too long");
4597 /* Any type can be initialized
4598 from an expression of the same type, optionally with braces. */
4600 if (inside_init
&& TREE_TYPE (inside_init
) != 0
4601 && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init
)),
4602 TYPE_MAIN_VARIANT (type
))
4603 || (code
== ARRAY_TYPE
4604 && comptypes (TREE_TYPE (inside_init
), type
))
4605 || (code
== POINTER_TYPE
4606 && (TREE_CODE (TREE_TYPE (inside_init
)) == ARRAY_TYPE
4607 || TREE_CODE (TREE_TYPE (inside_init
)) == FUNCTION_TYPE
)
4608 && comptypes (TREE_TYPE (TREE_TYPE (inside_init
)),
4609 TREE_TYPE (type
)))))
4611 if (code
== POINTER_TYPE
4612 && (TREE_CODE (TREE_TYPE (inside_init
)) == ARRAY_TYPE
4613 || TREE_CODE (TREE_TYPE (inside_init
)) == FUNCTION_TYPE
))
4614 inside_init
= default_conversion (inside_init
);
4615 else if (code
== ARRAY_TYPE
&& TREE_CODE (inside_init
) != STRING_CST
4616 && TREE_CODE (inside_init
) != CONSTRUCTOR
)
4618 error_init ("array initialized from non-constant array expression");
4619 return error_mark_node
;
4622 if (optimize
&& TREE_CODE (inside_init
) == VAR_DECL
)
4623 inside_init
= decl_constant_value (inside_init
);
4625 /* Compound expressions can only occur here if -pedantic or
4626 -pedantic-errors is specified. In the later case, we always want
4627 an error. In the former case, we simply want a warning. */
4628 if (require_constant
&& pedantic
4629 && TREE_CODE (inside_init
) == COMPOUND_EXPR
)
4632 = valid_compound_expr_initializer (inside_init
,
4633 TREE_TYPE (inside_init
));
4634 if (inside_init
== error_mark_node
)
4635 error_init ("initializer element is not constant");
4637 pedwarn_init ("initializer element is not constant");
4638 if (flag_pedantic_errors
)
4639 inside_init
= error_mark_node
;
4641 else if (require_constant
&& ! TREE_CONSTANT (inside_init
))
4643 error_init ("initializer element is not constant");
4644 inside_init
= error_mark_node
;
4646 else if (require_constant
4647 && initializer_constant_valid_p (inside_init
, TREE_TYPE (inside_init
)) == 0)
4649 error_init ("initializer element is not computable at load time");
4650 inside_init
= error_mark_node
;
4656 /* Handle scalar types, including conversions. */
4658 if (code
== INTEGER_TYPE
|| code
== REAL_TYPE
|| code
== POINTER_TYPE
4659 || code
== ENUMERAL_TYPE
|| code
== COMPLEX_TYPE
)
4661 /* Note that convert_for_assignment calls default_conversion
4662 for arrays and functions. We must not call it in the
4663 case where inside_init is a null pointer constant. */
4665 = convert_for_assignment (type
, init
, _("initialization"),
4666 NULL_TREE
, NULL_TREE
, 0);
4668 if (require_constant
&& ! TREE_CONSTANT (inside_init
))
4670 error_init ("initializer element is not constant");
4671 inside_init
= error_mark_node
;
4673 else if (require_constant
4674 && initializer_constant_valid_p (inside_init
, TREE_TYPE (inside_init
)) == 0)
4676 error_init ("initializer element is not computable at load time");
4677 inside_init
= error_mark_node
;
4683 /* Come here only for records and arrays. */
4685 if (TYPE_SIZE (type
) && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4687 error_init ("variable-sized object may not be initialized");
4688 return error_mark_node
;
4691 /* Traditionally, you can write struct foo x = 0;
4692 and it initializes the first element of x to 0. */
4693 if (flag_traditional
)
4695 tree top
= 0, prev
= 0, otype
= type
;
4696 while (TREE_CODE (type
) == RECORD_TYPE
4697 || TREE_CODE (type
) == ARRAY_TYPE
4698 || TREE_CODE (type
) == QUAL_UNION_TYPE
4699 || TREE_CODE (type
) == UNION_TYPE
)
4701 tree temp
= build (CONSTRUCTOR
, type
, NULL_TREE
, NULL_TREE
);
4705 TREE_OPERAND (prev
, 1) = build_tree_list (NULL_TREE
, temp
);
4707 if (TREE_CODE (type
) == ARRAY_TYPE
)
4708 type
= TREE_TYPE (type
);
4709 else if (TYPE_FIELDS (type
))
4710 type
= TREE_TYPE (TYPE_FIELDS (type
));
4713 error_init ("invalid initializer");
4714 return error_mark_node
;
4720 TREE_OPERAND (prev
, 1)
4721 = build_tree_list (NULL_TREE
,
4722 digest_init (type
, init
, require_constant
,
4723 constructor_constant
));
4727 return error_mark_node
;
4729 error_init ("invalid initializer");
4730 return error_mark_node
;
4733 /* Handle initializers that use braces. */
4735 /* Type of object we are accumulating a constructor for.
4736 This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE. */
4737 static tree constructor_type
;
4739 /* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
4741 static tree constructor_fields
;
4743 /* For an ARRAY_TYPE, this is the specified index
4744 at which to store the next element we get.
4745 This is a special INTEGER_CST node that we modify in place. */
4746 static tree constructor_index
;
4748 /* For an ARRAY_TYPE, this is the end index of the range
4749 to initialize with the next element, or NULL in the ordinary case
4750 where the element is used just once. */
4751 static tree constructor_range_end
;
4753 /* For an ARRAY_TYPE, this is the maximum index. */
4754 static tree constructor_max_index
;
4756 /* For a RECORD_TYPE, this is the first field not yet written out. */
4757 static tree constructor_unfilled_fields
;
4759 /* For an ARRAY_TYPE, this is the index of the first element
4760 not yet written out.
4761 This is a special INTEGER_CST node that we modify in place. */
4762 static tree constructor_unfilled_index
;
4764 /* In a RECORD_TYPE, the byte index of the next consecutive field.
4765 This is so we can generate gaps between fields, when appropriate.
4766 This is a special INTEGER_CST node that we modify in place. */
4767 static tree constructor_bit_index
;
4769 /* If we are saving up the elements rather than allocating them,
4770 this is the list of elements so far (in reverse order,
4771 most recent first). */
4772 static tree constructor_elements
;
4774 /* 1 if so far this constructor's elements are all compile-time constants. */
4775 static int constructor_constant
;
4777 /* 1 if so far this constructor's elements are all valid address constants. */
4778 static int constructor_simple
;
4780 /* 1 if this constructor is erroneous so far. */
4781 static int constructor_erroneous
;
4783 /* 1 if have called defer_addressed_constants. */
4784 static int constructor_subconstants_deferred
;
4786 /* Structure for managing pending initializer elements, organized as an
4791 struct init_node
*left
, *right
;
4792 struct init_node
*parent
;
4798 /* Tree of pending elements at this constructor level.
4799 These are elements encountered out of order
4800 which belong at places we haven't reached yet in actually
4801 writing the output. */
4802 static struct init_node
*constructor_pending_elts
;
4804 /* The SPELLING_DEPTH of this constructor. */
4805 static int constructor_depth
;
4807 /* 0 if implicitly pushing constructor levels is allowed. */
4808 int constructor_no_implicit
= 0; /* 0 for C; 1 for some other languages. */
4810 static int require_constant_value
;
4811 static int require_constant_elements
;
4813 /* 1 if it is ok to output this constructor as we read it.
4814 0 means must accumulate a CONSTRUCTOR expression. */
4815 static int constructor_incremental
;
4817 /* DECL node for which an initializer is being read.
4818 0 means we are reading a constructor expression
4819 such as (struct foo) {...}. */
4820 static tree constructor_decl
;
4822 /* start_init saves the ASMSPEC arg here for really_start_incremental_init. */
4823 static char *constructor_asmspec
;
4825 /* Nonzero if this is an initializer for a top-level decl. */
4826 static int constructor_top_level
;
4829 /* This stack has a level for each implicit or explicit level of
4830 structuring in the initializer, including the outermost one. It
4831 saves the values of most of the variables above. */
4833 struct constructor_stack
4835 struct constructor_stack
*next
;
4841 tree unfilled_index
;
4842 tree unfilled_fields
;
4846 struct init_node
*pending_elts
;
4848 /* If nonzero, this value should replace the entire
4849 constructor at this level. */
4850 tree replacement_value
;
4859 struct constructor_stack
*constructor_stack
;
4861 /* This stack records separate initializers that are nested.
4862 Nested initializers can't happen in ANSI C, but GNU C allows them
4863 in cases like { ... (struct foo) { ... } ... }. */
4865 struct initializer_stack
4867 struct initializer_stack
*next
;
4870 struct constructor_stack
*constructor_stack
;
4872 struct spelling
*spelling
;
4873 struct spelling
*spelling_base
;
4877 char require_constant_value
;
4878 char require_constant_elements
;
4882 struct initializer_stack
*initializer_stack
;
4884 /* Prepare to parse and output the initializer for variable DECL. */
4887 start_init (decl
, asmspec_tree
, top_level
)
4893 struct initializer_stack
*p
4894 = (struct initializer_stack
*) xmalloc (sizeof (struct initializer_stack
));
4898 asmspec
= TREE_STRING_POINTER (asmspec_tree
);
4900 p
->decl
= constructor_decl
;
4901 p
->asmspec
= constructor_asmspec
;
4902 p
->incremental
= constructor_incremental
;
4903 p
->require_constant_value
= require_constant_value
;
4904 p
->require_constant_elements
= require_constant_elements
;
4905 p
->constructor_stack
= constructor_stack
;
4906 p
->elements
= constructor_elements
;
4907 p
->spelling
= spelling
;
4908 p
->spelling_base
= spelling_base
;
4909 p
->spelling_size
= spelling_size
;
4910 p
->deferred
= constructor_subconstants_deferred
;
4911 p
->top_level
= constructor_top_level
;
4912 p
->next
= initializer_stack
;
4913 initializer_stack
= p
;
4915 constructor_decl
= decl
;
4916 constructor_incremental
= top_level
;
4917 constructor_asmspec
= asmspec
;
4918 constructor_subconstants_deferred
= 0;
4919 constructor_top_level
= top_level
;
4923 require_constant_value
= TREE_STATIC (decl
);
4924 require_constant_elements
4925 = ((TREE_STATIC (decl
) || pedantic
)
4926 /* For a scalar, you can always use any value to initialize,
4927 even within braces. */
4928 && (TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
4929 || TREE_CODE (TREE_TYPE (decl
)) == RECORD_TYPE
4930 || TREE_CODE (TREE_TYPE (decl
)) == UNION_TYPE
4931 || TREE_CODE (TREE_TYPE (decl
)) == QUAL_UNION_TYPE
));
4932 locus
= IDENTIFIER_POINTER (DECL_NAME (decl
));
4933 constructor_incremental
|= TREE_STATIC (decl
);
4937 require_constant_value
= 0;
4938 require_constant_elements
= 0;
4939 locus
= "(anonymous)";
4942 constructor_stack
= 0;
4944 missing_braces_mentioned
= 0;
4948 RESTORE_SPELLING_DEPTH (0);
4951 push_string (locus
);
4957 struct initializer_stack
*p
= initializer_stack
;
4959 /* Output subconstants (string constants, usually)
4960 that were referenced within this initializer and saved up.
4961 Must do this if and only if we called defer_addressed_constants. */
4962 if (constructor_subconstants_deferred
)
4963 output_deferred_addressed_constants ();
4965 /* Free the whole constructor stack of this initializer. */
4966 while (constructor_stack
)
4968 struct constructor_stack
*q
= constructor_stack
;
4969 constructor_stack
= q
->next
;
4973 /* Pop back to the data of the outer initializer (if any). */
4974 constructor_decl
= p
->decl
;
4975 constructor_asmspec
= p
->asmspec
;
4976 constructor_incremental
= p
->incremental
;
4977 require_constant_value
= p
->require_constant_value
;
4978 require_constant_elements
= p
->require_constant_elements
;
4979 constructor_stack
= p
->constructor_stack
;
4980 constructor_elements
= p
->elements
;
4981 spelling
= p
->spelling
;
4982 spelling_base
= p
->spelling_base
;
4983 spelling_size
= p
->spelling_size
;
4984 constructor_subconstants_deferred
= p
->deferred
;
4985 constructor_top_level
= p
->top_level
;
4986 initializer_stack
= p
->next
;
4990 /* Call here when we see the initializer is surrounded by braces.
4991 This is instead of a call to push_init_level;
4992 it is matched by a call to pop_init_level.
4994 TYPE is the type to initialize, for a constructor expression.
4995 For an initializer for a decl, TYPE is zero. */
4998 really_start_incremental_init (type
)
5001 struct constructor_stack
*p
5002 = (struct constructor_stack
*) xmalloc (sizeof (struct constructor_stack
));
5005 type
= TREE_TYPE (constructor_decl
);
5007 /* Turn off constructor_incremental if type is a struct with bitfields.
5008 Do this before the first push, so that the corrected value
5009 is available in finish_init. */
5010 check_init_type_bitfields (type
);
5012 p
->type
= constructor_type
;
5013 p
->fields
= constructor_fields
;
5014 p
->index
= constructor_index
;
5015 p
->range_end
= constructor_range_end
;
5016 p
->max_index
= constructor_max_index
;
5017 p
->unfilled_index
= constructor_unfilled_index
;
5018 p
->unfilled_fields
= constructor_unfilled_fields
;
5019 p
->bit_index
= constructor_bit_index
;
5020 p
->elements
= constructor_elements
;
5021 p
->constant
= constructor_constant
;
5022 p
->simple
= constructor_simple
;
5023 p
->erroneous
= constructor_erroneous
;
5024 p
->pending_elts
= constructor_pending_elts
;
5025 p
->depth
= constructor_depth
;
5026 p
->replacement_value
= 0;
5028 p
->incremental
= constructor_incremental
;
5031 constructor_stack
= p
;
5033 constructor_constant
= 1;
5034 constructor_simple
= 1;
5035 constructor_depth
= SPELLING_DEPTH ();
5036 constructor_elements
= 0;
5037 constructor_pending_elts
= 0;
5038 constructor_type
= type
;
5040 if (TREE_CODE (constructor_type
) == RECORD_TYPE
5041 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5043 constructor_fields
= TYPE_FIELDS (constructor_type
);
5044 /* Skip any nameless bit fields at the beginning. */
5045 while (constructor_fields
!= 0 && DECL_C_BIT_FIELD (constructor_fields
)
5046 && DECL_NAME (constructor_fields
) == 0)
5047 constructor_fields
= TREE_CHAIN (constructor_fields
);
5048 constructor_unfilled_fields
= constructor_fields
;
5049 constructor_bit_index
= copy_node (integer_zero_node
);
5050 TREE_TYPE (constructor_bit_index
) = sbitsizetype
;
5052 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5054 constructor_range_end
= 0;
5055 if (TYPE_DOMAIN (constructor_type
))
5057 constructor_max_index
5058 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type
));
5060 = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type
)));
5063 constructor_index
= copy_node (integer_zero_node
);
5064 constructor_unfilled_index
= copy_node (constructor_index
);
5068 /* Handle the case of int x = {5}; */
5069 constructor_fields
= constructor_type
;
5070 constructor_unfilled_fields
= constructor_type
;
5073 if (constructor_incremental
)
5075 int momentary
= suspend_momentary ();
5076 push_obstacks_nochange ();
5077 if (TREE_PERMANENT (constructor_decl
))
5078 end_temporary_allocation ();
5079 make_decl_rtl (constructor_decl
, constructor_asmspec
,
5080 constructor_top_level
);
5081 assemble_variable (constructor_decl
, constructor_top_level
, 0, 1);
5083 resume_momentary (momentary
);
5086 if (constructor_incremental
)
5088 defer_addressed_constants ();
5089 constructor_subconstants_deferred
= 1;
5093 /* Push down into a subobject, for initialization.
5094 If this is for an explicit set of braces, IMPLICIT is 0.
5095 If it is because the next element belongs at a lower level,
5099 push_init_level (implicit
)
5102 struct constructor_stack
*p
;
5104 /* If we've exhausted any levels that didn't have braces,
5106 while (constructor_stack
->implicit
)
5108 if ((TREE_CODE (constructor_type
) == RECORD_TYPE
5109 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5110 && constructor_fields
== 0)
5111 process_init_element (pop_init_level (1));
5112 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
5113 && tree_int_cst_lt (constructor_max_index
, constructor_index
))
5114 process_init_element (pop_init_level (1));
5119 /* Structure elements may require alignment. Do this now if necessary
5120 for the subaggregate, and if it comes next in sequence. Don't do
5121 this for subaggregates that will go on the pending list. */
5122 if (constructor_incremental
&& constructor_type
!= 0
5123 && TREE_CODE (constructor_type
) == RECORD_TYPE
&& constructor_fields
5124 && constructor_fields
== constructor_unfilled_fields
)
5126 /* Advance to offset of this element. */
5127 if (! tree_int_cst_equal (constructor_bit_index
,
5128 DECL_FIELD_BITPOS (constructor_fields
)))
5130 /* By using unsigned arithmetic, the result will be correct even
5131 in case of overflows, if BITS_PER_UNIT is a power of two. */
5132 unsigned next
= (TREE_INT_CST_LOW
5133 (DECL_FIELD_BITPOS (constructor_fields
))
5134 / (unsigned)BITS_PER_UNIT
);
5135 unsigned here
= (TREE_INT_CST_LOW (constructor_bit_index
)
5136 / (unsigned)BITS_PER_UNIT
);
5138 assemble_zeros ((next
- here
)
5139 * (unsigned)BITS_PER_UNIT
5140 / (unsigned)BITS_PER_UNIT
);
5142 /* Indicate that we have now filled the structure up to the current
5144 constructor_unfilled_fields
= constructor_fields
;
5147 p
= (struct constructor_stack
*) xmalloc (sizeof (struct constructor_stack
));
5148 p
->type
= constructor_type
;
5149 p
->fields
= constructor_fields
;
5150 p
->index
= constructor_index
;
5151 p
->range_end
= constructor_range_end
;
5152 p
->max_index
= constructor_max_index
;
5153 p
->unfilled_index
= constructor_unfilled_index
;
5154 p
->unfilled_fields
= constructor_unfilled_fields
;
5155 p
->bit_index
= constructor_bit_index
;
5156 p
->elements
= constructor_elements
;
5157 p
->constant
= constructor_constant
;
5158 p
->simple
= constructor_simple
;
5159 p
->erroneous
= constructor_erroneous
;
5160 p
->pending_elts
= constructor_pending_elts
;
5161 p
->depth
= constructor_depth
;
5162 p
->replacement_value
= 0;
5163 p
->implicit
= implicit
;
5164 p
->incremental
= constructor_incremental
;
5166 p
->next
= constructor_stack
;
5167 constructor_stack
= p
;
5169 constructor_constant
= 1;
5170 constructor_simple
= 1;
5171 constructor_depth
= SPELLING_DEPTH ();
5172 constructor_elements
= 0;
5173 constructor_pending_elts
= 0;
5175 /* Don't die if an entire brace-pair level is superfluous
5176 in the containing level. */
5177 if (constructor_type
== 0)
5179 else if (TREE_CODE (constructor_type
) == RECORD_TYPE
5180 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5182 /* Don't die if there are extra init elts at the end. */
5183 if (constructor_fields
== 0)
5184 constructor_type
= 0;
5187 constructor_type
= TREE_TYPE (constructor_fields
);
5188 push_member_name (constructor_fields
);
5189 constructor_depth
++;
5190 if (constructor_fields
!= constructor_unfilled_fields
)
5191 constructor_incremental
= 0;
5194 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5196 constructor_type
= TREE_TYPE (constructor_type
);
5197 push_array_bounds (TREE_INT_CST_LOW (constructor_index
));
5198 constructor_depth
++;
5199 if (! tree_int_cst_equal (constructor_index
, constructor_unfilled_index
)
5200 || constructor_range_end
!= 0)
5201 constructor_incremental
= 0;
5204 if (constructor_type
== 0)
5206 error_init ("extra brace group at end of initializer");
5207 constructor_fields
= 0;
5208 constructor_unfilled_fields
= 0;
5212 /* Turn off constructor_incremental if type is a struct with bitfields. */
5213 check_init_type_bitfields (constructor_type
);
5215 if (implicit
&& warn_missing_braces
&& !missing_braces_mentioned
)
5217 missing_braces_mentioned
= 1;
5218 warning_init ("missing braces around initializer");
5221 if (TREE_CODE (constructor_type
) == RECORD_TYPE
5222 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5224 constructor_fields
= TYPE_FIELDS (constructor_type
);
5225 /* Skip any nameless bit fields at the beginning. */
5226 while (constructor_fields
!= 0 && DECL_C_BIT_FIELD (constructor_fields
)
5227 && DECL_NAME (constructor_fields
) == 0)
5228 constructor_fields
= TREE_CHAIN (constructor_fields
);
5229 constructor_unfilled_fields
= constructor_fields
;
5230 constructor_bit_index
= copy_node (integer_zero_node
);
5231 TREE_TYPE (constructor_bit_index
) = sbitsizetype
;
5233 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5235 constructor_range_end
= 0;
5236 if (TYPE_DOMAIN (constructor_type
))
5238 constructor_max_index
5239 = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type
));
5241 = copy_node (TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type
)));
5244 constructor_index
= copy_node (integer_zero_node
);
5245 constructor_unfilled_index
= copy_node (constructor_index
);
5249 warning_init ("braces around scalar initializer");
5250 constructor_fields
= constructor_type
;
5251 constructor_unfilled_fields
= constructor_type
;
5255 /* Don't read a struct incrementally if it has any bitfields,
5256 because the incremental reading code doesn't know how to
5257 handle bitfields yet. */
5260 check_init_type_bitfields (type
)
5263 if (TREE_CODE (type
) == RECORD_TYPE
)
5266 for (tail
= TYPE_FIELDS (type
); tail
;
5267 tail
= TREE_CHAIN (tail
))
5269 if (DECL_C_BIT_FIELD (tail
))
5271 constructor_incremental
= 0;
5275 check_init_type_bitfields (TREE_TYPE (tail
));
5279 else if (TREE_CODE (type
) == UNION_TYPE
)
5281 tree tail
= TYPE_FIELDS (type
);
5282 if (tail
&& DECL_C_BIT_FIELD (tail
))
5283 /* We also use the nonincremental algorithm for initiliazation
5284 of unions whose first member is a bitfield, becuase the
5285 incremental algorithm has no code for dealing with
5287 constructor_incremental
= 0;
5290 else if (TREE_CODE (type
) == ARRAY_TYPE
)
5291 check_init_type_bitfields (TREE_TYPE (type
));
5294 /* At the end of an implicit or explicit brace level,
5295 finish up that level of constructor.
5296 If we were outputting the elements as they are read, return 0
5297 from inner levels (process_init_element ignores that),
5298 but return error_mark_node from the outermost level
5299 (that's what we want to put in DECL_INITIAL).
5300 Otherwise, return a CONSTRUCTOR expression. */
5303 pop_init_level (implicit
)
5306 struct constructor_stack
*p
;
5308 tree constructor
= 0;
5312 /* When we come to an explicit close brace,
5313 pop any inner levels that didn't have explicit braces. */
5314 while (constructor_stack
->implicit
)
5315 process_init_element (pop_init_level (1));
5318 p
= constructor_stack
;
5320 if (constructor_type
!= 0)
5321 size
= int_size_in_bytes (constructor_type
);
5323 /* Warn when some struct elements are implicitly initialized to zero. */
5326 && TREE_CODE (constructor_type
) == RECORD_TYPE
5327 && constructor_unfilled_fields
)
5329 push_member_name (constructor_unfilled_fields
);
5330 warning_init ("missing initializer");
5331 RESTORE_SPELLING_DEPTH (constructor_depth
);
5334 /* Now output all pending elements. */
5335 output_pending_init_elements (1);
5337 #if 0 /* c-parse.in warns about {}. */
5338 /* In ANSI, each brace level must have at least one element. */
5339 if (! implicit
&& pedantic
5340 && (TREE_CODE (constructor_type
) == ARRAY_TYPE
5341 ? integer_zerop (constructor_unfilled_index
)
5342 : constructor_unfilled_fields
== TYPE_FIELDS (constructor_type
)))
5343 pedwarn_init ("empty braces in initializer");
5346 /* Pad out the end of the structure. */
5348 if (p
->replacement_value
)
5350 /* If this closes a superfluous brace pair,
5351 just pass out the element between them. */
5352 constructor
= p
->replacement_value
;
5353 /* If this is the top level thing within the initializer,
5354 and it's for a variable, then since we already called
5355 assemble_variable, we must output the value now. */
5356 if (p
->next
== 0 && constructor_decl
!= 0
5357 && constructor_incremental
)
5359 constructor
= digest_init (constructor_type
, constructor
,
5360 require_constant_value
,
5361 require_constant_elements
);
5363 /* If initializing an array of unknown size,
5364 determine the size now. */
5365 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
5366 && TYPE_DOMAIN (constructor_type
) == 0)
5371 push_obstacks_nochange ();
5372 if (TREE_PERMANENT (constructor_type
))
5373 end_temporary_allocation ();
5375 momentary_p
= suspend_momentary ();
5377 /* We shouldn't have an incomplete array type within
5379 if (constructor_stack
->next
)
5383 = complete_array_type (constructor_type
,
5388 size
= int_size_in_bytes (constructor_type
);
5389 resume_momentary (momentary_p
);
5393 output_constant (constructor
, size
);
5396 else if (constructor_type
== 0)
5398 else if (TREE_CODE (constructor_type
) != RECORD_TYPE
5399 && TREE_CODE (constructor_type
) != UNION_TYPE
5400 && TREE_CODE (constructor_type
) != ARRAY_TYPE
5401 && ! constructor_incremental
)
5403 /* A nonincremental scalar initializer--just return
5404 the element, after verifying there is just one. */
5405 if (constructor_elements
== 0)
5407 error_init ("empty scalar initializer");
5408 constructor
= error_mark_node
;
5410 else if (TREE_CHAIN (constructor_elements
) != 0)
5412 error_init ("extra elements in scalar initializer");
5413 constructor
= TREE_VALUE (constructor_elements
);
5416 constructor
= TREE_VALUE (constructor_elements
);
5418 else if (! constructor_incremental
)
5420 if (constructor_erroneous
)
5421 constructor
= error_mark_node
;
5424 int momentary
= suspend_momentary ();
5426 constructor
= build (CONSTRUCTOR
, constructor_type
, NULL_TREE
,
5427 nreverse (constructor_elements
));
5428 if (constructor_constant
)
5429 TREE_CONSTANT (constructor
) = 1;
5430 if (constructor_constant
&& constructor_simple
)
5431 TREE_STATIC (constructor
) = 1;
5433 resume_momentary (momentary
);
5439 int momentary
= suspend_momentary ();
5441 if (TREE_CODE (constructor_type
) == RECORD_TYPE
5442 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5444 /* Find the offset of the end of that field. */
5445 filled
= size_binop (CEIL_DIV_EXPR
,
5446 constructor_bit_index
,
5447 size_int (BITS_PER_UNIT
));
5449 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5451 /* If initializing an array of unknown size,
5452 determine the size now. */
5453 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
5454 && TYPE_DOMAIN (constructor_type
) == 0)
5457 = size_binop (MINUS_EXPR
,
5458 constructor_unfilled_index
,
5461 push_obstacks_nochange ();
5462 if (TREE_PERMANENT (constructor_type
))
5463 end_temporary_allocation ();
5464 maxindex
= copy_node (maxindex
);
5465 TYPE_DOMAIN (constructor_type
) = build_index_type (maxindex
);
5466 TREE_TYPE (maxindex
) = TYPE_DOMAIN (constructor_type
);
5468 /* TYPE_MAX_VALUE is always one less than the number of elements
5469 in the array, because we start counting at zero. Therefore,
5470 warn only if the value is less than zero. */
5472 && (tree_int_cst_sgn (TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type
)))
5474 error_with_decl (constructor_decl
,
5475 "zero or negative array size `%s'");
5476 layout_type (constructor_type
);
5477 size
= int_size_in_bytes (constructor_type
);
5481 filled
= size_binop (MULT_EXPR
, constructor_unfilled_index
,
5482 size_in_bytes (TREE_TYPE (constructor_type
)));
5488 assemble_zeros (size
- TREE_INT_CST_LOW (filled
));
5490 resume_momentary (momentary
);
5494 constructor_type
= p
->type
;
5495 constructor_fields
= p
->fields
;
5496 constructor_index
= p
->index
;
5497 constructor_range_end
= p
->range_end
;
5498 constructor_max_index
= p
->max_index
;
5499 constructor_unfilled_index
= p
->unfilled_index
;
5500 constructor_unfilled_fields
= p
->unfilled_fields
;
5501 constructor_bit_index
= p
->bit_index
;
5502 constructor_elements
= p
->elements
;
5503 constructor_constant
= p
->constant
;
5504 constructor_simple
= p
->simple
;
5505 constructor_erroneous
= p
->erroneous
;
5506 constructor_pending_elts
= p
->pending_elts
;
5507 constructor_depth
= p
->depth
;
5508 constructor_incremental
= p
->incremental
;
5509 RESTORE_SPELLING_DEPTH (constructor_depth
);
5511 constructor_stack
= p
->next
;
5514 if (constructor
== 0)
5516 if (constructor_stack
== 0)
5517 return error_mark_node
;
5523 /* Within an array initializer, specify the next index to be initialized.
5524 FIRST is that index. If LAST is nonzero, then initialize a range
5525 of indices, running from FIRST through LAST. */
5528 set_init_index (first
, last
)
5531 while ((TREE_CODE (first
) == NOP_EXPR
5532 || TREE_CODE (first
) == CONVERT_EXPR
5533 || TREE_CODE (first
) == NON_LVALUE_EXPR
)
5534 && (TYPE_MODE (TREE_TYPE (first
))
5535 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (first
, 0)))))
5536 (first
) = TREE_OPERAND (first
, 0);
5538 while ((TREE_CODE (last
) == NOP_EXPR
5539 || TREE_CODE (last
) == CONVERT_EXPR
5540 || TREE_CODE (last
) == NON_LVALUE_EXPR
)
5541 && (TYPE_MODE (TREE_TYPE (last
))
5542 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (last
, 0)))))
5543 (last
) = TREE_OPERAND (last
, 0);
5545 if (TREE_CODE (first
) != INTEGER_CST
)
5546 error_init ("nonconstant array index in initializer");
5547 else if (last
!= 0 && TREE_CODE (last
) != INTEGER_CST
)
5548 error_init ("nonconstant array index in initializer");
5549 else if (! constructor_unfilled_index
)
5550 error_init ("array index in non-array initializer");
5551 else if (tree_int_cst_lt (first
, constructor_unfilled_index
))
5552 error_init ("duplicate array index in initializer");
5555 TREE_INT_CST_LOW (constructor_index
) = TREE_INT_CST_LOW (first
);
5556 TREE_INT_CST_HIGH (constructor_index
) = TREE_INT_CST_HIGH (first
);
5558 if (last
!= 0 && tree_int_cst_lt (last
, first
))
5559 error_init ("empty index range in initializer");
5563 pedwarn ("ANSI C forbids specifying element to initialize");
5564 constructor_range_end
= last
;
5569 /* Within a struct initializer, specify the next field to be initialized. */
5572 set_init_label (fieldname
)
5578 /* Don't die if an entire brace-pair level is superfluous
5579 in the containing level. */
5580 if (constructor_type
== 0)
5583 for (tail
= TYPE_FIELDS (constructor_type
); tail
;
5584 tail
= TREE_CHAIN (tail
))
5586 if (tail
== constructor_unfilled_fields
)
5588 if (DECL_NAME (tail
) == fieldname
)
5593 error ("unknown field `%s' specified in initializer",
5594 IDENTIFIER_POINTER (fieldname
));
5596 error ("field `%s' already initialized",
5597 IDENTIFIER_POINTER (fieldname
));
5600 constructor_fields
= tail
;
5602 pedwarn ("ANSI C forbids specifying structure member to initialize");
5606 /* Add a new initializer to the tree of pending initializers. PURPOSE
5607 indentifies the initializer, either array index or field in a structure.
5608 VALUE is the value of that index or field. */
5611 add_pending_init (purpose
, value
)
5612 tree purpose
, value
;
5614 struct init_node
*p
, **q
, *r
;
5616 q
= &constructor_pending_elts
;
5619 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5624 if (tree_int_cst_lt (purpose
, p
->purpose
))
5626 else if (tree_int_cst_lt (p
->purpose
, purpose
))
5637 if (tree_int_cst_lt (DECL_FIELD_BITPOS (purpose
),
5638 DECL_FIELD_BITPOS (p
->purpose
)))
5640 else if (tree_int_cst_lt (DECL_FIELD_BITPOS (p
->purpose
),
5641 DECL_FIELD_BITPOS (purpose
)))
5648 r
= (struct init_node
*) oballoc (sizeof (struct init_node
));
5649 r
->purpose
= purpose
;
5660 struct init_node
*s
;
5664 if (p
->balance
== 0)
5666 else if (p
->balance
< 0)
5673 p
->left
->parent
= p
;
5690 constructor_pending_elts
= r
;
5695 struct init_node
*t
= r
->right
;
5699 r
->right
->parent
= r
;
5704 p
->left
->parent
= p
;
5707 p
->balance
= t
->balance
< 0;
5708 r
->balance
= -(t
->balance
> 0);
5723 constructor_pending_elts
= t
;
5729 /* p->balance == +1; growth of left side balances the node. */
5734 else /* r == p->right */
5736 if (p
->balance
== 0)
5737 /* Growth propagation from right side. */
5739 else if (p
->balance
> 0)
5746 p
->right
->parent
= p
;
5763 constructor_pending_elts
= r
;
5765 else /* r->balance == -1 */
5768 struct init_node
*t
= r
->left
;
5772 r
->left
->parent
= r
;
5777 p
->right
->parent
= p
;
5780 r
->balance
= (t
->balance
< 0);
5781 p
->balance
= -(t
->balance
> 0);
5796 constructor_pending_elts
= t
;
5802 /* p->balance == -1; growth of right side balances the node. */
5813 /* Return nonzero if FIELD is equal to the index of a pending initializer. */
5816 pending_init_member (field
)
5819 struct init_node
*p
;
5821 p
= constructor_pending_elts
;
5822 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5826 if (tree_int_cst_equal (field
, p
->purpose
))
5828 else if (tree_int_cst_lt (field
, p
->purpose
))
5838 if (field
== p
->purpose
)
5840 else if (tree_int_cst_lt (DECL_FIELD_BITPOS (field
),
5841 DECL_FIELD_BITPOS (p
->purpose
)))
5851 /* "Output" the next constructor element.
5852 At top level, really output it to assembler code now.
5853 Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
5854 TYPE is the data type that the containing data type wants here.
5855 FIELD is the field (a FIELD_DECL) or the index that this element fills.
5857 PENDING if non-nil means output pending elements that belong
5858 right after this element. (PENDING is normally 1;
5859 it is 0 while outputting pending elements, to avoid recursion.) */
5862 output_init_element (value
, type
, field
, pending
)
5863 tree value
, type
, field
;
5868 if (TREE_CODE (TREE_TYPE (value
)) == FUNCTION_TYPE
5869 || (TREE_CODE (TREE_TYPE (value
)) == ARRAY_TYPE
5870 && !(TREE_CODE (value
) == STRING_CST
5871 && TREE_CODE (type
) == ARRAY_TYPE
5872 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
5873 && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value
)),
5874 TYPE_MAIN_VARIANT (type
))))
5875 value
= default_conversion (value
);
5877 if (value
== error_mark_node
)
5878 constructor_erroneous
= 1;
5879 else if (!TREE_CONSTANT (value
))
5880 constructor_constant
= 0;
5881 else if (initializer_constant_valid_p (value
, TREE_TYPE (value
)) == 0
5882 || ((TREE_CODE (constructor_type
) == RECORD_TYPE
5883 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5884 && DECL_C_BIT_FIELD (field
)
5885 && TREE_CODE (value
) != INTEGER_CST
))
5886 constructor_simple
= 0;
5888 if (require_constant_value
&& ! TREE_CONSTANT (value
))
5890 error_init ("initializer element is not constant");
5891 value
= error_mark_node
;
5893 else if (require_constant_elements
5894 && initializer_constant_valid_p (value
, TREE_TYPE (value
)) == 0)
5896 error_init ("initializer element is not computable at load time");
5897 value
= error_mark_node
;
5900 /* If this element duplicates one on constructor_pending_elts,
5901 print a message and ignore it. Don't do this when we're
5902 processing elements taken off constructor_pending_elts,
5903 because we'd always get spurious errors. */
5906 if (TREE_CODE (constructor_type
) == RECORD_TYPE
5907 || TREE_CODE (constructor_type
) == UNION_TYPE
5908 || TREE_CODE (constructor_type
) == ARRAY_TYPE
)
5910 if (pending_init_member (field
))
5912 error_init ("duplicate initializer");
5918 /* If this element doesn't come next in sequence,
5919 put it on constructor_pending_elts. */
5920 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
5921 && !tree_int_cst_equal (field
, constructor_unfilled_index
))
5924 /* The copy_node is needed in case field is actually
5925 constructor_index, which is modified in place. */
5926 add_pending_init (copy_node (field
),
5927 digest_init (type
, value
, require_constant_value
,
5928 require_constant_elements
));
5930 else if (TREE_CODE (constructor_type
) == RECORD_TYPE
5931 && field
!= constructor_unfilled_fields
)
5933 /* We do this for records but not for unions. In a union,
5934 no matter which field is specified, it can be initialized
5935 right away since it starts at the beginning of the union. */
5937 add_pending_init (field
,
5938 digest_init (type
, value
, require_constant_value
,
5939 require_constant_elements
));
5943 /* Otherwise, output this element either to
5944 constructor_elements or to the assembler file. */
5948 if (! constructor_incremental
)
5950 if (field
&& TREE_CODE (field
) == INTEGER_CST
)
5951 field
= copy_node (field
);
5952 constructor_elements
5953 = tree_cons (field
, digest_init (type
, value
,
5954 require_constant_value
,
5955 require_constant_elements
),
5956 constructor_elements
);
5960 /* Structure elements may require alignment.
5961 Do this, if necessary. */
5962 if (TREE_CODE (constructor_type
) == RECORD_TYPE
)
5964 /* Advance to offset of this element. */
5965 if (! tree_int_cst_equal (constructor_bit_index
,
5966 DECL_FIELD_BITPOS (field
)))
5968 /* By using unsigned arithmetic, the result will be
5969 correct even in case of overflows, if BITS_PER_UNIT
5970 is a power of two. */
5971 unsigned next
= (TREE_INT_CST_LOW
5972 (DECL_FIELD_BITPOS (field
))
5973 / (unsigned)BITS_PER_UNIT
);
5974 unsigned here
= (TREE_INT_CST_LOW
5975 (constructor_bit_index
)
5976 / (unsigned)BITS_PER_UNIT
);
5978 assemble_zeros ((next
- here
)
5979 * (unsigned)BITS_PER_UNIT
5980 / (unsigned)BITS_PER_UNIT
);
5983 output_constant (digest_init (type
, value
,
5984 require_constant_value
,
5985 require_constant_elements
),
5986 int_size_in_bytes (type
));
5988 /* For a record or union,
5989 keep track of end position of last field. */
5990 if (TREE_CODE (constructor_type
) == RECORD_TYPE
5991 || TREE_CODE (constructor_type
) == UNION_TYPE
)
5993 tree temp
= size_binop (PLUS_EXPR
, DECL_FIELD_BITPOS (field
),
5995 TREE_INT_CST_LOW (constructor_bit_index
)
5996 = TREE_INT_CST_LOW (temp
);
5997 TREE_INT_CST_HIGH (constructor_bit_index
)
5998 = TREE_INT_CST_HIGH (temp
);
6003 /* Advance the variable that indicates sequential elements output. */
6004 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
6006 tree tem
= size_binop (PLUS_EXPR
, constructor_unfilled_index
,
6008 TREE_INT_CST_LOW (constructor_unfilled_index
)
6009 = TREE_INT_CST_LOW (tem
);
6010 TREE_INT_CST_HIGH (constructor_unfilled_index
)
6011 = TREE_INT_CST_HIGH (tem
);
6013 else if (TREE_CODE (constructor_type
) == RECORD_TYPE
)
6015 constructor_unfilled_fields
=
6016 TREE_CHAIN (constructor_unfilled_fields
);
6017 /* Skip any nameless bit fields. */
6018 while (constructor_unfilled_fields
!= 0
6019 && DECL_C_BIT_FIELD (constructor_unfilled_fields
)
6020 && DECL_NAME (constructor_unfilled_fields
) == 0)
6021 constructor_unfilled_fields
=
6022 TREE_CHAIN (constructor_unfilled_fields
);
6024 else if (TREE_CODE (constructor_type
) == UNION_TYPE
)
6025 constructor_unfilled_fields
= 0;
6027 /* Now output any pending elements which have become next. */
6029 output_pending_init_elements (0);
6033 /* Output any pending elements which have become next.
6034 As we output elements, constructor_unfilled_{fields,index}
6035 advances, which may cause other elements to become next;
6036 if so, they too are output.
6038 If ALL is 0, we return when there are
6039 no more pending elements to output now.
6041 If ALL is 1, we output space as necessary so that
6042 we can output all the pending elements. */
6045 output_pending_init_elements (all
)
6048 struct init_node
*elt
= constructor_pending_elts
;
6053 /* Look thru the whole pending tree.
6054 If we find an element that should be output now,
6055 output it. Otherwise, set NEXT to the element
6056 that comes first among those still pending. */
6061 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
6063 if (tree_int_cst_equal (elt
->purpose
,
6064 constructor_unfilled_index
))
6065 output_init_element (elt
->value
,
6066 TREE_TYPE (constructor_type
),
6067 constructor_unfilled_index
, 0);
6068 else if (tree_int_cst_lt (constructor_unfilled_index
,
6071 /* Advance to the next smaller node. */
6076 /* We have reached the smallest node bigger than the
6077 current unfilled index. Fill the space first. */
6078 next
= elt
->purpose
;
6084 /* Advance to the next bigger node. */
6089 /* We have reached the biggest node in a subtree. Find
6090 the parent of it, which is the next bigger node. */
6091 while (elt
->parent
&& elt
->parent
->right
== elt
)
6094 if (elt
&& tree_int_cst_lt (constructor_unfilled_index
,
6097 next
= elt
->purpose
;
6103 else if (TREE_CODE (constructor_type
) == RECORD_TYPE
6104 || TREE_CODE (constructor_type
) == UNION_TYPE
)
6106 /* If the current record is complete we are done. */
6107 if (constructor_unfilled_fields
== 0)
6109 if (elt
->purpose
== constructor_unfilled_fields
)
6111 output_init_element (elt
->value
,
6112 TREE_TYPE (constructor_unfilled_fields
),
6113 constructor_unfilled_fields
,
6116 else if (tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields
),
6117 DECL_FIELD_BITPOS (elt
->purpose
)))
6119 /* Advance to the next smaller node. */
6124 /* We have reached the smallest node bigger than the
6125 current unfilled field. Fill the space first. */
6126 next
= elt
->purpose
;
6132 /* Advance to the next bigger node. */
6137 /* We have reached the biggest node in a subtree. Find
6138 the parent of it, which is the next bigger node. */
6139 while (elt
->parent
&& elt
->parent
->right
== elt
)
6143 && tree_int_cst_lt (DECL_FIELD_BITPOS (constructor_unfilled_fields
),
6144 DECL_FIELD_BITPOS (elt
->purpose
)))
6146 next
= elt
->purpose
;
6154 /* Ordinarily return, but not if we want to output all
6155 and there are elements left. */
6156 if (! (all
&& next
!= 0))
6159 /* Generate space up to the position of NEXT. */
6160 if (constructor_incremental
)
6163 tree nextpos_tree
= size_int (0);
6165 if (TREE_CODE (constructor_type
) == RECORD_TYPE
6166 || TREE_CODE (constructor_type
) == UNION_TYPE
)
6169 /* Find the last field written out, if any. */
6170 for (tail
= TYPE_FIELDS (constructor_type
); tail
;
6171 tail
= TREE_CHAIN (tail
))
6172 if (TREE_CHAIN (tail
) == constructor_unfilled_fields
)
6176 /* Find the offset of the end of that field. */
6177 filled
= size_binop (CEIL_DIV_EXPR
,
6178 size_binop (PLUS_EXPR
,
6179 DECL_FIELD_BITPOS (tail
),
6181 size_int (BITS_PER_UNIT
));
6183 filled
= size_int (0);
6185 nextpos_tree
= size_binop (CEIL_DIV_EXPR
,
6186 DECL_FIELD_BITPOS (next
),
6187 size_int (BITS_PER_UNIT
));
6189 TREE_INT_CST_HIGH (constructor_bit_index
)
6190 = TREE_INT_CST_HIGH (DECL_FIELD_BITPOS (next
));
6191 TREE_INT_CST_LOW (constructor_bit_index
)
6192 = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (next
));
6193 constructor_unfilled_fields
= next
;
6195 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
6197 filled
= size_binop (MULT_EXPR
, constructor_unfilled_index
,
6198 size_in_bytes (TREE_TYPE (constructor_type
)));
6200 = size_binop (MULT_EXPR
, next
,
6201 size_in_bytes (TREE_TYPE (constructor_type
)));
6202 TREE_INT_CST_LOW (constructor_unfilled_index
)
6203 = TREE_INT_CST_LOW (next
);
6204 TREE_INT_CST_HIGH (constructor_unfilled_index
)
6205 = TREE_INT_CST_HIGH (next
);
6212 int nextpos
= TREE_INT_CST_LOW (nextpos_tree
);
6214 assemble_zeros (nextpos
- TREE_INT_CST_LOW (filled
));
6219 /* If it's not incremental, just skip over the gap,
6220 so that after jumping to retry we will output the next
6221 successive element. */
6222 if (TREE_CODE (constructor_type
) == RECORD_TYPE
6223 || TREE_CODE (constructor_type
) == UNION_TYPE
)
6224 constructor_unfilled_fields
= next
;
6225 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
6227 TREE_INT_CST_LOW (constructor_unfilled_index
)
6228 = TREE_INT_CST_LOW (next
);
6229 TREE_INT_CST_HIGH (constructor_unfilled_index
)
6230 = TREE_INT_CST_HIGH (next
);
6234 /* ELT now points to the node in the pending tree with the next
6235 initializer to output. */
6239 /* Add one non-braced element to the current constructor level.
6240 This adjusts the current position within the constructor's type.
6241 This may also start or terminate implicit levels
6242 to handle a partly-braced initializer.
6244 Once this has found the correct level for the new element,
6245 it calls output_init_element.
6247 Note: if we are incrementally outputting this constructor,
6248 this function may be called with a null argument
6249 representing a sub-constructor that was already incrementally output.
6250 When that happens, we output nothing, but we do the bookkeeping
6251 to skip past that element of the current constructor. */
6254 process_init_element (value
)
6257 tree orig_value
= value
;
6258 int string_flag
= value
!= 0 && TREE_CODE (value
) == STRING_CST
;
6260 /* Handle superfluous braces around string cst as in
6261 char x[] = {"foo"}; */
6264 && TREE_CODE (constructor_type
) == ARRAY_TYPE
6265 && TREE_CODE (TREE_TYPE (constructor_type
)) == INTEGER_TYPE
6266 && integer_zerop (constructor_unfilled_index
))
6268 if (constructor_stack
->replacement_value
)
6269 error_init ("excess elements in char array initializer");
6270 constructor_stack
->replacement_value
= value
;
6274 if (constructor_stack
->replacement_value
!= 0)
6276 error_init ("excess elements in struct initializer");
6280 /* Ignore elements of a brace group if it is entirely superfluous
6281 and has already been diagnosed. */
6282 if (constructor_type
== 0)
6285 /* If we've exhausted any levels that didn't have braces,
6287 while (constructor_stack
->implicit
)
6289 if ((TREE_CODE (constructor_type
) == RECORD_TYPE
6290 || TREE_CODE (constructor_type
) == UNION_TYPE
)
6291 && constructor_fields
== 0)
6292 process_init_element (pop_init_level (1));
6293 else if (TREE_CODE (constructor_type
) == ARRAY_TYPE
6294 && (constructor_max_index
== 0
6295 || tree_int_cst_lt (constructor_max_index
,
6296 constructor_index
)))
6297 process_init_element (pop_init_level (1));
6304 if (TREE_CODE (constructor_type
) == RECORD_TYPE
)
6307 enum tree_code fieldcode
;
6309 if (constructor_fields
== 0)
6311 pedwarn_init ("excess elements in struct initializer");
6315 fieldtype
= TREE_TYPE (constructor_fields
);
6316 if (fieldtype
!= error_mark_node
)
6317 fieldtype
= TYPE_MAIN_VARIANT (fieldtype
);
6318 fieldcode
= TREE_CODE (fieldtype
);
6320 /* Accept a string constant to initialize a subarray. */
6322 && fieldcode
== ARRAY_TYPE
6323 && TREE_CODE (TREE_TYPE (fieldtype
)) == INTEGER_TYPE
6326 /* Otherwise, if we have come to a subaggregate,
6327 and we don't have an element of its type, push into it. */
6328 else if (value
!= 0 && !constructor_no_implicit
6329 && value
!= error_mark_node
6330 && TYPE_MAIN_VARIANT (TREE_TYPE (value
)) != fieldtype
6331 && (fieldcode
== RECORD_TYPE
|| fieldcode
== ARRAY_TYPE
6332 || fieldcode
== UNION_TYPE
))
6334 push_init_level (1);
6340 push_member_name (constructor_fields
);
6341 output_init_element (value
, fieldtype
, constructor_fields
, 1);
6342 RESTORE_SPELLING_DEPTH (constructor_depth
);
6345 /* Do the bookkeeping for an element that was
6346 directly output as a constructor. */
6348 /* For a record, keep track of end position of last field. */
6349 tree temp
= size_binop (PLUS_EXPR
,
6350 DECL_FIELD_BITPOS (constructor_fields
),
6351 DECL_SIZE (constructor_fields
));
6352 TREE_INT_CST_LOW (constructor_bit_index
)
6353 = TREE_INT_CST_LOW (temp
);
6354 TREE_INT_CST_HIGH (constructor_bit_index
)
6355 = TREE_INT_CST_HIGH (temp
);
6357 constructor_unfilled_fields
= TREE_CHAIN (constructor_fields
);
6358 /* Skip any nameless bit fields. */
6359 while (constructor_unfilled_fields
!= 0
6360 && DECL_C_BIT_FIELD (constructor_unfilled_fields
)
6361 && DECL_NAME (constructor_unfilled_fields
) == 0)
6362 constructor_unfilled_fields
=
6363 TREE_CHAIN (constructor_unfilled_fields
);
6366 constructor_fields
= TREE_CHAIN (constructor_fields
);
6367 /* Skip any nameless bit fields at the beginning. */
6368 while (constructor_fields
!= 0
6369 && DECL_C_BIT_FIELD (constructor_fields
)
6370 && DECL_NAME (constructor_fields
) == 0)
6371 constructor_fields
= TREE_CHAIN (constructor_fields
);
6374 if (TREE_CODE (constructor_type
) == UNION_TYPE
)
6377 enum tree_code fieldcode
;
6379 if (constructor_fields
== 0)
6381 pedwarn_init ("excess elements in union initializer");
6385 fieldtype
= TREE_TYPE (constructor_fields
);
6386 if (fieldtype
!= error_mark_node
)
6387 fieldtype
= TYPE_MAIN_VARIANT (fieldtype
);
6388 fieldcode
= TREE_CODE (fieldtype
);
6390 /* Accept a string constant to initialize a subarray. */
6392 && fieldcode
== ARRAY_TYPE
6393 && TREE_CODE (TREE_TYPE (fieldtype
)) == INTEGER_TYPE
6396 /* Otherwise, if we have come to a subaggregate,
6397 and we don't have an element of its type, push into it. */
6398 else if (value
!= 0 && !constructor_no_implicit
6399 && value
!= error_mark_node
6400 && TYPE_MAIN_VARIANT (TREE_TYPE (value
)) != fieldtype
6401 && (fieldcode
== RECORD_TYPE
|| fieldcode
== ARRAY_TYPE
6402 || fieldcode
== UNION_TYPE
))
6404 push_init_level (1);
6410 push_member_name (constructor_fields
);
6411 output_init_element (value
, fieldtype
, constructor_fields
, 1);
6412 RESTORE_SPELLING_DEPTH (constructor_depth
);
6415 /* Do the bookkeeping for an element that was
6416 directly output as a constructor. */
6418 TREE_INT_CST_LOW (constructor_bit_index
)
6419 = TREE_INT_CST_LOW (DECL_SIZE (constructor_fields
));
6420 TREE_INT_CST_HIGH (constructor_bit_index
)
6421 = TREE_INT_CST_HIGH (DECL_SIZE (constructor_fields
));
6423 constructor_unfilled_fields
= TREE_CHAIN (constructor_fields
);
6426 constructor_fields
= 0;
6429 if (TREE_CODE (constructor_type
) == ARRAY_TYPE
)
6431 tree elttype
= TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type
));
6432 enum tree_code eltcode
= TREE_CODE (elttype
);
6434 /* Accept a string constant to initialize a subarray. */
6436 && eltcode
== ARRAY_TYPE
6437 && TREE_CODE (TREE_TYPE (elttype
)) == INTEGER_TYPE
6440 /* Otherwise, if we have come to a subaggregate,
6441 and we don't have an element of its type, push into it. */
6442 else if (value
!= 0 && !constructor_no_implicit
6443 && value
!= error_mark_node
6444 && TYPE_MAIN_VARIANT (TREE_TYPE (value
)) != elttype
6445 && (eltcode
== RECORD_TYPE
|| eltcode
== ARRAY_TYPE
6446 || eltcode
== UNION_TYPE
))
6448 push_init_level (1);
6452 if (constructor_max_index
!= 0
6453 && tree_int_cst_lt (constructor_max_index
, constructor_index
))
6455 pedwarn_init ("excess elements in array initializer");
6459 /* In the case of [LO .. HI] = VALUE, only evaluate VALUE once. */
6460 if (constructor_range_end
)
6462 if (constructor_max_index
!= 0
6463 && tree_int_cst_lt (constructor_max_index
,
6464 constructor_range_end
))
6466 pedwarn_init ("excess elements in array initializer");
6467 TREE_INT_CST_HIGH (constructor_range_end
)
6468 = TREE_INT_CST_HIGH (constructor_max_index
);
6469 TREE_INT_CST_LOW (constructor_range_end
)
6470 = TREE_INT_CST_LOW (constructor_max_index
);
6473 value
= save_expr (value
);
6476 /* Now output the actual element.
6477 Ordinarily, output once.
6478 If there is a range, repeat it till we advance past the range. */
6485 push_array_bounds (TREE_INT_CST_LOW (constructor_index
));
6486 output_init_element (value
, elttype
, constructor_index
, 1);
6487 RESTORE_SPELLING_DEPTH (constructor_depth
);
6490 tem
= size_binop (PLUS_EXPR
, constructor_index
,
6492 TREE_INT_CST_LOW (constructor_index
) = TREE_INT_CST_LOW (tem
);
6493 TREE_INT_CST_HIGH (constructor_index
) = TREE_INT_CST_HIGH (tem
);
6496 /* If we are doing the bookkeeping for an element that was
6497 directly output as a constructor,
6498 we must update constructor_unfilled_index. */
6500 TREE_INT_CST_LOW (constructor_unfilled_index
)
6501 = TREE_INT_CST_LOW (constructor_index
);
6502 TREE_INT_CST_HIGH (constructor_unfilled_index
)
6503 = TREE_INT_CST_HIGH (constructor_index
);
6506 while (! (constructor_range_end
== 0
6507 || tree_int_cst_lt (constructor_range_end
,
6508 constructor_index
)));
6513 /* Handle the sole element allowed in a braced initializer
6514 for a scalar variable. */
6515 if (constructor_fields
== 0)
6517 pedwarn_init ("excess elements in scalar initializer");
6522 output_init_element (value
, constructor_type
, NULL_TREE
, 1);
6523 constructor_fields
= 0;
6527 /* If the (lexically) previous elments are not now saved,
6528 we can discard the storage for them. */
6529 if (constructor_incremental
&& constructor_pending_elts
== 0 && value
!= 0
6530 && constructor_stack
== 0)
6534 /* Expand an ASM statement with operands, handling output operands
6535 that are not variables or INDIRECT_REFS by transforming such
6536 cases into cases that expand_asm_operands can handle.
6538 Arguments are same as for expand_asm_operands. */
6541 c_expand_asm_operands (string
, outputs
, inputs
, clobbers
, vol
, filename
, line
)
6542 tree string
, outputs
, inputs
, clobbers
;
6547 int noutputs
= list_length (outputs
);
6549 /* o[I] is the place that output number I should be written. */
6550 register tree
*o
= (tree
*) alloca (noutputs
* sizeof (tree
));
6553 if (TREE_CODE (string
) == ADDR_EXPR
)
6554 string
= TREE_OPERAND (string
, 0);
6555 if (TREE_CODE (string
) != STRING_CST
)
6557 error ("asm template is not a string constant");
6561 /* Record the contents of OUTPUTS before it is modified. */
6562 for (i
= 0, tail
= outputs
; tail
; tail
= TREE_CHAIN (tail
), i
++)
6563 o
[i
] = TREE_VALUE (tail
);
6565 /* Perform default conversions on array and function inputs. */
6566 /* Don't do this for other types--
6567 it would screw up operands expected to be in memory. */
6568 for (i
= 0, tail
= inputs
; tail
; tail
= TREE_CHAIN (tail
), i
++)
6569 if (TREE_CODE (TREE_TYPE (TREE_VALUE (tail
))) == ARRAY_TYPE
6570 || TREE_CODE (TREE_TYPE (TREE_VALUE (tail
))) == FUNCTION_TYPE
)
6571 TREE_VALUE (tail
) = default_conversion (TREE_VALUE (tail
));
6573 /* Generate the ASM_OPERANDS insn;
6574 store into the TREE_VALUEs of OUTPUTS some trees for
6575 where the values were actually stored. */
6576 expand_asm_operands (string
, outputs
, inputs
, clobbers
, vol
, filename
, line
);
6578 /* Copy all the intermediate outputs into the specified outputs. */
6579 for (i
= 0, tail
= outputs
; tail
; tail
= TREE_CHAIN (tail
), i
++)
6581 if (o
[i
] != TREE_VALUE (tail
))
6583 expand_expr (build_modify_expr (o
[i
], NOP_EXPR
, TREE_VALUE (tail
)),
6584 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
6587 /* Detect modification of read-only values.
6588 (Otherwise done by build_modify_expr.) */
6591 tree type
= TREE_TYPE (o
[i
]);
6592 if (TREE_READONLY (o
[i
])
6593 || TYPE_READONLY (type
)
6594 || ((TREE_CODE (type
) == RECORD_TYPE
6595 || TREE_CODE (type
) == UNION_TYPE
)
6596 && C_TYPE_FIELDS_READONLY (type
)))
6597 readonly_warning (o
[i
], "modification by `asm'");
6601 /* Those MODIFY_EXPRs could do autoincrements. */
6605 /* Expand a C `return' statement.
6606 RETVAL is the expression for what to return,
6607 or a null pointer for `return;' with no value. */
6610 c_expand_return (retval
)
6613 tree valtype
= TREE_TYPE (TREE_TYPE (current_function_decl
));
6615 if (TREE_THIS_VOLATILE (current_function_decl
))
6616 warning ("function declared `noreturn' has a `return' statement");
6620 current_function_returns_null
= 1;
6621 if (warn_return_type
&& valtype
!= 0 && TREE_CODE (valtype
) != VOID_TYPE
)
6622 warning ("`return' with no value, in function returning non-void");
6623 expand_null_return ();
6625 else if (valtype
== 0 || TREE_CODE (valtype
) == VOID_TYPE
)
6627 current_function_returns_null
= 1;
6628 if (pedantic
|| TREE_CODE (TREE_TYPE (retval
)) != VOID_TYPE
)
6629 pedwarn ("`return' with a value, in function returning void");
6630 expand_return (retval
);
6634 tree t
= convert_for_assignment (valtype
, retval
, _("return"),
6635 NULL_TREE
, NULL_TREE
, 0);
6636 tree res
= DECL_RESULT (current_function_decl
);
6639 if (t
== error_mark_node
)
6642 inner
= t
= convert (TREE_TYPE (res
), t
);
6644 /* Strip any conversions, additions, and subtractions, and see if
6645 we are returning the address of a local variable. Warn if so. */
6648 switch (TREE_CODE (inner
))
6650 case NOP_EXPR
: case NON_LVALUE_EXPR
: case CONVERT_EXPR
:
6652 inner
= TREE_OPERAND (inner
, 0);
6656 /* If the second operand of the MINUS_EXPR has a pointer
6657 type (or is converted from it), this may be valid, so
6658 don't give a warning. */
6660 tree op1
= TREE_OPERAND (inner
, 1);
6662 while (! POINTER_TYPE_P (TREE_TYPE (op1
))
6663 && (TREE_CODE (op1
) == NOP_EXPR
6664 || TREE_CODE (op1
) == NON_LVALUE_EXPR
6665 || TREE_CODE (op1
) == CONVERT_EXPR
))
6666 op1
= TREE_OPERAND (op1
, 0);
6668 if (POINTER_TYPE_P (TREE_TYPE (op1
)))
6671 inner
= TREE_OPERAND (inner
, 0);
6676 inner
= TREE_OPERAND (inner
, 0);
6678 while (TREE_CODE_CLASS (TREE_CODE (inner
)) == 'r')
6679 inner
= TREE_OPERAND (inner
, 0);
6681 if (TREE_CODE (inner
) == VAR_DECL
6682 && ! DECL_EXTERNAL (inner
)
6683 && ! TREE_STATIC (inner
)
6684 && DECL_CONTEXT (inner
) == current_function_decl
)
6685 warning ("function returns address of local variable");
6695 t
= build (MODIFY_EXPR
, TREE_TYPE (res
), res
, t
);
6696 TREE_SIDE_EFFECTS (t
) = 1;
6698 current_function_returns_value
= 1;
6702 /* Start a C switch statement, testing expression EXP.
6703 Return EXP if it is valid, an error node otherwise. */
6706 c_expand_start_case (exp
)
6709 register enum tree_code code
= TREE_CODE (TREE_TYPE (exp
));
6710 tree type
= TREE_TYPE (exp
);
6712 if (code
!= INTEGER_TYPE
&& code
!= ENUMERAL_TYPE
&& code
!= ERROR_MARK
)
6714 error ("switch quantity not an integer");
6715 exp
= error_mark_node
;
6720 type
= TYPE_MAIN_VARIANT (TREE_TYPE (exp
));
6722 if (warn_traditional
6723 && (type
== long_integer_type_node
6724 || type
== long_unsigned_type_node
))
6725 pedwarn ("`long' switch expression not converted to `int' in ANSI C");
6727 exp
= default_conversion (exp
);
6728 type
= TREE_TYPE (exp
);
6729 index
= get_unwidened (exp
, NULL_TREE
);
6730 /* We can't strip a conversion from a signed type to an unsigned,
6731 because if we did, int_fits_type_p would do the wrong thing
6732 when checking case values for being in range,
6733 and it's too hard to do the right thing. */
6734 if (TREE_UNSIGNED (TREE_TYPE (exp
))
6735 == TREE_UNSIGNED (TREE_TYPE (index
)))
6739 expand_start_case (1, exp
, type
, "switch statement");