gcc/upc/
[official-gcc.git] / gcc / sel-sched.c
blob3099b92627a87ce00b0abe5d47ac0de54dcb45c5
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "sched-int.h"
39 #include "ggc.h"
40 #include "tree.h"
41 #include "vec.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h"
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
66 Terminology
67 ===========
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
93 High-level overview
94 ===================
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
116 Computing available expressions
117 ===============================
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
133 Choosing the best expression
134 ============================
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
147 Scheduling the best expression
148 ==============================
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
160 Finalizing the schedule
161 =======================
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
167 Dependence analysis changes
168 ===========================
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
179 Initialization changes
180 ======================
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
191 Target contexts
192 ===============
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
202 Various speedups
203 ================
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
261 /* Definitions of local types and macros. */
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
282 /* What we are searching for. */
283 rtx x;
285 /* The occurrence counter. */
286 int n;
289 typedef struct rtx_search_arg *rtx_search_arg_p;
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
347 /* Local params used in move_op_* functions. */
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
369 /* Destination register. */
370 rtx dest;
372 /* Current C_EXPR. */
373 expr_t c_expr;
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
461 /* Current fences. */
462 flist_t fences;
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
502 /* A vector of expressions is used to be able to sort them. */
503 DEF_VEC_P(expr_t);
504 DEF_VEC_ALLOC_P(expr_t,heap);
505 static VEC(expr_t, heap) *vec_av_set = NULL;
507 /* A vector of vinsns is used to hold temporary lists of vinsns. */
508 DEF_VEC_P(vinsn_t);
509 DEF_VEC_ALLOC_P(vinsn_t,heap);
510 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
512 /* This vector has the exprs which may still present in av_sets, but actually
513 can't be moved up due to bookkeeping created during code motion to another
514 fence. See comment near the call to update_and_record_unavailable_insns
515 for the detailed explanations. */
516 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
518 /* This vector has vinsns which are scheduled with renaming on the first fence
519 and then seen on the second. For expressions with such vinsns, target
520 availability information may be wrong. */
521 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
523 /* Vector to store temporary nops inserted in move_op to prevent removal
524 of empty bbs. */
525 DEF_VEC_P(insn_t);
526 DEF_VEC_ALLOC_P(insn_t,heap);
527 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
529 /* These bitmaps record original instructions scheduled on the current
530 iteration and bookkeeping copies created by them. */
531 static bitmap current_originators = NULL;
532 static bitmap current_copies = NULL;
534 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
535 visit them afterwards. */
536 static bitmap code_motion_visited_blocks = NULL;
538 /* Variables to accumulate different statistics. */
540 /* The number of bookkeeping copies created. */
541 static int stat_bookkeeping_copies;
543 /* The number of insns that required bookkeeiping for their scheduling. */
544 static int stat_insns_needed_bookkeeping;
546 /* The number of insns that got renamed. */
547 static int stat_renamed_scheduled;
549 /* The number of substitutions made during scheduling. */
550 static int stat_substitutions_total;
553 /* Forward declarations of static functions. */
554 static bool rtx_ok_for_substitution_p (rtx, rtx);
555 static int sel_rank_for_schedule (const void *, const void *);
556 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
557 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
559 static rtx get_dest_from_orig_ops (av_set_t);
560 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
561 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
562 def_list_t *);
563 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
564 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
565 cmpd_local_params_p, void *);
566 static void sel_sched_region_1 (void);
567 static void sel_sched_region_2 (int);
568 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
570 static void debug_state (state_t);
573 /* Functions that work with fences. */
575 /* Advance one cycle on FENCE. */
576 static void
577 advance_one_cycle (fence_t fence)
579 unsigned i;
580 int cycle;
581 rtx insn;
583 advance_state (FENCE_STATE (fence));
584 cycle = ++FENCE_CYCLE (fence);
585 FENCE_ISSUED_INSNS (fence) = 0;
586 FENCE_STARTS_CYCLE_P (fence) = 1;
587 can_issue_more = issue_rate;
588 FENCE_ISSUE_MORE (fence) = can_issue_more;
590 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
592 if (INSN_READY_CYCLE (insn) < cycle)
594 remove_from_deps (FENCE_DC (fence), insn);
595 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
596 continue;
598 i++;
600 if (sched_verbose >= 2)
602 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
603 debug_state (FENCE_STATE (fence));
607 /* Returns true when SUCC in a fallthru bb of INSN, possibly
608 skipping empty basic blocks. */
609 static bool
610 in_fallthru_bb_p (rtx insn, rtx succ)
612 basic_block bb = BLOCK_FOR_INSN (insn);
613 edge e;
615 if (bb == BLOCK_FOR_INSN (succ))
616 return true;
618 e = find_fallthru_edge_from (bb);
619 if (e)
620 bb = e->dest;
621 else
622 return false;
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
627 return bb == BLOCK_FOR_INSN (succ);
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
649 gcc_assert (!was_here_p);
650 was_here_p = true;
652 gcc_assert (was_here_p && insn != NULL_RTX);
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
661 insn_t succ;
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
678 return;
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
684 int seqno = INSN_SEQNO (succ);
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
710 /* Functions to support substitution. */
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
733 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
762 rtx new_insn;
763 rtx *where_replace;
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_reg (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
798 return true;
800 else
801 return false;
803 else
804 return false;
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
813 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
815 /* Bail out if mode is different or more than one register is used. */
816 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
817 || (HARD_REGISTER_P (*cur_rtx)
818 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
820 p->n = 0;
821 return 1;
824 p->n++;
826 /* Do not traverse subexprs. */
827 return -1;
830 if (GET_CODE (*cur_rtx) == SUBREG
831 && (!REG_P (SUBREG_REG (*cur_rtx))
832 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
834 /* ??? Do not support substituting regs inside subregs. In that case,
835 simplify_subreg will be called by validate_replace_rtx, and
836 unsubstitution will fail later. */
837 p->n = 0;
838 return 1;
841 /* Continue search. */
842 return 0;
845 /* Return the number of places WHAT appears within WHERE.
846 Bail out when we found a reference occupying several hard registers. */
847 static int
848 count_occurrences_equiv (rtx what, rtx where)
850 struct rtx_search_arg arg;
852 gcc_assert (REG_P (what));
853 arg.x = what;
854 arg.n = 0;
856 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
858 return arg.n;
861 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
862 static bool
863 rtx_ok_for_substitution_p (rtx what, rtx where)
865 return (count_occurrences_equiv (what, where) > 0);
869 /* Functions to support register renaming. */
871 /* Substitute VI's set source with REGNO. Returns newly created pattern
872 that has REGNO as its source. */
873 static rtx
874 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
876 rtx lhs_rtx;
877 rtx pattern;
878 rtx insn_rtx;
880 lhs_rtx = copy_rtx (VINSN_LHS (vi));
882 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
883 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
885 return insn_rtx;
888 /* Returns whether INSN's src can be replaced with register number
889 NEW_SRC_REG. E.g. the following insn is valid for i386:
891 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
892 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
893 (reg:SI 0 ax [orig:770 c1 ] [770]))
894 (const_int 288 [0x120])) [0 str S1 A8])
895 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
896 (nil))
898 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
899 because of operand constraints:
901 (define_insn "*movqi_1"
902 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
903 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
906 So do constrain_operands here, before choosing NEW_SRC_REG as best
907 reg for rhs. */
909 static bool
910 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
912 vinsn_t vi = INSN_VINSN (insn);
913 enum machine_mode mode;
914 rtx dst_loc;
915 bool res;
917 gcc_assert (VINSN_SEPARABLE_P (vi));
919 get_dest_and_mode (insn, &dst_loc, &mode);
920 gcc_assert (mode == GET_MODE (new_src_reg));
922 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
923 return true;
925 /* See whether SET_SRC can be replaced with this register. */
926 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
927 res = verify_changes (0);
928 cancel_changes (0);
930 return res;
933 /* Returns whether INSN still be valid after replacing it's DEST with
934 register NEW_REG. */
935 static bool
936 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
938 vinsn_t vi = INSN_VINSN (insn);
939 bool res;
941 /* We should deal here only with separable insns. */
942 gcc_assert (VINSN_SEPARABLE_P (vi));
943 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
945 /* See whether SET_DEST can be replaced with this register. */
946 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
947 res = verify_changes (0);
948 cancel_changes (0);
950 return res;
953 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
954 static rtx
955 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
957 rtx rhs_rtx;
958 rtx pattern;
959 rtx insn_rtx;
961 rhs_rtx = copy_rtx (VINSN_RHS (vi));
963 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
964 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
966 return insn_rtx;
969 /* Substitute lhs in the given expression EXPR for the register with number
970 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
971 static void
972 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
974 rtx insn_rtx;
975 vinsn_t vinsn;
977 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
978 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
980 change_vinsn_in_expr (expr, vinsn);
981 EXPR_WAS_RENAMED (expr) = 1;
982 EXPR_TARGET_AVAILABLE (expr) = 1;
985 /* Returns whether VI writes either one of the USED_REGS registers or,
986 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
987 static bool
988 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
989 HARD_REG_SET unavailable_hard_regs)
991 unsigned regno;
992 reg_set_iterator rsi;
994 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
996 if (REGNO_REG_SET_P (used_regs, regno))
997 return true;
998 if (HARD_REGISTER_NUM_P (regno)
999 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1000 return true;
1003 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1005 if (REGNO_REG_SET_P (used_regs, regno))
1006 return true;
1007 if (HARD_REGISTER_NUM_P (regno)
1008 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1009 return true;
1012 return false;
1015 /* Returns register class of the output register in INSN.
1016 Returns NO_REGS for call insns because some targets have constraints on
1017 destination register of a call insn.
1019 Code adopted from regrename.c::build_def_use. */
1020 static enum reg_class
1021 get_reg_class (rtx insn)
1023 int alt, i, n_ops;
1025 extract_insn (insn);
1026 if (! constrain_operands (1))
1027 fatal_insn_not_found (insn);
1028 preprocess_constraints ();
1029 alt = which_alternative;
1030 n_ops = recog_data.n_operands;
1032 for (i = 0; i < n_ops; ++i)
1034 int matches = recog_op_alt[i][alt].matches;
1035 if (matches >= 0)
1036 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1039 if (asm_noperands (PATTERN (insn)) > 0)
1041 for (i = 0; i < n_ops; i++)
1042 if (recog_data.operand_type[i] == OP_OUT)
1044 rtx *loc = recog_data.operand_loc[i];
1045 rtx op = *loc;
1046 enum reg_class cl = recog_op_alt[i][alt].cl;
1048 if (REG_P (op)
1049 && REGNO (op) == ORIGINAL_REGNO (op))
1050 continue;
1052 return cl;
1055 else if (!CALL_P (insn))
1057 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1059 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1060 enum reg_class cl = recog_op_alt[opn][alt].cl;
1062 if (recog_data.operand_type[opn] == OP_OUT ||
1063 recog_data.operand_type[opn] == OP_INOUT)
1064 return cl;
1068 /* Insns like
1069 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1070 may result in returning NO_REGS, cause flags is written implicitly through
1071 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1072 return NO_REGS;
1075 #ifdef HARD_REGNO_RENAME_OK
1076 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1077 static void
1078 init_hard_regno_rename (int regno)
1080 int cur_reg;
1082 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1084 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1086 /* We are not interested in renaming in other regs. */
1087 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1088 continue;
1090 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1091 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1094 #endif
1096 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1097 data first. */
1098 static inline bool
1099 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1101 #ifdef HARD_REGNO_RENAME_OK
1102 /* Check whether this is all calculated. */
1103 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1104 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1106 init_hard_regno_rename (from);
1108 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1109 #else
1110 return true;
1111 #endif
1114 /* Calculate set of registers that are capable of holding MODE. */
1115 static void
1116 init_regs_for_mode (enum machine_mode mode)
1118 int cur_reg;
1120 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1121 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1123 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1125 int nregs = hard_regno_nregs[cur_reg][mode];
1126 int i;
1128 for (i = nregs - 1; i >= 0; --i)
1129 if (fixed_regs[cur_reg + i]
1130 || global_regs[cur_reg + i]
1131 /* Can't use regs which aren't saved by
1132 the prologue. */
1133 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1134 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1135 it affects aliasing globally and invalidates all AV sets. */
1136 || get_reg_base_value (cur_reg + i)
1137 #ifdef LEAF_REGISTERS
1138 /* We can't use a non-leaf register if we're in a
1139 leaf function. */
1140 || (crtl->is_leaf
1141 && !LEAF_REGISTERS[cur_reg + i])
1142 #endif
1144 break;
1146 if (i >= 0)
1147 continue;
1149 /* See whether it accepts all modes that occur in
1150 original insns. */
1151 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1152 continue;
1154 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1155 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1156 cur_reg);
1158 /* If the CUR_REG passed all the checks above,
1159 then it's ok. */
1160 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1163 sel_hrd.regs_for_mode_ok[mode] = true;
1166 /* Init all register sets gathered in HRD. */
1167 static void
1168 init_hard_regs_data (void)
1170 int cur_reg = 0;
1171 int cur_mode = 0;
1173 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1174 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1175 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1176 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1178 /* Initialize registers that are valid based on mode when this is
1179 really needed. */
1180 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1181 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1183 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1184 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1185 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1187 #ifdef STACK_REGS
1188 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1190 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1191 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1192 #endif
1195 /* Mark hardware regs in REG_RENAME_P that are not suitable
1196 for renaming rhs in INSN due to hardware restrictions (register class,
1197 modes compatibility etc). This doesn't affect original insn's dest reg,
1198 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1199 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1200 Registers that are in used_regs are always marked in
1201 unavailable_hard_regs as well. */
1203 static void
1204 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1205 regset used_regs ATTRIBUTE_UNUSED)
1207 enum machine_mode mode;
1208 enum reg_class cl = NO_REGS;
1209 rtx orig_dest;
1210 unsigned cur_reg, regno;
1211 hard_reg_set_iterator hrsi;
1213 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1214 gcc_assert (reg_rename_p);
1216 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1218 /* We have decided not to rename 'mem = something;' insns, as 'something'
1219 is usually a register. */
1220 if (!REG_P (orig_dest))
1221 return;
1223 regno = REGNO (orig_dest);
1225 /* If before reload, don't try to work with pseudos. */
1226 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1227 return;
1229 if (reload_completed)
1230 cl = get_reg_class (def->orig_insn);
1232 /* Stop if the original register is one of the fixed_regs, global_regs or
1233 frame pointer, or we could not discover its class. */
1234 if (fixed_regs[regno]
1235 || global_regs[regno]
1236 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1237 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1238 #else
1239 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1240 #endif
1241 || (reload_completed && cl == NO_REGS))
1243 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1245 /* Give a chance for original register, if it isn't in used_regs. */
1246 if (!def->crosses_call)
1247 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1249 return;
1252 /* If something allocated on stack in this function, mark frame pointer
1253 register unavailable, considering also modes.
1254 FIXME: it is enough to do this once per all original defs. */
1255 if (frame_pointer_needed)
1257 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1258 Pmode, FRAME_POINTER_REGNUM);
1260 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1261 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1262 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1265 #ifdef STACK_REGS
1266 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1267 is equivalent to as if all stack regs were in this set.
1268 I.e. no stack register can be renamed, and even if it's an original
1269 register here we make sure it won't be lifted over it's previous def
1270 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1271 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1272 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1273 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1274 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1275 sel_hrd.stack_regs);
1276 #endif
1278 /* If there's a call on this path, make regs from call_used_reg_set
1279 unavailable. */
1280 if (def->crosses_call)
1281 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1282 call_used_reg_set);
1284 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1285 but not register classes. */
1286 if (!reload_completed)
1287 return;
1289 /* Leave regs as 'available' only from the current
1290 register class. */
1291 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1292 reg_class_contents[cl]);
1294 mode = GET_MODE (orig_dest);
1296 /* Leave only registers available for this mode. */
1297 if (!sel_hrd.regs_for_mode_ok[mode])
1298 init_regs_for_mode (mode);
1299 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 sel_hrd.regs_for_mode[mode]);
1302 /* Exclude registers that are partially call clobbered. */
1303 if (def->crosses_call
1304 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1305 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 sel_hrd.regs_for_call_clobbered[mode]);
1308 /* Leave only those that are ok to rename. */
1309 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1310 0, cur_reg, hrsi)
1312 int nregs;
1313 int i;
1315 nregs = hard_regno_nregs[cur_reg][mode];
1316 gcc_assert (nregs > 0);
1318 for (i = nregs - 1; i >= 0; --i)
1319 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1320 break;
1322 if (i >= 0)
1323 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1324 cur_reg);
1327 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1328 reg_rename_p->unavailable_hard_regs);
1330 /* Regno is always ok from the renaming part of view, but it really
1331 could be in *unavailable_hard_regs already, so set it here instead
1332 of there. */
1333 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1336 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1337 best register more recently than REG2. */
1338 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1340 /* Indicates the number of times renaming happened before the current one. */
1341 static int reg_rename_this_tick;
1343 /* Choose the register among free, that is suitable for storing
1344 the rhs value.
1346 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1347 originally appears. There could be multiple original operations
1348 for single rhs since we moving it up and merging along different
1349 paths.
1351 Some code is adapted from regrename.c (regrename_optimize).
1352 If original register is available, function returns it.
1353 Otherwise it performs the checks, so the new register should
1354 comply with the following:
1355 - it should not violate any live ranges (such registers are in
1356 REG_RENAME_P->available_for_renaming set);
1357 - it should not be in the HARD_REGS_USED regset;
1358 - it should be in the class compatible with original uses;
1359 - it should not be clobbered through reference with different mode;
1360 - if we're in the leaf function, then the new register should
1361 not be in the LEAF_REGISTERS;
1362 - etc.
1364 If several registers meet the conditions, the register with smallest
1365 tick is returned to achieve more even register allocation.
1367 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1369 If no register satisfies the above conditions, NULL_RTX is returned. */
1370 static rtx
1371 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1372 struct reg_rename *reg_rename_p,
1373 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1375 int best_new_reg;
1376 unsigned cur_reg;
1377 enum machine_mode mode = VOIDmode;
1378 unsigned regno, i, n;
1379 hard_reg_set_iterator hrsi;
1380 def_list_iterator di;
1381 def_t def;
1383 /* If original register is available, return it. */
1384 *is_orig_reg_p_ptr = true;
1386 FOR_EACH_DEF (def, di, original_insns)
1388 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1390 gcc_assert (REG_P (orig_dest));
1392 /* Check that all original operations have the same mode.
1393 This is done for the next loop; if we'd return from this
1394 loop, we'd check only part of them, but in this case
1395 it doesn't matter. */
1396 if (mode == VOIDmode)
1397 mode = GET_MODE (orig_dest);
1398 gcc_assert (mode == GET_MODE (orig_dest));
1400 regno = REGNO (orig_dest);
1401 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1402 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1403 break;
1405 /* All hard registers are available. */
1406 if (i == n)
1408 gcc_assert (mode != VOIDmode);
1410 /* Hard registers should not be shared. */
1411 return gen_rtx_REG (mode, regno);
1415 *is_orig_reg_p_ptr = false;
1416 best_new_reg = -1;
1418 /* Among all available regs choose the register that was
1419 allocated earliest. */
1420 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1421 0, cur_reg, hrsi)
1422 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1424 /* Check that all hard regs for mode are available. */
1425 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1426 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1427 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1428 cur_reg + i))
1429 break;
1431 if (i < n)
1432 continue;
1434 /* All hard registers are available. */
1435 if (best_new_reg < 0
1436 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1438 best_new_reg = cur_reg;
1440 /* Return immediately when we know there's no better reg. */
1441 if (! reg_rename_tick[best_new_reg])
1442 break;
1446 if (best_new_reg >= 0)
1448 /* Use the check from the above loop. */
1449 gcc_assert (mode != VOIDmode);
1450 return gen_rtx_REG (mode, best_new_reg);
1453 return NULL_RTX;
1456 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1457 assumptions about available registers in the function. */
1458 static rtx
1459 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1460 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1462 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1463 original_insns, is_orig_reg_p_ptr);
1465 /* FIXME loop over hard_regno_nregs here. */
1466 gcc_assert (best_reg == NULL_RTX
1467 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1469 return best_reg;
1472 /* Choose the pseudo register for storing rhs value. As this is supposed
1473 to work before reload, we return either the original register or make
1474 the new one. The parameters are the same that in choose_nest_reg_1
1475 functions, except that USED_REGS may contain pseudos.
1476 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1478 TODO: take into account register pressure while doing this. Up to this
1479 moment, this function would never return NULL for pseudos, but we should
1480 not rely on this. */
1481 static rtx
1482 choose_best_pseudo_reg (regset used_regs,
1483 struct reg_rename *reg_rename_p,
1484 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1486 def_list_iterator i;
1487 def_t def;
1488 enum machine_mode mode = VOIDmode;
1489 bool bad_hard_regs = false;
1491 /* We should not use this after reload. */
1492 gcc_assert (!reload_completed);
1494 /* If original register is available, return it. */
1495 *is_orig_reg_p_ptr = true;
1497 FOR_EACH_DEF (def, i, original_insns)
1499 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1500 int orig_regno;
1502 gcc_assert (REG_P (dest));
1504 /* Check that all original operations have the same mode. */
1505 if (mode == VOIDmode)
1506 mode = GET_MODE (dest);
1507 else
1508 gcc_assert (mode == GET_MODE (dest));
1509 orig_regno = REGNO (dest);
1511 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1513 if (orig_regno < FIRST_PSEUDO_REGISTER)
1515 gcc_assert (df_regs_ever_live_p (orig_regno));
1517 /* For hard registers, we have to check hardware imposed
1518 limitations (frame/stack registers, calls crossed). */
1519 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1520 orig_regno))
1522 /* Don't let register cross a call if it doesn't already
1523 cross one. This condition is written in accordance with
1524 that in sched-deps.c sched_analyze_reg(). */
1525 if (!reg_rename_p->crosses_call
1526 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1527 return gen_rtx_REG (mode, orig_regno);
1530 bad_hard_regs = true;
1532 else
1533 return dest;
1537 *is_orig_reg_p_ptr = false;
1539 /* We had some original hard registers that couldn't be used.
1540 Those were likely special. Don't try to create a pseudo. */
1541 if (bad_hard_regs)
1542 return NULL_RTX;
1544 /* We haven't found a register from original operations. Get a new one.
1545 FIXME: control register pressure somehow. */
1547 rtx new_reg = gen_reg_rtx (mode);
1549 gcc_assert (mode != VOIDmode);
1551 max_regno = max_reg_num ();
1552 maybe_extend_reg_info_p ();
1553 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1555 return new_reg;
1559 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1560 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1561 static void
1562 verify_target_availability (expr_t expr, regset used_regs,
1563 struct reg_rename *reg_rename_p)
1565 unsigned n, i, regno;
1566 enum machine_mode mode;
1567 bool target_available, live_available, hard_available;
1569 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1570 return;
1572 regno = expr_dest_regno (expr);
1573 mode = GET_MODE (EXPR_LHS (expr));
1574 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1575 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1577 live_available = hard_available = true;
1578 for (i = 0; i < n; i++)
1580 if (bitmap_bit_p (used_regs, regno + i))
1581 live_available = false;
1582 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1583 hard_available = false;
1586 /* When target is not available, it may be due to hard register
1587 restrictions, e.g. crosses calls, so we check hard_available too. */
1588 if (target_available)
1589 gcc_assert (live_available);
1590 else
1591 /* Check only if we haven't scheduled something on the previous fence,
1592 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1593 and having more than one fence, we may end having targ_un in a block
1594 in which successors target register is actually available.
1596 The last condition handles the case when a dependence from a call insn
1597 was created in sched-deps.c for insns with destination registers that
1598 never crossed a call before, but do cross one after our code motion.
1600 FIXME: in the latter case, we just uselessly called find_used_regs,
1601 because we can't move this expression with any other register
1602 as well. */
1603 gcc_assert (scheduled_something_on_previous_fence || !live_available
1604 || !hard_available
1605 || (!reload_completed && reg_rename_p->crosses_call
1606 && REG_N_CALLS_CROSSED (regno) == 0));
1609 /* Collect unavailable registers due to liveness for EXPR from BNDS
1610 into USED_REGS. Save additional information about available
1611 registers and unavailable due to hardware restriction registers
1612 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1613 list. */
1614 static void
1615 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1616 struct reg_rename *reg_rename_p,
1617 def_list_t *original_insns)
1619 for (; bnds; bnds = BLIST_NEXT (bnds))
1621 bool res;
1622 av_set_t orig_ops = NULL;
1623 bnd_t bnd = BLIST_BND (bnds);
1625 /* If the chosen best expr doesn't belong to current boundary,
1626 skip it. */
1627 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1628 continue;
1630 /* Put in ORIG_OPS all exprs from this boundary that became
1631 RES on top. */
1632 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1634 /* Compute used regs and OR it into the USED_REGS. */
1635 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1636 reg_rename_p, original_insns);
1638 /* FIXME: the assert is true until we'd have several boundaries. */
1639 gcc_assert (res);
1640 av_set_clear (&orig_ops);
1644 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1645 If BEST_REG is valid, replace LHS of EXPR with it. */
1646 static bool
1647 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1649 /* Try whether we'll be able to generate the insn
1650 'dest := best_reg' at the place of the original operation. */
1651 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1653 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1655 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1657 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1658 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1659 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1660 return false;
1663 /* Make sure that EXPR has the right destination
1664 register. */
1665 if (expr_dest_regno (expr) != REGNO (best_reg))
1666 replace_dest_with_reg_in_expr (expr, best_reg);
1667 else
1668 EXPR_TARGET_AVAILABLE (expr) = 1;
1670 return true;
1673 /* Select and assign best register to EXPR searching from BNDS.
1674 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1675 Return FALSE if no register can be chosen, which could happen when:
1676 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1677 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1678 that are used on the moving path. */
1679 static bool
1680 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1682 static struct reg_rename reg_rename_data;
1684 regset used_regs;
1685 def_list_t original_insns = NULL;
1686 bool reg_ok;
1688 *is_orig_reg_p = false;
1690 /* Don't bother to do anything if this insn doesn't set any registers. */
1691 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1692 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1693 return true;
1695 used_regs = get_clear_regset_from_pool ();
1696 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1698 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1699 &original_insns);
1701 #ifdef ENABLE_CHECKING
1702 /* If after reload, make sure we're working with hard regs here. */
1703 if (reload_completed)
1705 reg_set_iterator rsi;
1706 unsigned i;
1708 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1709 gcc_unreachable ();
1711 #endif
1713 if (EXPR_SEPARABLE_P (expr))
1715 rtx best_reg = NULL_RTX;
1716 /* Check that we have computed availability of a target register
1717 correctly. */
1718 verify_target_availability (expr, used_regs, &reg_rename_data);
1720 /* Turn everything in hard regs after reload. */
1721 if (reload_completed)
1723 HARD_REG_SET hard_regs_used;
1724 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1726 /* Join hard registers unavailable due to register class
1727 restrictions and live range intersection. */
1728 IOR_HARD_REG_SET (hard_regs_used,
1729 reg_rename_data.unavailable_hard_regs);
1731 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1732 original_insns, is_orig_reg_p);
1734 else
1735 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1736 original_insns, is_orig_reg_p);
1738 if (!best_reg)
1739 reg_ok = false;
1740 else if (*is_orig_reg_p)
1742 /* In case of unification BEST_REG may be different from EXPR's LHS
1743 when EXPR's LHS is unavailable, and there is another LHS among
1744 ORIGINAL_INSNS. */
1745 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1747 else
1749 /* Forbid renaming of low-cost insns. */
1750 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1751 reg_ok = false;
1752 else
1753 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1756 else
1758 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1759 any of the HARD_REGS_USED set. */
1760 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1761 reg_rename_data.unavailable_hard_regs))
1763 reg_ok = false;
1764 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1766 else
1768 reg_ok = true;
1769 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1773 ilist_clear (&original_insns);
1774 return_regset_to_pool (used_regs);
1776 return reg_ok;
1780 /* Return true if dependence described by DS can be overcomed. */
1781 static bool
1782 can_speculate_dep_p (ds_t ds)
1784 if (spec_info == NULL)
1785 return false;
1787 /* Leave only speculative data. */
1788 ds &= SPECULATIVE;
1790 if (ds == 0)
1791 return false;
1794 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1795 that we can overcome. */
1796 ds_t spec_mask = spec_info->mask;
1798 if ((ds & spec_mask) != ds)
1799 return false;
1802 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1803 return false;
1805 return true;
1808 /* Get a speculation check instruction.
1809 C_EXPR is a speculative expression,
1810 CHECK_DS describes speculations that should be checked,
1811 ORIG_INSN is the original non-speculative insn in the stream. */
1812 static insn_t
1813 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1815 rtx check_pattern;
1816 rtx insn_rtx;
1817 insn_t insn;
1818 basic_block recovery_block;
1819 rtx label;
1821 /* Create a recovery block if target is going to emit branchy check, or if
1822 ORIG_INSN was speculative already. */
1823 if (targetm.sched.needs_block_p (check_ds)
1824 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1826 recovery_block = sel_create_recovery_block (orig_insn);
1827 label = BB_HEAD (recovery_block);
1829 else
1831 recovery_block = NULL;
1832 label = NULL_RTX;
1835 /* Get pattern of the check. */
1836 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1837 check_ds);
1839 gcc_assert (check_pattern != NULL);
1841 /* Emit check. */
1842 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1844 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1845 INSN_SEQNO (orig_insn), orig_insn);
1847 /* Make check to be non-speculative. */
1848 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1849 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1851 /* Decrease priority of check by difference of load/check instruction
1852 latencies. */
1853 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1854 - sel_vinsn_cost (INSN_VINSN (insn)));
1856 /* Emit copy of original insn (though with replaced target register,
1857 if needed) to the recovery block. */
1858 if (recovery_block != NULL)
1860 rtx twin_rtx;
1862 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1863 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1864 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1865 INSN_EXPR (orig_insn),
1866 INSN_SEQNO (insn),
1867 bb_note (recovery_block));
1870 /* If we've generated a data speculation check, make sure
1871 that all the bookkeeping instruction we'll create during
1872 this move_op () will allocate an ALAT entry so that the
1873 check won't fail.
1874 In case of control speculation we must convert C_EXPR to control
1875 speculative mode, because failing to do so will bring us an exception
1876 thrown by the non-control-speculative load. */
1877 check_ds = ds_get_max_dep_weak (check_ds);
1878 speculate_expr (c_expr, check_ds);
1880 return insn;
1883 /* True when INSN is a "regN = regN" copy. */
1884 static bool
1885 identical_copy_p (rtx insn)
1887 rtx lhs, rhs, pat;
1889 pat = PATTERN (insn);
1891 if (GET_CODE (pat) != SET)
1892 return false;
1894 lhs = SET_DEST (pat);
1895 if (!REG_P (lhs))
1896 return false;
1898 rhs = SET_SRC (pat);
1899 if (!REG_P (rhs))
1900 return false;
1902 return REGNO (lhs) == REGNO (rhs);
1905 /* Undo all transformations on *AV_PTR that were done when
1906 moving through INSN. */
1907 static void
1908 undo_transformations (av_set_t *av_ptr, rtx insn)
1910 av_set_iterator av_iter;
1911 expr_t expr;
1912 av_set_t new_set = NULL;
1914 /* First, kill any EXPR that uses registers set by an insn. This is
1915 required for correctness. */
1916 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1917 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1918 && bitmap_intersect_p (INSN_REG_SETS (insn),
1919 VINSN_REG_USES (EXPR_VINSN (expr)))
1920 /* When an insn looks like 'r1 = r1', we could substitute through
1921 it, but the above condition will still hold. This happened with
1922 gcc.c-torture/execute/961125-1.c. */
1923 && !identical_copy_p (insn))
1925 if (sched_verbose >= 6)
1926 sel_print ("Expr %d removed due to use/set conflict\n",
1927 INSN_UID (EXPR_INSN_RTX (expr)));
1928 av_set_iter_remove (&av_iter);
1931 /* Undo transformations looking at the history vector. */
1932 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1934 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1935 insn, EXPR_VINSN (expr), true);
1937 if (index >= 0)
1939 expr_history_def *phist;
1941 phist = VEC_index (expr_history_def,
1942 EXPR_HISTORY_OF_CHANGES (expr),
1943 index);
1945 switch (phist->type)
1947 case TRANS_SPECULATION:
1949 ds_t old_ds, new_ds;
1951 /* Compute the difference between old and new speculative
1952 statuses: that's what we need to check.
1953 Earlier we used to assert that the status will really
1954 change. This no longer works because only the probability
1955 bits in the status may have changed during compute_av_set,
1956 and in the case of merging different probabilities of the
1957 same speculative status along different paths we do not
1958 record this in the history vector. */
1959 old_ds = phist->spec_ds;
1960 new_ds = EXPR_SPEC_DONE_DS (expr);
1962 old_ds &= SPECULATIVE;
1963 new_ds &= SPECULATIVE;
1964 new_ds &= ~old_ds;
1966 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1967 break;
1969 case TRANS_SUBSTITUTION:
1971 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1972 vinsn_t new_vi;
1973 bool add = true;
1975 new_vi = phist->old_expr_vinsn;
1977 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1978 == EXPR_SEPARABLE_P (expr));
1979 copy_expr (tmp_expr, expr);
1981 if (vinsn_equal_p (phist->new_expr_vinsn,
1982 EXPR_VINSN (tmp_expr)))
1983 change_vinsn_in_expr (tmp_expr, new_vi);
1984 else
1985 /* This happens when we're unsubstituting on a bookkeeping
1986 copy, which was in turn substituted. The history is wrong
1987 in this case. Do it the hard way. */
1988 add = substitute_reg_in_expr (tmp_expr, insn, true);
1989 if (add)
1990 av_set_add (&new_set, tmp_expr);
1991 clear_expr (tmp_expr);
1992 break;
1994 default:
1995 gcc_unreachable ();
2001 av_set_union_and_clear (av_ptr, &new_set, NULL);
2005 /* Moveup_* helpers for code motion and computing av sets. */
2007 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2008 The difference from the below function is that only substitution is
2009 performed. */
2010 static enum MOVEUP_EXPR_CODE
2011 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2013 vinsn_t vi = EXPR_VINSN (expr);
2014 ds_t *has_dep_p;
2015 ds_t full_ds;
2017 /* Do this only inside insn group. */
2018 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2020 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2021 if (full_ds == 0)
2022 return MOVEUP_EXPR_SAME;
2024 /* Substitution is the possible choice in this case. */
2025 if (has_dep_p[DEPS_IN_RHS])
2027 /* Can't substitute UNIQUE VINSNs. */
2028 gcc_assert (!VINSN_UNIQUE_P (vi));
2030 if (can_substitute_through_p (through_insn,
2031 has_dep_p[DEPS_IN_RHS])
2032 && substitute_reg_in_expr (expr, through_insn, false))
2034 EXPR_WAS_SUBSTITUTED (expr) = true;
2035 return MOVEUP_EXPR_CHANGED;
2038 /* Don't care about this, as even true dependencies may be allowed
2039 in an insn group. */
2040 return MOVEUP_EXPR_SAME;
2043 /* This can catch output dependencies in COND_EXECs. */
2044 if (has_dep_p[DEPS_IN_INSN])
2045 return MOVEUP_EXPR_NULL;
2047 /* This is either an output or an anti dependence, which usually have
2048 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2049 will fix this. */
2050 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2051 return MOVEUP_EXPR_AS_RHS;
2054 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2055 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2056 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2057 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2058 && !sel_insn_is_speculation_check (through_insn))
2060 /* True when a conflict on a target register was found during moveup_expr. */
2061 static bool was_target_conflict = false;
2063 /* Return true when moving a debug INSN across THROUGH_INSN will
2064 create a bookkeeping block. We don't want to create such blocks,
2065 for they would cause codegen differences between compilations with
2066 and without debug info. */
2068 static bool
2069 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2070 insn_t through_insn)
2072 basic_block bbi, bbt;
2073 edge e1, e2;
2074 edge_iterator ei1, ei2;
2076 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2078 if (sched_verbose >= 9)
2079 sel_print ("no bookkeeping required: ");
2080 return FALSE;
2083 bbi = BLOCK_FOR_INSN (insn);
2085 if (EDGE_COUNT (bbi->preds) == 1)
2087 if (sched_verbose >= 9)
2088 sel_print ("only one pred edge: ");
2089 return TRUE;
2092 bbt = BLOCK_FOR_INSN (through_insn);
2094 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2096 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2098 if (find_block_for_bookkeeping (e1, e2, TRUE))
2100 if (sched_verbose >= 9)
2101 sel_print ("found existing block: ");
2102 return FALSE;
2107 if (sched_verbose >= 9)
2108 sel_print ("would create bookkeeping block: ");
2110 return TRUE;
2113 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2114 performing necessary transformations. Record the type of transformation
2115 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2116 permit all dependencies except true ones, and try to remove those
2117 too via forward substitution. All cases when a non-eliminable
2118 non-zero cost dependency exists inside an insn group will be fixed
2119 in tick_check_p instead. */
2120 static enum MOVEUP_EXPR_CODE
2121 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2122 enum local_trans_type *ptrans_type)
2124 vinsn_t vi = EXPR_VINSN (expr);
2125 insn_t insn = VINSN_INSN_RTX (vi);
2126 bool was_changed = false;
2127 bool as_rhs = false;
2128 ds_t *has_dep_p;
2129 ds_t full_ds;
2131 /* ??? We use dependencies of non-debug insns on debug insns to
2132 indicate that the debug insns need to be reset if the non-debug
2133 insn is pulled ahead of it. It's hard to figure out how to
2134 introduce such a notion in sel-sched, but it already fails to
2135 support debug insns in other ways, so we just go ahead and
2136 let the deug insns go corrupt for now. */
2137 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2138 return MOVEUP_EXPR_SAME;
2140 /* When inside_insn_group, delegate to the helper. */
2141 if (inside_insn_group)
2142 return moveup_expr_inside_insn_group (expr, through_insn);
2144 /* Deal with unique insns and control dependencies. */
2145 if (VINSN_UNIQUE_P (vi))
2147 /* We can move jumps without side-effects or jumps that are
2148 mutually exclusive with instruction THROUGH_INSN (all in cases
2149 dependencies allow to do so and jump is not speculative). */
2150 if (control_flow_insn_p (insn))
2152 basic_block fallthru_bb;
2154 /* Do not move checks and do not move jumps through other
2155 jumps. */
2156 if (control_flow_insn_p (through_insn)
2157 || sel_insn_is_speculation_check (insn))
2158 return MOVEUP_EXPR_NULL;
2160 /* Don't move jumps through CFG joins. */
2161 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2162 return MOVEUP_EXPR_NULL;
2164 /* The jump should have a clear fallthru block, and
2165 this block should be in the current region. */
2166 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2167 || ! in_current_region_p (fallthru_bb))
2168 return MOVEUP_EXPR_NULL;
2170 /* And it should be mutually exclusive with through_insn. */
2171 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2172 && ! DEBUG_INSN_P (through_insn))
2173 return MOVEUP_EXPR_NULL;
2176 /* Don't move what we can't move. */
2177 if (EXPR_CANT_MOVE (expr)
2178 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2179 return MOVEUP_EXPR_NULL;
2181 /* Don't move SCHED_GROUP instruction through anything.
2182 If we don't force this, then it will be possible to start
2183 scheduling a sched_group before all its dependencies are
2184 resolved.
2185 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2186 as late as possible through rank_for_schedule. */
2187 if (SCHED_GROUP_P (insn))
2188 return MOVEUP_EXPR_NULL;
2190 else
2191 gcc_assert (!control_flow_insn_p (insn));
2193 /* Don't move debug insns if this would require bookkeeping. */
2194 if (DEBUG_INSN_P (insn)
2195 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2196 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2197 return MOVEUP_EXPR_NULL;
2199 /* Deal with data dependencies. */
2200 was_target_conflict = false;
2201 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2202 if (full_ds == 0)
2204 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2205 return MOVEUP_EXPR_SAME;
2207 else
2209 /* We can move UNIQUE insn up only as a whole and unchanged,
2210 so it shouldn't have any dependencies. */
2211 if (VINSN_UNIQUE_P (vi))
2212 return MOVEUP_EXPR_NULL;
2215 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2217 int res;
2219 res = speculate_expr (expr, full_ds);
2220 if (res >= 0)
2222 /* Speculation was successful. */
2223 full_ds = 0;
2224 was_changed = (res > 0);
2225 if (res == 2)
2226 was_target_conflict = true;
2227 if (ptrans_type)
2228 *ptrans_type = TRANS_SPECULATION;
2229 sel_clear_has_dependence ();
2233 if (has_dep_p[DEPS_IN_INSN])
2234 /* We have some dependency that cannot be discarded. */
2235 return MOVEUP_EXPR_NULL;
2237 if (has_dep_p[DEPS_IN_LHS])
2239 /* Only separable insns can be moved up with the new register.
2240 Anyways, we should mark that the original register is
2241 unavailable. */
2242 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2243 return MOVEUP_EXPR_NULL;
2245 EXPR_TARGET_AVAILABLE (expr) = false;
2246 was_target_conflict = true;
2247 as_rhs = true;
2250 /* At this point we have either separable insns, that will be lifted
2251 up only as RHSes, or non-separable insns with no dependency in lhs.
2252 If dependency is in RHS, then try to perform substitution and move up
2253 substituted RHS:
2255 Ex. 1: Ex.2
2256 y = x; y = x;
2257 z = y*2; y = y*2;
2259 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2260 moved above y=x assignment as z=x*2.
2262 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2263 side can be moved because of the output dependency. The operation was
2264 cropped to its rhs above. */
2265 if (has_dep_p[DEPS_IN_RHS])
2267 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2269 /* Can't substitute UNIQUE VINSNs. */
2270 gcc_assert (!VINSN_UNIQUE_P (vi));
2272 if (can_speculate_dep_p (*rhs_dsp))
2274 int res;
2276 res = speculate_expr (expr, *rhs_dsp);
2277 if (res >= 0)
2279 /* Speculation was successful. */
2280 *rhs_dsp = 0;
2281 was_changed = (res > 0);
2282 if (res == 2)
2283 was_target_conflict = true;
2284 if (ptrans_type)
2285 *ptrans_type = TRANS_SPECULATION;
2287 else
2288 return MOVEUP_EXPR_NULL;
2290 else if (can_substitute_through_p (through_insn,
2291 *rhs_dsp)
2292 && substitute_reg_in_expr (expr, through_insn, false))
2294 /* ??? We cannot perform substitution AND speculation on the same
2295 insn. */
2296 gcc_assert (!was_changed);
2297 was_changed = true;
2298 if (ptrans_type)
2299 *ptrans_type = TRANS_SUBSTITUTION;
2300 EXPR_WAS_SUBSTITUTED (expr) = true;
2302 else
2303 return MOVEUP_EXPR_NULL;
2306 /* Don't move trapping insns through jumps.
2307 This check should be at the end to give a chance to control speculation
2308 to perform its duties. */
2309 if (CANT_MOVE_TRAPPING (expr, through_insn))
2310 return MOVEUP_EXPR_NULL;
2312 return (was_changed
2313 ? MOVEUP_EXPR_CHANGED
2314 : (as_rhs
2315 ? MOVEUP_EXPR_AS_RHS
2316 : MOVEUP_EXPR_SAME));
2319 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2320 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2321 that can exist within a parallel group. Write to RES the resulting
2322 code for moveup_expr. */
2323 static bool
2324 try_bitmap_cache (expr_t expr, insn_t insn,
2325 bool inside_insn_group,
2326 enum MOVEUP_EXPR_CODE *res)
2328 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2330 /* First check whether we've analyzed this situation already. */
2331 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2333 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2335 if (sched_verbose >= 6)
2336 sel_print ("removed (cached)\n");
2337 *res = MOVEUP_EXPR_NULL;
2338 return true;
2340 else
2342 if (sched_verbose >= 6)
2343 sel_print ("unchanged (cached)\n");
2344 *res = MOVEUP_EXPR_SAME;
2345 return true;
2348 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2350 if (inside_insn_group)
2352 if (sched_verbose >= 6)
2353 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2354 *res = MOVEUP_EXPR_SAME;
2355 return true;
2358 else
2359 EXPR_TARGET_AVAILABLE (expr) = false;
2361 /* This is the only case when propagation result can change over time,
2362 as we can dynamically switch off scheduling as RHS. In this case,
2363 just check the flag to reach the correct decision. */
2364 if (enable_schedule_as_rhs_p)
2366 if (sched_verbose >= 6)
2367 sel_print ("unchanged (as RHS, cached)\n");
2368 *res = MOVEUP_EXPR_AS_RHS;
2369 return true;
2371 else
2373 if (sched_verbose >= 6)
2374 sel_print ("removed (cached as RHS, but renaming"
2375 " is now disabled)\n");
2376 *res = MOVEUP_EXPR_NULL;
2377 return true;
2381 return false;
2384 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2385 if successful. Write to RES the resulting code for moveup_expr. */
2386 static bool
2387 try_transformation_cache (expr_t expr, insn_t insn,
2388 enum MOVEUP_EXPR_CODE *res)
2390 struct transformed_insns *pti
2391 = (struct transformed_insns *)
2392 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2393 &EXPR_VINSN (expr),
2394 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2395 if (pti)
2397 /* This EXPR was already moved through this insn and was
2398 changed as a result. Fetch the proper data from
2399 the hashtable. */
2400 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2401 INSN_UID (insn), pti->type,
2402 pti->vinsn_old, pti->vinsn_new,
2403 EXPR_SPEC_DONE_DS (expr));
2405 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2406 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2407 change_vinsn_in_expr (expr, pti->vinsn_new);
2408 if (pti->was_target_conflict)
2409 EXPR_TARGET_AVAILABLE (expr) = false;
2410 if (pti->type == TRANS_SPECULATION)
2412 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2413 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2416 if (sched_verbose >= 6)
2418 sel_print ("changed (cached): ");
2419 dump_expr (expr);
2420 sel_print ("\n");
2423 *res = MOVEUP_EXPR_CHANGED;
2424 return true;
2427 return false;
2430 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2431 static void
2432 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2433 enum MOVEUP_EXPR_CODE res)
2435 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2437 /* Do not cache result of propagating jumps through an insn group,
2438 as it is always true, which is not useful outside the group. */
2439 if (inside_insn_group)
2440 return;
2442 if (res == MOVEUP_EXPR_NULL)
2444 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2445 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2447 else if (res == MOVEUP_EXPR_SAME)
2449 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2450 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2452 else if (res == MOVEUP_EXPR_AS_RHS)
2454 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2455 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2457 else
2458 gcc_unreachable ();
2461 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2462 and transformation type TRANS_TYPE. */
2463 static void
2464 update_transformation_cache (expr_t expr, insn_t insn,
2465 bool inside_insn_group,
2466 enum local_trans_type trans_type,
2467 vinsn_t expr_old_vinsn)
2469 struct transformed_insns *pti;
2471 if (inside_insn_group)
2472 return;
2474 pti = XNEW (struct transformed_insns);
2475 pti->vinsn_old = expr_old_vinsn;
2476 pti->vinsn_new = EXPR_VINSN (expr);
2477 pti->type = trans_type;
2478 pti->was_target_conflict = was_target_conflict;
2479 pti->ds = EXPR_SPEC_DONE_DS (expr);
2480 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2481 vinsn_attach (pti->vinsn_old);
2482 vinsn_attach (pti->vinsn_new);
2483 *((struct transformed_insns **)
2484 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2485 pti, VINSN_HASH_RTX (expr_old_vinsn),
2486 INSERT)) = pti;
2489 /* Same as moveup_expr, but first looks up the result of
2490 transformation in caches. */
2491 static enum MOVEUP_EXPR_CODE
2492 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2494 enum MOVEUP_EXPR_CODE res;
2495 bool got_answer = false;
2497 if (sched_verbose >= 6)
2499 sel_print ("Moving ");
2500 dump_expr (expr);
2501 sel_print (" through %d: ", INSN_UID (insn));
2504 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2505 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2506 == EXPR_INSN_RTX (expr)))
2507 /* Don't use cached information for debug insns that are heads of
2508 basic blocks. */;
2509 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2510 /* When inside insn group, we do not want remove stores conflicting
2511 with previosly issued loads. */
2512 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2513 else if (try_transformation_cache (expr, insn, &res))
2514 got_answer = true;
2516 if (! got_answer)
2518 /* Invoke moveup_expr and record the results. */
2519 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2520 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2521 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2522 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2523 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2525 /* ??? Invent something better than this. We can't allow old_vinsn
2526 to go, we need it for the history vector. */
2527 vinsn_attach (expr_old_vinsn);
2529 res = moveup_expr (expr, insn, inside_insn_group,
2530 &trans_type);
2531 switch (res)
2533 case MOVEUP_EXPR_NULL:
2534 update_bitmap_cache (expr, insn, inside_insn_group, res);
2535 if (sched_verbose >= 6)
2536 sel_print ("removed\n");
2537 break;
2539 case MOVEUP_EXPR_SAME:
2540 update_bitmap_cache (expr, insn, inside_insn_group, res);
2541 if (sched_verbose >= 6)
2542 sel_print ("unchanged\n");
2543 break;
2545 case MOVEUP_EXPR_AS_RHS:
2546 gcc_assert (!unique_p || inside_insn_group);
2547 update_bitmap_cache (expr, insn, inside_insn_group, res);
2548 if (sched_verbose >= 6)
2549 sel_print ("unchanged (as RHS)\n");
2550 break;
2552 case MOVEUP_EXPR_CHANGED:
2553 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2554 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2555 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2556 INSN_UID (insn), trans_type,
2557 expr_old_vinsn, EXPR_VINSN (expr),
2558 expr_old_spec_ds);
2559 update_transformation_cache (expr, insn, inside_insn_group,
2560 trans_type, expr_old_vinsn);
2561 if (sched_verbose >= 6)
2563 sel_print ("changed: ");
2564 dump_expr (expr);
2565 sel_print ("\n");
2567 break;
2568 default:
2569 gcc_unreachable ();
2572 vinsn_detach (expr_old_vinsn);
2575 return res;
2578 /* Moves an av set AVP up through INSN, performing necessary
2579 transformations. */
2580 static void
2581 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2583 av_set_iterator i;
2584 expr_t expr;
2586 FOR_EACH_EXPR_1 (expr, i, avp)
2589 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2591 case MOVEUP_EXPR_SAME:
2592 case MOVEUP_EXPR_AS_RHS:
2593 break;
2595 case MOVEUP_EXPR_NULL:
2596 av_set_iter_remove (&i);
2597 break;
2599 case MOVEUP_EXPR_CHANGED:
2600 expr = merge_with_other_exprs (avp, &i, expr);
2601 break;
2603 default:
2604 gcc_unreachable ();
2609 /* Moves AVP set along PATH. */
2610 static void
2611 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2613 int last_cycle;
2615 if (sched_verbose >= 6)
2616 sel_print ("Moving expressions up in the insn group...\n");
2617 if (! path)
2618 return;
2619 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2620 while (path
2621 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2623 moveup_set_expr (avp, ILIST_INSN (path), true);
2624 path = ILIST_NEXT (path);
2628 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2629 static bool
2630 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2632 expr_def _tmp, *tmp = &_tmp;
2633 int last_cycle;
2634 bool res = true;
2636 copy_expr_onside (tmp, expr);
2637 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2638 while (path
2639 && res
2640 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2642 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2643 != MOVEUP_EXPR_NULL);
2644 path = ILIST_NEXT (path);
2647 if (res)
2649 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2650 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2652 if (tmp_vinsn != expr_vliw_vinsn)
2653 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2656 clear_expr (tmp);
2657 return res;
2661 /* Functions that compute av and lv sets. */
2663 /* Returns true if INSN is not a downward continuation of the given path P in
2664 the current stage. */
2665 static bool
2666 is_ineligible_successor (insn_t insn, ilist_t p)
2668 insn_t prev_insn;
2670 /* Check if insn is not deleted. */
2671 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2672 gcc_unreachable ();
2673 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2674 gcc_unreachable ();
2676 /* If it's the first insn visited, then the successor is ok. */
2677 if (!p)
2678 return false;
2680 prev_insn = ILIST_INSN (p);
2682 if (/* a backward edge. */
2683 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2684 /* is already visited. */
2685 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2686 && (ilist_is_in_p (p, insn)
2687 /* We can reach another fence here and still seqno of insn
2688 would be equal to seqno of prev_insn. This is possible
2689 when prev_insn is a previously created bookkeeping copy.
2690 In that case it'd get a seqno of insn. Thus, check here
2691 whether insn is in current fence too. */
2692 || IN_CURRENT_FENCE_P (insn)))
2693 /* Was already scheduled on this round. */
2694 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2695 && IN_CURRENT_FENCE_P (insn))
2696 /* An insn from another fence could also be
2697 scheduled earlier even if this insn is not in
2698 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2699 || (!pipelining_p
2700 && INSN_SCHED_TIMES (insn) > 0))
2701 return true;
2702 else
2703 return false;
2706 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2707 of handling multiple successors and properly merging its av_sets. P is
2708 the current path traversed. WS is the size of lookahead window.
2709 Return the av set computed. */
2710 static av_set_t
2711 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2713 struct succs_info *sinfo;
2714 av_set_t expr_in_all_succ_branches = NULL;
2715 int is;
2716 insn_t succ, zero_succ = NULL;
2717 av_set_t av1 = NULL;
2719 gcc_assert (sel_bb_end_p (insn));
2721 /* Find different kind of successors needed for correct computing of
2722 SPEC and TARGET_AVAILABLE attributes. */
2723 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2725 /* Debug output. */
2726 if (sched_verbose >= 6)
2728 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2729 dump_insn_vector (sinfo->succs_ok);
2730 sel_print ("\n");
2731 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2732 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2735 /* Add insn to the tail of current path. */
2736 ilist_add (&p, insn);
2738 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2740 av_set_t succ_set;
2742 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2743 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2745 av_set_split_usefulness (succ_set,
2746 VEC_index (int, sinfo->probs_ok, is),
2747 sinfo->all_prob);
2749 if (sinfo->all_succs_n > 1)
2751 /* Find EXPR'es that came from *all* successors and save them
2752 into expr_in_all_succ_branches. This set will be used later
2753 for calculating speculation attributes of EXPR'es. */
2754 if (is == 0)
2756 expr_in_all_succ_branches = av_set_copy (succ_set);
2758 /* Remember the first successor for later. */
2759 zero_succ = succ;
2761 else
2763 av_set_iterator i;
2764 expr_t expr;
2766 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2767 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2768 av_set_iter_remove (&i);
2772 /* Union the av_sets. Check liveness restrictions on target registers
2773 in special case of two successors. */
2774 if (sinfo->succs_ok_n == 2 && is == 1)
2776 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2777 basic_block bb1 = BLOCK_FOR_INSN (succ);
2779 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2780 av_set_union_and_live (&av1, &succ_set,
2781 BB_LV_SET (bb0),
2782 BB_LV_SET (bb1),
2783 insn);
2785 else
2786 av_set_union_and_clear (&av1, &succ_set, insn);
2789 /* Check liveness restrictions via hard way when there are more than
2790 two successors. */
2791 if (sinfo->succs_ok_n > 2)
2792 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2794 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2796 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2797 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2798 BB_LV_SET (succ_bb));
2801 /* Finally, check liveness restrictions on paths leaving the region. */
2802 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2803 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2804 mark_unavailable_targets
2805 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2807 if (sinfo->all_succs_n > 1)
2809 av_set_iterator i;
2810 expr_t expr;
2812 /* Increase the spec attribute of all EXPR'es that didn't come
2813 from all successors. */
2814 FOR_EACH_EXPR (expr, i, av1)
2815 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2816 EXPR_SPEC (expr)++;
2818 av_set_clear (&expr_in_all_succ_branches);
2820 /* Do not move conditional branches through other
2821 conditional branches. So, remove all conditional
2822 branches from av_set if current operator is a conditional
2823 branch. */
2824 av_set_substract_cond_branches (&av1);
2827 ilist_remove (&p);
2828 free_succs_info (sinfo);
2830 if (sched_verbose >= 6)
2832 sel_print ("av_succs (%d): ", INSN_UID (insn));
2833 dump_av_set (av1);
2834 sel_print ("\n");
2837 return av1;
2840 /* This function computes av_set for the FIRST_INSN by dragging valid
2841 av_set through all basic block insns either from the end of basic block
2842 (computed using compute_av_set_at_bb_end) or from the insn on which
2843 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2844 below the basic block and handling conditional branches.
2845 FIRST_INSN - the basic block head, P - path consisting of the insns
2846 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2847 and bb ends are added to the path), WS - current window size,
2848 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2849 static av_set_t
2850 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2851 bool need_copy_p)
2853 insn_t cur_insn;
2854 int end_ws = ws;
2855 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2856 insn_t after_bb_end = NEXT_INSN (bb_end);
2857 insn_t last_insn;
2858 av_set_t av = NULL;
2859 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2861 /* Return NULL if insn is not on the legitimate downward path. */
2862 if (is_ineligible_successor (first_insn, p))
2864 if (sched_verbose >= 6)
2865 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2867 return NULL;
2870 /* If insn already has valid av(insn) computed, just return it. */
2871 if (AV_SET_VALID_P (first_insn))
2873 av_set_t av_set;
2875 if (sel_bb_head_p (first_insn))
2876 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2877 else
2878 av_set = NULL;
2880 if (sched_verbose >= 6)
2882 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2883 dump_av_set (av_set);
2884 sel_print ("\n");
2887 return need_copy_p ? av_set_copy (av_set) : av_set;
2890 ilist_add (&p, first_insn);
2892 /* As the result after this loop have completed, in LAST_INSN we'll
2893 have the insn which has valid av_set to start backward computation
2894 from: it either will be NULL because on it the window size was exceeded
2895 or other valid av_set as returned by compute_av_set for the last insn
2896 of the basic block. */
2897 for (last_insn = first_insn; last_insn != after_bb_end;
2898 last_insn = NEXT_INSN (last_insn))
2900 /* We may encounter valid av_set not only on bb_head, but also on
2901 those insns on which previously MAX_WS was exceeded. */
2902 if (AV_SET_VALID_P (last_insn))
2904 if (sched_verbose >= 6)
2905 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2906 break;
2909 /* The special case: the last insn of the BB may be an
2910 ineligible_successor due to its SEQ_NO that was set on
2911 it as a bookkeeping. */
2912 if (last_insn != first_insn
2913 && is_ineligible_successor (last_insn, p))
2915 if (sched_verbose >= 6)
2916 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2917 break;
2920 if (DEBUG_INSN_P (last_insn))
2921 continue;
2923 if (end_ws > max_ws)
2925 /* We can reach max lookahead size at bb_header, so clean av_set
2926 first. */
2927 INSN_WS_LEVEL (last_insn) = global_level;
2929 if (sched_verbose >= 6)
2930 sel_print ("Insn %d is beyond the software lookahead window size\n",
2931 INSN_UID (last_insn));
2932 break;
2935 end_ws++;
2938 /* Get the valid av_set into AV above the LAST_INSN to start backward
2939 computation from. It either will be empty av_set or av_set computed from
2940 the successors on the last insn of the current bb. */
2941 if (last_insn != after_bb_end)
2943 av = NULL;
2945 /* This is needed only to obtain av_sets that are identical to
2946 those computed by the old compute_av_set version. */
2947 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2948 av_set_add (&av, INSN_EXPR (last_insn));
2950 else
2951 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2952 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2954 /* Compute av_set in AV starting from below the LAST_INSN up to
2955 location above the FIRST_INSN. */
2956 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2957 cur_insn = PREV_INSN (cur_insn))
2958 if (!INSN_NOP_P (cur_insn))
2960 expr_t expr;
2962 moveup_set_expr (&av, cur_insn, false);
2964 /* If the expression for CUR_INSN is already in the set,
2965 replace it by the new one. */
2966 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2967 if (expr != NULL)
2969 clear_expr (expr);
2970 copy_expr (expr, INSN_EXPR (cur_insn));
2972 else
2973 av_set_add (&av, INSN_EXPR (cur_insn));
2976 /* Clear stale bb_av_set. */
2977 if (sel_bb_head_p (first_insn))
2979 av_set_clear (&BB_AV_SET (cur_bb));
2980 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2981 BB_AV_LEVEL (cur_bb) = global_level;
2984 if (sched_verbose >= 6)
2986 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2987 dump_av_set (av);
2988 sel_print ("\n");
2991 ilist_remove (&p);
2992 return av;
2995 /* Compute av set before INSN.
2996 INSN - the current operation (actual rtx INSN)
2997 P - the current path, which is list of insns visited so far
2998 WS - software lookahead window size.
2999 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3000 if we want to save computed av_set in s_i_d, we should make a copy of it.
3002 In the resulting set we will have only expressions that don't have delay
3003 stalls and nonsubstitutable dependences. */
3004 static av_set_t
3005 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3007 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3010 /* Propagate a liveness set LV through INSN. */
3011 static void
3012 propagate_lv_set (regset lv, insn_t insn)
3014 gcc_assert (INSN_P (insn));
3016 if (INSN_NOP_P (insn))
3017 return;
3019 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3022 /* Return livness set at the end of BB. */
3023 static regset
3024 compute_live_after_bb (basic_block bb)
3026 edge e;
3027 edge_iterator ei;
3028 regset lv = get_clear_regset_from_pool ();
3030 gcc_assert (!ignore_first);
3032 FOR_EACH_EDGE (e, ei, bb->succs)
3033 if (sel_bb_empty_p (e->dest))
3035 if (! BB_LV_SET_VALID_P (e->dest))
3037 gcc_unreachable ();
3038 gcc_assert (BB_LV_SET (e->dest) == NULL);
3039 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3040 BB_LV_SET_VALID_P (e->dest) = true;
3042 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3044 else
3045 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3047 return lv;
3050 /* Compute the set of all live registers at the point before INSN and save
3051 it at INSN if INSN is bb header. */
3052 regset
3053 compute_live (insn_t insn)
3055 basic_block bb = BLOCK_FOR_INSN (insn);
3056 insn_t final, temp;
3057 regset lv;
3059 /* Return the valid set if we're already on it. */
3060 if (!ignore_first)
3062 regset src = NULL;
3064 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3065 src = BB_LV_SET (bb);
3066 else
3068 gcc_assert (in_current_region_p (bb));
3069 if (INSN_LIVE_VALID_P (insn))
3070 src = INSN_LIVE (insn);
3073 if (src)
3075 lv = get_regset_from_pool ();
3076 COPY_REG_SET (lv, src);
3078 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3080 COPY_REG_SET (BB_LV_SET (bb), lv);
3081 BB_LV_SET_VALID_P (bb) = true;
3084 return_regset_to_pool (lv);
3085 return lv;
3089 /* We've skipped the wrong lv_set. Don't skip the right one. */
3090 ignore_first = false;
3091 gcc_assert (in_current_region_p (bb));
3093 /* Find a valid LV set in this block or below, if needed.
3094 Start searching from the next insn: either ignore_first is true, or
3095 INSN doesn't have a correct live set. */
3096 temp = NEXT_INSN (insn);
3097 final = NEXT_INSN (BB_END (bb));
3098 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3099 temp = NEXT_INSN (temp);
3100 if (temp == final)
3102 lv = compute_live_after_bb (bb);
3103 temp = PREV_INSN (temp);
3105 else
3107 lv = get_regset_from_pool ();
3108 COPY_REG_SET (lv, INSN_LIVE (temp));
3111 /* Put correct lv sets on the insns which have bad sets. */
3112 final = PREV_INSN (insn);
3113 while (temp != final)
3115 propagate_lv_set (lv, temp);
3116 COPY_REG_SET (INSN_LIVE (temp), lv);
3117 INSN_LIVE_VALID_P (temp) = true;
3118 temp = PREV_INSN (temp);
3121 /* Also put it in a BB. */
3122 if (sel_bb_head_p (insn))
3124 basic_block bb = BLOCK_FOR_INSN (insn);
3126 COPY_REG_SET (BB_LV_SET (bb), lv);
3127 BB_LV_SET_VALID_P (bb) = true;
3130 /* We return LV to the pool, but will not clear it there. Thus we can
3131 legimatelly use LV till the next use of regset_pool_get (). */
3132 return_regset_to_pool (lv);
3133 return lv;
3136 /* Update liveness sets for INSN. */
3137 static inline void
3138 update_liveness_on_insn (rtx insn)
3140 ignore_first = true;
3141 compute_live (insn);
3144 /* Compute liveness below INSN and write it into REGS. */
3145 static inline void
3146 compute_live_below_insn (rtx insn, regset regs)
3148 rtx succ;
3149 succ_iterator si;
3151 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3152 IOR_REG_SET (regs, compute_live (succ));
3155 /* Update the data gathered in av and lv sets starting from INSN. */
3156 static void
3157 update_data_sets (rtx insn)
3159 update_liveness_on_insn (insn);
3160 if (sel_bb_head_p (insn))
3162 gcc_assert (AV_LEVEL (insn) != 0);
3163 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3164 compute_av_set (insn, NULL, 0, 0);
3169 /* Helper for move_op () and find_used_regs ().
3170 Return speculation type for which a check should be created on the place
3171 of INSN. EXPR is one of the original ops we are searching for. */
3172 static ds_t
3173 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3175 ds_t to_check_ds;
3176 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3178 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3180 if (targetm.sched.get_insn_checked_ds)
3181 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3183 if (spec_info != NULL
3184 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3185 already_checked_ds |= BEGIN_CONTROL;
3187 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3189 to_check_ds &= ~already_checked_ds;
3191 return to_check_ds;
3194 /* Find the set of registers that are unavailable for storing expres
3195 while moving ORIG_OPS up on the path starting from INSN due to
3196 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3198 All the original operations found during the traversal are saved in the
3199 ORIGINAL_INSNS list.
3201 REG_RENAME_P denotes the set of hardware registers that
3202 can not be used with renaming due to the register class restrictions,
3203 mode restrictions and other (the register we'll choose should be
3204 compatible class with the original uses, shouldn't be in call_used_regs,
3205 should be HARD_REGNO_RENAME_OK etc).
3207 Returns TRUE if we've found all original insns, FALSE otherwise.
3209 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3210 to traverse the code motion paths. This helper function finds registers
3211 that are not available for storing expres while moving ORIG_OPS up on the
3212 path starting from INSN. A register considered as used on the moving path,
3213 if one of the following conditions is not satisfied:
3215 (1) a register not set or read on any path from xi to an instance of
3216 the original operation,
3217 (2) not among the live registers of the point immediately following the
3218 first original operation on a given downward path, except for the
3219 original target register of the operation,
3220 (3) not live on the other path of any conditional branch that is passed
3221 by the operation, in case original operations are not present on
3222 both paths of the conditional branch.
3224 All the original operations found during the traversal are saved in the
3225 ORIGINAL_INSNS list.
3227 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3228 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3229 to unavailable hard regs at the point original operation is found. */
3231 static bool
3232 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3233 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3235 def_list_iterator i;
3236 def_t def;
3237 int res;
3238 bool needs_spec_check_p = false;
3239 expr_t expr;
3240 av_set_iterator expr_iter;
3241 struct fur_static_params sparams;
3242 struct cmpd_local_params lparams;
3244 /* We haven't visited any blocks yet. */
3245 bitmap_clear (code_motion_visited_blocks);
3247 /* Init parameters for code_motion_path_driver. */
3248 sparams.crosses_call = false;
3249 sparams.original_insns = original_insns;
3250 sparams.used_regs = used_regs;
3252 /* Set the appropriate hooks and data. */
3253 code_motion_path_driver_info = &fur_hooks;
3255 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3257 reg_rename_p->crosses_call |= sparams.crosses_call;
3259 gcc_assert (res == 1);
3260 gcc_assert (original_insns && *original_insns);
3262 /* ??? We calculate whether an expression needs a check when computing
3263 av sets. This information is not as precise as it could be due to
3264 merging this bit in merge_expr. We can do better in find_used_regs,
3265 but we want to avoid multiple traversals of the same code motion
3266 paths. */
3267 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3268 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3270 /* Mark hardware regs in REG_RENAME_P that are not suitable
3271 for renaming expr in INSN due to hardware restrictions (register class,
3272 modes compatibility etc). */
3273 FOR_EACH_DEF (def, i, *original_insns)
3275 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3277 if (VINSN_SEPARABLE_P (vinsn))
3278 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3280 /* Do not allow clobbering of ld.[sa] address in case some of the
3281 original operations need a check. */
3282 if (needs_spec_check_p)
3283 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3286 return true;
3290 /* Functions to choose the best insn from available ones. */
3292 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3293 static int
3294 sel_target_adjust_priority (expr_t expr)
3296 int priority = EXPR_PRIORITY (expr);
3297 int new_priority;
3299 if (targetm.sched.adjust_priority)
3300 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3301 else
3302 new_priority = priority;
3304 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3305 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3307 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3309 if (sched_verbose >= 4)
3310 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3311 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3312 EXPR_PRIORITY_ADJ (expr), new_priority);
3314 return new_priority;
3317 /* Rank two available exprs for schedule. Never return 0 here. */
3318 static int
3319 sel_rank_for_schedule (const void *x, const void *y)
3321 expr_t tmp = *(const expr_t *) y;
3322 expr_t tmp2 = *(const expr_t *) x;
3323 insn_t tmp_insn, tmp2_insn;
3324 vinsn_t tmp_vinsn, tmp2_vinsn;
3325 int val;
3327 tmp_vinsn = EXPR_VINSN (tmp);
3328 tmp2_vinsn = EXPR_VINSN (tmp2);
3329 tmp_insn = EXPR_INSN_RTX (tmp);
3330 tmp2_insn = EXPR_INSN_RTX (tmp2);
3332 /* Schedule debug insns as early as possible. */
3333 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3334 return -1;
3335 else if (DEBUG_INSN_P (tmp2_insn))
3336 return 1;
3338 /* Prefer SCHED_GROUP_P insns to any others. */
3339 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3341 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3342 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3344 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3345 cannot be cloned. */
3346 if (VINSN_UNIQUE_P (tmp2_vinsn))
3347 return 1;
3348 return -1;
3351 /* Discourage scheduling of speculative checks. */
3352 val = (sel_insn_is_speculation_check (tmp_insn)
3353 - sel_insn_is_speculation_check (tmp2_insn));
3354 if (val)
3355 return val;
3357 /* Prefer not scheduled insn over scheduled one. */
3358 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3360 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3361 if (val)
3362 return val;
3365 /* Prefer jump over non-jump instruction. */
3366 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3367 return -1;
3368 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3369 return 1;
3371 /* Prefer an expr with greater priority. */
3372 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3374 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3375 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3377 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3379 else
3380 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3381 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3382 if (val)
3383 return val;
3385 if (spec_info != NULL && spec_info->mask != 0)
3386 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3388 ds_t ds1, ds2;
3389 dw_t dw1, dw2;
3390 int dw;
3392 ds1 = EXPR_SPEC_DONE_DS (tmp);
3393 if (ds1)
3394 dw1 = ds_weak (ds1);
3395 else
3396 dw1 = NO_DEP_WEAK;
3398 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3399 if (ds2)
3400 dw2 = ds_weak (ds2);
3401 else
3402 dw2 = NO_DEP_WEAK;
3404 dw = dw2 - dw1;
3405 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3406 return dw;
3409 /* Prefer an old insn to a bookkeeping insn. */
3410 if (INSN_UID (tmp_insn) < first_emitted_uid
3411 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3412 return -1;
3413 if (INSN_UID (tmp_insn) >= first_emitted_uid
3414 && INSN_UID (tmp2_insn) < first_emitted_uid)
3415 return 1;
3417 /* Prefer an insn with smaller UID, as a last resort.
3418 We can't safely use INSN_LUID as it is defined only for those insns
3419 that are in the stream. */
3420 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3423 /* Filter out expressions from av set pointed to by AV_PTR
3424 that are pipelined too many times. */
3425 static void
3426 process_pipelined_exprs (av_set_t *av_ptr)
3428 expr_t expr;
3429 av_set_iterator si;
3431 /* Don't pipeline already pipelined code as that would increase
3432 number of unnecessary register moves. */
3433 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3435 if (EXPR_SCHED_TIMES (expr)
3436 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3437 av_set_iter_remove (&si);
3441 /* Filter speculative insns from AV_PTR if we don't want them. */
3442 static void
3443 process_spec_exprs (av_set_t *av_ptr)
3445 bool try_data_p = true;
3446 bool try_control_p = true;
3447 expr_t expr;
3448 av_set_iterator si;
3450 if (spec_info == NULL)
3451 return;
3453 /* Scan *AV_PTR to find out if we want to consider speculative
3454 instructions for scheduling. */
3455 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3457 ds_t ds;
3459 ds = EXPR_SPEC_DONE_DS (expr);
3461 /* The probability of a success is too low - don't speculate. */
3462 if ((ds & SPECULATIVE)
3463 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3464 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3465 || (pipelining_p && false
3466 && (ds & DATA_SPEC)
3467 && (ds & CONTROL_SPEC))))
3469 av_set_iter_remove (&si);
3470 continue;
3473 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3474 && !(ds & BEGIN_DATA))
3475 try_data_p = false;
3477 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3478 && !(ds & BEGIN_CONTROL))
3479 try_control_p = false;
3482 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3484 ds_t ds;
3486 ds = EXPR_SPEC_DONE_DS (expr);
3488 if (ds & SPECULATIVE)
3490 if ((ds & BEGIN_DATA) && !try_data_p)
3491 /* We don't want any data speculative instructions right
3492 now. */
3493 av_set_iter_remove (&si);
3495 if ((ds & BEGIN_CONTROL) && !try_control_p)
3496 /* We don't want any control speculative instructions right
3497 now. */
3498 av_set_iter_remove (&si);
3503 /* Search for any use-like insns in AV_PTR and decide on scheduling
3504 them. Return one when found, and NULL otherwise.
3505 Note that we check here whether a USE could be scheduled to avoid
3506 an infinite loop later. */
3507 static expr_t
3508 process_use_exprs (av_set_t *av_ptr)
3510 expr_t expr;
3511 av_set_iterator si;
3512 bool uses_present_p = false;
3513 bool try_uses_p = true;
3515 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 /* This will also initialize INSN_CODE for later use. */
3518 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3520 /* If we have a USE in *AV_PTR that was not scheduled yet,
3521 do so because it will do good only. */
3522 if (EXPR_SCHED_TIMES (expr) <= 0)
3524 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3525 return expr;
3527 av_set_iter_remove (&si);
3529 else
3531 gcc_assert (pipelining_p);
3533 uses_present_p = true;
3536 else
3537 try_uses_p = false;
3540 if (uses_present_p)
3542 /* If we don't want to schedule any USEs right now and we have some
3543 in *AV_PTR, remove them, else just return the first one found. */
3544 if (!try_uses_p)
3546 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3547 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3548 av_set_iter_remove (&si);
3550 else
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3554 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3556 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3557 return expr;
3559 av_set_iter_remove (&si);
3564 return NULL;
3567 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3568 static bool
3569 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3571 vinsn_t vinsn;
3572 int n;
3574 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3575 if (VINSN_SEPARABLE_P (vinsn))
3577 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3578 return true;
3580 else
3582 /* For non-separable instructions, the blocking insn can have
3583 another pattern due to substitution, and we can't choose
3584 different register as in the above case. Check all registers
3585 being written instead. */
3586 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3587 VINSN_REG_SETS (EXPR_VINSN (expr))))
3588 return true;
3591 return false;
3594 #ifdef ENABLE_CHECKING
3595 /* Return true if either of expressions from ORIG_OPS can be blocked
3596 by previously created bookkeeping code. STATIC_PARAMS points to static
3597 parameters of move_op. */
3598 static bool
3599 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3601 expr_t expr;
3602 av_set_iterator iter;
3603 moveop_static_params_p sparams;
3605 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3606 created while scheduling on another fence. */
3607 FOR_EACH_EXPR (expr, iter, orig_ops)
3608 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3609 return true;
3611 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3612 sparams = (moveop_static_params_p) static_params;
3614 /* Expressions can be also blocked by bookkeeping created during current
3615 move_op. */
3616 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3617 FOR_EACH_EXPR (expr, iter, orig_ops)
3618 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3619 return true;
3621 /* Expressions in ORIG_OPS may have wrong destination register due to
3622 renaming. Check with the right register instead. */
3623 if (sparams->dest && REG_P (sparams->dest))
3625 rtx reg = sparams->dest;
3626 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3628 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3629 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3630 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3631 return true;
3634 return false;
3636 #endif
3638 /* Clear VINSN_VEC and detach vinsns. */
3639 static void
3640 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3642 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3643 if (len > 0)
3645 vinsn_t vinsn;
3646 int n;
3648 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3649 vinsn_detach (vinsn);
3650 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654 /* Add the vinsn of EXPR to the VINSN_VEC. */
3655 static void
3656 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3658 vinsn_attach (EXPR_VINSN (expr));
3659 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3662 /* Free the vector representing blocked expressions. */
3663 static void
3664 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3666 if (*vinsn_vec)
3667 VEC_free (vinsn_t, heap, *vinsn_vec);
3670 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3672 void sel_add_to_insn_priority (rtx insn, int amount)
3674 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3676 if (sched_verbose >= 2)
3677 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3678 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3679 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3682 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3683 true if there is something to schedule. BNDS and FENCE are current
3684 boundaries and fence, respectively. If we need to stall for some cycles
3685 before an expr from AV would become available, write this number to
3686 *PNEED_STALL. */
3687 static bool
3688 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3689 int *pneed_stall)
3691 av_set_iterator si;
3692 expr_t expr;
3693 int sched_next_worked = 0, stalled, n;
3694 static int av_max_prio, est_ticks_till_branch;
3695 int min_need_stall = -1;
3696 deps_t dc = BND_DC (BLIST_BND (bnds));
3698 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3699 already scheduled. */
3700 if (av == NULL)
3701 return false;
3703 /* Empty vector from the previous stuff. */
3704 if (VEC_length (expr_t, vec_av_set) > 0)
3705 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3707 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3708 for each insn. */
3709 gcc_assert (VEC_empty (expr_t, vec_av_set));
3710 FOR_EACH_EXPR (expr, si, av)
3712 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3714 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3716 /* Adjust priority using target backend hook. */
3717 sel_target_adjust_priority (expr);
3720 /* Sort the vector. */
3721 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3723 /* We record maximal priority of insns in av set for current instruction
3724 group. */
3725 if (FENCE_STARTS_CYCLE_P (fence))
3726 av_max_prio = est_ticks_till_branch = INT_MIN;
3728 /* Filter out inappropriate expressions. Loop's direction is reversed to
3729 visit "best" instructions first. We assume that VEC_unordered_remove
3730 moves last element in place of one being deleted. */
3731 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3733 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3734 insn_t insn = EXPR_INSN_RTX (expr);
3735 signed char target_available;
3736 bool is_orig_reg_p = true;
3737 int need_cycles, new_prio;
3739 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3740 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3742 VEC_unordered_remove (expr_t, vec_av_set, n);
3743 continue;
3746 /* Set number of sched_next insns (just in case there
3747 could be several). */
3748 if (FENCE_SCHED_NEXT (fence))
3749 sched_next_worked++;
3751 /* Check all liveness requirements and try renaming.
3752 FIXME: try to minimize calls to this. */
3753 target_available = EXPR_TARGET_AVAILABLE (expr);
3755 /* If insn was already scheduled on the current fence,
3756 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3757 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3758 target_available = -1;
3760 /* If the availability of the EXPR is invalidated by the insertion of
3761 bookkeeping earlier, make sure that we won't choose this expr for
3762 scheduling if it's not separable, and if it is separable, then
3763 we have to recompute the set of available registers for it. */
3764 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3766 VEC_unordered_remove (expr_t, vec_av_set, n);
3767 if (sched_verbose >= 4)
3768 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3769 INSN_UID (insn));
3770 continue;
3773 if (target_available == true)
3775 /* Do nothing -- we can use an existing register. */
3776 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3778 else if (/* Non-separable instruction will never
3779 get another register. */
3780 (target_available == false
3781 && !EXPR_SEPARABLE_P (expr))
3782 /* Don't try to find a register for low-priority expression. */
3783 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3784 /* ??? FIXME: Don't try to rename data speculation. */
3785 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3786 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3788 VEC_unordered_remove (expr_t, vec_av_set, n);
3789 if (sched_verbose >= 4)
3790 sel_print ("Expr %d has no suitable target register\n",
3791 INSN_UID (insn));
3792 continue;
3795 /* Filter expressions that need to be renamed or speculated when
3796 pipelining, because compensating register copies or speculation
3797 checks are likely to be placed near the beginning of the loop,
3798 causing a stall. */
3799 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3800 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3802 /* Estimation of number of cycles until loop branch for
3803 renaming/speculation to be successful. */
3804 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3806 if ((int) current_loop_nest->ninsns < 9)
3808 VEC_unordered_remove (expr_t, vec_av_set, n);
3809 if (sched_verbose >= 4)
3810 sel_print ("Pipelining expr %d will likely cause stall\n",
3811 INSN_UID (insn));
3812 continue;
3815 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3816 < need_n_ticks_till_branch * issue_rate / 2
3817 && est_ticks_till_branch < need_n_ticks_till_branch)
3819 VEC_unordered_remove (expr_t, vec_av_set, n);
3820 if (sched_verbose >= 4)
3821 sel_print ("Pipelining expr %d will likely cause stall\n",
3822 INSN_UID (insn));
3823 continue;
3827 /* We want to schedule speculation checks as late as possible. Discard
3828 them from av set if there are instructions with higher priority. */
3829 if (sel_insn_is_speculation_check (insn)
3830 && EXPR_PRIORITY (expr) < av_max_prio)
3832 stalled++;
3833 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3834 VEC_unordered_remove (expr_t, vec_av_set, n);
3835 if (sched_verbose >= 4)
3836 sel_print ("Delaying speculation check %d until its first use\n",
3837 INSN_UID (insn));
3838 continue;
3841 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3842 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3843 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3845 /* Don't allow any insns whose data is not yet ready.
3846 Check first whether we've already tried them and failed. */
3847 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3849 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3850 - FENCE_CYCLE (fence));
3851 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3852 est_ticks_till_branch = MAX (est_ticks_till_branch,
3853 EXPR_PRIORITY (expr) + need_cycles);
3855 if (need_cycles > 0)
3857 stalled++;
3858 min_need_stall = (min_need_stall < 0
3859 ? need_cycles
3860 : MIN (min_need_stall, need_cycles));
3861 VEC_unordered_remove (expr_t, vec_av_set, n);
3863 if (sched_verbose >= 4)
3864 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3865 INSN_UID (insn),
3866 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3867 continue;
3871 /* Now resort to dependence analysis to find whether EXPR might be
3872 stalled due to dependencies from FENCE's context. */
3873 need_cycles = tick_check_p (expr, dc, fence);
3874 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3876 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3877 est_ticks_till_branch = MAX (est_ticks_till_branch,
3878 new_prio);
3880 if (need_cycles > 0)
3882 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3884 int new_size = INSN_UID (insn) * 3 / 2;
3886 FENCE_READY_TICKS (fence)
3887 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3888 new_size, FENCE_READY_TICKS_SIZE (fence),
3889 sizeof (int));
3891 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3892 = FENCE_CYCLE (fence) + need_cycles;
3894 stalled++;
3895 min_need_stall = (min_need_stall < 0
3896 ? need_cycles
3897 : MIN (min_need_stall, need_cycles));
3899 VEC_unordered_remove (expr_t, vec_av_set, n);
3901 if (sched_verbose >= 4)
3902 sel_print ("Expr %d is not ready yet until cycle %d\n",
3903 INSN_UID (insn),
3904 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3905 continue;
3908 if (sched_verbose >= 4)
3909 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3910 min_need_stall = 0;
3913 /* Clear SCHED_NEXT. */
3914 if (FENCE_SCHED_NEXT (fence))
3916 gcc_assert (sched_next_worked == 1);
3917 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3920 /* No need to stall if this variable was not initialized. */
3921 if (min_need_stall < 0)
3922 min_need_stall = 0;
3924 if (VEC_empty (expr_t, vec_av_set))
3926 /* We need to set *pneed_stall here, because later we skip this code
3927 when ready list is empty. */
3928 *pneed_stall = min_need_stall;
3929 return false;
3931 else
3932 gcc_assert (min_need_stall == 0);
3934 /* Sort the vector. */
3935 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3937 if (sched_verbose >= 4)
3939 sel_print ("Total ready exprs: %d, stalled: %d\n",
3940 VEC_length (expr_t, vec_av_set), stalled);
3941 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3942 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3943 dump_expr (expr);
3944 sel_print ("\n");
3947 *pneed_stall = 0;
3948 return true;
3951 /* Convert a vectored and sorted av set to the ready list that
3952 the rest of the backend wants to see. */
3953 static void
3954 convert_vec_av_set_to_ready (void)
3956 int n;
3957 expr_t expr;
3959 /* Allocate and fill the ready list from the sorted vector. */
3960 ready.n_ready = VEC_length (expr_t, vec_av_set);
3961 ready.first = ready.n_ready - 1;
3963 gcc_assert (ready.n_ready > 0);
3965 if (ready.n_ready > max_issue_size)
3967 max_issue_size = ready.n_ready;
3968 sched_extend_ready_list (ready.n_ready);
3971 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3973 vinsn_t vi = EXPR_VINSN (expr);
3974 insn_t insn = VINSN_INSN_RTX (vi);
3976 ready_try[n] = 0;
3977 ready.vec[n] = insn;
3981 /* Initialize ready list from *AV_PTR for the max_issue () call.
3982 If any unrecognizable insn found in *AV_PTR, return it (and skip
3983 max_issue). BND and FENCE are current boundary and fence,
3984 respectively. If we need to stall for some cycles before an expr
3985 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3986 static expr_t
3987 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3988 int *pneed_stall)
3990 expr_t expr;
3992 /* We do not support multiple boundaries per fence. */
3993 gcc_assert (BLIST_NEXT (bnds) == NULL);
3995 /* Process expressions required special handling, i.e. pipelined,
3996 speculative and recog() < 0 expressions first. */
3997 process_pipelined_exprs (av_ptr);
3998 process_spec_exprs (av_ptr);
4000 /* A USE could be scheduled immediately. */
4001 expr = process_use_exprs (av_ptr);
4002 if (expr)
4004 *pneed_stall = 0;
4005 return expr;
4008 /* Turn the av set to a vector for sorting. */
4009 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4011 ready.n_ready = 0;
4012 return NULL;
4015 /* Build the final ready list. */
4016 convert_vec_av_set_to_ready ();
4017 return NULL;
4020 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4021 static bool
4022 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4024 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4025 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4026 : FENCE_CYCLE (fence) - 1;
4027 bool res = false;
4028 int sort_p = 0;
4030 if (!targetm.sched.dfa_new_cycle)
4031 return false;
4033 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4035 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4036 insn, last_scheduled_cycle,
4037 FENCE_CYCLE (fence), &sort_p))
4039 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4040 advance_one_cycle (fence);
4041 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4042 res = true;
4045 return res;
4048 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4049 we can issue. FENCE is the current fence. */
4050 static int
4051 invoke_reorder_hooks (fence_t fence)
4053 int issue_more;
4054 bool ran_hook = false;
4056 /* Call the reorder hook at the beginning of the cycle, and call
4057 the reorder2 hook in the middle of the cycle. */
4058 if (FENCE_ISSUED_INSNS (fence) == 0)
4060 if (targetm.sched.reorder
4061 && !SCHED_GROUP_P (ready_element (&ready, 0))
4062 && ready.n_ready > 1)
4064 /* Don't give reorder the most prioritized insn as it can break
4065 pipelining. */
4066 if (pipelining_p)
4067 --ready.n_ready;
4069 issue_more
4070 = targetm.sched.reorder (sched_dump, sched_verbose,
4071 ready_lastpos (&ready),
4072 &ready.n_ready, FENCE_CYCLE (fence));
4074 if (pipelining_p)
4075 ++ready.n_ready;
4077 ran_hook = true;
4079 else
4080 /* Initialize can_issue_more for variable_issue. */
4081 issue_more = issue_rate;
4083 else if (targetm.sched.reorder2
4084 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4086 if (ready.n_ready == 1)
4087 issue_more =
4088 targetm.sched.reorder2 (sched_dump, sched_verbose,
4089 ready_lastpos (&ready),
4090 &ready.n_ready, FENCE_CYCLE (fence));
4091 else
4093 if (pipelining_p)
4094 --ready.n_ready;
4096 issue_more =
4097 targetm.sched.reorder2 (sched_dump, sched_verbose,
4098 ready.n_ready
4099 ? ready_lastpos (&ready) : NULL,
4100 &ready.n_ready, FENCE_CYCLE (fence));
4102 if (pipelining_p)
4103 ++ready.n_ready;
4106 ran_hook = true;
4108 else
4109 issue_more = FENCE_ISSUE_MORE (fence);
4111 /* Ensure that ready list and vec_av_set are in line with each other,
4112 i.e. vec_av_set[i] == ready_element (&ready, i). */
4113 if (issue_more && ran_hook)
4115 int i, j, n;
4116 rtx *arr = ready.vec;
4117 expr_t *vec = VEC_address (expr_t, vec_av_set);
4119 for (i = 0, n = ready.n_ready; i < n; i++)
4120 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4122 expr_t tmp;
4124 for (j = i; j < n; j++)
4125 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4126 break;
4127 gcc_assert (j < n);
4129 tmp = vec[i];
4130 vec[i] = vec[j];
4131 vec[j] = tmp;
4135 return issue_more;
4138 /* Return an EXPR corresponding to INDEX element of ready list, if
4139 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4140 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4141 ready.vec otherwise. */
4142 static inline expr_t
4143 find_expr_for_ready (int index, bool follow_ready_element)
4145 expr_t expr;
4146 int real_index;
4148 real_index = follow_ready_element ? ready.first - index : index;
4150 expr = VEC_index (expr_t, vec_av_set, real_index);
4151 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4153 return expr;
4156 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4157 of such insns found. */
4158 static int
4159 invoke_dfa_lookahead_guard (void)
4161 int i, n;
4162 bool have_hook
4163 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4165 if (sched_verbose >= 2)
4166 sel_print ("ready after reorder: ");
4168 for (i = 0, n = 0; i < ready.n_ready; i++)
4170 expr_t expr;
4171 insn_t insn;
4172 int r;
4174 /* In this loop insn is Ith element of the ready list given by
4175 ready_element, not Ith element of ready.vec. */
4176 insn = ready_element (&ready, i);
4178 if (! have_hook || i == 0)
4179 r = 0;
4180 else
4181 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4183 gcc_assert (INSN_CODE (insn) >= 0);
4185 /* Only insns with ready_try = 0 can get here
4186 from fill_ready_list. */
4187 gcc_assert (ready_try [i] == 0);
4188 ready_try[i] = r;
4189 if (!r)
4190 n++;
4192 expr = find_expr_for_ready (i, true);
4194 if (sched_verbose >= 2)
4196 dump_vinsn (EXPR_VINSN (expr));
4197 sel_print (":%d; ", ready_try[i]);
4201 if (sched_verbose >= 2)
4202 sel_print ("\n");
4203 return n;
4206 /* Calculate the number of privileged insns and return it. */
4207 static int
4208 calculate_privileged_insns (void)
4210 expr_t cur_expr, min_spec_expr = NULL;
4211 int privileged_n = 0, i;
4213 for (i = 0; i < ready.n_ready; i++)
4215 if (ready_try[i])
4216 continue;
4218 if (! min_spec_expr)
4219 min_spec_expr = find_expr_for_ready (i, true);
4221 cur_expr = find_expr_for_ready (i, true);
4223 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4224 break;
4226 ++privileged_n;
4229 if (i == ready.n_ready)
4230 privileged_n = 0;
4232 if (sched_verbose >= 2)
4233 sel_print ("privileged_n: %d insns with SPEC %d\n",
4234 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4235 return privileged_n;
4238 /* Call the rest of the hooks after the choice was made. Return
4239 the number of insns that still can be issued given that the current
4240 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4241 and the insn chosen for scheduling, respectively. */
4242 static int
4243 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4245 gcc_assert (INSN_P (best_insn));
4247 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4248 sel_dfa_new_cycle (best_insn, fence);
4250 if (targetm.sched.variable_issue)
4252 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4253 issue_more =
4254 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4255 issue_more);
4256 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4258 else if (GET_CODE (PATTERN (best_insn)) != USE
4259 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4260 issue_more--;
4262 return issue_more;
4265 /* Estimate the cost of issuing INSN on DFA state STATE. */
4266 static int
4267 estimate_insn_cost (rtx insn, state_t state)
4269 static state_t temp = NULL;
4270 int cost;
4272 if (!temp)
4273 temp = xmalloc (dfa_state_size);
4275 memcpy (temp, state, dfa_state_size);
4276 cost = state_transition (temp, insn);
4278 if (cost < 0)
4279 return 0;
4280 else if (cost == 0)
4281 return 1;
4282 return cost;
4285 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4286 This function properly handles ASMs, USEs etc. */
4287 static int
4288 get_expr_cost (expr_t expr, fence_t fence)
4290 rtx insn = EXPR_INSN_RTX (expr);
4292 if (recog_memoized (insn) < 0)
4294 if (!FENCE_STARTS_CYCLE_P (fence)
4295 && INSN_ASM_P (insn))
4296 /* This is asm insn which is tryed to be issued on the
4297 cycle not first. Issue it on the next cycle. */
4298 return 1;
4299 else
4300 /* A USE insn, or something else we don't need to
4301 understand. We can't pass these directly to
4302 state_transition because it will trigger a
4303 fatal error for unrecognizable insns. */
4304 return 0;
4306 else
4307 return estimate_insn_cost (insn, FENCE_STATE (fence));
4310 /* Find the best insn for scheduling, either via max_issue or just take
4311 the most prioritized available. */
4312 static int
4313 choose_best_insn (fence_t fence, int privileged_n, int *index)
4315 int can_issue = 0;
4317 if (dfa_lookahead > 0)
4319 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4320 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4321 can_issue = max_issue (&ready, privileged_n,
4322 FENCE_STATE (fence), true, index);
4323 if (sched_verbose >= 2)
4324 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4325 can_issue, FENCE_ISSUED_INSNS (fence));
4327 else
4329 /* We can't use max_issue; just return the first available element. */
4330 int i;
4332 for (i = 0; i < ready.n_ready; i++)
4334 expr_t expr = find_expr_for_ready (i, true);
4336 if (get_expr_cost (expr, fence) < 1)
4338 can_issue = can_issue_more;
4339 *index = i;
4341 if (sched_verbose >= 2)
4342 sel_print ("using %dth insn from the ready list\n", i + 1);
4344 break;
4348 if (i == ready.n_ready)
4350 can_issue = 0;
4351 *index = -1;
4355 return can_issue;
4358 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4359 BNDS and FENCE are current boundaries and scheduling fence respectively.
4360 Return the expr found and NULL if nothing can be issued atm.
4361 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4362 static expr_t
4363 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4364 int *pneed_stall)
4366 expr_t best;
4368 /* Choose the best insn for scheduling via:
4369 1) sorting the ready list based on priority;
4370 2) calling the reorder hook;
4371 3) calling max_issue. */
4372 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4373 if (best == NULL && ready.n_ready > 0)
4375 int privileged_n, index;
4377 can_issue_more = invoke_reorder_hooks (fence);
4378 if (can_issue_more > 0)
4380 /* Try choosing the best insn until we find one that is could be
4381 scheduled due to liveness restrictions on its destination register.
4382 In the future, we'd like to choose once and then just probe insns
4383 in the order of their priority. */
4384 invoke_dfa_lookahead_guard ();
4385 privileged_n = calculate_privileged_insns ();
4386 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4387 if (can_issue_more)
4388 best = find_expr_for_ready (index, true);
4390 /* We had some available insns, so if we can't issue them,
4391 we have a stall. */
4392 if (can_issue_more == 0)
4394 best = NULL;
4395 *pneed_stall = 1;
4399 if (best != NULL)
4401 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4402 can_issue_more);
4403 if (targetm.sched.variable_issue
4404 && can_issue_more == 0)
4405 *pneed_stall = 1;
4408 if (sched_verbose >= 2)
4410 if (best != NULL)
4412 sel_print ("Best expression (vliw form): ");
4413 dump_expr (best);
4414 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4416 else
4417 sel_print ("No best expr found!\n");
4420 return best;
4424 /* Functions that implement the core of the scheduler. */
4427 /* Emit an instruction from EXPR with SEQNO and VINSN after
4428 PLACE_TO_INSERT. */
4429 static insn_t
4430 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4431 insn_t place_to_insert)
4433 /* This assert fails when we have identical instructions
4434 one of which dominates the other. In this case move_op ()
4435 finds the first instruction and doesn't search for second one.
4436 The solution would be to compute av_set after the first found
4437 insn and, if insn present in that set, continue searching.
4438 For now we workaround this issue in move_op. */
4439 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4441 if (EXPR_WAS_RENAMED (expr))
4443 unsigned regno = expr_dest_regno (expr);
4445 if (HARD_REGISTER_NUM_P (regno))
4447 df_set_regs_ever_live (regno, true);
4448 reg_rename_tick[regno] = ++reg_rename_this_tick;
4452 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4453 place_to_insert);
4456 /* Return TRUE if BB can hold bookkeeping code. */
4457 static bool
4458 block_valid_for_bookkeeping_p (basic_block bb)
4460 insn_t bb_end = BB_END (bb);
4462 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4463 return false;
4465 if (INSN_P (bb_end))
4467 if (INSN_SCHED_TIMES (bb_end) > 0)
4468 return false;
4470 else
4471 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4473 return true;
4476 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4477 into E2->dest, except from E1->src (there may be a sequence of empty basic
4478 blocks between E1->src and E2->dest). Return found block, or NULL if new
4479 one must be created. If LAX holds, don't assume there is a simple path
4480 from E1->src to E2->dest. */
4481 static basic_block
4482 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4484 basic_block candidate_block = NULL;
4485 edge e;
4487 /* Loop over edges from E1 to E2, inclusive. */
4488 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4490 if (EDGE_COUNT (e->dest->preds) == 2)
4492 if (candidate_block == NULL)
4493 candidate_block = (EDGE_PRED (e->dest, 0) == e
4494 ? EDGE_PRED (e->dest, 1)->src
4495 : EDGE_PRED (e->dest, 0)->src);
4496 else
4497 /* Found additional edge leading to path from e1 to e2
4498 from aside. */
4499 return NULL;
4501 else if (EDGE_COUNT (e->dest->preds) > 2)
4502 /* Several edges leading to path from e1 to e2 from aside. */
4503 return NULL;
4505 if (e == e2)
4506 return ((!lax || candidate_block)
4507 && block_valid_for_bookkeeping_p (candidate_block)
4508 ? candidate_block
4509 : NULL);
4511 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4512 return NULL;
4515 if (lax)
4516 return NULL;
4518 gcc_unreachable ();
4521 /* Create new basic block for bookkeeping code for path(s) incoming into
4522 E2->dest, except from E1->src. Return created block. */
4523 static basic_block
4524 create_block_for_bookkeeping (edge e1, edge e2)
4526 basic_block new_bb, bb = e2->dest;
4528 /* Check that we don't spoil the loop structure. */
4529 if (current_loop_nest)
4531 basic_block latch = current_loop_nest->latch;
4533 /* We do not split header. */
4534 gcc_assert (e2->dest != current_loop_nest->header);
4536 /* We do not redirect the only edge to the latch block. */
4537 gcc_assert (e1->dest != latch
4538 || !single_pred_p (latch)
4539 || e1 != single_pred_edge (latch));
4542 /* Split BB to insert BOOK_INSN there. */
4543 new_bb = sched_split_block (bb, NULL);
4545 /* Move note_list from the upper bb. */
4546 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4547 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4548 BB_NOTE_LIST (bb) = NULL_RTX;
4550 gcc_assert (e2->dest == bb);
4552 /* Skip block for bookkeeping copy when leaving E1->src. */
4553 if (e1->flags & EDGE_FALLTHRU)
4554 sel_redirect_edge_and_branch_force (e1, new_bb);
4555 else
4556 sel_redirect_edge_and_branch (e1, new_bb);
4558 gcc_assert (e1->dest == new_bb);
4559 gcc_assert (sel_bb_empty_p (bb));
4561 /* To keep basic block numbers in sync between debug and non-debug
4562 compilations, we have to rotate blocks here. Consider that we
4563 started from (a,b)->d, (c,d)->e, and d contained only debug
4564 insns. It would have been removed before if the debug insns
4565 weren't there, so we'd have split e rather than d. So what we do
4566 now is to swap the block numbers of new_bb and
4567 single_succ(new_bb) == e, so that the insns that were in e before
4568 get the new block number. */
4570 if (MAY_HAVE_DEBUG_INSNS)
4572 basic_block succ;
4573 insn_t insn = sel_bb_head (new_bb);
4574 insn_t last;
4576 if (DEBUG_INSN_P (insn)
4577 && single_succ_p (new_bb)
4578 && (succ = single_succ (new_bb))
4579 && succ != EXIT_BLOCK_PTR
4580 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4582 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4583 insn = NEXT_INSN (insn);
4585 if (insn == last)
4587 sel_global_bb_info_def gbi;
4588 sel_region_bb_info_def rbi;
4589 int i;
4591 if (sched_verbose >= 2)
4592 sel_print ("Swapping block ids %i and %i\n",
4593 new_bb->index, succ->index);
4595 i = new_bb->index;
4596 new_bb->index = succ->index;
4597 succ->index = i;
4599 SET_BASIC_BLOCK (new_bb->index, new_bb);
4600 SET_BASIC_BLOCK (succ->index, succ);
4602 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4603 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4604 sizeof (gbi));
4605 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4608 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4609 sizeof (rbi));
4610 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612 i = BLOCK_TO_BB (new_bb->index);
4613 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4614 BLOCK_TO_BB (succ->index) = i;
4616 i = CONTAINING_RGN (new_bb->index);
4617 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4618 CONTAINING_RGN (succ->index) = i;
4620 for (i = 0; i < current_nr_blocks; i++)
4621 if (BB_TO_BLOCK (i) == succ->index)
4622 BB_TO_BLOCK (i) = new_bb->index;
4623 else if (BB_TO_BLOCK (i) == new_bb->index)
4624 BB_TO_BLOCK (i) = succ->index;
4626 FOR_BB_INSNS (new_bb, insn)
4627 if (INSN_P (insn))
4628 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4630 FOR_BB_INSNS (succ, insn)
4631 if (INSN_P (insn))
4632 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4634 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4635 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4637 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4638 && LABEL_P (BB_HEAD (succ)));
4640 if (sched_verbose >= 4)
4641 sel_print ("Swapping code labels %i and %i\n",
4642 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4643 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4645 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4646 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4647 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4648 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4653 return bb;
4656 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4657 into E2->dest, except from E1->src. If the returned insn immediately
4658 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4659 static insn_t
4660 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4667 if (book_block)
4669 place_to_insert = BB_END (book_block);
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4677 rtx insn = sel_bb_head (book_block);
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4688 if (!book_block)
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4696 else
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4702 *fence_to_rewind = NULL;
4703 /* If basic block ends with a jump, insert bookkeeping code right before it.
4704 Notice if we are crossing a fence when taking PREV_INSN. */
4705 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4707 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4708 place_to_insert = PREV_INSN (place_to_insert);
4711 return place_to_insert;
4714 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4715 for JOIN_POINT. */
4716 static int
4717 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4719 int seqno;
4720 rtx next;
4722 /* Check if we are about to insert bookkeeping copy before a jump, and use
4723 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4724 next = NEXT_INSN (place_to_insert);
4725 if (INSN_P (next)
4726 && JUMP_P (next)
4727 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4729 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4730 seqno = INSN_SEQNO (next);
4732 else if (INSN_SEQNO (join_point) > 0)
4733 seqno = INSN_SEQNO (join_point);
4734 else
4736 seqno = get_seqno_by_preds (place_to_insert);
4738 /* Sometimes the fences can move in such a way that there will be
4739 no instructions with positive seqno around this bookkeeping.
4740 This means that there will be no way to get to it by a regular
4741 fence movement. Never mind because we pick up such pieces for
4742 rescheduling anyways, so any positive value will do for now. */
4743 if (seqno < 0)
4745 gcc_assert (pipelining_p);
4746 seqno = 1;
4750 gcc_assert (seqno > 0);
4751 return seqno;
4754 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4755 NEW_SEQNO to it. Return created insn. */
4756 static insn_t
4757 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4759 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4761 vinsn_t new_vinsn
4762 = create_vinsn_from_insn_rtx (new_insn_rtx,
4763 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4765 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4766 place_to_insert);
4768 INSN_SCHED_TIMES (new_insn) = 0;
4769 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4771 return new_insn;
4774 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4775 E2->dest, except from E1->src (there may be a sequence of empty blocks
4776 between E1->src and E2->dest). Return block containing the copy.
4777 All scheduler data is initialized for the newly created insn. */
4778 static basic_block
4779 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4781 insn_t join_point, place_to_insert, new_insn;
4782 int new_seqno;
4783 bool need_to_exchange_data_sets;
4784 fence_t fence_to_rewind;
4786 if (sched_verbose >= 4)
4787 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4788 e2->dest->index);
4790 join_point = sel_bb_head (e2->dest);
4791 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4792 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4793 need_to_exchange_data_sets
4794 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4796 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4798 if (fence_to_rewind)
4799 FENCE_INSN (fence_to_rewind) = new_insn;
4801 /* When inserting bookkeeping insn in new block, av sets should be
4802 following: old basic block (that now holds bookkeeping) data sets are
4803 the same as was before generation of bookkeeping, and new basic block
4804 (that now hold all other insns of old basic block) data sets are
4805 invalid. So exchange data sets for these basic blocks as sel_split_block
4806 mistakenly exchanges them in this case. Cannot do it earlier because
4807 when single instruction is added to new basic block it should hold NULL
4808 lv_set. */
4809 if (need_to_exchange_data_sets)
4810 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4811 BLOCK_FOR_INSN (join_point));
4813 stat_bookkeeping_copies++;
4814 return BLOCK_FOR_INSN (new_insn);
4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4818 on FENCE, but we are unable to copy them. */
4819 static void
4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4822 expr_t expr;
4823 av_set_iterator i;
4825 /* An expression does not need bookkeeping if it is available on all paths
4826 from current block to original block and current block dominates
4827 original block. We check availability on all paths by examining
4828 EXPR_SPEC; this is not equivalent, because it may be positive even
4829 if expr is available on all paths (but if expr is not available on
4830 any path, EXPR_SPEC will be positive). */
4832 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4834 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4835 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4836 && (EXPR_SPEC (expr)
4837 || !EXPR_ORIG_BB_INDEX (expr)
4838 || !dominated_by_p (CDI_DOMINATORS,
4839 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4840 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4842 if (sched_verbose >= 4)
4843 sel_print ("Expr %d removed because it would need bookkeeping, which "
4844 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4845 av_set_iter_remove (&i);
4850 /* Moving conditional jump through some instructions.
4852 Consider example:
4854 ... <- current scheduling point
4855 NOTE BASIC BLOCK: <- bb header
4856 (p8) add r14=r14+0x9;;
4857 (p8) mov [r14]=r23
4858 (!p8) jump L1;;
4859 NOTE BASIC BLOCK:
4862 We can schedule jump one cycle earlier, than mov, because they cannot be
4863 executed together as their predicates are mutually exclusive.
4865 This is done in this way: first, new fallthrough basic block is created
4866 after jump (it is always can be done, because there already should be a
4867 fallthrough block, where control flow goes in case of predicate being true -
4868 in our example; otherwise there should be a dependence between those
4869 instructions and jump and we cannot schedule jump right now);
4870 next, all instructions between jump and current scheduling point are moved
4871 to this new block. And the result is this:
4873 NOTE BASIC BLOCK:
4874 (!p8) jump L1 <- current scheduling point
4875 NOTE BASIC BLOCK: <- bb header
4876 (p8) add r14=r14+0x9;;
4877 (p8) mov [r14]=r23
4878 NOTE BASIC BLOCK:
4881 static void
4882 move_cond_jump (rtx insn, bnd_t bnd)
4884 edge ft_edge;
4885 basic_block block_from, block_next, block_new, block_bnd, bb;
4886 rtx next, prev, link, head;
4888 block_from = BLOCK_FOR_INSN (insn);
4889 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4890 prev = BND_TO (bnd);
4892 #ifdef ENABLE_CHECKING
4893 /* Moving of jump should not cross any other jumps or beginnings of new
4894 basic blocks. The only exception is when we move a jump through
4895 mutually exclusive insns along fallthru edges. */
4896 if (block_from != block_bnd)
4898 bb = block_from;
4899 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4900 link = PREV_INSN (link))
4902 if (INSN_P (link))
4903 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4904 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4906 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4907 bb = BLOCK_FOR_INSN (link);
4911 #endif
4913 /* Jump is moved to the boundary. */
4914 next = PREV_INSN (insn);
4915 BND_TO (bnd) = insn;
4917 ft_edge = find_fallthru_edge_from (block_from);
4918 block_next = ft_edge->dest;
4919 /* There must be a fallthrough block (or where should go
4920 control flow in case of false jump predicate otherwise?). */
4921 gcc_assert (block_next);
4923 /* Create new empty basic block after source block. */
4924 block_new = sel_split_edge (ft_edge);
4925 gcc_assert (block_new->next_bb == block_next
4926 && block_from->next_bb == block_new);
4928 /* Move all instructions except INSN to BLOCK_NEW. */
4929 bb = block_bnd;
4930 head = BB_HEAD (block_new);
4931 while (bb != block_from->next_bb)
4933 rtx from, to;
4934 from = bb == block_bnd ? prev : sel_bb_head (bb);
4935 to = bb == block_from ? next : sel_bb_end (bb);
4937 /* The jump being moved can be the first insn in the block.
4938 In this case we don't have to move anything in this block. */
4939 if (NEXT_INSN (to) != from)
4941 reorder_insns (from, to, head);
4943 for (link = to; link != head; link = PREV_INSN (link))
4944 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4945 head = to;
4948 /* Cleanup possibly empty blocks left. */
4949 block_next = bb->next_bb;
4950 if (bb != block_from)
4951 tidy_control_flow (bb, false);
4952 bb = block_next;
4955 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4956 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4958 gcc_assert (!sel_bb_empty_p (block_from)
4959 && !sel_bb_empty_p (block_new));
4961 /* Update data sets for BLOCK_NEW to represent that INSN and
4962 instructions from the other branch of INSN is no longer
4963 available at BLOCK_NEW. */
4964 BB_AV_LEVEL (block_new) = global_level;
4965 gcc_assert (BB_LV_SET (block_new) == NULL);
4966 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4967 update_data_sets (sel_bb_head (block_new));
4969 /* INSN is a new basic block header - so prepare its data
4970 structures and update availability and liveness sets. */
4971 update_data_sets (insn);
4973 if (sched_verbose >= 4)
4974 sel_print ("Moving jump %d\n", INSN_UID (insn));
4977 /* Remove nops generated during move_op for preventing removal of empty
4978 basic blocks. */
4979 static void
4980 remove_temp_moveop_nops (bool full_tidying)
4982 int i;
4983 insn_t insn;
4985 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4987 gcc_assert (INSN_NOP_P (insn));
4988 return_nop_to_pool (insn, full_tidying);
4991 /* Empty the vector. */
4992 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4993 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4994 VEC_length (insn_t, vec_temp_moveop_nops));
4997 /* Records the maximal UID before moving up an instruction. Used for
4998 distinguishing between bookkeeping copies and original insns. */
4999 static int max_uid_before_move_op = 0;
5001 /* Remove from AV_VLIW_P all instructions but next when debug counter
5002 tells us so. Next instruction is fetched from BNDS. */
5003 static void
5004 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5006 if (! dbg_cnt (sel_sched_insn_cnt))
5007 /* Leave only the next insn in av_vliw. */
5009 av_set_iterator av_it;
5010 expr_t expr;
5011 bnd_t bnd = BLIST_BND (bnds);
5012 insn_t next = BND_TO (bnd);
5014 gcc_assert (BLIST_NEXT (bnds) == NULL);
5016 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5017 if (EXPR_INSN_RTX (expr) != next)
5018 av_set_iter_remove (&av_it);
5022 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5023 the computed set to *AV_VLIW_P. */
5024 static void
5025 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5027 if (sched_verbose >= 2)
5029 sel_print ("Boundaries: ");
5030 dump_blist (bnds);
5031 sel_print ("\n");
5034 for (; bnds; bnds = BLIST_NEXT (bnds))
5036 bnd_t bnd = BLIST_BND (bnds);
5037 av_set_t av1_copy;
5038 insn_t bnd_to = BND_TO (bnd);
5040 /* Rewind BND->TO to the basic block header in case some bookkeeping
5041 instructions were inserted before BND->TO and it needs to be
5042 adjusted. */
5043 if (sel_bb_head_p (bnd_to))
5044 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5045 else
5046 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5048 bnd_to = PREV_INSN (bnd_to);
5049 if (sel_bb_head_p (bnd_to))
5050 break;
5053 if (BND_TO (bnd) != bnd_to)
5055 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5056 FENCE_INSN (fence) = bnd_to;
5057 BND_TO (bnd) = bnd_to;
5060 av_set_clear (&BND_AV (bnd));
5061 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5063 av_set_clear (&BND_AV1 (bnd));
5064 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5066 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5068 av1_copy = av_set_copy (BND_AV1 (bnd));
5069 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5072 if (sched_verbose >= 2)
5074 sel_print ("Available exprs (vliw form): ");
5075 dump_av_set (*av_vliw_p);
5076 sel_print ("\n");
5080 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5081 expression. When FOR_MOVEOP is true, also replace the register of
5082 expressions found with the register from EXPR_VLIW. */
5083 static av_set_t
5084 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5086 av_set_t expr_seq = NULL;
5087 expr_t expr;
5088 av_set_iterator i;
5090 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5092 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5094 if (for_moveop)
5096 /* The sequential expression has the right form to pass
5097 to move_op except when renaming happened. Put the
5098 correct register in EXPR then. */
5099 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5101 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5103 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5104 stat_renamed_scheduled++;
5106 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5107 This is needed when renaming came up with original
5108 register. */
5109 else if (EXPR_TARGET_AVAILABLE (expr)
5110 != EXPR_TARGET_AVAILABLE (expr_vliw))
5112 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5113 EXPR_TARGET_AVAILABLE (expr) = 1;
5116 if (EXPR_WAS_SUBSTITUTED (expr))
5117 stat_substitutions_total++;
5120 av_set_add (&expr_seq, expr);
5122 /* With substitution inside insn group, it is possible
5123 that more than one expression in expr_seq will correspond
5124 to expr_vliw. In this case, choose one as the attempt to
5125 move both leads to miscompiles. */
5126 break;
5130 if (for_moveop && sched_verbose >= 2)
5132 sel_print ("Best expression(s) (sequential form): ");
5133 dump_av_set (expr_seq);
5134 sel_print ("\n");
5137 return expr_seq;
5141 /* Move nop to previous block. */
5142 static void ATTRIBUTE_UNUSED
5143 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5145 insn_t prev_insn, next_insn, note;
5147 gcc_assert (sel_bb_head_p (nop)
5148 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5149 note = bb_note (BLOCK_FOR_INSN (nop));
5150 prev_insn = sel_bb_end (prev_bb);
5151 next_insn = NEXT_INSN (nop);
5152 gcc_assert (prev_insn != NULL_RTX
5153 && PREV_INSN (note) == prev_insn);
5155 NEXT_INSN (prev_insn) = nop;
5156 PREV_INSN (nop) = prev_insn;
5158 PREV_INSN (note) = nop;
5159 NEXT_INSN (note) = next_insn;
5161 NEXT_INSN (nop) = note;
5162 PREV_INSN (next_insn) = note;
5164 BB_END (prev_bb) = nop;
5165 BLOCK_FOR_INSN (nop) = prev_bb;
5168 /* Prepare a place to insert the chosen expression on BND. */
5169 static insn_t
5170 prepare_place_to_insert (bnd_t bnd)
5172 insn_t place_to_insert;
5174 /* Init place_to_insert before calling move_op, as the later
5175 can possibly remove BND_TO (bnd). */
5176 if (/* If this is not the first insn scheduled. */
5177 BND_PTR (bnd))
5179 /* Add it after last scheduled. */
5180 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5181 if (DEBUG_INSN_P (place_to_insert))
5183 ilist_t l = BND_PTR (bnd);
5184 while ((l = ILIST_NEXT (l)) &&
5185 DEBUG_INSN_P (ILIST_INSN (l)))
5187 if (!l)
5188 place_to_insert = NULL;
5191 else
5192 place_to_insert = NULL;
5194 if (!place_to_insert)
5196 /* Add it before BND_TO. The difference is in the
5197 basic block, where INSN will be added. */
5198 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5199 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5200 == BLOCK_FOR_INSN (BND_TO (bnd)));
5203 return place_to_insert;
5206 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5207 Return the expression to emit in C_EXPR. */
5208 static bool
5209 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5210 av_set_t expr_seq, expr_t c_expr)
5212 bool b, should_move;
5213 unsigned book_uid;
5214 bitmap_iterator bi;
5215 int n_bookkeeping_copies_before_moveop;
5217 /* Make a move. This call will remove the original operation,
5218 insert all necessary bookkeeping instructions and update the
5219 data sets. After that all we have to do is add the operation
5220 at before BND_TO (BND). */
5221 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5222 max_uid_before_move_op = get_max_uid ();
5223 bitmap_clear (current_copies);
5224 bitmap_clear (current_originators);
5226 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5227 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5229 /* We should be able to find the expression we've chosen for
5230 scheduling. */
5231 gcc_assert (b);
5233 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5234 stat_insns_needed_bookkeeping++;
5236 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5238 unsigned uid;
5239 bitmap_iterator bi;
5241 /* We allocate these bitmaps lazily. */
5242 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5243 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5245 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5246 current_originators);
5248 /* Transitively add all originators' originators. */
5249 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5250 if (INSN_ORIGINATORS_BY_UID (uid))
5251 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5252 INSN_ORIGINATORS_BY_UID (uid));
5255 return should_move;
5259 /* Debug a DFA state as an array of bytes. */
5260 static void
5261 debug_state (state_t state)
5263 unsigned char *p;
5264 unsigned int i, size = dfa_state_size;
5266 sel_print ("state (%u):", size);
5267 for (i = 0, p = (unsigned char *) state; i < size; i++)
5268 sel_print (" %d", p[i]);
5269 sel_print ("\n");
5272 /* Advance state on FENCE with INSN. Return true if INSN is
5273 an ASM, and we should advance state once more. */
5274 static bool
5275 advance_state_on_fence (fence_t fence, insn_t insn)
5277 bool asm_p;
5279 if (recog_memoized (insn) >= 0)
5281 int res;
5282 state_t temp_state = alloca (dfa_state_size);
5284 gcc_assert (!INSN_ASM_P (insn));
5285 asm_p = false;
5287 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5288 res = state_transition (FENCE_STATE (fence), insn);
5289 gcc_assert (res < 0);
5291 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5293 FENCE_ISSUED_INSNS (fence)++;
5295 /* We should never issue more than issue_rate insns. */
5296 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5297 gcc_unreachable ();
5300 else
5302 /* This could be an ASM insn which we'd like to schedule
5303 on the next cycle. */
5304 asm_p = INSN_ASM_P (insn);
5305 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5306 advance_one_cycle (fence);
5309 if (sched_verbose >= 2)
5310 debug_state (FENCE_STATE (fence));
5311 if (!DEBUG_INSN_P (insn))
5312 FENCE_STARTS_CYCLE_P (fence) = 0;
5313 FENCE_ISSUE_MORE (fence) = can_issue_more;
5314 return asm_p;
5317 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5318 is nonzero if we need to stall after issuing INSN. */
5319 static void
5320 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5322 bool asm_p;
5324 /* First, reflect that something is scheduled on this fence. */
5325 asm_p = advance_state_on_fence (fence, insn);
5326 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5327 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5328 if (SCHED_GROUP_P (insn))
5330 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5331 SCHED_GROUP_P (insn) = 0;
5333 else
5334 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5335 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5336 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5338 /* Set instruction scheduling info. This will be used in bundling,
5339 pipelining, tick computations etc. */
5340 ++INSN_SCHED_TIMES (insn);
5341 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5342 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5343 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5344 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5346 /* This does not account for adjust_cost hooks, just add the biggest
5347 constant the hook may add to the latency. TODO: make this
5348 a target dependent constant. */
5349 INSN_READY_CYCLE (insn)
5350 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5352 : maximal_insn_latency (insn) + 1);
5354 /* Change these fields last, as they're used above. */
5355 FENCE_AFTER_STALL_P (fence) = 0;
5356 if (asm_p || need_stall)
5357 advance_one_cycle (fence);
5359 /* Indicate that we've scheduled something on this fence. */
5360 FENCE_SCHEDULED_P (fence) = true;
5361 scheduled_something_on_previous_fence = true;
5363 /* Print debug information when insn's fields are updated. */
5364 if (sched_verbose >= 2)
5366 sel_print ("Scheduling insn: ");
5367 dump_insn_1 (insn, 1);
5368 sel_print ("\n");
5372 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5373 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5374 return it. */
5375 static blist_t *
5376 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5377 blist_t *bnds_tailp)
5379 succ_iterator si;
5380 insn_t succ;
5382 advance_deps_context (BND_DC (bnd), insn);
5383 FOR_EACH_SUCC_1 (succ, si, insn,
5384 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5386 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5388 ilist_add (&ptr, insn);
5390 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5391 && is_ineligible_successor (succ, ptr))
5393 ilist_clear (&ptr);
5394 continue;
5397 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5399 if (sched_verbose >= 9)
5400 sel_print ("Updating fence insn from %i to %i\n",
5401 INSN_UID (insn), INSN_UID (succ));
5402 FENCE_INSN (fence) = succ;
5404 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5405 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5408 blist_remove (bndsp);
5409 return bnds_tailp;
5412 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5413 static insn_t
5414 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5416 av_set_t expr_seq;
5417 expr_t c_expr = XALLOCA (expr_def);
5418 insn_t place_to_insert;
5419 insn_t insn;
5420 bool should_move;
5422 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5424 /* In case of scheduling a jump skipping some other instructions,
5425 prepare CFG. After this, jump is at the boundary and can be
5426 scheduled as usual insn by MOVE_OP. */
5427 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5429 insn = EXPR_INSN_RTX (expr_vliw);
5431 /* Speculative jumps are not handled. */
5432 if (insn != BND_TO (bnd)
5433 && !sel_insn_is_speculation_check (insn))
5434 move_cond_jump (insn, bnd);
5437 /* Find a place for C_EXPR to schedule. */
5438 place_to_insert = prepare_place_to_insert (bnd);
5439 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5440 clear_expr (c_expr);
5442 /* Add the instruction. The corner case to care about is when
5443 the expr_seq set has more than one expr, and we chose the one that
5444 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5445 we can't use it. Generate the new vinsn. */
5446 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5448 vinsn_t vinsn_new;
5450 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5451 change_vinsn_in_expr (expr_vliw, vinsn_new);
5452 should_move = false;
5454 if (should_move)
5455 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5456 else
5457 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5458 place_to_insert);
5460 /* Return the nops generated for preserving of data sets back
5461 into pool. */
5462 if (INSN_NOP_P (place_to_insert))
5463 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5464 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5466 av_set_clear (&expr_seq);
5468 /* Save the expression scheduled so to reset target availability if we'll
5469 meet it later on the same fence. */
5470 if (EXPR_WAS_RENAMED (expr_vliw))
5471 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5473 /* Check that the recent movement didn't destroyed loop
5474 structure. */
5475 gcc_assert (!pipelining_p
5476 || current_loop_nest == NULL
5477 || loop_latch_edge (current_loop_nest));
5478 return insn;
5481 /* Stall for N cycles on FENCE. */
5482 static void
5483 stall_for_cycles (fence_t fence, int n)
5485 int could_more;
5487 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5488 while (n--)
5489 advance_one_cycle (fence);
5490 if (could_more)
5491 FENCE_AFTER_STALL_P (fence) = 1;
5494 /* Gather a parallel group of insns at FENCE and assign their seqno
5495 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5496 list for later recalculation of seqnos. */
5497 static void
5498 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5500 blist_t bnds = NULL, *bnds_tailp;
5501 av_set_t av_vliw = NULL;
5502 insn_t insn = FENCE_INSN (fence);
5504 if (sched_verbose >= 2)
5505 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5506 INSN_UID (insn), FENCE_CYCLE (fence));
5508 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5509 bnds_tailp = &BLIST_NEXT (bnds);
5510 set_target_context (FENCE_TC (fence));
5511 can_issue_more = FENCE_ISSUE_MORE (fence);
5512 target_bb = INSN_BB (insn);
5514 /* Do while we can add any operation to the current group. */
5517 blist_t *bnds_tailp1, *bndsp;
5518 expr_t expr_vliw;
5519 int need_stall = false;
5520 int was_stall = 0, scheduled_insns = 0;
5521 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5522 int max_stall = pipelining_p ? 1 : 3;
5523 bool last_insn_was_debug = false;
5524 bool was_debug_bb_end_p = false;
5526 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5527 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5528 remove_insns_for_debug (bnds, &av_vliw);
5530 /* Return early if we have nothing to schedule. */
5531 if (av_vliw == NULL)
5532 break;
5534 /* Choose the best expression and, if needed, destination register
5535 for it. */
5538 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5539 if (! expr_vliw && need_stall)
5541 /* All expressions required a stall. Do not recompute av sets
5542 as we'll get the same answer (modulo the insns between
5543 the fence and its boundary, which will not be available for
5544 pipelining).
5545 If we are going to stall for too long, break to recompute av
5546 sets and bring more insns for pipelining. */
5547 was_stall++;
5548 if (need_stall <= 3)
5549 stall_for_cycles (fence, need_stall);
5550 else
5552 stall_for_cycles (fence, 1);
5553 break;
5557 while (! expr_vliw && need_stall);
5559 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5560 if (!expr_vliw)
5562 av_set_clear (&av_vliw);
5563 break;
5566 bndsp = &bnds;
5567 bnds_tailp1 = bnds_tailp;
5570 /* This code will be executed only once until we'd have several
5571 boundaries per fence. */
5573 bnd_t bnd = BLIST_BND (*bndsp);
5575 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5577 bndsp = &BLIST_NEXT (*bndsp);
5578 continue;
5581 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5582 last_insn_was_debug = DEBUG_INSN_P (insn);
5583 if (last_insn_was_debug)
5584 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5585 update_fence_and_insn (fence, insn, need_stall);
5586 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5588 /* Add insn to the list of scheduled on this cycle instructions. */
5589 ilist_add (*scheduled_insns_tailpp, insn);
5590 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5592 while (*bndsp != *bnds_tailp1);
5594 av_set_clear (&av_vliw);
5595 if (!last_insn_was_debug)
5596 scheduled_insns++;
5598 /* We currently support information about candidate blocks only for
5599 one 'target_bb' block. Hence we can't schedule after jump insn,
5600 as this will bring two boundaries and, hence, necessity to handle
5601 information for two or more blocks concurrently. */
5602 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5603 || (was_stall
5604 && (was_stall >= max_stall
5605 || scheduled_insns >= max_insns)))
5606 break;
5608 while (bnds);
5610 gcc_assert (!FENCE_BNDS (fence));
5612 /* Update boundaries of the FENCE. */
5613 while (bnds)
5615 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5617 if (ptr)
5619 insn = ILIST_INSN (ptr);
5621 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5622 ilist_add (&FENCE_BNDS (fence), insn);
5625 blist_remove (&bnds);
5628 /* Update target context on the fence. */
5629 reset_target_context (FENCE_TC (fence), false);
5632 /* All exprs in ORIG_OPS must have the same destination register or memory.
5633 Return that destination. */
5634 static rtx
5635 get_dest_from_orig_ops (av_set_t orig_ops)
5637 rtx dest = NULL_RTX;
5638 av_set_iterator av_it;
5639 expr_t expr;
5640 bool first_p = true;
5642 FOR_EACH_EXPR (expr, av_it, orig_ops)
5644 rtx x = EXPR_LHS (expr);
5646 if (first_p)
5648 first_p = false;
5649 dest = x;
5651 else
5652 gcc_assert (dest == x
5653 || (dest != NULL_RTX && x != NULL_RTX
5654 && rtx_equal_p (dest, x)));
5657 return dest;
5660 /* Update data sets for the bookkeeping block and record those expressions
5661 which become no longer available after inserting this bookkeeping. */
5662 static void
5663 update_and_record_unavailable_insns (basic_block book_block)
5665 av_set_iterator i;
5666 av_set_t old_av_set = NULL;
5667 expr_t cur_expr;
5668 rtx bb_end = sel_bb_end (book_block);
5670 /* First, get correct liveness in the bookkeeping block. The problem is
5671 the range between the bookeeping insn and the end of block. */
5672 update_liveness_on_insn (bb_end);
5673 if (control_flow_insn_p (bb_end))
5674 update_liveness_on_insn (PREV_INSN (bb_end));
5676 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5677 fence above, where we may choose to schedule an insn which is
5678 actually blocked from moving up with the bookkeeping we create here. */
5679 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5681 old_av_set = av_set_copy (BB_AV_SET (book_block));
5682 update_data_sets (sel_bb_head (book_block));
5684 /* Traverse all the expressions in the old av_set and check whether
5685 CUR_EXPR is in new AV_SET. */
5686 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5688 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5689 EXPR_VINSN (cur_expr));
5691 if (! new_expr
5692 /* In this case, we can just turn off the E_T_A bit, but we can't
5693 represent this information with the current vector. */
5694 || EXPR_TARGET_AVAILABLE (new_expr)
5695 != EXPR_TARGET_AVAILABLE (cur_expr))
5696 /* Unfortunately, the below code could be also fired up on
5697 separable insns.
5698 FIXME: add an example of how this could happen. */
5699 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5702 av_set_clear (&old_av_set);
5706 /* The main effect of this function is that sparams->c_expr is merged
5707 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5708 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5709 lparams->c_expr_merged is copied back to sparams->c_expr after all
5710 successors has been traversed. lparams->c_expr_local is an expr allocated
5711 on stack in the caller function, and is used if there is more than one
5712 successor.
5714 SUCC is one of the SUCCS_NORMAL successors of INSN,
5715 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5716 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5717 static void
5718 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5719 insn_t succ ATTRIBUTE_UNUSED,
5720 int moveop_drv_call_res,
5721 cmpd_local_params_p lparams, void *static_params)
5723 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5725 /* Nothing to do, if original expr wasn't found below. */
5726 if (moveop_drv_call_res != 1)
5727 return;
5729 /* If this is a first successor. */
5730 if (!lparams->c_expr_merged)
5732 lparams->c_expr_merged = sparams->c_expr;
5733 sparams->c_expr = lparams->c_expr_local;
5735 else
5737 /* We must merge all found expressions to get reasonable
5738 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5739 do so then we can first find the expr with epsilon
5740 speculation success probability and only then with the
5741 good probability. As a result the insn will get epsilon
5742 probability and will never be scheduled because of
5743 weakness_cutoff in find_best_expr.
5745 We call merge_expr_data here instead of merge_expr
5746 because due to speculation C_EXPR and X may have the
5747 same insns with different speculation types. And as of
5748 now such insns are considered non-equal.
5750 However, EXPR_SCHED_TIMES is different -- we must get
5751 SCHED_TIMES from a real insn, not a bookkeeping copy.
5752 We force this here. Instead, we may consider merging
5753 SCHED_TIMES to the maximum instead of minimum in the
5754 below function. */
5755 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5757 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5758 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5759 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5761 clear_expr (sparams->c_expr);
5765 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5767 SUCC is one of the SUCCS_NORMAL successors of INSN,
5768 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5769 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5770 STATIC_PARAMS contain USED_REGS set. */
5771 static void
5772 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5773 int moveop_drv_call_res,
5774 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5775 void *static_params)
5777 regset succ_live;
5778 fur_static_params_p sparams = (fur_static_params_p) static_params;
5780 /* Here we compute live regsets only for branches that do not lie
5781 on the code motion paths. These branches correspond to value
5782 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5783 for such branches code_motion_path_driver is not called. */
5784 if (moveop_drv_call_res != 0)
5785 return;
5787 /* Mark all registers that do not meet the following condition:
5788 (3) not live on the other path of any conditional branch
5789 that is passed by the operation, in case original
5790 operations are not present on both paths of the
5791 conditional branch. */
5792 succ_live = compute_live (succ);
5793 IOR_REG_SET (sparams->used_regs, succ_live);
5796 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5797 into SP->CEXPR. */
5798 static void
5799 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5801 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5803 sp->c_expr = lp->c_expr_merged;
5806 /* Track bookkeeping copies created, insns scheduled, and blocks for
5807 rescheduling when INSN is found by move_op. */
5808 static void
5809 track_scheduled_insns_and_blocks (rtx insn)
5811 /* Even if this insn can be a copy that will be removed during current move_op,
5812 we still need to count it as an originator. */
5813 bitmap_set_bit (current_originators, INSN_UID (insn));
5815 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5817 /* Note that original block needs to be rescheduled, as we pulled an
5818 instruction out of it. */
5819 if (INSN_SCHED_TIMES (insn) > 0)
5820 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5821 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5822 num_insns_scheduled++;
5825 /* For instructions we must immediately remove insn from the
5826 stream, so subsequent update_data_sets () won't include this
5827 insn into av_set.
5828 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5829 if (INSN_UID (insn) > max_uid_before_move_op)
5830 stat_bookkeeping_copies--;
5833 /* Emit a register-register copy for INSN if needed. Return true if
5834 emitted one. PARAMS is the move_op static parameters. */
5835 static bool
5836 maybe_emit_renaming_copy (rtx insn,
5837 moveop_static_params_p params)
5839 bool insn_emitted = false;
5840 rtx cur_reg;
5842 /* Bail out early when expression can not be renamed at all. */
5843 if (!EXPR_SEPARABLE_P (params->c_expr))
5844 return false;
5846 cur_reg = expr_dest_reg (params->c_expr);
5847 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5849 /* If original operation has expr and the register chosen for
5850 that expr is not original operation's dest reg, substitute
5851 operation's right hand side with the register chosen. */
5852 if (REGNO (params->dest) != REGNO (cur_reg))
5854 insn_t reg_move_insn, reg_move_insn_rtx;
5856 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5857 params->dest);
5858 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5859 INSN_EXPR (insn),
5860 INSN_SEQNO (insn),
5861 insn);
5862 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5863 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5865 insn_emitted = true;
5866 params->was_renamed = true;
5869 return insn_emitted;
5872 /* Emit a speculative check for INSN speculated as EXPR if needed.
5873 Return true if we've emitted one. PARAMS is the move_op static
5874 parameters. */
5875 static bool
5876 maybe_emit_speculative_check (rtx insn, expr_t expr,
5877 moveop_static_params_p params)
5879 bool insn_emitted = false;
5880 insn_t x;
5881 ds_t check_ds;
5883 check_ds = get_spec_check_type_for_insn (insn, expr);
5884 if (check_ds != 0)
5886 /* A speculation check should be inserted. */
5887 x = create_speculation_check (params->c_expr, check_ds, insn);
5888 insn_emitted = true;
5890 else
5892 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5893 x = insn;
5896 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5897 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5898 return insn_emitted;
5901 /* Handle transformations that leave an insn in place of original
5902 insn such as renaming/speculation. Return true if one of such
5903 transformations actually happened, and we have emitted this insn. */
5904 static bool
5905 handle_emitting_transformations (rtx insn, expr_t expr,
5906 moveop_static_params_p params)
5908 bool insn_emitted = false;
5910 insn_emitted = maybe_emit_renaming_copy (insn, params);
5911 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5913 return insn_emitted;
5916 /* If INSN is the only insn in the basic block (not counting JUMP,
5917 which may be a jump to next insn, and DEBUG_INSNs), we want to
5918 leave a NOP there till the return to fill_insns. */
5920 static bool
5921 need_nop_to_preserve_insn_bb (rtx insn)
5923 insn_t bb_head, bb_end, bb_next, in_next;
5924 basic_block bb = BLOCK_FOR_INSN (insn);
5926 bb_head = sel_bb_head (bb);
5927 bb_end = sel_bb_end (bb);
5929 if (bb_head == bb_end)
5930 return true;
5932 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5933 bb_head = NEXT_INSN (bb_head);
5935 if (bb_head == bb_end)
5936 return true;
5938 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5939 bb_end = PREV_INSN (bb_end);
5941 if (bb_head == bb_end)
5942 return true;
5944 bb_next = NEXT_INSN (bb_head);
5945 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5946 bb_next = NEXT_INSN (bb_next);
5948 if (bb_next == bb_end && JUMP_P (bb_end))
5949 return true;
5951 in_next = NEXT_INSN (insn);
5952 while (DEBUG_INSN_P (in_next))
5953 in_next = NEXT_INSN (in_next);
5955 if (IN_CURRENT_FENCE_P (in_next))
5956 return true;
5958 return false;
5961 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5962 is not removed but reused when INSN is re-emitted. */
5963 static void
5964 remove_insn_from_stream (rtx insn, bool only_disconnect)
5966 /* If there's only one insn in the BB, make sure that a nop is
5967 inserted into it, so the basic block won't disappear when we'll
5968 delete INSN below with sel_remove_insn. It should also survive
5969 till the return to fill_insns. */
5970 if (need_nop_to_preserve_insn_bb (insn))
5972 insn_t nop = get_nop_from_pool (insn);
5973 gcc_assert (INSN_NOP_P (nop));
5974 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5977 sel_remove_insn (insn, only_disconnect, false);
5980 /* This function is called when original expr is found.
5981 INSN - current insn traversed, EXPR - the corresponding expr found.
5982 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5983 is static parameters of move_op. */
5984 static void
5985 move_op_orig_expr_found (insn_t insn, expr_t expr,
5986 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5987 void *static_params)
5989 bool only_disconnect, insn_emitted;
5990 moveop_static_params_p params = (moveop_static_params_p) static_params;
5992 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5993 track_scheduled_insns_and_blocks (insn);
5994 insn_emitted = handle_emitting_transformations (insn, expr, params);
5995 only_disconnect = (params->uid == INSN_UID (insn)
5996 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5998 /* Mark that we've disconnected an insn. */
5999 if (only_disconnect)
6000 params->uid = -1;
6001 remove_insn_from_stream (insn, only_disconnect);
6004 /* The function is called when original expr is found.
6005 INSN - current insn traversed, EXPR - the corresponding expr found,
6006 crosses_call and original_insns in STATIC_PARAMS are updated. */
6007 static void
6008 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6009 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6010 void *static_params)
6012 fur_static_params_p params = (fur_static_params_p) static_params;
6013 regset tmp;
6015 if (CALL_P (insn))
6016 params->crosses_call = true;
6018 def_list_add (params->original_insns, insn, params->crosses_call);
6020 /* Mark the registers that do not meet the following condition:
6021 (2) not among the live registers of the point
6022 immediately following the first original operation on
6023 a given downward path, except for the original target
6024 register of the operation. */
6025 tmp = get_clear_regset_from_pool ();
6026 compute_live_below_insn (insn, tmp);
6027 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6028 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6029 IOR_REG_SET (params->used_regs, tmp);
6030 return_regset_to_pool (tmp);
6032 /* (*1) We need to add to USED_REGS registers that are read by
6033 INSN's lhs. This may lead to choosing wrong src register.
6034 E.g. (scheduling const expr enabled):
6036 429: ax=0x0 <- Can't use AX for this expr (0x0)
6037 433: dx=[bp-0x18]
6038 427: [ax+dx+0x1]=ax
6039 REG_DEAD: ax
6040 168: di=dx
6041 REG_DEAD: dx
6043 /* FIXME: see comment above and enable MEM_P
6044 in vinsn_separable_p. */
6045 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6046 || !MEM_P (INSN_LHS (insn)));
6049 /* This function is called on the ascending pass, before returning from
6050 current basic block. */
6051 static void
6052 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6053 void *static_params)
6055 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6056 basic_block book_block = NULL;
6058 /* When we have removed the boundary insn for scheduling, which also
6059 happened to be the end insn in its bb, we don't need to update sets. */
6060 if (!lparams->removed_last_insn
6061 && lparams->e1
6062 && sel_bb_head_p (insn))
6064 /* We should generate bookkeeping code only if we are not at the
6065 top level of the move_op. */
6066 if (sel_num_cfg_preds_gt_1 (insn))
6067 book_block = generate_bookkeeping_insn (sparams->c_expr,
6068 lparams->e1, lparams->e2);
6069 /* Update data sets for the current insn. */
6070 update_data_sets (insn);
6073 /* If bookkeeping code was inserted, we need to update av sets of basic
6074 block that received bookkeeping. After generation of bookkeeping insn,
6075 bookkeeping block does not contain valid av set because we are not following
6076 the original algorithm in every detail with regards to e.g. renaming
6077 simple reg-reg copies. Consider example:
6079 bookkeeping block scheduling fence
6081 \ join /
6082 ----------
6084 ----------
6087 r1 := r2 r1 := r3
6089 We try to schedule insn "r1 := r3" on the current
6090 scheduling fence. Also, note that av set of bookkeeping block
6091 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6092 been scheduled, the CFG is as follows:
6094 r1 := r3 r1 := r3
6095 bookkeeping block scheduling fence
6097 \ join /
6098 ----------
6100 ----------
6103 r1 := r2
6105 Here, insn "r1 := r3" was scheduled at the current scheduling point
6106 and bookkeeping code was generated at the bookeeping block. This
6107 way insn "r1 := r2" is no longer available as a whole instruction
6108 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6109 This situation is handled by calling update_data_sets.
6111 Since update_data_sets is called only on the bookkeeping block, and
6112 it also may have predecessors with av_sets, containing instructions that
6113 are no longer available, we save all such expressions that become
6114 unavailable during data sets update on the bookkeeping block in
6115 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6116 expressions for scheduling. This allows us to avoid recomputation of
6117 av_sets outside the code motion path. */
6119 if (book_block)
6120 update_and_record_unavailable_insns (book_block);
6122 /* If INSN was previously marked for deletion, it's time to do it. */
6123 if (lparams->removed_last_insn)
6124 insn = PREV_INSN (insn);
6126 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6127 kill a block with a single nop in which the insn should be emitted. */
6128 if (lparams->e1)
6129 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6132 /* This function is called on the ascending pass, before returning from the
6133 current basic block. */
6134 static void
6135 fur_at_first_insn (insn_t insn,
6136 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6137 void *static_params ATTRIBUTE_UNUSED)
6139 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6140 || AV_LEVEL (insn) == -1);
6143 /* Called on the backward stage of recursion to call moveup_expr for insn
6144 and sparams->c_expr. */
6145 static void
6146 move_op_ascend (insn_t insn, void *static_params)
6148 enum MOVEUP_EXPR_CODE res;
6149 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6151 if (! INSN_NOP_P (insn))
6153 res = moveup_expr_cached (sparams->c_expr, insn, false);
6154 gcc_assert (res != MOVEUP_EXPR_NULL);
6157 /* Update liveness for this insn as it was invalidated. */
6158 update_liveness_on_insn (insn);
6161 /* This function is called on enter to the basic block.
6162 Returns TRUE if this block already have been visited and
6163 code_motion_path_driver should return 1, FALSE otherwise. */
6164 static int
6165 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6166 void *static_params, bool visited_p)
6168 fur_static_params_p sparams = (fur_static_params_p) static_params;
6170 if (visited_p)
6172 /* If we have found something below this block, there should be at
6173 least one insn in ORIGINAL_INSNS. */
6174 gcc_assert (*sparams->original_insns);
6176 /* Adjust CROSSES_CALL, since we may have come to this block along
6177 different path. */
6178 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6179 |= sparams->crosses_call;
6181 else
6182 local_params->old_original_insns = *sparams->original_insns;
6184 return 1;
6187 /* Same as above but for move_op. */
6188 static int
6189 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6190 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6191 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6193 if (visited_p)
6194 return -1;
6195 return 1;
6198 /* This function is called while descending current basic block if current
6199 insn is not the original EXPR we're searching for.
6201 Return value: FALSE, if code_motion_path_driver should perform a local
6202 cleanup and return 0 itself;
6203 TRUE, if code_motion_path_driver should continue. */
6204 static bool
6205 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6206 void *static_params)
6208 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6210 #ifdef ENABLE_CHECKING
6211 sparams->failed_insn = insn;
6212 #endif
6214 /* If we're scheduling separate expr, in order to generate correct code
6215 we need to stop the search at bookkeeping code generated with the
6216 same destination register or memory. */
6217 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6218 return false;
6219 return true;
6222 /* This function is called while descending current basic block if current
6223 insn is not the original EXPR we're searching for.
6225 Return value: TRUE (code_motion_path_driver should continue). */
6226 static bool
6227 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6229 bool mutexed;
6230 expr_t r;
6231 av_set_iterator avi;
6232 fur_static_params_p sparams = (fur_static_params_p) static_params;
6234 if (CALL_P (insn))
6235 sparams->crosses_call = true;
6236 else if (DEBUG_INSN_P (insn))
6237 return true;
6239 /* If current insn we are looking at cannot be executed together
6240 with original insn, then we can skip it safely.
6242 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6243 INSN = (!p6) r14 = r14 + 1;
6245 Here we can schedule ORIG_OP with lhs = r14, though only
6246 looking at the set of used and set registers of INSN we must
6247 forbid it. So, add set/used in INSN registers to the
6248 untouchable set only if there is an insn in ORIG_OPS that can
6249 affect INSN. */
6250 mutexed = true;
6251 FOR_EACH_EXPR (r, avi, orig_ops)
6252 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6254 mutexed = false;
6255 break;
6258 /* Mark all registers that do not meet the following condition:
6259 (1) Not set or read on any path from xi to an instance of the
6260 original operation. */
6261 if (!mutexed)
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6264 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6268 return true;
6271 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6272 struct code_motion_path_driver_info_def move_op_hooks = {
6273 move_op_on_enter,
6274 move_op_orig_expr_found,
6275 move_op_orig_expr_not_found,
6276 move_op_merge_succs,
6277 move_op_after_merge_succs,
6278 move_op_ascend,
6279 move_op_at_first_insn,
6280 SUCCS_NORMAL,
6281 "move_op"
6284 /* Hooks and data to perform find_used_regs operations
6285 with code_motion_path_driver. */
6286 struct code_motion_path_driver_info_def fur_hooks = {
6287 fur_on_enter,
6288 fur_orig_expr_found,
6289 fur_orig_expr_not_found,
6290 fur_merge_succs,
6291 NULL, /* fur_after_merge_succs */
6292 NULL, /* fur_ascend */
6293 fur_at_first_insn,
6294 SUCCS_ALL,
6295 "find_used_regs"
6298 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6299 code_motion_path_driver is called recursively. Original operation
6300 was found at least on one path that is starting with one of INSN's
6301 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6302 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6303 of either move_op or find_used_regs depending on the caller.
6305 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6306 know for sure at this point. */
6307 static int
6308 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6309 ilist_t path, void *static_params)
6311 int res = 0;
6312 succ_iterator succ_i;
6313 rtx succ;
6314 basic_block bb;
6315 int old_index;
6316 unsigned old_succs;
6318 struct cmpd_local_params lparams;
6319 expr_def _x;
6321 lparams.c_expr_local = &_x;
6322 lparams.c_expr_merged = NULL;
6324 /* We need to process only NORMAL succs for move_op, and collect live
6325 registers from ALL branches (including those leading out of the
6326 region) for find_used_regs.
6328 In move_op, there can be a case when insn's bb number has changed
6329 due to created bookkeeping. This happens very rare, as we need to
6330 move expression from the beginning to the end of the same block.
6331 Rescan successors in this case. */
6333 rescan:
6334 bb = BLOCK_FOR_INSN (insn);
6335 old_index = bb->index;
6336 old_succs = EDGE_COUNT (bb->succs);
6338 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6340 int b;
6342 lparams.e1 = succ_i.e1;
6343 lparams.e2 = succ_i.e2;
6345 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6346 current region). */
6347 if (succ_i.current_flags == SUCCS_NORMAL)
6348 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6349 static_params);
6350 else
6351 b = 0;
6353 /* Merge c_expres found or unify live register sets from different
6354 successors. */
6355 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6356 static_params);
6357 if (b == 1)
6358 res = b;
6359 else if (b == -1 && res != 1)
6360 res = b;
6362 /* We have simplified the control flow below this point. In this case,
6363 the iterator becomes invalid. We need to try again. */
6364 if (BLOCK_FOR_INSN (insn)->index != old_index
6365 || EDGE_COUNT (bb->succs) != old_succs)
6367 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6368 goto rescan;
6372 #ifdef ENABLE_CHECKING
6373 /* Here, RES==1 if original expr was found at least for one of the
6374 successors. After the loop, RES may happen to have zero value
6375 only if at some point the expr searched is present in av_set, but is
6376 not found below. In most cases, this situation is an error.
6377 The exception is when the original operation is blocked by
6378 bookkeeping generated for another fence or for another path in current
6379 move_op. */
6380 gcc_assert (res == 1
6381 || (res == 0
6382 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6383 static_params))
6384 || res == -1);
6385 #endif
6387 /* Merge data, clean up, etc. */
6388 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6389 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6391 return res;
6395 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6396 is the pointer to the av set with expressions we were looking for,
6397 PATH_P is the pointer to the traversed path. */
6398 static inline void
6399 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6401 ilist_remove (path_p);
6402 av_set_clear (orig_ops_p);
6405 /* The driver function that implements move_op or find_used_regs
6406 functionality dependent whether code_motion_path_driver_INFO is set to
6407 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6408 of code (CFG traversal etc) that are shared among both functions. INSN
6409 is the insn we're starting the search from, ORIG_OPS are the expressions
6410 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6411 parameters of the driver, and STATIC_PARAMS are static parameters of
6412 the caller.
6414 Returns whether original instructions were found. Note that top-level
6415 code_motion_path_driver always returns true. */
6416 static int
6417 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6418 cmpd_local_params_p local_params_in,
6419 void *static_params)
6421 expr_t expr = NULL;
6422 basic_block bb = BLOCK_FOR_INSN (insn);
6423 insn_t first_insn, bb_tail, before_first;
6424 bool removed_last_insn = false;
6426 if (sched_verbose >= 6)
6428 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6429 dump_insn (insn);
6430 sel_print (",");
6431 dump_av_set (orig_ops);
6432 sel_print (")\n");
6435 gcc_assert (orig_ops);
6437 /* If no original operations exist below this insn, return immediately. */
6438 if (is_ineligible_successor (insn, path))
6440 if (sched_verbose >= 6)
6441 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6442 return false;
6445 /* The block can have invalid av set, in which case it was created earlier
6446 during move_op. Return immediately. */
6447 if (sel_bb_head_p (insn))
6449 if (! AV_SET_VALID_P (insn))
6451 if (sched_verbose >= 6)
6452 sel_print ("Returned from block %d as it had invalid av set\n",
6453 bb->index);
6454 return false;
6457 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6459 /* We have already found an original operation on this branch, do not
6460 go any further and just return TRUE here. If we don't stop here,
6461 function can have exponential behaviour even on the small code
6462 with many different paths (e.g. with data speculation and
6463 recovery blocks). */
6464 if (sched_verbose >= 6)
6465 sel_print ("Block %d already visited in this traversal\n", bb->index);
6466 if (code_motion_path_driver_info->on_enter)
6467 return code_motion_path_driver_info->on_enter (insn,
6468 local_params_in,
6469 static_params,
6470 true);
6474 if (code_motion_path_driver_info->on_enter)
6475 code_motion_path_driver_info->on_enter (insn, local_params_in,
6476 static_params, false);
6477 orig_ops = av_set_copy (orig_ops);
6479 /* Filter the orig_ops set. */
6480 if (AV_SET_VALID_P (insn))
6481 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6483 /* If no more original ops, return immediately. */
6484 if (!orig_ops)
6486 if (sched_verbose >= 6)
6487 sel_print ("No intersection with av set of block %d\n", bb->index);
6488 return false;
6491 /* For non-speculative insns we have to leave only one form of the
6492 original operation, because if we don't, we may end up with
6493 different C_EXPRes and, consequently, with bookkeepings for different
6494 expression forms along the same code motion path. That may lead to
6495 generation of incorrect code. So for each code motion we stick to
6496 the single form of the instruction, except for speculative insns
6497 which we need to keep in different forms with all speculation
6498 types. */
6499 av_set_leave_one_nonspec (&orig_ops);
6501 /* It is not possible that all ORIG_OPS are filtered out. */
6502 gcc_assert (orig_ops);
6504 /* It is enough to place only heads and tails of visited basic blocks into
6505 the PATH. */
6506 ilist_add (&path, insn);
6507 first_insn = insn;
6508 bb_tail = sel_bb_end (bb);
6510 /* Descend the basic block in search of the original expr; this part
6511 corresponds to the part of the original move_op procedure executed
6512 before the recursive call. */
6513 for (;;)
6515 /* Look at the insn and decide if it could be an ancestor of currently
6516 scheduling operation. If it is so, then the insn "dest = op" could
6517 either be replaced with "dest = reg", because REG now holds the result
6518 of OP, or just removed, if we've scheduled the insn as a whole.
6520 If this insn doesn't contain currently scheduling OP, then proceed
6521 with searching and look at its successors. Operations we're searching
6522 for could have changed when moving up through this insn via
6523 substituting. In this case, perform unsubstitution on them first.
6525 When traversing the DAG below this insn is finished, insert
6526 bookkeeping code, if the insn is a joint point, and remove
6527 leftovers. */
6529 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6530 if (expr)
6532 insn_t last_insn = PREV_INSN (insn);
6534 /* We have found the original operation. */
6535 if (sched_verbose >= 6)
6536 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6538 code_motion_path_driver_info->orig_expr_found
6539 (insn, expr, local_params_in, static_params);
6541 /* Step back, so on the way back we'll start traversing from the
6542 previous insn (or we'll see that it's bb_note and skip that
6543 loop). */
6544 if (insn == first_insn)
6546 first_insn = NEXT_INSN (last_insn);
6547 removed_last_insn = sel_bb_end_p (last_insn);
6549 insn = last_insn;
6550 break;
6552 else
6554 /* We haven't found the original expr, continue descending the basic
6555 block. */
6556 if (code_motion_path_driver_info->orig_expr_not_found
6557 (insn, orig_ops, static_params))
6559 /* Av set ops could have been changed when moving through this
6560 insn. To find them below it, we have to un-substitute them. */
6561 undo_transformations (&orig_ops, insn);
6563 else
6565 /* Clean up and return, if the hook tells us to do so. It may
6566 happen if we've encountered the previously created
6567 bookkeeping. */
6568 code_motion_path_driver_cleanup (&orig_ops, &path);
6569 return -1;
6572 gcc_assert (orig_ops);
6575 /* Stop at insn if we got to the end of BB. */
6576 if (insn == bb_tail)
6577 break;
6579 insn = NEXT_INSN (insn);
6582 /* Here INSN either points to the insn before the original insn (may be
6583 bb_note, if original insn was a bb_head) or to the bb_end. */
6584 if (!expr)
6586 int res;
6587 rtx last_insn = PREV_INSN (insn);
6588 bool added_to_path;
6590 gcc_assert (insn == sel_bb_end (bb));
6592 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6593 it's already in PATH then). */
6594 if (insn != first_insn)
6596 ilist_add (&path, insn);
6597 added_to_path = true;
6599 else
6600 added_to_path = false;
6602 /* Process_successors should be able to find at least one
6603 successor for which code_motion_path_driver returns TRUE. */
6604 res = code_motion_process_successors (insn, orig_ops,
6605 path, static_params);
6607 /* Jump in the end of basic block could have been removed or replaced
6608 during code_motion_process_successors, so recompute insn as the
6609 last insn in bb. */
6610 if (NEXT_INSN (last_insn) != insn)
6612 insn = sel_bb_end (bb);
6613 first_insn = sel_bb_head (bb);
6616 /* Remove bb tail from path. */
6617 if (added_to_path)
6618 ilist_remove (&path);
6620 if (res != 1)
6622 /* This is the case when one of the original expr is no longer available
6623 due to bookkeeping created on this branch with the same register.
6624 In the original algorithm, which doesn't have update_data_sets call
6625 on a bookkeeping block, it would simply result in returning
6626 FALSE when we've encountered a previously generated bookkeeping
6627 insn in moveop_orig_expr_not_found. */
6628 code_motion_path_driver_cleanup (&orig_ops, &path);
6629 return res;
6633 /* Don't need it any more. */
6634 av_set_clear (&orig_ops);
6636 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6637 the beginning of the basic block. */
6638 before_first = PREV_INSN (first_insn);
6639 while (insn != before_first)
6641 if (code_motion_path_driver_info->ascend)
6642 code_motion_path_driver_info->ascend (insn, static_params);
6644 insn = PREV_INSN (insn);
6647 /* Now we're at the bb head. */
6648 insn = first_insn;
6649 ilist_remove (&path);
6650 local_params_in->removed_last_insn = removed_last_insn;
6651 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6653 /* This should be the very last operation as at bb head we could change
6654 the numbering by creating bookkeeping blocks. */
6655 if (removed_last_insn)
6656 insn = PREV_INSN (insn);
6657 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6658 return true;
6661 /* Move up the operations from ORIG_OPS set traversing the dag starting
6662 from INSN. PATH represents the edges traversed so far.
6663 DEST is the register chosen for scheduling the current expr. Insert
6664 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6665 C_EXPR is how it looks like at the given cfg point.
6666 Set *SHOULD_MOVE to indicate whether we have only disconnected
6667 one of the insns found.
6669 Returns whether original instructions were found, which is asserted
6670 to be true in the caller. */
6671 static bool
6672 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6673 rtx dest, expr_t c_expr, bool *should_move)
6675 struct moveop_static_params sparams;
6676 struct cmpd_local_params lparams;
6677 int res;
6679 /* Init params for code_motion_path_driver. */
6680 sparams.dest = dest;
6681 sparams.c_expr = c_expr;
6682 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6683 #ifdef ENABLE_CHECKING
6684 sparams.failed_insn = NULL;
6685 #endif
6686 sparams.was_renamed = false;
6687 lparams.e1 = NULL;
6689 /* We haven't visited any blocks yet. */
6690 bitmap_clear (code_motion_visited_blocks);
6692 /* Set appropriate hooks and data. */
6693 code_motion_path_driver_info = &move_op_hooks;
6694 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6696 gcc_assert (res != -1);
6698 if (sparams.was_renamed)
6699 EXPR_WAS_RENAMED (expr_vliw) = true;
6701 *should_move = (sparams.uid == -1);
6703 return res;
6707 /* Functions that work with regions. */
6709 /* Current number of seqno used in init_seqno and init_seqno_1. */
6710 static int cur_seqno;
6712 /* A helper for init_seqno. Traverse the region starting from BB and
6713 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6714 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6715 static void
6716 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6718 int bbi = BLOCK_TO_BB (bb->index);
6719 insn_t insn, note = bb_note (bb);
6720 insn_t succ_insn;
6721 succ_iterator si;
6723 SET_BIT (visited_bbs, bbi);
6724 if (blocks_to_reschedule)
6725 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6727 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6728 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6730 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6731 int succ_bbi = BLOCK_TO_BB (succ->index);
6733 gcc_assert (in_current_region_p (succ));
6735 if (!TEST_BIT (visited_bbs, succ_bbi))
6737 gcc_assert (succ_bbi > bbi);
6739 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6741 else if (blocks_to_reschedule)
6742 bitmap_set_bit (forced_ebb_heads, succ->index);
6745 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6746 INSN_SEQNO (insn) = cur_seqno--;
6749 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6750 blocks on which we're rescheduling when pipelining, FROM is the block where
6751 traversing region begins (it may not be the head of the region when
6752 pipelining, but the head of the loop instead).
6754 Returns the maximal seqno found. */
6755 static int
6756 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6758 sbitmap visited_bbs;
6759 bitmap_iterator bi;
6760 unsigned bbi;
6762 visited_bbs = sbitmap_alloc (current_nr_blocks);
6764 if (blocks_to_reschedule)
6766 sbitmap_ones (visited_bbs);
6767 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6769 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6770 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6773 else
6775 sbitmap_zero (visited_bbs);
6776 from = EBB_FIRST_BB (0);
6779 cur_seqno = sched_max_luid - 1;
6780 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6782 /* cur_seqno may be positive if the number of instructions is less than
6783 sched_max_luid - 1 (when rescheduling or if some instructions have been
6784 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6785 gcc_assert (cur_seqno >= 0);
6787 sbitmap_free (visited_bbs);
6788 return sched_max_luid - 1;
6791 /* Initialize scheduling parameters for current region. */
6792 static void
6793 sel_setup_region_sched_flags (void)
6795 enable_schedule_as_rhs_p = 1;
6796 bookkeeping_p = 1;
6797 pipelining_p = (bookkeeping_p
6798 && (flag_sel_sched_pipelining != 0)
6799 && current_loop_nest != NULL
6800 && loop_has_exit_edges (current_loop_nest));
6801 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6802 max_ws = MAX_WS;
6805 /* Return true if all basic blocks of current region are empty. */
6806 static bool
6807 current_region_empty_p (void)
6809 int i;
6810 for (i = 0; i < current_nr_blocks; i++)
6811 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6812 return false;
6814 return true;
6817 /* Prepare and verify loop nest for pipelining. */
6818 static void
6819 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6821 current_loop_nest = get_loop_nest_for_rgn (rgn);
6823 if (!current_loop_nest)
6824 return;
6826 /* If this loop has any saved loop preheaders from nested loops,
6827 add these basic blocks to the current region. */
6828 sel_add_loop_preheaders (bbs);
6830 /* Check that we're starting with a valid information. */
6831 gcc_assert (loop_latch_edge (current_loop_nest));
6832 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6835 /* Compute instruction priorities for current region. */
6836 static void
6837 sel_compute_priorities (int rgn)
6839 sched_rgn_compute_dependencies (rgn);
6841 /* Compute insn priorities in haifa style. Then free haifa style
6842 dependencies that we've calculated for this. */
6843 compute_priorities ();
6845 if (sched_verbose >= 5)
6846 debug_rgn_dependencies (0);
6848 free_rgn_deps ();
6851 /* Init scheduling data for RGN. Returns true when this region should not
6852 be scheduled. */
6853 static bool
6854 sel_region_init (int rgn)
6856 int i;
6857 bb_vec_t bbs;
6859 rgn_setup_region (rgn);
6861 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6862 do region initialization here so the region can be bundled correctly,
6863 but we'll skip the scheduling in sel_sched_region (). */
6864 if (current_region_empty_p ())
6865 return true;
6867 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6869 for (i = 0; i < current_nr_blocks; i++)
6870 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6872 sel_init_bbs (bbs);
6874 if (flag_sel_sched_pipelining)
6875 setup_current_loop_nest (rgn, &bbs);
6877 sel_setup_region_sched_flags ();
6879 /* Initialize luids and dependence analysis which both sel-sched and haifa
6880 need. */
6881 sched_init_luids (bbs);
6882 sched_deps_init (false);
6884 /* Initialize haifa data. */
6885 rgn_setup_sched_infos ();
6886 sel_set_sched_flags ();
6887 haifa_init_h_i_d (bbs);
6889 sel_compute_priorities (rgn);
6890 init_deps_global ();
6892 /* Main initialization. */
6893 sel_setup_sched_infos ();
6894 sel_init_global_and_expr (bbs);
6896 VEC_free (basic_block, heap, bbs);
6898 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6900 /* Init correct liveness sets on each instruction of a single-block loop.
6901 This is the only situation when we can't update liveness when calling
6902 compute_live for the first insn of the loop. */
6903 if (current_loop_nest)
6905 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6907 : 0);
6909 if (current_nr_blocks == header + 1)
6910 update_liveness_on_insn
6911 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6914 /* Set hooks so that no newly generated insn will go out unnoticed. */
6915 sel_register_cfg_hooks ();
6917 /* !!! We call target.sched.init () for the whole region, but we invoke
6918 targetm.sched.finish () for every ebb. */
6919 if (targetm.sched.init)
6920 /* None of the arguments are actually used in any target. */
6921 targetm.sched.init (sched_dump, sched_verbose, -1);
6923 first_emitted_uid = get_max_uid () + 1;
6924 preheader_removed = false;
6926 /* Reset register allocation ticks array. */
6927 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6928 reg_rename_this_tick = 0;
6930 bitmap_initialize (forced_ebb_heads, 0);
6931 bitmap_clear (forced_ebb_heads);
6933 setup_nop_vinsn ();
6934 current_copies = BITMAP_ALLOC (NULL);
6935 current_originators = BITMAP_ALLOC (NULL);
6936 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6938 return false;
6941 /* Simplify insns after the scheduling. */
6942 static void
6943 simplify_changed_insns (void)
6945 int i;
6947 for (i = 0; i < current_nr_blocks; i++)
6949 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6950 rtx insn;
6952 FOR_BB_INSNS (bb, insn)
6953 if (INSN_P (insn))
6955 expr_t expr = INSN_EXPR (insn);
6957 if (EXPR_WAS_SUBSTITUTED (expr))
6958 validate_simplify_insn (insn);
6963 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6964 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6965 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6966 static void
6967 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6969 insn_t head, tail;
6970 basic_block bb1 = bb;
6971 if (sched_verbose >= 2)
6972 sel_print ("Finishing schedule in bbs: ");
6976 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6978 if (sched_verbose >= 2)
6979 sel_print ("%d; ", bb1->index);
6981 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6983 if (sched_verbose >= 2)
6984 sel_print ("\n");
6986 get_ebb_head_tail (bb, bb1, &head, &tail);
6988 current_sched_info->head = head;
6989 current_sched_info->tail = tail;
6990 current_sched_info->prev_head = PREV_INSN (head);
6991 current_sched_info->next_tail = NEXT_INSN (tail);
6994 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6995 static void
6996 reset_sched_cycles_in_current_ebb (void)
6998 int last_clock = 0;
6999 int haifa_last_clock = -1;
7000 int haifa_clock = 0;
7001 int issued_insns = 0;
7002 insn_t insn;
7004 if (targetm.sched.init)
7006 /* None of the arguments are actually used in any target.
7007 NB: We should have md_reset () hook for cases like this. */
7008 targetm.sched.init (sched_dump, sched_verbose, -1);
7011 state_reset (curr_state);
7012 advance_state (curr_state);
7014 for (insn = current_sched_info->head;
7015 insn != current_sched_info->next_tail;
7016 insn = NEXT_INSN (insn))
7018 int cost, haifa_cost;
7019 int sort_p;
7020 bool asm_p, real_insn, after_stall, all_issued;
7021 int clock;
7023 if (!INSN_P (insn))
7024 continue;
7026 asm_p = false;
7027 real_insn = recog_memoized (insn) >= 0;
7028 clock = INSN_SCHED_CYCLE (insn);
7030 cost = clock - last_clock;
7032 /* Initialize HAIFA_COST. */
7033 if (! real_insn)
7035 asm_p = INSN_ASM_P (insn);
7037 if (asm_p)
7038 /* This is asm insn which *had* to be scheduled first
7039 on the cycle. */
7040 haifa_cost = 1;
7041 else
7042 /* This is a use/clobber insn. It should not change
7043 cost. */
7044 haifa_cost = 0;
7046 else
7047 haifa_cost = estimate_insn_cost (insn, curr_state);
7049 /* Stall for whatever cycles we've stalled before. */
7050 after_stall = 0;
7051 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7053 haifa_cost = cost;
7054 after_stall = 1;
7056 all_issued = issued_insns == issue_rate;
7057 if (haifa_cost == 0 && all_issued)
7058 haifa_cost = 1;
7059 if (haifa_cost > 0)
7061 int i = 0;
7063 while (haifa_cost--)
7065 advance_state (curr_state);
7066 issued_insns = 0;
7067 i++;
7069 if (sched_verbose >= 2)
7071 sel_print ("advance_state (state_transition)\n");
7072 debug_state (curr_state);
7075 /* The DFA may report that e.g. insn requires 2 cycles to be
7076 issued, but on the next cycle it says that insn is ready
7077 to go. Check this here. */
7078 if (!after_stall
7079 && real_insn
7080 && haifa_cost > 0
7081 && estimate_insn_cost (insn, curr_state) == 0)
7082 break;
7084 /* When the data dependency stall is longer than the DFA stall,
7085 and when we have issued exactly issue_rate insns and stalled,
7086 it could be that after this longer stall the insn will again
7087 become unavailable to the DFA restrictions. Looks strange
7088 but happens e.g. on x86-64. So recheck DFA on the last
7089 iteration. */
7090 if ((after_stall || all_issued)
7091 && real_insn
7092 && haifa_cost == 0)
7093 haifa_cost = estimate_insn_cost (insn, curr_state);
7096 haifa_clock += i;
7097 if (sched_verbose >= 2)
7098 sel_print ("haifa clock: %d\n", haifa_clock);
7100 else
7101 gcc_assert (haifa_cost == 0);
7103 if (sched_verbose >= 2)
7104 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7106 if (targetm.sched.dfa_new_cycle)
7107 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7108 haifa_last_clock, haifa_clock,
7109 &sort_p))
7111 advance_state (curr_state);
7112 issued_insns = 0;
7113 haifa_clock++;
7114 if (sched_verbose >= 2)
7116 sel_print ("advance_state (dfa_new_cycle)\n");
7117 debug_state (curr_state);
7118 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7122 if (real_insn)
7124 static state_t temp = NULL;
7126 if (!temp)
7127 temp = xmalloc (dfa_state_size);
7128 memcpy (temp, curr_state, dfa_state_size);
7130 cost = state_transition (curr_state, insn);
7131 if (memcmp (temp, curr_state, dfa_state_size))
7132 issued_insns++;
7134 if (sched_verbose >= 2)
7136 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7137 haifa_clock + 1);
7138 debug_state (curr_state);
7140 gcc_assert (cost < 0);
7143 if (targetm.sched.variable_issue)
7144 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7146 INSN_SCHED_CYCLE (insn) = haifa_clock;
7148 last_clock = clock;
7149 haifa_last_clock = haifa_clock;
7153 /* Put TImode markers on insns starting a new issue group. */
7154 static void
7155 put_TImodes (void)
7157 int last_clock = -1;
7158 insn_t insn;
7160 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7161 insn = NEXT_INSN (insn))
7163 int cost, clock;
7165 if (!INSN_P (insn))
7166 continue;
7168 clock = INSN_SCHED_CYCLE (insn);
7169 cost = (last_clock == -1) ? 1 : clock - last_clock;
7171 gcc_assert (cost >= 0);
7173 if (issue_rate > 1
7174 && GET_CODE (PATTERN (insn)) != USE
7175 && GET_CODE (PATTERN (insn)) != CLOBBER)
7177 if (reload_completed && cost > 0)
7178 PUT_MODE (insn, TImode);
7180 last_clock = clock;
7183 if (sched_verbose >= 2)
7184 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7188 /* Perform MD_FINISH on EBBs comprising current region. When
7189 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7190 to produce correct sched cycles on insns. */
7191 static void
7192 sel_region_target_finish (bool reset_sched_cycles_p)
7194 int i;
7195 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7197 for (i = 0; i < current_nr_blocks; i++)
7199 if (bitmap_bit_p (scheduled_blocks, i))
7200 continue;
7202 /* While pipelining outer loops, skip bundling for loop
7203 preheaders. Those will be rescheduled in the outer loop. */
7204 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7205 continue;
7207 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7209 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7210 continue;
7212 if (reset_sched_cycles_p)
7213 reset_sched_cycles_in_current_ebb ();
7215 if (targetm.sched.init)
7216 targetm.sched.init (sched_dump, sched_verbose, -1);
7218 put_TImodes ();
7220 if (targetm.sched.finish)
7222 targetm.sched.finish (sched_dump, sched_verbose);
7224 /* Extend luids so that insns generated by the target will
7225 get zero luid. */
7226 sched_extend_luids ();
7230 BITMAP_FREE (scheduled_blocks);
7233 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7234 is true, make an additional pass emulating scheduler to get correct insn
7235 cycles for md_finish calls. */
7236 static void
7237 sel_region_finish (bool reset_sched_cycles_p)
7239 simplify_changed_insns ();
7240 sched_finish_ready_list ();
7241 free_nop_pool ();
7243 /* Free the vectors. */
7244 if (vec_av_set)
7245 VEC_free (expr_t, heap, vec_av_set);
7246 BITMAP_FREE (current_copies);
7247 BITMAP_FREE (current_originators);
7248 BITMAP_FREE (code_motion_visited_blocks);
7249 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7250 vinsn_vec_free (&vec_target_unavailable_vinsns);
7252 /* If LV_SET of the region head should be updated, do it now because
7253 there will be no other chance. */
7255 succ_iterator si;
7256 insn_t insn;
7258 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7259 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7261 basic_block bb = BLOCK_FOR_INSN (insn);
7263 if (!BB_LV_SET_VALID_P (bb))
7264 compute_live (insn);
7268 /* Emulate the Haifa scheduler for bundling. */
7269 if (reload_completed)
7270 sel_region_target_finish (reset_sched_cycles_p);
7272 sel_finish_global_and_expr ();
7274 bitmap_clear (forced_ebb_heads);
7276 free_nop_vinsn ();
7278 finish_deps_global ();
7279 sched_finish_luids ();
7280 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7282 sel_finish_bbs ();
7283 BITMAP_FREE (blocks_to_reschedule);
7285 sel_unregister_cfg_hooks ();
7287 max_issue_size = 0;
7291 /* Functions that implement the scheduler driver. */
7293 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7294 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7295 of insns scheduled -- these would be postprocessed later. */
7296 static void
7297 schedule_on_fences (flist_t fences, int max_seqno,
7298 ilist_t **scheduled_insns_tailpp)
7300 flist_t old_fences = fences;
7302 if (sched_verbose >= 1)
7304 sel_print ("\nScheduling on fences: ");
7305 dump_flist (fences);
7306 sel_print ("\n");
7309 scheduled_something_on_previous_fence = false;
7310 for (; fences; fences = FLIST_NEXT (fences))
7312 fence_t fence = NULL;
7313 int seqno = 0;
7314 flist_t fences2;
7315 bool first_p = true;
7317 /* Choose the next fence group to schedule.
7318 The fact that insn can be scheduled only once
7319 on the cycle is guaranteed by two properties:
7320 1. seqnos of parallel groups decrease with each iteration.
7321 2. If is_ineligible_successor () sees the larger seqno, it
7322 checks if candidate insn is_in_current_fence_p (). */
7323 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7325 fence_t f = FLIST_FENCE (fences2);
7327 if (!FENCE_PROCESSED_P (f))
7329 int i = INSN_SEQNO (FENCE_INSN (f));
7331 if (first_p || i > seqno)
7333 seqno = i;
7334 fence = f;
7335 first_p = false;
7337 else
7338 /* ??? Seqnos of different groups should be different. */
7339 gcc_assert (1 || i != seqno);
7343 gcc_assert (fence);
7345 /* As FENCE is nonnull, SEQNO is initialized. */
7346 seqno -= max_seqno + 1;
7347 fill_insns (fence, seqno, scheduled_insns_tailpp);
7348 FENCE_PROCESSED_P (fence) = true;
7351 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7352 don't need to keep bookkeeping-invalidated and target-unavailable
7353 vinsns any more. */
7354 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7355 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7358 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7359 static void
7360 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7362 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7364 /* The first element is already processed. */
7365 while ((fences = FLIST_NEXT (fences)))
7367 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7369 if (*min_seqno > seqno)
7370 *min_seqno = seqno;
7371 else if (*max_seqno < seqno)
7372 *max_seqno = seqno;
7376 /* Calculate new fences from FENCES. */
7377 static flist_t
7378 calculate_new_fences (flist_t fences, int orig_max_seqno)
7380 flist_t old_fences = fences;
7381 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7383 flist_tail_init (new_fences);
7384 for (; fences; fences = FLIST_NEXT (fences))
7386 fence_t fence = FLIST_FENCE (fences);
7387 insn_t insn;
7389 if (!FENCE_BNDS (fence))
7391 /* This fence doesn't have any successors. */
7392 if (!FENCE_SCHEDULED_P (fence))
7394 /* Nothing was scheduled on this fence. */
7395 int seqno;
7397 insn = FENCE_INSN (fence);
7398 seqno = INSN_SEQNO (insn);
7399 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7401 if (sched_verbose >= 1)
7402 sel_print ("Fence %d[%d] has not changed\n",
7403 INSN_UID (insn),
7404 BLOCK_NUM (insn));
7405 move_fence_to_fences (fences, new_fences);
7408 else
7409 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7412 flist_clear (&old_fences);
7413 return FLIST_TAIL_HEAD (new_fences);
7416 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7417 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7418 the highest seqno used in a region. Return the updated highest seqno. */
7419 static int
7420 update_seqnos_and_stage (int min_seqno, int max_seqno,
7421 int highest_seqno_in_use,
7422 ilist_t *pscheduled_insns)
7424 int new_hs;
7425 ilist_iterator ii;
7426 insn_t insn;
7428 /* Actually, new_hs is the seqno of the instruction, that was
7429 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7430 if (*pscheduled_insns)
7432 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7433 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7434 gcc_assert (new_hs > highest_seqno_in_use);
7436 else
7437 new_hs = highest_seqno_in_use;
7439 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7441 gcc_assert (INSN_SEQNO (insn) < 0);
7442 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7443 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7445 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7446 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7447 require > 1GB of memory e.g. on limit-fnargs.c. */
7448 if (! pipelining_p)
7449 free_data_for_scheduled_insn (insn);
7452 ilist_clear (pscheduled_insns);
7453 global_level++;
7455 return new_hs;
7458 /* The main driver for scheduling a region. This function is responsible
7459 for correct propagation of fences (i.e. scheduling points) and creating
7460 a group of parallel insns at each of them. It also supports
7461 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7462 of scheduling. */
7463 static void
7464 sel_sched_region_2 (int orig_max_seqno)
7466 int highest_seqno_in_use = orig_max_seqno;
7468 stat_bookkeeping_copies = 0;
7469 stat_insns_needed_bookkeeping = 0;
7470 stat_renamed_scheduled = 0;
7471 stat_substitutions_total = 0;
7472 num_insns_scheduled = 0;
7474 while (fences)
7476 int min_seqno, max_seqno;
7477 ilist_t scheduled_insns = NULL;
7478 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7480 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7481 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7482 fences = calculate_new_fences (fences, orig_max_seqno);
7483 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7484 highest_seqno_in_use,
7485 &scheduled_insns);
7488 if (sched_verbose >= 1)
7489 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7490 "bookkeeping, %d insns renamed, %d insns substituted\n",
7491 stat_bookkeeping_copies,
7492 stat_insns_needed_bookkeeping,
7493 stat_renamed_scheduled,
7494 stat_substitutions_total);
7497 /* Schedule a region. When pipelining, search for possibly never scheduled
7498 bookkeeping code and schedule it. Reschedule pipelined code without
7499 pipelining after. */
7500 static void
7501 sel_sched_region_1 (void)
7503 int orig_max_seqno;
7505 /* Remove empty blocks that might be in the region from the beginning. */
7506 purge_empty_blocks ();
7508 orig_max_seqno = init_seqno (NULL, NULL);
7509 gcc_assert (orig_max_seqno >= 1);
7511 /* When pipelining outer loops, create fences on the loop header,
7512 not preheader. */
7513 fences = NULL;
7514 if (current_loop_nest)
7515 init_fences (BB_END (EBB_FIRST_BB (0)));
7516 else
7517 init_fences (bb_note (EBB_FIRST_BB (0)));
7518 global_level = 1;
7520 sel_sched_region_2 (orig_max_seqno);
7522 gcc_assert (fences == NULL);
7524 if (pipelining_p)
7526 int i;
7527 basic_block bb;
7528 struct flist_tail_def _new_fences;
7529 flist_tail_t new_fences = &_new_fences;
7530 bool do_p = true;
7532 pipelining_p = false;
7533 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7534 bookkeeping_p = false;
7535 enable_schedule_as_rhs_p = false;
7537 /* Schedule newly created code, that has not been scheduled yet. */
7538 do_p = true;
7540 while (do_p)
7542 do_p = false;
7544 for (i = 0; i < current_nr_blocks; i++)
7546 basic_block bb = EBB_FIRST_BB (i);
7548 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7550 if (! bb_ends_ebb_p (bb))
7551 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7552 if (sel_bb_empty_p (bb))
7554 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7555 continue;
7557 clear_outdated_rtx_info (bb);
7558 if (sel_insn_is_speculation_check (BB_END (bb))
7559 && JUMP_P (BB_END (bb)))
7560 bitmap_set_bit (blocks_to_reschedule,
7561 BRANCH_EDGE (bb)->dest->index);
7563 else if (! sel_bb_empty_p (bb)
7564 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7565 bitmap_set_bit (blocks_to_reschedule, bb->index);
7568 for (i = 0; i < current_nr_blocks; i++)
7570 bb = EBB_FIRST_BB (i);
7572 /* While pipelining outer loops, skip bundling for loop
7573 preheaders. Those will be rescheduled in the outer
7574 loop. */
7575 if (sel_is_loop_preheader_p (bb))
7577 clear_outdated_rtx_info (bb);
7578 continue;
7581 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7583 flist_tail_init (new_fences);
7585 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7587 /* Mark BB as head of the new ebb. */
7588 bitmap_set_bit (forced_ebb_heads, bb->index);
7590 gcc_assert (fences == NULL);
7592 init_fences (bb_note (bb));
7594 sel_sched_region_2 (orig_max_seqno);
7596 do_p = true;
7597 break;
7604 /* Schedule the RGN region. */
7605 void
7606 sel_sched_region (int rgn)
7608 bool schedule_p;
7609 bool reset_sched_cycles_p;
7611 if (sel_region_init (rgn))
7612 return;
7614 if (sched_verbose >= 1)
7615 sel_print ("Scheduling region %d\n", rgn);
7617 schedule_p = (!sched_is_disabled_for_current_region_p ()
7618 && dbg_cnt (sel_sched_region_cnt));
7619 reset_sched_cycles_p = pipelining_p;
7620 if (schedule_p)
7621 sel_sched_region_1 ();
7622 else
7623 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7624 reset_sched_cycles_p = true;
7626 sel_region_finish (reset_sched_cycles_p);
7629 /* Perform global init for the scheduler. */
7630 static void
7631 sel_global_init (void)
7633 calculate_dominance_info (CDI_DOMINATORS);
7634 alloc_sched_pools ();
7636 /* Setup the infos for sched_init. */
7637 sel_setup_sched_infos ();
7638 setup_sched_dump ();
7640 sched_rgn_init (false);
7641 sched_init ();
7643 sched_init_bbs ();
7644 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7645 after_recovery = 0;
7646 can_issue_more = issue_rate;
7648 sched_extend_target ();
7649 sched_deps_init (true);
7650 setup_nop_and_exit_insns ();
7651 sel_extend_global_bb_info ();
7652 init_lv_sets ();
7653 init_hard_regs_data ();
7656 /* Free the global data of the scheduler. */
7657 static void
7658 sel_global_finish (void)
7660 free_bb_note_pool ();
7661 free_lv_sets ();
7662 sel_finish_global_bb_info ();
7664 free_regset_pool ();
7665 free_nop_and_exit_insns ();
7667 sched_rgn_finish ();
7668 sched_deps_finish ();
7669 sched_finish ();
7671 if (current_loops)
7672 sel_finish_pipelining ();
7674 free_sched_pools ();
7675 free_dominance_info (CDI_DOMINATORS);
7678 /* Return true when we need to skip selective scheduling. Used for debugging. */
7679 bool
7680 maybe_skip_selective_scheduling (void)
7682 return ! dbg_cnt (sel_sched_cnt);
7685 /* The entry point. */
7686 void
7687 run_selective_scheduling (void)
7689 int rgn;
7691 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7692 return;
7694 sel_global_init ();
7696 for (rgn = 0; rgn < nr_regions; rgn++)
7697 sel_sched_region (rgn);
7699 sel_global_finish ();
7702 #endif