gcc/upc/
[official-gcc.git] / gcc / function.c
blob8c65cafeed348006adbf94d65d7211a718b50fb1
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "langhooks.h"
58 #include "target.h"
59 #include "common/common-target.h"
60 #include "gimple.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "vecprim.h"
65 #include "params.h"
66 #include "bb-reorder.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero once virtual register instantiation has been done.
95 assign_stack_local uses frame_pointer_rtx when this is nonzero.
96 calls.c:emit_library_call_value_1 uses it to set up
97 post-instantiation libcalls. */
98 int virtuals_instantiated;
100 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
101 static GTY(()) int funcdef_no;
103 /* These variables hold pointers to functions to create and destroy
104 target specific, per-function data structures. */
105 struct machine_function * (*init_machine_status) (void);
107 /* The currently compiled function. */
108 struct function *cfun = 0;
110 /* These hashes record the prologue and epilogue insns. */
111 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
112 htab_t prologue_insn_hash;
113 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
114 htab_t epilogue_insn_hash;
117 htab_t types_used_by_vars_hash = NULL;
118 VEC(tree,gc) *types_used_by_cur_var_decl;
120 /* Forward declarations. */
122 static struct temp_slot *find_temp_slot_from_address (rtx);
123 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
124 static void pad_below (struct args_size *, enum machine_mode, tree);
125 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
126 static int all_blocks (tree, tree *);
127 static tree *get_block_vector (tree, int *);
128 extern tree debug_find_var_in_block_tree (tree, tree);
129 /* We always define `record_insns' even if it's not used so that we
130 can always export `prologue_epilogue_contains'. */
131 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
132 static bool contains (const_rtx, htab_t);
133 static void prepare_function_start (void);
134 static void do_clobber_return_reg (rtx, void *);
135 static void do_use_return_reg (rtx, void *);
136 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
138 /* Stack of nested functions. */
139 /* Keep track of the cfun stack. */
141 typedef struct function *function_p;
143 DEF_VEC_P(function_p);
144 DEF_VEC_ALLOC_P(function_p,heap);
145 static VEC(function_p,heap) *function_context_stack;
147 /* Save the current context for compilation of a nested function.
148 This is called from language-specific code. */
150 void
151 push_function_context (void)
153 if (cfun == 0)
154 allocate_struct_function (NULL, false);
156 VEC_safe_push (function_p, heap, function_context_stack, cfun);
157 set_cfun (NULL);
160 /* Restore the last saved context, at the end of a nested function.
161 This function is called from language-specific code. */
163 void
164 pop_function_context (void)
166 struct function *p = VEC_pop (function_p, function_context_stack);
167 set_cfun (p);
168 current_function_decl = p->decl;
170 /* Reset variables that have known state during rtx generation. */
171 virtuals_instantiated = 0;
172 generating_concat_p = 1;
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been parsed, but not compiled, to let
177 garbage collection reclaim the memory. */
179 void
180 free_after_parsing (struct function *f)
182 f->language = 0;
185 /* Clear out all parts of the state in F that can safely be discarded
186 after the function has been compiled, to let garbage collection
187 reclaim the memory. */
189 void
190 free_after_compilation (struct function *f)
192 prologue_insn_hash = NULL;
193 epilogue_insn_hash = NULL;
195 free (crtl->emit.regno_pointer_align);
197 memset (crtl, 0, sizeof (struct rtl_data));
198 f->eh = NULL;
199 f->machine = NULL;
200 f->cfg = NULL;
202 regno_reg_rtx = NULL;
203 insn_locators_free ();
206 /* Return size needed for stack frame based on slots so far allocated.
207 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
208 the caller may have to do that. */
210 HOST_WIDE_INT
211 get_frame_size (void)
213 if (FRAME_GROWS_DOWNWARD)
214 return -frame_offset;
215 else
216 return frame_offset;
219 /* Issue an error message and return TRUE if frame OFFSET overflows in
220 the signed target pointer arithmetics for function FUNC. Otherwise
221 return FALSE. */
223 bool
224 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
226 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
228 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
229 /* Leave room for the fixed part of the frame. */
230 - 64 * UNITS_PER_WORD)
232 error_at (DECL_SOURCE_LOCATION (func),
233 "total size of local objects too large");
234 return TRUE;
237 return FALSE;
240 /* Return stack slot alignment in bits for TYPE and MODE. */
242 static unsigned int
243 get_stack_local_alignment (tree type, enum machine_mode mode)
245 unsigned int alignment;
247 if (mode == BLKmode)
248 alignment = BIGGEST_ALIGNMENT;
249 else
250 alignment = GET_MODE_ALIGNMENT (mode);
252 /* Allow the frond-end to (possibly) increase the alignment of this
253 stack slot. */
254 if (! type)
255 type = lang_hooks.types.type_for_mode (mode, 0);
257 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
260 /* Determine whether it is possible to fit a stack slot of size SIZE and
261 alignment ALIGNMENT into an area in the stack frame that starts at
262 frame offset START and has a length of LENGTH. If so, store the frame
263 offset to be used for the stack slot in *POFFSET and return true;
264 return false otherwise. This function will extend the frame size when
265 given a start/length pair that lies at the end of the frame. */
267 static bool
268 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
269 HOST_WIDE_INT size, unsigned int alignment,
270 HOST_WIDE_INT *poffset)
272 HOST_WIDE_INT this_frame_offset;
273 int frame_off, frame_alignment, frame_phase;
275 /* Calculate how many bytes the start of local variables is off from
276 stack alignment. */
277 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
278 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
279 frame_phase = frame_off ? frame_alignment - frame_off : 0;
281 /* Round the frame offset to the specified alignment. */
283 /* We must be careful here, since FRAME_OFFSET might be negative and
284 division with a negative dividend isn't as well defined as we might
285 like. So we instead assume that ALIGNMENT is a power of two and
286 use logical operations which are unambiguous. */
287 if (FRAME_GROWS_DOWNWARD)
288 this_frame_offset
289 = (FLOOR_ROUND (start + length - size - frame_phase,
290 (unsigned HOST_WIDE_INT) alignment)
291 + frame_phase);
292 else
293 this_frame_offset
294 = (CEIL_ROUND (start - frame_phase,
295 (unsigned HOST_WIDE_INT) alignment)
296 + frame_phase);
298 /* See if it fits. If this space is at the edge of the frame,
299 consider extending the frame to make it fit. Our caller relies on
300 this when allocating a new slot. */
301 if (frame_offset == start && this_frame_offset < frame_offset)
302 frame_offset = this_frame_offset;
303 else if (this_frame_offset < start)
304 return false;
305 else if (start + length == frame_offset
306 && this_frame_offset + size > start + length)
307 frame_offset = this_frame_offset + size;
308 else if (this_frame_offset + size > start + length)
309 return false;
311 *poffset = this_frame_offset;
312 return true;
315 /* Create a new frame_space structure describing free space in the stack
316 frame beginning at START and ending at END, and chain it into the
317 function's frame_space_list. */
319 static void
320 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
322 struct frame_space *space = ggc_alloc_frame_space ();
323 space->next = crtl->frame_space_list;
324 crtl->frame_space_list = space;
325 space->start = start;
326 space->length = end - start;
329 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
330 with machine mode MODE.
332 ALIGN controls the amount of alignment for the address of the slot:
333 0 means according to MODE,
334 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
335 -2 means use BITS_PER_UNIT,
336 positive specifies alignment boundary in bits.
338 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
339 alignment and ASLK_RECORD_PAD bit set if we should remember
340 extra space we allocated for alignment purposes. When we are
341 called from assign_stack_temp_for_type, it is not set so we don't
342 track the same stack slot in two independent lists.
344 We do not round to stack_boundary here. */
347 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
348 int align, int kind)
350 rtx x, addr;
351 int bigend_correction = 0;
352 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
353 unsigned int alignment, alignment_in_bits;
355 if (align == 0)
357 alignment = get_stack_local_alignment (NULL, mode);
358 alignment /= BITS_PER_UNIT;
360 else if (align == -1)
362 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
363 size = CEIL_ROUND (size, alignment);
365 else if (align == -2)
366 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
367 else
368 alignment = align / BITS_PER_UNIT;
370 alignment_in_bits = alignment * BITS_PER_UNIT;
372 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
373 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
375 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
376 alignment = alignment_in_bits / BITS_PER_UNIT;
379 if (SUPPORTS_STACK_ALIGNMENT)
381 if (crtl->stack_alignment_estimated < alignment_in_bits)
383 if (!crtl->stack_realign_processed)
384 crtl->stack_alignment_estimated = alignment_in_bits;
385 else
387 /* If stack is realigned and stack alignment value
388 hasn't been finalized, it is OK not to increase
389 stack_alignment_estimated. The bigger alignment
390 requirement is recorded in stack_alignment_needed
391 below. */
392 gcc_assert (!crtl->stack_realign_finalized);
393 if (!crtl->stack_realign_needed)
395 /* It is OK to reduce the alignment as long as the
396 requested size is 0 or the estimated stack
397 alignment >= mode alignment. */
398 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
399 || size == 0
400 || (crtl->stack_alignment_estimated
401 >= GET_MODE_ALIGNMENT (mode)));
402 alignment_in_bits = crtl->stack_alignment_estimated;
403 alignment = alignment_in_bits / BITS_PER_UNIT;
409 if (crtl->stack_alignment_needed < alignment_in_bits)
410 crtl->stack_alignment_needed = alignment_in_bits;
411 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
412 crtl->max_used_stack_slot_alignment = alignment_in_bits;
414 if (mode != BLKmode || size != 0)
416 if (kind & ASLK_RECORD_PAD)
418 struct frame_space **psp;
420 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
422 struct frame_space *space = *psp;
423 if (!try_fit_stack_local (space->start, space->length, size,
424 alignment, &slot_offset))
425 continue;
426 *psp = space->next;
427 if (slot_offset > space->start)
428 add_frame_space (space->start, slot_offset);
429 if (slot_offset + size < space->start + space->length)
430 add_frame_space (slot_offset + size,
431 space->start + space->length);
432 goto found_space;
436 else if (!STACK_ALIGNMENT_NEEDED)
438 slot_offset = frame_offset;
439 goto found_space;
442 old_frame_offset = frame_offset;
444 if (FRAME_GROWS_DOWNWARD)
446 frame_offset -= size;
447 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
449 if (kind & ASLK_RECORD_PAD)
451 if (slot_offset > frame_offset)
452 add_frame_space (frame_offset, slot_offset);
453 if (slot_offset + size < old_frame_offset)
454 add_frame_space (slot_offset + size, old_frame_offset);
457 else
459 frame_offset += size;
460 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
462 if (kind & ASLK_RECORD_PAD)
464 if (slot_offset > old_frame_offset)
465 add_frame_space (old_frame_offset, slot_offset);
466 if (slot_offset + size < frame_offset)
467 add_frame_space (slot_offset + size, frame_offset);
471 found_space:
472 /* On a big-endian machine, if we are allocating more space than we will use,
473 use the least significant bytes of those that are allocated. */
474 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
475 bigend_correction = size - GET_MODE_SIZE (mode);
477 /* If we have already instantiated virtual registers, return the actual
478 address relative to the frame pointer. */
479 if (virtuals_instantiated)
480 addr = plus_constant (Pmode, frame_pointer_rtx,
481 trunc_int_for_mode
482 (slot_offset + bigend_correction
483 + STARTING_FRAME_OFFSET, Pmode));
484 else
485 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
486 trunc_int_for_mode
487 (slot_offset + bigend_correction,
488 Pmode));
490 x = gen_rtx_MEM (mode, addr);
491 set_mem_align (x, alignment_in_bits);
492 MEM_NOTRAP_P (x) = 1;
494 stack_slot_list
495 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
497 if (frame_offset_overflow (frame_offset, current_function_decl))
498 frame_offset = 0;
500 return x;
503 /* Wrap up assign_stack_local_1 with last parameter as false. */
506 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
508 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
511 /* In order to evaluate some expressions, such as function calls returning
512 structures in memory, we need to temporarily allocate stack locations.
513 We record each allocated temporary in the following structure.
515 Associated with each temporary slot is a nesting level. When we pop up
516 one level, all temporaries associated with the previous level are freed.
517 Normally, all temporaries are freed after the execution of the statement
518 in which they were created. However, if we are inside a ({...}) grouping,
519 the result may be in a temporary and hence must be preserved. If the
520 result could be in a temporary, we preserve it if we can determine which
521 one it is in. If we cannot determine which temporary may contain the
522 result, all temporaries are preserved. A temporary is preserved by
523 pretending it was allocated at the previous nesting level. */
525 struct GTY(()) temp_slot {
526 /* Points to next temporary slot. */
527 struct temp_slot *next;
528 /* Points to previous temporary slot. */
529 struct temp_slot *prev;
530 /* The rtx to used to reference the slot. */
531 rtx slot;
532 /* The size, in units, of the slot. */
533 HOST_WIDE_INT size;
534 /* The type of the object in the slot, or zero if it doesn't correspond
535 to a type. We use this to determine whether a slot can be reused.
536 It can be reused if objects of the type of the new slot will always
537 conflict with objects of the type of the old slot. */
538 tree type;
539 /* The alignment (in bits) of the slot. */
540 unsigned int align;
541 /* Nonzero if this temporary is currently in use. */
542 char in_use;
543 /* Nesting level at which this slot is being used. */
544 int level;
545 /* The offset of the slot from the frame_pointer, including extra space
546 for alignment. This info is for combine_temp_slots. */
547 HOST_WIDE_INT base_offset;
548 /* The size of the slot, including extra space for alignment. This
549 info is for combine_temp_slots. */
550 HOST_WIDE_INT full_size;
553 /* A table of addresses that represent a stack slot. The table is a mapping
554 from address RTXen to a temp slot. */
555 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
556 static size_t n_temp_slots_in_use;
558 /* Entry for the above hash table. */
559 struct GTY(()) temp_slot_address_entry {
560 hashval_t hash;
561 rtx address;
562 struct temp_slot *temp_slot;
565 /* Removes temporary slot TEMP from LIST. */
567 static void
568 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
570 if (temp->next)
571 temp->next->prev = temp->prev;
572 if (temp->prev)
573 temp->prev->next = temp->next;
574 else
575 *list = temp->next;
577 temp->prev = temp->next = NULL;
580 /* Inserts temporary slot TEMP to LIST. */
582 static void
583 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
585 temp->next = *list;
586 if (*list)
587 (*list)->prev = temp;
588 temp->prev = NULL;
589 *list = temp;
592 /* Returns the list of used temp slots at LEVEL. */
594 static struct temp_slot **
595 temp_slots_at_level (int level)
597 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
598 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
600 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
603 /* Returns the maximal temporary slot level. */
605 static int
606 max_slot_level (void)
608 if (!used_temp_slots)
609 return -1;
611 return VEC_length (temp_slot_p, used_temp_slots) - 1;
614 /* Moves temporary slot TEMP to LEVEL. */
616 static void
617 move_slot_to_level (struct temp_slot *temp, int level)
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, temp_slots_at_level (level));
621 temp->level = level;
624 /* Make temporary slot TEMP available. */
626 static void
627 make_slot_available (struct temp_slot *temp)
629 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
630 insert_slot_to_list (temp, &avail_temp_slots);
631 temp->in_use = 0;
632 temp->level = -1;
633 n_temp_slots_in_use--;
636 /* Compute the hash value for an address -> temp slot mapping.
637 The value is cached on the mapping entry. */
638 static hashval_t
639 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
641 int do_not_record = 0;
642 return hash_rtx (t->address, GET_MODE (t->address),
643 &do_not_record, NULL, false);
646 /* Return the hash value for an address -> temp slot mapping. */
647 static hashval_t
648 temp_slot_address_hash (const void *p)
650 const struct temp_slot_address_entry *t;
651 t = (const struct temp_slot_address_entry *) p;
652 return t->hash;
655 /* Compare two address -> temp slot mapping entries. */
656 static int
657 temp_slot_address_eq (const void *p1, const void *p2)
659 const struct temp_slot_address_entry *t1, *t2;
660 t1 = (const struct temp_slot_address_entry *) p1;
661 t2 = (const struct temp_slot_address_entry *) p2;
662 return exp_equiv_p (t1->address, t2->address, 0, true);
665 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
666 static void
667 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
669 void **slot;
670 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
671 t->address = address;
672 t->temp_slot = temp_slot;
673 t->hash = temp_slot_address_compute_hash (t);
674 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
675 *slot = t;
678 /* Remove an address -> temp slot mapping entry if the temp slot is
679 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
680 static int
681 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
683 const struct temp_slot_address_entry *t;
684 t = (const struct temp_slot_address_entry *) *slot;
685 if (! t->temp_slot->in_use)
686 htab_clear_slot (temp_slot_address_table, slot);
687 return 1;
690 /* Remove all mappings of addresses to unused temp slots. */
691 static void
692 remove_unused_temp_slot_addresses (void)
694 /* Use quicker clearing if there aren't any active temp slots. */
695 if (n_temp_slots_in_use)
696 htab_traverse (temp_slot_address_table,
697 remove_unused_temp_slot_addresses_1,
698 NULL);
699 else
700 htab_empty (temp_slot_address_table);
703 /* Find the temp slot corresponding to the object at address X. */
705 static struct temp_slot *
706 find_temp_slot_from_address (rtx x)
708 struct temp_slot *p;
709 struct temp_slot_address_entry tmp, *t;
711 /* First try the easy way:
712 See if X exists in the address -> temp slot mapping. */
713 tmp.address = x;
714 tmp.temp_slot = NULL;
715 tmp.hash = temp_slot_address_compute_hash (&tmp);
716 t = (struct temp_slot_address_entry *)
717 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
718 if (t)
719 return t->temp_slot;
721 /* If we have a sum involving a register, see if it points to a temp
722 slot. */
723 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
724 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
725 return p;
726 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
727 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
728 return p;
730 /* Last resort: Address is a virtual stack var address. */
731 if (GET_CODE (x) == PLUS
732 && XEXP (x, 0) == virtual_stack_vars_rtx
733 && CONST_INT_P (XEXP (x, 1)))
735 int i;
736 for (i = max_slot_level (); i >= 0; i--)
737 for (p = *temp_slots_at_level (i); p; p = p->next)
739 if (INTVAL (XEXP (x, 1)) >= p->base_offset
740 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
741 return p;
745 return NULL;
748 /* Allocate a temporary stack slot and record it for possible later
749 reuse.
751 MODE is the machine mode to be given to the returned rtx.
753 SIZE is the size in units of the space required. We do no rounding here
754 since assign_stack_local will do any required rounding.
756 TYPE is the type that will be used for the stack slot. */
759 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
760 tree type)
762 unsigned int align;
763 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
764 rtx slot;
766 /* If SIZE is -1 it means that somebody tried to allocate a temporary
767 of a variable size. */
768 gcc_assert (size != -1);
770 align = get_stack_local_alignment (type, mode);
772 /* Try to find an available, already-allocated temporary of the proper
773 mode which meets the size and alignment requirements. Choose the
774 smallest one with the closest alignment.
776 If assign_stack_temp is called outside of the tree->rtl expansion,
777 we cannot reuse the stack slots (that may still refer to
778 VIRTUAL_STACK_VARS_REGNUM). */
779 if (!virtuals_instantiated)
781 for (p = avail_temp_slots; p; p = p->next)
783 if (p->align >= align && p->size >= size
784 && GET_MODE (p->slot) == mode
785 && objects_must_conflict_p (p->type, type)
786 && (best_p == 0 || best_p->size > p->size
787 || (best_p->size == p->size && best_p->align > p->align)))
789 if (p->align == align && p->size == size)
791 selected = p;
792 cut_slot_from_list (selected, &avail_temp_slots);
793 best_p = 0;
794 break;
796 best_p = p;
801 /* Make our best, if any, the one to use. */
802 if (best_p)
804 selected = best_p;
805 cut_slot_from_list (selected, &avail_temp_slots);
807 /* If there are enough aligned bytes left over, make them into a new
808 temp_slot so that the extra bytes don't get wasted. Do this only
809 for BLKmode slots, so that we can be sure of the alignment. */
810 if (GET_MODE (best_p->slot) == BLKmode)
812 int alignment = best_p->align / BITS_PER_UNIT;
813 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
815 if (best_p->size - rounded_size >= alignment)
817 p = ggc_alloc_temp_slot ();
818 p->in_use = 0;
819 p->size = best_p->size - rounded_size;
820 p->base_offset = best_p->base_offset + rounded_size;
821 p->full_size = best_p->full_size - rounded_size;
822 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
823 p->align = best_p->align;
824 p->type = best_p->type;
825 insert_slot_to_list (p, &avail_temp_slots);
827 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
828 stack_slot_list);
830 best_p->size = rounded_size;
831 best_p->full_size = rounded_size;
836 /* If we still didn't find one, make a new temporary. */
837 if (selected == 0)
839 HOST_WIDE_INT frame_offset_old = frame_offset;
841 p = ggc_alloc_temp_slot ();
843 /* We are passing an explicit alignment request to assign_stack_local.
844 One side effect of that is assign_stack_local will not round SIZE
845 to ensure the frame offset remains suitably aligned.
847 So for requests which depended on the rounding of SIZE, we go ahead
848 and round it now. We also make sure ALIGNMENT is at least
849 BIGGEST_ALIGNMENT. */
850 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
851 p->slot = assign_stack_local_1 (mode,
852 (mode == BLKmode
853 ? CEIL_ROUND (size,
854 (int) align
855 / BITS_PER_UNIT)
856 : size),
857 align, 0);
859 p->align = align;
861 /* The following slot size computation is necessary because we don't
862 know the actual size of the temporary slot until assign_stack_local
863 has performed all the frame alignment and size rounding for the
864 requested temporary. Note that extra space added for alignment
865 can be either above or below this stack slot depending on which
866 way the frame grows. We include the extra space if and only if it
867 is above this slot. */
868 if (FRAME_GROWS_DOWNWARD)
869 p->size = frame_offset_old - frame_offset;
870 else
871 p->size = size;
873 /* Now define the fields used by combine_temp_slots. */
874 if (FRAME_GROWS_DOWNWARD)
876 p->base_offset = frame_offset;
877 p->full_size = frame_offset_old - frame_offset;
879 else
881 p->base_offset = frame_offset_old;
882 p->full_size = frame_offset - frame_offset_old;
885 selected = p;
888 p = selected;
889 p->in_use = 1;
890 p->type = type;
891 p->level = temp_slot_level;
892 n_temp_slots_in_use++;
894 pp = temp_slots_at_level (p->level);
895 insert_slot_to_list (p, pp);
896 insert_temp_slot_address (XEXP (p->slot, 0), p);
898 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
899 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
900 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
902 /* If we know the alias set for the memory that will be used, use
903 it. If there's no TYPE, then we don't know anything about the
904 alias set for the memory. */
905 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
906 set_mem_align (slot, align);
908 /* If a type is specified, set the relevant flags. */
909 if (type != 0)
910 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
911 MEM_NOTRAP_P (slot) = 1;
913 return slot;
916 /* Allocate a temporary stack slot and record it for possible later
917 reuse. First two arguments are same as in preceding function. */
920 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
922 return assign_stack_temp_for_type (mode, size, NULL_TREE);
925 /* Assign a temporary.
926 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
927 and so that should be used in error messages. In either case, we
928 allocate of the given type.
929 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
930 it is 0 if a register is OK.
931 DONT_PROMOTE is 1 if we should not promote values in register
932 to wider modes. */
935 assign_temp (tree type_or_decl, int memory_required,
936 int dont_promote ATTRIBUTE_UNUSED)
938 tree type, decl;
939 enum machine_mode mode;
940 #ifdef PROMOTE_MODE
941 int unsignedp;
942 #endif
944 if (DECL_P (type_or_decl))
945 decl = type_or_decl, type = TREE_TYPE (decl);
946 else
947 decl = NULL, type = type_or_decl;
949 mode = TYPE_MODE (type);
950 #ifdef PROMOTE_MODE
951 unsignedp = TYPE_UNSIGNED (type);
952 #endif
954 if (mode == BLKmode || memory_required)
956 HOST_WIDE_INT size = int_size_in_bytes (type);
957 rtx tmp;
959 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
960 problems with allocating the stack space. */
961 if (size == 0)
962 size = 1;
964 /* Unfortunately, we don't yet know how to allocate variable-sized
965 temporaries. However, sometimes we can find a fixed upper limit on
966 the size, so try that instead. */
967 else if (size == -1)
968 size = max_int_size_in_bytes (type);
970 /* The size of the temporary may be too large to fit into an integer. */
971 /* ??? Not sure this should happen except for user silliness, so limit
972 this to things that aren't compiler-generated temporaries. The
973 rest of the time we'll die in assign_stack_temp_for_type. */
974 if (decl && size == -1
975 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
977 error ("size of variable %q+D is too large", decl);
978 size = 1;
981 tmp = assign_stack_temp_for_type (mode, size, type);
982 return tmp;
985 #ifdef PROMOTE_MODE
986 if (! dont_promote)
987 mode = promote_mode (type, mode, &unsignedp);
988 #endif
990 return gen_reg_rtx (mode);
993 /* Combine temporary stack slots which are adjacent on the stack.
995 This allows for better use of already allocated stack space. This is only
996 done for BLKmode slots because we can be sure that we won't have alignment
997 problems in this case. */
999 static void
1000 combine_temp_slots (void)
1002 struct temp_slot *p, *q, *next, *next_q;
1003 int num_slots;
1005 /* We can't combine slots, because the information about which slot
1006 is in which alias set will be lost. */
1007 if (flag_strict_aliasing)
1008 return;
1010 /* If there are a lot of temp slots, don't do anything unless
1011 high levels of optimization. */
1012 if (! flag_expensive_optimizations)
1013 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1014 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1015 return;
1017 for (p = avail_temp_slots; p; p = next)
1019 int delete_p = 0;
1021 next = p->next;
1023 if (GET_MODE (p->slot) != BLKmode)
1024 continue;
1026 for (q = p->next; q; q = next_q)
1028 int delete_q = 0;
1030 next_q = q->next;
1032 if (GET_MODE (q->slot) != BLKmode)
1033 continue;
1035 if (p->base_offset + p->full_size == q->base_offset)
1037 /* Q comes after P; combine Q into P. */
1038 p->size += q->size;
1039 p->full_size += q->full_size;
1040 delete_q = 1;
1042 else if (q->base_offset + q->full_size == p->base_offset)
1044 /* P comes after Q; combine P into Q. */
1045 q->size += p->size;
1046 q->full_size += p->full_size;
1047 delete_p = 1;
1048 break;
1050 if (delete_q)
1051 cut_slot_from_list (q, &avail_temp_slots);
1054 /* Either delete P or advance past it. */
1055 if (delete_p)
1056 cut_slot_from_list (p, &avail_temp_slots);
1060 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1061 slot that previously was known by OLD_RTX. */
1063 void
1064 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1066 struct temp_slot *p;
1068 if (rtx_equal_p (old_rtx, new_rtx))
1069 return;
1071 p = find_temp_slot_from_address (old_rtx);
1073 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1074 NEW_RTX is a register, see if one operand of the PLUS is a
1075 temporary location. If so, NEW_RTX points into it. Otherwise,
1076 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1077 in common between them. If so, try a recursive call on those
1078 values. */
1079 if (p == 0)
1081 if (GET_CODE (old_rtx) != PLUS)
1082 return;
1084 if (REG_P (new_rtx))
1086 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1087 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1088 return;
1090 else if (GET_CODE (new_rtx) != PLUS)
1091 return;
1093 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1094 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1095 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1096 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1097 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1098 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1099 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1100 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1102 return;
1105 /* Otherwise add an alias for the temp's address. */
1106 insert_temp_slot_address (new_rtx, p);
1109 /* If X could be a reference to a temporary slot, mark that slot as
1110 belonging to the to one level higher than the current level. If X
1111 matched one of our slots, just mark that one. Otherwise, we can't
1112 easily predict which it is, so upgrade all of them.
1114 This is called when an ({...}) construct occurs and a statement
1115 returns a value in memory. */
1117 void
1118 preserve_temp_slots (rtx x)
1120 struct temp_slot *p = 0, *next;
1122 if (x == 0)
1123 return;
1125 /* If X is a register that is being used as a pointer, see if we have
1126 a temporary slot we know it points to. */
1127 if (REG_P (x) && REG_POINTER (x))
1128 p = find_temp_slot_from_address (x);
1130 /* If X is not in memory or is at a constant address, it cannot be in
1131 a temporary slot. */
1132 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1133 return;
1135 /* First see if we can find a match. */
1136 if (p == 0)
1137 p = find_temp_slot_from_address (XEXP (x, 0));
1139 if (p != 0)
1141 if (p->level == temp_slot_level)
1142 move_slot_to_level (p, temp_slot_level - 1);
1143 return;
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1149 next = p->next;
1150 move_slot_to_level (p, temp_slot_level - 1);
1154 /* Free all temporaries used so far. This is normally called at the
1155 end of generating code for a statement. */
1157 void
1158 free_temp_slots (void)
1160 struct temp_slot *p, *next;
1161 bool some_available = false;
1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1165 next = p->next;
1166 make_slot_available (p);
1167 some_available = true;
1170 if (some_available)
1172 remove_unused_temp_slot_addresses ();
1173 combine_temp_slots ();
1177 /* Push deeper into the nesting level for stack temporaries. */
1179 void
1180 push_temp_slots (void)
1182 temp_slot_level++;
1185 /* Pop a temporary nesting level. All slots in use in the current level
1186 are freed. */
1188 void
1189 pop_temp_slots (void)
1191 free_temp_slots ();
1192 temp_slot_level--;
1195 /* Initialize temporary slots. */
1197 void
1198 init_temp_slots (void)
1200 /* We have not allocated any temporaries yet. */
1201 avail_temp_slots = 0;
1202 used_temp_slots = 0;
1203 temp_slot_level = 0;
1204 n_temp_slots_in_use = 0;
1206 /* Set up the table to map addresses to temp slots. */
1207 if (! temp_slot_address_table)
1208 temp_slot_address_table = htab_create_ggc (32,
1209 temp_slot_address_hash,
1210 temp_slot_address_eq,
1211 NULL);
1212 else
1213 htab_empty (temp_slot_address_table);
1216 /* Functions and data structures to keep track of the values hard regs
1217 had at the start of the function. */
1219 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1220 and has_hard_reg_initial_val.. */
1221 typedef struct GTY(()) initial_value_pair {
1222 rtx hard_reg;
1223 rtx pseudo;
1224 } initial_value_pair;
1225 /* ??? This could be a VEC but there is currently no way to define an
1226 opaque VEC type. This could be worked around by defining struct
1227 initial_value_pair in function.h. */
1228 typedef struct GTY(()) initial_value_struct {
1229 int num_entries;
1230 int max_entries;
1231 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1232 } initial_value_struct;
1234 /* If a pseudo represents an initial hard reg (or expression), return
1235 it, else return NULL_RTX. */
1238 get_hard_reg_initial_reg (rtx reg)
1240 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1241 int i;
1243 if (ivs == 0)
1244 return NULL_RTX;
1246 for (i = 0; i < ivs->num_entries; i++)
1247 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1248 return ivs->entries[i].hard_reg;
1250 return NULL_RTX;
1253 /* Make sure that there's a pseudo register of mode MODE that stores the
1254 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1257 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1259 struct initial_value_struct *ivs;
1260 rtx rv;
1262 rv = has_hard_reg_initial_val (mode, regno);
1263 if (rv)
1264 return rv;
1266 ivs = crtl->hard_reg_initial_vals;
1267 if (ivs == 0)
1269 ivs = ggc_alloc_initial_value_struct ();
1270 ivs->num_entries = 0;
1271 ivs->max_entries = 5;
1272 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1273 crtl->hard_reg_initial_vals = ivs;
1276 if (ivs->num_entries >= ivs->max_entries)
1278 ivs->max_entries += 5;
1279 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1280 ivs->max_entries);
1283 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1284 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1286 return ivs->entries[ivs->num_entries++].pseudo;
1289 /* See if get_hard_reg_initial_val has been used to create a pseudo
1290 for the initial value of hard register REGNO in mode MODE. Return
1291 the associated pseudo if so, otherwise return NULL. */
1294 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1296 struct initial_value_struct *ivs;
1297 int i;
1299 ivs = crtl->hard_reg_initial_vals;
1300 if (ivs != 0)
1301 for (i = 0; i < ivs->num_entries; i++)
1302 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1303 && REGNO (ivs->entries[i].hard_reg) == regno)
1304 return ivs->entries[i].pseudo;
1306 return NULL_RTX;
1309 unsigned int
1310 emit_initial_value_sets (void)
1312 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1313 int i;
1314 rtx seq;
1316 if (ivs == 0)
1317 return 0;
1319 start_sequence ();
1320 for (i = 0; i < ivs->num_entries; i++)
1321 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1322 seq = get_insns ();
1323 end_sequence ();
1325 emit_insn_at_entry (seq);
1326 return 0;
1329 /* Return the hardreg-pseudoreg initial values pair entry I and
1330 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1331 bool
1332 initial_value_entry (int i, rtx *hreg, rtx *preg)
1334 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1335 if (!ivs || i >= ivs->num_entries)
1336 return false;
1338 *hreg = ivs->entries[i].hard_reg;
1339 *preg = ivs->entries[i].pseudo;
1340 return true;
1343 /* These routines are responsible for converting virtual register references
1344 to the actual hard register references once RTL generation is complete.
1346 The following four variables are used for communication between the
1347 routines. They contain the offsets of the virtual registers from their
1348 respective hard registers. */
1350 static int in_arg_offset;
1351 static int var_offset;
1352 static int dynamic_offset;
1353 static int out_arg_offset;
1354 static int cfa_offset;
1356 /* In most machines, the stack pointer register is equivalent to the bottom
1357 of the stack. */
1359 #ifndef STACK_POINTER_OFFSET
1360 #define STACK_POINTER_OFFSET 0
1361 #endif
1363 /* If not defined, pick an appropriate default for the offset of dynamically
1364 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1365 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1367 #ifndef STACK_DYNAMIC_OFFSET
1369 /* The bottom of the stack points to the actual arguments. If
1370 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1371 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1372 stack space for register parameters is not pushed by the caller, but
1373 rather part of the fixed stack areas and hence not included in
1374 `crtl->outgoing_args_size'. Nevertheless, we must allow
1375 for it when allocating stack dynamic objects. */
1377 #if defined(REG_PARM_STACK_SPACE)
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS \
1380 ? (crtl->outgoing_args_size \
1381 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1382 : REG_PARM_STACK_SPACE (FNDECL))) \
1383 : 0) + (STACK_POINTER_OFFSET))
1384 #else
1385 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1386 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1387 + (STACK_POINTER_OFFSET))
1388 #endif
1389 #endif
1392 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1393 is a virtual register, return the equivalent hard register and set the
1394 offset indirectly through the pointer. Otherwise, return 0. */
1396 static rtx
1397 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1399 rtx new_rtx;
1400 HOST_WIDE_INT offset;
1402 if (x == virtual_incoming_args_rtx)
1404 if (stack_realign_drap)
1406 /* Replace virtual_incoming_args_rtx with internal arg
1407 pointer if DRAP is used to realign stack. */
1408 new_rtx = crtl->args.internal_arg_pointer;
1409 offset = 0;
1411 else
1412 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1414 else if (x == virtual_stack_vars_rtx)
1415 new_rtx = frame_pointer_rtx, offset = var_offset;
1416 else if (x == virtual_stack_dynamic_rtx)
1417 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1418 else if (x == virtual_outgoing_args_rtx)
1419 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1420 else if (x == virtual_cfa_rtx)
1422 #ifdef FRAME_POINTER_CFA_OFFSET
1423 new_rtx = frame_pointer_rtx;
1424 #else
1425 new_rtx = arg_pointer_rtx;
1426 #endif
1427 offset = cfa_offset;
1429 else if (x == virtual_preferred_stack_boundary_rtx)
1431 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1432 offset = 0;
1434 else
1435 return NULL_RTX;
1437 *poffset = offset;
1438 return new_rtx;
1441 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1442 Instantiate any virtual registers present inside of *LOC. The expression
1443 is simplified, as much as possible, but is not to be considered "valid"
1444 in any sense implied by the target. If any change is made, set CHANGED
1445 to true. */
1447 static int
1448 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1450 HOST_WIDE_INT offset;
1451 bool *changed = (bool *) data;
1452 rtx x, new_rtx;
1454 x = *loc;
1455 if (x == 0)
1456 return 0;
1458 switch (GET_CODE (x))
1460 case REG:
1461 new_rtx = instantiate_new_reg (x, &offset);
1462 if (new_rtx)
1464 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1465 if (changed)
1466 *changed = true;
1468 return -1;
1470 case PLUS:
1471 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1472 if (new_rtx)
1474 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1475 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1476 if (changed)
1477 *changed = true;
1478 return -1;
1481 /* FIXME -- from old code */
1482 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1483 we can commute the PLUS and SUBREG because pointers into the
1484 frame are well-behaved. */
1485 break;
1487 default:
1488 break;
1491 return 0;
1494 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1495 matches the predicate for insn CODE operand OPERAND. */
1497 static int
1498 safe_insn_predicate (int code, int operand, rtx x)
1500 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1503 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1504 registers present inside of insn. The result will be a valid insn. */
1506 static void
1507 instantiate_virtual_regs_in_insn (rtx insn)
1509 HOST_WIDE_INT offset;
1510 int insn_code, i;
1511 bool any_change = false;
1512 rtx set, new_rtx, x, seq;
1514 /* There are some special cases to be handled first. */
1515 set = single_set (insn);
1516 if (set)
1518 /* We're allowed to assign to a virtual register. This is interpreted
1519 to mean that the underlying register gets assigned the inverse
1520 transformation. This is used, for example, in the handling of
1521 non-local gotos. */
1522 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1523 if (new_rtx)
1525 start_sequence ();
1527 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1528 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1529 GEN_INT (-offset));
1530 x = force_operand (x, new_rtx);
1531 if (x != new_rtx)
1532 emit_move_insn (new_rtx, x);
1534 seq = get_insns ();
1535 end_sequence ();
1537 emit_insn_before (seq, insn);
1538 delete_insn (insn);
1539 return;
1542 /* Handle a straight copy from a virtual register by generating a
1543 new add insn. The difference between this and falling through
1544 to the generic case is avoiding a new pseudo and eliminating a
1545 move insn in the initial rtl stream. */
1546 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1547 if (new_rtx && offset != 0
1548 && REG_P (SET_DEST (set))
1549 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1551 start_sequence ();
1553 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1554 new_rtx, GEN_INT (offset), SET_DEST (set),
1555 1, OPTAB_LIB_WIDEN);
1556 if (x != SET_DEST (set))
1557 emit_move_insn (SET_DEST (set), x);
1559 seq = get_insns ();
1560 end_sequence ();
1562 emit_insn_before (seq, insn);
1563 delete_insn (insn);
1564 return;
1567 extract_insn (insn);
1568 insn_code = INSN_CODE (insn);
1570 /* Handle a plus involving a virtual register by determining if the
1571 operands remain valid if they're modified in place. */
1572 if (GET_CODE (SET_SRC (set)) == PLUS
1573 && recog_data.n_operands >= 3
1574 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1575 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1576 && CONST_INT_P (recog_data.operand[2])
1577 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1579 offset += INTVAL (recog_data.operand[2]);
1581 /* If the sum is zero, then replace with a plain move. */
1582 if (offset == 0
1583 && REG_P (SET_DEST (set))
1584 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1586 start_sequence ();
1587 emit_move_insn (SET_DEST (set), new_rtx);
1588 seq = get_insns ();
1589 end_sequence ();
1591 emit_insn_before (seq, insn);
1592 delete_insn (insn);
1593 return;
1596 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1598 /* Using validate_change and apply_change_group here leaves
1599 recog_data in an invalid state. Since we know exactly what
1600 we want to check, do those two by hand. */
1601 if (safe_insn_predicate (insn_code, 1, new_rtx)
1602 && safe_insn_predicate (insn_code, 2, x))
1604 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1605 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1606 any_change = true;
1608 /* Fall through into the regular operand fixup loop in
1609 order to take care of operands other than 1 and 2. */
1613 else
1615 extract_insn (insn);
1616 insn_code = INSN_CODE (insn);
1619 /* In the general case, we expect virtual registers to appear only in
1620 operands, and then only as either bare registers or inside memories. */
1621 for (i = 0; i < recog_data.n_operands; ++i)
1623 x = recog_data.operand[i];
1624 switch (GET_CODE (x))
1626 case MEM:
1628 rtx addr = XEXP (x, 0);
1629 bool changed = false;
1631 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1632 if (!changed)
1633 continue;
1635 start_sequence ();
1636 x = replace_equiv_address (x, addr);
1637 /* It may happen that the address with the virtual reg
1638 was valid (e.g. based on the virtual stack reg, which might
1639 be acceptable to the predicates with all offsets), whereas
1640 the address now isn't anymore, for instance when the address
1641 is still offsetted, but the base reg isn't virtual-stack-reg
1642 anymore. Below we would do a force_reg on the whole operand,
1643 but this insn might actually only accept memory. Hence,
1644 before doing that last resort, try to reload the address into
1645 a register, so this operand stays a MEM. */
1646 if (!safe_insn_predicate (insn_code, i, x))
1648 addr = force_reg (GET_MODE (addr), addr);
1649 x = replace_equiv_address (x, addr);
1651 seq = get_insns ();
1652 end_sequence ();
1653 if (seq)
1654 emit_insn_before (seq, insn);
1656 break;
1658 case REG:
1659 new_rtx = instantiate_new_reg (x, &offset);
1660 if (new_rtx == NULL)
1661 continue;
1662 if (offset == 0)
1663 x = new_rtx;
1664 else
1666 start_sequence ();
1668 /* Careful, special mode predicates may have stuff in
1669 insn_data[insn_code].operand[i].mode that isn't useful
1670 to us for computing a new value. */
1671 /* ??? Recognize address_operand and/or "p" constraints
1672 to see if (plus new offset) is a valid before we put
1673 this through expand_simple_binop. */
1674 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1675 GEN_INT (offset), NULL_RTX,
1676 1, OPTAB_LIB_WIDEN);
1677 seq = get_insns ();
1678 end_sequence ();
1679 emit_insn_before (seq, insn);
1681 break;
1683 case SUBREG:
1684 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1685 if (new_rtx == NULL)
1686 continue;
1687 if (offset != 0)
1689 start_sequence ();
1690 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1691 GEN_INT (offset), NULL_RTX,
1692 1, OPTAB_LIB_WIDEN);
1693 seq = get_insns ();
1694 end_sequence ();
1695 emit_insn_before (seq, insn);
1697 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1698 GET_MODE (new_rtx), SUBREG_BYTE (x));
1699 gcc_assert (x);
1700 break;
1702 default:
1703 continue;
1706 /* At this point, X contains the new value for the operand.
1707 Validate the new value vs the insn predicate. Note that
1708 asm insns will have insn_code -1 here. */
1709 if (!safe_insn_predicate (insn_code, i, x))
1711 start_sequence ();
1712 if (REG_P (x))
1714 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1715 x = copy_to_reg (x);
1717 else
1718 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1719 seq = get_insns ();
1720 end_sequence ();
1721 if (seq)
1722 emit_insn_before (seq, insn);
1725 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1726 any_change = true;
1729 if (any_change)
1731 /* Propagate operand changes into the duplicates. */
1732 for (i = 0; i < recog_data.n_dups; ++i)
1733 *recog_data.dup_loc[i]
1734 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1736 /* Force re-recognition of the instruction for validation. */
1737 INSN_CODE (insn) = -1;
1740 if (asm_noperands (PATTERN (insn)) >= 0)
1742 if (!check_asm_operands (PATTERN (insn)))
1744 error_for_asm (insn, "impossible constraint in %<asm%>");
1745 delete_insn_and_edges (insn);
1748 else
1750 if (recog_memoized (insn) < 0)
1751 fatal_insn_not_found (insn);
1755 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1756 do any instantiation required. */
1758 void
1759 instantiate_decl_rtl (rtx x)
1761 rtx addr;
1763 if (x == 0)
1764 return;
1766 /* If this is a CONCAT, recurse for the pieces. */
1767 if (GET_CODE (x) == CONCAT)
1769 instantiate_decl_rtl (XEXP (x, 0));
1770 instantiate_decl_rtl (XEXP (x, 1));
1771 return;
1774 /* If this is not a MEM, no need to do anything. Similarly if the
1775 address is a constant or a register that is not a virtual register. */
1776 if (!MEM_P (x))
1777 return;
1779 addr = XEXP (x, 0);
1780 if (CONSTANT_P (addr)
1781 || (REG_P (addr)
1782 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1783 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1784 return;
1786 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1789 /* Helper for instantiate_decls called via walk_tree: Process all decls
1790 in the given DECL_VALUE_EXPR. */
1792 static tree
1793 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1795 tree t = *tp;
1796 if (! EXPR_P (t))
1798 *walk_subtrees = 0;
1799 if (DECL_P (t))
1801 if (DECL_RTL_SET_P (t))
1802 instantiate_decl_rtl (DECL_RTL (t));
1803 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1804 && DECL_INCOMING_RTL (t))
1805 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1806 if ((TREE_CODE (t) == VAR_DECL
1807 || TREE_CODE (t) == RESULT_DECL)
1808 && DECL_HAS_VALUE_EXPR_P (t))
1810 tree v = DECL_VALUE_EXPR (t);
1811 walk_tree (&v, instantiate_expr, NULL, NULL);
1815 return NULL;
1818 /* Subroutine of instantiate_decls: Process all decls in the given
1819 BLOCK node and all its subblocks. */
1821 static void
1822 instantiate_decls_1 (tree let)
1824 tree t;
1826 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1828 if (DECL_RTL_SET_P (t))
1829 instantiate_decl_rtl (DECL_RTL (t));
1830 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1832 tree v = DECL_VALUE_EXPR (t);
1833 walk_tree (&v, instantiate_expr, NULL, NULL);
1837 /* Process all subblocks. */
1838 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1839 instantiate_decls_1 (t);
1842 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1843 all virtual registers in their DECL_RTL's. */
1845 static void
1846 instantiate_decls (tree fndecl)
1848 tree decl;
1849 unsigned ix;
1851 /* Process all parameters of the function. */
1852 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1854 instantiate_decl_rtl (DECL_RTL (decl));
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1856 if (DECL_HAS_VALUE_EXPR_P (decl))
1858 tree v = DECL_VALUE_EXPR (decl);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1863 if ((decl = DECL_RESULT (fndecl))
1864 && TREE_CODE (decl) == RESULT_DECL)
1866 if (DECL_RTL_SET_P (decl))
1867 instantiate_decl_rtl (DECL_RTL (decl));
1868 if (DECL_HAS_VALUE_EXPR_P (decl))
1870 tree v = DECL_VALUE_EXPR (decl);
1871 walk_tree (&v, instantiate_expr, NULL, NULL);
1875 /* Now process all variables defined in the function or its subblocks. */
1876 instantiate_decls_1 (DECL_INITIAL (fndecl));
1878 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1879 if (DECL_RTL_SET_P (decl))
1880 instantiate_decl_rtl (DECL_RTL (decl));
1881 VEC_free (tree, gc, cfun->local_decls);
1884 /* Pass through the INSNS of function FNDECL and convert virtual register
1885 references to hard register references. */
1887 static unsigned int
1888 instantiate_virtual_regs (void)
1890 rtx insn;
1892 /* Compute the offsets to use for this function. */
1893 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1894 var_offset = STARTING_FRAME_OFFSET;
1895 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1896 out_arg_offset = STACK_POINTER_OFFSET;
1897 #ifdef FRAME_POINTER_CFA_OFFSET
1898 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1899 #else
1900 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1901 #endif
1903 /* Initialize recognition, indicating that volatile is OK. */
1904 init_recog ();
1906 /* Scan through all the insns, instantiating every virtual register still
1907 present. */
1908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1909 if (INSN_P (insn))
1911 /* These patterns in the instruction stream can never be recognized.
1912 Fortunately, they shouldn't contain virtual registers either. */
1913 if (GET_CODE (PATTERN (insn)) == USE
1914 || GET_CODE (PATTERN (insn)) == CLOBBER
1915 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1916 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1917 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1918 continue;
1919 else if (DEBUG_INSN_P (insn))
1920 for_each_rtx (&INSN_VAR_LOCATION (insn),
1921 instantiate_virtual_regs_in_rtx, NULL);
1922 else
1923 instantiate_virtual_regs_in_insn (insn);
1925 if (INSN_DELETED_P (insn))
1926 continue;
1928 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1930 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1931 if (CALL_P (insn))
1932 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1933 instantiate_virtual_regs_in_rtx, NULL);
1936 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1937 instantiate_decls (current_function_decl);
1939 targetm.instantiate_decls ();
1941 /* Indicate that, from now on, assign_stack_local should use
1942 frame_pointer_rtx. */
1943 virtuals_instantiated = 1;
1945 return 0;
1948 struct rtl_opt_pass pass_instantiate_virtual_regs =
1951 RTL_PASS,
1952 "vregs", /* name */
1953 NULL, /* gate */
1954 instantiate_virtual_regs, /* execute */
1955 NULL, /* sub */
1956 NULL, /* next */
1957 0, /* static_pass_number */
1958 TV_NONE, /* tv_id */
1959 0, /* properties_required */
1960 0, /* properties_provided */
1961 0, /* properties_destroyed */
1962 0, /* todo_flags_start */
1963 0 /* todo_flags_finish */
1968 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1969 This means a type for which function calls must pass an address to the
1970 function or get an address back from the function.
1971 EXP may be a type node or an expression (whose type is tested). */
1974 aggregate_value_p (const_tree exp, const_tree fntype)
1976 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1977 int i, regno, nregs;
1978 rtx reg;
1980 if (fntype)
1981 switch (TREE_CODE (fntype))
1983 case CALL_EXPR:
1985 tree fndecl = get_callee_fndecl (fntype);
1986 fntype = (fndecl
1987 ? TREE_TYPE (fndecl)
1988 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1990 break;
1991 case FUNCTION_DECL:
1992 fntype = TREE_TYPE (fntype);
1993 break;
1994 case FUNCTION_TYPE:
1995 case METHOD_TYPE:
1996 break;
1997 case IDENTIFIER_NODE:
1998 fntype = NULL_TREE;
1999 break;
2000 default:
2001 /* We don't expect other tree types here. */
2002 gcc_unreachable ();
2005 if (VOID_TYPE_P (type))
2006 return 0;
2008 /* If a record should be passed the same as its first (and only) member
2009 don't pass it as an aggregate. */
2010 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2011 return aggregate_value_p (first_field (type), fntype);
2013 /* If the front end has decided that this needs to be passed by
2014 reference, do so. */
2015 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2016 && DECL_BY_REFERENCE (exp))
2017 return 1;
2019 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2020 if (fntype && TREE_ADDRESSABLE (fntype))
2021 return 1;
2023 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2024 and thus can't be returned in registers. */
2025 if (TREE_ADDRESSABLE (type))
2026 return 1;
2028 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2029 return 1;
2031 /* Pointers-to-shared must be considered as aggregates for
2032 the purpose of passing them as return values, but only
2033 when the underlying mode of the representation would
2034 require that its value be passed on the stack.
2035 This occurs when using the 'struct' representation
2036 of a shared pointer. */
2037 if (flag_pcc_struct_return && POINTER_TYPE_P (type)
2038 && upc_shared_type_p (TREE_TYPE (type))
2039 && AGGREGATE_TYPE_P (upc_pts_rep_type_node))
2040 return 1;
2042 if (targetm.calls.return_in_memory (type, fntype))
2043 return 1;
2045 /* Make sure we have suitable call-clobbered regs to return
2046 the value in; if not, we must return it in memory. */
2047 reg = hard_function_value (type, 0, fntype, 0);
2049 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2050 it is OK. */
2051 if (!REG_P (reg))
2052 return 0;
2054 regno = REGNO (reg);
2055 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2056 for (i = 0; i < nregs; i++)
2057 if (! call_used_regs[regno + i])
2058 return 1;
2060 return 0;
2063 /* Return true if we should assign DECL a pseudo register; false if it
2064 should live on the local stack. */
2066 bool
2067 use_register_for_decl (const_tree decl)
2069 if (!targetm.calls.allocate_stack_slots_for_args())
2070 return true;
2072 /* Honor volatile. */
2073 if (TREE_SIDE_EFFECTS (decl))
2074 return false;
2076 /* Honor addressability. */
2077 if (TREE_ADDRESSABLE (decl))
2078 return false;
2080 /* Only register-like things go in registers. */
2081 if (DECL_MODE (decl) == BLKmode)
2082 return false;
2084 /* If -ffloat-store specified, don't put explicit float variables
2085 into registers. */
2086 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2087 propagates values across these stores, and it probably shouldn't. */
2088 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2089 return false;
2091 /* If we're not interested in tracking debugging information for
2092 this decl, then we can certainly put it in a register. */
2093 if (DECL_IGNORED_P (decl))
2094 return true;
2096 if (optimize)
2097 return true;
2099 if (!DECL_REGISTER (decl))
2100 return false;
2102 switch (TREE_CODE (TREE_TYPE (decl)))
2104 case RECORD_TYPE:
2105 case UNION_TYPE:
2106 case QUAL_UNION_TYPE:
2107 /* When not optimizing, disregard register keyword for variables with
2108 types containing methods, otherwise the methods won't be callable
2109 from the debugger. */
2110 if (TYPE_METHODS (TREE_TYPE (decl)))
2111 return false;
2112 break;
2113 default:
2114 break;
2117 return true;
2120 /* Return true if TYPE should be passed by invisible reference. */
2122 bool
2123 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2124 tree type, bool named_arg)
2126 if (type)
2128 /* If this type contains non-trivial constructors, then it is
2129 forbidden for the middle-end to create any new copies. */
2130 if (TREE_ADDRESSABLE (type))
2131 return true;
2133 /* GCC post 3.4 passes *all* variable sized types by reference. */
2134 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2135 return true;
2137 /* If a record type should be passed the same as its first (and only)
2138 member, use the type and mode of that member. */
2139 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2141 type = TREE_TYPE (first_field (type));
2142 mode = TYPE_MODE (type);
2146 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2147 type, named_arg);
2150 /* Return true if TYPE, which is passed by reference, should be callee
2151 copied instead of caller copied. */
2153 bool
2154 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2155 tree type, bool named_arg)
2157 if (type && TREE_ADDRESSABLE (type))
2158 return false;
2159 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2160 named_arg);
2163 /* Structures to communicate between the subroutines of assign_parms.
2164 The first holds data persistent across all parameters, the second
2165 is cleared out for each parameter. */
2167 struct assign_parm_data_all
2169 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2170 should become a job of the target or otherwise encapsulated. */
2171 CUMULATIVE_ARGS args_so_far_v;
2172 cumulative_args_t args_so_far;
2173 struct args_size stack_args_size;
2174 tree function_result_decl;
2175 tree orig_fnargs;
2176 rtx first_conversion_insn;
2177 rtx last_conversion_insn;
2178 HOST_WIDE_INT pretend_args_size;
2179 HOST_WIDE_INT extra_pretend_bytes;
2180 int reg_parm_stack_space;
2183 struct assign_parm_data_one
2185 tree nominal_type;
2186 tree passed_type;
2187 rtx entry_parm;
2188 rtx stack_parm;
2189 enum machine_mode nominal_mode;
2190 enum machine_mode passed_mode;
2191 enum machine_mode promoted_mode;
2192 struct locate_and_pad_arg_data locate;
2193 int partial;
2194 BOOL_BITFIELD named_arg : 1;
2195 BOOL_BITFIELD passed_pointer : 1;
2196 BOOL_BITFIELD on_stack : 1;
2197 BOOL_BITFIELD loaded_in_reg : 1;
2200 /* A subroutine of assign_parms. Initialize ALL. */
2202 static void
2203 assign_parms_initialize_all (struct assign_parm_data_all *all)
2205 tree fntype ATTRIBUTE_UNUSED;
2207 memset (all, 0, sizeof (*all));
2209 fntype = TREE_TYPE (current_function_decl);
2211 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2212 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2213 #else
2214 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2215 current_function_decl, -1);
2216 #endif
2217 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2219 #ifdef REG_PARM_STACK_SPACE
2220 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2221 #endif
2224 /* If ARGS contains entries with complex types, split the entry into two
2225 entries of the component type. Return a new list of substitutions are
2226 needed, else the old list. */
2228 static void
2229 split_complex_args (VEC(tree, heap) **args)
2231 unsigned i;
2232 tree p;
2234 FOR_EACH_VEC_ELT (tree, *args, i, p)
2236 tree type = TREE_TYPE (p);
2237 if (TREE_CODE (type) == COMPLEX_TYPE
2238 && targetm.calls.split_complex_arg (type))
2240 tree decl;
2241 tree subtype = TREE_TYPE (type);
2242 bool addressable = TREE_ADDRESSABLE (p);
2244 /* Rewrite the PARM_DECL's type with its component. */
2245 p = copy_node (p);
2246 TREE_TYPE (p) = subtype;
2247 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2248 DECL_MODE (p) = VOIDmode;
2249 DECL_SIZE (p) = NULL;
2250 DECL_SIZE_UNIT (p) = NULL;
2251 /* If this arg must go in memory, put it in a pseudo here.
2252 We can't allow it to go in memory as per normal parms,
2253 because the usual place might not have the imag part
2254 adjacent to the real part. */
2255 DECL_ARTIFICIAL (p) = addressable;
2256 DECL_IGNORED_P (p) = addressable;
2257 TREE_ADDRESSABLE (p) = 0;
2258 layout_decl (p, 0);
2259 VEC_replace (tree, *args, i, p);
2261 /* Build a second synthetic decl. */
2262 decl = build_decl (EXPR_LOCATION (p),
2263 PARM_DECL, NULL_TREE, subtype);
2264 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2265 DECL_ARTIFICIAL (decl) = addressable;
2266 DECL_IGNORED_P (decl) = addressable;
2267 layout_decl (decl, 0);
2268 VEC_safe_insert (tree, heap, *args, ++i, decl);
2273 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2274 the hidden struct return argument, and (abi willing) complex args.
2275 Return the new parameter list. */
2277 static VEC(tree, heap) *
2278 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2280 tree fndecl = current_function_decl;
2281 tree fntype = TREE_TYPE (fndecl);
2282 VEC(tree, heap) *fnargs = NULL;
2283 tree arg;
2285 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2286 VEC_safe_push (tree, heap, fnargs, arg);
2288 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2290 /* If struct value address is treated as the first argument, make it so. */
2291 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2292 && ! cfun->returns_pcc_struct
2293 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2295 tree type = build_pointer_type (TREE_TYPE (fntype));
2296 tree decl;
2298 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2299 PARM_DECL, get_identifier (".result_ptr"), type);
2300 DECL_ARG_TYPE (decl) = type;
2301 DECL_ARTIFICIAL (decl) = 1;
2302 DECL_NAMELESS (decl) = 1;
2303 TREE_CONSTANT (decl) = 1;
2305 DECL_CHAIN (decl) = all->orig_fnargs;
2306 all->orig_fnargs = decl;
2307 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2309 all->function_result_decl = decl;
2312 /* If the target wants to split complex arguments into scalars, do so. */
2313 if (targetm.calls.split_complex_arg)
2314 split_complex_args (&fnargs);
2316 return fnargs;
2319 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2320 data for the parameter. Incorporate ABI specifics such as pass-by-
2321 reference and type promotion. */
2323 static void
2324 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2325 struct assign_parm_data_one *data)
2327 tree nominal_type, passed_type;
2328 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2329 int unsignedp;
2331 memset (data, 0, sizeof (*data));
2333 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2334 if (!cfun->stdarg)
2335 data->named_arg = 1; /* No variadic parms. */
2336 else if (DECL_CHAIN (parm))
2337 data->named_arg = 1; /* Not the last non-variadic parm. */
2338 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2339 data->named_arg = 1; /* Only variadic ones are unnamed. */
2340 else
2341 data->named_arg = 0; /* Treat as variadic. */
2343 nominal_type = TREE_TYPE (parm);
2344 passed_type = DECL_ARG_TYPE (parm);
2346 /* Look out for errors propagating this far. Also, if the parameter's
2347 type is void then its value doesn't matter. */
2348 if (TREE_TYPE (parm) == error_mark_node
2349 /* This can happen after weird syntax errors
2350 or if an enum type is defined among the parms. */
2351 || TREE_CODE (parm) != PARM_DECL
2352 || passed_type == NULL
2353 || VOID_TYPE_P (nominal_type))
2355 nominal_type = passed_type = void_type_node;
2356 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2357 goto egress;
2360 /* Find mode of arg as it is passed, and mode of arg as it should be
2361 during execution of this function. */
2362 passed_mode = TYPE_MODE (passed_type);
2363 nominal_mode = TYPE_MODE (nominal_type);
2365 /* If the parm is to be passed as a transparent union or record, use the
2366 type of the first field for the tests below. We have already verified
2367 that the modes are the same. */
2368 if ((TREE_CODE (passed_type) == UNION_TYPE
2369 || TREE_CODE (passed_type) == RECORD_TYPE)
2370 && TYPE_TRANSPARENT_AGGR (passed_type))
2371 passed_type = TREE_TYPE (first_field (passed_type));
2373 /* See if this arg was passed by invisible reference. */
2374 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2375 passed_type, data->named_arg))
2377 passed_type = nominal_type = build_pointer_type (passed_type);
2378 data->passed_pointer = true;
2379 passed_mode = nominal_mode = Pmode;
2382 /* Find mode as it is passed by the ABI. */
2383 unsignedp = TYPE_UNSIGNED (passed_type);
2384 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2385 TREE_TYPE (current_function_decl), 0);
2387 egress:
2388 data->nominal_type = nominal_type;
2389 data->passed_type = passed_type;
2390 data->nominal_mode = nominal_mode;
2391 data->passed_mode = passed_mode;
2392 data->promoted_mode = promoted_mode;
2395 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2397 static void
2398 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2399 struct assign_parm_data_one *data, bool no_rtl)
2401 int varargs_pretend_bytes = 0;
2403 targetm.calls.setup_incoming_varargs (all->args_so_far,
2404 data->promoted_mode,
2405 data->passed_type,
2406 &varargs_pretend_bytes, no_rtl);
2408 /* If the back-end has requested extra stack space, record how much is
2409 needed. Do not change pretend_args_size otherwise since it may be
2410 nonzero from an earlier partial argument. */
2411 if (varargs_pretend_bytes > 0)
2412 all->pretend_args_size = varargs_pretend_bytes;
2415 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2416 the incoming location of the current parameter. */
2418 static void
2419 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2420 struct assign_parm_data_one *data)
2422 HOST_WIDE_INT pretend_bytes = 0;
2423 rtx entry_parm;
2424 bool in_regs;
2426 if (data->promoted_mode == VOIDmode)
2428 data->entry_parm = data->stack_parm = const0_rtx;
2429 return;
2432 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2433 data->promoted_mode,
2434 data->passed_type,
2435 data->named_arg);
2437 if (entry_parm == 0)
2438 data->promoted_mode = data->passed_mode;
2440 /* Determine parm's home in the stack, in case it arrives in the stack
2441 or we should pretend it did. Compute the stack position and rtx where
2442 the argument arrives and its size.
2444 There is one complexity here: If this was a parameter that would
2445 have been passed in registers, but wasn't only because it is
2446 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2447 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2448 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2449 as it was the previous time. */
2450 in_regs = entry_parm != 0;
2451 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2452 in_regs = true;
2453 #endif
2454 if (!in_regs && !data->named_arg)
2456 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2458 rtx tem;
2459 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2460 data->promoted_mode,
2461 data->passed_type, true);
2462 in_regs = tem != NULL;
2466 /* If this parameter was passed both in registers and in the stack, use
2467 the copy on the stack. */
2468 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2469 data->passed_type))
2470 entry_parm = 0;
2472 if (entry_parm)
2474 int partial;
2476 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2477 data->promoted_mode,
2478 data->passed_type,
2479 data->named_arg);
2480 data->partial = partial;
2482 /* The caller might already have allocated stack space for the
2483 register parameters. */
2484 if (partial != 0 && all->reg_parm_stack_space == 0)
2486 /* Part of this argument is passed in registers and part
2487 is passed on the stack. Ask the prologue code to extend
2488 the stack part so that we can recreate the full value.
2490 PRETEND_BYTES is the size of the registers we need to store.
2491 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2492 stack space that the prologue should allocate.
2494 Internally, gcc assumes that the argument pointer is aligned
2495 to STACK_BOUNDARY bits. This is used both for alignment
2496 optimizations (see init_emit) and to locate arguments that are
2497 aligned to more than PARM_BOUNDARY bits. We must preserve this
2498 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2499 a stack boundary. */
2501 /* We assume at most one partial arg, and it must be the first
2502 argument on the stack. */
2503 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2505 pretend_bytes = partial;
2506 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2508 /* We want to align relative to the actual stack pointer, so
2509 don't include this in the stack size until later. */
2510 all->extra_pretend_bytes = all->pretend_args_size;
2514 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2515 entry_parm ? data->partial : 0, current_function_decl,
2516 &all->stack_args_size, &data->locate);
2518 /* Update parm_stack_boundary if this parameter is passed in the
2519 stack. */
2520 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2521 crtl->parm_stack_boundary = data->locate.boundary;
2523 /* Adjust offsets to include the pretend args. */
2524 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2525 data->locate.slot_offset.constant += pretend_bytes;
2526 data->locate.offset.constant += pretend_bytes;
2528 data->entry_parm = entry_parm;
2531 /* A subroutine of assign_parms. If there is actually space on the stack
2532 for this parm, count it in stack_args_size and return true. */
2534 static bool
2535 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2536 struct assign_parm_data_one *data)
2538 /* Trivially true if we've no incoming register. */
2539 if (data->entry_parm == NULL)
2541 /* Also true if we're partially in registers and partially not,
2542 since we've arranged to drop the entire argument on the stack. */
2543 else if (data->partial != 0)
2545 /* Also true if the target says that it's passed in both registers
2546 and on the stack. */
2547 else if (GET_CODE (data->entry_parm) == PARALLEL
2548 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2550 /* Also true if the target says that there's stack allocated for
2551 all register parameters. */
2552 else if (all->reg_parm_stack_space > 0)
2554 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2555 else
2556 return false;
2558 all->stack_args_size.constant += data->locate.size.constant;
2559 if (data->locate.size.var)
2560 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2562 return true;
2565 /* A subroutine of assign_parms. Given that this parameter is allocated
2566 stack space by the ABI, find it. */
2568 static void
2569 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2571 rtx offset_rtx, stack_parm;
2572 unsigned int align, boundary;
2574 /* If we're passing this arg using a reg, make its stack home the
2575 aligned stack slot. */
2576 if (data->entry_parm)
2577 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2578 else
2579 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2581 stack_parm = crtl->args.internal_arg_pointer;
2582 if (offset_rtx != const0_rtx)
2583 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2584 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2586 if (!data->passed_pointer)
2588 set_mem_attributes (stack_parm, parm, 1);
2589 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2590 while promoted mode's size is needed. */
2591 if (data->promoted_mode != BLKmode
2592 && data->promoted_mode != DECL_MODE (parm))
2594 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2595 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2597 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2598 data->promoted_mode);
2599 if (offset)
2600 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2605 boundary = data->locate.boundary;
2606 align = BITS_PER_UNIT;
2608 /* If we're padding upward, we know that the alignment of the slot
2609 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2610 intentionally forcing upward padding. Otherwise we have to come
2611 up with a guess at the alignment based on OFFSET_RTX. */
2612 if (data->locate.where_pad != downward || data->entry_parm)
2613 align = boundary;
2614 else if (CONST_INT_P (offset_rtx))
2616 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2617 align = align & -align;
2619 set_mem_align (stack_parm, align);
2621 if (data->entry_parm)
2622 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2624 data->stack_parm = stack_parm;
2627 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2628 always valid and contiguous. */
2630 static void
2631 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2633 rtx entry_parm = data->entry_parm;
2634 rtx stack_parm = data->stack_parm;
2636 /* If this parm was passed part in regs and part in memory, pretend it
2637 arrived entirely in memory by pushing the register-part onto the stack.
2638 In the special case of a DImode or DFmode that is split, we could put
2639 it together in a pseudoreg directly, but for now that's not worth
2640 bothering with. */
2641 if (data->partial != 0)
2643 /* Handle calls that pass values in multiple non-contiguous
2644 locations. The Irix 6 ABI has examples of this. */
2645 if (GET_CODE (entry_parm) == PARALLEL)
2646 emit_group_store (validize_mem (stack_parm), entry_parm,
2647 data->passed_type,
2648 int_size_in_bytes (data->passed_type));
2649 else
2651 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2652 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2653 data->partial / UNITS_PER_WORD);
2656 entry_parm = stack_parm;
2659 /* If we didn't decide this parm came in a register, by default it came
2660 on the stack. */
2661 else if (entry_parm == NULL)
2662 entry_parm = stack_parm;
2664 /* When an argument is passed in multiple locations, we can't make use
2665 of this information, but we can save some copying if the whole argument
2666 is passed in a single register. */
2667 else if (GET_CODE (entry_parm) == PARALLEL
2668 && data->nominal_mode != BLKmode
2669 && data->passed_mode != BLKmode)
2671 size_t i, len = XVECLEN (entry_parm, 0);
2673 for (i = 0; i < len; i++)
2674 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2675 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2676 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2677 == data->passed_mode)
2678 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2680 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2681 break;
2685 data->entry_parm = entry_parm;
2688 /* A subroutine of assign_parms. Reconstitute any values which were
2689 passed in multiple registers and would fit in a single register. */
2691 static void
2692 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2694 rtx entry_parm = data->entry_parm;
2696 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2697 This can be done with register operations rather than on the
2698 stack, even if we will store the reconstituted parameter on the
2699 stack later. */
2700 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2702 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2703 emit_group_store (parmreg, entry_parm, data->passed_type,
2704 GET_MODE_SIZE (GET_MODE (entry_parm)));
2705 entry_parm = parmreg;
2708 data->entry_parm = entry_parm;
2711 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2712 always valid and properly aligned. */
2714 static void
2715 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2717 rtx stack_parm = data->stack_parm;
2719 /* If we can't trust the parm stack slot to be aligned enough for its
2720 ultimate type, don't use that slot after entry. We'll make another
2721 stack slot, if we need one. */
2722 if (stack_parm
2723 && ((STRICT_ALIGNMENT
2724 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2725 || (data->nominal_type
2726 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2727 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2728 stack_parm = NULL;
2730 /* If parm was passed in memory, and we need to convert it on entry,
2731 don't store it back in that same slot. */
2732 else if (data->entry_parm == stack_parm
2733 && data->nominal_mode != BLKmode
2734 && data->nominal_mode != data->passed_mode)
2735 stack_parm = NULL;
2737 /* If stack protection is in effect for this function, don't leave any
2738 pointers in their passed stack slots. */
2739 else if (crtl->stack_protect_guard
2740 && (flag_stack_protect == 2
2741 || data->passed_pointer
2742 || POINTER_TYPE_P (data->nominal_type)))
2743 stack_parm = NULL;
2745 data->stack_parm = stack_parm;
2748 /* A subroutine of assign_parms. Return true if the current parameter
2749 should be stored as a BLKmode in the current frame. */
2751 static bool
2752 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2754 if (data->nominal_mode == BLKmode)
2755 return true;
2756 if (GET_MODE (data->entry_parm) == BLKmode)
2757 return true;
2759 #ifdef BLOCK_REG_PADDING
2760 /* Only assign_parm_setup_block knows how to deal with register arguments
2761 that are padded at the least significant end. */
2762 if (REG_P (data->entry_parm)
2763 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2764 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2765 == (BYTES_BIG_ENDIAN ? upward : downward)))
2766 return true;
2767 #endif
2769 return false;
2772 /* A subroutine of assign_parms. Arrange for the parameter to be
2773 present and valid in DATA->STACK_RTL. */
2775 static void
2776 assign_parm_setup_block (struct assign_parm_data_all *all,
2777 tree parm, struct assign_parm_data_one *data)
2779 rtx entry_parm = data->entry_parm;
2780 rtx stack_parm = data->stack_parm;
2781 HOST_WIDE_INT size;
2782 HOST_WIDE_INT size_stored;
2784 if (GET_CODE (entry_parm) == PARALLEL)
2785 entry_parm = emit_group_move_into_temps (entry_parm);
2787 size = int_size_in_bytes (data->passed_type);
2788 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2789 if (stack_parm == 0)
2791 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2792 stack_parm = assign_stack_local (BLKmode, size_stored,
2793 DECL_ALIGN (parm));
2794 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2795 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2796 set_mem_attributes (stack_parm, parm, 1);
2799 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2800 calls that pass values in multiple non-contiguous locations. */
2801 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2803 rtx mem;
2805 /* Note that we will be storing an integral number of words.
2806 So we have to be careful to ensure that we allocate an
2807 integral number of words. We do this above when we call
2808 assign_stack_local if space was not allocated in the argument
2809 list. If it was, this will not work if PARM_BOUNDARY is not
2810 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2811 if it becomes a problem. Exception is when BLKmode arrives
2812 with arguments not conforming to word_mode. */
2814 if (data->stack_parm == 0)
2816 else if (GET_CODE (entry_parm) == PARALLEL)
2818 else
2819 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2821 mem = validize_mem (stack_parm);
2823 /* Handle values in multiple non-contiguous locations. */
2824 if (GET_CODE (entry_parm) == PARALLEL)
2826 push_to_sequence2 (all->first_conversion_insn,
2827 all->last_conversion_insn);
2828 emit_group_store (mem, entry_parm, data->passed_type, size);
2829 all->first_conversion_insn = get_insns ();
2830 all->last_conversion_insn = get_last_insn ();
2831 end_sequence ();
2834 else if (size == 0)
2837 /* If SIZE is that of a mode no bigger than a word, just use
2838 that mode's store operation. */
2839 else if (size <= UNITS_PER_WORD)
2841 enum machine_mode mode
2842 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2844 if (mode != BLKmode
2845 #ifdef BLOCK_REG_PADDING
2846 && (size == UNITS_PER_WORD
2847 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2848 != (BYTES_BIG_ENDIAN ? upward : downward)))
2849 #endif
2852 rtx reg;
2854 /* We are really truncating a word_mode value containing
2855 SIZE bytes into a value of mode MODE. If such an
2856 operation requires no actual instructions, we can refer
2857 to the value directly in mode MODE, otherwise we must
2858 start with the register in word_mode and explicitly
2859 convert it. */
2860 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2861 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2862 else
2864 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2865 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2867 emit_move_insn (change_address (mem, mode, 0), reg);
2870 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2871 machine must be aligned to the left before storing
2872 to memory. Note that the previous test doesn't
2873 handle all cases (e.g. SIZE == 3). */
2874 else if (size != UNITS_PER_WORD
2875 #ifdef BLOCK_REG_PADDING
2876 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2877 == downward)
2878 #else
2879 && BYTES_BIG_ENDIAN
2880 #endif
2883 rtx tem, x;
2884 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2885 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2887 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2888 tem = change_address (mem, word_mode, 0);
2889 emit_move_insn (tem, x);
2891 else
2892 move_block_from_reg (REGNO (entry_parm), mem,
2893 size_stored / UNITS_PER_WORD);
2895 else
2896 move_block_from_reg (REGNO (entry_parm), mem,
2897 size_stored / UNITS_PER_WORD);
2899 else if (data->stack_parm == 0)
2901 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2902 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2903 BLOCK_OP_NORMAL);
2904 all->first_conversion_insn = get_insns ();
2905 all->last_conversion_insn = get_last_insn ();
2906 end_sequence ();
2909 data->stack_parm = stack_parm;
2910 SET_DECL_RTL (parm, stack_parm);
2913 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2914 parameter. Get it there. Perform all ABI specified conversions. */
2916 static void
2917 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2918 struct assign_parm_data_one *data)
2920 rtx parmreg, validated_mem;
2921 rtx equiv_stack_parm;
2922 enum machine_mode promoted_nominal_mode;
2923 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2924 bool did_conversion = false;
2925 bool need_conversion, moved;
2927 /* Store the parm in a pseudoregister during the function, but we may
2928 need to do it in a wider mode. Using 2 here makes the result
2929 consistent with promote_decl_mode and thus expand_expr_real_1. */
2930 promoted_nominal_mode
2931 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2932 TREE_TYPE (current_function_decl), 2);
2934 parmreg = gen_reg_rtx (promoted_nominal_mode);
2936 if (!DECL_ARTIFICIAL (parm))
2937 mark_user_reg (parmreg);
2939 /* If this was an item that we received a pointer to,
2940 set DECL_RTL appropriately. */
2941 if (data->passed_pointer)
2943 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2944 set_mem_attributes (x, parm, 1);
2945 SET_DECL_RTL (parm, x);
2947 else
2948 SET_DECL_RTL (parm, parmreg);
2950 assign_parm_remove_parallels (data);
2952 /* Copy the value into the register, thus bridging between
2953 assign_parm_find_data_types and expand_expr_real_1. */
2955 equiv_stack_parm = data->stack_parm;
2956 validated_mem = validize_mem (data->entry_parm);
2958 need_conversion = (data->nominal_mode != data->passed_mode
2959 || promoted_nominal_mode != data->promoted_mode);
2960 moved = false;
2962 if (need_conversion
2963 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2964 && data->nominal_mode == data->passed_mode
2965 && data->nominal_mode == GET_MODE (data->entry_parm))
2967 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2968 mode, by the caller. We now have to convert it to
2969 NOMINAL_MODE, if different. However, PARMREG may be in
2970 a different mode than NOMINAL_MODE if it is being stored
2971 promoted.
2973 If ENTRY_PARM is a hard register, it might be in a register
2974 not valid for operating in its mode (e.g., an odd-numbered
2975 register for a DFmode). In that case, moves are the only
2976 thing valid, so we can't do a convert from there. This
2977 occurs when the calling sequence allow such misaligned
2978 usages.
2980 In addition, the conversion may involve a call, which could
2981 clobber parameters which haven't been copied to pseudo
2982 registers yet.
2984 First, we try to emit an insn which performs the necessary
2985 conversion. We verify that this insn does not clobber any
2986 hard registers. */
2988 enum insn_code icode;
2989 rtx op0, op1;
2991 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2992 unsignedp);
2994 op0 = parmreg;
2995 op1 = validated_mem;
2996 if (icode != CODE_FOR_nothing
2997 && insn_operand_matches (icode, 0, op0)
2998 && insn_operand_matches (icode, 1, op1))
3000 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3001 rtx insn, insns, t = op1;
3002 HARD_REG_SET hardregs;
3004 start_sequence ();
3005 /* If op1 is a hard register that is likely spilled, first
3006 force it into a pseudo, otherwise combiner might extend
3007 its lifetime too much. */
3008 if (GET_CODE (t) == SUBREG)
3009 t = SUBREG_REG (t);
3010 if (REG_P (t)
3011 && HARD_REGISTER_P (t)
3012 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3013 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3015 t = gen_reg_rtx (GET_MODE (op1));
3016 emit_move_insn (t, op1);
3018 else
3019 t = op1;
3020 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3021 data->passed_mode, unsignedp);
3022 emit_insn (insn);
3023 insns = get_insns ();
3025 moved = true;
3026 CLEAR_HARD_REG_SET (hardregs);
3027 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3029 if (INSN_P (insn))
3030 note_stores (PATTERN (insn), record_hard_reg_sets,
3031 &hardregs);
3032 if (!hard_reg_set_empty_p (hardregs))
3033 moved = false;
3036 end_sequence ();
3038 if (moved)
3040 emit_insn (insns);
3041 if (equiv_stack_parm != NULL_RTX)
3042 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3043 equiv_stack_parm);
3048 if (moved)
3049 /* Nothing to do. */
3051 else if (need_conversion)
3053 /* We did not have an insn to convert directly, or the sequence
3054 generated appeared unsafe. We must first copy the parm to a
3055 pseudo reg, and save the conversion until after all
3056 parameters have been moved. */
3058 int save_tree_used;
3059 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3061 emit_move_insn (tempreg, validated_mem);
3063 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3064 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3066 if (GET_CODE (tempreg) == SUBREG
3067 && GET_MODE (tempreg) == data->nominal_mode
3068 && REG_P (SUBREG_REG (tempreg))
3069 && data->nominal_mode == data->passed_mode
3070 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3071 && GET_MODE_SIZE (GET_MODE (tempreg))
3072 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3074 /* The argument is already sign/zero extended, so note it
3075 into the subreg. */
3076 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3077 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3080 /* TREE_USED gets set erroneously during expand_assignment. */
3081 save_tree_used = TREE_USED (parm);
3082 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3083 TREE_USED (parm) = save_tree_used;
3084 all->first_conversion_insn = get_insns ();
3085 all->last_conversion_insn = get_last_insn ();
3086 end_sequence ();
3088 did_conversion = true;
3090 else
3091 emit_move_insn (parmreg, validated_mem);
3093 /* If we were passed a pointer but the actual value can safely live
3094 in a register, put it in one. */
3095 if (data->passed_pointer
3096 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3097 /* If by-reference argument was promoted, demote it. */
3098 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3099 || use_register_for_decl (parm)))
3101 /* We can't use nominal_mode, because it will have been set to
3102 Pmode above. We must use the actual mode of the parm. */
3103 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3104 mark_user_reg (parmreg);
3106 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3108 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3109 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3111 push_to_sequence2 (all->first_conversion_insn,
3112 all->last_conversion_insn);
3113 emit_move_insn (tempreg, DECL_RTL (parm));
3114 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3115 emit_move_insn (parmreg, tempreg);
3116 all->first_conversion_insn = get_insns ();
3117 all->last_conversion_insn = get_last_insn ();
3118 end_sequence ();
3120 did_conversion = true;
3122 else
3123 emit_move_insn (parmreg, DECL_RTL (parm));
3125 SET_DECL_RTL (parm, parmreg);
3127 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3128 now the parm. */
3129 data->stack_parm = NULL;
3132 /* Mark the register as eliminable if we did no conversion and it was
3133 copied from memory at a fixed offset, and the arg pointer was not
3134 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3135 offset formed an invalid address, such memory-equivalences as we
3136 make here would screw up life analysis for it. */
3137 if (data->nominal_mode == data->passed_mode
3138 && !did_conversion
3139 && data->stack_parm != 0
3140 && MEM_P (data->stack_parm)
3141 && data->locate.offset.var == 0
3142 && reg_mentioned_p (virtual_incoming_args_rtx,
3143 XEXP (data->stack_parm, 0)))
3145 rtx linsn = get_last_insn ();
3146 rtx sinsn, set;
3148 /* Mark complex types separately. */
3149 if (GET_CODE (parmreg) == CONCAT)
3151 enum machine_mode submode
3152 = GET_MODE_INNER (GET_MODE (parmreg));
3153 int regnor = REGNO (XEXP (parmreg, 0));
3154 int regnoi = REGNO (XEXP (parmreg, 1));
3155 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3156 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3157 GET_MODE_SIZE (submode));
3159 /* Scan backwards for the set of the real and
3160 imaginary parts. */
3161 for (sinsn = linsn; sinsn != 0;
3162 sinsn = prev_nonnote_insn (sinsn))
3164 set = single_set (sinsn);
3165 if (set == 0)
3166 continue;
3168 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3169 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3170 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3171 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3174 else
3175 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3178 /* For pointer data type, suggest pointer register. */
3179 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3180 mark_reg_pointer (parmreg,
3181 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3184 /* A subroutine of assign_parms. Allocate stack space to hold the current
3185 parameter. Get it there. Perform all ABI specified conversions. */
3187 static void
3188 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3189 struct assign_parm_data_one *data)
3191 /* Value must be stored in the stack slot STACK_PARM during function
3192 execution. */
3193 bool to_conversion = false;
3195 assign_parm_remove_parallels (data);
3197 if (data->promoted_mode != data->nominal_mode)
3199 /* Conversion is required. */
3200 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3202 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3204 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3205 to_conversion = true;
3207 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3208 TYPE_UNSIGNED (TREE_TYPE (parm)));
3210 if (data->stack_parm)
3212 int offset = subreg_lowpart_offset (data->nominal_mode,
3213 GET_MODE (data->stack_parm));
3214 /* ??? This may need a big-endian conversion on sparc64. */
3215 data->stack_parm
3216 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3217 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3218 set_mem_offset (data->stack_parm,
3219 MEM_OFFSET (data->stack_parm) + offset);
3223 if (data->entry_parm != data->stack_parm)
3225 rtx src, dest;
3227 if (data->stack_parm == 0)
3229 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3230 GET_MODE (data->entry_parm),
3231 TYPE_ALIGN (data->passed_type));
3232 data->stack_parm
3233 = assign_stack_local (GET_MODE (data->entry_parm),
3234 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3235 align);
3236 set_mem_attributes (data->stack_parm, parm, 1);
3239 dest = validize_mem (data->stack_parm);
3240 src = validize_mem (data->entry_parm);
3242 if (MEM_P (src))
3244 /* Use a block move to handle potentially misaligned entry_parm. */
3245 if (!to_conversion)
3246 push_to_sequence2 (all->first_conversion_insn,
3247 all->last_conversion_insn);
3248 to_conversion = true;
3250 emit_block_move (dest, src,
3251 GEN_INT (int_size_in_bytes (data->passed_type)),
3252 BLOCK_OP_NORMAL);
3254 else
3255 emit_move_insn (dest, src);
3258 if (to_conversion)
3260 all->first_conversion_insn = get_insns ();
3261 all->last_conversion_insn = get_last_insn ();
3262 end_sequence ();
3265 SET_DECL_RTL (parm, data->stack_parm);
3268 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3269 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3271 static void
3272 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3273 VEC(tree, heap) *fnargs)
3275 tree parm;
3276 tree orig_fnargs = all->orig_fnargs;
3277 unsigned i = 0;
3279 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3281 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3282 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3284 rtx tmp, real, imag;
3285 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3287 real = DECL_RTL (VEC_index (tree, fnargs, i));
3288 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3289 if (inner != GET_MODE (real))
3291 real = gen_lowpart_SUBREG (inner, real);
3292 imag = gen_lowpart_SUBREG (inner, imag);
3295 if (TREE_ADDRESSABLE (parm))
3297 rtx rmem, imem;
3298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3299 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3300 DECL_MODE (parm),
3301 TYPE_ALIGN (TREE_TYPE (parm)));
3303 /* split_complex_arg put the real and imag parts in
3304 pseudos. Move them to memory. */
3305 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3306 set_mem_attributes (tmp, parm, 1);
3307 rmem = adjust_address_nv (tmp, inner, 0);
3308 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3309 push_to_sequence2 (all->first_conversion_insn,
3310 all->last_conversion_insn);
3311 emit_move_insn (rmem, real);
3312 emit_move_insn (imem, imag);
3313 all->first_conversion_insn = get_insns ();
3314 all->last_conversion_insn = get_last_insn ();
3315 end_sequence ();
3317 else
3318 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3319 SET_DECL_RTL (parm, tmp);
3321 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3322 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3323 if (inner != GET_MODE (real))
3325 real = gen_lowpart_SUBREG (inner, real);
3326 imag = gen_lowpart_SUBREG (inner, imag);
3328 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3329 set_decl_incoming_rtl (parm, tmp, false);
3330 i++;
3335 /* Assign RTL expressions to the function's parameters. This may involve
3336 copying them into registers and using those registers as the DECL_RTL. */
3338 static void
3339 assign_parms (tree fndecl)
3341 struct assign_parm_data_all all;
3342 tree parm;
3343 VEC(tree, heap) *fnargs;
3344 unsigned i;
3346 crtl->args.internal_arg_pointer
3347 = targetm.calls.internal_arg_pointer ();
3349 assign_parms_initialize_all (&all);
3350 fnargs = assign_parms_augmented_arg_list (&all);
3352 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3354 struct assign_parm_data_one data;
3356 /* Extract the type of PARM; adjust it according to ABI. */
3357 assign_parm_find_data_types (&all, parm, &data);
3359 /* Early out for errors and void parameters. */
3360 if (data.passed_mode == VOIDmode)
3362 SET_DECL_RTL (parm, const0_rtx);
3363 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3364 continue;
3367 /* Estimate stack alignment from parameter alignment. */
3368 if (SUPPORTS_STACK_ALIGNMENT)
3370 unsigned int align
3371 = targetm.calls.function_arg_boundary (data.promoted_mode,
3372 data.passed_type);
3373 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3374 align);
3375 if (TYPE_ALIGN (data.nominal_type) > align)
3376 align = MINIMUM_ALIGNMENT (data.nominal_type,
3377 TYPE_MODE (data.nominal_type),
3378 TYPE_ALIGN (data.nominal_type));
3379 if (crtl->stack_alignment_estimated < align)
3381 gcc_assert (!crtl->stack_realign_processed);
3382 crtl->stack_alignment_estimated = align;
3386 if (cfun->stdarg && !DECL_CHAIN (parm))
3387 assign_parms_setup_varargs (&all, &data, false);
3389 /* Find out where the parameter arrives in this function. */
3390 assign_parm_find_entry_rtl (&all, &data);
3392 /* Find out where stack space for this parameter might be. */
3393 if (assign_parm_is_stack_parm (&all, &data))
3395 assign_parm_find_stack_rtl (parm, &data);
3396 assign_parm_adjust_entry_rtl (&data);
3399 /* Record permanently how this parm was passed. */
3400 if (data.passed_pointer)
3402 rtx incoming_rtl
3403 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3404 data.entry_parm);
3405 set_decl_incoming_rtl (parm, incoming_rtl, true);
3407 else
3408 set_decl_incoming_rtl (parm, data.entry_parm, false);
3410 /* Update info on where next arg arrives in registers. */
3411 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3412 data.passed_type, data.named_arg);
3414 assign_parm_adjust_stack_rtl (&data);
3416 if (assign_parm_setup_block_p (&data))
3417 assign_parm_setup_block (&all, parm, &data);
3418 else if (data.passed_pointer || use_register_for_decl (parm))
3419 assign_parm_setup_reg (&all, parm, &data);
3420 else
3421 assign_parm_setup_stack (&all, parm, &data);
3424 if (targetm.calls.split_complex_arg)
3425 assign_parms_unsplit_complex (&all, fnargs);
3427 VEC_free (tree, heap, fnargs);
3429 /* Output all parameter conversion instructions (possibly including calls)
3430 now that all parameters have been copied out of hard registers. */
3431 emit_insn (all.first_conversion_insn);
3433 /* Estimate reload stack alignment from scalar return mode. */
3434 if (SUPPORTS_STACK_ALIGNMENT)
3436 if (DECL_RESULT (fndecl))
3438 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3439 enum machine_mode mode = TYPE_MODE (type);
3441 if (mode != BLKmode
3442 && mode != VOIDmode
3443 && !AGGREGATE_TYPE_P (type))
3445 unsigned int align = GET_MODE_ALIGNMENT (mode);
3446 if (crtl->stack_alignment_estimated < align)
3448 gcc_assert (!crtl->stack_realign_processed);
3449 crtl->stack_alignment_estimated = align;
3455 /* If we are receiving a struct value address as the first argument, set up
3456 the RTL for the function result. As this might require code to convert
3457 the transmitted address to Pmode, we do this here to ensure that possible
3458 preliminary conversions of the address have been emitted already. */
3459 if (all.function_result_decl)
3461 tree result = DECL_RESULT (current_function_decl);
3462 rtx addr = DECL_RTL (all.function_result_decl);
3463 rtx x;
3465 if (DECL_BY_REFERENCE (result))
3467 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3468 x = addr;
3470 else
3472 SET_DECL_VALUE_EXPR (result,
3473 build1 (INDIRECT_REF, TREE_TYPE (result),
3474 all.function_result_decl));
3475 addr = convert_memory_address (Pmode, addr);
3476 x = gen_rtx_MEM (DECL_MODE (result), addr);
3477 set_mem_attributes (x, result, 1);
3480 DECL_HAS_VALUE_EXPR_P (result) = 1;
3482 SET_DECL_RTL (result, x);
3485 /* We have aligned all the args, so add space for the pretend args. */
3486 crtl->args.pretend_args_size = all.pretend_args_size;
3487 all.stack_args_size.constant += all.extra_pretend_bytes;
3488 crtl->args.size = all.stack_args_size.constant;
3490 /* Adjust function incoming argument size for alignment and
3491 minimum length. */
3493 #ifdef REG_PARM_STACK_SPACE
3494 crtl->args.size = MAX (crtl->args.size,
3495 REG_PARM_STACK_SPACE (fndecl));
3496 #endif
3498 crtl->args.size = CEIL_ROUND (crtl->args.size,
3499 PARM_BOUNDARY / BITS_PER_UNIT);
3501 #ifdef ARGS_GROW_DOWNWARD
3502 crtl->args.arg_offset_rtx
3503 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3504 : expand_expr (size_diffop (all.stack_args_size.var,
3505 size_int (-all.stack_args_size.constant)),
3506 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3507 #else
3508 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3509 #endif
3511 /* See how many bytes, if any, of its args a function should try to pop
3512 on return. */
3514 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3515 TREE_TYPE (fndecl),
3516 crtl->args.size);
3518 /* For stdarg.h function, save info about
3519 regs and stack space used by the named args. */
3521 crtl->args.info = all.args_so_far_v;
3523 /* Set the rtx used for the function return value. Put this in its
3524 own variable so any optimizers that need this information don't have
3525 to include tree.h. Do this here so it gets done when an inlined
3526 function gets output. */
3528 crtl->return_rtx
3529 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3530 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3532 /* If scalar return value was computed in a pseudo-reg, or was a named
3533 return value that got dumped to the stack, copy that to the hard
3534 return register. */
3535 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3537 tree decl_result = DECL_RESULT (fndecl);
3538 rtx decl_rtl = DECL_RTL (decl_result);
3540 if (REG_P (decl_rtl)
3541 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3542 : DECL_REGISTER (decl_result))
3544 rtx real_decl_rtl;
3546 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3547 fndecl, true);
3548 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3549 /* The delay slot scheduler assumes that crtl->return_rtx
3550 holds the hard register containing the return value, not a
3551 temporary pseudo. */
3552 crtl->return_rtx = real_decl_rtl;
3557 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3558 For all seen types, gimplify their sizes. */
3560 static tree
3561 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3563 tree t = *tp;
3565 *walk_subtrees = 0;
3566 if (TYPE_P (t))
3568 if (POINTER_TYPE_P (t))
3569 *walk_subtrees = 1;
3570 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3571 && !TYPE_SIZES_GIMPLIFIED (t))
3573 gimplify_type_sizes (t, (gimple_seq *) data);
3574 *walk_subtrees = 1;
3578 return NULL;
3581 /* Gimplify the parameter list for current_function_decl. This involves
3582 evaluating SAVE_EXPRs of variable sized parameters and generating code
3583 to implement callee-copies reference parameters. Returns a sequence of
3584 statements to add to the beginning of the function. */
3586 gimple_seq
3587 gimplify_parameters (void)
3589 struct assign_parm_data_all all;
3590 tree parm;
3591 gimple_seq stmts = NULL;
3592 VEC(tree, heap) *fnargs;
3593 unsigned i;
3595 assign_parms_initialize_all (&all);
3596 fnargs = assign_parms_augmented_arg_list (&all);
3598 FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3600 struct assign_parm_data_one data;
3602 /* Extract the type of PARM; adjust it according to ABI. */
3603 assign_parm_find_data_types (&all, parm, &data);
3605 /* Early out for errors and void parameters. */
3606 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3607 continue;
3609 /* Update info on where next arg arrives in registers. */
3610 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3611 data.passed_type, data.named_arg);
3613 /* ??? Once upon a time variable_size stuffed parameter list
3614 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3615 turned out to be less than manageable in the gimple world.
3616 Now we have to hunt them down ourselves. */
3617 walk_tree_without_duplicates (&data.passed_type,
3618 gimplify_parm_type, &stmts);
3620 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3622 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3623 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3626 if (data.passed_pointer)
3628 tree type = TREE_TYPE (data.passed_type);
3629 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3630 type, data.named_arg))
3632 tree local, t;
3634 /* For constant-sized objects, this is trivial; for
3635 variable-sized objects, we have to play games. */
3636 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3637 && !(flag_stack_check == GENERIC_STACK_CHECK
3638 && compare_tree_int (DECL_SIZE_UNIT (parm),
3639 STACK_CHECK_MAX_VAR_SIZE) > 0))
3641 local = create_tmp_var (type, get_name (parm));
3642 DECL_IGNORED_P (local) = 0;
3643 /* If PARM was addressable, move that flag over
3644 to the local copy, as its address will be taken,
3645 not the PARMs. Keep the parms address taken
3646 as we'll query that flag during gimplification. */
3647 if (TREE_ADDRESSABLE (parm))
3648 TREE_ADDRESSABLE (local) = 1;
3649 else if (TREE_CODE (type) == COMPLEX_TYPE
3650 || TREE_CODE (type) == VECTOR_TYPE)
3651 DECL_GIMPLE_REG_P (local) = 1;
3653 else
3655 tree ptr_type, addr;
3657 ptr_type = build_pointer_type (type);
3658 addr = create_tmp_reg (ptr_type, get_name (parm));
3659 DECL_IGNORED_P (addr) = 0;
3660 local = build_fold_indirect_ref (addr);
3662 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3663 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3664 size_int (DECL_ALIGN (parm)));
3666 /* The call has been built for a variable-sized object. */
3667 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3668 t = fold_convert (ptr_type, t);
3669 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3670 gimplify_and_add (t, &stmts);
3673 gimplify_assign (local, parm, &stmts);
3675 SET_DECL_VALUE_EXPR (parm, local);
3676 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3681 VEC_free (tree, heap, fnargs);
3683 return stmts;
3686 /* Compute the size and offset from the start of the stacked arguments for a
3687 parm passed in mode PASSED_MODE and with type TYPE.
3689 INITIAL_OFFSET_PTR points to the current offset into the stacked
3690 arguments.
3692 The starting offset and size for this parm are returned in
3693 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3694 nonzero, the offset is that of stack slot, which is returned in
3695 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3696 padding required from the initial offset ptr to the stack slot.
3698 IN_REGS is nonzero if the argument will be passed in registers. It will
3699 never be set if REG_PARM_STACK_SPACE is not defined.
3701 FNDECL is the function in which the argument was defined.
3703 There are two types of rounding that are done. The first, controlled by
3704 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3705 argument list to be aligned to the specific boundary (in bits). This
3706 rounding affects the initial and starting offsets, but not the argument
3707 size.
3709 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3710 optionally rounds the size of the parm to PARM_BOUNDARY. The
3711 initial offset is not affected by this rounding, while the size always
3712 is and the starting offset may be. */
3714 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3715 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3716 callers pass in the total size of args so far as
3717 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3719 void
3720 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3721 int partial, tree fndecl ATTRIBUTE_UNUSED,
3722 struct args_size *initial_offset_ptr,
3723 struct locate_and_pad_arg_data *locate)
3725 tree sizetree;
3726 enum direction where_pad;
3727 unsigned int boundary, round_boundary;
3728 int reg_parm_stack_space = 0;
3729 int part_size_in_regs;
3731 #ifdef REG_PARM_STACK_SPACE
3732 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3734 /* If we have found a stack parm before we reach the end of the
3735 area reserved for registers, skip that area. */
3736 if (! in_regs)
3738 if (reg_parm_stack_space > 0)
3740 if (initial_offset_ptr->var)
3742 initial_offset_ptr->var
3743 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3744 ssize_int (reg_parm_stack_space));
3745 initial_offset_ptr->constant = 0;
3747 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3748 initial_offset_ptr->constant = reg_parm_stack_space;
3751 #endif /* REG_PARM_STACK_SPACE */
3753 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3755 sizetree
3756 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3757 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3758 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3759 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3760 type);
3761 locate->where_pad = where_pad;
3763 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3764 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3765 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3767 locate->boundary = boundary;
3769 if (SUPPORTS_STACK_ALIGNMENT)
3771 /* stack_alignment_estimated can't change after stack has been
3772 realigned. */
3773 if (crtl->stack_alignment_estimated < boundary)
3775 if (!crtl->stack_realign_processed)
3776 crtl->stack_alignment_estimated = boundary;
3777 else
3779 /* If stack is realigned and stack alignment value
3780 hasn't been finalized, it is OK not to increase
3781 stack_alignment_estimated. The bigger alignment
3782 requirement is recorded in stack_alignment_needed
3783 below. */
3784 gcc_assert (!crtl->stack_realign_finalized
3785 && crtl->stack_realign_needed);
3790 /* Remember if the outgoing parameter requires extra alignment on the
3791 calling function side. */
3792 if (crtl->stack_alignment_needed < boundary)
3793 crtl->stack_alignment_needed = boundary;
3794 if (crtl->preferred_stack_boundary < boundary)
3795 crtl->preferred_stack_boundary = boundary;
3797 #ifdef ARGS_GROW_DOWNWARD
3798 locate->slot_offset.constant = -initial_offset_ptr->constant;
3799 if (initial_offset_ptr->var)
3800 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3801 initial_offset_ptr->var);
3804 tree s2 = sizetree;
3805 if (where_pad != none
3806 && (!host_integerp (sizetree, 1)
3807 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3808 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3809 SUB_PARM_SIZE (locate->slot_offset, s2);
3812 locate->slot_offset.constant += part_size_in_regs;
3814 if (!in_regs
3815 #ifdef REG_PARM_STACK_SPACE
3816 || REG_PARM_STACK_SPACE (fndecl) > 0
3817 #endif
3819 pad_to_arg_alignment (&locate->slot_offset, boundary,
3820 &locate->alignment_pad);
3822 locate->size.constant = (-initial_offset_ptr->constant
3823 - locate->slot_offset.constant);
3824 if (initial_offset_ptr->var)
3825 locate->size.var = size_binop (MINUS_EXPR,
3826 size_binop (MINUS_EXPR,
3827 ssize_int (0),
3828 initial_offset_ptr->var),
3829 locate->slot_offset.var);
3831 /* Pad_below needs the pre-rounded size to know how much to pad
3832 below. */
3833 locate->offset = locate->slot_offset;
3834 if (where_pad == downward)
3835 pad_below (&locate->offset, passed_mode, sizetree);
3837 #else /* !ARGS_GROW_DOWNWARD */
3838 if (!in_regs
3839 #ifdef REG_PARM_STACK_SPACE
3840 || REG_PARM_STACK_SPACE (fndecl) > 0
3841 #endif
3843 pad_to_arg_alignment (initial_offset_ptr, boundary,
3844 &locate->alignment_pad);
3845 locate->slot_offset = *initial_offset_ptr;
3847 #ifdef PUSH_ROUNDING
3848 if (passed_mode != BLKmode)
3849 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3850 #endif
3852 /* Pad_below needs the pre-rounded size to know how much to pad below
3853 so this must be done before rounding up. */
3854 locate->offset = locate->slot_offset;
3855 if (where_pad == downward)
3856 pad_below (&locate->offset, passed_mode, sizetree);
3858 if (where_pad != none
3859 && (!host_integerp (sizetree, 1)
3860 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3861 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3863 ADD_PARM_SIZE (locate->size, sizetree);
3865 locate->size.constant -= part_size_in_regs;
3866 #endif /* ARGS_GROW_DOWNWARD */
3868 #ifdef FUNCTION_ARG_OFFSET
3869 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3870 #endif
3873 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3874 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3876 static void
3877 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3878 struct args_size *alignment_pad)
3880 tree save_var = NULL_TREE;
3881 HOST_WIDE_INT save_constant = 0;
3882 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3883 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3885 #ifdef SPARC_STACK_BOUNDARY_HACK
3886 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3887 the real alignment of %sp. However, when it does this, the
3888 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3889 if (SPARC_STACK_BOUNDARY_HACK)
3890 sp_offset = 0;
3891 #endif
3893 if (boundary > PARM_BOUNDARY)
3895 save_var = offset_ptr->var;
3896 save_constant = offset_ptr->constant;
3899 alignment_pad->var = NULL_TREE;
3900 alignment_pad->constant = 0;
3902 if (boundary > BITS_PER_UNIT)
3904 if (offset_ptr->var)
3906 tree sp_offset_tree = ssize_int (sp_offset);
3907 tree offset = size_binop (PLUS_EXPR,
3908 ARGS_SIZE_TREE (*offset_ptr),
3909 sp_offset_tree);
3910 #ifdef ARGS_GROW_DOWNWARD
3911 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3912 #else
3913 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3914 #endif
3916 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3917 /* ARGS_SIZE_TREE includes constant term. */
3918 offset_ptr->constant = 0;
3919 if (boundary > PARM_BOUNDARY)
3920 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3921 save_var);
3923 else
3925 offset_ptr->constant = -sp_offset +
3926 #ifdef ARGS_GROW_DOWNWARD
3927 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3928 #else
3929 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3930 #endif
3931 if (boundary > PARM_BOUNDARY)
3932 alignment_pad->constant = offset_ptr->constant - save_constant;
3937 static void
3938 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3940 if (passed_mode != BLKmode)
3942 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3943 offset_ptr->constant
3944 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3945 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3946 - GET_MODE_SIZE (passed_mode));
3948 else
3950 if (TREE_CODE (sizetree) != INTEGER_CST
3951 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3953 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3954 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3955 /* Add it in. */
3956 ADD_PARM_SIZE (*offset_ptr, s2);
3957 SUB_PARM_SIZE (*offset_ptr, sizetree);
3963 /* True if register REGNO was alive at a place where `setjmp' was
3964 called and was set more than once or is an argument. Such regs may
3965 be clobbered by `longjmp'. */
3967 static bool
3968 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3970 /* There appear to be cases where some local vars never reach the
3971 backend but have bogus regnos. */
3972 if (regno >= max_reg_num ())
3973 return false;
3975 return ((REG_N_SETS (regno) > 1
3976 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3977 && REGNO_REG_SET_P (setjmp_crosses, regno));
3980 /* Walk the tree of blocks describing the binding levels within a
3981 function and warn about variables the might be killed by setjmp or
3982 vfork. This is done after calling flow_analysis before register
3983 allocation since that will clobber the pseudo-regs to hard
3984 regs. */
3986 static void
3987 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3989 tree decl, sub;
3991 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3993 if (TREE_CODE (decl) == VAR_DECL
3994 && DECL_RTL_SET_P (decl)
3995 && REG_P (DECL_RTL (decl))
3996 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3997 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3998 " %<longjmp%> or %<vfork%>", decl);
4001 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4002 setjmp_vars_warning (setjmp_crosses, sub);
4005 /* Do the appropriate part of setjmp_vars_warning
4006 but for arguments instead of local variables. */
4008 static void
4009 setjmp_args_warning (bitmap setjmp_crosses)
4011 tree decl;
4012 for (decl = DECL_ARGUMENTS (current_function_decl);
4013 decl; decl = DECL_CHAIN (decl))
4014 if (DECL_RTL (decl) != 0
4015 && REG_P (DECL_RTL (decl))
4016 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4017 warning (OPT_Wclobbered,
4018 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4019 decl);
4022 /* Generate warning messages for variables live across setjmp. */
4024 void
4025 generate_setjmp_warnings (void)
4027 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4029 if (n_basic_blocks == NUM_FIXED_BLOCKS
4030 || bitmap_empty_p (setjmp_crosses))
4031 return;
4033 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4034 setjmp_args_warning (setjmp_crosses);
4038 /* Reverse the order of elements in the fragment chain T of blocks,
4039 and return the new head of the chain (old last element).
4040 In addition to that clear BLOCK_SAME_RANGE flags when needed
4041 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4042 its super fragment origin. */
4044 static tree
4045 block_fragments_nreverse (tree t)
4047 tree prev = 0, block, next, prev_super = 0;
4048 tree super = BLOCK_SUPERCONTEXT (t);
4049 if (BLOCK_FRAGMENT_ORIGIN (super))
4050 super = BLOCK_FRAGMENT_ORIGIN (super);
4051 for (block = t; block; block = next)
4053 next = BLOCK_FRAGMENT_CHAIN (block);
4054 BLOCK_FRAGMENT_CHAIN (block) = prev;
4055 if ((prev && !BLOCK_SAME_RANGE (prev))
4056 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4057 != prev_super))
4058 BLOCK_SAME_RANGE (block) = 0;
4059 prev_super = BLOCK_SUPERCONTEXT (block);
4060 BLOCK_SUPERCONTEXT (block) = super;
4061 prev = block;
4063 t = BLOCK_FRAGMENT_ORIGIN (t);
4064 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4065 != prev_super)
4066 BLOCK_SAME_RANGE (t) = 0;
4067 BLOCK_SUPERCONTEXT (t) = super;
4068 return prev;
4071 /* Reverse the order of elements in the chain T of blocks,
4072 and return the new head of the chain (old last element).
4073 Also do the same on subblocks and reverse the order of elements
4074 in BLOCK_FRAGMENT_CHAIN as well. */
4076 static tree
4077 blocks_nreverse_all (tree t)
4079 tree prev = 0, block, next;
4080 for (block = t; block; block = next)
4082 next = BLOCK_CHAIN (block);
4083 BLOCK_CHAIN (block) = prev;
4084 if (BLOCK_FRAGMENT_CHAIN (block)
4085 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4087 BLOCK_FRAGMENT_CHAIN (block)
4088 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4089 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4090 BLOCK_SAME_RANGE (block) = 0;
4092 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4093 prev = block;
4095 return prev;
4099 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4100 and create duplicate blocks. */
4101 /* ??? Need an option to either create block fragments or to create
4102 abstract origin duplicates of a source block. It really depends
4103 on what optimization has been performed. */
4105 void
4106 reorder_blocks (void)
4108 tree block = DECL_INITIAL (current_function_decl);
4109 VEC(tree,heap) *block_stack;
4111 if (block == NULL_TREE)
4112 return;
4114 block_stack = VEC_alloc (tree, heap, 10);
4116 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4117 clear_block_marks (block);
4119 /* Prune the old trees away, so that they don't get in the way. */
4120 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4121 BLOCK_CHAIN (block) = NULL_TREE;
4123 /* Recreate the block tree from the note nesting. */
4124 reorder_blocks_1 (get_insns (), block, &block_stack);
4125 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4127 VEC_free (tree, heap, block_stack);
4130 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4132 void
4133 clear_block_marks (tree block)
4135 while (block)
4137 TREE_ASM_WRITTEN (block) = 0;
4138 clear_block_marks (BLOCK_SUBBLOCKS (block));
4139 block = BLOCK_CHAIN (block);
4143 static void
4144 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4146 rtx insn;
4147 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4149 for (insn = insns; insn; insn = NEXT_INSN (insn))
4151 if (NOTE_P (insn))
4153 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4155 tree block = NOTE_BLOCK (insn);
4156 tree origin;
4158 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4159 origin = block;
4161 if (prev_end)
4162 BLOCK_SAME_RANGE (prev_end) = 0;
4163 prev_end = NULL_TREE;
4165 /* If we have seen this block before, that means it now
4166 spans multiple address regions. Create a new fragment. */
4167 if (TREE_ASM_WRITTEN (block))
4169 tree new_block = copy_node (block);
4171 BLOCK_SAME_RANGE (new_block) = 0;
4172 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4173 BLOCK_FRAGMENT_CHAIN (new_block)
4174 = BLOCK_FRAGMENT_CHAIN (origin);
4175 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4177 NOTE_BLOCK (insn) = new_block;
4178 block = new_block;
4181 if (prev_beg == current_block && prev_beg)
4182 BLOCK_SAME_RANGE (block) = 1;
4184 prev_beg = origin;
4186 BLOCK_SUBBLOCKS (block) = 0;
4187 TREE_ASM_WRITTEN (block) = 1;
4188 /* When there's only one block for the entire function,
4189 current_block == block and we mustn't do this, it
4190 will cause infinite recursion. */
4191 if (block != current_block)
4193 tree super;
4194 if (block != origin)
4195 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4196 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4197 (origin))
4198 == current_block);
4199 if (VEC_empty (tree, *p_block_stack))
4200 super = current_block;
4201 else
4203 super = VEC_last (tree, *p_block_stack);
4204 gcc_assert (super == current_block
4205 || BLOCK_FRAGMENT_ORIGIN (super)
4206 == current_block);
4208 BLOCK_SUPERCONTEXT (block) = super;
4209 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4210 BLOCK_SUBBLOCKS (current_block) = block;
4211 current_block = origin;
4213 VEC_safe_push (tree, heap, *p_block_stack, block);
4215 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4217 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4218 current_block = BLOCK_SUPERCONTEXT (current_block);
4219 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4220 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4221 prev_beg = NULL_TREE;
4222 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4223 ? NOTE_BLOCK (insn) : NULL_TREE;
4226 else
4228 prev_beg = NULL_TREE;
4229 if (prev_end)
4230 BLOCK_SAME_RANGE (prev_end) = 0;
4231 prev_end = NULL_TREE;
4236 /* Reverse the order of elements in the chain T of blocks,
4237 and return the new head of the chain (old last element). */
4239 tree
4240 blocks_nreverse (tree t)
4242 tree prev = 0, block, next;
4243 for (block = t; block; block = next)
4245 next = BLOCK_CHAIN (block);
4246 BLOCK_CHAIN (block) = prev;
4247 prev = block;
4249 return prev;
4252 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4253 by modifying the last node in chain 1 to point to chain 2. */
4255 tree
4256 block_chainon (tree op1, tree op2)
4258 tree t1;
4260 if (!op1)
4261 return op2;
4262 if (!op2)
4263 return op1;
4265 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4266 continue;
4267 BLOCK_CHAIN (t1) = op2;
4269 #ifdef ENABLE_TREE_CHECKING
4271 tree t2;
4272 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4273 gcc_assert (t2 != t1);
4275 #endif
4277 return op1;
4280 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4281 non-NULL, list them all into VECTOR, in a depth-first preorder
4282 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4283 blocks. */
4285 static int
4286 all_blocks (tree block, tree *vector)
4288 int n_blocks = 0;
4290 while (block)
4292 TREE_ASM_WRITTEN (block) = 0;
4294 /* Record this block. */
4295 if (vector)
4296 vector[n_blocks] = block;
4298 ++n_blocks;
4300 /* Record the subblocks, and their subblocks... */
4301 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4302 vector ? vector + n_blocks : 0);
4303 block = BLOCK_CHAIN (block);
4306 return n_blocks;
4309 /* Return a vector containing all the blocks rooted at BLOCK. The
4310 number of elements in the vector is stored in N_BLOCKS_P. The
4311 vector is dynamically allocated; it is the caller's responsibility
4312 to call `free' on the pointer returned. */
4314 static tree *
4315 get_block_vector (tree block, int *n_blocks_p)
4317 tree *block_vector;
4319 *n_blocks_p = all_blocks (block, NULL);
4320 block_vector = XNEWVEC (tree, *n_blocks_p);
4321 all_blocks (block, block_vector);
4323 return block_vector;
4326 static GTY(()) int next_block_index = 2;
4328 /* Set BLOCK_NUMBER for all the blocks in FN. */
4330 void
4331 number_blocks (tree fn)
4333 int i;
4334 int n_blocks;
4335 tree *block_vector;
4337 /* For SDB and XCOFF debugging output, we start numbering the blocks
4338 from 1 within each function, rather than keeping a running
4339 count. */
4340 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4341 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4342 next_block_index = 1;
4343 #endif
4345 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4347 /* The top-level BLOCK isn't numbered at all. */
4348 for (i = 1; i < n_blocks; ++i)
4349 /* We number the blocks from two. */
4350 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4352 free (block_vector);
4354 return;
4357 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4359 DEBUG_FUNCTION tree
4360 debug_find_var_in_block_tree (tree var, tree block)
4362 tree t;
4364 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4365 if (t == var)
4366 return block;
4368 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4370 tree ret = debug_find_var_in_block_tree (var, t);
4371 if (ret)
4372 return ret;
4375 return NULL_TREE;
4378 /* Keep track of whether we're in a dummy function context. If we are,
4379 we don't want to invoke the set_current_function hook, because we'll
4380 get into trouble if the hook calls target_reinit () recursively or
4381 when the initial initialization is not yet complete. */
4383 static bool in_dummy_function;
4385 /* Invoke the target hook when setting cfun. Update the optimization options
4386 if the function uses different options than the default. */
4388 static void
4389 invoke_set_current_function_hook (tree fndecl)
4391 if (!in_dummy_function)
4393 tree opts = ((fndecl)
4394 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4395 : optimization_default_node);
4397 if (!opts)
4398 opts = optimization_default_node;
4400 /* Change optimization options if needed. */
4401 if (optimization_current_node != opts)
4403 optimization_current_node = opts;
4404 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4407 targetm.set_current_function (fndecl);
4411 /* cfun should never be set directly; use this function. */
4413 void
4414 set_cfun (struct function *new_cfun)
4416 if (cfun != new_cfun)
4418 cfun = new_cfun;
4419 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4423 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4425 static VEC(function_p,heap) *cfun_stack;
4427 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4429 void
4430 push_cfun (struct function *new_cfun)
4432 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4433 set_cfun (new_cfun);
4436 /* Pop cfun from the stack. */
4438 void
4439 pop_cfun (void)
4441 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4442 set_cfun (new_cfun);
4445 /* Return value of funcdef and increase it. */
4447 get_next_funcdef_no (void)
4449 return funcdef_no++;
4452 /* Return value of funcdef. */
4454 get_last_funcdef_no (void)
4456 return funcdef_no;
4459 /* Allocate a function structure for FNDECL and set its contents
4460 to the defaults. Set cfun to the newly-allocated object.
4461 Some of the helper functions invoked during initialization assume
4462 that cfun has already been set. Therefore, assign the new object
4463 directly into cfun and invoke the back end hook explicitly at the
4464 very end, rather than initializing a temporary and calling set_cfun
4465 on it.
4467 ABSTRACT_P is true if this is a function that will never be seen by
4468 the middle-end. Such functions are front-end concepts (like C++
4469 function templates) that do not correspond directly to functions
4470 placed in object files. */
4472 void
4473 allocate_struct_function (tree fndecl, bool abstract_p)
4475 tree result;
4476 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4478 cfun = ggc_alloc_cleared_function ();
4480 init_eh_for_function ();
4482 if (init_machine_status)
4483 cfun->machine = (*init_machine_status) ();
4485 #ifdef OVERRIDE_ABI_FORMAT
4486 OVERRIDE_ABI_FORMAT (fndecl);
4487 #endif
4489 invoke_set_current_function_hook (fndecl);
4491 if (fndecl != NULL_TREE)
4493 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4494 cfun->decl = fndecl;
4495 current_function_funcdef_no = get_next_funcdef_no ();
4497 result = DECL_RESULT (fndecl);
4498 if (!abstract_p && aggregate_value_p (result, fndecl))
4500 #ifdef PCC_STATIC_STRUCT_RETURN
4501 cfun->returns_pcc_struct = 1;
4502 #endif
4503 cfun->returns_struct = 1;
4506 cfun->stdarg = stdarg_p (fntype);
4508 /* Assume all registers in stdarg functions need to be saved. */
4509 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4510 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4512 /* ??? This could be set on a per-function basis by the front-end
4513 but is this worth the hassle? */
4514 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4518 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4519 instead of just setting it. */
4521 void
4522 push_struct_function (tree fndecl)
4524 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4525 allocate_struct_function (fndecl, false);
4528 /* Reset crtl and other non-struct-function variables to defaults as
4529 appropriate for emitting rtl at the start of a function. */
4531 static void
4532 prepare_function_start (void)
4534 gcc_assert (!crtl->emit.x_last_insn);
4535 init_temp_slots ();
4536 init_emit ();
4537 init_varasm_status ();
4538 init_expr ();
4539 default_rtl_profile ();
4541 if (flag_stack_usage_info)
4543 cfun->su = ggc_alloc_cleared_stack_usage ();
4544 cfun->su->static_stack_size = -1;
4547 cse_not_expected = ! optimize;
4549 /* Caller save not needed yet. */
4550 caller_save_needed = 0;
4552 /* We haven't done register allocation yet. */
4553 reg_renumber = 0;
4555 /* Indicate that we have not instantiated virtual registers yet. */
4556 virtuals_instantiated = 0;
4558 /* Indicate that we want CONCATs now. */
4559 generating_concat_p = 1;
4561 /* Indicate we have no need of a frame pointer yet. */
4562 frame_pointer_needed = 0;
4565 /* Initialize the rtl expansion mechanism so that we can do simple things
4566 like generate sequences. This is used to provide a context during global
4567 initialization of some passes. You must call expand_dummy_function_end
4568 to exit this context. */
4570 void
4571 init_dummy_function_start (void)
4573 gcc_assert (!in_dummy_function);
4574 in_dummy_function = true;
4575 push_struct_function (NULL_TREE);
4576 prepare_function_start ();
4579 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4580 and initialize static variables for generating RTL for the statements
4581 of the function. */
4583 void
4584 init_function_start (tree subr)
4586 if (subr && DECL_STRUCT_FUNCTION (subr))
4587 set_cfun (DECL_STRUCT_FUNCTION (subr));
4588 else
4589 allocate_struct_function (subr, false);
4590 prepare_function_start ();
4591 decide_function_section (subr);
4593 /* Warn if this value is an aggregate type,
4594 regardless of which calling convention we are using for it. */
4595 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4596 warning (OPT_Waggregate_return, "function returns an aggregate");
4600 void
4601 expand_main_function (void)
4603 #if (defined(INVOKE__main) \
4604 || (!defined(HAS_INIT_SECTION) \
4605 && !defined(INIT_SECTION_ASM_OP) \
4606 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4607 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4608 #endif
4611 /* Expand code to initialize the stack_protect_guard. This is invoked at
4612 the beginning of a function to be protected. */
4614 #ifndef HAVE_stack_protect_set
4615 # define HAVE_stack_protect_set 0
4616 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4617 #endif
4619 void
4620 stack_protect_prologue (void)
4622 tree guard_decl = targetm.stack_protect_guard ();
4623 rtx x, y;
4625 x = expand_normal (crtl->stack_protect_guard);
4626 y = expand_normal (guard_decl);
4628 /* Allow the target to copy from Y to X without leaking Y into a
4629 register. */
4630 if (HAVE_stack_protect_set)
4632 rtx insn = gen_stack_protect_set (x, y);
4633 if (insn)
4635 emit_insn (insn);
4636 return;
4640 /* Otherwise do a straight move. */
4641 emit_move_insn (x, y);
4644 /* Expand code to verify the stack_protect_guard. This is invoked at
4645 the end of a function to be protected. */
4647 #ifndef HAVE_stack_protect_test
4648 # define HAVE_stack_protect_test 0
4649 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4650 #endif
4652 void
4653 stack_protect_epilogue (void)
4655 tree guard_decl = targetm.stack_protect_guard ();
4656 rtx label = gen_label_rtx ();
4657 rtx x, y, tmp;
4659 x = expand_normal (crtl->stack_protect_guard);
4660 y = expand_normal (guard_decl);
4662 /* Allow the target to compare Y with X without leaking either into
4663 a register. */
4664 switch (HAVE_stack_protect_test != 0)
4666 case 1:
4667 tmp = gen_stack_protect_test (x, y, label);
4668 if (tmp)
4670 emit_insn (tmp);
4671 break;
4673 /* FALLTHRU */
4675 default:
4676 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4677 break;
4680 /* The noreturn predictor has been moved to the tree level. The rtl-level
4681 predictors estimate this branch about 20%, which isn't enough to get
4682 things moved out of line. Since this is the only extant case of adding
4683 a noreturn function at the rtl level, it doesn't seem worth doing ought
4684 except adding the prediction by hand. */
4685 tmp = get_last_insn ();
4686 if (JUMP_P (tmp))
4687 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4689 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4690 free_temp_slots ();
4691 emit_label (label);
4694 /* Start the RTL for a new function, and set variables used for
4695 emitting RTL.
4696 SUBR is the FUNCTION_DECL node.
4697 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4698 the function's parameters, which must be run at any return statement. */
4700 void
4701 expand_function_start (tree subr)
4703 /* Make sure volatile mem refs aren't considered
4704 valid operands of arithmetic insns. */
4705 init_recog_no_volatile ();
4707 crtl->profile
4708 = (profile_flag
4709 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4711 crtl->limit_stack
4712 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4714 /* Make the label for return statements to jump to. Do not special
4715 case machines with special return instructions -- they will be
4716 handled later during jump, ifcvt, or epilogue creation. */
4717 return_label = gen_label_rtx ();
4719 /* Initialize rtx used to return the value. */
4720 /* Do this before assign_parms so that we copy the struct value address
4721 before any library calls that assign parms might generate. */
4723 /* Decide whether to return the value in memory or in a register. */
4724 if (aggregate_value_p (DECL_RESULT (subr), subr))
4726 /* Returning something that won't go in a register. */
4727 rtx value_address = 0;
4729 #ifdef PCC_STATIC_STRUCT_RETURN
4730 if (cfun->returns_pcc_struct)
4732 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4733 value_address = assemble_static_space (size);
4735 else
4736 #endif
4738 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4739 /* Expect to be passed the address of a place to store the value.
4740 If it is passed as an argument, assign_parms will take care of
4741 it. */
4742 if (sv)
4744 value_address = gen_reg_rtx (Pmode);
4745 emit_move_insn (value_address, sv);
4748 if (value_address)
4750 rtx x = value_address;
4751 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4753 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4754 set_mem_attributes (x, DECL_RESULT (subr), 1);
4756 SET_DECL_RTL (DECL_RESULT (subr), x);
4759 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4760 /* If return mode is void, this decl rtl should not be used. */
4761 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4762 else
4764 /* Compute the return values into a pseudo reg, which we will copy
4765 into the true return register after the cleanups are done. */
4766 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4767 if (TYPE_MODE (return_type) != BLKmode
4768 && targetm.calls.return_in_msb (return_type))
4769 /* expand_function_end will insert the appropriate padding in
4770 this case. Use the return value's natural (unpadded) mode
4771 within the function proper. */
4772 SET_DECL_RTL (DECL_RESULT (subr),
4773 gen_reg_rtx (TYPE_MODE (return_type)));
4774 else
4776 /* In order to figure out what mode to use for the pseudo, we
4777 figure out what the mode of the eventual return register will
4778 actually be, and use that. */
4779 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4781 /* Structures that are returned in registers are not
4782 aggregate_value_p, so we may see a PARALLEL or a REG. */
4783 if (REG_P (hard_reg))
4784 SET_DECL_RTL (DECL_RESULT (subr),
4785 gen_reg_rtx (GET_MODE (hard_reg)));
4786 else
4788 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4789 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4793 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4794 result to the real return register(s). */
4795 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4798 /* Initialize rtx for parameters and local variables.
4799 In some cases this requires emitting insns. */
4800 assign_parms (subr);
4802 /* If function gets a static chain arg, store it. */
4803 if (cfun->static_chain_decl)
4805 tree parm = cfun->static_chain_decl;
4806 rtx local, chain, insn;
4808 local = gen_reg_rtx (Pmode);
4809 chain = targetm.calls.static_chain (current_function_decl, true);
4811 set_decl_incoming_rtl (parm, chain, false);
4812 SET_DECL_RTL (parm, local);
4813 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4815 insn = emit_move_insn (local, chain);
4817 /* Mark the register as eliminable, similar to parameters. */
4818 if (MEM_P (chain)
4819 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4820 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4823 /* If the function receives a non-local goto, then store the
4824 bits we need to restore the frame pointer. */
4825 if (cfun->nonlocal_goto_save_area)
4827 tree t_save;
4828 rtx r_save;
4830 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4831 gcc_assert (DECL_RTL_SET_P (var));
4833 t_save = build4 (ARRAY_REF,
4834 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4835 cfun->nonlocal_goto_save_area,
4836 integer_zero_node, NULL_TREE, NULL_TREE);
4837 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4838 gcc_assert (GET_MODE (r_save) == Pmode);
4840 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4841 update_nonlocal_goto_save_area ();
4844 /* The following was moved from init_function_start.
4845 The move is supposed to make sdb output more accurate. */
4846 /* Indicate the beginning of the function body,
4847 as opposed to parm setup. */
4848 emit_note (NOTE_INSN_FUNCTION_BEG);
4850 gcc_assert (NOTE_P (get_last_insn ()));
4852 parm_birth_insn = get_last_insn ();
4854 if (crtl->profile)
4856 #ifdef PROFILE_HOOK
4857 PROFILE_HOOK (current_function_funcdef_no);
4858 #endif
4861 /* If we are doing generic stack checking, the probe should go here. */
4862 if (flag_stack_check == GENERIC_STACK_CHECK)
4863 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4866 /* Undo the effects of init_dummy_function_start. */
4867 void
4868 expand_dummy_function_end (void)
4870 gcc_assert (in_dummy_function);
4872 /* End any sequences that failed to be closed due to syntax errors. */
4873 while (in_sequence_p ())
4874 end_sequence ();
4876 /* Outside function body, can't compute type's actual size
4877 until next function's body starts. */
4879 free_after_parsing (cfun);
4880 free_after_compilation (cfun);
4881 pop_cfun ();
4882 in_dummy_function = false;
4885 /* Call DOIT for each hard register used as a return value from
4886 the current function. */
4888 void
4889 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4891 rtx outgoing = crtl->return_rtx;
4893 if (! outgoing)
4894 return;
4896 if (REG_P (outgoing))
4897 (*doit) (outgoing, arg);
4898 else if (GET_CODE (outgoing) == PARALLEL)
4900 int i;
4902 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4904 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4906 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4907 (*doit) (x, arg);
4912 static void
4913 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4915 emit_clobber (reg);
4918 void
4919 clobber_return_register (void)
4921 diddle_return_value (do_clobber_return_reg, NULL);
4923 /* In case we do use pseudo to return value, clobber it too. */
4924 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4926 tree decl_result = DECL_RESULT (current_function_decl);
4927 rtx decl_rtl = DECL_RTL (decl_result);
4928 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4930 do_clobber_return_reg (decl_rtl, NULL);
4935 static void
4936 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4938 emit_use (reg);
4941 static void
4942 use_return_register (void)
4944 diddle_return_value (do_use_return_reg, NULL);
4947 /* Possibly warn about unused parameters. */
4948 void
4949 do_warn_unused_parameter (tree fn)
4951 tree decl;
4953 for (decl = DECL_ARGUMENTS (fn);
4954 decl; decl = DECL_CHAIN (decl))
4955 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4956 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4957 && !TREE_NO_WARNING (decl))
4958 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4961 static GTY(()) rtx initial_trampoline;
4963 /* Generate RTL for the end of the current function. */
4965 void
4966 expand_function_end (void)
4968 rtx clobber_after;
4970 /* If arg_pointer_save_area was referenced only from a nested
4971 function, we will not have initialized it yet. Do that now. */
4972 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4973 get_arg_pointer_save_area ();
4975 /* If we are doing generic stack checking and this function makes calls,
4976 do a stack probe at the start of the function to ensure we have enough
4977 space for another stack frame. */
4978 if (flag_stack_check == GENERIC_STACK_CHECK)
4980 rtx insn, seq;
4982 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4983 if (CALL_P (insn))
4985 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4986 start_sequence ();
4987 if (STACK_CHECK_MOVING_SP)
4988 anti_adjust_stack_and_probe (max_frame_size, true);
4989 else
4990 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4991 seq = get_insns ();
4992 end_sequence ();
4993 set_insn_locators (seq, prologue_locator);
4994 emit_insn_before (seq, stack_check_probe_note);
4995 break;
4999 /* End any sequences that failed to be closed due to syntax errors. */
5000 while (in_sequence_p ())
5001 end_sequence ();
5003 clear_pending_stack_adjust ();
5004 do_pending_stack_adjust ();
5006 /* Output a linenumber for the end of the function.
5007 SDB depends on this. */
5008 set_curr_insn_source_location (input_location);
5010 /* Before the return label (if any), clobber the return
5011 registers so that they are not propagated live to the rest of
5012 the function. This can only happen with functions that drop
5013 through; if there had been a return statement, there would
5014 have either been a return rtx, or a jump to the return label.
5016 We delay actual code generation after the current_function_value_rtx
5017 is computed. */
5018 clobber_after = get_last_insn ();
5020 /* Output the label for the actual return from the function. */
5021 emit_label (return_label);
5023 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5025 /* Let except.c know where it should emit the call to unregister
5026 the function context for sjlj exceptions. */
5027 if (flag_exceptions)
5028 sjlj_emit_function_exit_after (get_last_insn ());
5030 else
5032 /* We want to ensure that instructions that may trap are not
5033 moved into the epilogue by scheduling, because we don't
5034 always emit unwind information for the epilogue. */
5035 if (cfun->can_throw_non_call_exceptions)
5036 emit_insn (gen_blockage ());
5039 /* If this is an implementation of throw, do what's necessary to
5040 communicate between __builtin_eh_return and the epilogue. */
5041 expand_eh_return ();
5043 /* If scalar return value was computed in a pseudo-reg, or was a named
5044 return value that got dumped to the stack, copy that to the hard
5045 return register. */
5046 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5048 tree decl_result = DECL_RESULT (current_function_decl);
5049 rtx decl_rtl = DECL_RTL (decl_result);
5051 if (REG_P (decl_rtl)
5052 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5053 : DECL_REGISTER (decl_result))
5055 rtx real_decl_rtl = crtl->return_rtx;
5057 /* This should be set in assign_parms. */
5058 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5060 /* If this is a BLKmode structure being returned in registers,
5061 then use the mode computed in expand_return. Note that if
5062 decl_rtl is memory, then its mode may have been changed,
5063 but that crtl->return_rtx has not. */
5064 if (GET_MODE (real_decl_rtl) == BLKmode)
5065 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5067 /* If a non-BLKmode return value should be padded at the least
5068 significant end of the register, shift it left by the appropriate
5069 amount. BLKmode results are handled using the group load/store
5070 machinery. */
5071 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5072 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5074 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5075 REGNO (real_decl_rtl)),
5076 decl_rtl);
5077 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5079 /* If a named return value dumped decl_return to memory, then
5080 we may need to re-do the PROMOTE_MODE signed/unsigned
5081 extension. */
5082 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5084 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5085 promote_function_mode (TREE_TYPE (decl_result),
5086 GET_MODE (decl_rtl), &unsignedp,
5087 TREE_TYPE (current_function_decl), 1);
5089 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5091 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5093 /* If expand_function_start has created a PARALLEL for decl_rtl,
5094 move the result to the real return registers. Otherwise, do
5095 a group load from decl_rtl for a named return. */
5096 if (GET_CODE (decl_rtl) == PARALLEL)
5097 emit_group_move (real_decl_rtl, decl_rtl);
5098 else
5099 emit_group_load (real_decl_rtl, decl_rtl,
5100 TREE_TYPE (decl_result),
5101 int_size_in_bytes (TREE_TYPE (decl_result)));
5103 /* In the case of complex integer modes smaller than a word, we'll
5104 need to generate some non-trivial bitfield insertions. Do that
5105 on a pseudo and not the hard register. */
5106 else if (GET_CODE (decl_rtl) == CONCAT
5107 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5108 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5110 int old_generating_concat_p;
5111 rtx tmp;
5113 old_generating_concat_p = generating_concat_p;
5114 generating_concat_p = 0;
5115 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5116 generating_concat_p = old_generating_concat_p;
5118 emit_move_insn (tmp, decl_rtl);
5119 emit_move_insn (real_decl_rtl, tmp);
5121 else
5122 emit_move_insn (real_decl_rtl, decl_rtl);
5126 /* If returning a structure, arrange to return the address of the value
5127 in a place where debuggers expect to find it.
5129 If returning a structure PCC style,
5130 the caller also depends on this value.
5131 And cfun->returns_pcc_struct is not necessarily set. */
5132 if (cfun->returns_struct
5133 || cfun->returns_pcc_struct)
5135 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5136 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5137 rtx outgoing;
5139 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5140 type = TREE_TYPE (type);
5141 else
5142 value_address = XEXP (value_address, 0);
5144 outgoing = targetm.calls.function_value (build_pointer_type (type),
5145 current_function_decl, true);
5147 /* Mark this as a function return value so integrate will delete the
5148 assignment and USE below when inlining this function. */
5149 REG_FUNCTION_VALUE_P (outgoing) = 1;
5151 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5152 value_address = convert_memory_address (GET_MODE (outgoing),
5153 value_address);
5155 emit_move_insn (outgoing, value_address);
5157 /* Show return register used to hold result (in this case the address
5158 of the result. */
5159 crtl->return_rtx = outgoing;
5162 /* Emit the actual code to clobber return register. */
5164 rtx seq;
5166 start_sequence ();
5167 clobber_return_register ();
5168 seq = get_insns ();
5169 end_sequence ();
5171 emit_insn_after (seq, clobber_after);
5174 /* Output the label for the naked return from the function. */
5175 if (naked_return_label)
5176 emit_label (naked_return_label);
5178 /* @@@ This is a kludge. We want to ensure that instructions that
5179 may trap are not moved into the epilogue by scheduling, because
5180 we don't always emit unwind information for the epilogue. */
5181 if (cfun->can_throw_non_call_exceptions
5182 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5183 emit_insn (gen_blockage ());
5185 /* If stack protection is enabled for this function, check the guard. */
5186 if (crtl->stack_protect_guard)
5187 stack_protect_epilogue ();
5189 /* If we had calls to alloca, and this machine needs
5190 an accurate stack pointer to exit the function,
5191 insert some code to save and restore the stack pointer. */
5192 if (! EXIT_IGNORE_STACK
5193 && cfun->calls_alloca)
5195 rtx tem = 0, seq;
5197 start_sequence ();
5198 emit_stack_save (SAVE_FUNCTION, &tem);
5199 seq = get_insns ();
5200 end_sequence ();
5201 emit_insn_before (seq, parm_birth_insn);
5203 emit_stack_restore (SAVE_FUNCTION, tem);
5206 /* ??? This should no longer be necessary since stupid is no longer with
5207 us, but there are some parts of the compiler (eg reload_combine, and
5208 sh mach_dep_reorg) that still try and compute their own lifetime info
5209 instead of using the general framework. */
5210 use_return_register ();
5214 get_arg_pointer_save_area (void)
5216 rtx ret = arg_pointer_save_area;
5218 if (! ret)
5220 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5221 arg_pointer_save_area = ret;
5224 if (! crtl->arg_pointer_save_area_init)
5226 rtx seq;
5228 /* Save the arg pointer at the beginning of the function. The
5229 generated stack slot may not be a valid memory address, so we
5230 have to check it and fix it if necessary. */
5231 start_sequence ();
5232 emit_move_insn (validize_mem (ret),
5233 crtl->args.internal_arg_pointer);
5234 seq = get_insns ();
5235 end_sequence ();
5237 push_topmost_sequence ();
5238 emit_insn_after (seq, entry_of_function ());
5239 pop_topmost_sequence ();
5241 crtl->arg_pointer_save_area_init = true;
5244 return ret;
5247 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5248 for the first time. */
5250 static void
5251 record_insns (rtx insns, rtx end, htab_t *hashp)
5253 rtx tmp;
5254 htab_t hash = *hashp;
5256 if (hash == NULL)
5257 *hashp = hash
5258 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5260 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5262 void **slot = htab_find_slot (hash, tmp, INSERT);
5263 gcc_assert (*slot == NULL);
5264 *slot = tmp;
5268 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5269 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5270 insn, then record COPY as well. */
5272 void
5273 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5275 htab_t hash;
5276 void **slot;
5278 hash = epilogue_insn_hash;
5279 if (!hash || !htab_find (hash, insn))
5281 hash = prologue_insn_hash;
5282 if (!hash || !htab_find (hash, insn))
5283 return;
5286 slot = htab_find_slot (hash, copy, INSERT);
5287 gcc_assert (*slot == NULL);
5288 *slot = copy;
5291 /* Set the locator of the insn chain starting at INSN to LOC. */
5292 static void
5293 set_insn_locators (rtx insn, int loc)
5295 while (insn != NULL_RTX)
5297 if (INSN_P (insn))
5298 INSN_LOCATOR (insn) = loc;
5299 insn = NEXT_INSN (insn);
5303 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5304 we can be running after reorg, SEQUENCE rtl is possible. */
5306 static bool
5307 contains (const_rtx insn, htab_t hash)
5309 if (hash == NULL)
5310 return false;
5312 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5314 int i;
5315 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5316 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5317 return true;
5318 return false;
5321 return htab_find (hash, insn) != NULL;
5325 prologue_epilogue_contains (const_rtx insn)
5327 if (contains (insn, prologue_insn_hash))
5328 return 1;
5329 if (contains (insn, epilogue_insn_hash))
5330 return 1;
5331 return 0;
5334 #ifdef HAVE_simple_return
5336 /* Return true if INSN requires the stack frame to be set up.
5337 PROLOGUE_USED contains the hard registers used in the function
5338 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5339 prologue to set up for the function. */
5340 bool
5341 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5342 HARD_REG_SET set_up_by_prologue)
5344 df_ref *df_rec;
5345 HARD_REG_SET hardregs;
5346 unsigned regno;
5348 if (CALL_P (insn))
5349 return !SIBLING_CALL_P (insn);
5351 /* We need a frame to get the unique CFA expected by the unwinder. */
5352 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5353 return true;
5355 CLEAR_HARD_REG_SET (hardregs);
5356 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5358 rtx dreg = DF_REF_REG (*df_rec);
5360 if (!REG_P (dreg))
5361 continue;
5363 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5364 REGNO (dreg));
5366 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5367 return true;
5368 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5369 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5370 if (TEST_HARD_REG_BIT (hardregs, regno)
5371 && df_regs_ever_live_p (regno))
5372 return true;
5374 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5376 rtx reg = DF_REF_REG (*df_rec);
5378 if (!REG_P (reg))
5379 continue;
5381 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5382 REGNO (reg));
5384 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5385 return true;
5387 return false;
5390 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5391 and if BB is its only predecessor. Return that block if so,
5392 otherwise return null. */
5394 static basic_block
5395 next_block_for_reg (basic_block bb, int regno, int end_regno)
5397 edge e, live_edge;
5398 edge_iterator ei;
5399 bitmap live;
5400 int i;
5402 live_edge = NULL;
5403 FOR_EACH_EDGE (e, ei, bb->succs)
5405 live = df_get_live_in (e->dest);
5406 for (i = regno; i < end_regno; i++)
5407 if (REGNO_REG_SET_P (live, i))
5409 if (live_edge && live_edge != e)
5410 return NULL;
5411 live_edge = e;
5415 /* We can sometimes encounter dead code. Don't try to move it
5416 into the exit block. */
5417 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5418 return NULL;
5420 /* Reject targets of abnormal edges. This is needed for correctness
5421 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5422 exception edges even though it is generally treated as call-saved
5423 for the majority of the compilation. Moving across abnormal edges
5424 isn't going to be interesting for shrink-wrap usage anyway. */
5425 if (live_edge->flags & EDGE_ABNORMAL)
5426 return NULL;
5428 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5429 return NULL;
5431 return live_edge->dest;
5434 /* Try to move INSN from BB to a successor. Return true on success.
5435 USES and DEFS are the set of registers that are used and defined
5436 after INSN in BB. */
5438 static bool
5439 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5440 const HARD_REG_SET uses,
5441 const HARD_REG_SET defs)
5443 rtx set, src, dest;
5444 bitmap live_out, live_in, bb_uses, bb_defs;
5445 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5446 basic_block next_block;
5448 /* Look for a simple register copy. */
5449 set = single_set (insn);
5450 if (!set)
5451 return false;
5452 src = SET_SRC (set);
5453 dest = SET_DEST (set);
5454 if (!REG_P (dest) || !REG_P (src))
5455 return false;
5457 /* Make sure that the source register isn't defined later in BB. */
5458 sregno = REGNO (src);
5459 end_sregno = END_REGNO (src);
5460 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5461 return false;
5463 /* Make sure that the destination register isn't referenced later in BB. */
5464 dregno = REGNO (dest);
5465 end_dregno = END_REGNO (dest);
5466 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5467 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5468 return false;
5470 /* See whether there is a successor block to which we could move INSN. */
5471 next_block = next_block_for_reg (bb, dregno, end_dregno);
5472 if (!next_block)
5473 return false;
5475 /* At this point we are committed to moving INSN, but let's try to
5476 move it as far as we can. */
5479 live_out = df_get_live_out (bb);
5480 live_in = df_get_live_in (next_block);
5481 bb = next_block;
5483 /* Check whether BB uses DEST or clobbers DEST. We need to add
5484 INSN to BB if so. Either way, DEST is no longer live on entry,
5485 except for any part that overlaps SRC (next loop). */
5486 bb_uses = &DF_LR_BB_INFO (bb)->use;
5487 bb_defs = &DF_LR_BB_INFO (bb)->def;
5488 for (i = dregno; i < end_dregno; i++)
5490 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5491 next_block = NULL;
5492 CLEAR_REGNO_REG_SET (live_out, i);
5493 CLEAR_REGNO_REG_SET (live_in, i);
5496 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5497 Either way, SRC is now live on entry. */
5498 for (i = sregno; i < end_sregno; i++)
5500 if (REGNO_REG_SET_P (bb_defs, i))
5501 next_block = NULL;
5502 SET_REGNO_REG_SET (live_out, i);
5503 SET_REGNO_REG_SET (live_in, i);
5506 /* If we don't need to add the move to BB, look for a single
5507 successor block. */
5508 if (next_block)
5509 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5511 while (next_block);
5513 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5514 (next loop). */
5515 for (i = dregno; i < end_dregno; i++)
5517 CLEAR_REGNO_REG_SET (bb_uses, i);
5518 SET_REGNO_REG_SET (bb_defs, i);
5521 /* BB now uses SRC. */
5522 for (i = sregno; i < end_sregno; i++)
5523 SET_REGNO_REG_SET (bb_uses, i);
5525 emit_insn_after (PATTERN (insn), bb_note (bb));
5526 delete_insn (insn);
5527 return true;
5530 /* Look for register copies in the first block of the function, and move
5531 them down into successor blocks if the register is used only on one
5532 path. This exposes more opportunities for shrink-wrapping. These
5533 kinds of sets often occur when incoming argument registers are moved
5534 to call-saved registers because their values are live across one or
5535 more calls during the function. */
5537 static void
5538 prepare_shrink_wrap (basic_block entry_block)
5540 rtx insn, curr, x;
5541 HARD_REG_SET uses, defs;
5542 df_ref *ref;
5544 CLEAR_HARD_REG_SET (uses);
5545 CLEAR_HARD_REG_SET (defs);
5546 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5547 if (NONDEBUG_INSN_P (insn)
5548 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5550 /* Add all defined registers to DEFs. */
5551 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5553 x = DF_REF_REG (*ref);
5554 if (REG_P (x) && HARD_REGISTER_P (x))
5555 SET_HARD_REG_BIT (defs, REGNO (x));
5558 /* Add all used registers to USESs. */
5559 for (ref = DF_INSN_USES (insn); *ref; ref++)
5561 x = DF_REF_REG (*ref);
5562 if (REG_P (x) && HARD_REGISTER_P (x))
5563 SET_HARD_REG_BIT (uses, REGNO (x));
5568 #endif
5570 #ifdef HAVE_return
5571 /* Insert use of return register before the end of BB. */
5573 static void
5574 emit_use_return_register_into_block (basic_block bb)
5576 rtx seq;
5577 start_sequence ();
5578 use_return_register ();
5579 seq = get_insns ();
5580 end_sequence ();
5581 emit_insn_before (seq, BB_END (bb));
5585 /* Create a return pattern, either simple_return or return, depending on
5586 simple_p. */
5588 static rtx
5589 gen_return_pattern (bool simple_p)
5591 #ifdef HAVE_simple_return
5592 return simple_p ? gen_simple_return () : gen_return ();
5593 #else
5594 gcc_assert (!simple_p);
5595 return gen_return ();
5596 #endif
5599 /* Insert an appropriate return pattern at the end of block BB. This
5600 also means updating block_for_insn appropriately. SIMPLE_P is
5601 the same as in gen_return_pattern and passed to it. */
5603 static void
5604 emit_return_into_block (bool simple_p, basic_block bb)
5606 rtx jump, pat;
5607 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5608 pat = PATTERN (jump);
5609 if (GET_CODE (pat) == PARALLEL)
5610 pat = XVECEXP (pat, 0, 0);
5611 gcc_assert (ANY_RETURN_P (pat));
5612 JUMP_LABEL (jump) = pat;
5614 #endif
5616 /* Set JUMP_LABEL for a return insn. */
5618 void
5619 set_return_jump_label (rtx returnjump)
5621 rtx pat = PATTERN (returnjump);
5622 if (GET_CODE (pat) == PARALLEL)
5623 pat = XVECEXP (pat, 0, 0);
5624 if (ANY_RETURN_P (pat))
5625 JUMP_LABEL (returnjump) = pat;
5626 else
5627 JUMP_LABEL (returnjump) = ret_rtx;
5630 #ifdef HAVE_simple_return
5631 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5632 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5633 static void
5634 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5635 bitmap_head *need_prologue)
5637 edge_iterator ei;
5638 edge e;
5639 rtx insn = BB_END (bb);
5641 /* We know BB has a single successor, so there is no need to copy a
5642 simple jump at the end of BB. */
5643 if (simplejump_p (insn))
5644 insn = PREV_INSN (insn);
5646 start_sequence ();
5647 duplicate_insn_chain (BB_HEAD (bb), insn);
5648 if (dump_file)
5650 unsigned count = 0;
5651 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5652 if (active_insn_p (insn))
5653 ++count;
5654 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5655 bb->index, copy_bb->index, count);
5657 insn = get_insns ();
5658 end_sequence ();
5659 emit_insn_before (insn, before);
5661 /* Redirect all the paths that need no prologue into copy_bb. */
5662 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5663 if (!bitmap_bit_p (need_prologue, e->src->index))
5665 redirect_edge_and_branch_force (e, copy_bb);
5666 continue;
5668 else
5669 ei_next (&ei);
5671 #endif
5673 #if defined (HAVE_return) || defined (HAVE_simple_return)
5674 /* Return true if there are any active insns between HEAD and TAIL. */
5675 static bool
5676 active_insn_between (rtx head, rtx tail)
5678 while (tail)
5680 if (active_insn_p (tail))
5681 return true;
5682 if (tail == head)
5683 return false;
5684 tail = PREV_INSN (tail);
5686 return false;
5689 /* LAST_BB is a block that exits, and empty of active instructions.
5690 Examine its predecessors for jumps that can be converted to
5691 (conditional) returns. */
5692 static VEC (edge, heap) *
5693 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5694 VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5696 int i;
5697 basic_block bb;
5698 rtx label;
5699 edge_iterator ei;
5700 edge e;
5701 VEC(basic_block,heap) *src_bbs;
5703 src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5704 FOR_EACH_EDGE (e, ei, last_bb->preds)
5705 if (e->src != ENTRY_BLOCK_PTR)
5706 VEC_quick_push (basic_block, src_bbs, e->src);
5708 label = BB_HEAD (last_bb);
5710 FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
5712 rtx jump = BB_END (bb);
5714 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5715 continue;
5717 e = find_edge (bb, last_bb);
5719 /* If we have an unconditional jump, we can replace that
5720 with a simple return instruction. */
5721 if (simplejump_p (jump))
5723 /* The use of the return register might be present in the exit
5724 fallthru block. Either:
5725 - removing the use is safe, and we should remove the use in
5726 the exit fallthru block, or
5727 - removing the use is not safe, and we should add it here.
5728 For now, we conservatively choose the latter. Either of the
5729 2 helps in crossjumping. */
5730 emit_use_return_register_into_block (bb);
5732 emit_return_into_block (simple_p, bb);
5733 delete_insn (jump);
5736 /* If we have a conditional jump branching to the last
5737 block, we can try to replace that with a conditional
5738 return instruction. */
5739 else if (condjump_p (jump))
5741 rtx dest;
5743 if (simple_p)
5744 dest = simple_return_rtx;
5745 else
5746 dest = ret_rtx;
5747 if (!redirect_jump (jump, dest, 0))
5749 #ifdef HAVE_simple_return
5750 if (simple_p)
5752 if (dump_file)
5753 fprintf (dump_file,
5754 "Failed to redirect bb %d branch.\n", bb->index);
5755 VEC_safe_push (edge, heap, unconverted, e);
5757 #endif
5758 continue;
5761 /* See comment in simplejump_p case above. */
5762 emit_use_return_register_into_block (bb);
5764 /* If this block has only one successor, it both jumps
5765 and falls through to the fallthru block, so we can't
5766 delete the edge. */
5767 if (single_succ_p (bb))
5768 continue;
5770 else
5772 #ifdef HAVE_simple_return
5773 if (simple_p)
5775 if (dump_file)
5776 fprintf (dump_file,
5777 "Failed to redirect bb %d branch.\n", bb->index);
5778 VEC_safe_push (edge, heap, unconverted, e);
5780 #endif
5781 continue;
5784 /* Fix up the CFG for the successful change we just made. */
5785 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5786 e->flags &= ~EDGE_CROSSING;
5788 VEC_free (basic_block, heap, src_bbs);
5789 return unconverted;
5792 /* Emit a return insn for the exit fallthru block. */
5793 static basic_block
5794 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5796 basic_block last_bb = exit_fallthru_edge->src;
5798 if (JUMP_P (BB_END (last_bb)))
5800 last_bb = split_edge (exit_fallthru_edge);
5801 exit_fallthru_edge = single_succ_edge (last_bb);
5803 emit_barrier_after (BB_END (last_bb));
5804 emit_return_into_block (simple_p, last_bb);
5805 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5806 return last_bb;
5808 #endif
5811 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5812 this into place with notes indicating where the prologue ends and where
5813 the epilogue begins. Update the basic block information when possible.
5815 Notes on epilogue placement:
5816 There are several kinds of edges to the exit block:
5817 * a single fallthru edge from LAST_BB
5818 * possibly, edges from blocks containing sibcalls
5819 * possibly, fake edges from infinite loops
5821 The epilogue is always emitted on the fallthru edge from the last basic
5822 block in the function, LAST_BB, into the exit block.
5824 If LAST_BB is empty except for a label, it is the target of every
5825 other basic block in the function that ends in a return. If a
5826 target has a return or simple_return pattern (possibly with
5827 conditional variants), these basic blocks can be changed so that a
5828 return insn is emitted into them, and their target is adjusted to
5829 the real exit block.
5831 Notes on shrink wrapping: We implement a fairly conservative
5832 version of shrink-wrapping rather than the textbook one. We only
5833 generate a single prologue and a single epilogue. This is
5834 sufficient to catch a number of interesting cases involving early
5835 exits.
5837 First, we identify the blocks that require the prologue to occur before
5838 them. These are the ones that modify a call-saved register, or reference
5839 any of the stack or frame pointer registers. To simplify things, we then
5840 mark everything reachable from these blocks as also requiring a prologue.
5841 This takes care of loops automatically, and avoids the need to examine
5842 whether MEMs reference the frame, since it is sufficient to check for
5843 occurrences of the stack or frame pointer.
5845 We then compute the set of blocks for which the need for a prologue
5846 is anticipatable (borrowing terminology from the shrink-wrapping
5847 description in Muchnick's book). These are the blocks which either
5848 require a prologue themselves, or those that have only successors
5849 where the prologue is anticipatable. The prologue needs to be
5850 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5851 is not. For the moment, we ensure that only one such edge exists.
5853 The epilogue is placed as described above, but we make a
5854 distinction between inserting return and simple_return patterns
5855 when modifying other blocks that end in a return. Blocks that end
5856 in a sibcall omit the sibcall_epilogue if the block is not in
5857 ANTIC. */
5859 static void
5860 thread_prologue_and_epilogue_insns (void)
5862 bool inserted;
5863 #ifdef HAVE_simple_return
5864 VEC (edge, heap) *unconverted_simple_returns = NULL;
5865 bool nonempty_prologue;
5866 bitmap_head bb_flags;
5867 unsigned max_grow_size;
5868 #endif
5869 rtx returnjump;
5870 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5871 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5872 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5873 edge_iterator ei;
5875 df_analyze ();
5877 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5879 inserted = false;
5880 seq = NULL_RTX;
5881 epilogue_end = NULL_RTX;
5882 returnjump = NULL_RTX;
5884 /* Can't deal with multiple successors of the entry block at the
5885 moment. Function should always have at least one entry
5886 point. */
5887 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5888 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5889 orig_entry_edge = entry_edge;
5891 split_prologue_seq = NULL_RTX;
5892 if (flag_split_stack
5893 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5894 == NULL))
5896 #ifndef HAVE_split_stack_prologue
5897 gcc_unreachable ();
5898 #else
5899 gcc_assert (HAVE_split_stack_prologue);
5901 start_sequence ();
5902 emit_insn (gen_split_stack_prologue ());
5903 split_prologue_seq = get_insns ();
5904 end_sequence ();
5906 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5907 set_insn_locators (split_prologue_seq, prologue_locator);
5908 #endif
5911 prologue_seq = NULL_RTX;
5912 #ifdef HAVE_prologue
5913 if (HAVE_prologue)
5915 start_sequence ();
5916 seq = gen_prologue ();
5917 emit_insn (seq);
5919 /* Insert an explicit USE for the frame pointer
5920 if the profiling is on and the frame pointer is required. */
5921 if (crtl->profile && frame_pointer_needed)
5922 emit_use (hard_frame_pointer_rtx);
5924 /* Retain a map of the prologue insns. */
5925 record_insns (seq, NULL, &prologue_insn_hash);
5926 emit_note (NOTE_INSN_PROLOGUE_END);
5928 /* Ensure that instructions are not moved into the prologue when
5929 profiling is on. The call to the profiling routine can be
5930 emitted within the live range of a call-clobbered register. */
5931 if (!targetm.profile_before_prologue () && crtl->profile)
5932 emit_insn (gen_blockage ());
5934 prologue_seq = get_insns ();
5935 end_sequence ();
5936 set_insn_locators (prologue_seq, prologue_locator);
5938 #endif
5940 #ifdef HAVE_simple_return
5941 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5943 /* Try to perform a kind of shrink-wrapping, making sure the
5944 prologue/epilogue is emitted only around those parts of the
5945 function that require it. */
5947 nonempty_prologue = false;
5948 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5949 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5951 nonempty_prologue = true;
5952 break;
5955 if (flag_shrink_wrap && HAVE_simple_return
5956 && (targetm.profile_before_prologue () || !crtl->profile)
5957 && nonempty_prologue && !crtl->calls_eh_return)
5959 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5960 struct hard_reg_set_container set_up_by_prologue;
5961 rtx p_insn;
5962 VEC(basic_block, heap) *vec;
5963 basic_block bb;
5964 bitmap_head bb_antic_flags;
5965 bitmap_head bb_on_list;
5966 bitmap_head bb_tail;
5968 if (dump_file)
5969 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5971 /* Compute the registers set and used in the prologue. */
5972 CLEAR_HARD_REG_SET (prologue_clobbered);
5973 CLEAR_HARD_REG_SET (prologue_used);
5974 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5976 HARD_REG_SET this_used;
5977 if (!NONDEBUG_INSN_P (p_insn))
5978 continue;
5980 CLEAR_HARD_REG_SET (this_used);
5981 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5982 &this_used);
5983 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5984 IOR_HARD_REG_SET (prologue_used, this_used);
5985 note_stores (PATTERN (p_insn), record_hard_reg_sets,
5986 &prologue_clobbered);
5989 prepare_shrink_wrap (entry_edge->dest);
5991 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
5992 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
5993 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
5995 /* Find the set of basic blocks that require a stack frame,
5996 and blocks that are too big to be duplicated. */
5998 vec = VEC_alloc (basic_block, heap, n_basic_blocks);
6000 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6001 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6002 STACK_POINTER_REGNUM);
6003 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6004 if (frame_pointer_needed)
6005 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6006 HARD_FRAME_POINTER_REGNUM);
6007 if (pic_offset_table_rtx)
6008 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6009 PIC_OFFSET_TABLE_REGNUM);
6010 if (stack_realign_drap && crtl->drap_reg)
6011 add_to_hard_reg_set (&set_up_by_prologue.set,
6012 GET_MODE (crtl->drap_reg),
6013 REGNO (crtl->drap_reg));
6014 if (targetm.set_up_by_prologue)
6015 targetm.set_up_by_prologue (&set_up_by_prologue);
6017 /* We don't use a different max size depending on
6018 optimize_bb_for_speed_p because increasing shrink-wrapping
6019 opportunities by duplicating tail blocks can actually result
6020 in an overall decrease in code size. */
6021 max_grow_size = get_uncond_jump_length ();
6022 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6024 FOR_EACH_BB (bb)
6026 rtx insn;
6027 unsigned size = 0;
6029 FOR_BB_INSNS (bb, insn)
6030 if (NONDEBUG_INSN_P (insn))
6032 if (requires_stack_frame_p (insn, prologue_used,
6033 set_up_by_prologue.set))
6035 if (bb == entry_edge->dest)
6036 goto fail_shrinkwrap;
6037 bitmap_set_bit (&bb_flags, bb->index);
6038 VEC_quick_push (basic_block, vec, bb);
6039 break;
6041 else if (size <= max_grow_size)
6043 size += get_attr_min_length (insn);
6044 if (size > max_grow_size)
6045 bitmap_set_bit (&bb_on_list, bb->index);
6050 /* Blocks that really need a prologue, or are too big for tails. */
6051 bitmap_ior_into (&bb_on_list, &bb_flags);
6053 /* For every basic block that needs a prologue, mark all blocks
6054 reachable from it, so as to ensure they are also seen as
6055 requiring a prologue. */
6056 while (!VEC_empty (basic_block, vec))
6058 basic_block tmp_bb = VEC_pop (basic_block, vec);
6060 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6061 if (e->dest != EXIT_BLOCK_PTR
6062 && bitmap_set_bit (&bb_flags, e->dest->index))
6063 VEC_quick_push (basic_block, vec, e->dest);
6066 /* Find the set of basic blocks that need no prologue, have a
6067 single successor, can be duplicated, meet a max size
6068 requirement, and go to the exit via like blocks. */
6069 VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
6070 while (!VEC_empty (basic_block, vec))
6072 basic_block tmp_bb = VEC_pop (basic_block, vec);
6074 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6075 if (single_succ_p (e->src)
6076 && !bitmap_bit_p (&bb_on_list, e->src->index)
6077 && can_duplicate_block_p (e->src))
6079 edge pe;
6080 edge_iterator pei;
6082 /* If there is predecessor of e->src which doesn't
6083 need prologue and the edge is complex,
6084 we might not be able to redirect the branch
6085 to a copy of e->src. */
6086 FOR_EACH_EDGE (pe, pei, e->src->preds)
6087 if ((pe->flags & EDGE_COMPLEX) != 0
6088 && !bitmap_bit_p (&bb_flags, pe->src->index))
6089 break;
6090 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6091 VEC_quick_push (basic_block, vec, e->src);
6095 /* Now walk backwards from every block that is marked as needing
6096 a prologue to compute the bb_antic_flags bitmap. Exclude
6097 tail blocks; They can be duplicated to be used on paths not
6098 needing a prologue. */
6099 bitmap_clear (&bb_on_list);
6100 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6101 FOR_EACH_BB (bb)
6103 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6104 continue;
6105 FOR_EACH_EDGE (e, ei, bb->preds)
6106 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6107 && bitmap_set_bit (&bb_on_list, e->src->index))
6108 VEC_quick_push (basic_block, vec, e->src);
6110 while (!VEC_empty (basic_block, vec))
6112 basic_block tmp_bb = VEC_pop (basic_block, vec);
6113 bool all_set = true;
6115 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6116 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6117 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6119 all_set = false;
6120 break;
6123 if (all_set)
6125 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6126 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6127 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6128 && bitmap_set_bit (&bb_on_list, e->src->index))
6129 VEC_quick_push (basic_block, vec, e->src);
6132 /* Find exactly one edge that leads to a block in ANTIC from
6133 a block that isn't. */
6134 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6135 FOR_EACH_BB (bb)
6137 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6138 continue;
6139 FOR_EACH_EDGE (e, ei, bb->preds)
6140 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6142 if (entry_edge != orig_entry_edge)
6144 entry_edge = orig_entry_edge;
6145 if (dump_file)
6146 fprintf (dump_file, "More than one candidate edge.\n");
6147 goto fail_shrinkwrap;
6149 if (dump_file)
6150 fprintf (dump_file, "Found candidate edge for "
6151 "shrink-wrapping, %d->%d.\n", e->src->index,
6152 e->dest->index);
6153 entry_edge = e;
6157 if (entry_edge != orig_entry_edge)
6159 /* Test whether the prologue is known to clobber any register
6160 (other than FP or SP) which are live on the edge. */
6161 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6162 if (frame_pointer_needed)
6163 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6164 CLEAR_HARD_REG_SET (live_on_edge);
6165 reg_set_to_hard_reg_set (&live_on_edge,
6166 df_get_live_in (entry_edge->dest));
6167 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6169 entry_edge = orig_entry_edge;
6170 if (dump_file)
6171 fprintf (dump_file,
6172 "Shrink-wrapping aborted due to clobber.\n");
6175 if (entry_edge != orig_entry_edge)
6177 crtl->shrink_wrapped = true;
6178 if (dump_file)
6179 fprintf (dump_file, "Performing shrink-wrapping.\n");
6181 /* Find tail blocks reachable from both blocks needing a
6182 prologue and blocks not needing a prologue. */
6183 if (!bitmap_empty_p (&bb_tail))
6184 FOR_EACH_BB (bb)
6186 bool some_pro, some_no_pro;
6187 if (!bitmap_bit_p (&bb_tail, bb->index))
6188 continue;
6189 some_pro = some_no_pro = false;
6190 FOR_EACH_EDGE (e, ei, bb->preds)
6192 if (bitmap_bit_p (&bb_flags, e->src->index))
6193 some_pro = true;
6194 else
6195 some_no_pro = true;
6197 if (some_pro && some_no_pro)
6198 VEC_quick_push (basic_block, vec, bb);
6199 else
6200 bitmap_clear_bit (&bb_tail, bb->index);
6202 /* Find the head of each tail. */
6203 while (!VEC_empty (basic_block, vec))
6205 basic_block tbb = VEC_pop (basic_block, vec);
6207 if (!bitmap_bit_p (&bb_tail, tbb->index))
6208 continue;
6210 while (single_succ_p (tbb))
6212 tbb = single_succ (tbb);
6213 bitmap_clear_bit (&bb_tail, tbb->index);
6216 /* Now duplicate the tails. */
6217 if (!bitmap_empty_p (&bb_tail))
6218 FOR_EACH_BB_REVERSE (bb)
6220 basic_block copy_bb, tbb;
6221 rtx insert_point;
6222 int eflags;
6224 if (!bitmap_clear_bit (&bb_tail, bb->index))
6225 continue;
6227 /* Create a copy of BB, instructions and all, for
6228 use on paths that don't need a prologue.
6229 Ideal placement of the copy is on a fall-thru edge
6230 or after a block that would jump to the copy. */
6231 FOR_EACH_EDGE (e, ei, bb->preds)
6232 if (!bitmap_bit_p (&bb_flags, e->src->index)
6233 && single_succ_p (e->src))
6234 break;
6235 if (e)
6237 copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6238 NULL_RTX, e->src);
6239 BB_COPY_PARTITION (copy_bb, e->src);
6241 else
6243 /* Otherwise put the copy at the end of the function. */
6244 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6245 EXIT_BLOCK_PTR->prev_bb);
6246 BB_COPY_PARTITION (copy_bb, bb);
6249 insert_point = emit_note_after (NOTE_INSN_DELETED,
6250 BB_END (copy_bb));
6251 emit_barrier_after (BB_END (copy_bb));
6253 tbb = bb;
6254 while (1)
6256 dup_block_and_redirect (tbb, copy_bb, insert_point,
6257 &bb_flags);
6258 tbb = single_succ (tbb);
6259 if (tbb == EXIT_BLOCK_PTR)
6260 break;
6261 e = split_block (copy_bb, PREV_INSN (insert_point));
6262 copy_bb = e->dest;
6265 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6266 We have yet to add a simple_return to the tails,
6267 as we'd like to first convert_jumps_to_returns in
6268 case the block is no longer used after that. */
6269 eflags = EDGE_FAKE;
6270 if (CALL_P (PREV_INSN (insert_point))
6271 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6272 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6273 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6275 /* verify_flow_info doesn't like a note after a
6276 sibling call. */
6277 delete_insn (insert_point);
6278 if (bitmap_empty_p (&bb_tail))
6279 break;
6283 fail_shrinkwrap:
6284 bitmap_clear (&bb_tail);
6285 bitmap_clear (&bb_antic_flags);
6286 bitmap_clear (&bb_on_list);
6287 VEC_free (basic_block, heap, vec);
6289 #endif
6291 if (split_prologue_seq != NULL_RTX)
6293 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6294 inserted = true;
6296 if (prologue_seq != NULL_RTX)
6298 insert_insn_on_edge (prologue_seq, entry_edge);
6299 inserted = true;
6302 /* If the exit block has no non-fake predecessors, we don't need
6303 an epilogue. */
6304 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6305 if ((e->flags & EDGE_FAKE) == 0)
6306 break;
6307 if (e == NULL)
6308 goto epilogue_done;
6310 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6312 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6314 /* If we're allowed to generate a simple return instruction, then by
6315 definition we don't need a full epilogue. If the last basic
6316 block before the exit block does not contain active instructions,
6317 examine its predecessors and try to emit (conditional) return
6318 instructions. */
6319 #ifdef HAVE_simple_return
6320 if (entry_edge != orig_entry_edge)
6322 if (optimize)
6324 unsigned i, last;
6326 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6327 (but won't remove). Stop at end of current preds. */
6328 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6329 for (i = 0; i < last; i++)
6331 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6332 if (LABEL_P (BB_HEAD (e->src))
6333 && !bitmap_bit_p (&bb_flags, e->src->index)
6334 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6335 unconverted_simple_returns
6336 = convert_jumps_to_returns (e->src, true,
6337 unconverted_simple_returns);
6341 if (exit_fallthru_edge != NULL
6342 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6343 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6345 basic_block last_bb;
6347 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6348 returnjump = BB_END (last_bb);
6349 exit_fallthru_edge = NULL;
6352 #endif
6353 #ifdef HAVE_return
6354 if (HAVE_return)
6356 if (exit_fallthru_edge == NULL)
6357 goto epilogue_done;
6359 if (optimize)
6361 basic_block last_bb = exit_fallthru_edge->src;
6363 if (LABEL_P (BB_HEAD (last_bb))
6364 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6365 convert_jumps_to_returns (last_bb, false, NULL);
6367 if (EDGE_COUNT (last_bb->preds) != 0
6368 && single_succ_p (last_bb))
6370 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6371 epilogue_end = returnjump = BB_END (last_bb);
6372 #ifdef HAVE_simple_return
6373 /* Emitting the return may add a basic block.
6374 Fix bb_flags for the added block. */
6375 if (last_bb != exit_fallthru_edge->src)
6376 bitmap_set_bit (&bb_flags, last_bb->index);
6377 #endif
6378 goto epilogue_done;
6382 #endif
6384 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6385 this marker for the splits of EH_RETURN patterns, and nothing else
6386 uses the flag in the meantime. */
6387 epilogue_completed = 1;
6389 #ifdef HAVE_eh_return
6390 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6391 some targets, these get split to a special version of the epilogue
6392 code. In order to be able to properly annotate these with unwind
6393 info, try to split them now. If we get a valid split, drop an
6394 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6395 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6397 rtx prev, last, trial;
6399 if (e->flags & EDGE_FALLTHRU)
6400 continue;
6401 last = BB_END (e->src);
6402 if (!eh_returnjump_p (last))
6403 continue;
6405 prev = PREV_INSN (last);
6406 trial = try_split (PATTERN (last), last, 1);
6407 if (trial == last)
6408 continue;
6410 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6411 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6413 #endif
6415 /* If nothing falls through into the exit block, we don't need an
6416 epilogue. */
6418 if (exit_fallthru_edge == NULL)
6419 goto epilogue_done;
6421 #ifdef HAVE_epilogue
6422 if (HAVE_epilogue)
6424 start_sequence ();
6425 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6426 seq = gen_epilogue ();
6427 if (seq)
6428 emit_jump_insn (seq);
6430 /* Retain a map of the epilogue insns. */
6431 record_insns (seq, NULL, &epilogue_insn_hash);
6432 set_insn_locators (seq, epilogue_locator);
6434 seq = get_insns ();
6435 returnjump = get_last_insn ();
6436 end_sequence ();
6438 insert_insn_on_edge (seq, exit_fallthru_edge);
6439 inserted = true;
6441 if (JUMP_P (returnjump))
6442 set_return_jump_label (returnjump);
6444 else
6445 #endif
6447 basic_block cur_bb;
6449 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6450 goto epilogue_done;
6451 /* We have a fall-through edge to the exit block, the source is not
6452 at the end of the function, and there will be an assembler epilogue
6453 at the end of the function.
6454 We can't use force_nonfallthru here, because that would try to
6455 use return. Inserting a jump 'by hand' is extremely messy, so
6456 we take advantage of cfg_layout_finalize using
6457 fixup_fallthru_exit_predecessor. */
6458 cfg_layout_initialize (0);
6459 FOR_EACH_BB (cur_bb)
6460 if (cur_bb->index >= NUM_FIXED_BLOCKS
6461 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6462 cur_bb->aux = cur_bb->next_bb;
6463 cfg_layout_finalize ();
6466 epilogue_done:
6468 default_rtl_profile ();
6470 if (inserted)
6472 sbitmap blocks;
6474 commit_edge_insertions ();
6476 /* Look for basic blocks within the prologue insns. */
6477 blocks = sbitmap_alloc (last_basic_block);
6478 sbitmap_zero (blocks);
6479 SET_BIT (blocks, entry_edge->dest->index);
6480 SET_BIT (blocks, orig_entry_edge->dest->index);
6481 find_many_sub_basic_blocks (blocks);
6482 sbitmap_free (blocks);
6484 /* The epilogue insns we inserted may cause the exit edge to no longer
6485 be fallthru. */
6486 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6488 if (((e->flags & EDGE_FALLTHRU) != 0)
6489 && returnjump_p (BB_END (e->src)))
6490 e->flags &= ~EDGE_FALLTHRU;
6494 #ifdef HAVE_simple_return
6495 /* If there were branches to an empty LAST_BB which we tried to
6496 convert to conditional simple_returns, but couldn't for some
6497 reason, create a block to hold a simple_return insn and redirect
6498 those remaining edges. */
6499 if (!VEC_empty (edge, unconverted_simple_returns))
6501 basic_block simple_return_block_hot = NULL;
6502 basic_block simple_return_block_cold = NULL;
6503 edge pending_edge_hot = NULL;
6504 edge pending_edge_cold = NULL;
6505 basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6506 int i;
6508 gcc_assert (entry_edge != orig_entry_edge);
6510 /* See if we can reuse the last insn that was emitted for the
6511 epilogue. */
6512 if (returnjump != NULL_RTX
6513 && JUMP_LABEL (returnjump) == simple_return_rtx)
6515 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6516 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6517 simple_return_block_hot = e->dest;
6518 else
6519 simple_return_block_cold = e->dest;
6522 /* Also check returns we might need to add to tail blocks. */
6523 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6524 if (EDGE_COUNT (e->src->preds) != 0
6525 && (e->flags & EDGE_FAKE) != 0
6526 && !bitmap_bit_p (&bb_flags, e->src->index))
6528 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6529 pending_edge_hot = e;
6530 else
6531 pending_edge_cold = e;
6534 FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
6536 basic_block *pdest_bb;
6537 edge pending;
6539 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6541 pdest_bb = &simple_return_block_hot;
6542 pending = pending_edge_hot;
6544 else
6546 pdest_bb = &simple_return_block_cold;
6547 pending = pending_edge_cold;
6550 if (*pdest_bb == NULL && pending != NULL)
6552 emit_return_into_block (true, pending->src);
6553 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6554 *pdest_bb = pending->src;
6556 else if (*pdest_bb == NULL)
6558 basic_block bb;
6559 rtx start;
6561 bb = create_basic_block (NULL, NULL, exit_pred);
6562 BB_COPY_PARTITION (bb, e->src);
6563 start = emit_jump_insn_after (gen_simple_return (),
6564 BB_END (bb));
6565 JUMP_LABEL (start) = simple_return_rtx;
6566 emit_barrier_after (start);
6568 *pdest_bb = bb;
6569 make_edge (bb, EXIT_BLOCK_PTR, 0);
6571 redirect_edge_and_branch_force (e, *pdest_bb);
6573 VEC_free (edge, heap, unconverted_simple_returns);
6576 if (entry_edge != orig_entry_edge)
6578 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6579 if (EDGE_COUNT (e->src->preds) != 0
6580 && (e->flags & EDGE_FAKE) != 0
6581 && !bitmap_bit_p (&bb_flags, e->src->index))
6583 emit_return_into_block (true, e->src);
6584 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6587 #endif
6589 #ifdef HAVE_sibcall_epilogue
6590 /* Emit sibling epilogues before any sibling call sites. */
6591 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6593 basic_block bb = e->src;
6594 rtx insn = BB_END (bb);
6595 rtx ep_seq;
6597 if (!CALL_P (insn)
6598 || ! SIBLING_CALL_P (insn)
6599 #ifdef HAVE_simple_return
6600 || (entry_edge != orig_entry_edge
6601 && !bitmap_bit_p (&bb_flags, bb->index))
6602 #endif
6605 ei_next (&ei);
6606 continue;
6609 ep_seq = gen_sibcall_epilogue ();
6610 if (ep_seq)
6612 start_sequence ();
6613 emit_note (NOTE_INSN_EPILOGUE_BEG);
6614 emit_insn (ep_seq);
6615 seq = get_insns ();
6616 end_sequence ();
6618 /* Retain a map of the epilogue insns. Used in life analysis to
6619 avoid getting rid of sibcall epilogue insns. Do this before we
6620 actually emit the sequence. */
6621 record_insns (seq, NULL, &epilogue_insn_hash);
6622 set_insn_locators (seq, epilogue_locator);
6624 emit_insn_before (seq, insn);
6626 ei_next (&ei);
6628 #endif
6630 #ifdef HAVE_epilogue
6631 if (epilogue_end)
6633 rtx insn, next;
6635 /* Similarly, move any line notes that appear after the epilogue.
6636 There is no need, however, to be quite so anal about the existence
6637 of such a note. Also possibly move
6638 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6639 info generation. */
6640 for (insn = epilogue_end; insn; insn = next)
6642 next = NEXT_INSN (insn);
6643 if (NOTE_P (insn)
6644 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6645 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6648 #endif
6650 #ifdef HAVE_simple_return
6651 bitmap_clear (&bb_flags);
6652 #endif
6654 /* Threading the prologue and epilogue changes the artificial refs
6655 in the entry and exit blocks. */
6656 epilogue_completed = 1;
6657 df_update_entry_exit_and_calls ();
6660 /* Reposition the prologue-end and epilogue-begin notes after
6661 instruction scheduling. */
6663 void
6664 reposition_prologue_and_epilogue_notes (void)
6666 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6667 || defined (HAVE_sibcall_epilogue)
6668 /* Since the hash table is created on demand, the fact that it is
6669 non-null is a signal that it is non-empty. */
6670 if (prologue_insn_hash != NULL)
6672 size_t len = htab_elements (prologue_insn_hash);
6673 rtx insn, last = NULL, note = NULL;
6675 /* Scan from the beginning until we reach the last prologue insn. */
6676 /* ??? While we do have the CFG intact, there are two problems:
6677 (1) The prologue can contain loops (typically probing the stack),
6678 which means that the end of the prologue isn't in the first bb.
6679 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6680 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6682 if (NOTE_P (insn))
6684 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6685 note = insn;
6687 else if (contains (insn, prologue_insn_hash))
6689 last = insn;
6690 if (--len == 0)
6691 break;
6695 if (last)
6697 if (note == NULL)
6699 /* Scan forward looking for the PROLOGUE_END note. It should
6700 be right at the beginning of the block, possibly with other
6701 insn notes that got moved there. */
6702 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6704 if (NOTE_P (note)
6705 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6706 break;
6710 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6711 if (LABEL_P (last))
6712 last = NEXT_INSN (last);
6713 reorder_insns (note, note, last);
6717 if (epilogue_insn_hash != NULL)
6719 edge_iterator ei;
6720 edge e;
6722 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6724 rtx insn, first = NULL, note = NULL;
6725 basic_block bb = e->src;
6727 /* Scan from the beginning until we reach the first epilogue insn. */
6728 FOR_BB_INSNS (bb, insn)
6730 if (NOTE_P (insn))
6732 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6734 note = insn;
6735 if (first != NULL)
6736 break;
6739 else if (first == NULL && contains (insn, epilogue_insn_hash))
6741 first = insn;
6742 if (note != NULL)
6743 break;
6747 if (note)
6749 /* If the function has a single basic block, and no real
6750 epilogue insns (e.g. sibcall with no cleanup), the
6751 epilogue note can get scheduled before the prologue
6752 note. If we have frame related prologue insns, having
6753 them scanned during the epilogue will result in a crash.
6754 In this case re-order the epilogue note to just before
6755 the last insn in the block. */
6756 if (first == NULL)
6757 first = BB_END (bb);
6759 if (PREV_INSN (first) != note)
6760 reorder_insns (note, note, PREV_INSN (first));
6764 #endif /* HAVE_prologue or HAVE_epilogue */
6767 /* Returns the name of function FN. */
6768 const char *
6769 function_name (struct function *fn)
6771 if (fn == NULL)
6772 return "(nofn)";
6773 return lang_hooks.decl_printable_name (fn->decl, 2);
6776 /* Returns the name of the current function. */
6777 const char *
6778 current_function_name (void)
6780 return function_name (cfun);
6784 static unsigned int
6785 rest_of_handle_check_leaf_regs (void)
6787 #ifdef LEAF_REGISTERS
6788 crtl->uses_only_leaf_regs
6789 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6790 #endif
6791 return 0;
6794 /* Insert a TYPE into the used types hash table of CFUN. */
6796 static void
6797 used_types_insert_helper (tree type, struct function *func)
6799 if (type != NULL && func != NULL)
6801 void **slot;
6803 if (func->used_types_hash == NULL)
6804 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6805 htab_eq_pointer, NULL);
6806 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6807 if (*slot == NULL)
6808 *slot = type;
6812 /* Given a type, insert it into the used hash table in cfun. */
6813 void
6814 used_types_insert (tree t)
6816 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6817 if (TYPE_NAME (t))
6818 break;
6819 else
6820 t = TREE_TYPE (t);
6821 if (TREE_CODE (t) == ERROR_MARK)
6822 return;
6823 if (TYPE_NAME (t) == NULL_TREE
6824 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6825 t = TYPE_MAIN_VARIANT (t);
6826 if (debug_info_level > DINFO_LEVEL_NONE)
6828 if (cfun)
6829 used_types_insert_helper (t, cfun);
6830 else
6831 /* So this might be a type referenced by a global variable.
6832 Record that type so that we can later decide to emit its debug
6833 information. */
6834 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
6838 /* Helper to Hash a struct types_used_by_vars_entry. */
6840 static hashval_t
6841 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6843 gcc_assert (entry && entry->var_decl && entry->type);
6845 return iterative_hash_object (entry->type,
6846 iterative_hash_object (entry->var_decl, 0));
6849 /* Hash function of the types_used_by_vars_entry hash table. */
6851 hashval_t
6852 types_used_by_vars_do_hash (const void *x)
6854 const struct types_used_by_vars_entry *entry =
6855 (const struct types_used_by_vars_entry *) x;
6857 return hash_types_used_by_vars_entry (entry);
6860 /*Equality function of the types_used_by_vars_entry hash table. */
6863 types_used_by_vars_eq (const void *x1, const void *x2)
6865 const struct types_used_by_vars_entry *e1 =
6866 (const struct types_used_by_vars_entry *) x1;
6867 const struct types_used_by_vars_entry *e2 =
6868 (const struct types_used_by_vars_entry *)x2;
6870 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6873 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6875 void
6876 types_used_by_var_decl_insert (tree type, tree var_decl)
6878 if (type != NULL && var_decl != NULL)
6880 void **slot;
6881 struct types_used_by_vars_entry e;
6882 e.var_decl = var_decl;
6883 e.type = type;
6884 if (types_used_by_vars_hash == NULL)
6885 types_used_by_vars_hash =
6886 htab_create_ggc (37, types_used_by_vars_do_hash,
6887 types_used_by_vars_eq, NULL);
6888 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6889 hash_types_used_by_vars_entry (&e), INSERT);
6890 if (*slot == NULL)
6892 struct types_used_by_vars_entry *entry;
6893 entry = ggc_alloc_types_used_by_vars_entry ();
6894 entry->type = type;
6895 entry->var_decl = var_decl;
6896 *slot = entry;
6901 struct rtl_opt_pass pass_leaf_regs =
6904 RTL_PASS,
6905 "*leaf_regs", /* name */
6906 NULL, /* gate */
6907 rest_of_handle_check_leaf_regs, /* execute */
6908 NULL, /* sub */
6909 NULL, /* next */
6910 0, /* static_pass_number */
6911 TV_NONE, /* tv_id */
6912 0, /* properties_required */
6913 0, /* properties_provided */
6914 0, /* properties_destroyed */
6915 0, /* todo_flags_start */
6916 0 /* todo_flags_finish */
6920 static unsigned int
6921 rest_of_handle_thread_prologue_and_epilogue (void)
6923 if (optimize)
6924 cleanup_cfg (CLEANUP_EXPENSIVE);
6926 /* On some machines, the prologue and epilogue code, or parts thereof,
6927 can be represented as RTL. Doing so lets us schedule insns between
6928 it and the rest of the code and also allows delayed branch
6929 scheduling to operate in the epilogue. */
6930 thread_prologue_and_epilogue_insns ();
6932 /* The stack usage info is finalized during prologue expansion. */
6933 if (flag_stack_usage_info)
6934 output_stack_usage ();
6936 return 0;
6939 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6942 RTL_PASS,
6943 "pro_and_epilogue", /* name */
6944 NULL, /* gate */
6945 rest_of_handle_thread_prologue_and_epilogue, /* execute */
6946 NULL, /* sub */
6947 NULL, /* next */
6948 0, /* static_pass_number */
6949 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6950 0, /* properties_required */
6951 0, /* properties_provided */
6952 0, /* properties_destroyed */
6953 TODO_verify_flow, /* todo_flags_start */
6954 TODO_df_verify |
6955 TODO_df_finish | TODO_verify_rtl_sharing |
6956 TODO_ggc_collect /* todo_flags_finish */
6961 /* This mini-pass fixes fall-out from SSA in asm statements that have
6962 in-out constraints. Say you start with
6964 orig = inout;
6965 asm ("": "+mr" (inout));
6966 use (orig);
6968 which is transformed very early to use explicit output and match operands:
6970 orig = inout;
6971 asm ("": "=mr" (inout) : "0" (inout));
6972 use (orig);
6974 Or, after SSA and copyprop,
6976 asm ("": "=mr" (inout_2) : "0" (inout_1));
6977 use (inout_1);
6979 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6980 they represent two separate values, so they will get different pseudo
6981 registers during expansion. Then, since the two operands need to match
6982 per the constraints, but use different pseudo registers, reload can
6983 only register a reload for these operands. But reloads can only be
6984 satisfied by hardregs, not by memory, so we need a register for this
6985 reload, just because we are presented with non-matching operands.
6986 So, even though we allow memory for this operand, no memory can be
6987 used for it, just because the two operands don't match. This can
6988 cause reload failures on register-starved targets.
6990 So it's a symptom of reload not being able to use memory for reloads
6991 or, alternatively it's also a symptom of both operands not coming into
6992 reload as matching (in which case the pseudo could go to memory just
6993 fine, as the alternative allows it, and no reload would be necessary).
6994 We fix the latter problem here, by transforming
6996 asm ("": "=mr" (inout_2) : "0" (inout_1));
6998 back to
7000 inout_2 = inout_1;
7001 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7003 static void
7004 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7006 int i;
7007 bool changed = false;
7008 rtx op = SET_SRC (p_sets[0]);
7009 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7010 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7011 bool *output_matched = XALLOCAVEC (bool, noutputs);
7013 memset (output_matched, 0, noutputs * sizeof (bool));
7014 for (i = 0; i < ninputs; i++)
7016 rtx input, output, insns;
7017 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7018 char *end;
7019 int match, j;
7021 if (*constraint == '%')
7022 constraint++;
7024 match = strtoul (constraint, &end, 10);
7025 if (end == constraint)
7026 continue;
7028 gcc_assert (match < noutputs);
7029 output = SET_DEST (p_sets[match]);
7030 input = RTVEC_ELT (inputs, i);
7031 /* Only do the transformation for pseudos. */
7032 if (! REG_P (output)
7033 || rtx_equal_p (output, input)
7034 || (GET_MODE (input) != VOIDmode
7035 && GET_MODE (input) != GET_MODE (output)))
7036 continue;
7038 /* We can't do anything if the output is also used as input,
7039 as we're going to overwrite it. */
7040 for (j = 0; j < ninputs; j++)
7041 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7042 break;
7043 if (j != ninputs)
7044 continue;
7046 /* Avoid changing the same input several times. For
7047 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7048 only change in once (to out1), rather than changing it
7049 first to out1 and afterwards to out2. */
7050 if (i > 0)
7052 for (j = 0; j < noutputs; j++)
7053 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7054 break;
7055 if (j != noutputs)
7056 continue;
7058 output_matched[match] = true;
7060 start_sequence ();
7061 emit_move_insn (output, input);
7062 insns = get_insns ();
7063 end_sequence ();
7064 emit_insn_before (insns, insn);
7066 /* Now replace all mentions of the input with output. We can't
7067 just replace the occurrence in inputs[i], as the register might
7068 also be used in some other input (or even in an address of an
7069 output), which would mean possibly increasing the number of
7070 inputs by one (namely 'output' in addition), which might pose
7071 a too complicated problem for reload to solve. E.g. this situation:
7073 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7075 Here 'input' is used in two occurrences as input (once for the
7076 input operand, once for the address in the second output operand).
7077 If we would replace only the occurrence of the input operand (to
7078 make the matching) we would be left with this:
7080 output = input
7081 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7083 Now we suddenly have two different input values (containing the same
7084 value, but different pseudos) where we formerly had only one.
7085 With more complicated asms this might lead to reload failures
7086 which wouldn't have happen without this pass. So, iterate over
7087 all operands and replace all occurrences of the register used. */
7088 for (j = 0; j < noutputs; j++)
7089 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7090 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7091 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7092 input, output);
7093 for (j = 0; j < ninputs; j++)
7094 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7095 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7096 input, output);
7098 changed = true;
7101 if (changed)
7102 df_insn_rescan (insn);
7105 static unsigned
7106 rest_of_match_asm_constraints (void)
7108 basic_block bb;
7109 rtx insn, pat, *p_sets;
7110 int noutputs;
7112 if (!crtl->has_asm_statement)
7113 return 0;
7115 df_set_flags (DF_DEFER_INSN_RESCAN);
7116 FOR_EACH_BB (bb)
7118 FOR_BB_INSNS (bb, insn)
7120 if (!INSN_P (insn))
7121 continue;
7123 pat = PATTERN (insn);
7124 if (GET_CODE (pat) == PARALLEL)
7125 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7126 else if (GET_CODE (pat) == SET)
7127 p_sets = &PATTERN (insn), noutputs = 1;
7128 else
7129 continue;
7131 if (GET_CODE (*p_sets) == SET
7132 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7133 match_asm_constraints_1 (insn, p_sets, noutputs);
7137 return TODO_df_finish;
7140 struct rtl_opt_pass pass_match_asm_constraints =
7143 RTL_PASS,
7144 "asmcons", /* name */
7145 NULL, /* gate */
7146 rest_of_match_asm_constraints, /* execute */
7147 NULL, /* sub */
7148 NULL, /* next */
7149 0, /* static_pass_number */
7150 TV_NONE, /* tv_id */
7151 0, /* properties_required */
7152 0, /* properties_provided */
7153 0, /* properties_destroyed */
7154 0, /* todo_flags_start */
7155 0 /* todo_flags_finish */
7160 #include "gt-function.h"