gcc/upc/
[official-gcc.git] / gcc / stor-layout.c
blob0df10e65e89f79b7b2253501a8a3265695dee3a5
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "diagnostic-core.h"
34 #include "ggc.h"
35 #include "target.h"
36 #include "langhooks.h"
37 #include "regs.h"
38 #include "params.h"
39 #include "cgraph.h"
40 #include "tree-inline.h"
41 #include "tree-dump.h"
42 #include "gimple.h"
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
53 in the address spaces' address_mode, not pointer_mode. Set only by
54 internal_reference_types called only by a front end. */
55 static int reference_types_internal = 0;
57 static tree self_referential_size (tree);
58 static void finalize_record_size (record_layout_info);
59 static void finalize_type_size (tree);
60 static void place_union_field (record_layout_info, tree);
61 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
62 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
63 HOST_WIDE_INT, tree);
64 #endif
65 extern void debug_rli (record_layout_info);
67 /* Show that REFERENCE_TYPES are internal and should use address_mode.
68 Called only by front end. */
70 void
71 internal_reference_types (void)
73 reference_types_internal = 1;
76 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
77 to serve as the actual size-expression for a type or decl. */
79 tree
80 variable_size (tree size)
82 /* Obviously. */
83 if (TREE_CONSTANT (size))
84 return size;
86 /* If the size is self-referential, we can't make a SAVE_EXPR (see
87 save_expr for the rationale). But we can do something else. */
88 if (CONTAINS_PLACEHOLDER_P (size))
89 return self_referential_size (size);
91 /* If we are in the global binding level, we can't make a SAVE_EXPR
92 since it may end up being shared across functions, so it is up
93 to the front-end to deal with this case. */
94 if (lang_hooks.decls.global_bindings_p ())
95 return size;
97 return save_expr (size);
100 /* An array of functions used for self-referential size computation. */
101 static GTY(()) VEC (tree, gc) *size_functions;
103 /* Look inside EXPR into simple arithmetic operations involving constants.
104 Return the outermost non-arithmetic or non-constant node. */
106 static tree
107 skip_simple_constant_arithmetic (tree expr)
109 while (true)
111 if (UNARY_CLASS_P (expr))
112 expr = TREE_OPERAND (expr, 0);
113 else if (BINARY_CLASS_P (expr))
115 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
116 expr = TREE_OPERAND (expr, 0);
117 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
118 expr = TREE_OPERAND (expr, 1);
119 else
120 break;
122 else
123 break;
126 return expr;
129 /* Similar to copy_tree_r but do not copy component references involving
130 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
131 and substituted in substitute_in_expr. */
133 static tree
134 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
136 enum tree_code code = TREE_CODE (*tp);
138 /* Stop at types, decls, constants like copy_tree_r. */
139 if (TREE_CODE_CLASS (code) == tcc_type
140 || TREE_CODE_CLASS (code) == tcc_declaration
141 || TREE_CODE_CLASS (code) == tcc_constant)
143 *walk_subtrees = 0;
144 return NULL_TREE;
147 /* This is the pattern built in ada/make_aligning_type. */
148 else if (code == ADDR_EXPR
149 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
151 *walk_subtrees = 0;
152 return NULL_TREE;
155 /* Default case: the component reference. */
156 else if (code == COMPONENT_REF)
158 tree inner;
159 for (inner = TREE_OPERAND (*tp, 0);
160 REFERENCE_CLASS_P (inner);
161 inner = TREE_OPERAND (inner, 0))
164 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
166 *walk_subtrees = 0;
167 return NULL_TREE;
171 /* We're not supposed to have them in self-referential size trees
172 because we wouldn't properly control when they are evaluated.
173 However, not creating superfluous SAVE_EXPRs requires accurate
174 tracking of readonly-ness all the way down to here, which we
175 cannot always guarantee in practice. So punt in this case. */
176 else if (code == SAVE_EXPR)
177 return error_mark_node;
179 else if (code == STATEMENT_LIST)
180 gcc_unreachable ();
182 return copy_tree_r (tp, walk_subtrees, data);
185 /* Given a SIZE expression that is self-referential, return an equivalent
186 expression to serve as the actual size expression for a type. */
188 static tree
189 self_referential_size (tree size)
191 static unsigned HOST_WIDE_INT fnno = 0;
192 VEC (tree, heap) *self_refs = NULL;
193 tree param_type_list = NULL, param_decl_list = NULL;
194 tree t, ref, return_type, fntype, fnname, fndecl;
195 unsigned int i;
196 char buf[128];
197 VEC(tree,gc) *args = NULL;
199 /* Do not factor out simple operations. */
200 t = skip_simple_constant_arithmetic (size);
201 if (TREE_CODE (t) == CALL_EXPR)
202 return size;
204 /* Collect the list of self-references in the expression. */
205 find_placeholder_in_expr (size, &self_refs);
206 gcc_assert (VEC_length (tree, self_refs) > 0);
208 /* Obtain a private copy of the expression. */
209 t = size;
210 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
211 return size;
212 size = t;
214 /* Build the parameter and argument lists in parallel; also
215 substitute the former for the latter in the expression. */
216 args = VEC_alloc (tree, gc, VEC_length (tree, self_refs));
217 FOR_EACH_VEC_ELT (tree, self_refs, i, ref)
219 tree subst, param_name, param_type, param_decl;
221 if (DECL_P (ref))
223 /* We shouldn't have true variables here. */
224 gcc_assert (TREE_READONLY (ref));
225 subst = ref;
227 /* This is the pattern built in ada/make_aligning_type. */
228 else if (TREE_CODE (ref) == ADDR_EXPR)
229 subst = ref;
230 /* Default case: the component reference. */
231 else
232 subst = TREE_OPERAND (ref, 1);
234 sprintf (buf, "p%d", i);
235 param_name = get_identifier (buf);
236 param_type = TREE_TYPE (ref);
237 param_decl
238 = build_decl (input_location, PARM_DECL, param_name, param_type);
239 if (targetm.calls.promote_prototypes (NULL_TREE)
240 && INTEGRAL_TYPE_P (param_type)
241 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
242 DECL_ARG_TYPE (param_decl) = integer_type_node;
243 else
244 DECL_ARG_TYPE (param_decl) = param_type;
245 DECL_ARTIFICIAL (param_decl) = 1;
246 TREE_READONLY (param_decl) = 1;
248 size = substitute_in_expr (size, subst, param_decl);
250 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
251 param_decl_list = chainon (param_decl, param_decl_list);
252 VEC_quick_push (tree, args, ref);
255 VEC_free (tree, heap, self_refs);
257 /* Append 'void' to indicate that the number of parameters is fixed. */
258 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
260 /* The 3 lists have been created in reverse order. */
261 param_type_list = nreverse (param_type_list);
262 param_decl_list = nreverse (param_decl_list);
264 /* Build the function type. */
265 return_type = TREE_TYPE (size);
266 fntype = build_function_type (return_type, param_type_list);
268 /* Build the function declaration. */
269 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
270 fnname = get_file_function_name (buf);
271 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
272 for (t = param_decl_list; t; t = DECL_CHAIN (t))
273 DECL_CONTEXT (t) = fndecl;
274 DECL_ARGUMENTS (fndecl) = param_decl_list;
275 DECL_RESULT (fndecl)
276 = build_decl (input_location, RESULT_DECL, 0, return_type);
277 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
279 /* The function has been created by the compiler and we don't
280 want to emit debug info for it. */
281 DECL_ARTIFICIAL (fndecl) = 1;
282 DECL_IGNORED_P (fndecl) = 1;
284 /* It is supposed to be "const" and never throw. */
285 TREE_READONLY (fndecl) = 1;
286 TREE_NOTHROW (fndecl) = 1;
288 /* We want it to be inlined when this is deemed profitable, as
289 well as discarded if every call has been integrated. */
290 DECL_DECLARED_INLINE_P (fndecl) = 1;
292 /* It is made up of a unique return statement. */
293 DECL_INITIAL (fndecl) = make_node (BLOCK);
294 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
295 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
296 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
297 TREE_STATIC (fndecl) = 1;
299 /* Put it onto the list of size functions. */
300 VEC_safe_push (tree, gc, size_functions, fndecl);
302 /* Replace the original expression with a call to the size function. */
303 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
306 /* Take, queue and compile all the size functions. It is essential that
307 the size functions be gimplified at the very end of the compilation
308 in order to guarantee transparent handling of self-referential sizes.
309 Otherwise the GENERIC inliner would not be able to inline them back
310 at each of their call sites, thus creating artificial non-constant
311 size expressions which would trigger nasty problems later on. */
313 void
314 finalize_size_functions (void)
316 unsigned int i;
317 tree fndecl;
319 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
321 dump_function (TDI_original, fndecl);
322 gimplify_function_tree (fndecl);
323 dump_function (TDI_generic, fndecl);
324 cgraph_finalize_function (fndecl, false);
327 VEC_free (tree, gc, size_functions);
330 /* Return the machine mode to use for a nonscalar of SIZE bits. The
331 mode must be in class MCLASS, and have exactly that many value bits;
332 it may have padding as well. If LIMIT is nonzero, modes of wider
333 than MAX_FIXED_MODE_SIZE will not be used. */
335 enum machine_mode
336 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
338 enum machine_mode mode;
340 if (limit && size > MAX_FIXED_MODE_SIZE)
341 return BLKmode;
343 /* Get the first mode which has this size, in the specified class. */
344 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
345 mode = GET_MODE_WIDER_MODE (mode))
346 if (GET_MODE_PRECISION (mode) == size)
347 return mode;
349 return BLKmode;
352 /* Similar, except passed a tree node. */
354 enum machine_mode
355 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
357 unsigned HOST_WIDE_INT uhwi;
358 unsigned int ui;
360 if (!host_integerp (size, 1))
361 return BLKmode;
362 uhwi = tree_low_cst (size, 1);
363 ui = uhwi;
364 if (uhwi != ui)
365 return BLKmode;
366 return mode_for_size (ui, mclass, limit);
369 /* Similar, but never return BLKmode; return the narrowest mode that
370 contains at least the requested number of value bits. */
372 enum machine_mode
373 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
375 enum machine_mode mode;
377 /* Get the first mode which has at least this size, in the
378 specified class. */
379 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
380 mode = GET_MODE_WIDER_MODE (mode))
381 if (GET_MODE_PRECISION (mode) >= size)
382 return mode;
384 gcc_unreachable ();
387 /* Find an integer mode of the exact same size, or BLKmode on failure. */
389 enum machine_mode
390 int_mode_for_mode (enum machine_mode mode)
392 switch (GET_MODE_CLASS (mode))
394 case MODE_INT:
395 case MODE_PARTIAL_INT:
396 break;
398 case MODE_COMPLEX_INT:
399 case MODE_COMPLEX_FLOAT:
400 case MODE_FLOAT:
401 case MODE_DECIMAL_FLOAT:
402 case MODE_VECTOR_INT:
403 case MODE_VECTOR_FLOAT:
404 case MODE_FRACT:
405 case MODE_ACCUM:
406 case MODE_UFRACT:
407 case MODE_UACCUM:
408 case MODE_VECTOR_FRACT:
409 case MODE_VECTOR_ACCUM:
410 case MODE_VECTOR_UFRACT:
411 case MODE_VECTOR_UACCUM:
412 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
413 break;
415 case MODE_RANDOM:
416 if (mode == BLKmode)
417 break;
419 /* ... fall through ... */
421 case MODE_CC:
422 default:
423 gcc_unreachable ();
426 return mode;
429 /* Find a mode that is suitable for representing a vector with
430 NUNITS elements of mode INNERMODE. Returns BLKmode if there
431 is no suitable mode. */
433 enum machine_mode
434 mode_for_vector (enum machine_mode innermode, unsigned nunits)
436 enum machine_mode mode;
438 /* First, look for a supported vector type. */
439 if (SCALAR_FLOAT_MODE_P (innermode))
440 mode = MIN_MODE_VECTOR_FLOAT;
441 else if (SCALAR_FRACT_MODE_P (innermode))
442 mode = MIN_MODE_VECTOR_FRACT;
443 else if (SCALAR_UFRACT_MODE_P (innermode))
444 mode = MIN_MODE_VECTOR_UFRACT;
445 else if (SCALAR_ACCUM_MODE_P (innermode))
446 mode = MIN_MODE_VECTOR_ACCUM;
447 else if (SCALAR_UACCUM_MODE_P (innermode))
448 mode = MIN_MODE_VECTOR_UACCUM;
449 else
450 mode = MIN_MODE_VECTOR_INT;
452 /* Do not check vector_mode_supported_p here. We'll do that
453 later in vector_type_mode. */
454 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
455 if (GET_MODE_NUNITS (mode) == nunits
456 && GET_MODE_INNER (mode) == innermode)
457 break;
459 /* For integers, try mapping it to a same-sized scalar mode. */
460 if (mode == VOIDmode
461 && GET_MODE_CLASS (innermode) == MODE_INT)
462 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
463 MODE_INT, 0);
465 if (mode == VOIDmode
466 || (GET_MODE_CLASS (mode) == MODE_INT
467 && !have_regs_of_mode[mode]))
468 return BLKmode;
470 return mode;
473 /* Return the alignment of MODE. This will be bounded by 1 and
474 BIGGEST_ALIGNMENT. */
476 unsigned int
477 get_mode_alignment (enum machine_mode mode)
479 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
482 /* Return the natural mode of an array, given that it is SIZE bytes in
483 total and has elements of type ELEM_TYPE. */
485 static enum machine_mode
486 mode_for_array (tree elem_type, tree size)
488 tree elem_size;
489 unsigned HOST_WIDE_INT int_size, int_elem_size;
490 bool limit_p;
492 /* One-element arrays get the component type's mode. */
493 elem_size = TYPE_SIZE (elem_type);
494 if (simple_cst_equal (size, elem_size))
495 return TYPE_MODE (elem_type);
497 limit_p = true;
498 if (host_integerp (size, 1) && host_integerp (elem_size, 1))
500 int_size = tree_low_cst (size, 1);
501 int_elem_size = tree_low_cst (elem_size, 1);
502 if (int_elem_size > 0
503 && int_size % int_elem_size == 0
504 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
505 int_size / int_elem_size))
506 limit_p = false;
508 return mode_for_size_tree (size, MODE_INT, limit_p);
511 /* Hook for a front-end function that tests to see if a declared
512 object's size needs to be calculated in a language defined way */
514 int (*lang_layout_decl_p)(tree, tree) = 0;
516 void
517 set_lang_layout_decl_p (int (*f)(tree, tree))
519 lang_layout_decl_p = f;
522 /* Hook for a front-end function that can size a declared
523 object, when the size is unknown at the time that
524 `layout_type' is called. */
526 void (*lang_layout_decl) (tree, tree) = 0;
528 void
529 set_lang_layout_decl (void (*f) (tree, tree))
531 lang_layout_decl = f;
534 /* Subroutine of layout_decl: Force alignment required for the data type.
535 But if the decl itself wants greater alignment, don't override that. */
537 static inline void
538 do_type_align (tree type, tree decl)
540 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
542 DECL_ALIGN (decl) = TYPE_ALIGN (type);
543 if (TREE_CODE (decl) == FIELD_DECL)
544 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
548 /* Set the size, mode and alignment of a ..._DECL node.
549 TYPE_DECL does need this for C++.
550 Note that LABEL_DECL and CONST_DECL nodes do not need this,
551 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
552 Don't call layout_decl for them.
554 KNOWN_ALIGN is the amount of alignment we can assume this
555 decl has with no special effort. It is relevant only for FIELD_DECLs
556 and depends on the previous fields.
557 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
558 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
559 the record will be aligned to suit. */
561 void
562 layout_decl (tree decl, unsigned int known_align)
564 tree type = TREE_TYPE (decl);
565 enum tree_code code = TREE_CODE (decl);
566 rtx rtl = NULL_RTX;
567 location_t loc = DECL_SOURCE_LOCATION (decl);
569 if (code == CONST_DECL)
570 return;
572 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
573 || code == TYPE_DECL ||code == FIELD_DECL);
575 rtl = DECL_RTL_IF_SET (decl);
577 if (type == error_mark_node)
578 type = void_type_node;
580 /* Usually the size and mode come from the data type without change,
581 however, the front-end may set the explicit width of the field, so its
582 size may not be the same as the size of its type. This happens with
583 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
584 also happens with other fields. For example, the C++ front-end creates
585 zero-sized fields corresponding to empty base classes, and depends on
586 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
587 size in bytes from the size in bits. If we have already set the mode,
588 don't set it again since we can be called twice for FIELD_DECLs. */
590 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
591 if (DECL_MODE (decl) == VOIDmode)
592 DECL_MODE (decl) = TYPE_MODE (type);
594 if (lang_layout_decl_p && (*lang_layout_decl_p) (decl, type))
596 (*lang_layout_decl) (decl, type);
598 else if (DECL_SIZE (decl) == 0)
600 DECL_SIZE (decl) = TYPE_SIZE (type);
601 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
603 else if (DECL_SIZE_UNIT (decl) == 0)
604 DECL_SIZE_UNIT (decl)
605 = fold_convert_loc (loc, sizetype,
606 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
607 bitsize_unit_node));
609 if (code != FIELD_DECL)
610 /* For non-fields, update the alignment from the type. */
611 do_type_align (type, decl);
612 else
613 /* For fields, it's a bit more complicated... */
615 bool old_user_align = DECL_USER_ALIGN (decl);
616 bool zero_bitfield = false;
617 bool packed_p = DECL_PACKED (decl);
618 unsigned int mfa;
620 if (DECL_BIT_FIELD (decl))
622 DECL_BIT_FIELD_TYPE (decl) = type;
624 /* A zero-length bit-field affects the alignment of the next
625 field. In essence such bit-fields are not influenced by
626 any packing due to #pragma pack or attribute packed. */
627 if (integer_zerop (DECL_SIZE (decl))
628 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
630 zero_bitfield = true;
631 packed_p = false;
632 #ifdef PCC_BITFIELD_TYPE_MATTERS
633 if (PCC_BITFIELD_TYPE_MATTERS)
634 do_type_align (type, decl);
635 else
636 #endif
638 #ifdef EMPTY_FIELD_BOUNDARY
639 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
641 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
642 DECL_USER_ALIGN (decl) = 0;
644 #endif
648 /* See if we can use an ordinary integer mode for a bit-field.
649 Conditions are: a fixed size that is correct for another mode,
650 occupying a complete byte or bytes on proper boundary,
651 and not -fstrict-volatile-bitfields. If the latter is set,
652 we unfortunately can't check TREE_THIS_VOLATILE, as a cast
653 may make a volatile object later. */
654 if (TYPE_SIZE (type) != 0
655 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
656 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
657 && flag_strict_volatile_bitfields <= 0)
659 enum machine_mode xmode
660 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
661 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
663 if (xmode != BLKmode
664 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
665 && (known_align == 0 || known_align >= xalign))
667 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
668 DECL_MODE (decl) = xmode;
669 DECL_BIT_FIELD (decl) = 0;
673 /* Turn off DECL_BIT_FIELD if we won't need it set. */
674 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
675 && known_align >= TYPE_ALIGN (type)
676 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
677 DECL_BIT_FIELD (decl) = 0;
679 else if (packed_p && DECL_USER_ALIGN (decl))
680 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
681 round up; we'll reduce it again below. We want packing to
682 supersede USER_ALIGN inherited from the type, but defer to
683 alignment explicitly specified on the field decl. */;
684 else
685 do_type_align (type, decl);
687 /* If the field is packed and not explicitly aligned, give it the
688 minimum alignment. Note that do_type_align may set
689 DECL_USER_ALIGN, so we need to check old_user_align instead. */
690 if (packed_p
691 && !old_user_align)
692 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
694 if (! packed_p && ! DECL_USER_ALIGN (decl))
696 /* Some targets (i.e. i386, VMS) limit struct field alignment
697 to a lower boundary than alignment of variables unless
698 it was overridden by attribute aligned. */
699 #ifdef BIGGEST_FIELD_ALIGNMENT
700 DECL_ALIGN (decl)
701 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
702 #endif
703 #ifdef ADJUST_FIELD_ALIGN
704 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
705 #endif
708 if (zero_bitfield)
709 mfa = initial_max_fld_align * BITS_PER_UNIT;
710 else
711 mfa = maximum_field_alignment;
712 /* Should this be controlled by DECL_USER_ALIGN, too? */
713 if (mfa != 0)
714 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
717 /* Evaluate nonconstant size only once, either now or as soon as safe. */
718 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
719 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
720 if (DECL_SIZE_UNIT (decl) != 0
721 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
722 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
724 /* If requested, warn about definitions of large data objects. */
725 if (warn_larger_than
726 && (code == VAR_DECL || code == PARM_DECL)
727 && ! DECL_EXTERNAL (decl))
729 tree size = DECL_SIZE_UNIT (decl);
731 if (size != 0 && TREE_CODE (size) == INTEGER_CST
732 && compare_tree_int (size, larger_than_size) > 0)
734 int size_as_int = TREE_INT_CST_LOW (size);
736 if (compare_tree_int (size, size_as_int) == 0)
737 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
738 else
739 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
740 decl, larger_than_size);
744 /* If the RTL was already set, update its mode and mem attributes. */
745 if (rtl)
747 PUT_MODE (rtl, DECL_MODE (decl));
748 SET_DECL_RTL (decl, 0);
749 set_mem_attributes (rtl, decl, 1);
750 SET_DECL_RTL (decl, rtl);
754 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
755 a previous call to layout_decl and calls it again. */
757 void
758 relayout_decl (tree decl)
760 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
761 DECL_MODE (decl) = VOIDmode;
762 if (!DECL_USER_ALIGN (decl))
763 DECL_ALIGN (decl) = 0;
764 SET_DECL_RTL (decl, 0);
766 layout_decl (decl, 0);
769 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
770 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
771 is to be passed to all other layout functions for this record. It is the
772 responsibility of the caller to call `free' for the storage returned.
773 Note that garbage collection is not permitted until we finish laying
774 out the record. */
776 record_layout_info
777 start_record_layout (tree t)
779 record_layout_info rli = XNEW (struct record_layout_info_s);
781 rli->t = t;
783 /* If the type has a minimum specified alignment (via an attribute
784 declaration, for example) use it -- otherwise, start with a
785 one-byte alignment. */
786 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
787 rli->unpacked_align = rli->record_align;
788 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
790 #ifdef STRUCTURE_SIZE_BOUNDARY
791 /* Packed structures don't need to have minimum size. */
792 if (! TYPE_PACKED (t))
794 unsigned tmp;
796 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
797 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
798 if (maximum_field_alignment != 0)
799 tmp = MIN (tmp, maximum_field_alignment);
800 rli->record_align = MAX (rli->record_align, tmp);
802 #endif
804 rli->offset = size_zero_node;
805 rli->bitpos = bitsize_zero_node;
806 rli->prev_field = 0;
807 rli->pending_statics = NULL;
808 rli->packed_maybe_necessary = 0;
809 rli->remaining_in_alignment = 0;
811 return rli;
814 /* Return the combined bit position for the byte offset OFFSET and the
815 bit position BITPOS.
817 These functions operate on byte and bit positions present in FIELD_DECLs
818 and assume that these expressions result in no (intermediate) overflow.
819 This assumption is necessary to fold the expressions as much as possible,
820 so as to avoid creating artificially variable-sized types in languages
821 supporting variable-sized types like Ada. */
823 tree
824 bit_from_pos (tree offset, tree bitpos)
826 if (TREE_CODE (offset) == PLUS_EXPR)
827 offset = size_binop (PLUS_EXPR,
828 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
829 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
830 else
831 offset = fold_convert (bitsizetype, offset);
832 return size_binop (PLUS_EXPR, bitpos,
833 size_binop (MULT_EXPR, offset, bitsize_unit_node));
836 /* Return the combined truncated byte position for the byte offset OFFSET and
837 the bit position BITPOS. */
839 tree
840 byte_from_pos (tree offset, tree bitpos)
842 tree bytepos;
843 if (TREE_CODE (bitpos) == MULT_EXPR
844 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
845 bytepos = TREE_OPERAND (bitpos, 0);
846 else
847 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
848 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
851 /* Split the bit position POS into a byte offset *POFFSET and a bit
852 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
854 void
855 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
856 tree pos)
858 tree toff_align = bitsize_int (off_align);
859 if (TREE_CODE (pos) == MULT_EXPR
860 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
862 *poffset = size_binop (MULT_EXPR,
863 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
864 size_int (off_align / BITS_PER_UNIT));
865 *pbitpos = bitsize_zero_node;
867 else
869 *poffset = size_binop (MULT_EXPR,
870 fold_convert (sizetype,
871 size_binop (FLOOR_DIV_EXPR, pos,
872 toff_align)),
873 size_int (off_align / BITS_PER_UNIT));
874 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
878 /* Given a pointer to bit and byte offsets and an offset alignment,
879 normalize the offsets so they are within the alignment. */
881 void
882 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
884 /* If the bit position is now larger than it should be, adjust it
885 downwards. */
886 if (compare_tree_int (*pbitpos, off_align) >= 0)
888 tree offset, bitpos;
889 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
890 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
891 *pbitpos = bitpos;
895 /* Print debugging information about the information in RLI. */
897 DEBUG_FUNCTION void
898 debug_rli (record_layout_info rli)
900 print_node_brief (stderr, "type", rli->t, 0);
901 print_node_brief (stderr, "\noffset", rli->offset, 0);
902 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
904 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
905 rli->record_align, rli->unpacked_align,
906 rli->offset_align);
908 /* The ms_struct code is the only that uses this. */
909 if (targetm.ms_bitfield_layout_p (rli->t))
910 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
912 if (rli->packed_maybe_necessary)
913 fprintf (stderr, "packed may be necessary\n");
915 if (!VEC_empty (tree, rli->pending_statics))
917 fprintf (stderr, "pending statics:\n");
918 debug_vec_tree (rli->pending_statics);
922 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
923 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
925 void
926 normalize_rli (record_layout_info rli)
928 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
931 /* Returns the size in bytes allocated so far. */
933 tree
934 rli_size_unit_so_far (record_layout_info rli)
936 return byte_from_pos (rli->offset, rli->bitpos);
939 /* Returns the size in bits allocated so far. */
941 tree
942 rli_size_so_far (record_layout_info rli)
944 return bit_from_pos (rli->offset, rli->bitpos);
947 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
948 the next available location within the record is given by KNOWN_ALIGN.
949 Update the variable alignment fields in RLI, and return the alignment
950 to give the FIELD. */
952 unsigned int
953 update_alignment_for_field (record_layout_info rli, tree field,
954 unsigned int known_align)
956 /* The alignment required for FIELD. */
957 unsigned int desired_align;
958 /* The type of this field. */
959 tree type = TREE_TYPE (field);
960 /* True if the field was explicitly aligned by the user. */
961 bool user_align;
962 bool is_bitfield;
964 /* Do not attempt to align an ERROR_MARK node */
965 if (TREE_CODE (type) == ERROR_MARK)
966 return 0;
968 /* Lay out the field so we know what alignment it needs. */
969 layout_decl (field, known_align);
970 desired_align = DECL_ALIGN (field);
971 user_align = DECL_USER_ALIGN (field);
973 is_bitfield = (type != error_mark_node
974 && DECL_BIT_FIELD_TYPE (field)
975 && ! integer_zerop (TYPE_SIZE (type)));
977 /* Record must have at least as much alignment as any field.
978 Otherwise, the alignment of the field within the record is
979 meaningless. */
980 if (targetm.ms_bitfield_layout_p (rli->t))
982 /* Here, the alignment of the underlying type of a bitfield can
983 affect the alignment of a record; even a zero-sized field
984 can do this. The alignment should be to the alignment of
985 the type, except that for zero-size bitfields this only
986 applies if there was an immediately prior, nonzero-size
987 bitfield. (That's the way it is, experimentally.) */
988 if ((!is_bitfield && !DECL_PACKED (field))
989 || ((DECL_SIZE (field) == NULL_TREE
990 || !integer_zerop (DECL_SIZE (field)))
991 ? !DECL_PACKED (field)
992 : (rli->prev_field
993 && DECL_BIT_FIELD_TYPE (rli->prev_field)
994 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
996 unsigned int type_align = TYPE_ALIGN (type);
997 type_align = MAX (type_align, desired_align);
998 if (maximum_field_alignment != 0)
999 type_align = MIN (type_align, maximum_field_alignment);
1000 rli->record_align = MAX (rli->record_align, type_align);
1001 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1004 #ifdef PCC_BITFIELD_TYPE_MATTERS
1005 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1007 /* Named bit-fields cause the entire structure to have the
1008 alignment implied by their type. Some targets also apply the same
1009 rules to unnamed bitfields. */
1010 if (DECL_NAME (field) != 0
1011 || targetm.align_anon_bitfield ())
1013 unsigned int type_align = TYPE_ALIGN (type);
1015 #ifdef ADJUST_FIELD_ALIGN
1016 if (! TYPE_USER_ALIGN (type))
1017 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1018 #endif
1020 /* Targets might chose to handle unnamed and hence possibly
1021 zero-width bitfield. Those are not influenced by #pragmas
1022 or packed attributes. */
1023 if (integer_zerop (DECL_SIZE (field)))
1025 if (initial_max_fld_align)
1026 type_align = MIN (type_align,
1027 initial_max_fld_align * BITS_PER_UNIT);
1029 else if (maximum_field_alignment != 0)
1030 type_align = MIN (type_align, maximum_field_alignment);
1031 else if (DECL_PACKED (field))
1032 type_align = MIN (type_align, BITS_PER_UNIT);
1034 /* The alignment of the record is increased to the maximum
1035 of the current alignment, the alignment indicated on the
1036 field (i.e., the alignment specified by an __aligned__
1037 attribute), and the alignment indicated by the type of
1038 the field. */
1039 rli->record_align = MAX (rli->record_align, desired_align);
1040 rli->record_align = MAX (rli->record_align, type_align);
1042 if (warn_packed)
1043 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1044 user_align |= TYPE_USER_ALIGN (type);
1047 #endif
1048 else
1050 rli->record_align = MAX (rli->record_align, desired_align);
1051 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1054 TYPE_USER_ALIGN (rli->t) |= user_align;
1056 return desired_align;
1059 /* Called from place_field to handle unions. */
1061 static void
1062 place_union_field (record_layout_info rli, tree field)
1064 update_alignment_for_field (rli, field, /*known_align=*/0);
1066 DECL_FIELD_OFFSET (field) = size_zero_node;
1067 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1068 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1070 /* If this is an ERROR_MARK return *after* having set the
1071 field at the start of the union. This helps when parsing
1072 invalid fields. */
1073 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1074 return;
1076 /* We assume the union's size will be a multiple of a byte so we don't
1077 bother with BITPOS. */
1078 if (TREE_CODE (rli->t) == UNION_TYPE)
1079 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1080 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1081 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1082 DECL_SIZE_UNIT (field), rli->offset);
1085 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1086 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1087 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1088 units of alignment than the underlying TYPE. */
1089 static int
1090 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1091 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1093 /* Note that the calculation of OFFSET might overflow; we calculate it so
1094 that we still get the right result as long as ALIGN is a power of two. */
1095 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1097 offset = offset % align;
1098 return ((offset + size + align - 1) / align
1099 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1100 / align));
1102 #endif
1104 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1105 is a FIELD_DECL to be added after those fields already present in
1106 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1107 callers that desire that behavior must manually perform that step.) */
1109 void
1110 place_field (record_layout_info rli, tree field)
1112 /* The alignment required for FIELD. */
1113 unsigned int desired_align;
1114 /* The alignment FIELD would have if we just dropped it into the
1115 record as it presently stands. */
1116 unsigned int known_align;
1117 unsigned int actual_align;
1118 /* The type of this field. */
1119 tree type = TREE_TYPE (field);
1121 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1123 /* If FIELD is static, then treat it like a separate variable, not
1124 really like a structure field. If it is a FUNCTION_DECL, it's a
1125 method. In both cases, all we do is lay out the decl, and we do
1126 it *after* the record is laid out. */
1127 if (TREE_CODE (field) == VAR_DECL)
1129 VEC_safe_push (tree, gc, rli->pending_statics, field);
1130 return;
1133 /* Enumerators and enum types which are local to this class need not
1134 be laid out. Likewise for initialized constant fields. */
1135 else if (TREE_CODE (field) != FIELD_DECL)
1136 return;
1138 /* Unions are laid out very differently than records, so split
1139 that code off to another function. */
1140 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1142 place_union_field (rli, field);
1143 return;
1146 else if (TREE_CODE (type) == ERROR_MARK)
1148 /* Place this field at the current allocation position, so we
1149 maintain monotonicity. */
1150 DECL_FIELD_OFFSET (field) = rli->offset;
1151 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1152 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1153 return;
1156 /* Work out the known alignment so far. Note that A & (-A) is the
1157 value of the least-significant bit in A that is one. */
1158 if (! integer_zerop (rli->bitpos))
1159 known_align = (tree_low_cst (rli->bitpos, 1)
1160 & - tree_low_cst (rli->bitpos, 1));
1161 else if (integer_zerop (rli->offset))
1162 known_align = 0;
1163 else if (host_integerp (rli->offset, 1))
1164 known_align = (BITS_PER_UNIT
1165 * (tree_low_cst (rli->offset, 1)
1166 & - tree_low_cst (rli->offset, 1)));
1167 else
1168 known_align = rli->offset_align;
1170 desired_align = update_alignment_for_field (rli, field, known_align);
1171 if (known_align == 0)
1172 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1174 if (warn_packed && DECL_PACKED (field))
1176 if (known_align >= TYPE_ALIGN (type))
1178 if (TYPE_ALIGN (type) > desired_align)
1180 if (STRICT_ALIGNMENT)
1181 warning (OPT_Wattributes, "packed attribute causes "
1182 "inefficient alignment for %q+D", field);
1183 /* Don't warn if DECL_PACKED was set by the type. */
1184 else if (!TYPE_PACKED (rli->t))
1185 warning (OPT_Wattributes, "packed attribute is "
1186 "unnecessary for %q+D", field);
1189 else
1190 rli->packed_maybe_necessary = 1;
1193 /* Does this field automatically have alignment it needs by virtue
1194 of the fields that precede it and the record's own alignment? */
1195 if (known_align < desired_align)
1197 /* No, we need to skip space before this field.
1198 Bump the cumulative size to multiple of field alignment. */
1200 if (!targetm.ms_bitfield_layout_p (rli->t)
1201 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1202 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1204 /* If the alignment is still within offset_align, just align
1205 the bit position. */
1206 if (desired_align < rli->offset_align)
1207 rli->bitpos = round_up (rli->bitpos, desired_align);
1208 else
1210 /* First adjust OFFSET by the partial bits, then align. */
1211 rli->offset
1212 = size_binop (PLUS_EXPR, rli->offset,
1213 fold_convert (sizetype,
1214 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1215 bitsize_unit_node)));
1216 rli->bitpos = bitsize_zero_node;
1218 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1221 if (! TREE_CONSTANT (rli->offset))
1222 rli->offset_align = desired_align;
1223 if (targetm.ms_bitfield_layout_p (rli->t))
1224 rli->prev_field = NULL;
1227 /* Handle compatibility with PCC. Note that if the record has any
1228 variable-sized fields, we need not worry about compatibility. */
1229 #ifdef PCC_BITFIELD_TYPE_MATTERS
1230 if (PCC_BITFIELD_TYPE_MATTERS
1231 && ! targetm.ms_bitfield_layout_p (rli->t)
1232 && TREE_CODE (field) == FIELD_DECL
1233 && type != error_mark_node
1234 && DECL_BIT_FIELD (field)
1235 && (! DECL_PACKED (field)
1236 /* Enter for these packed fields only to issue a warning. */
1237 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1238 && maximum_field_alignment == 0
1239 && ! integer_zerop (DECL_SIZE (field))
1240 && host_integerp (DECL_SIZE (field), 1)
1241 && host_integerp (rli->offset, 1)
1242 && host_integerp (TYPE_SIZE (type), 1))
1244 unsigned int type_align = TYPE_ALIGN (type);
1245 tree dsize = DECL_SIZE (field);
1246 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1247 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1248 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1250 #ifdef ADJUST_FIELD_ALIGN
1251 if (! TYPE_USER_ALIGN (type))
1252 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1253 #endif
1255 /* A bit field may not span more units of alignment of its type
1256 than its type itself. Advance to next boundary if necessary. */
1257 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1259 if (DECL_PACKED (field))
1261 if (warn_packed_bitfield_compat == 1)
1262 inform
1263 (input_location,
1264 "offset of packed bit-field %qD has changed in GCC 4.4",
1265 field);
1267 else
1268 rli->bitpos = round_up (rli->bitpos, type_align);
1271 if (! DECL_PACKED (field))
1272 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1274 #endif
1276 #ifdef BITFIELD_NBYTES_LIMITED
1277 if (BITFIELD_NBYTES_LIMITED
1278 && ! targetm.ms_bitfield_layout_p (rli->t)
1279 && TREE_CODE (field) == FIELD_DECL
1280 && type != error_mark_node
1281 && DECL_BIT_FIELD_TYPE (field)
1282 && ! DECL_PACKED (field)
1283 && ! integer_zerop (DECL_SIZE (field))
1284 && host_integerp (DECL_SIZE (field), 1)
1285 && host_integerp (rli->offset, 1)
1286 && host_integerp (TYPE_SIZE (type), 1))
1288 unsigned int type_align = TYPE_ALIGN (type);
1289 tree dsize = DECL_SIZE (field);
1290 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1291 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1292 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1294 #ifdef ADJUST_FIELD_ALIGN
1295 if (! TYPE_USER_ALIGN (type))
1296 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1297 #endif
1299 if (maximum_field_alignment != 0)
1300 type_align = MIN (type_align, maximum_field_alignment);
1301 /* ??? This test is opposite the test in the containing if
1302 statement, so this code is unreachable currently. */
1303 else if (DECL_PACKED (field))
1304 type_align = MIN (type_align, BITS_PER_UNIT);
1306 /* A bit field may not span the unit of alignment of its type.
1307 Advance to next boundary if necessary. */
1308 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1309 rli->bitpos = round_up (rli->bitpos, type_align);
1311 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1313 #endif
1315 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1316 A subtlety:
1317 When a bit field is inserted into a packed record, the whole
1318 size of the underlying type is used by one or more same-size
1319 adjacent bitfields. (That is, if its long:3, 32 bits is
1320 used in the record, and any additional adjacent long bitfields are
1321 packed into the same chunk of 32 bits. However, if the size
1322 changes, a new field of that size is allocated.) In an unpacked
1323 record, this is the same as using alignment, but not equivalent
1324 when packing.
1326 Note: for compatibility, we use the type size, not the type alignment
1327 to determine alignment, since that matches the documentation */
1329 if (targetm.ms_bitfield_layout_p (rli->t))
1331 tree prev_saved = rli->prev_field;
1332 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1334 /* This is a bitfield if it exists. */
1335 if (rli->prev_field)
1337 /* If both are bitfields, nonzero, and the same size, this is
1338 the middle of a run. Zero declared size fields are special
1339 and handled as "end of run". (Note: it's nonzero declared
1340 size, but equal type sizes!) (Since we know that both
1341 the current and previous fields are bitfields by the
1342 time we check it, DECL_SIZE must be present for both.) */
1343 if (DECL_BIT_FIELD_TYPE (field)
1344 && !integer_zerop (DECL_SIZE (field))
1345 && !integer_zerop (DECL_SIZE (rli->prev_field))
1346 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1347 && host_integerp (TYPE_SIZE (type), 0)
1348 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1350 /* We're in the middle of a run of equal type size fields; make
1351 sure we realign if we run out of bits. (Not decl size,
1352 type size!) */
1353 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1355 if (rli->remaining_in_alignment < bitsize)
1357 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1359 /* out of bits; bump up to next 'word'. */
1360 rli->bitpos
1361 = size_binop (PLUS_EXPR, rli->bitpos,
1362 bitsize_int (rli->remaining_in_alignment));
1363 rli->prev_field = field;
1364 if (typesize < bitsize)
1365 rli->remaining_in_alignment = 0;
1366 else
1367 rli->remaining_in_alignment = typesize - bitsize;
1369 else
1370 rli->remaining_in_alignment -= bitsize;
1372 else
1374 /* End of a run: if leaving a run of bitfields of the same type
1375 size, we have to "use up" the rest of the bits of the type
1376 size.
1378 Compute the new position as the sum of the size for the prior
1379 type and where we first started working on that type.
1380 Note: since the beginning of the field was aligned then
1381 of course the end will be too. No round needed. */
1383 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1385 rli->bitpos
1386 = size_binop (PLUS_EXPR, rli->bitpos,
1387 bitsize_int (rli->remaining_in_alignment));
1389 else
1390 /* We "use up" size zero fields; the code below should behave
1391 as if the prior field was not a bitfield. */
1392 prev_saved = NULL;
1394 /* Cause a new bitfield to be captured, either this time (if
1395 currently a bitfield) or next time we see one. */
1396 if (!DECL_BIT_FIELD_TYPE(field)
1397 || integer_zerop (DECL_SIZE (field)))
1398 rli->prev_field = NULL;
1401 normalize_rli (rli);
1404 /* If we're starting a new run of same size type bitfields
1405 (or a run of non-bitfields), set up the "first of the run"
1406 fields.
1408 That is, if the current field is not a bitfield, or if there
1409 was a prior bitfield the type sizes differ, or if there wasn't
1410 a prior bitfield the size of the current field is nonzero.
1412 Note: we must be sure to test ONLY the type size if there was
1413 a prior bitfield and ONLY for the current field being zero if
1414 there wasn't. */
1416 if (!DECL_BIT_FIELD_TYPE (field)
1417 || (prev_saved != NULL
1418 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1419 : !integer_zerop (DECL_SIZE (field)) ))
1421 /* Never smaller than a byte for compatibility. */
1422 unsigned int type_align = BITS_PER_UNIT;
1424 /* (When not a bitfield), we could be seeing a flex array (with
1425 no DECL_SIZE). Since we won't be using remaining_in_alignment
1426 until we see a bitfield (and come by here again) we just skip
1427 calculating it. */
1428 if (DECL_SIZE (field) != NULL
1429 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 1)
1430 && host_integerp (DECL_SIZE (field), 1))
1432 unsigned HOST_WIDE_INT bitsize
1433 = tree_low_cst (DECL_SIZE (field), 1);
1434 unsigned HOST_WIDE_INT typesize
1435 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1437 if (typesize < bitsize)
1438 rli->remaining_in_alignment = 0;
1439 else
1440 rli->remaining_in_alignment = typesize - bitsize;
1443 /* Now align (conventionally) for the new type. */
1444 type_align = TYPE_ALIGN (TREE_TYPE (field));
1446 if (maximum_field_alignment != 0)
1447 type_align = MIN (type_align, maximum_field_alignment);
1449 rli->bitpos = round_up (rli->bitpos, type_align);
1451 /* If we really aligned, don't allow subsequent bitfields
1452 to undo that. */
1453 rli->prev_field = NULL;
1457 /* Offset so far becomes the position of this field after normalizing. */
1458 normalize_rli (rli);
1459 DECL_FIELD_OFFSET (field) = rli->offset;
1460 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1461 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1463 /* If this field ended up more aligned than we thought it would be (we
1464 approximate this by seeing if its position changed), lay out the field
1465 again; perhaps we can use an integral mode for it now. */
1466 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1467 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1468 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1469 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1470 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1471 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1472 actual_align = (BITS_PER_UNIT
1473 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1474 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1475 else
1476 actual_align = DECL_OFFSET_ALIGN (field);
1477 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1478 store / extract bit field operations will check the alignment of the
1479 record against the mode of bit fields. */
1481 if (known_align != actual_align)
1482 layout_decl (field, actual_align);
1484 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1485 rli->prev_field = field;
1487 /* Now add size of this field to the size of the record. If the size is
1488 not constant, treat the field as being a multiple of bytes and just
1489 adjust the offset, resetting the bit position. Otherwise, apportion the
1490 size amongst the bit position and offset. First handle the case of an
1491 unspecified size, which can happen when we have an invalid nested struct
1492 definition, such as struct j { struct j { int i; } }. The error message
1493 is printed in finish_struct. */
1494 if (DECL_SIZE (field) == 0)
1495 /* Do nothing. */;
1496 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1497 || TREE_OVERFLOW (DECL_SIZE (field)))
1499 rli->offset
1500 = size_binop (PLUS_EXPR, rli->offset,
1501 fold_convert (sizetype,
1502 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1503 bitsize_unit_node)));
1504 rli->offset
1505 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1506 rli->bitpos = bitsize_zero_node;
1507 rli->offset_align = MIN (rli->offset_align, desired_align);
1509 else if (targetm.ms_bitfield_layout_p (rli->t))
1511 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1513 /* If we ended a bitfield before the full length of the type then
1514 pad the struct out to the full length of the last type. */
1515 if ((DECL_CHAIN (field) == NULL
1516 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1517 && DECL_BIT_FIELD_TYPE (field)
1518 && !integer_zerop (DECL_SIZE (field)))
1519 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1520 bitsize_int (rli->remaining_in_alignment));
1522 normalize_rli (rli);
1524 else
1526 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1527 normalize_rli (rli);
1531 /* Assuming that all the fields have been laid out, this function uses
1532 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1533 indicated by RLI. */
1535 static void
1536 finalize_record_size (record_layout_info rli)
1538 tree unpadded_size, unpadded_size_unit;
1540 /* Now we want just byte and bit offsets, so set the offset alignment
1541 to be a byte and then normalize. */
1542 rli->offset_align = BITS_PER_UNIT;
1543 normalize_rli (rli);
1545 /* Determine the desired alignment. */
1546 #ifdef ROUND_TYPE_ALIGN
1547 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1548 rli->record_align);
1549 #else
1550 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1551 #endif
1553 /* Compute the size so far. Be sure to allow for extra bits in the
1554 size in bytes. We have guaranteed above that it will be no more
1555 than a single byte. */
1556 unpadded_size = rli_size_so_far (rli);
1557 unpadded_size_unit = rli_size_unit_so_far (rli);
1558 if (! integer_zerop (rli->bitpos))
1559 unpadded_size_unit
1560 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1562 /* Round the size up to be a multiple of the required alignment. */
1563 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1564 TYPE_SIZE_UNIT (rli->t)
1565 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1567 if (TREE_CONSTANT (unpadded_size)
1568 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1569 && input_location != BUILTINS_LOCATION)
1570 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1572 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1573 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1574 && TREE_CONSTANT (unpadded_size))
1576 tree unpacked_size;
1578 #ifdef ROUND_TYPE_ALIGN
1579 rli->unpacked_align
1580 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1581 #else
1582 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1583 #endif
1585 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1586 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1588 if (TYPE_NAME (rli->t))
1590 tree name;
1592 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1593 name = TYPE_NAME (rli->t);
1594 else
1595 name = DECL_NAME (TYPE_NAME (rli->t));
1597 if (STRICT_ALIGNMENT)
1598 warning (OPT_Wpacked, "packed attribute causes inefficient "
1599 "alignment for %qE", name);
1600 else
1601 warning (OPT_Wpacked,
1602 "packed attribute is unnecessary for %qE", name);
1604 else
1606 if (STRICT_ALIGNMENT)
1607 warning (OPT_Wpacked,
1608 "packed attribute causes inefficient alignment");
1609 else
1610 warning (OPT_Wpacked, "packed attribute is unnecessary");
1616 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1618 void
1619 compute_record_mode (tree type)
1621 tree field;
1622 enum machine_mode mode = VOIDmode;
1624 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1625 However, if possible, we use a mode that fits in a register
1626 instead, in order to allow for better optimization down the
1627 line. */
1628 SET_TYPE_MODE (type, BLKmode);
1630 if (! host_integerp (TYPE_SIZE (type), 1))
1631 return;
1633 /* A record which has any BLKmode members must itself be
1634 BLKmode; it can't go in a register. Unless the member is
1635 BLKmode only because it isn't aligned. */
1636 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1638 if (TREE_CODE (field) != FIELD_DECL)
1639 continue;
1641 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1642 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1643 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1644 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1645 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1646 || ! host_integerp (bit_position (field), 1)
1647 || DECL_SIZE (field) == 0
1648 || ! host_integerp (DECL_SIZE (field), 1))
1649 return;
1651 /* If this field is the whole struct, remember its mode so
1652 that, say, we can put a double in a class into a DF
1653 register instead of forcing it to live in the stack. */
1654 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1655 mode = DECL_MODE (field);
1657 #ifdef MEMBER_TYPE_FORCES_BLK
1658 /* With some targets, eg. c4x, it is sub-optimal
1659 to access an aligned BLKmode structure as a scalar. */
1661 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1662 return;
1663 #endif /* MEMBER_TYPE_FORCES_BLK */
1666 /* If we only have one real field; use its mode if that mode's size
1667 matches the type's size. This only applies to RECORD_TYPE. This
1668 does not apply to unions. */
1669 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1670 && host_integerp (TYPE_SIZE (type), 1)
1671 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1672 SET_TYPE_MODE (type, mode);
1673 else
1674 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1676 /* If structure's known alignment is less than what the scalar
1677 mode would need, and it matters, then stick with BLKmode. */
1678 if (TYPE_MODE (type) != BLKmode
1679 && STRICT_ALIGNMENT
1680 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1681 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1683 /* If this is the only reason this type is BLKmode, then
1684 don't force containing types to be BLKmode. */
1685 TYPE_NO_FORCE_BLK (type) = 1;
1686 SET_TYPE_MODE (type, BLKmode);
1690 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1691 out. */
1693 static void
1694 finalize_type_size (tree type)
1696 /* Normally, use the alignment corresponding to the mode chosen.
1697 However, where strict alignment is not required, avoid
1698 over-aligning structures, since most compilers do not do this
1699 alignment. */
1701 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1702 && (STRICT_ALIGNMENT
1703 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1704 && TREE_CODE (type) != QUAL_UNION_TYPE
1705 && TREE_CODE (type) != ARRAY_TYPE)))
1707 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1709 /* Don't override a larger alignment requirement coming from a user
1710 alignment of one of the fields. */
1711 if (mode_align >= TYPE_ALIGN (type))
1713 TYPE_ALIGN (type) = mode_align;
1714 TYPE_USER_ALIGN (type) = 0;
1718 /* Do machine-dependent extra alignment. */
1719 #ifdef ROUND_TYPE_ALIGN
1720 TYPE_ALIGN (type)
1721 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1722 #endif
1724 /* If we failed to find a simple way to calculate the unit size
1725 of the type, find it by division. */
1726 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1727 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1728 result will fit in sizetype. We will get more efficient code using
1729 sizetype, so we force a conversion. */
1730 TYPE_SIZE_UNIT (type)
1731 = fold_convert (sizetype,
1732 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1733 bitsize_unit_node));
1735 if (TYPE_SIZE (type) != 0)
1737 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1738 TYPE_SIZE_UNIT (type)
1739 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1742 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1743 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1744 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1745 if (TYPE_SIZE_UNIT (type) != 0
1746 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1747 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1749 /* Also layout any other variants of the type. */
1750 if (TYPE_NEXT_VARIANT (type)
1751 || type != TYPE_MAIN_VARIANT (type))
1753 tree variant;
1754 /* Record layout info of this variant. */
1755 tree size = TYPE_SIZE (type);
1756 tree size_unit = TYPE_SIZE_UNIT (type);
1757 unsigned int align = TYPE_ALIGN (type);
1758 unsigned int user_align = TYPE_USER_ALIGN (type);
1759 enum machine_mode mode = TYPE_MODE (type);
1761 /* Copy it into all variants. */
1762 for (variant = TYPE_MAIN_VARIANT (type);
1763 variant != 0;
1764 variant = TYPE_NEXT_VARIANT (variant))
1766 TYPE_SIZE (variant) = size;
1767 TYPE_SIZE_UNIT (variant) = size_unit;
1768 TYPE_ALIGN (variant) = align;
1769 TYPE_USER_ALIGN (variant) = user_align;
1770 SET_TYPE_MODE (variant, mode);
1775 /* Return a new underlying object for a bitfield started with FIELD. */
1777 static tree
1778 start_bitfield_representative (tree field)
1780 tree repr = make_node (FIELD_DECL);
1781 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1782 /* Force the representative to begin at a BITS_PER_UNIT aligned
1783 boundary - C++ may use tail-padding of a base object to
1784 continue packing bits so the bitfield region does not start
1785 at bit zero (see g++.dg/abi/bitfield5.C for example).
1786 Unallocated bits may happen for other reasons as well,
1787 for example Ada which allows explicit bit-granular structure layout. */
1788 DECL_FIELD_BIT_OFFSET (repr)
1789 = size_binop (BIT_AND_EXPR,
1790 DECL_FIELD_BIT_OFFSET (field),
1791 bitsize_int (~(BITS_PER_UNIT - 1)));
1792 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1793 DECL_SIZE (repr) = DECL_SIZE (field);
1794 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1795 DECL_PACKED (repr) = DECL_PACKED (field);
1796 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1797 return repr;
1800 /* Finish up a bitfield group that was started by creating the underlying
1801 object REPR with the last field in the bitfield group FIELD. */
1803 static void
1804 finish_bitfield_representative (tree repr, tree field)
1806 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1807 enum machine_mode mode;
1808 tree nextf, size;
1810 size = size_diffop (DECL_FIELD_OFFSET (field),
1811 DECL_FIELD_OFFSET (repr));
1812 gcc_assert (host_integerp (size, 1));
1813 bitsize = (tree_low_cst (size, 1) * BITS_PER_UNIT
1814 + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1815 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1)
1816 + tree_low_cst (DECL_SIZE (field), 1));
1818 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1819 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1821 /* Now nothing tells us how to pad out bitsize ... */
1822 nextf = DECL_CHAIN (field);
1823 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1824 nextf = DECL_CHAIN (nextf);
1825 if (nextf)
1827 tree maxsize;
1828 /* If there was an error, the field may be not laid out
1829 correctly. Don't bother to do anything. */
1830 if (TREE_TYPE (nextf) == error_mark_node)
1831 return;
1832 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1833 DECL_FIELD_OFFSET (repr));
1834 if (host_integerp (maxsize, 1))
1836 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1837 + tree_low_cst (DECL_FIELD_BIT_OFFSET (nextf), 1)
1838 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1839 /* If the group ends within a bitfield nextf does not need to be
1840 aligned to BITS_PER_UNIT. Thus round up. */
1841 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1843 else
1844 maxbitsize = bitsize;
1846 else
1848 /* ??? If you consider that tail-padding of this struct might be
1849 re-used when deriving from it we cannot really do the following
1850 and thus need to set maxsize to bitsize? Also we cannot
1851 generally rely on maxsize to fold to an integer constant, so
1852 use bitsize as fallback for this case. */
1853 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1854 DECL_FIELD_OFFSET (repr));
1855 if (host_integerp (maxsize, 1))
1856 maxbitsize = (tree_low_cst (maxsize, 1) * BITS_PER_UNIT
1857 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr), 1));
1858 else
1859 maxbitsize = bitsize;
1862 /* Only if we don't artificially break up the representative in
1863 the middle of a large bitfield with different possibly
1864 overlapping representatives. And all representatives start
1865 at byte offset. */
1866 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1868 /* Find the smallest nice mode to use. */
1869 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1870 mode = GET_MODE_WIDER_MODE (mode))
1871 if (GET_MODE_BITSIZE (mode) >= bitsize)
1872 break;
1873 if (mode != VOIDmode
1874 && (GET_MODE_BITSIZE (mode) > maxbitsize
1875 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1876 mode = VOIDmode;
1878 if (mode == VOIDmode)
1880 /* We really want a BLKmode representative only as a last resort,
1881 considering the member b in
1882 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1883 Otherwise we simply want to split the representative up
1884 allowing for overlaps within the bitfield region as required for
1885 struct { int a : 7; int b : 7;
1886 int c : 10; int d; } __attribute__((packed));
1887 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1888 DECL_SIZE (repr) = bitsize_int (bitsize);
1889 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1890 DECL_MODE (repr) = BLKmode;
1891 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1892 bitsize / BITS_PER_UNIT);
1894 else
1896 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1897 DECL_SIZE (repr) = bitsize_int (modesize);
1898 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1899 DECL_MODE (repr) = mode;
1900 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1903 /* Remember whether the bitfield group is at the end of the
1904 structure or not. */
1905 DECL_CHAIN (repr) = nextf;
1908 /* Compute and set FIELD_DECLs for the underlying objects we should
1909 use for bitfield access for the structure laid out with RLI. */
1911 static void
1912 finish_bitfield_layout (record_layout_info rli)
1914 tree field, prev;
1915 tree repr = NULL_TREE;
1917 /* Unions would be special, for the ease of type-punning optimizations
1918 we could use the underlying type as hint for the representative
1919 if the bitfield would fit and the representative would not exceed
1920 the union in size. */
1921 if (TREE_CODE (rli->t) != RECORD_TYPE)
1922 return;
1924 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1925 field; field = DECL_CHAIN (field))
1927 if (TREE_CODE (field) != FIELD_DECL)
1928 continue;
1930 /* In the C++ memory model, consecutive bit fields in a structure are
1931 considered one memory location and updating a memory location
1932 may not store into adjacent memory locations. */
1933 if (!repr
1934 && DECL_BIT_FIELD_TYPE (field))
1936 /* Start new representative. */
1937 repr = start_bitfield_representative (field);
1939 else if (repr
1940 && ! DECL_BIT_FIELD_TYPE (field))
1942 /* Finish off new representative. */
1943 finish_bitfield_representative (repr, prev);
1944 repr = NULL_TREE;
1946 else if (DECL_BIT_FIELD_TYPE (field))
1948 gcc_assert (repr != NULL_TREE);
1950 /* Zero-size bitfields finish off a representative and
1951 do not have a representative themselves. This is
1952 required by the C++ memory model. */
1953 if (integer_zerop (DECL_SIZE (field)))
1955 finish_bitfield_representative (repr, prev);
1956 repr = NULL_TREE;
1959 /* We assume that either DECL_FIELD_OFFSET of the representative
1960 and each bitfield member is a constant or they are equal.
1961 This is because we need to be able to compute the bit-offset
1962 of each field relative to the representative in get_bit_range
1963 during RTL expansion.
1964 If these constraints are not met, simply force a new
1965 representative to be generated. That will at most
1966 generate worse code but still maintain correctness with
1967 respect to the C++ memory model. */
1968 else if (!((host_integerp (DECL_FIELD_OFFSET (repr), 1)
1969 && host_integerp (DECL_FIELD_OFFSET (field), 1))
1970 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1971 DECL_FIELD_OFFSET (field), 0)))
1973 finish_bitfield_representative (repr, prev);
1974 repr = start_bitfield_representative (field);
1977 else
1978 continue;
1980 if (repr)
1981 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
1983 prev = field;
1986 if (repr)
1987 finish_bitfield_representative (repr, prev);
1990 /* Do all of the work required to layout the type indicated by RLI,
1991 once the fields have been laid out. This function will call `free'
1992 for RLI, unless FREE_P is false. Passing a value other than false
1993 for FREE_P is bad practice; this option only exists to support the
1994 G++ 3.2 ABI. */
1996 void
1997 finish_record_layout (record_layout_info rli, int free_p)
1999 tree variant;
2001 /* Compute the final size. */
2002 finalize_record_size (rli);
2004 /* Compute the TYPE_MODE for the record. */
2005 compute_record_mode (rli->t);
2007 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2008 finalize_type_size (rli->t);
2010 /* Compute bitfield representatives. */
2011 finish_bitfield_layout (rli);
2013 /* Propagate TYPE_PACKED to variants. With C++ templates,
2014 handle_packed_attribute is too early to do this. */
2015 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2016 variant = TYPE_NEXT_VARIANT (variant))
2017 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2019 /* Lay out any static members. This is done now because their type
2020 may use the record's type. */
2021 while (!VEC_empty (tree, rli->pending_statics))
2022 layout_decl (VEC_pop (tree, rli->pending_statics), 0);
2024 /* Clean up. */
2025 if (free_p)
2027 VEC_free (tree, gc, rli->pending_statics);
2028 free (rli);
2033 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2034 NAME, its fields are chained in reverse on FIELDS.
2036 If ALIGN_TYPE is non-null, it is given the same alignment as
2037 ALIGN_TYPE. */
2039 void
2040 finish_builtin_struct (tree type, const char *name, tree fields,
2041 tree align_type)
2043 tree tail, next;
2045 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2047 DECL_FIELD_CONTEXT (fields) = type;
2048 next = DECL_CHAIN (fields);
2049 DECL_CHAIN (fields) = tail;
2051 TYPE_FIELDS (type) = tail;
2053 if (align_type)
2055 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2056 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2059 layout_type (type);
2060 #if 0 /* not yet, should get fixed properly later */
2061 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2062 #else
2063 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2064 TYPE_DECL, get_identifier (name), type);
2065 #endif
2066 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2067 layout_decl (TYPE_NAME (type), 0);
2070 /* Calculate the mode, size, and alignment for TYPE.
2071 For an array type, calculate the element separation as well.
2072 Record TYPE on the chain of permanent or temporary types
2073 so that dbxout will find out about it.
2075 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2076 layout_type does nothing on such a type.
2078 If the type is incomplete, its TYPE_SIZE remains zero. */
2080 void
2081 layout_type (tree type)
2083 gcc_assert (type);
2085 if (type == error_mark_node)
2086 return;
2088 /* Do nothing if type has been laid out before. */
2089 if (TYPE_SIZE (type))
2090 return;
2092 switch (TREE_CODE (type))
2094 case LANG_TYPE:
2095 /* This kind of type is the responsibility
2096 of the language-specific code. */
2097 gcc_unreachable ();
2099 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
2100 if (TYPE_PRECISION (type) == 0)
2101 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
2103 /* ... fall through ... */
2105 case INTEGER_TYPE:
2106 case ENUMERAL_TYPE:
2107 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
2108 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
2109 TYPE_UNSIGNED (type) = 1;
2111 SET_TYPE_MODE (type,
2112 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2113 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2114 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2115 break;
2117 case REAL_TYPE:
2118 SET_TYPE_MODE (type,
2119 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2120 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2121 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2122 break;
2124 case FIXED_POINT_TYPE:
2125 /* TYPE_MODE (type) has been set already. */
2126 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2127 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2128 break;
2130 case COMPLEX_TYPE:
2131 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2132 SET_TYPE_MODE (type,
2133 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2134 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2135 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2136 0));
2137 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2138 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2139 break;
2141 case VECTOR_TYPE:
2143 int nunits = TYPE_VECTOR_SUBPARTS (type);
2144 tree innertype = TREE_TYPE (type);
2146 gcc_assert (!(nunits & (nunits - 1)));
2148 /* Find an appropriate mode for the vector type. */
2149 if (TYPE_MODE (type) == VOIDmode)
2150 SET_TYPE_MODE (type,
2151 mode_for_vector (TYPE_MODE (innertype), nunits));
2153 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2154 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2155 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2156 TYPE_SIZE_UNIT (innertype),
2157 size_int (nunits));
2158 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2159 bitsize_int (nunits));
2161 /* Always naturally align vectors. This prevents ABI changes
2162 depending on whether or not native vector modes are supported. */
2163 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
2164 break;
2167 case VOID_TYPE:
2168 /* This is an incomplete type and so doesn't have a size. */
2169 TYPE_ALIGN (type) = 1;
2170 TYPE_USER_ALIGN (type) = 0;
2171 SET_TYPE_MODE (type, VOIDmode);
2172 break;
2174 case OFFSET_TYPE:
2175 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2176 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
2177 /* A pointer might be MODE_PARTIAL_INT,
2178 but ptrdiff_t must be integral. */
2179 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2180 TYPE_PRECISION (type) = POINTER_SIZE;
2181 break;
2183 case FUNCTION_TYPE:
2184 case METHOD_TYPE:
2185 /* It's hard to see what the mode and size of a function ought to
2186 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2187 make it consistent with that. */
2188 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2189 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2190 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2191 break;
2193 case POINTER_TYPE:
2194 case REFERENCE_TYPE:
2196 enum machine_mode mode = TYPE_MODE (type);
2197 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2199 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2200 mode = targetm.addr_space.address_mode (as);
2203 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2204 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2205 TYPE_UNSIGNED (type) = 1;
2206 TYPE_PRECISION (type) = GET_MODE_BITSIZE (mode);
2208 break;
2210 case ARRAY_TYPE:
2212 tree index = TYPE_DOMAIN (type);
2213 tree element = TREE_TYPE (type);
2215 build_pointer_type (element);
2217 /* We need to know both bounds in order to compute the size. */
2218 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2219 && TYPE_SIZE (element))
2221 tree ub = TYPE_MAX_VALUE (index);
2222 tree lb = TYPE_MIN_VALUE (index);
2223 tree element_size = TYPE_SIZE (element);
2224 tree length;
2226 /* Make sure that an array of zero-sized element is zero-sized
2227 regardless of its extent. */
2228 if (integer_zerop (element_size))
2229 length = size_zero_node;
2231 /* The computation should happen in the original signedness so
2232 that (possible) negative values are handled appropriately
2233 when determining overflow. */
2234 else
2236 /* ??? When it is obvious that the range is signed
2237 represent it using ssizetype. */
2238 if (TREE_CODE (lb) == INTEGER_CST
2239 && TREE_CODE (ub) == INTEGER_CST
2240 && TYPE_UNSIGNED (TREE_TYPE (lb))
2241 && tree_int_cst_lt (ub, lb))
2243 lb = double_int_to_tree
2244 (ssizetype,
2245 double_int_sext (tree_to_double_int (lb),
2246 TYPE_PRECISION (TREE_TYPE (lb))));
2247 ub = double_int_to_tree
2248 (ssizetype,
2249 double_int_sext (tree_to_double_int (ub),
2250 TYPE_PRECISION (TREE_TYPE (ub))));
2252 length
2253 = fold_convert (sizetype,
2254 size_binop (PLUS_EXPR,
2255 build_int_cst (TREE_TYPE (lb), 1),
2256 size_binop (MINUS_EXPR, ub, lb)));
2259 /* If we arrived at a length of zero ignore any overflow
2260 that occurred as part of the calculation. There exists
2261 an association of the plus one where that overflow would
2262 not happen. */
2263 if (integer_zerop (length)
2264 && TREE_OVERFLOW (length))
2265 length = size_zero_node;
2267 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2268 fold_convert (bitsizetype,
2269 length));
2271 /* If we know the size of the element, calculate the total size
2272 directly, rather than do some division thing below. This
2273 optimization helps Fortran assumed-size arrays (where the
2274 size of the array is determined at runtime) substantially. */
2275 if (TYPE_SIZE_UNIT (element))
2276 TYPE_SIZE_UNIT (type)
2277 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2280 /* Now round the alignment and size,
2281 using machine-dependent criteria if any. */
2283 #ifdef ROUND_TYPE_ALIGN
2284 TYPE_ALIGN (type)
2285 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2286 #else
2287 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2288 #endif
2289 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2290 SET_TYPE_MODE (type, BLKmode);
2291 if (TYPE_SIZE (type) != 0
2292 #ifdef MEMBER_TYPE_FORCES_BLK
2293 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2294 #endif
2295 /* BLKmode elements force BLKmode aggregate;
2296 else extract/store fields may lose. */
2297 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2298 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2300 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2301 TYPE_SIZE (type)));
2302 if (TYPE_MODE (type) != BLKmode
2303 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2304 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2306 TYPE_NO_FORCE_BLK (type) = 1;
2307 SET_TYPE_MODE (type, BLKmode);
2310 /* When the element size is constant, check that it is at least as
2311 large as the element alignment. */
2312 if (TYPE_SIZE_UNIT (element)
2313 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2314 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2315 TYPE_ALIGN_UNIT. */
2316 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2317 && !integer_zerop (TYPE_SIZE_UNIT (element))
2318 && compare_tree_int (TYPE_SIZE_UNIT (element),
2319 TYPE_ALIGN_UNIT (element)) < 0)
2320 error ("alignment of array elements is greater than element size");
2321 break;
2324 case RECORD_TYPE:
2325 case UNION_TYPE:
2326 case QUAL_UNION_TYPE:
2328 tree field;
2329 record_layout_info rli;
2331 /* Initialize the layout information. */
2332 rli = start_record_layout (type);
2334 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2335 in the reverse order in building the COND_EXPR that denotes
2336 its size. We reverse them again later. */
2337 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2338 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2340 /* Place all the fields. */
2341 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2342 place_field (rli, field);
2344 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2345 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2347 /* Finish laying out the record. */
2348 finish_record_layout (rli, /*free_p=*/true);
2350 break;
2352 default:
2353 gcc_unreachable ();
2356 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2357 records and unions, finish_record_layout already called this
2358 function. */
2359 if (TREE_CODE (type) != RECORD_TYPE
2360 && TREE_CODE (type) != UNION_TYPE
2361 && TREE_CODE (type) != QUAL_UNION_TYPE)
2362 finalize_type_size (type);
2364 /* We should never see alias sets on incomplete aggregates. And we
2365 should not call layout_type on not incomplete aggregates. */
2366 if (AGGREGATE_TYPE_P (type))
2367 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2370 /* Vector types need to re-check the target flags each time we report
2371 the machine mode. We need to do this because attribute target can
2372 change the result of vector_mode_supported_p and have_regs_of_mode
2373 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2374 change on a per-function basis. */
2375 /* ??? Possibly a better solution is to run through all the types
2376 referenced by a function and re-compute the TYPE_MODE once, rather
2377 than make the TYPE_MODE macro call a function. */
2379 enum machine_mode
2380 vector_type_mode (const_tree t)
2382 enum machine_mode mode;
2384 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2386 mode = t->type_common.mode;
2387 if (VECTOR_MODE_P (mode)
2388 && (!targetm.vector_mode_supported_p (mode)
2389 || !have_regs_of_mode[mode]))
2391 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2393 /* For integers, try mapping it to a same-sized scalar mode. */
2394 if (GET_MODE_CLASS (innermode) == MODE_INT)
2396 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2397 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2399 if (mode != VOIDmode && have_regs_of_mode[mode])
2400 return mode;
2403 return BLKmode;
2406 return mode;
2409 /* Create and return a type for signed integers of PRECISION bits. */
2411 tree
2412 make_signed_type (int precision)
2414 tree type = make_node (INTEGER_TYPE);
2416 TYPE_PRECISION (type) = precision;
2418 fixup_signed_type (type);
2419 return type;
2422 /* Create and return a type for unsigned integers of PRECISION bits. */
2424 tree
2425 make_unsigned_type (int precision)
2427 tree type = make_node (INTEGER_TYPE);
2429 TYPE_PRECISION (type) = precision;
2431 fixup_unsigned_type (type);
2432 return type;
2435 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2436 and SATP. */
2438 tree
2439 make_fract_type (int precision, int unsignedp, int satp)
2441 tree type = make_node (FIXED_POINT_TYPE);
2443 TYPE_PRECISION (type) = precision;
2445 if (satp)
2446 TYPE_SATURATING (type) = 1;
2448 /* Lay out the type: set its alignment, size, etc. */
2449 if (unsignedp)
2451 TYPE_UNSIGNED (type) = 1;
2452 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2454 else
2455 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2456 layout_type (type);
2458 return type;
2461 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2462 and SATP. */
2464 tree
2465 make_accum_type (int precision, int unsignedp, int satp)
2467 tree type = make_node (FIXED_POINT_TYPE);
2469 TYPE_PRECISION (type) = precision;
2471 if (satp)
2472 TYPE_SATURATING (type) = 1;
2474 /* Lay out the type: set its alignment, size, etc. */
2475 if (unsignedp)
2477 TYPE_UNSIGNED (type) = 1;
2478 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2480 else
2481 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2482 layout_type (type);
2484 return type;
2487 /* Initialize sizetypes so layout_type can use them. */
2489 void
2490 initialize_sizetypes (void)
2492 int precision, bprecision;
2494 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2495 if (strcmp (SIZETYPE, "unsigned int") == 0)
2496 precision = INT_TYPE_SIZE;
2497 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2498 precision = LONG_TYPE_SIZE;
2499 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2500 precision = LONG_LONG_TYPE_SIZE;
2501 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2502 precision = SHORT_TYPE_SIZE;
2503 else
2504 gcc_unreachable ();
2506 bprecision
2507 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2508 bprecision
2509 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2510 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2511 bprecision = HOST_BITS_PER_DOUBLE_INT;
2513 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2514 sizetype = make_node (INTEGER_TYPE);
2515 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2516 TYPE_PRECISION (sizetype) = precision;
2517 TYPE_UNSIGNED (sizetype) = 1;
2518 bitsizetype = make_node (INTEGER_TYPE);
2519 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2520 TYPE_PRECISION (bitsizetype) = bprecision;
2521 TYPE_UNSIGNED (bitsizetype) = 1;
2523 /* Now layout both types manually. */
2524 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2525 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2526 TYPE_SIZE (sizetype) = bitsize_int (precision);
2527 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2528 set_min_and_max_values_for_integral_type (sizetype, precision,
2529 /*is_unsigned=*/true);
2531 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2532 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2533 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2534 TYPE_SIZE_UNIT (bitsizetype)
2535 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2536 set_min_and_max_values_for_integral_type (bitsizetype, bprecision,
2537 /*is_unsigned=*/true);
2539 /* Create the signed variants of *sizetype. */
2540 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2541 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2542 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2543 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2546 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2547 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2548 for TYPE, based on the PRECISION and whether or not the TYPE
2549 IS_UNSIGNED. PRECISION need not correspond to a width supported
2550 natively by the hardware; for example, on a machine with 8-bit,
2551 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2552 61. */
2554 void
2555 set_min_and_max_values_for_integral_type (tree type,
2556 int precision,
2557 bool is_unsigned)
2559 tree min_value;
2560 tree max_value;
2562 if (is_unsigned)
2564 min_value = build_int_cst (type, 0);
2565 max_value
2566 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2567 ? -1
2568 : ((HOST_WIDE_INT) 1 << precision) - 1,
2569 precision - HOST_BITS_PER_WIDE_INT > 0
2570 ? ((unsigned HOST_WIDE_INT) ~0
2571 >> (HOST_BITS_PER_WIDE_INT
2572 - (precision - HOST_BITS_PER_WIDE_INT)))
2573 : 0);
2575 else
2577 min_value
2578 = build_int_cst_wide (type,
2579 (precision - HOST_BITS_PER_WIDE_INT > 0
2581 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2582 (((HOST_WIDE_INT) (-1)
2583 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2584 ? precision - HOST_BITS_PER_WIDE_INT - 1
2585 : 0))));
2586 max_value
2587 = build_int_cst_wide (type,
2588 (precision - HOST_BITS_PER_WIDE_INT > 0
2589 ? -1
2590 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2591 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2592 ? (((HOST_WIDE_INT) 1
2593 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2594 : 0));
2597 TYPE_MIN_VALUE (type) = min_value;
2598 TYPE_MAX_VALUE (type) = max_value;
2601 /* Set the extreme values of TYPE based on its precision in bits,
2602 then lay it out. Used when make_signed_type won't do
2603 because the tree code is not INTEGER_TYPE.
2604 E.g. for Pascal, when the -fsigned-char option is given. */
2606 void
2607 fixup_signed_type (tree type)
2609 int precision = TYPE_PRECISION (type);
2611 /* We can not represent properly constants greater then
2612 HOST_BITS_PER_DOUBLE_INT, still we need the types
2613 as they are used by i386 vector extensions and friends. */
2614 if (precision > HOST_BITS_PER_DOUBLE_INT)
2615 precision = HOST_BITS_PER_DOUBLE_INT;
2617 set_min_and_max_values_for_integral_type (type, precision,
2618 /*is_unsigned=*/false);
2620 /* Lay out the type: set its alignment, size, etc. */
2621 layout_type (type);
2624 /* Set the extreme values of TYPE based on its precision in bits,
2625 then lay it out. This is used both in `make_unsigned_type'
2626 and for enumeral types. */
2628 void
2629 fixup_unsigned_type (tree type)
2631 int precision = TYPE_PRECISION (type);
2633 /* We can not represent properly constants greater then
2634 HOST_BITS_PER_DOUBLE_INT, still we need the types
2635 as they are used by i386 vector extensions and friends. */
2636 if (precision > HOST_BITS_PER_DOUBLE_INT)
2637 precision = HOST_BITS_PER_DOUBLE_INT;
2639 TYPE_UNSIGNED (type) = 1;
2641 set_min_and_max_values_for_integral_type (type, precision,
2642 /*is_unsigned=*/true);
2644 /* Lay out the type: set its alignment, size, etc. */
2645 layout_type (type);
2648 /* Find the best machine mode to use when referencing a bit field of length
2649 BITSIZE bits starting at BITPOS.
2651 BITREGION_START is the bit position of the first bit in this
2652 sequence of bit fields. BITREGION_END is the last bit in this
2653 sequence. If these two fields are non-zero, we should restrict the
2654 memory access to a maximum sized chunk of
2655 BITREGION_END - BITREGION_START + 1. Otherwise, we are allowed to touch
2656 any adjacent non bit-fields.
2658 The underlying object is known to be aligned to a boundary of ALIGN bits.
2659 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2660 larger than LARGEST_MODE (usually SImode).
2662 If no mode meets all these conditions, we return VOIDmode.
2664 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2665 smallest mode meeting these conditions.
2667 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2668 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2669 all the conditions.
2671 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2672 decide which of the above modes should be used. */
2674 enum machine_mode
2675 get_best_mode (int bitsize, int bitpos,
2676 unsigned HOST_WIDE_INT bitregion_start,
2677 unsigned HOST_WIDE_INT bitregion_end,
2678 unsigned int align,
2679 enum machine_mode largest_mode, int volatilep)
2681 enum machine_mode mode;
2682 unsigned int unit = 0;
2683 unsigned HOST_WIDE_INT maxbits;
2685 /* If unset, no restriction. */
2686 if (!bitregion_end)
2687 maxbits = MAX_FIXED_MODE_SIZE;
2688 else
2689 maxbits = bitregion_end - bitregion_start + 1;
2691 /* Find the narrowest integer mode that contains the bit field. */
2692 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2693 mode = GET_MODE_WIDER_MODE (mode))
2695 unit = GET_MODE_BITSIZE (mode);
2696 if (unit == GET_MODE_PRECISION (mode)
2697 && (bitpos % unit) + bitsize <= unit)
2698 break;
2701 if (mode == VOIDmode
2702 /* It is tempting to omit the following line
2703 if STRICT_ALIGNMENT is true.
2704 But that is incorrect, since if the bitfield uses part of 3 bytes
2705 and we use a 4-byte mode, we could get a spurious segv
2706 if the extra 4th byte is past the end of memory.
2707 (Though at least one Unix compiler ignores this problem:
2708 that on the Sequent 386 machine. */
2709 || MIN (unit, BIGGEST_ALIGNMENT) > align
2710 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode))
2711 || unit > maxbits
2712 || (bitregion_end
2713 && bitpos - (bitpos % unit) + unit > bitregion_end + 1))
2714 return VOIDmode;
2716 if ((SLOW_BYTE_ACCESS && ! volatilep)
2717 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2719 enum machine_mode wide_mode = VOIDmode, tmode;
2721 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2722 tmode = GET_MODE_WIDER_MODE (tmode))
2724 unit = GET_MODE_BITSIZE (tmode);
2725 if (unit == GET_MODE_PRECISION (tmode)
2726 && bitpos / unit == (bitpos + bitsize - 1) / unit
2727 && unit <= BITS_PER_WORD
2728 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2729 && unit <= maxbits
2730 && (largest_mode == VOIDmode
2731 || unit <= GET_MODE_BITSIZE (largest_mode))
2732 && (bitregion_end == 0
2733 || bitpos - (bitpos % unit) + unit <= bitregion_end + 1))
2734 wide_mode = tmode;
2737 if (wide_mode != VOIDmode)
2738 return wide_mode;
2741 return mode;
2744 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2745 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2747 void
2748 get_mode_bounds (enum machine_mode mode, int sign,
2749 enum machine_mode target_mode,
2750 rtx *mmin, rtx *mmax)
2752 unsigned size = GET_MODE_BITSIZE (mode);
2753 unsigned HOST_WIDE_INT min_val, max_val;
2755 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2757 if (sign)
2759 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2760 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2762 else
2764 min_val = 0;
2765 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2768 *mmin = gen_int_mode (min_val, target_mode);
2769 *mmax = gen_int_mode (max_val, target_mode);
2772 #include "gt-stor-layout.h"