* config/rs6000/e500crtsavg64gprctr.asm: Correct done label name.
[official-gcc.git] / gcc / expr.c
blob23baa63435b4d50db45efc2c04fab45b5b9d3350
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces_d
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces_d
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces_d *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
145 tree, tree, alias_set_type, bool);
147 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149 static int is_aligning_offset (const_tree, const_tree);
150 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
151 enum expand_modifier);
152 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
153 static rtx do_store_flag (sepops, rtx, enum machine_mode);
154 #ifdef PUSH_ROUNDING
155 static void emit_single_push_insn (enum machine_mode, rtx, tree);
156 #endif
157 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
158 static rtx const_vector_from_tree (tree);
159 static void write_complex_part (rtx, rtx, bool);
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
168 /* Record for each mode whether we can float-extend from memory. */
170 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
178 #endif
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
186 #endif
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero. */
190 #ifndef SET_BY_PIECES_P
191 #define SET_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
194 #endif
196 /* This macro is used to determine whether store_by_pieces should be
197 called to "memcpy" storage when the source is a constant string. */
198 #ifndef STORE_BY_PIECES_P
199 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
200 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
201 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
202 #endif
204 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
206 #ifndef SLOW_UNALIGNED_ACCESS
207 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
208 #endif
210 /* This is run to set up which modes can be used
211 directly in memory and to initialize the block move optab. It is run
212 at the beginning of compilation and when the target is reinitialized. */
214 void
215 init_expr_target (void)
217 rtx insn, pat;
218 enum machine_mode mode;
219 int num_clobbers;
220 rtx mem, mem1;
221 rtx reg;
223 /* Try indexing by frame ptr and try by stack ptr.
224 It is known that on the Convex the stack ptr isn't a valid index.
225 With luck, one or the other is valid on any machine. */
226 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
227 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
229 /* A scratch register we can modify in-place below to avoid
230 useless RTL allocations. */
231 reg = gen_rtx_REG (VOIDmode, -1);
233 insn = rtx_alloc (INSN);
234 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
235 PATTERN (insn) = pat;
237 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
238 mode = (enum machine_mode) ((int) mode + 1))
240 int regno;
242 direct_load[(int) mode] = direct_store[(int) mode] = 0;
243 PUT_MODE (mem, mode);
244 PUT_MODE (mem1, mode);
245 PUT_MODE (reg, mode);
247 /* See if there is some register that can be used in this mode and
248 directly loaded or stored from memory. */
250 if (mode != VOIDmode && mode != BLKmode)
251 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
252 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
253 regno++)
255 if (! HARD_REGNO_MODE_OK (regno, mode))
256 continue;
258 SET_REGNO (reg, regno);
260 SET_SRC (pat) = mem;
261 SET_DEST (pat) = reg;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_load[(int) mode] = 1;
265 SET_SRC (pat) = mem1;
266 SET_DEST (pat) = reg;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_load[(int) mode] = 1;
270 SET_SRC (pat) = reg;
271 SET_DEST (pat) = mem;
272 if (recog (pat, insn, &num_clobbers) >= 0)
273 direct_store[(int) mode] = 1;
275 SET_SRC (pat) = reg;
276 SET_DEST (pat) = mem1;
277 if (recog (pat, insn, &num_clobbers) >= 0)
278 direct_store[(int) mode] = 1;
282 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
285 mode = GET_MODE_WIDER_MODE (mode))
287 enum machine_mode srcmode;
288 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
289 srcmode = GET_MODE_WIDER_MODE (srcmode))
291 enum insn_code ic;
293 ic = can_extend_p (mode, srcmode, 0);
294 if (ic == CODE_FOR_nothing)
295 continue;
297 PUT_MODE (mem, srcmode);
299 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
300 float_extend_from_mem[mode][srcmode] = true;
305 /* This is run at the start of compiling a function. */
307 void
308 init_expr (void)
310 memset (&crtl->expr, 0, sizeof (crtl->expr));
313 /* Copy data from FROM to TO, where the machine modes are not the same.
314 Both modes may be integer, or both may be floating, or both may be
315 fixed-point.
316 UNSIGNEDP should be nonzero if FROM is an unsigned type.
317 This causes zero-extension instead of sign-extension. */
319 void
320 convert_move (rtx to, rtx from, int unsignedp)
322 enum machine_mode to_mode = GET_MODE (to);
323 enum machine_mode from_mode = GET_MODE (from);
324 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
325 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
326 enum insn_code code;
327 rtx libcall;
329 /* rtx code for making an equivalent value. */
330 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
331 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
334 gcc_assert (to_real == from_real);
335 gcc_assert (to_mode != BLKmode);
336 gcc_assert (from_mode != BLKmode);
338 /* If the source and destination are already the same, then there's
339 nothing to do. */
340 if (to == from)
341 return;
343 /* If FROM is a SUBREG that indicates that we have already done at least
344 the required extension, strip it. We don't handle such SUBREGs as
345 TO here. */
347 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
348 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
349 >= GET_MODE_SIZE (to_mode))
350 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
351 from = gen_lowpart (to_mode, from), from_mode = to_mode;
353 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
355 if (to_mode == from_mode
356 || (from_mode == VOIDmode && CONSTANT_P (from)))
358 emit_move_insn (to, from);
359 return;
362 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
364 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
366 if (VECTOR_MODE_P (to_mode))
367 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
368 else
369 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
371 emit_move_insn (to, from);
372 return;
375 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
377 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
378 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
379 return;
382 if (to_real)
384 rtx value, insns;
385 convert_optab tab;
387 gcc_assert ((GET_MODE_PRECISION (from_mode)
388 != GET_MODE_PRECISION (to_mode))
389 || (DECIMAL_FLOAT_MODE_P (from_mode)
390 != DECIMAL_FLOAT_MODE_P (to_mode)));
392 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
393 /* Conversion between decimal float and binary float, same size. */
394 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
395 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
396 tab = sext_optab;
397 else
398 tab = trunc_optab;
400 /* Try converting directly if the insn is supported. */
402 code = convert_optab_handler (tab, to_mode, from_mode);
403 if (code != CODE_FOR_nothing)
405 emit_unop_insn (code, to, from,
406 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
407 return;
410 /* Otherwise use a libcall. */
411 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
413 /* Is this conversion implemented yet? */
414 gcc_assert (libcall);
416 start_sequence ();
417 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
418 1, from, from_mode);
419 insns = get_insns ();
420 end_sequence ();
421 emit_libcall_block (insns, to, value,
422 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
423 from)
424 : gen_rtx_FLOAT_EXTEND (to_mode, from));
425 return;
428 /* Handle pointer conversion. */ /* SPEE 900220. */
429 /* Targets are expected to provide conversion insns between PxImode and
430 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
431 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
433 enum machine_mode full_mode
434 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
436 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
437 != CODE_FOR_nothing);
439 if (full_mode != from_mode)
440 from = convert_to_mode (full_mode, from, unsignedp);
441 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
442 to, from, UNKNOWN);
443 return;
445 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
447 rtx new_from;
448 enum machine_mode full_mode
449 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
451 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
452 != CODE_FOR_nothing);
454 if (to_mode == full_mode)
456 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
457 from_mode),
458 to, from, UNKNOWN);
459 return;
462 new_from = gen_reg_rtx (full_mode);
463 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
464 new_from, from, UNKNOWN);
466 /* else proceed to integer conversions below. */
467 from_mode = full_mode;
468 from = new_from;
471 /* Make sure both are fixed-point modes or both are not. */
472 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
473 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
474 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
476 /* If we widen from_mode to to_mode and they are in the same class,
477 we won't saturate the result.
478 Otherwise, always saturate the result to play safe. */
479 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
480 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
481 expand_fixed_convert (to, from, 0, 0);
482 else
483 expand_fixed_convert (to, from, 0, 1);
484 return;
487 /* Now both modes are integers. */
489 /* Handle expanding beyond a word. */
490 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
491 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
493 rtx insns;
494 rtx lowpart;
495 rtx fill_value;
496 rtx lowfrom;
497 int i;
498 enum machine_mode lowpart_mode;
499 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
501 /* Try converting directly if the insn is supported. */
502 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
503 != CODE_FOR_nothing)
505 /* If FROM is a SUBREG, put it into a register. Do this
506 so that we always generate the same set of insns for
507 better cse'ing; if an intermediate assignment occurred,
508 we won't be doing the operation directly on the SUBREG. */
509 if (optimize > 0 && GET_CODE (from) == SUBREG)
510 from = force_reg (from_mode, from);
511 emit_unop_insn (code, to, from, equiv_code);
512 return;
514 /* Next, try converting via full word. */
515 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
516 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
517 != CODE_FOR_nothing))
519 rtx word_to = gen_reg_rtx (word_mode);
520 if (REG_P (to))
522 if (reg_overlap_mentioned_p (to, from))
523 from = force_reg (from_mode, from);
524 emit_clobber (to);
526 convert_move (word_to, from, unsignedp);
527 emit_unop_insn (code, to, word_to, equiv_code);
528 return;
531 /* No special multiword conversion insn; do it by hand. */
532 start_sequence ();
534 /* Since we will turn this into a no conflict block, we must ensure
535 that the source does not overlap the target. */
537 if (reg_overlap_mentioned_p (to, from))
538 from = force_reg (from_mode, from);
540 /* Get a copy of FROM widened to a word, if necessary. */
541 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
542 lowpart_mode = word_mode;
543 else
544 lowpart_mode = from_mode;
546 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
548 lowpart = gen_lowpart (lowpart_mode, to);
549 emit_move_insn (lowpart, lowfrom);
551 /* Compute the value to put in each remaining word. */
552 if (unsignedp)
553 fill_value = const0_rtx;
554 else
555 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
556 LT, lowfrom, const0_rtx,
557 VOIDmode, 0, -1);
559 /* Fill the remaining words. */
560 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
562 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
563 rtx subword = operand_subword (to, index, 1, to_mode);
565 gcc_assert (subword);
567 if (fill_value != subword)
568 emit_move_insn (subword, fill_value);
571 insns = get_insns ();
572 end_sequence ();
574 emit_insn (insns);
575 return;
578 /* Truncating multi-word to a word or less. */
579 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
580 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
582 if (!((MEM_P (from)
583 && ! MEM_VOLATILE_P (from)
584 && direct_load[(int) to_mode]
585 && ! mode_dependent_address_p (XEXP (from, 0)))
586 || REG_P (from)
587 || GET_CODE (from) == SUBREG))
588 from = force_reg (from_mode, from);
589 convert_move (to, gen_lowpart (word_mode, from), 0);
590 return;
593 /* Now follow all the conversions between integers
594 no more than a word long. */
596 /* For truncation, usually we can just refer to FROM in a narrower mode. */
597 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
598 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
599 GET_MODE_BITSIZE (from_mode)))
601 if (!((MEM_P (from)
602 && ! MEM_VOLATILE_P (from)
603 && direct_load[(int) to_mode]
604 && ! mode_dependent_address_p (XEXP (from, 0)))
605 || REG_P (from)
606 || GET_CODE (from) == SUBREG))
607 from = force_reg (from_mode, from);
608 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
609 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
610 from = copy_to_reg (from);
611 emit_move_insn (to, gen_lowpart (to_mode, from));
612 return;
615 /* Handle extension. */
616 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
618 /* Convert directly if that works. */
619 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
620 != CODE_FOR_nothing)
622 emit_unop_insn (code, to, from, equiv_code);
623 return;
625 else
627 enum machine_mode intermediate;
628 rtx tmp;
629 tree shift_amount;
631 /* Search for a mode to convert via. */
632 for (intermediate = from_mode; intermediate != VOIDmode;
633 intermediate = GET_MODE_WIDER_MODE (intermediate))
634 if (((can_extend_p (to_mode, intermediate, unsignedp)
635 != CODE_FOR_nothing)
636 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
637 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
638 GET_MODE_BITSIZE (intermediate))))
639 && (can_extend_p (intermediate, from_mode, unsignedp)
640 != CODE_FOR_nothing))
642 convert_move (to, convert_to_mode (intermediate, from,
643 unsignedp), unsignedp);
644 return;
647 /* No suitable intermediate mode.
648 Generate what we need with shifts. */
649 shift_amount = build_int_cst (NULL_TREE,
650 GET_MODE_BITSIZE (to_mode)
651 - GET_MODE_BITSIZE (from_mode));
652 from = gen_lowpart (to_mode, force_reg (from_mode, from));
653 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
654 to, unsignedp);
655 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
656 to, unsignedp);
657 if (tmp != to)
658 emit_move_insn (to, tmp);
659 return;
663 /* Support special truncate insns for certain modes. */
664 if (convert_optab_handler (trunc_optab, to_mode,
665 from_mode) != CODE_FOR_nothing)
667 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
668 to, from, UNKNOWN);
669 return;
672 /* Handle truncation of volatile memrefs, and so on;
673 the things that couldn't be truncated directly,
674 and for which there was no special instruction.
676 ??? Code above formerly short-circuited this, for most integer
677 mode pairs, with a force_reg in from_mode followed by a recursive
678 call to this routine. Appears always to have been wrong. */
679 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
681 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
682 emit_move_insn (to, temp);
683 return;
686 /* Mode combination is not recognized. */
687 gcc_unreachable ();
690 /* Return an rtx for a value that would result
691 from converting X to mode MODE.
692 Both X and MODE may be floating, or both integer.
693 UNSIGNEDP is nonzero if X is an unsigned value.
694 This can be done by referring to a part of X in place
695 or by copying to a new temporary with conversion. */
698 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
700 return convert_modes (mode, VOIDmode, x, unsignedp);
703 /* Return an rtx for a value that would result
704 from converting X from mode OLDMODE to mode MODE.
705 Both modes may be floating, or both integer.
706 UNSIGNEDP is nonzero if X is an unsigned value.
708 This can be done by referring to a part of X in place
709 or by copying to a new temporary with conversion.
711 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
714 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
716 rtx temp;
718 /* If FROM is a SUBREG that indicates that we have already done at least
719 the required extension, strip it. */
721 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
722 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
723 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
724 x = gen_lowpart (mode, x);
726 if (GET_MODE (x) != VOIDmode)
727 oldmode = GET_MODE (x);
729 if (mode == oldmode)
730 return x;
732 /* There is one case that we must handle specially: If we are converting
733 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
734 we are to interpret the constant as unsigned, gen_lowpart will do
735 the wrong if the constant appears negative. What we want to do is
736 make the high-order word of the constant zero, not all ones. */
738 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
739 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
740 && CONST_INT_P (x) && INTVAL (x) < 0)
742 double_int val = uhwi_to_double_int (INTVAL (x));
744 /* We need to zero extend VAL. */
745 if (oldmode != VOIDmode)
746 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
748 return immed_double_int_const (val, mode);
751 /* We can do this with a gen_lowpart if both desired and current modes
752 are integer, and this is either a constant integer, a register, or a
753 non-volatile MEM. Except for the constant case where MODE is no
754 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
756 if ((CONST_INT_P (x)
757 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
758 || (GET_MODE_CLASS (mode) == MODE_INT
759 && GET_MODE_CLASS (oldmode) == MODE_INT
760 && (GET_CODE (x) == CONST_DOUBLE
761 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
762 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
763 && direct_load[(int) mode])
764 || (REG_P (x)
765 && (! HARD_REGISTER_P (x)
766 || HARD_REGNO_MODE_OK (REGNO (x), mode))
767 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
768 GET_MODE_BITSIZE (GET_MODE (x)))))))))
770 /* ?? If we don't know OLDMODE, we have to assume here that
771 X does not need sign- or zero-extension. This may not be
772 the case, but it's the best we can do. */
773 if (CONST_INT_P (x) && oldmode != VOIDmode
774 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
776 HOST_WIDE_INT val = INTVAL (x);
777 int width = GET_MODE_BITSIZE (oldmode);
779 /* We must sign or zero-extend in this case. Start by
780 zero-extending, then sign extend if we need to. */
781 val &= ((HOST_WIDE_INT) 1 << width) - 1;
782 if (! unsignedp
783 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
784 val |= (HOST_WIDE_INT) (-1) << width;
786 return gen_int_mode (val, mode);
789 return gen_lowpart (mode, x);
792 /* Converting from integer constant into mode is always equivalent to an
793 subreg operation. */
794 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
796 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
797 return simplify_gen_subreg (mode, x, oldmode, 0);
800 temp = gen_reg_rtx (mode);
801 convert_move (temp, x, unsignedp);
802 return temp;
805 /* STORE_MAX_PIECES is the number of bytes at a time that we can
806 store efficiently. Due to internal GCC limitations, this is
807 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
808 for an immediate constant. */
810 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
812 /* Determine whether the LEN bytes can be moved by using several move
813 instructions. Return nonzero if a call to move_by_pieces should
814 succeed. */
817 can_move_by_pieces (unsigned HOST_WIDE_INT len,
818 unsigned int align ATTRIBUTE_UNUSED)
820 return MOVE_BY_PIECES_P (len, align);
823 /* Generate several move instructions to copy LEN bytes from block FROM to
824 block TO. (These are MEM rtx's with BLKmode).
826 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
827 used to push FROM to the stack.
829 ALIGN is maximum stack alignment we can assume.
831 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
832 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
833 stpcpy. */
836 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
837 unsigned int align, int endp)
839 struct move_by_pieces_d data;
840 enum machine_mode to_addr_mode, from_addr_mode
841 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
842 rtx to_addr, from_addr = XEXP (from, 0);
843 unsigned int max_size = MOVE_MAX_PIECES + 1;
844 enum machine_mode mode = VOIDmode, tmode;
845 enum insn_code icode;
847 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
849 data.offset = 0;
850 data.from_addr = from_addr;
851 if (to)
853 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
854 to_addr = XEXP (to, 0);
855 data.to = to;
856 data.autinc_to
857 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
858 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
859 data.reverse
860 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
862 else
864 to_addr_mode = VOIDmode;
865 to_addr = NULL_RTX;
866 data.to = NULL_RTX;
867 data.autinc_to = 1;
868 #ifdef STACK_GROWS_DOWNWARD
869 data.reverse = 1;
870 #else
871 data.reverse = 0;
872 #endif
874 data.to_addr = to_addr;
875 data.from = from;
876 data.autinc_from
877 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
878 || GET_CODE (from_addr) == POST_INC
879 || GET_CODE (from_addr) == POST_DEC);
881 data.explicit_inc_from = 0;
882 data.explicit_inc_to = 0;
883 if (data.reverse) data.offset = len;
884 data.len = len;
886 /* If copying requires more than two move insns,
887 copy addresses to registers (to make displacements shorter)
888 and use post-increment if available. */
889 if (!(data.autinc_from && data.autinc_to)
890 && move_by_pieces_ninsns (len, align, max_size) > 2)
892 /* Find the mode of the largest move... */
893 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
894 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
895 if (GET_MODE_SIZE (tmode) < max_size)
896 mode = tmode;
898 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
900 data.from_addr = copy_to_mode_reg (from_addr_mode,
901 plus_constant (from_addr, len));
902 data.autinc_from = 1;
903 data.explicit_inc_from = -1;
905 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
907 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
908 data.autinc_from = 1;
909 data.explicit_inc_from = 1;
911 if (!data.autinc_from && CONSTANT_P (from_addr))
912 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
913 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
915 data.to_addr = copy_to_mode_reg (to_addr_mode,
916 plus_constant (to_addr, len));
917 data.autinc_to = 1;
918 data.explicit_inc_to = -1;
920 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
922 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
923 data.autinc_to = 1;
924 data.explicit_inc_to = 1;
926 if (!data.autinc_to && CONSTANT_P (to_addr))
927 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
930 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
931 if (align >= GET_MODE_ALIGNMENT (tmode))
932 align = GET_MODE_ALIGNMENT (tmode);
933 else
935 enum machine_mode xmode;
937 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
938 tmode != VOIDmode;
939 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
940 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
941 || SLOW_UNALIGNED_ACCESS (tmode, align))
942 break;
944 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
947 /* First move what we can in the largest integer mode, then go to
948 successively smaller modes. */
950 while (max_size > 1)
952 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
953 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
954 if (GET_MODE_SIZE (tmode) < max_size)
955 mode = tmode;
957 if (mode == VOIDmode)
958 break;
960 icode = optab_handler (mov_optab, mode);
961 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
962 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
964 max_size = GET_MODE_SIZE (mode);
967 /* The code above should have handled everything. */
968 gcc_assert (!data.len);
970 if (endp)
972 rtx to1;
974 gcc_assert (!data.reverse);
975 if (data.autinc_to)
977 if (endp == 2)
979 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
980 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
981 else
982 data.to_addr = copy_to_mode_reg (to_addr_mode,
983 plus_constant (data.to_addr,
984 -1));
986 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
987 data.offset);
989 else
991 if (endp == 2)
992 --data.offset;
993 to1 = adjust_address (data.to, QImode, data.offset);
995 return to1;
997 else
998 return data.to;
1001 /* Return number of insns required to move L bytes by pieces.
1002 ALIGN (in bits) is maximum alignment we can assume. */
1004 static unsigned HOST_WIDE_INT
1005 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1006 unsigned int max_size)
1008 unsigned HOST_WIDE_INT n_insns = 0;
1009 enum machine_mode tmode;
1011 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1012 if (align >= GET_MODE_ALIGNMENT (tmode))
1013 align = GET_MODE_ALIGNMENT (tmode);
1014 else
1016 enum machine_mode tmode, xmode;
1018 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1019 tmode != VOIDmode;
1020 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1021 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1022 || SLOW_UNALIGNED_ACCESS (tmode, align))
1023 break;
1025 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1028 while (max_size > 1)
1030 enum machine_mode mode = VOIDmode;
1031 enum insn_code icode;
1033 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1034 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1035 if (GET_MODE_SIZE (tmode) < max_size)
1036 mode = tmode;
1038 if (mode == VOIDmode)
1039 break;
1041 icode = optab_handler (mov_optab, mode);
1042 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1043 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1045 max_size = GET_MODE_SIZE (mode);
1048 gcc_assert (!l);
1049 return n_insns;
1052 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1053 with move instructions for mode MODE. GENFUN is the gen_... function
1054 to make a move insn for that mode. DATA has all the other info. */
1056 static void
1057 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1058 struct move_by_pieces_d *data)
1060 unsigned int size = GET_MODE_SIZE (mode);
1061 rtx to1 = NULL_RTX, from1;
1063 while (data->len >= size)
1065 if (data->reverse)
1066 data->offset -= size;
1068 if (data->to)
1070 if (data->autinc_to)
1071 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1072 data->offset);
1073 else
1074 to1 = adjust_address (data->to, mode, data->offset);
1077 if (data->autinc_from)
1078 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1079 data->offset);
1080 else
1081 from1 = adjust_address (data->from, mode, data->offset);
1083 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1084 emit_insn (gen_add2_insn (data->to_addr,
1085 GEN_INT (-(HOST_WIDE_INT)size)));
1086 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1087 emit_insn (gen_add2_insn (data->from_addr,
1088 GEN_INT (-(HOST_WIDE_INT)size)));
1090 if (data->to)
1091 emit_insn ((*genfun) (to1, from1));
1092 else
1094 #ifdef PUSH_ROUNDING
1095 emit_single_push_insn (mode, from1, NULL);
1096 #else
1097 gcc_unreachable ();
1098 #endif
1101 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1102 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1103 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1104 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1106 if (! data->reverse)
1107 data->offset += size;
1109 data->len -= size;
1113 /* Emit code to move a block Y to a block X. This may be done with
1114 string-move instructions, with multiple scalar move instructions,
1115 or with a library call.
1117 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1118 SIZE is an rtx that says how long they are.
1119 ALIGN is the maximum alignment we can assume they have.
1120 METHOD describes what kind of copy this is, and what mechanisms may be used.
1122 Return the address of the new block, if memcpy is called and returns it,
1123 0 otherwise. */
1126 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1127 unsigned int expected_align, HOST_WIDE_INT expected_size)
1129 bool may_use_call;
1130 rtx retval = 0;
1131 unsigned int align;
1133 switch (method)
1135 case BLOCK_OP_NORMAL:
1136 case BLOCK_OP_TAILCALL:
1137 may_use_call = true;
1138 break;
1140 case BLOCK_OP_CALL_PARM:
1141 may_use_call = block_move_libcall_safe_for_call_parm ();
1143 /* Make inhibit_defer_pop nonzero around the library call
1144 to force it to pop the arguments right away. */
1145 NO_DEFER_POP;
1146 break;
1148 case BLOCK_OP_NO_LIBCALL:
1149 may_use_call = false;
1150 break;
1152 default:
1153 gcc_unreachable ();
1156 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1157 gcc_assert (align >= BITS_PER_UNIT);
1159 gcc_assert (MEM_P (x));
1160 gcc_assert (MEM_P (y));
1161 gcc_assert (size);
1163 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1164 block copy is more efficient for other large modes, e.g. DCmode. */
1165 x = adjust_address (x, BLKmode, 0);
1166 y = adjust_address (y, BLKmode, 0);
1168 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1169 can be incorrect is coming from __builtin_memcpy. */
1170 if (CONST_INT_P (size))
1172 if (INTVAL (size) == 0)
1173 return 0;
1175 x = shallow_copy_rtx (x);
1176 y = shallow_copy_rtx (y);
1177 set_mem_size (x, size);
1178 set_mem_size (y, size);
1181 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1182 move_by_pieces (x, y, INTVAL (size), align, 0);
1183 else if (emit_block_move_via_movmem (x, y, size, align,
1184 expected_align, expected_size))
1186 else if (may_use_call
1187 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1188 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1189 retval = emit_block_move_via_libcall (x, y, size,
1190 method == BLOCK_OP_TAILCALL);
1191 else
1192 emit_block_move_via_loop (x, y, size, align);
1194 if (method == BLOCK_OP_CALL_PARM)
1195 OK_DEFER_POP;
1197 return retval;
1201 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1203 return emit_block_move_hints (x, y, size, method, 0, -1);
1206 /* A subroutine of emit_block_move. Returns true if calling the
1207 block move libcall will not clobber any parameters which may have
1208 already been placed on the stack. */
1210 static bool
1211 block_move_libcall_safe_for_call_parm (void)
1213 #if defined (REG_PARM_STACK_SPACE)
1214 tree fn;
1215 #endif
1217 /* If arguments are pushed on the stack, then they're safe. */
1218 if (PUSH_ARGS)
1219 return true;
1221 /* If registers go on the stack anyway, any argument is sure to clobber
1222 an outgoing argument. */
1223 #if defined (REG_PARM_STACK_SPACE)
1224 fn = emit_block_move_libcall_fn (false);
1225 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1226 depend on its argument. */
1227 (void) fn;
1228 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1229 && REG_PARM_STACK_SPACE (fn) != 0)
1230 return false;
1231 #endif
1233 /* If any argument goes in memory, then it might clobber an outgoing
1234 argument. */
1236 CUMULATIVE_ARGS args_so_far;
1237 tree fn, arg;
1239 fn = emit_block_move_libcall_fn (false);
1240 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1242 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1243 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1245 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1246 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1247 NULL_TREE, true);
1248 if (!tmp || !REG_P (tmp))
1249 return false;
1250 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1251 return false;
1252 targetm.calls.function_arg_advance (&args_so_far, mode,
1253 NULL_TREE, true);
1256 return true;
1259 /* A subroutine of emit_block_move. Expand a movmem pattern;
1260 return true if successful. */
1262 static bool
1263 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1264 unsigned int expected_align, HOST_WIDE_INT expected_size)
1266 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1267 int save_volatile_ok = volatile_ok;
1268 enum machine_mode mode;
1270 if (expected_align < align)
1271 expected_align = align;
1273 /* Since this is a move insn, we don't care about volatility. */
1274 volatile_ok = 1;
1276 /* Try the most limited insn first, because there's no point
1277 including more than one in the machine description unless
1278 the more limited one has some advantage. */
1280 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1281 mode = GET_MODE_WIDER_MODE (mode))
1283 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1284 insn_operand_predicate_fn pred;
1286 if (code != CODE_FOR_nothing
1287 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1288 here because if SIZE is less than the mode mask, as it is
1289 returned by the macro, it will definitely be less than the
1290 actual mode mask. */
1291 && ((CONST_INT_P (size)
1292 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1293 <= (GET_MODE_MASK (mode) >> 1)))
1294 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1295 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1296 || (*pred) (x, BLKmode))
1297 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1298 || (*pred) (y, BLKmode))
1299 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1300 || (*pred) (opalign, VOIDmode)))
1302 rtx op2;
1303 rtx last = get_last_insn ();
1304 rtx pat;
1306 op2 = convert_to_mode (mode, size, 1);
1307 pred = insn_data[(int) code].operand[2].predicate;
1308 if (pred != 0 && ! (*pred) (op2, mode))
1309 op2 = copy_to_mode_reg (mode, op2);
1311 /* ??? When called via emit_block_move_for_call, it'd be
1312 nice if there were some way to inform the backend, so
1313 that it doesn't fail the expansion because it thinks
1314 emitting the libcall would be more efficient. */
1316 if (insn_data[(int) code].n_operands == 4)
1317 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1318 else
1319 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1320 GEN_INT (expected_align
1321 / BITS_PER_UNIT),
1322 GEN_INT (expected_size));
1323 if (pat)
1325 emit_insn (pat);
1326 volatile_ok = save_volatile_ok;
1327 return true;
1329 else
1330 delete_insns_since (last);
1334 volatile_ok = save_volatile_ok;
1335 return false;
1338 /* A subroutine of emit_block_move. Expand a call to memcpy.
1339 Return the return value from memcpy, 0 otherwise. */
1342 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1344 rtx dst_addr, src_addr;
1345 tree call_expr, fn, src_tree, dst_tree, size_tree;
1346 enum machine_mode size_mode;
1347 rtx retval;
1349 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1350 pseudos. We can then place those new pseudos into a VAR_DECL and
1351 use them later. */
1353 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1354 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1356 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1357 src_addr = convert_memory_address (ptr_mode, src_addr);
1359 dst_tree = make_tree (ptr_type_node, dst_addr);
1360 src_tree = make_tree (ptr_type_node, src_addr);
1362 size_mode = TYPE_MODE (sizetype);
1364 size = convert_to_mode (size_mode, size, 1);
1365 size = copy_to_mode_reg (size_mode, size);
1367 /* It is incorrect to use the libcall calling conventions to call
1368 memcpy in this context. This could be a user call to memcpy and
1369 the user may wish to examine the return value from memcpy. For
1370 targets where libcalls and normal calls have different conventions
1371 for returning pointers, we could end up generating incorrect code. */
1373 size_tree = make_tree (sizetype, size);
1375 fn = emit_block_move_libcall_fn (true);
1376 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1377 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1379 retval = expand_normal (call_expr);
1381 return retval;
1384 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1385 for the function we use for block copies. The first time FOR_CALL
1386 is true, we call assemble_external. */
1388 static GTY(()) tree block_move_fn;
1390 void
1391 init_block_move_fn (const char *asmspec)
1393 if (!block_move_fn)
1395 tree args, fn;
1397 fn = get_identifier ("memcpy");
1398 args = build_function_type_list (ptr_type_node, ptr_type_node,
1399 const_ptr_type_node, sizetype,
1400 NULL_TREE);
1402 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1403 DECL_EXTERNAL (fn) = 1;
1404 TREE_PUBLIC (fn) = 1;
1405 DECL_ARTIFICIAL (fn) = 1;
1406 TREE_NOTHROW (fn) = 1;
1407 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1408 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1410 block_move_fn = fn;
1413 if (asmspec)
1414 set_user_assembler_name (block_move_fn, asmspec);
1417 static tree
1418 emit_block_move_libcall_fn (int for_call)
1420 static bool emitted_extern;
1422 if (!block_move_fn)
1423 init_block_move_fn (NULL);
1425 if (for_call && !emitted_extern)
1427 emitted_extern = true;
1428 make_decl_rtl (block_move_fn);
1429 assemble_external (block_move_fn);
1432 return block_move_fn;
1435 /* A subroutine of emit_block_move. Copy the data via an explicit
1436 loop. This is used only when libcalls are forbidden. */
1437 /* ??? It'd be nice to copy in hunks larger than QImode. */
1439 static void
1440 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1441 unsigned int align ATTRIBUTE_UNUSED)
1443 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1444 enum machine_mode x_addr_mode
1445 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1446 enum machine_mode y_addr_mode
1447 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1448 enum machine_mode iter_mode;
1450 iter_mode = GET_MODE (size);
1451 if (iter_mode == VOIDmode)
1452 iter_mode = word_mode;
1454 top_label = gen_label_rtx ();
1455 cmp_label = gen_label_rtx ();
1456 iter = gen_reg_rtx (iter_mode);
1458 emit_move_insn (iter, const0_rtx);
1460 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1461 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1462 do_pending_stack_adjust ();
1464 emit_jump (cmp_label);
1465 emit_label (top_label);
1467 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1468 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1470 if (x_addr_mode != y_addr_mode)
1471 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1472 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1474 x = change_address (x, QImode, x_addr);
1475 y = change_address (y, QImode, y_addr);
1477 emit_move_insn (x, y);
1479 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1480 true, OPTAB_LIB_WIDEN);
1481 if (tmp != iter)
1482 emit_move_insn (iter, tmp);
1484 emit_label (cmp_label);
1486 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1487 true, top_label);
1490 /* Copy all or part of a value X into registers starting at REGNO.
1491 The number of registers to be filled is NREGS. */
1493 void
1494 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1496 int i;
1497 #ifdef HAVE_load_multiple
1498 rtx pat;
1499 rtx last;
1500 #endif
1502 if (nregs == 0)
1503 return;
1505 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1506 x = validize_mem (force_const_mem (mode, x));
1508 /* See if the machine can do this with a load multiple insn. */
1509 #ifdef HAVE_load_multiple
1510 if (HAVE_load_multiple)
1512 last = get_last_insn ();
1513 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1514 GEN_INT (nregs));
1515 if (pat)
1517 emit_insn (pat);
1518 return;
1520 else
1521 delete_insns_since (last);
1523 #endif
1525 for (i = 0; i < nregs; i++)
1526 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1527 operand_subword_force (x, i, mode));
1530 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1531 The number of registers to be filled is NREGS. */
1533 void
1534 move_block_from_reg (int regno, rtx x, int nregs)
1536 int i;
1538 if (nregs == 0)
1539 return;
1541 /* See if the machine can do this with a store multiple insn. */
1542 #ifdef HAVE_store_multiple
1543 if (HAVE_store_multiple)
1545 rtx last = get_last_insn ();
1546 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1547 GEN_INT (nregs));
1548 if (pat)
1550 emit_insn (pat);
1551 return;
1553 else
1554 delete_insns_since (last);
1556 #endif
1558 for (i = 0; i < nregs; i++)
1560 rtx tem = operand_subword (x, i, 1, BLKmode);
1562 gcc_assert (tem);
1564 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1568 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1569 ORIG, where ORIG is a non-consecutive group of registers represented by
1570 a PARALLEL. The clone is identical to the original except in that the
1571 original set of registers is replaced by a new set of pseudo registers.
1572 The new set has the same modes as the original set. */
1575 gen_group_rtx (rtx orig)
1577 int i, length;
1578 rtx *tmps;
1580 gcc_assert (GET_CODE (orig) == PARALLEL);
1582 length = XVECLEN (orig, 0);
1583 tmps = XALLOCAVEC (rtx, length);
1585 /* Skip a NULL entry in first slot. */
1586 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1588 if (i)
1589 tmps[0] = 0;
1591 for (; i < length; i++)
1593 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1594 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1596 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1599 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1602 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1603 except that values are placed in TMPS[i], and must later be moved
1604 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1606 static void
1607 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1609 rtx src;
1610 int start, i;
1611 enum machine_mode m = GET_MODE (orig_src);
1613 gcc_assert (GET_CODE (dst) == PARALLEL);
1615 if (m != VOIDmode
1616 && !SCALAR_INT_MODE_P (m)
1617 && !MEM_P (orig_src)
1618 && GET_CODE (orig_src) != CONCAT)
1620 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1621 if (imode == BLKmode)
1622 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1623 else
1624 src = gen_reg_rtx (imode);
1625 if (imode != BLKmode)
1626 src = gen_lowpart (GET_MODE (orig_src), src);
1627 emit_move_insn (src, orig_src);
1628 /* ...and back again. */
1629 if (imode != BLKmode)
1630 src = gen_lowpart (imode, src);
1631 emit_group_load_1 (tmps, dst, src, type, ssize);
1632 return;
1635 /* Check for a NULL entry, used to indicate that the parameter goes
1636 both on the stack and in registers. */
1637 if (XEXP (XVECEXP (dst, 0, 0), 0))
1638 start = 0;
1639 else
1640 start = 1;
1642 /* Process the pieces. */
1643 for (i = start; i < XVECLEN (dst, 0); i++)
1645 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1646 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1647 unsigned int bytelen = GET_MODE_SIZE (mode);
1648 int shift = 0;
1650 /* Handle trailing fragments that run over the size of the struct. */
1651 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1653 /* Arrange to shift the fragment to where it belongs.
1654 extract_bit_field loads to the lsb of the reg. */
1655 if (
1656 #ifdef BLOCK_REG_PADDING
1657 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1658 == (BYTES_BIG_ENDIAN ? upward : downward)
1659 #else
1660 BYTES_BIG_ENDIAN
1661 #endif
1663 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1664 bytelen = ssize - bytepos;
1665 gcc_assert (bytelen > 0);
1668 /* If we won't be loading directly from memory, protect the real source
1669 from strange tricks we might play; but make sure that the source can
1670 be loaded directly into the destination. */
1671 src = orig_src;
1672 if (!MEM_P (orig_src)
1673 && (!CONSTANT_P (orig_src)
1674 || (GET_MODE (orig_src) != mode
1675 && GET_MODE (orig_src) != VOIDmode)))
1677 if (GET_MODE (orig_src) == VOIDmode)
1678 src = gen_reg_rtx (mode);
1679 else
1680 src = gen_reg_rtx (GET_MODE (orig_src));
1682 emit_move_insn (src, orig_src);
1685 /* Optimize the access just a bit. */
1686 if (MEM_P (src)
1687 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1688 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1689 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1690 && bytelen == GET_MODE_SIZE (mode))
1692 tmps[i] = gen_reg_rtx (mode);
1693 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1695 else if (COMPLEX_MODE_P (mode)
1696 && GET_MODE (src) == mode
1697 && bytelen == GET_MODE_SIZE (mode))
1698 /* Let emit_move_complex do the bulk of the work. */
1699 tmps[i] = src;
1700 else if (GET_CODE (src) == CONCAT)
1702 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1703 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1705 if ((bytepos == 0 && bytelen == slen0)
1706 || (bytepos != 0 && bytepos + bytelen <= slen))
1708 /* The following assumes that the concatenated objects all
1709 have the same size. In this case, a simple calculation
1710 can be used to determine the object and the bit field
1711 to be extracted. */
1712 tmps[i] = XEXP (src, bytepos / slen0);
1713 if (! CONSTANT_P (tmps[i])
1714 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1715 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1716 (bytepos % slen0) * BITS_PER_UNIT,
1717 1, NULL_RTX, mode, mode);
1719 else
1721 rtx mem;
1723 gcc_assert (!bytepos);
1724 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1725 emit_move_insn (mem, src);
1726 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1727 0, 1, NULL_RTX, mode, mode);
1730 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1731 SIMD register, which is currently broken. While we get GCC
1732 to emit proper RTL for these cases, let's dump to memory. */
1733 else if (VECTOR_MODE_P (GET_MODE (dst))
1734 && REG_P (src))
1736 int slen = GET_MODE_SIZE (GET_MODE (src));
1737 rtx mem;
1739 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1740 emit_move_insn (mem, src);
1741 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1743 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1744 && XVECLEN (dst, 0) > 1)
1745 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1746 else if (CONSTANT_P (src))
1748 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1750 if (len == ssize)
1751 tmps[i] = src;
1752 else
1754 rtx first, second;
1756 gcc_assert (2 * len == ssize);
1757 split_double (src, &first, &second);
1758 if (i)
1759 tmps[i] = second;
1760 else
1761 tmps[i] = first;
1764 else if (REG_P (src) && GET_MODE (src) == mode)
1765 tmps[i] = src;
1766 else
1767 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1768 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1769 mode, mode);
1771 if (shift)
1772 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1773 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1777 /* Emit code to move a block SRC of type TYPE to a block DST,
1778 where DST is non-consecutive registers represented by a PARALLEL.
1779 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1780 if not known. */
1782 void
1783 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1785 rtx *tmps;
1786 int i;
1788 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1789 emit_group_load_1 (tmps, dst, src, type, ssize);
1791 /* Copy the extracted pieces into the proper (probable) hard regs. */
1792 for (i = 0; i < XVECLEN (dst, 0); i++)
1794 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1795 if (d == NULL)
1796 continue;
1797 emit_move_insn (d, tmps[i]);
1801 /* Similar, but load SRC into new pseudos in a format that looks like
1802 PARALLEL. This can later be fed to emit_group_move to get things
1803 in the right place. */
1806 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1808 rtvec vec;
1809 int i;
1811 vec = rtvec_alloc (XVECLEN (parallel, 0));
1812 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1814 /* Convert the vector to look just like the original PARALLEL, except
1815 with the computed values. */
1816 for (i = 0; i < XVECLEN (parallel, 0); i++)
1818 rtx e = XVECEXP (parallel, 0, i);
1819 rtx d = XEXP (e, 0);
1821 if (d)
1823 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1824 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1826 RTVEC_ELT (vec, i) = e;
1829 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1832 /* Emit code to move a block SRC to block DST, where SRC and DST are
1833 non-consecutive groups of registers, each represented by a PARALLEL. */
1835 void
1836 emit_group_move (rtx dst, rtx src)
1838 int i;
1840 gcc_assert (GET_CODE (src) == PARALLEL
1841 && GET_CODE (dst) == PARALLEL
1842 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1844 /* Skip first entry if NULL. */
1845 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1846 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1847 XEXP (XVECEXP (src, 0, i), 0));
1850 /* Move a group of registers represented by a PARALLEL into pseudos. */
1853 emit_group_move_into_temps (rtx src)
1855 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1856 int i;
1858 for (i = 0; i < XVECLEN (src, 0); i++)
1860 rtx e = XVECEXP (src, 0, i);
1861 rtx d = XEXP (e, 0);
1863 if (d)
1864 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1865 RTVEC_ELT (vec, i) = e;
1868 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1871 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1872 where SRC is non-consecutive registers represented by a PARALLEL.
1873 SSIZE represents the total size of block ORIG_DST, or -1 if not
1874 known. */
1876 void
1877 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1879 rtx *tmps, dst;
1880 int start, finish, i;
1881 enum machine_mode m = GET_MODE (orig_dst);
1883 gcc_assert (GET_CODE (src) == PARALLEL);
1885 if (!SCALAR_INT_MODE_P (m)
1886 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1888 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1889 if (imode == BLKmode)
1890 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1891 else
1892 dst = gen_reg_rtx (imode);
1893 emit_group_store (dst, src, type, ssize);
1894 if (imode != BLKmode)
1895 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1896 emit_move_insn (orig_dst, dst);
1897 return;
1900 /* Check for a NULL entry, used to indicate that the parameter goes
1901 both on the stack and in registers. */
1902 if (XEXP (XVECEXP (src, 0, 0), 0))
1903 start = 0;
1904 else
1905 start = 1;
1906 finish = XVECLEN (src, 0);
1908 tmps = XALLOCAVEC (rtx, finish);
1910 /* Copy the (probable) hard regs into pseudos. */
1911 for (i = start; i < finish; i++)
1913 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1914 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1916 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1917 emit_move_insn (tmps[i], reg);
1919 else
1920 tmps[i] = reg;
1923 /* If we won't be storing directly into memory, protect the real destination
1924 from strange tricks we might play. */
1925 dst = orig_dst;
1926 if (GET_CODE (dst) == PARALLEL)
1928 rtx temp;
1930 /* We can get a PARALLEL dst if there is a conditional expression in
1931 a return statement. In that case, the dst and src are the same,
1932 so no action is necessary. */
1933 if (rtx_equal_p (dst, src))
1934 return;
1936 /* It is unclear if we can ever reach here, but we may as well handle
1937 it. Allocate a temporary, and split this into a store/load to/from
1938 the temporary. */
1940 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1941 emit_group_store (temp, src, type, ssize);
1942 emit_group_load (dst, temp, type, ssize);
1943 return;
1945 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1947 enum machine_mode outer = GET_MODE (dst);
1948 enum machine_mode inner;
1949 HOST_WIDE_INT bytepos;
1950 bool done = false;
1951 rtx temp;
1953 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1954 dst = gen_reg_rtx (outer);
1956 /* Make life a bit easier for combine. */
1957 /* If the first element of the vector is the low part
1958 of the destination mode, use a paradoxical subreg to
1959 initialize the destination. */
1960 if (start < finish)
1962 inner = GET_MODE (tmps[start]);
1963 bytepos = subreg_lowpart_offset (inner, outer);
1964 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1966 temp = simplify_gen_subreg (outer, tmps[start],
1967 inner, 0);
1968 if (temp)
1970 emit_move_insn (dst, temp);
1971 done = true;
1972 start++;
1977 /* If the first element wasn't the low part, try the last. */
1978 if (!done
1979 && start < finish - 1)
1981 inner = GET_MODE (tmps[finish - 1]);
1982 bytepos = subreg_lowpart_offset (inner, outer);
1983 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1985 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1986 inner, 0);
1987 if (temp)
1989 emit_move_insn (dst, temp);
1990 done = true;
1991 finish--;
1996 /* Otherwise, simply initialize the result to zero. */
1997 if (!done)
1998 emit_move_insn (dst, CONST0_RTX (outer));
2001 /* Process the pieces. */
2002 for (i = start; i < finish; i++)
2004 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2005 enum machine_mode mode = GET_MODE (tmps[i]);
2006 unsigned int bytelen = GET_MODE_SIZE (mode);
2007 unsigned int adj_bytelen = bytelen;
2008 rtx dest = dst;
2010 /* Handle trailing fragments that run over the size of the struct. */
2011 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2012 adj_bytelen = ssize - bytepos;
2014 if (GET_CODE (dst) == CONCAT)
2016 if (bytepos + adj_bytelen
2017 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2018 dest = XEXP (dst, 0);
2019 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2021 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2022 dest = XEXP (dst, 1);
2024 else
2026 enum machine_mode dest_mode = GET_MODE (dest);
2027 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2029 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2031 if (GET_MODE_ALIGNMENT (dest_mode)
2032 >= GET_MODE_ALIGNMENT (tmp_mode))
2034 dest = assign_stack_temp (dest_mode,
2035 GET_MODE_SIZE (dest_mode),
2037 emit_move_insn (adjust_address (dest,
2038 tmp_mode,
2039 bytepos),
2040 tmps[i]);
2041 dst = dest;
2043 else
2045 dest = assign_stack_temp (tmp_mode,
2046 GET_MODE_SIZE (tmp_mode),
2048 emit_move_insn (dest, tmps[i]);
2049 dst = adjust_address (dest, dest_mode, bytepos);
2051 break;
2055 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2057 /* store_bit_field always takes its value from the lsb.
2058 Move the fragment to the lsb if it's not already there. */
2059 if (
2060 #ifdef BLOCK_REG_PADDING
2061 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2062 == (BYTES_BIG_ENDIAN ? upward : downward)
2063 #else
2064 BYTES_BIG_ENDIAN
2065 #endif
2068 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2069 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2070 build_int_cst (NULL_TREE, shift),
2071 tmps[i], 0);
2073 bytelen = adj_bytelen;
2076 /* Optimize the access just a bit. */
2077 if (MEM_P (dest)
2078 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2079 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2080 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2081 && bytelen == GET_MODE_SIZE (mode))
2082 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2083 else
2084 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2085 mode, tmps[i]);
2088 /* Copy from the pseudo into the (probable) hard reg. */
2089 if (orig_dst != dst)
2090 emit_move_insn (orig_dst, dst);
2093 /* Generate code to copy a BLKmode object of TYPE out of a
2094 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2095 is null, a stack temporary is created. TGTBLK is returned.
2097 The purpose of this routine is to handle functions that return
2098 BLKmode structures in registers. Some machines (the PA for example)
2099 want to return all small structures in registers regardless of the
2100 structure's alignment. */
2103 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2105 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2106 rtx src = NULL, dst = NULL;
2107 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2108 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2109 enum machine_mode copy_mode;
2111 if (tgtblk == 0)
2113 tgtblk = assign_temp (build_qualified_type (type,
2114 (TYPE_QUALS (type)
2115 | TYPE_QUAL_CONST)),
2116 0, 1, 1);
2117 preserve_temp_slots (tgtblk);
2120 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2121 into a new pseudo which is a full word. */
2123 if (GET_MODE (srcreg) != BLKmode
2124 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2125 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2127 /* If the structure doesn't take up a whole number of words, see whether
2128 SRCREG is padded on the left or on the right. If it's on the left,
2129 set PADDING_CORRECTION to the number of bits to skip.
2131 In most ABIs, the structure will be returned at the least end of
2132 the register, which translates to right padding on little-endian
2133 targets and left padding on big-endian targets. The opposite
2134 holds if the structure is returned at the most significant
2135 end of the register. */
2136 if (bytes % UNITS_PER_WORD != 0
2137 && (targetm.calls.return_in_msb (type)
2138 ? !BYTES_BIG_ENDIAN
2139 : BYTES_BIG_ENDIAN))
2140 padding_correction
2141 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2143 /* Copy the structure BITSIZE bits at a time. If the target lives in
2144 memory, take care of not reading/writing past its end by selecting
2145 a copy mode suited to BITSIZE. This should always be possible given
2146 how it is computed.
2148 We could probably emit more efficient code for machines which do not use
2149 strict alignment, but it doesn't seem worth the effort at the current
2150 time. */
2152 copy_mode = word_mode;
2153 if (MEM_P (tgtblk))
2155 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2156 if (mem_mode != BLKmode)
2157 copy_mode = mem_mode;
2160 for (bitpos = 0, xbitpos = padding_correction;
2161 bitpos < bytes * BITS_PER_UNIT;
2162 bitpos += bitsize, xbitpos += bitsize)
2164 /* We need a new source operand each time xbitpos is on a
2165 word boundary and when xbitpos == padding_correction
2166 (the first time through). */
2167 if (xbitpos % BITS_PER_WORD == 0
2168 || xbitpos == padding_correction)
2169 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2170 GET_MODE (srcreg));
2172 /* We need a new destination operand each time bitpos is on
2173 a word boundary. */
2174 if (bitpos % BITS_PER_WORD == 0)
2175 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2177 /* Use xbitpos for the source extraction (right justified) and
2178 bitpos for the destination store (left justified). */
2179 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2180 extract_bit_field (src, bitsize,
2181 xbitpos % BITS_PER_WORD, 1,
2182 NULL_RTX, copy_mode, copy_mode));
2185 return tgtblk;
2188 /* Add a USE expression for REG to the (possibly empty) list pointed
2189 to by CALL_FUSAGE. REG must denote a hard register. */
2191 void
2192 use_reg (rtx *call_fusage, rtx reg)
2194 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2196 *call_fusage
2197 = gen_rtx_EXPR_LIST (VOIDmode,
2198 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2201 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2202 starting at REGNO. All of these registers must be hard registers. */
2204 void
2205 use_regs (rtx *call_fusage, int regno, int nregs)
2207 int i;
2209 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2211 for (i = 0; i < nregs; i++)
2212 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2215 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2216 PARALLEL REGS. This is for calls that pass values in multiple
2217 non-contiguous locations. The Irix 6 ABI has examples of this. */
2219 void
2220 use_group_regs (rtx *call_fusage, rtx regs)
2222 int i;
2224 for (i = 0; i < XVECLEN (regs, 0); i++)
2226 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2228 /* A NULL entry means the parameter goes both on the stack and in
2229 registers. This can also be a MEM for targets that pass values
2230 partially on the stack and partially in registers. */
2231 if (reg != 0 && REG_P (reg))
2232 use_reg (call_fusage, reg);
2236 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2237 assigment and the code of the expresion on the RHS is CODE. Return
2238 NULL otherwise. */
2240 static gimple
2241 get_def_for_expr (tree name, enum tree_code code)
2243 gimple def_stmt;
2245 if (TREE_CODE (name) != SSA_NAME)
2246 return NULL;
2248 def_stmt = get_gimple_for_ssa_name (name);
2249 if (!def_stmt
2250 || gimple_assign_rhs_code (def_stmt) != code)
2251 return NULL;
2253 return def_stmt;
2257 /* Determine whether the LEN bytes generated by CONSTFUN can be
2258 stored to memory using several move instructions. CONSTFUNDATA is
2259 a pointer which will be passed as argument in every CONSTFUN call.
2260 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2261 a memset operation and false if it's a copy of a constant string.
2262 Return nonzero if a call to store_by_pieces should succeed. */
2265 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2266 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2267 void *constfundata, unsigned int align, bool memsetp)
2269 unsigned HOST_WIDE_INT l;
2270 unsigned int max_size;
2271 HOST_WIDE_INT offset = 0;
2272 enum machine_mode mode, tmode;
2273 enum insn_code icode;
2274 int reverse;
2275 rtx cst;
2277 if (len == 0)
2278 return 1;
2280 if (! (memsetp
2281 ? SET_BY_PIECES_P (len, align)
2282 : STORE_BY_PIECES_P (len, align)))
2283 return 0;
2285 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2286 if (align >= GET_MODE_ALIGNMENT (tmode))
2287 align = GET_MODE_ALIGNMENT (tmode);
2288 else
2290 enum machine_mode xmode;
2292 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2293 tmode != VOIDmode;
2294 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2295 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2296 || SLOW_UNALIGNED_ACCESS (tmode, align))
2297 break;
2299 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2302 /* We would first store what we can in the largest integer mode, then go to
2303 successively smaller modes. */
2305 for (reverse = 0;
2306 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2307 reverse++)
2309 l = len;
2310 mode = VOIDmode;
2311 max_size = STORE_MAX_PIECES + 1;
2312 while (max_size > 1)
2314 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2315 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2316 if (GET_MODE_SIZE (tmode) < max_size)
2317 mode = tmode;
2319 if (mode == VOIDmode)
2320 break;
2322 icode = optab_handler (mov_optab, mode);
2323 if (icode != CODE_FOR_nothing
2324 && align >= GET_MODE_ALIGNMENT (mode))
2326 unsigned int size = GET_MODE_SIZE (mode);
2328 while (l >= size)
2330 if (reverse)
2331 offset -= size;
2333 cst = (*constfun) (constfundata, offset, mode);
2334 if (!LEGITIMATE_CONSTANT_P (cst))
2335 return 0;
2337 if (!reverse)
2338 offset += size;
2340 l -= size;
2344 max_size = GET_MODE_SIZE (mode);
2347 /* The code above should have handled everything. */
2348 gcc_assert (!l);
2351 return 1;
2354 /* Generate several move instructions to store LEN bytes generated by
2355 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2356 pointer which will be passed as argument in every CONSTFUN call.
2357 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2358 a memset operation and false if it's a copy of a constant string.
2359 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2360 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2361 stpcpy. */
2364 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2365 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2366 void *constfundata, unsigned int align, bool memsetp, int endp)
2368 enum machine_mode to_addr_mode
2369 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2370 struct store_by_pieces_d data;
2372 if (len == 0)
2374 gcc_assert (endp != 2);
2375 return to;
2378 gcc_assert (memsetp
2379 ? SET_BY_PIECES_P (len, align)
2380 : STORE_BY_PIECES_P (len, align));
2381 data.constfun = constfun;
2382 data.constfundata = constfundata;
2383 data.len = len;
2384 data.to = to;
2385 store_by_pieces_1 (&data, align);
2386 if (endp)
2388 rtx to1;
2390 gcc_assert (!data.reverse);
2391 if (data.autinc_to)
2393 if (endp == 2)
2395 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2396 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2397 else
2398 data.to_addr = copy_to_mode_reg (to_addr_mode,
2399 plus_constant (data.to_addr,
2400 -1));
2402 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2403 data.offset);
2405 else
2407 if (endp == 2)
2408 --data.offset;
2409 to1 = adjust_address (data.to, QImode, data.offset);
2411 return to1;
2413 else
2414 return data.to;
2417 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2418 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2420 static void
2421 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2423 struct store_by_pieces_d data;
2425 if (len == 0)
2426 return;
2428 data.constfun = clear_by_pieces_1;
2429 data.constfundata = NULL;
2430 data.len = len;
2431 data.to = to;
2432 store_by_pieces_1 (&data, align);
2435 /* Callback routine for clear_by_pieces.
2436 Return const0_rtx unconditionally. */
2438 static rtx
2439 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2440 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2441 enum machine_mode mode ATTRIBUTE_UNUSED)
2443 return const0_rtx;
2446 /* Subroutine of clear_by_pieces and store_by_pieces.
2447 Generate several move instructions to store LEN bytes of block TO. (A MEM
2448 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2450 static void
2451 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2452 unsigned int align ATTRIBUTE_UNUSED)
2454 enum machine_mode to_addr_mode
2455 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2456 rtx to_addr = XEXP (data->to, 0);
2457 unsigned int max_size = STORE_MAX_PIECES + 1;
2458 enum machine_mode mode = VOIDmode, tmode;
2459 enum insn_code icode;
2461 data->offset = 0;
2462 data->to_addr = to_addr;
2463 data->autinc_to
2464 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2465 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2467 data->explicit_inc_to = 0;
2468 data->reverse
2469 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2470 if (data->reverse)
2471 data->offset = data->len;
2473 /* If storing requires more than two move insns,
2474 copy addresses to registers (to make displacements shorter)
2475 and use post-increment if available. */
2476 if (!data->autinc_to
2477 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2479 /* Determine the main mode we'll be using. */
2480 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2481 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2482 if (GET_MODE_SIZE (tmode) < max_size)
2483 mode = tmode;
2485 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2487 data->to_addr = copy_to_mode_reg (to_addr_mode,
2488 plus_constant (to_addr, data->len));
2489 data->autinc_to = 1;
2490 data->explicit_inc_to = -1;
2493 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2494 && ! data->autinc_to)
2496 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2497 data->autinc_to = 1;
2498 data->explicit_inc_to = 1;
2501 if ( !data->autinc_to && CONSTANT_P (to_addr))
2502 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2505 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2506 if (align >= GET_MODE_ALIGNMENT (tmode))
2507 align = GET_MODE_ALIGNMENT (tmode);
2508 else
2510 enum machine_mode xmode;
2512 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2513 tmode != VOIDmode;
2514 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2515 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2516 || SLOW_UNALIGNED_ACCESS (tmode, align))
2517 break;
2519 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2522 /* First store what we can in the largest integer mode, then go to
2523 successively smaller modes. */
2525 while (max_size > 1)
2527 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2528 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2529 if (GET_MODE_SIZE (tmode) < max_size)
2530 mode = tmode;
2532 if (mode == VOIDmode)
2533 break;
2535 icode = optab_handler (mov_optab, mode);
2536 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2537 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2539 max_size = GET_MODE_SIZE (mode);
2542 /* The code above should have handled everything. */
2543 gcc_assert (!data->len);
2546 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2547 with move instructions for mode MODE. GENFUN is the gen_... function
2548 to make a move insn for that mode. DATA has all the other info. */
2550 static void
2551 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2552 struct store_by_pieces_d *data)
2554 unsigned int size = GET_MODE_SIZE (mode);
2555 rtx to1, cst;
2557 while (data->len >= size)
2559 if (data->reverse)
2560 data->offset -= size;
2562 if (data->autinc_to)
2563 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2564 data->offset);
2565 else
2566 to1 = adjust_address (data->to, mode, data->offset);
2568 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2569 emit_insn (gen_add2_insn (data->to_addr,
2570 GEN_INT (-(HOST_WIDE_INT) size)));
2572 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2573 emit_insn ((*genfun) (to1, cst));
2575 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2576 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2578 if (! data->reverse)
2579 data->offset += size;
2581 data->len -= size;
2585 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2586 its length in bytes. */
2589 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2590 unsigned int expected_align, HOST_WIDE_INT expected_size)
2592 enum machine_mode mode = GET_MODE (object);
2593 unsigned int align;
2595 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2597 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2598 just move a zero. Otherwise, do this a piece at a time. */
2599 if (mode != BLKmode
2600 && CONST_INT_P (size)
2601 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2603 rtx zero = CONST0_RTX (mode);
2604 if (zero != NULL)
2606 emit_move_insn (object, zero);
2607 return NULL;
2610 if (COMPLEX_MODE_P (mode))
2612 zero = CONST0_RTX (GET_MODE_INNER (mode));
2613 if (zero != NULL)
2615 write_complex_part (object, zero, 0);
2616 write_complex_part (object, zero, 1);
2617 return NULL;
2622 if (size == const0_rtx)
2623 return NULL;
2625 align = MEM_ALIGN (object);
2627 if (CONST_INT_P (size)
2628 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2629 clear_by_pieces (object, INTVAL (size), align);
2630 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2631 expected_align, expected_size))
2633 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2634 return set_storage_via_libcall (object, size, const0_rtx,
2635 method == BLOCK_OP_TAILCALL);
2636 else
2637 gcc_unreachable ();
2639 return NULL;
2643 clear_storage (rtx object, rtx size, enum block_op_methods method)
2645 return clear_storage_hints (object, size, method, 0, -1);
2649 /* A subroutine of clear_storage. Expand a call to memset.
2650 Return the return value of memset, 0 otherwise. */
2653 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2655 tree call_expr, fn, object_tree, size_tree, val_tree;
2656 enum machine_mode size_mode;
2657 rtx retval;
2659 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2660 place those into new pseudos into a VAR_DECL and use them later. */
2662 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2664 size_mode = TYPE_MODE (sizetype);
2665 size = convert_to_mode (size_mode, size, 1);
2666 size = copy_to_mode_reg (size_mode, size);
2668 /* It is incorrect to use the libcall calling conventions to call
2669 memset in this context. This could be a user call to memset and
2670 the user may wish to examine the return value from memset. For
2671 targets where libcalls and normal calls have different conventions
2672 for returning pointers, we could end up generating incorrect code. */
2674 object_tree = make_tree (ptr_type_node, object);
2675 if (!CONST_INT_P (val))
2676 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2677 size_tree = make_tree (sizetype, size);
2678 val_tree = make_tree (integer_type_node, val);
2680 fn = clear_storage_libcall_fn (true);
2681 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2682 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2684 retval = expand_normal (call_expr);
2686 return retval;
2689 /* A subroutine of set_storage_via_libcall. Create the tree node
2690 for the function we use for block clears. The first time FOR_CALL
2691 is true, we call assemble_external. */
2693 tree block_clear_fn;
2695 void
2696 init_block_clear_fn (const char *asmspec)
2698 if (!block_clear_fn)
2700 tree fn, args;
2702 fn = get_identifier ("memset");
2703 args = build_function_type_list (ptr_type_node, ptr_type_node,
2704 integer_type_node, sizetype,
2705 NULL_TREE);
2707 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2708 DECL_EXTERNAL (fn) = 1;
2709 TREE_PUBLIC (fn) = 1;
2710 DECL_ARTIFICIAL (fn) = 1;
2711 TREE_NOTHROW (fn) = 1;
2712 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2713 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2715 block_clear_fn = fn;
2718 if (asmspec)
2719 set_user_assembler_name (block_clear_fn, asmspec);
2722 static tree
2723 clear_storage_libcall_fn (int for_call)
2725 static bool emitted_extern;
2727 if (!block_clear_fn)
2728 init_block_clear_fn (NULL);
2730 if (for_call && !emitted_extern)
2732 emitted_extern = true;
2733 make_decl_rtl (block_clear_fn);
2734 assemble_external (block_clear_fn);
2737 return block_clear_fn;
2740 /* Expand a setmem pattern; return true if successful. */
2742 bool
2743 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2744 unsigned int expected_align, HOST_WIDE_INT expected_size)
2746 /* Try the most limited insn first, because there's no point
2747 including more than one in the machine description unless
2748 the more limited one has some advantage. */
2750 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2751 enum machine_mode mode;
2753 if (expected_align < align)
2754 expected_align = align;
2756 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2757 mode = GET_MODE_WIDER_MODE (mode))
2759 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2760 insn_operand_predicate_fn pred;
2762 if (code != CODE_FOR_nothing
2763 /* We don't need MODE to be narrower than
2764 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2765 the mode mask, as it is returned by the macro, it will
2766 definitely be less than the actual mode mask. */
2767 && ((CONST_INT_P (size)
2768 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2769 <= (GET_MODE_MASK (mode) >> 1)))
2770 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2771 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2772 || (*pred) (object, BLKmode))
2773 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2774 || (*pred) (opalign, VOIDmode)))
2776 rtx opsize, opchar;
2777 enum machine_mode char_mode;
2778 rtx last = get_last_insn ();
2779 rtx pat;
2781 opsize = convert_to_mode (mode, size, 1);
2782 pred = insn_data[(int) code].operand[1].predicate;
2783 if (pred != 0 && ! (*pred) (opsize, mode))
2784 opsize = copy_to_mode_reg (mode, opsize);
2786 opchar = val;
2787 char_mode = insn_data[(int) code].operand[2].mode;
2788 if (char_mode != VOIDmode)
2790 opchar = convert_to_mode (char_mode, opchar, 1);
2791 pred = insn_data[(int) code].operand[2].predicate;
2792 if (pred != 0 && ! (*pred) (opchar, char_mode))
2793 opchar = copy_to_mode_reg (char_mode, opchar);
2796 if (insn_data[(int) code].n_operands == 4)
2797 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2798 else
2799 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2800 GEN_INT (expected_align
2801 / BITS_PER_UNIT),
2802 GEN_INT (expected_size));
2803 if (pat)
2805 emit_insn (pat);
2806 return true;
2808 else
2809 delete_insns_since (last);
2813 return false;
2817 /* Write to one of the components of the complex value CPLX. Write VAL to
2818 the real part if IMAG_P is false, and the imaginary part if its true. */
2820 static void
2821 write_complex_part (rtx cplx, rtx val, bool imag_p)
2823 enum machine_mode cmode;
2824 enum machine_mode imode;
2825 unsigned ibitsize;
2827 if (GET_CODE (cplx) == CONCAT)
2829 emit_move_insn (XEXP (cplx, imag_p), val);
2830 return;
2833 cmode = GET_MODE (cplx);
2834 imode = GET_MODE_INNER (cmode);
2835 ibitsize = GET_MODE_BITSIZE (imode);
2837 /* For MEMs simplify_gen_subreg may generate an invalid new address
2838 because, e.g., the original address is considered mode-dependent
2839 by the target, which restricts simplify_subreg from invoking
2840 adjust_address_nv. Instead of preparing fallback support for an
2841 invalid address, we call adjust_address_nv directly. */
2842 if (MEM_P (cplx))
2844 emit_move_insn (adjust_address_nv (cplx, imode,
2845 imag_p ? GET_MODE_SIZE (imode) : 0),
2846 val);
2847 return;
2850 /* If the sub-object is at least word sized, then we know that subregging
2851 will work. This special case is important, since store_bit_field
2852 wants to operate on integer modes, and there's rarely an OImode to
2853 correspond to TCmode. */
2854 if (ibitsize >= BITS_PER_WORD
2855 /* For hard regs we have exact predicates. Assume we can split
2856 the original object if it spans an even number of hard regs.
2857 This special case is important for SCmode on 64-bit platforms
2858 where the natural size of floating-point regs is 32-bit. */
2859 || (REG_P (cplx)
2860 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2861 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2863 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2864 imag_p ? GET_MODE_SIZE (imode) : 0);
2865 if (part)
2867 emit_move_insn (part, val);
2868 return;
2870 else
2871 /* simplify_gen_subreg may fail for sub-word MEMs. */
2872 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2875 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2878 /* Extract one of the components of the complex value CPLX. Extract the
2879 real part if IMAG_P is false, and the imaginary part if it's true. */
2881 static rtx
2882 read_complex_part (rtx cplx, bool imag_p)
2884 enum machine_mode cmode, imode;
2885 unsigned ibitsize;
2887 if (GET_CODE (cplx) == CONCAT)
2888 return XEXP (cplx, imag_p);
2890 cmode = GET_MODE (cplx);
2891 imode = GET_MODE_INNER (cmode);
2892 ibitsize = GET_MODE_BITSIZE (imode);
2894 /* Special case reads from complex constants that got spilled to memory. */
2895 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2897 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2898 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2900 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2901 if (CONSTANT_CLASS_P (part))
2902 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2906 /* For MEMs simplify_gen_subreg may generate an invalid new address
2907 because, e.g., the original address is considered mode-dependent
2908 by the target, which restricts simplify_subreg from invoking
2909 adjust_address_nv. Instead of preparing fallback support for an
2910 invalid address, we call adjust_address_nv directly. */
2911 if (MEM_P (cplx))
2912 return adjust_address_nv (cplx, imode,
2913 imag_p ? GET_MODE_SIZE (imode) : 0);
2915 /* If the sub-object is at least word sized, then we know that subregging
2916 will work. This special case is important, since extract_bit_field
2917 wants to operate on integer modes, and there's rarely an OImode to
2918 correspond to TCmode. */
2919 if (ibitsize >= BITS_PER_WORD
2920 /* For hard regs we have exact predicates. Assume we can split
2921 the original object if it spans an even number of hard regs.
2922 This special case is important for SCmode on 64-bit platforms
2923 where the natural size of floating-point regs is 32-bit. */
2924 || (REG_P (cplx)
2925 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2926 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2928 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2929 imag_p ? GET_MODE_SIZE (imode) : 0);
2930 if (ret)
2931 return ret;
2932 else
2933 /* simplify_gen_subreg may fail for sub-word MEMs. */
2934 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2937 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2938 true, NULL_RTX, imode, imode);
2941 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2942 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2943 represented in NEW_MODE. If FORCE is true, this will never happen, as
2944 we'll force-create a SUBREG if needed. */
2946 static rtx
2947 emit_move_change_mode (enum machine_mode new_mode,
2948 enum machine_mode old_mode, rtx x, bool force)
2950 rtx ret;
2952 if (push_operand (x, GET_MODE (x)))
2954 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2955 MEM_COPY_ATTRIBUTES (ret, x);
2957 else if (MEM_P (x))
2959 /* We don't have to worry about changing the address since the
2960 size in bytes is supposed to be the same. */
2961 if (reload_in_progress)
2963 /* Copy the MEM to change the mode and move any
2964 substitutions from the old MEM to the new one. */
2965 ret = adjust_address_nv (x, new_mode, 0);
2966 copy_replacements (x, ret);
2968 else
2969 ret = adjust_address (x, new_mode, 0);
2971 else
2973 /* Note that we do want simplify_subreg's behavior of validating
2974 that the new mode is ok for a hard register. If we were to use
2975 simplify_gen_subreg, we would create the subreg, but would
2976 probably run into the target not being able to implement it. */
2977 /* Except, of course, when FORCE is true, when this is exactly what
2978 we want. Which is needed for CCmodes on some targets. */
2979 if (force)
2980 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2981 else
2982 ret = simplify_subreg (new_mode, x, old_mode, 0);
2985 return ret;
2988 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2989 an integer mode of the same size as MODE. Returns the instruction
2990 emitted, or NULL if such a move could not be generated. */
2992 static rtx
2993 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2995 enum machine_mode imode;
2996 enum insn_code code;
2998 /* There must exist a mode of the exact size we require. */
2999 imode = int_mode_for_mode (mode);
3000 if (imode == BLKmode)
3001 return NULL_RTX;
3003 /* The target must support moves in this mode. */
3004 code = optab_handler (mov_optab, imode);
3005 if (code == CODE_FOR_nothing)
3006 return NULL_RTX;
3008 x = emit_move_change_mode (imode, mode, x, force);
3009 if (x == NULL_RTX)
3010 return NULL_RTX;
3011 y = emit_move_change_mode (imode, mode, y, force);
3012 if (y == NULL_RTX)
3013 return NULL_RTX;
3014 return emit_insn (GEN_FCN (code) (x, y));
3017 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3018 Return an equivalent MEM that does not use an auto-increment. */
3020 static rtx
3021 emit_move_resolve_push (enum machine_mode mode, rtx x)
3023 enum rtx_code code = GET_CODE (XEXP (x, 0));
3024 HOST_WIDE_INT adjust;
3025 rtx temp;
3027 adjust = GET_MODE_SIZE (mode);
3028 #ifdef PUSH_ROUNDING
3029 adjust = PUSH_ROUNDING (adjust);
3030 #endif
3031 if (code == PRE_DEC || code == POST_DEC)
3032 adjust = -adjust;
3033 else if (code == PRE_MODIFY || code == POST_MODIFY)
3035 rtx expr = XEXP (XEXP (x, 0), 1);
3036 HOST_WIDE_INT val;
3038 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3039 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3040 val = INTVAL (XEXP (expr, 1));
3041 if (GET_CODE (expr) == MINUS)
3042 val = -val;
3043 gcc_assert (adjust == val || adjust == -val);
3044 adjust = val;
3047 /* Do not use anti_adjust_stack, since we don't want to update
3048 stack_pointer_delta. */
3049 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3050 GEN_INT (adjust), stack_pointer_rtx,
3051 0, OPTAB_LIB_WIDEN);
3052 if (temp != stack_pointer_rtx)
3053 emit_move_insn (stack_pointer_rtx, temp);
3055 switch (code)
3057 case PRE_INC:
3058 case PRE_DEC:
3059 case PRE_MODIFY:
3060 temp = stack_pointer_rtx;
3061 break;
3062 case POST_INC:
3063 case POST_DEC:
3064 case POST_MODIFY:
3065 temp = plus_constant (stack_pointer_rtx, -adjust);
3066 break;
3067 default:
3068 gcc_unreachable ();
3071 return replace_equiv_address (x, temp);
3074 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3075 X is known to satisfy push_operand, and MODE is known to be complex.
3076 Returns the last instruction emitted. */
3079 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3081 enum machine_mode submode = GET_MODE_INNER (mode);
3082 bool imag_first;
3084 #ifdef PUSH_ROUNDING
3085 unsigned int submodesize = GET_MODE_SIZE (submode);
3087 /* In case we output to the stack, but the size is smaller than the
3088 machine can push exactly, we need to use move instructions. */
3089 if (PUSH_ROUNDING (submodesize) != submodesize)
3091 x = emit_move_resolve_push (mode, x);
3092 return emit_move_insn (x, y);
3094 #endif
3096 /* Note that the real part always precedes the imag part in memory
3097 regardless of machine's endianness. */
3098 switch (GET_CODE (XEXP (x, 0)))
3100 case PRE_DEC:
3101 case POST_DEC:
3102 imag_first = true;
3103 break;
3104 case PRE_INC:
3105 case POST_INC:
3106 imag_first = false;
3107 break;
3108 default:
3109 gcc_unreachable ();
3112 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3113 read_complex_part (y, imag_first));
3114 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3115 read_complex_part (y, !imag_first));
3118 /* A subroutine of emit_move_complex. Perform the move from Y to X
3119 via two moves of the parts. Returns the last instruction emitted. */
3122 emit_move_complex_parts (rtx x, rtx y)
3124 /* Show the output dies here. This is necessary for SUBREGs
3125 of pseudos since we cannot track their lifetimes correctly;
3126 hard regs shouldn't appear here except as return values. */
3127 if (!reload_completed && !reload_in_progress
3128 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3129 emit_clobber (x);
3131 write_complex_part (x, read_complex_part (y, false), false);
3132 write_complex_part (x, read_complex_part (y, true), true);
3134 return get_last_insn ();
3137 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3138 MODE is known to be complex. Returns the last instruction emitted. */
3140 static rtx
3141 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3143 bool try_int;
3145 /* Need to take special care for pushes, to maintain proper ordering
3146 of the data, and possibly extra padding. */
3147 if (push_operand (x, mode))
3148 return emit_move_complex_push (mode, x, y);
3150 /* See if we can coerce the target into moving both values at once. */
3152 /* Move floating point as parts. */
3153 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3154 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3155 try_int = false;
3156 /* Not possible if the values are inherently not adjacent. */
3157 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3158 try_int = false;
3159 /* Is possible if both are registers (or subregs of registers). */
3160 else if (register_operand (x, mode) && register_operand (y, mode))
3161 try_int = true;
3162 /* If one of the operands is a memory, and alignment constraints
3163 are friendly enough, we may be able to do combined memory operations.
3164 We do not attempt this if Y is a constant because that combination is
3165 usually better with the by-parts thing below. */
3166 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3167 && (!STRICT_ALIGNMENT
3168 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3169 try_int = true;
3170 else
3171 try_int = false;
3173 if (try_int)
3175 rtx ret;
3177 /* For memory to memory moves, optimal behavior can be had with the
3178 existing block move logic. */
3179 if (MEM_P (x) && MEM_P (y))
3181 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3182 BLOCK_OP_NO_LIBCALL);
3183 return get_last_insn ();
3186 ret = emit_move_via_integer (mode, x, y, true);
3187 if (ret)
3188 return ret;
3191 return emit_move_complex_parts (x, y);
3194 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3195 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3197 static rtx
3198 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3200 rtx ret;
3202 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3203 if (mode != CCmode)
3205 enum insn_code code = optab_handler (mov_optab, CCmode);
3206 if (code != CODE_FOR_nothing)
3208 x = emit_move_change_mode (CCmode, mode, x, true);
3209 y = emit_move_change_mode (CCmode, mode, y, true);
3210 return emit_insn (GEN_FCN (code) (x, y));
3214 /* Otherwise, find the MODE_INT mode of the same width. */
3215 ret = emit_move_via_integer (mode, x, y, false);
3216 gcc_assert (ret != NULL);
3217 return ret;
3220 /* Return true if word I of OP lies entirely in the
3221 undefined bits of a paradoxical subreg. */
3223 static bool
3224 undefined_operand_subword_p (const_rtx op, int i)
3226 enum machine_mode innermode, innermostmode;
3227 int offset;
3228 if (GET_CODE (op) != SUBREG)
3229 return false;
3230 innermode = GET_MODE (op);
3231 innermostmode = GET_MODE (SUBREG_REG (op));
3232 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3233 /* The SUBREG_BYTE represents offset, as if the value were stored in
3234 memory, except for a paradoxical subreg where we define
3235 SUBREG_BYTE to be 0; undo this exception as in
3236 simplify_subreg. */
3237 if (SUBREG_BYTE (op) == 0
3238 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3240 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3241 if (WORDS_BIG_ENDIAN)
3242 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3243 if (BYTES_BIG_ENDIAN)
3244 offset += difference % UNITS_PER_WORD;
3246 if (offset >= GET_MODE_SIZE (innermostmode)
3247 || offset <= -GET_MODE_SIZE (word_mode))
3248 return true;
3249 return false;
3252 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3253 MODE is any multi-word or full-word mode that lacks a move_insn
3254 pattern. Note that you will get better code if you define such
3255 patterns, even if they must turn into multiple assembler instructions. */
3257 static rtx
3258 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3260 rtx last_insn = 0;
3261 rtx seq, inner;
3262 bool need_clobber;
3263 int i;
3265 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3267 /* If X is a push on the stack, do the push now and replace
3268 X with a reference to the stack pointer. */
3269 if (push_operand (x, mode))
3270 x = emit_move_resolve_push (mode, x);
3272 /* If we are in reload, see if either operand is a MEM whose address
3273 is scheduled for replacement. */
3274 if (reload_in_progress && MEM_P (x)
3275 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3276 x = replace_equiv_address_nv (x, inner);
3277 if (reload_in_progress && MEM_P (y)
3278 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3279 y = replace_equiv_address_nv (y, inner);
3281 start_sequence ();
3283 need_clobber = false;
3284 for (i = 0;
3285 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3286 i++)
3288 rtx xpart = operand_subword (x, i, 1, mode);
3289 rtx ypart;
3291 /* Do not generate code for a move if it would come entirely
3292 from the undefined bits of a paradoxical subreg. */
3293 if (undefined_operand_subword_p (y, i))
3294 continue;
3296 ypart = operand_subword (y, i, 1, mode);
3298 /* If we can't get a part of Y, put Y into memory if it is a
3299 constant. Otherwise, force it into a register. Then we must
3300 be able to get a part of Y. */
3301 if (ypart == 0 && CONSTANT_P (y))
3303 y = use_anchored_address (force_const_mem (mode, y));
3304 ypart = operand_subword (y, i, 1, mode);
3306 else if (ypart == 0)
3307 ypart = operand_subword_force (y, i, mode);
3309 gcc_assert (xpart && ypart);
3311 need_clobber |= (GET_CODE (xpart) == SUBREG);
3313 last_insn = emit_move_insn (xpart, ypart);
3316 seq = get_insns ();
3317 end_sequence ();
3319 /* Show the output dies here. This is necessary for SUBREGs
3320 of pseudos since we cannot track their lifetimes correctly;
3321 hard regs shouldn't appear here except as return values.
3322 We never want to emit such a clobber after reload. */
3323 if (x != y
3324 && ! (reload_in_progress || reload_completed)
3325 && need_clobber != 0)
3326 emit_clobber (x);
3328 emit_insn (seq);
3330 return last_insn;
3333 /* Low level part of emit_move_insn.
3334 Called just like emit_move_insn, but assumes X and Y
3335 are basically valid. */
3338 emit_move_insn_1 (rtx x, rtx y)
3340 enum machine_mode mode = GET_MODE (x);
3341 enum insn_code code;
3343 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3345 code = optab_handler (mov_optab, mode);
3346 if (code != CODE_FOR_nothing)
3347 return emit_insn (GEN_FCN (code) (x, y));
3349 /* Expand complex moves by moving real part and imag part. */
3350 if (COMPLEX_MODE_P (mode))
3351 return emit_move_complex (mode, x, y);
3353 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3354 || ALL_FIXED_POINT_MODE_P (mode))
3356 rtx result = emit_move_via_integer (mode, x, y, true);
3358 /* If we can't find an integer mode, use multi words. */
3359 if (result)
3360 return result;
3361 else
3362 return emit_move_multi_word (mode, x, y);
3365 if (GET_MODE_CLASS (mode) == MODE_CC)
3366 return emit_move_ccmode (mode, x, y);
3368 /* Try using a move pattern for the corresponding integer mode. This is
3369 only safe when simplify_subreg can convert MODE constants into integer
3370 constants. At present, it can only do this reliably if the value
3371 fits within a HOST_WIDE_INT. */
3372 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3374 rtx ret = emit_move_via_integer (mode, x, y, false);
3375 if (ret)
3376 return ret;
3379 return emit_move_multi_word (mode, x, y);
3382 /* Generate code to copy Y into X.
3383 Both Y and X must have the same mode, except that
3384 Y can be a constant with VOIDmode.
3385 This mode cannot be BLKmode; use emit_block_move for that.
3387 Return the last instruction emitted. */
3390 emit_move_insn (rtx x, rtx y)
3392 enum machine_mode mode = GET_MODE (x);
3393 rtx y_cst = NULL_RTX;
3394 rtx last_insn, set;
3396 gcc_assert (mode != BLKmode
3397 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3399 if (CONSTANT_P (y))
3401 if (optimize
3402 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3403 && (last_insn = compress_float_constant (x, y)))
3404 return last_insn;
3406 y_cst = y;
3408 if (!LEGITIMATE_CONSTANT_P (y))
3410 y = force_const_mem (mode, y);
3412 /* If the target's cannot_force_const_mem prevented the spill,
3413 assume that the target's move expanders will also take care
3414 of the non-legitimate constant. */
3415 if (!y)
3416 y = y_cst;
3417 else
3418 y = use_anchored_address (y);
3422 /* If X or Y are memory references, verify that their addresses are valid
3423 for the machine. */
3424 if (MEM_P (x)
3425 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3426 MEM_ADDR_SPACE (x))
3427 && ! push_operand (x, GET_MODE (x))))
3428 x = validize_mem (x);
3430 if (MEM_P (y)
3431 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3432 MEM_ADDR_SPACE (y)))
3433 y = validize_mem (y);
3435 gcc_assert (mode != BLKmode);
3437 last_insn = emit_move_insn_1 (x, y);
3439 if (y_cst && REG_P (x)
3440 && (set = single_set (last_insn)) != NULL_RTX
3441 && SET_DEST (set) == x
3442 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3443 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3445 return last_insn;
3448 /* If Y is representable exactly in a narrower mode, and the target can
3449 perform the extension directly from constant or memory, then emit the
3450 move as an extension. */
3452 static rtx
3453 compress_float_constant (rtx x, rtx y)
3455 enum machine_mode dstmode = GET_MODE (x);
3456 enum machine_mode orig_srcmode = GET_MODE (y);
3457 enum machine_mode srcmode;
3458 REAL_VALUE_TYPE r;
3459 int oldcost, newcost;
3460 bool speed = optimize_insn_for_speed_p ();
3462 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3464 if (LEGITIMATE_CONSTANT_P (y))
3465 oldcost = rtx_cost (y, SET, speed);
3466 else
3467 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3469 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3470 srcmode != orig_srcmode;
3471 srcmode = GET_MODE_WIDER_MODE (srcmode))
3473 enum insn_code ic;
3474 rtx trunc_y, last_insn;
3476 /* Skip if the target can't extend this way. */
3477 ic = can_extend_p (dstmode, srcmode, 0);
3478 if (ic == CODE_FOR_nothing)
3479 continue;
3481 /* Skip if the narrowed value isn't exact. */
3482 if (! exact_real_truncate (srcmode, &r))
3483 continue;
3485 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3487 if (LEGITIMATE_CONSTANT_P (trunc_y))
3489 /* Skip if the target needs extra instructions to perform
3490 the extension. */
3491 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3492 continue;
3493 /* This is valid, but may not be cheaper than the original. */
3494 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3495 if (oldcost < newcost)
3496 continue;
3498 else if (float_extend_from_mem[dstmode][srcmode])
3500 trunc_y = force_const_mem (srcmode, trunc_y);
3501 /* This is valid, but may not be cheaper than the original. */
3502 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3503 if (oldcost < newcost)
3504 continue;
3505 trunc_y = validize_mem (trunc_y);
3507 else
3508 continue;
3510 /* For CSE's benefit, force the compressed constant pool entry
3511 into a new pseudo. This constant may be used in different modes,
3512 and if not, combine will put things back together for us. */
3513 trunc_y = force_reg (srcmode, trunc_y);
3514 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3515 last_insn = get_last_insn ();
3517 if (REG_P (x))
3518 set_unique_reg_note (last_insn, REG_EQUAL, y);
3520 return last_insn;
3523 return NULL_RTX;
3526 /* Pushing data onto the stack. */
3528 /* Push a block of length SIZE (perhaps variable)
3529 and return an rtx to address the beginning of the block.
3530 The value may be virtual_outgoing_args_rtx.
3532 EXTRA is the number of bytes of padding to push in addition to SIZE.
3533 BELOW nonzero means this padding comes at low addresses;
3534 otherwise, the padding comes at high addresses. */
3537 push_block (rtx size, int extra, int below)
3539 rtx temp;
3541 size = convert_modes (Pmode, ptr_mode, size, 1);
3542 if (CONSTANT_P (size))
3543 anti_adjust_stack (plus_constant (size, extra));
3544 else if (REG_P (size) && extra == 0)
3545 anti_adjust_stack (size);
3546 else
3548 temp = copy_to_mode_reg (Pmode, size);
3549 if (extra != 0)
3550 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3551 temp, 0, OPTAB_LIB_WIDEN);
3552 anti_adjust_stack (temp);
3555 #ifndef STACK_GROWS_DOWNWARD
3556 if (0)
3557 #else
3558 if (1)
3559 #endif
3561 temp = virtual_outgoing_args_rtx;
3562 if (extra != 0 && below)
3563 temp = plus_constant (temp, extra);
3565 else
3567 if (CONST_INT_P (size))
3568 temp = plus_constant (virtual_outgoing_args_rtx,
3569 -INTVAL (size) - (below ? 0 : extra));
3570 else if (extra != 0 && !below)
3571 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3572 negate_rtx (Pmode, plus_constant (size, extra)));
3573 else
3574 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3575 negate_rtx (Pmode, size));
3578 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3581 #ifdef PUSH_ROUNDING
3583 /* Emit single push insn. */
3585 static void
3586 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3588 rtx dest_addr;
3589 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3590 rtx dest;
3591 enum insn_code icode;
3592 insn_operand_predicate_fn pred;
3594 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3595 /* If there is push pattern, use it. Otherwise try old way of throwing
3596 MEM representing push operation to move expander. */
3597 icode = optab_handler (push_optab, mode);
3598 if (icode != CODE_FOR_nothing)
3600 if (((pred = insn_data[(int) icode].operand[0].predicate)
3601 && !((*pred) (x, mode))))
3602 x = force_reg (mode, x);
3603 emit_insn (GEN_FCN (icode) (x));
3604 return;
3606 if (GET_MODE_SIZE (mode) == rounded_size)
3607 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3608 /* If we are to pad downward, adjust the stack pointer first and
3609 then store X into the stack location using an offset. This is
3610 because emit_move_insn does not know how to pad; it does not have
3611 access to type. */
3612 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3614 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3615 HOST_WIDE_INT offset;
3617 emit_move_insn (stack_pointer_rtx,
3618 expand_binop (Pmode,
3619 #ifdef STACK_GROWS_DOWNWARD
3620 sub_optab,
3621 #else
3622 add_optab,
3623 #endif
3624 stack_pointer_rtx,
3625 GEN_INT (rounded_size),
3626 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3628 offset = (HOST_WIDE_INT) padding_size;
3629 #ifdef STACK_GROWS_DOWNWARD
3630 if (STACK_PUSH_CODE == POST_DEC)
3631 /* We have already decremented the stack pointer, so get the
3632 previous value. */
3633 offset += (HOST_WIDE_INT) rounded_size;
3634 #else
3635 if (STACK_PUSH_CODE == POST_INC)
3636 /* We have already incremented the stack pointer, so get the
3637 previous value. */
3638 offset -= (HOST_WIDE_INT) rounded_size;
3639 #endif
3640 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3642 else
3644 #ifdef STACK_GROWS_DOWNWARD
3645 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3646 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3647 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3648 #else
3649 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3650 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3651 GEN_INT (rounded_size));
3652 #endif
3653 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3656 dest = gen_rtx_MEM (mode, dest_addr);
3658 if (type != 0)
3660 set_mem_attributes (dest, type, 1);
3662 if (flag_optimize_sibling_calls)
3663 /* Function incoming arguments may overlap with sibling call
3664 outgoing arguments and we cannot allow reordering of reads
3665 from function arguments with stores to outgoing arguments
3666 of sibling calls. */
3667 set_mem_alias_set (dest, 0);
3669 emit_move_insn (dest, x);
3671 #endif
3673 /* Generate code to push X onto the stack, assuming it has mode MODE and
3674 type TYPE.
3675 MODE is redundant except when X is a CONST_INT (since they don't
3676 carry mode info).
3677 SIZE is an rtx for the size of data to be copied (in bytes),
3678 needed only if X is BLKmode.
3680 ALIGN (in bits) is maximum alignment we can assume.
3682 If PARTIAL and REG are both nonzero, then copy that many of the first
3683 bytes of X into registers starting with REG, and push the rest of X.
3684 The amount of space pushed is decreased by PARTIAL bytes.
3685 REG must be a hard register in this case.
3686 If REG is zero but PARTIAL is not, take any all others actions for an
3687 argument partially in registers, but do not actually load any
3688 registers.
3690 EXTRA is the amount in bytes of extra space to leave next to this arg.
3691 This is ignored if an argument block has already been allocated.
3693 On a machine that lacks real push insns, ARGS_ADDR is the address of
3694 the bottom of the argument block for this call. We use indexing off there
3695 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3696 argument block has not been preallocated.
3698 ARGS_SO_FAR is the size of args previously pushed for this call.
3700 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3701 for arguments passed in registers. If nonzero, it will be the number
3702 of bytes required. */
3704 void
3705 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3706 unsigned int align, int partial, rtx reg, int extra,
3707 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3708 rtx alignment_pad)
3710 rtx xinner;
3711 enum direction stack_direction
3712 #ifdef STACK_GROWS_DOWNWARD
3713 = downward;
3714 #else
3715 = upward;
3716 #endif
3718 /* Decide where to pad the argument: `downward' for below,
3719 `upward' for above, or `none' for don't pad it.
3720 Default is below for small data on big-endian machines; else above. */
3721 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3723 /* Invert direction if stack is post-decrement.
3724 FIXME: why? */
3725 if (STACK_PUSH_CODE == POST_DEC)
3726 if (where_pad != none)
3727 where_pad = (where_pad == downward ? upward : downward);
3729 xinner = x;
3731 if (mode == BLKmode
3732 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3734 /* Copy a block into the stack, entirely or partially. */
3736 rtx temp;
3737 int used;
3738 int offset;
3739 int skip;
3741 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3742 used = partial - offset;
3744 if (mode != BLKmode)
3746 /* A value is to be stored in an insufficiently aligned
3747 stack slot; copy via a suitably aligned slot if
3748 necessary. */
3749 size = GEN_INT (GET_MODE_SIZE (mode));
3750 if (!MEM_P (xinner))
3752 temp = assign_temp (type, 0, 1, 1);
3753 emit_move_insn (temp, xinner);
3754 xinner = temp;
3758 gcc_assert (size);
3760 /* USED is now the # of bytes we need not copy to the stack
3761 because registers will take care of them. */
3763 if (partial != 0)
3764 xinner = adjust_address (xinner, BLKmode, used);
3766 /* If the partial register-part of the arg counts in its stack size,
3767 skip the part of stack space corresponding to the registers.
3768 Otherwise, start copying to the beginning of the stack space,
3769 by setting SKIP to 0. */
3770 skip = (reg_parm_stack_space == 0) ? 0 : used;
3772 #ifdef PUSH_ROUNDING
3773 /* Do it with several push insns if that doesn't take lots of insns
3774 and if there is no difficulty with push insns that skip bytes
3775 on the stack for alignment purposes. */
3776 if (args_addr == 0
3777 && PUSH_ARGS
3778 && CONST_INT_P (size)
3779 && skip == 0
3780 && MEM_ALIGN (xinner) >= align
3781 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3782 /* Here we avoid the case of a structure whose weak alignment
3783 forces many pushes of a small amount of data,
3784 and such small pushes do rounding that causes trouble. */
3785 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3786 || align >= BIGGEST_ALIGNMENT
3787 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3788 == (align / BITS_PER_UNIT)))
3789 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3791 /* Push padding now if padding above and stack grows down,
3792 or if padding below and stack grows up.
3793 But if space already allocated, this has already been done. */
3794 if (extra && args_addr == 0
3795 && where_pad != none && where_pad != stack_direction)
3796 anti_adjust_stack (GEN_INT (extra));
3798 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3800 else
3801 #endif /* PUSH_ROUNDING */
3803 rtx target;
3805 /* Otherwise make space on the stack and copy the data
3806 to the address of that space. */
3808 /* Deduct words put into registers from the size we must copy. */
3809 if (partial != 0)
3811 if (CONST_INT_P (size))
3812 size = GEN_INT (INTVAL (size) - used);
3813 else
3814 size = expand_binop (GET_MODE (size), sub_optab, size,
3815 GEN_INT (used), NULL_RTX, 0,
3816 OPTAB_LIB_WIDEN);
3819 /* Get the address of the stack space.
3820 In this case, we do not deal with EXTRA separately.
3821 A single stack adjust will do. */
3822 if (! args_addr)
3824 temp = push_block (size, extra, where_pad == downward);
3825 extra = 0;
3827 else if (CONST_INT_P (args_so_far))
3828 temp = memory_address (BLKmode,
3829 plus_constant (args_addr,
3830 skip + INTVAL (args_so_far)));
3831 else
3832 temp = memory_address (BLKmode,
3833 plus_constant (gen_rtx_PLUS (Pmode,
3834 args_addr,
3835 args_so_far),
3836 skip));
3838 if (!ACCUMULATE_OUTGOING_ARGS)
3840 /* If the source is referenced relative to the stack pointer,
3841 copy it to another register to stabilize it. We do not need
3842 to do this if we know that we won't be changing sp. */
3844 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3845 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3846 temp = copy_to_reg (temp);
3849 target = gen_rtx_MEM (BLKmode, temp);
3851 /* We do *not* set_mem_attributes here, because incoming arguments
3852 may overlap with sibling call outgoing arguments and we cannot
3853 allow reordering of reads from function arguments with stores
3854 to outgoing arguments of sibling calls. We do, however, want
3855 to record the alignment of the stack slot. */
3856 /* ALIGN may well be better aligned than TYPE, e.g. due to
3857 PARM_BOUNDARY. Assume the caller isn't lying. */
3858 set_mem_align (target, align);
3860 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3863 else if (partial > 0)
3865 /* Scalar partly in registers. */
3867 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3868 int i;
3869 int not_stack;
3870 /* # bytes of start of argument
3871 that we must make space for but need not store. */
3872 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3873 int args_offset = INTVAL (args_so_far);
3874 int skip;
3876 /* Push padding now if padding above and stack grows down,
3877 or if padding below and stack grows up.
3878 But if space already allocated, this has already been done. */
3879 if (extra && args_addr == 0
3880 && where_pad != none && where_pad != stack_direction)
3881 anti_adjust_stack (GEN_INT (extra));
3883 /* If we make space by pushing it, we might as well push
3884 the real data. Otherwise, we can leave OFFSET nonzero
3885 and leave the space uninitialized. */
3886 if (args_addr == 0)
3887 offset = 0;
3889 /* Now NOT_STACK gets the number of words that we don't need to
3890 allocate on the stack. Convert OFFSET to words too. */
3891 not_stack = (partial - offset) / UNITS_PER_WORD;
3892 offset /= UNITS_PER_WORD;
3894 /* If the partial register-part of the arg counts in its stack size,
3895 skip the part of stack space corresponding to the registers.
3896 Otherwise, start copying to the beginning of the stack space,
3897 by setting SKIP to 0. */
3898 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3900 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3901 x = validize_mem (force_const_mem (mode, x));
3903 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3904 SUBREGs of such registers are not allowed. */
3905 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3906 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3907 x = copy_to_reg (x);
3909 /* Loop over all the words allocated on the stack for this arg. */
3910 /* We can do it by words, because any scalar bigger than a word
3911 has a size a multiple of a word. */
3912 #ifndef PUSH_ARGS_REVERSED
3913 for (i = not_stack; i < size; i++)
3914 #else
3915 for (i = size - 1; i >= not_stack; i--)
3916 #endif
3917 if (i >= not_stack + offset)
3918 emit_push_insn (operand_subword_force (x, i, mode),
3919 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3920 0, args_addr,
3921 GEN_INT (args_offset + ((i - not_stack + skip)
3922 * UNITS_PER_WORD)),
3923 reg_parm_stack_space, alignment_pad);
3925 else
3927 rtx addr;
3928 rtx dest;
3930 /* Push padding now if padding above and stack grows down,
3931 or if padding below and stack grows up.
3932 But if space already allocated, this has already been done. */
3933 if (extra && args_addr == 0
3934 && where_pad != none && where_pad != stack_direction)
3935 anti_adjust_stack (GEN_INT (extra));
3937 #ifdef PUSH_ROUNDING
3938 if (args_addr == 0 && PUSH_ARGS)
3939 emit_single_push_insn (mode, x, type);
3940 else
3941 #endif
3943 if (CONST_INT_P (args_so_far))
3944 addr
3945 = memory_address (mode,
3946 plus_constant (args_addr,
3947 INTVAL (args_so_far)));
3948 else
3949 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3950 args_so_far));
3951 dest = gen_rtx_MEM (mode, addr);
3953 /* We do *not* set_mem_attributes here, because incoming arguments
3954 may overlap with sibling call outgoing arguments and we cannot
3955 allow reordering of reads from function arguments with stores
3956 to outgoing arguments of sibling calls. We do, however, want
3957 to record the alignment of the stack slot. */
3958 /* ALIGN may well be better aligned than TYPE, e.g. due to
3959 PARM_BOUNDARY. Assume the caller isn't lying. */
3960 set_mem_align (dest, align);
3962 emit_move_insn (dest, x);
3966 /* If part should go in registers, copy that part
3967 into the appropriate registers. Do this now, at the end,
3968 since mem-to-mem copies above may do function calls. */
3969 if (partial > 0 && reg != 0)
3971 /* Handle calls that pass values in multiple non-contiguous locations.
3972 The Irix 6 ABI has examples of this. */
3973 if (GET_CODE (reg) == PARALLEL)
3974 emit_group_load (reg, x, type, -1);
3975 else
3977 gcc_assert (partial % UNITS_PER_WORD == 0);
3978 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3982 if (extra && args_addr == 0 && where_pad == stack_direction)
3983 anti_adjust_stack (GEN_INT (extra));
3985 if (alignment_pad && args_addr == 0)
3986 anti_adjust_stack (alignment_pad);
3989 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3990 operations. */
3992 static rtx
3993 get_subtarget (rtx x)
3995 return (optimize
3996 || x == 0
3997 /* Only registers can be subtargets. */
3998 || !REG_P (x)
3999 /* Don't use hard regs to avoid extending their life. */
4000 || REGNO (x) < FIRST_PSEUDO_REGISTER
4001 ? 0 : x);
4004 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4005 FIELD is a bitfield. Returns true if the optimization was successful,
4006 and there's nothing else to do. */
4008 static bool
4009 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4010 unsigned HOST_WIDE_INT bitpos,
4011 enum machine_mode mode1, rtx str_rtx,
4012 tree to, tree src)
4014 enum machine_mode str_mode = GET_MODE (str_rtx);
4015 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4016 tree op0, op1;
4017 rtx value, result;
4018 optab binop;
4020 if (mode1 != VOIDmode
4021 || bitsize >= BITS_PER_WORD
4022 || str_bitsize > BITS_PER_WORD
4023 || TREE_SIDE_EFFECTS (to)
4024 || TREE_THIS_VOLATILE (to))
4025 return false;
4027 STRIP_NOPS (src);
4028 if (!BINARY_CLASS_P (src)
4029 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4030 return false;
4032 op0 = TREE_OPERAND (src, 0);
4033 op1 = TREE_OPERAND (src, 1);
4034 STRIP_NOPS (op0);
4036 if (!operand_equal_p (to, op0, 0))
4037 return false;
4039 if (MEM_P (str_rtx))
4041 unsigned HOST_WIDE_INT offset1;
4043 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4044 str_mode = word_mode;
4045 str_mode = get_best_mode (bitsize, bitpos,
4046 MEM_ALIGN (str_rtx), str_mode, 0);
4047 if (str_mode == VOIDmode)
4048 return false;
4049 str_bitsize = GET_MODE_BITSIZE (str_mode);
4051 offset1 = bitpos;
4052 bitpos %= str_bitsize;
4053 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4054 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4056 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4057 return false;
4059 /* If the bit field covers the whole REG/MEM, store_field
4060 will likely generate better code. */
4061 if (bitsize >= str_bitsize)
4062 return false;
4064 /* We can't handle fields split across multiple entities. */
4065 if (bitpos + bitsize > str_bitsize)
4066 return false;
4068 if (BYTES_BIG_ENDIAN)
4069 bitpos = str_bitsize - bitpos - bitsize;
4071 switch (TREE_CODE (src))
4073 case PLUS_EXPR:
4074 case MINUS_EXPR:
4075 /* For now, just optimize the case of the topmost bitfield
4076 where we don't need to do any masking and also
4077 1 bit bitfields where xor can be used.
4078 We might win by one instruction for the other bitfields
4079 too if insv/extv instructions aren't used, so that
4080 can be added later. */
4081 if (bitpos + bitsize != str_bitsize
4082 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4083 break;
4085 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4086 value = convert_modes (str_mode,
4087 TYPE_MODE (TREE_TYPE (op1)), value,
4088 TYPE_UNSIGNED (TREE_TYPE (op1)));
4090 /* We may be accessing data outside the field, which means
4091 we can alias adjacent data. */
4092 if (MEM_P (str_rtx))
4094 str_rtx = shallow_copy_rtx (str_rtx);
4095 set_mem_alias_set (str_rtx, 0);
4096 set_mem_expr (str_rtx, 0);
4099 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4100 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4102 value = expand_and (str_mode, value, const1_rtx, NULL);
4103 binop = xor_optab;
4105 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4106 build_int_cst (NULL_TREE, bitpos),
4107 NULL_RTX, 1);
4108 result = expand_binop (str_mode, binop, str_rtx,
4109 value, str_rtx, 1, OPTAB_WIDEN);
4110 if (result != str_rtx)
4111 emit_move_insn (str_rtx, result);
4112 return true;
4114 case BIT_IOR_EXPR:
4115 case BIT_XOR_EXPR:
4116 if (TREE_CODE (op1) != INTEGER_CST)
4117 break;
4118 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4119 value = convert_modes (GET_MODE (str_rtx),
4120 TYPE_MODE (TREE_TYPE (op1)), value,
4121 TYPE_UNSIGNED (TREE_TYPE (op1)));
4123 /* We may be accessing data outside the field, which means
4124 we can alias adjacent data. */
4125 if (MEM_P (str_rtx))
4127 str_rtx = shallow_copy_rtx (str_rtx);
4128 set_mem_alias_set (str_rtx, 0);
4129 set_mem_expr (str_rtx, 0);
4132 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4133 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4135 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4136 - 1);
4137 value = expand_and (GET_MODE (str_rtx), value, mask,
4138 NULL_RTX);
4140 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4141 build_int_cst (NULL_TREE, bitpos),
4142 NULL_RTX, 1);
4143 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4144 value, str_rtx, 1, OPTAB_WIDEN);
4145 if (result != str_rtx)
4146 emit_move_insn (str_rtx, result);
4147 return true;
4149 default:
4150 break;
4153 return false;
4157 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4158 is true, try generating a nontemporal store. */
4160 void
4161 expand_assignment (tree to, tree from, bool nontemporal)
4163 rtx to_rtx = 0;
4164 rtx result;
4166 /* Don't crash if the lhs of the assignment was erroneous. */
4167 if (TREE_CODE (to) == ERROR_MARK)
4169 result = expand_normal (from);
4170 return;
4173 /* Optimize away no-op moves without side-effects. */
4174 if (operand_equal_p (to, from, 0))
4175 return;
4177 /* Assignment of a structure component needs special treatment
4178 if the structure component's rtx is not simply a MEM.
4179 Assignment of an array element at a constant index, and assignment of
4180 an array element in an unaligned packed structure field, has the same
4181 problem. */
4182 if (handled_component_p (to)
4183 /* ??? We only need to handle MEM_REF here if the access is not
4184 a full access of the base object. */
4185 || (TREE_CODE (to) == MEM_REF
4186 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4187 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4189 enum machine_mode mode1;
4190 HOST_WIDE_INT bitsize, bitpos;
4191 tree offset;
4192 int unsignedp;
4193 int volatilep = 0;
4194 tree tem;
4196 push_temp_slots ();
4197 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4198 &unsignedp, &volatilep, true);
4200 /* If we are going to use store_bit_field and extract_bit_field,
4201 make sure to_rtx will be safe for multiple use. */
4203 to_rtx = expand_normal (tem);
4205 /* If the bitfield is volatile, we want to access it in the
4206 field's mode, not the computed mode. */
4207 if (volatilep
4208 && GET_CODE (to_rtx) == MEM
4209 && flag_strict_volatile_bitfields > 0)
4210 to_rtx = adjust_address (to_rtx, mode1, 0);
4212 if (offset != 0)
4214 enum machine_mode address_mode;
4215 rtx offset_rtx;
4217 if (!MEM_P (to_rtx))
4219 /* We can get constant negative offsets into arrays with broken
4220 user code. Translate this to a trap instead of ICEing. */
4221 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4222 expand_builtin_trap ();
4223 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4226 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4227 address_mode
4228 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4229 if (GET_MODE (offset_rtx) != address_mode)
4230 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4232 /* A constant address in TO_RTX can have VOIDmode, we must not try
4233 to call force_reg for that case. Avoid that case. */
4234 if (MEM_P (to_rtx)
4235 && GET_MODE (to_rtx) == BLKmode
4236 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4237 && bitsize > 0
4238 && (bitpos % bitsize) == 0
4239 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4240 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4242 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4243 bitpos = 0;
4246 to_rtx = offset_address (to_rtx, offset_rtx,
4247 highest_pow2_factor_for_target (to,
4248 offset));
4251 /* No action is needed if the target is not a memory and the field
4252 lies completely outside that target. This can occur if the source
4253 code contains an out-of-bounds access to a small array. */
4254 if (!MEM_P (to_rtx)
4255 && GET_MODE (to_rtx) != BLKmode
4256 && (unsigned HOST_WIDE_INT) bitpos
4257 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4259 expand_normal (from);
4260 result = NULL;
4262 /* Handle expand_expr of a complex value returning a CONCAT. */
4263 else if (GET_CODE (to_rtx) == CONCAT)
4265 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4267 gcc_assert (bitpos == 0);
4268 result = store_expr (from, to_rtx, false, nontemporal);
4270 else
4272 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4273 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4274 nontemporal);
4277 else
4279 if (MEM_P (to_rtx))
4281 /* If the field is at offset zero, we could have been given the
4282 DECL_RTX of the parent struct. Don't munge it. */
4283 to_rtx = shallow_copy_rtx (to_rtx);
4285 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4287 /* Deal with volatile and readonly fields. The former is only
4288 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4289 if (volatilep)
4290 MEM_VOLATILE_P (to_rtx) = 1;
4291 if (component_uses_parent_alias_set (to))
4292 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4295 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4296 to_rtx, to, from))
4297 result = NULL;
4298 else
4299 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4300 TREE_TYPE (tem), get_alias_set (to),
4301 nontemporal);
4304 if (result)
4305 preserve_temp_slots (result);
4306 free_temp_slots ();
4307 pop_temp_slots ();
4308 return;
4311 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4313 addr_space_t as = ADDR_SPACE_GENERIC;
4314 enum machine_mode mode, op_mode1;
4315 enum insn_code icode;
4316 rtx reg, addr, mem, insn;
4318 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4319 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4321 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4322 reg = force_not_mem (reg);
4324 mode = TYPE_MODE (TREE_TYPE (to));
4325 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4326 EXPAND_SUM);
4327 addr = memory_address_addr_space (mode, addr, as);
4328 mem = gen_rtx_MEM (mode, addr);
4330 set_mem_attributes (mem, to, 0);
4331 set_mem_addr_space (mem, as);
4333 icode = optab_handler (movmisalign_optab, mode);
4334 gcc_assert (icode != CODE_FOR_nothing);
4336 op_mode1 = insn_data[icode].operand[1].mode;
4337 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4338 && op_mode1 != VOIDmode)
4339 reg = copy_to_mode_reg (op_mode1, reg);
4341 insn = GEN_FCN (icode) (mem, reg);
4342 emit_insn (insn);
4343 return;
4346 /* If the rhs is a function call and its value is not an aggregate,
4347 call the function before we start to compute the lhs.
4348 This is needed for correct code for cases such as
4349 val = setjmp (buf) on machines where reference to val
4350 requires loading up part of an address in a separate insn.
4352 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4353 since it might be a promoted variable where the zero- or sign- extension
4354 needs to be done. Handling this in the normal way is safe because no
4355 computation is done before the call. The same is true for SSA names. */
4356 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4357 && COMPLETE_TYPE_P (TREE_TYPE (from))
4358 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4359 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4360 && REG_P (DECL_RTL (to)))
4361 || TREE_CODE (to) == SSA_NAME))
4363 rtx value;
4365 push_temp_slots ();
4366 value = expand_normal (from);
4367 if (to_rtx == 0)
4368 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4370 /* Handle calls that return values in multiple non-contiguous locations.
4371 The Irix 6 ABI has examples of this. */
4372 if (GET_CODE (to_rtx) == PARALLEL)
4373 emit_group_load (to_rtx, value, TREE_TYPE (from),
4374 int_size_in_bytes (TREE_TYPE (from)));
4375 else if (GET_MODE (to_rtx) == BLKmode)
4376 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4377 else
4379 if (POINTER_TYPE_P (TREE_TYPE (to)))
4380 value = convert_memory_address_addr_space
4381 (GET_MODE (to_rtx), value,
4382 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4384 emit_move_insn (to_rtx, value);
4386 preserve_temp_slots (to_rtx);
4387 free_temp_slots ();
4388 pop_temp_slots ();
4389 return;
4392 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4393 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4395 if (to_rtx == 0)
4396 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4398 /* Don't move directly into a return register. */
4399 if (TREE_CODE (to) == RESULT_DECL
4400 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4402 rtx temp;
4404 push_temp_slots ();
4405 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4407 if (GET_CODE (to_rtx) == PARALLEL)
4408 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4409 int_size_in_bytes (TREE_TYPE (from)));
4410 else
4411 emit_move_insn (to_rtx, temp);
4413 preserve_temp_slots (to_rtx);
4414 free_temp_slots ();
4415 pop_temp_slots ();
4416 return;
4419 /* In case we are returning the contents of an object which overlaps
4420 the place the value is being stored, use a safe function when copying
4421 a value through a pointer into a structure value return block. */
4422 if (TREE_CODE (to) == RESULT_DECL
4423 && TREE_CODE (from) == INDIRECT_REF
4424 && ADDR_SPACE_GENERIC_P
4425 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4426 && refs_may_alias_p (to, from)
4427 && cfun->returns_struct
4428 && !cfun->returns_pcc_struct)
4430 rtx from_rtx, size;
4432 push_temp_slots ();
4433 size = expr_size (from);
4434 from_rtx = expand_normal (from);
4436 emit_library_call (memmove_libfunc, LCT_NORMAL,
4437 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4438 XEXP (from_rtx, 0), Pmode,
4439 convert_to_mode (TYPE_MODE (sizetype),
4440 size, TYPE_UNSIGNED (sizetype)),
4441 TYPE_MODE (sizetype));
4443 preserve_temp_slots (to_rtx);
4444 free_temp_slots ();
4445 pop_temp_slots ();
4446 return;
4449 /* Compute FROM and store the value in the rtx we got. */
4451 push_temp_slots ();
4452 result = store_expr (from, to_rtx, 0, nontemporal);
4453 preserve_temp_slots (result);
4454 free_temp_slots ();
4455 pop_temp_slots ();
4456 return;
4459 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4460 succeeded, false otherwise. */
4462 bool
4463 emit_storent_insn (rtx to, rtx from)
4465 enum machine_mode mode = GET_MODE (to), imode;
4466 enum insn_code code = optab_handler (storent_optab, mode);
4467 rtx pattern;
4469 if (code == CODE_FOR_nothing)
4470 return false;
4472 imode = insn_data[code].operand[0].mode;
4473 if (!insn_data[code].operand[0].predicate (to, imode))
4474 return false;
4476 imode = insn_data[code].operand[1].mode;
4477 if (!insn_data[code].operand[1].predicate (from, imode))
4479 from = copy_to_mode_reg (imode, from);
4480 if (!insn_data[code].operand[1].predicate (from, imode))
4481 return false;
4484 pattern = GEN_FCN (code) (to, from);
4485 if (pattern == NULL_RTX)
4486 return false;
4488 emit_insn (pattern);
4489 return true;
4492 /* Generate code for computing expression EXP,
4493 and storing the value into TARGET.
4495 If the mode is BLKmode then we may return TARGET itself.
4496 It turns out that in BLKmode it doesn't cause a problem.
4497 because C has no operators that could combine two different
4498 assignments into the same BLKmode object with different values
4499 with no sequence point. Will other languages need this to
4500 be more thorough?
4502 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4503 stack, and block moves may need to be treated specially.
4505 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4508 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4510 rtx temp;
4511 rtx alt_rtl = NULL_RTX;
4512 location_t loc = EXPR_LOCATION (exp);
4514 if (VOID_TYPE_P (TREE_TYPE (exp)))
4516 /* C++ can generate ?: expressions with a throw expression in one
4517 branch and an rvalue in the other. Here, we resolve attempts to
4518 store the throw expression's nonexistent result. */
4519 gcc_assert (!call_param_p);
4520 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4521 return NULL_RTX;
4523 if (TREE_CODE (exp) == COMPOUND_EXPR)
4525 /* Perform first part of compound expression, then assign from second
4526 part. */
4527 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4528 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4529 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4530 nontemporal);
4532 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4534 /* For conditional expression, get safe form of the target. Then
4535 test the condition, doing the appropriate assignment on either
4536 side. This avoids the creation of unnecessary temporaries.
4537 For non-BLKmode, it is more efficient not to do this. */
4539 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4541 do_pending_stack_adjust ();
4542 NO_DEFER_POP;
4543 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4544 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4545 nontemporal);
4546 emit_jump_insn (gen_jump (lab2));
4547 emit_barrier ();
4548 emit_label (lab1);
4549 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4550 nontemporal);
4551 emit_label (lab2);
4552 OK_DEFER_POP;
4554 return NULL_RTX;
4556 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4557 /* If this is a scalar in a register that is stored in a wider mode
4558 than the declared mode, compute the result into its declared mode
4559 and then convert to the wider mode. Our value is the computed
4560 expression. */
4562 rtx inner_target = 0;
4564 /* We can do the conversion inside EXP, which will often result
4565 in some optimizations. Do the conversion in two steps: first
4566 change the signedness, if needed, then the extend. But don't
4567 do this if the type of EXP is a subtype of something else
4568 since then the conversion might involve more than just
4569 converting modes. */
4570 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4571 && TREE_TYPE (TREE_TYPE (exp)) == 0
4572 && GET_MODE_PRECISION (GET_MODE (target))
4573 == TYPE_PRECISION (TREE_TYPE (exp)))
4575 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4576 != SUBREG_PROMOTED_UNSIGNED_P (target))
4578 /* Some types, e.g. Fortran's logical*4, won't have a signed
4579 version, so use the mode instead. */
4580 tree ntype
4581 = (signed_or_unsigned_type_for
4582 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4583 if (ntype == NULL)
4584 ntype = lang_hooks.types.type_for_mode
4585 (TYPE_MODE (TREE_TYPE (exp)),
4586 SUBREG_PROMOTED_UNSIGNED_P (target));
4588 exp = fold_convert_loc (loc, ntype, exp);
4591 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4592 (GET_MODE (SUBREG_REG (target)),
4593 SUBREG_PROMOTED_UNSIGNED_P (target)),
4594 exp);
4596 inner_target = SUBREG_REG (target);
4599 temp = expand_expr (exp, inner_target, VOIDmode,
4600 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4602 /* If TEMP is a VOIDmode constant, use convert_modes to make
4603 sure that we properly convert it. */
4604 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4606 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4607 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4608 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4609 GET_MODE (target), temp,
4610 SUBREG_PROMOTED_UNSIGNED_P (target));
4613 convert_move (SUBREG_REG (target), temp,
4614 SUBREG_PROMOTED_UNSIGNED_P (target));
4616 return NULL_RTX;
4618 else if (TREE_CODE (exp) == STRING_CST
4619 && !nontemporal && !call_param_p
4620 && TREE_STRING_LENGTH (exp) > 0
4621 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4623 /* Optimize initialization of an array with a STRING_CST. */
4624 HOST_WIDE_INT exp_len, str_copy_len;
4625 rtx dest_mem;
4627 exp_len = int_expr_size (exp);
4628 if (exp_len <= 0)
4629 goto normal_expr;
4631 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4632 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4633 goto normal_expr;
4635 str_copy_len = TREE_STRING_LENGTH (exp);
4636 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4638 str_copy_len += STORE_MAX_PIECES - 1;
4639 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4641 str_copy_len = MIN (str_copy_len, exp_len);
4642 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4643 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4644 MEM_ALIGN (target), false))
4645 goto normal_expr;
4647 dest_mem = target;
4649 dest_mem = store_by_pieces (dest_mem,
4650 str_copy_len, builtin_strncpy_read_str,
4651 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4652 MEM_ALIGN (target), false,
4653 exp_len > str_copy_len ? 1 : 0);
4654 if (exp_len > str_copy_len)
4655 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4656 GEN_INT (exp_len - str_copy_len),
4657 BLOCK_OP_NORMAL);
4658 return NULL_RTX;
4660 else if (TREE_CODE (exp) == MEM_REF
4661 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4662 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) == STRING_CST
4663 && integer_zerop (TREE_OPERAND (exp, 1))
4664 && !nontemporal && !call_param_p
4665 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4667 /* Optimize initialization of an array with a STRING_CST. */
4668 HOST_WIDE_INT exp_len, str_copy_len;
4669 rtx dest_mem;
4670 tree str = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4672 exp_len = int_expr_size (exp);
4673 if (exp_len <= 0)
4674 goto normal_expr;
4676 str_copy_len = strlen (TREE_STRING_POINTER (str));
4677 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4678 goto normal_expr;
4680 str_copy_len = TREE_STRING_LENGTH (str);
4681 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4683 str_copy_len += STORE_MAX_PIECES - 1;
4684 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4686 str_copy_len = MIN (str_copy_len, exp_len);
4687 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4688 CONST_CAST(char *, TREE_STRING_POINTER (str)),
4689 MEM_ALIGN (target), false))
4690 goto normal_expr;
4692 dest_mem = target;
4694 dest_mem = store_by_pieces (dest_mem,
4695 str_copy_len, builtin_strncpy_read_str,
4696 CONST_CAST(char *, TREE_STRING_POINTER (str)),
4697 MEM_ALIGN (target), false,
4698 exp_len > str_copy_len ? 1 : 0);
4699 if (exp_len > str_copy_len)
4700 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4701 GEN_INT (exp_len - str_copy_len),
4702 BLOCK_OP_NORMAL);
4703 return NULL_RTX;
4705 else
4707 rtx tmp_target;
4709 normal_expr:
4710 /* If we want to use a nontemporal store, force the value to
4711 register first. */
4712 tmp_target = nontemporal ? NULL_RTX : target;
4713 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4714 (call_param_p
4715 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4716 &alt_rtl);
4719 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4720 the same as that of TARGET, adjust the constant. This is needed, for
4721 example, in case it is a CONST_DOUBLE and we want only a word-sized
4722 value. */
4723 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4724 && TREE_CODE (exp) != ERROR_MARK
4725 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4726 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4727 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4729 /* If value was not generated in the target, store it there.
4730 Convert the value to TARGET's type first if necessary and emit the
4731 pending incrementations that have been queued when expanding EXP.
4732 Note that we cannot emit the whole queue blindly because this will
4733 effectively disable the POST_INC optimization later.
4735 If TEMP and TARGET compare equal according to rtx_equal_p, but
4736 one or both of them are volatile memory refs, we have to distinguish
4737 two cases:
4738 - expand_expr has used TARGET. In this case, we must not generate
4739 another copy. This can be detected by TARGET being equal according
4740 to == .
4741 - expand_expr has not used TARGET - that means that the source just
4742 happens to have the same RTX form. Since temp will have been created
4743 by expand_expr, it will compare unequal according to == .
4744 We must generate a copy in this case, to reach the correct number
4745 of volatile memory references. */
4747 if ((! rtx_equal_p (temp, target)
4748 || (temp != target && (side_effects_p (temp)
4749 || side_effects_p (target))))
4750 && TREE_CODE (exp) != ERROR_MARK
4751 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4752 but TARGET is not valid memory reference, TEMP will differ
4753 from TARGET although it is really the same location. */
4754 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4755 /* If there's nothing to copy, don't bother. Don't call
4756 expr_size unless necessary, because some front-ends (C++)
4757 expr_size-hook must not be given objects that are not
4758 supposed to be bit-copied or bit-initialized. */
4759 && expr_size (exp) != const0_rtx)
4761 if (GET_MODE (temp) != GET_MODE (target)
4762 && GET_MODE (temp) != VOIDmode)
4764 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4765 if (GET_MODE (target) == BLKmode
4766 || GET_MODE (temp) == BLKmode)
4767 emit_block_move (target, temp, expr_size (exp),
4768 (call_param_p
4769 ? BLOCK_OP_CALL_PARM
4770 : BLOCK_OP_NORMAL));
4771 else
4772 convert_move (target, temp, unsignedp);
4775 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4777 /* Handle copying a string constant into an array. The string
4778 constant may be shorter than the array. So copy just the string's
4779 actual length, and clear the rest. First get the size of the data
4780 type of the string, which is actually the size of the target. */
4781 rtx size = expr_size (exp);
4783 if (CONST_INT_P (size)
4784 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4785 emit_block_move (target, temp, size,
4786 (call_param_p
4787 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4788 else
4790 enum machine_mode pointer_mode
4791 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4792 enum machine_mode address_mode
4793 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4795 /* Compute the size of the data to copy from the string. */
4796 tree copy_size
4797 = size_binop_loc (loc, MIN_EXPR,
4798 make_tree (sizetype, size),
4799 size_int (TREE_STRING_LENGTH (exp)));
4800 rtx copy_size_rtx
4801 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4802 (call_param_p
4803 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4804 rtx label = 0;
4806 /* Copy that much. */
4807 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4808 TYPE_UNSIGNED (sizetype));
4809 emit_block_move (target, temp, copy_size_rtx,
4810 (call_param_p
4811 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4813 /* Figure out how much is left in TARGET that we have to clear.
4814 Do all calculations in pointer_mode. */
4815 if (CONST_INT_P (copy_size_rtx))
4817 size = plus_constant (size, -INTVAL (copy_size_rtx));
4818 target = adjust_address (target, BLKmode,
4819 INTVAL (copy_size_rtx));
4821 else
4823 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4824 copy_size_rtx, NULL_RTX, 0,
4825 OPTAB_LIB_WIDEN);
4827 if (GET_MODE (copy_size_rtx) != address_mode)
4828 copy_size_rtx = convert_to_mode (address_mode,
4829 copy_size_rtx,
4830 TYPE_UNSIGNED (sizetype));
4832 target = offset_address (target, copy_size_rtx,
4833 highest_pow2_factor (copy_size));
4834 label = gen_label_rtx ();
4835 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4836 GET_MODE (size), 0, label);
4839 if (size != const0_rtx)
4840 clear_storage (target, size, BLOCK_OP_NORMAL);
4842 if (label)
4843 emit_label (label);
4846 /* Handle calls that return values in multiple non-contiguous locations.
4847 The Irix 6 ABI has examples of this. */
4848 else if (GET_CODE (target) == PARALLEL)
4849 emit_group_load (target, temp, TREE_TYPE (exp),
4850 int_size_in_bytes (TREE_TYPE (exp)));
4851 else if (GET_MODE (temp) == BLKmode)
4852 emit_block_move (target, temp, expr_size (exp),
4853 (call_param_p
4854 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4855 else if (nontemporal
4856 && emit_storent_insn (target, temp))
4857 /* If we managed to emit a nontemporal store, there is nothing else to
4858 do. */
4860 else
4862 temp = force_operand (temp, target);
4863 if (temp != target)
4864 emit_move_insn (target, temp);
4868 return NULL_RTX;
4871 /* Helper for categorize_ctor_elements. Identical interface. */
4873 static bool
4874 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4875 HOST_WIDE_INT *p_elt_count,
4876 bool *p_must_clear)
4878 unsigned HOST_WIDE_INT idx;
4879 HOST_WIDE_INT nz_elts, elt_count;
4880 tree value, purpose;
4882 /* Whether CTOR is a valid constant initializer, in accordance with what
4883 initializer_constant_valid_p does. If inferred from the constructor
4884 elements, true until proven otherwise. */
4885 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4886 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4888 nz_elts = 0;
4889 elt_count = 0;
4891 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4893 HOST_WIDE_INT mult = 1;
4895 if (TREE_CODE (purpose) == RANGE_EXPR)
4897 tree lo_index = TREE_OPERAND (purpose, 0);
4898 tree hi_index = TREE_OPERAND (purpose, 1);
4900 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4901 mult = (tree_low_cst (hi_index, 1)
4902 - tree_low_cst (lo_index, 1) + 1);
4905 switch (TREE_CODE (value))
4907 case CONSTRUCTOR:
4909 HOST_WIDE_INT nz = 0, ic = 0;
4911 bool const_elt_p
4912 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4914 nz_elts += mult * nz;
4915 elt_count += mult * ic;
4917 if (const_from_elts_p && const_p)
4918 const_p = const_elt_p;
4920 break;
4922 case INTEGER_CST:
4923 case REAL_CST:
4924 case FIXED_CST:
4925 if (!initializer_zerop (value))
4926 nz_elts += mult;
4927 elt_count += mult;
4928 break;
4930 case STRING_CST:
4931 nz_elts += mult * TREE_STRING_LENGTH (value);
4932 elt_count += mult * TREE_STRING_LENGTH (value);
4933 break;
4935 case COMPLEX_CST:
4936 if (!initializer_zerop (TREE_REALPART (value)))
4937 nz_elts += mult;
4938 if (!initializer_zerop (TREE_IMAGPART (value)))
4939 nz_elts += mult;
4940 elt_count += mult;
4941 break;
4943 case VECTOR_CST:
4945 tree v;
4946 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4948 if (!initializer_zerop (TREE_VALUE (v)))
4949 nz_elts += mult;
4950 elt_count += mult;
4953 break;
4955 default:
4957 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4958 if (tc < 1)
4959 tc = 1;
4960 nz_elts += mult * tc;
4961 elt_count += mult * tc;
4963 if (const_from_elts_p && const_p)
4964 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4965 != NULL_TREE;
4967 break;
4971 if (!*p_must_clear
4972 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4973 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4975 tree init_sub_type;
4976 bool clear_this = true;
4978 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4980 /* We don't expect more than one element of the union to be
4981 initialized. Not sure what we should do otherwise... */
4982 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4983 == 1);
4985 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4986 CONSTRUCTOR_ELTS (ctor),
4987 0)->value);
4989 /* ??? We could look at each element of the union, and find the
4990 largest element. Which would avoid comparing the size of the
4991 initialized element against any tail padding in the union.
4992 Doesn't seem worth the effort... */
4993 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4994 TYPE_SIZE (init_sub_type)) == 1)
4996 /* And now we have to find out if the element itself is fully
4997 constructed. E.g. for union { struct { int a, b; } s; } u
4998 = { .s = { .a = 1 } }. */
4999 if (elt_count == count_type_elements (init_sub_type, false))
5000 clear_this = false;
5004 *p_must_clear = clear_this;
5007 *p_nz_elts += nz_elts;
5008 *p_elt_count += elt_count;
5010 return const_p;
5013 /* Examine CTOR to discover:
5014 * how many scalar fields are set to nonzero values,
5015 and place it in *P_NZ_ELTS;
5016 * how many scalar fields in total are in CTOR,
5017 and place it in *P_ELT_COUNT.
5018 * if a type is a union, and the initializer from the constructor
5019 is not the largest element in the union, then set *p_must_clear.
5021 Return whether or not CTOR is a valid static constant initializer, the same
5022 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5024 bool
5025 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5026 HOST_WIDE_INT *p_elt_count,
5027 bool *p_must_clear)
5029 *p_nz_elts = 0;
5030 *p_elt_count = 0;
5031 *p_must_clear = false;
5033 return
5034 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5037 /* Count the number of scalars in TYPE. Return -1 on overflow or
5038 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5039 array member at the end of the structure. */
5041 HOST_WIDE_INT
5042 count_type_elements (const_tree type, bool allow_flexarr)
5044 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5045 switch (TREE_CODE (type))
5047 case ARRAY_TYPE:
5049 tree telts = array_type_nelts (type);
5050 if (telts && host_integerp (telts, 1))
5052 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5053 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5054 if (n == 0)
5055 return 0;
5056 else if (max / n > m)
5057 return n * m;
5059 return -1;
5062 case RECORD_TYPE:
5064 HOST_WIDE_INT n = 0, t;
5065 tree f;
5067 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5068 if (TREE_CODE (f) == FIELD_DECL)
5070 t = count_type_elements (TREE_TYPE (f), false);
5071 if (t < 0)
5073 /* Check for structures with flexible array member. */
5074 tree tf = TREE_TYPE (f);
5075 if (allow_flexarr
5076 && TREE_CHAIN (f) == NULL
5077 && TREE_CODE (tf) == ARRAY_TYPE
5078 && TYPE_DOMAIN (tf)
5079 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5080 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5081 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5082 && int_size_in_bytes (type) >= 0)
5083 break;
5085 return -1;
5087 n += t;
5090 return n;
5093 case UNION_TYPE:
5094 case QUAL_UNION_TYPE:
5095 return -1;
5097 case COMPLEX_TYPE:
5098 return 2;
5100 case VECTOR_TYPE:
5101 return TYPE_VECTOR_SUBPARTS (type);
5103 case INTEGER_TYPE:
5104 case REAL_TYPE:
5105 case FIXED_POINT_TYPE:
5106 case ENUMERAL_TYPE:
5107 case BOOLEAN_TYPE:
5108 case POINTER_TYPE:
5109 case OFFSET_TYPE:
5110 case REFERENCE_TYPE:
5111 return 1;
5113 case ERROR_MARK:
5114 return 0;
5116 case VOID_TYPE:
5117 case METHOD_TYPE:
5118 case FUNCTION_TYPE:
5119 case LANG_TYPE:
5120 default:
5121 gcc_unreachable ();
5125 /* Return 1 if EXP contains mostly (3/4) zeros. */
5127 static int
5128 mostly_zeros_p (const_tree exp)
5130 if (TREE_CODE (exp) == CONSTRUCTOR)
5133 HOST_WIDE_INT nz_elts, count, elts;
5134 bool must_clear;
5136 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5137 if (must_clear)
5138 return 1;
5140 elts = count_type_elements (TREE_TYPE (exp), false);
5142 return nz_elts < elts / 4;
5145 return initializer_zerop (exp);
5148 /* Return 1 if EXP contains all zeros. */
5150 static int
5151 all_zeros_p (const_tree exp)
5153 if (TREE_CODE (exp) == CONSTRUCTOR)
5156 HOST_WIDE_INT nz_elts, count;
5157 bool must_clear;
5159 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5160 return nz_elts == 0;
5163 return initializer_zerop (exp);
5166 /* Helper function for store_constructor.
5167 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5168 TYPE is the type of the CONSTRUCTOR, not the element type.
5169 CLEARED is as for store_constructor.
5170 ALIAS_SET is the alias set to use for any stores.
5172 This provides a recursive shortcut back to store_constructor when it isn't
5173 necessary to go through store_field. This is so that we can pass through
5174 the cleared field to let store_constructor know that we may not have to
5175 clear a substructure if the outer structure has already been cleared. */
5177 static void
5178 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5179 HOST_WIDE_INT bitpos, enum machine_mode mode,
5180 tree exp, tree type, int cleared,
5181 alias_set_type alias_set)
5183 if (TREE_CODE (exp) == CONSTRUCTOR
5184 /* We can only call store_constructor recursively if the size and
5185 bit position are on a byte boundary. */
5186 && bitpos % BITS_PER_UNIT == 0
5187 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5188 /* If we have a nonzero bitpos for a register target, then we just
5189 let store_field do the bitfield handling. This is unlikely to
5190 generate unnecessary clear instructions anyways. */
5191 && (bitpos == 0 || MEM_P (target)))
5193 if (MEM_P (target))
5194 target
5195 = adjust_address (target,
5196 GET_MODE (target) == BLKmode
5197 || 0 != (bitpos
5198 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5199 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5202 /* Update the alias set, if required. */
5203 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5204 && MEM_ALIAS_SET (target) != 0)
5206 target = copy_rtx (target);
5207 set_mem_alias_set (target, alias_set);
5210 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5212 else
5213 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5216 /* Store the value of constructor EXP into the rtx TARGET.
5217 TARGET is either a REG or a MEM; we know it cannot conflict, since
5218 safe_from_p has been called.
5219 CLEARED is true if TARGET is known to have been zero'd.
5220 SIZE is the number of bytes of TARGET we are allowed to modify: this
5221 may not be the same as the size of EXP if we are assigning to a field
5222 which has been packed to exclude padding bits. */
5224 static void
5225 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5227 tree type = TREE_TYPE (exp);
5228 #ifdef WORD_REGISTER_OPERATIONS
5229 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5230 #endif
5232 switch (TREE_CODE (type))
5234 case RECORD_TYPE:
5235 case UNION_TYPE:
5236 case QUAL_UNION_TYPE:
5238 unsigned HOST_WIDE_INT idx;
5239 tree field, value;
5241 /* If size is zero or the target is already cleared, do nothing. */
5242 if (size == 0 || cleared)
5243 cleared = 1;
5244 /* We either clear the aggregate or indicate the value is dead. */
5245 else if ((TREE_CODE (type) == UNION_TYPE
5246 || TREE_CODE (type) == QUAL_UNION_TYPE)
5247 && ! CONSTRUCTOR_ELTS (exp))
5248 /* If the constructor is empty, clear the union. */
5250 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5251 cleared = 1;
5254 /* If we are building a static constructor into a register,
5255 set the initial value as zero so we can fold the value into
5256 a constant. But if more than one register is involved,
5257 this probably loses. */
5258 else if (REG_P (target) && TREE_STATIC (exp)
5259 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5261 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5262 cleared = 1;
5265 /* If the constructor has fewer fields than the structure or
5266 if we are initializing the structure to mostly zeros, clear
5267 the whole structure first. Don't do this if TARGET is a
5268 register whose mode size isn't equal to SIZE since
5269 clear_storage can't handle this case. */
5270 else if (size > 0
5271 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5272 != fields_length (type))
5273 || mostly_zeros_p (exp))
5274 && (!REG_P (target)
5275 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5276 == size)))
5278 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5279 cleared = 1;
5282 if (REG_P (target) && !cleared)
5283 emit_clobber (target);
5285 /* Store each element of the constructor into the
5286 corresponding field of TARGET. */
5287 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5289 enum machine_mode mode;
5290 HOST_WIDE_INT bitsize;
5291 HOST_WIDE_INT bitpos = 0;
5292 tree offset;
5293 rtx to_rtx = target;
5295 /* Just ignore missing fields. We cleared the whole
5296 structure, above, if any fields are missing. */
5297 if (field == 0)
5298 continue;
5300 if (cleared && initializer_zerop (value))
5301 continue;
5303 if (host_integerp (DECL_SIZE (field), 1))
5304 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5305 else
5306 bitsize = -1;
5308 mode = DECL_MODE (field);
5309 if (DECL_BIT_FIELD (field))
5310 mode = VOIDmode;
5312 offset = DECL_FIELD_OFFSET (field);
5313 if (host_integerp (offset, 0)
5314 && host_integerp (bit_position (field), 0))
5316 bitpos = int_bit_position (field);
5317 offset = 0;
5319 else
5320 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5322 if (offset)
5324 enum machine_mode address_mode;
5325 rtx offset_rtx;
5327 offset
5328 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5329 make_tree (TREE_TYPE (exp),
5330 target));
5332 offset_rtx = expand_normal (offset);
5333 gcc_assert (MEM_P (to_rtx));
5335 address_mode
5336 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5337 if (GET_MODE (offset_rtx) != address_mode)
5338 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5340 to_rtx = offset_address (to_rtx, offset_rtx,
5341 highest_pow2_factor (offset));
5344 #ifdef WORD_REGISTER_OPERATIONS
5345 /* If this initializes a field that is smaller than a
5346 word, at the start of a word, try to widen it to a full
5347 word. This special case allows us to output C++ member
5348 function initializations in a form that the optimizers
5349 can understand. */
5350 if (REG_P (target)
5351 && bitsize < BITS_PER_WORD
5352 && bitpos % BITS_PER_WORD == 0
5353 && GET_MODE_CLASS (mode) == MODE_INT
5354 && TREE_CODE (value) == INTEGER_CST
5355 && exp_size >= 0
5356 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5358 tree type = TREE_TYPE (value);
5360 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5362 type = lang_hooks.types.type_for_size
5363 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5364 value = fold_convert (type, value);
5367 if (BYTES_BIG_ENDIAN)
5368 value
5369 = fold_build2 (LSHIFT_EXPR, type, value,
5370 build_int_cst (type,
5371 BITS_PER_WORD - bitsize));
5372 bitsize = BITS_PER_WORD;
5373 mode = word_mode;
5375 #endif
5377 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5378 && DECL_NONADDRESSABLE_P (field))
5380 to_rtx = copy_rtx (to_rtx);
5381 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5384 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5385 value, type, cleared,
5386 get_alias_set (TREE_TYPE (field)));
5388 break;
5390 case ARRAY_TYPE:
5392 tree value, index;
5393 unsigned HOST_WIDE_INT i;
5394 int need_to_clear;
5395 tree domain;
5396 tree elttype = TREE_TYPE (type);
5397 int const_bounds_p;
5398 HOST_WIDE_INT minelt = 0;
5399 HOST_WIDE_INT maxelt = 0;
5401 domain = TYPE_DOMAIN (type);
5402 const_bounds_p = (TYPE_MIN_VALUE (domain)
5403 && TYPE_MAX_VALUE (domain)
5404 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5405 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5407 /* If we have constant bounds for the range of the type, get them. */
5408 if (const_bounds_p)
5410 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5411 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5414 /* If the constructor has fewer elements than the array, clear
5415 the whole array first. Similarly if this is static
5416 constructor of a non-BLKmode object. */
5417 if (cleared)
5418 need_to_clear = 0;
5419 else if (REG_P (target) && TREE_STATIC (exp))
5420 need_to_clear = 1;
5421 else
5423 unsigned HOST_WIDE_INT idx;
5424 tree index, value;
5425 HOST_WIDE_INT count = 0, zero_count = 0;
5426 need_to_clear = ! const_bounds_p;
5428 /* This loop is a more accurate version of the loop in
5429 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5430 is also needed to check for missing elements. */
5431 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5433 HOST_WIDE_INT this_node_count;
5435 if (need_to_clear)
5436 break;
5438 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5440 tree lo_index = TREE_OPERAND (index, 0);
5441 tree hi_index = TREE_OPERAND (index, 1);
5443 if (! host_integerp (lo_index, 1)
5444 || ! host_integerp (hi_index, 1))
5446 need_to_clear = 1;
5447 break;
5450 this_node_count = (tree_low_cst (hi_index, 1)
5451 - tree_low_cst (lo_index, 1) + 1);
5453 else
5454 this_node_count = 1;
5456 count += this_node_count;
5457 if (mostly_zeros_p (value))
5458 zero_count += this_node_count;
5461 /* Clear the entire array first if there are any missing
5462 elements, or if the incidence of zero elements is >=
5463 75%. */
5464 if (! need_to_clear
5465 && (count < maxelt - minelt + 1
5466 || 4 * zero_count >= 3 * count))
5467 need_to_clear = 1;
5470 if (need_to_clear && size > 0)
5472 if (REG_P (target))
5473 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5474 else
5475 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5476 cleared = 1;
5479 if (!cleared && REG_P (target))
5480 /* Inform later passes that the old value is dead. */
5481 emit_clobber (target);
5483 /* Store each element of the constructor into the
5484 corresponding element of TARGET, determined by counting the
5485 elements. */
5486 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5488 enum machine_mode mode;
5489 HOST_WIDE_INT bitsize;
5490 HOST_WIDE_INT bitpos;
5491 rtx xtarget = target;
5493 if (cleared && initializer_zerop (value))
5494 continue;
5496 mode = TYPE_MODE (elttype);
5497 if (mode == BLKmode)
5498 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5499 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5500 : -1);
5501 else
5502 bitsize = GET_MODE_BITSIZE (mode);
5504 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5506 tree lo_index = TREE_OPERAND (index, 0);
5507 tree hi_index = TREE_OPERAND (index, 1);
5508 rtx index_r, pos_rtx;
5509 HOST_WIDE_INT lo, hi, count;
5510 tree position;
5512 /* If the range is constant and "small", unroll the loop. */
5513 if (const_bounds_p
5514 && host_integerp (lo_index, 0)
5515 && host_integerp (hi_index, 0)
5516 && (lo = tree_low_cst (lo_index, 0),
5517 hi = tree_low_cst (hi_index, 0),
5518 count = hi - lo + 1,
5519 (!MEM_P (target)
5520 || count <= 2
5521 || (host_integerp (TYPE_SIZE (elttype), 1)
5522 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5523 <= 40 * 8)))))
5525 lo -= minelt; hi -= minelt;
5526 for (; lo <= hi; lo++)
5528 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5530 if (MEM_P (target)
5531 && !MEM_KEEP_ALIAS_SET_P (target)
5532 && TREE_CODE (type) == ARRAY_TYPE
5533 && TYPE_NONALIASED_COMPONENT (type))
5535 target = copy_rtx (target);
5536 MEM_KEEP_ALIAS_SET_P (target) = 1;
5539 store_constructor_field
5540 (target, bitsize, bitpos, mode, value, type, cleared,
5541 get_alias_set (elttype));
5544 else
5546 rtx loop_start = gen_label_rtx ();
5547 rtx loop_end = gen_label_rtx ();
5548 tree exit_cond;
5550 expand_normal (hi_index);
5552 index = build_decl (EXPR_LOCATION (exp),
5553 VAR_DECL, NULL_TREE, domain);
5554 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5555 SET_DECL_RTL (index, index_r);
5556 store_expr (lo_index, index_r, 0, false);
5558 /* Build the head of the loop. */
5559 do_pending_stack_adjust ();
5560 emit_label (loop_start);
5562 /* Assign value to element index. */
5563 position =
5564 fold_convert (ssizetype,
5565 fold_build2 (MINUS_EXPR,
5566 TREE_TYPE (index),
5567 index,
5568 TYPE_MIN_VALUE (domain)));
5570 position =
5571 size_binop (MULT_EXPR, position,
5572 fold_convert (ssizetype,
5573 TYPE_SIZE_UNIT (elttype)));
5575 pos_rtx = expand_normal (position);
5576 xtarget = offset_address (target, pos_rtx,
5577 highest_pow2_factor (position));
5578 xtarget = adjust_address (xtarget, mode, 0);
5579 if (TREE_CODE (value) == CONSTRUCTOR)
5580 store_constructor (value, xtarget, cleared,
5581 bitsize / BITS_PER_UNIT);
5582 else
5583 store_expr (value, xtarget, 0, false);
5585 /* Generate a conditional jump to exit the loop. */
5586 exit_cond = build2 (LT_EXPR, integer_type_node,
5587 index, hi_index);
5588 jumpif (exit_cond, loop_end, -1);
5590 /* Update the loop counter, and jump to the head of
5591 the loop. */
5592 expand_assignment (index,
5593 build2 (PLUS_EXPR, TREE_TYPE (index),
5594 index, integer_one_node),
5595 false);
5597 emit_jump (loop_start);
5599 /* Build the end of the loop. */
5600 emit_label (loop_end);
5603 else if ((index != 0 && ! host_integerp (index, 0))
5604 || ! host_integerp (TYPE_SIZE (elttype), 1))
5606 tree position;
5608 if (index == 0)
5609 index = ssize_int (1);
5611 if (minelt)
5612 index = fold_convert (ssizetype,
5613 fold_build2 (MINUS_EXPR,
5614 TREE_TYPE (index),
5615 index,
5616 TYPE_MIN_VALUE (domain)));
5618 position =
5619 size_binop (MULT_EXPR, index,
5620 fold_convert (ssizetype,
5621 TYPE_SIZE_UNIT (elttype)));
5622 xtarget = offset_address (target,
5623 expand_normal (position),
5624 highest_pow2_factor (position));
5625 xtarget = adjust_address (xtarget, mode, 0);
5626 store_expr (value, xtarget, 0, false);
5628 else
5630 if (index != 0)
5631 bitpos = ((tree_low_cst (index, 0) - minelt)
5632 * tree_low_cst (TYPE_SIZE (elttype), 1));
5633 else
5634 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5636 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5637 && TREE_CODE (type) == ARRAY_TYPE
5638 && TYPE_NONALIASED_COMPONENT (type))
5640 target = copy_rtx (target);
5641 MEM_KEEP_ALIAS_SET_P (target) = 1;
5643 store_constructor_field (target, bitsize, bitpos, mode, value,
5644 type, cleared, get_alias_set (elttype));
5647 break;
5650 case VECTOR_TYPE:
5652 unsigned HOST_WIDE_INT idx;
5653 constructor_elt *ce;
5654 int i;
5655 int need_to_clear;
5656 int icode = 0;
5657 tree elttype = TREE_TYPE (type);
5658 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5659 enum machine_mode eltmode = TYPE_MODE (elttype);
5660 HOST_WIDE_INT bitsize;
5661 HOST_WIDE_INT bitpos;
5662 rtvec vector = NULL;
5663 unsigned n_elts;
5664 alias_set_type alias;
5666 gcc_assert (eltmode != BLKmode);
5668 n_elts = TYPE_VECTOR_SUBPARTS (type);
5669 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5671 enum machine_mode mode = GET_MODE (target);
5673 icode = (int) optab_handler (vec_init_optab, mode);
5674 if (icode != CODE_FOR_nothing)
5676 unsigned int i;
5678 vector = rtvec_alloc (n_elts);
5679 for (i = 0; i < n_elts; i++)
5680 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5684 /* If the constructor has fewer elements than the vector,
5685 clear the whole array first. Similarly if this is static
5686 constructor of a non-BLKmode object. */
5687 if (cleared)
5688 need_to_clear = 0;
5689 else if (REG_P (target) && TREE_STATIC (exp))
5690 need_to_clear = 1;
5691 else
5693 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5694 tree value;
5696 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5698 int n_elts_here = tree_low_cst
5699 (int_const_binop (TRUNC_DIV_EXPR,
5700 TYPE_SIZE (TREE_TYPE (value)),
5701 TYPE_SIZE (elttype), 0), 1);
5703 count += n_elts_here;
5704 if (mostly_zeros_p (value))
5705 zero_count += n_elts_here;
5708 /* Clear the entire vector first if there are any missing elements,
5709 or if the incidence of zero elements is >= 75%. */
5710 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5713 if (need_to_clear && size > 0 && !vector)
5715 if (REG_P (target))
5716 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5717 else
5718 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5719 cleared = 1;
5722 /* Inform later passes that the old value is dead. */
5723 if (!cleared && !vector && REG_P (target))
5724 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5726 if (MEM_P (target))
5727 alias = MEM_ALIAS_SET (target);
5728 else
5729 alias = get_alias_set (elttype);
5731 /* Store each element of the constructor into the corresponding
5732 element of TARGET, determined by counting the elements. */
5733 for (idx = 0, i = 0;
5734 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5735 idx++, i += bitsize / elt_size)
5737 HOST_WIDE_INT eltpos;
5738 tree value = ce->value;
5740 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5741 if (cleared && initializer_zerop (value))
5742 continue;
5744 if (ce->index)
5745 eltpos = tree_low_cst (ce->index, 1);
5746 else
5747 eltpos = i;
5749 if (vector)
5751 /* Vector CONSTRUCTORs should only be built from smaller
5752 vectors in the case of BLKmode vectors. */
5753 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5754 RTVEC_ELT (vector, eltpos)
5755 = expand_normal (value);
5757 else
5759 enum machine_mode value_mode =
5760 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5761 ? TYPE_MODE (TREE_TYPE (value))
5762 : eltmode;
5763 bitpos = eltpos * elt_size;
5764 store_constructor_field (target, bitsize, bitpos,
5765 value_mode, value, type,
5766 cleared, alias);
5770 if (vector)
5771 emit_insn (GEN_FCN (icode)
5772 (target,
5773 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5774 break;
5777 default:
5778 gcc_unreachable ();
5782 /* Store the value of EXP (an expression tree)
5783 into a subfield of TARGET which has mode MODE and occupies
5784 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5785 If MODE is VOIDmode, it means that we are storing into a bit-field.
5787 Always return const0_rtx unless we have something particular to
5788 return.
5790 TYPE is the type of the underlying object,
5792 ALIAS_SET is the alias set for the destination. This value will
5793 (in general) be different from that for TARGET, since TARGET is a
5794 reference to the containing structure.
5796 If NONTEMPORAL is true, try generating a nontemporal store. */
5798 static rtx
5799 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5800 enum machine_mode mode, tree exp, tree type,
5801 alias_set_type alias_set, bool nontemporal)
5803 if (TREE_CODE (exp) == ERROR_MARK)
5804 return const0_rtx;
5806 /* If we have nothing to store, do nothing unless the expression has
5807 side-effects. */
5808 if (bitsize == 0)
5809 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5811 /* If we are storing into an unaligned field of an aligned union that is
5812 in a register, we may have the mode of TARGET being an integer mode but
5813 MODE == BLKmode. In that case, get an aligned object whose size and
5814 alignment are the same as TARGET and store TARGET into it (we can avoid
5815 the store if the field being stored is the entire width of TARGET). Then
5816 call ourselves recursively to store the field into a BLKmode version of
5817 that object. Finally, load from the object into TARGET. This is not
5818 very efficient in general, but should only be slightly more expensive
5819 than the otherwise-required unaligned accesses. Perhaps this can be
5820 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5821 twice, once with emit_move_insn and once via store_field. */
5823 if (mode == BLKmode
5824 && (REG_P (target) || GET_CODE (target) == SUBREG))
5826 rtx object = assign_temp (type, 0, 1, 1);
5827 rtx blk_object = adjust_address (object, BLKmode, 0);
5829 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5830 emit_move_insn (object, target);
5832 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5833 nontemporal);
5835 emit_move_insn (target, object);
5837 /* We want to return the BLKmode version of the data. */
5838 return blk_object;
5841 if (GET_CODE (target) == CONCAT)
5843 /* We're storing into a struct containing a single __complex. */
5845 gcc_assert (!bitpos);
5846 return store_expr (exp, target, 0, nontemporal);
5849 /* If the structure is in a register or if the component
5850 is a bit field, we cannot use addressing to access it.
5851 Use bit-field techniques or SUBREG to store in it. */
5853 if (mode == VOIDmode
5854 || (mode != BLKmode && ! direct_store[(int) mode]
5855 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5856 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5857 || REG_P (target)
5858 || GET_CODE (target) == SUBREG
5859 /* If the field isn't aligned enough to store as an ordinary memref,
5860 store it as a bit field. */
5861 || (mode != BLKmode
5862 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5863 || bitpos % GET_MODE_ALIGNMENT (mode))
5864 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5865 || (bitpos % BITS_PER_UNIT != 0)))
5866 /* If the RHS and field are a constant size and the size of the
5867 RHS isn't the same size as the bitfield, we must use bitfield
5868 operations. */
5869 || (bitsize >= 0
5870 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5871 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5872 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5873 decl we must use bitfield operations. */
5874 || (bitsize >= 0
5875 && TREE_CODE (exp) == MEM_REF
5876 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5877 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5878 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5879 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5881 rtx temp;
5882 gimple nop_def;
5884 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5885 implies a mask operation. If the precision is the same size as
5886 the field we're storing into, that mask is redundant. This is
5887 particularly common with bit field assignments generated by the
5888 C front end. */
5889 nop_def = get_def_for_expr (exp, NOP_EXPR);
5890 if (nop_def)
5892 tree type = TREE_TYPE (exp);
5893 if (INTEGRAL_TYPE_P (type)
5894 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5895 && bitsize == TYPE_PRECISION (type))
5897 tree op = gimple_assign_rhs1 (nop_def);
5898 type = TREE_TYPE (op);
5899 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5900 exp = op;
5904 temp = expand_normal (exp);
5906 /* If BITSIZE is narrower than the size of the type of EXP
5907 we will be narrowing TEMP. Normally, what's wanted are the
5908 low-order bits. However, if EXP's type is a record and this is
5909 big-endian machine, we want the upper BITSIZE bits. */
5910 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5911 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5912 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5913 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5914 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5915 - bitsize),
5916 NULL_RTX, 1);
5918 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5919 MODE. */
5920 if (mode != VOIDmode && mode != BLKmode
5921 && mode != TYPE_MODE (TREE_TYPE (exp)))
5922 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5924 /* If the modes of TEMP and TARGET are both BLKmode, both
5925 must be in memory and BITPOS must be aligned on a byte
5926 boundary. If so, we simply do a block copy. Likewise
5927 for a BLKmode-like TARGET. */
5928 if (GET_MODE (temp) == BLKmode
5929 && (GET_MODE (target) == BLKmode
5930 || (MEM_P (target)
5931 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5932 && (bitpos % BITS_PER_UNIT) == 0
5933 && (bitsize % BITS_PER_UNIT) == 0)))
5935 gcc_assert (MEM_P (target) && MEM_P (temp)
5936 && (bitpos % BITS_PER_UNIT) == 0);
5938 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5939 emit_block_move (target, temp,
5940 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5941 / BITS_PER_UNIT),
5942 BLOCK_OP_NORMAL);
5944 return const0_rtx;
5947 /* Store the value in the bitfield. */
5948 store_bit_field (target, bitsize, bitpos, mode, temp);
5950 return const0_rtx;
5952 else
5954 /* Now build a reference to just the desired component. */
5955 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5957 if (to_rtx == target)
5958 to_rtx = copy_rtx (to_rtx);
5960 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5961 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5962 set_mem_alias_set (to_rtx, alias_set);
5964 return store_expr (exp, to_rtx, 0, nontemporal);
5968 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5969 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5970 codes and find the ultimate containing object, which we return.
5972 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5973 bit position, and *PUNSIGNEDP to the signedness of the field.
5974 If the position of the field is variable, we store a tree
5975 giving the variable offset (in units) in *POFFSET.
5976 This offset is in addition to the bit position.
5977 If the position is not variable, we store 0 in *POFFSET.
5979 If any of the extraction expressions is volatile,
5980 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5982 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5983 Otherwise, it is a mode that can be used to access the field.
5985 If the field describes a variable-sized object, *PMODE is set to
5986 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5987 this case, but the address of the object can be found.
5989 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5990 look through nodes that serve as markers of a greater alignment than
5991 the one that can be deduced from the expression. These nodes make it
5992 possible for front-ends to prevent temporaries from being created by
5993 the middle-end on alignment considerations. For that purpose, the
5994 normal operating mode at high-level is to always pass FALSE so that
5995 the ultimate containing object is really returned; moreover, the
5996 associated predicate handled_component_p will always return TRUE
5997 on these nodes, thus indicating that they are essentially handled
5998 by get_inner_reference. TRUE should only be passed when the caller
5999 is scanning the expression in order to build another representation
6000 and specifically knows how to handle these nodes; as such, this is
6001 the normal operating mode in the RTL expanders. */
6003 tree
6004 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6005 HOST_WIDE_INT *pbitpos, tree *poffset,
6006 enum machine_mode *pmode, int *punsignedp,
6007 int *pvolatilep, bool keep_aligning)
6009 tree size_tree = 0;
6010 enum machine_mode mode = VOIDmode;
6011 bool blkmode_bitfield = false;
6012 tree offset = size_zero_node;
6013 double_int bit_offset = double_int_zero;
6015 /* First get the mode, signedness, and size. We do this from just the
6016 outermost expression. */
6017 *pbitsize = -1;
6018 if (TREE_CODE (exp) == COMPONENT_REF)
6020 tree field = TREE_OPERAND (exp, 1);
6021 size_tree = DECL_SIZE (field);
6022 if (!DECL_BIT_FIELD (field))
6023 mode = DECL_MODE (field);
6024 else if (DECL_MODE (field) == BLKmode)
6025 blkmode_bitfield = true;
6026 else if (TREE_THIS_VOLATILE (exp)
6027 && flag_strict_volatile_bitfields > 0)
6028 /* Volatile bitfields should be accessed in the mode of the
6029 field's type, not the mode computed based on the bit
6030 size. */
6031 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6033 *punsignedp = DECL_UNSIGNED (field);
6035 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6037 size_tree = TREE_OPERAND (exp, 1);
6038 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6039 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6041 /* For vector types, with the correct size of access, use the mode of
6042 inner type. */
6043 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6044 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6045 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6046 mode = TYPE_MODE (TREE_TYPE (exp));
6048 else
6050 mode = TYPE_MODE (TREE_TYPE (exp));
6051 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6053 if (mode == BLKmode)
6054 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6055 else
6056 *pbitsize = GET_MODE_BITSIZE (mode);
6059 if (size_tree != 0)
6061 if (! host_integerp (size_tree, 1))
6062 mode = BLKmode, *pbitsize = -1;
6063 else
6064 *pbitsize = tree_low_cst (size_tree, 1);
6067 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6068 and find the ultimate containing object. */
6069 while (1)
6071 switch (TREE_CODE (exp))
6073 case BIT_FIELD_REF:
6074 bit_offset
6075 = double_int_add (bit_offset,
6076 tree_to_double_int (TREE_OPERAND (exp, 2)));
6077 break;
6079 case COMPONENT_REF:
6081 tree field = TREE_OPERAND (exp, 1);
6082 tree this_offset = component_ref_field_offset (exp);
6084 /* If this field hasn't been filled in yet, don't go past it.
6085 This should only happen when folding expressions made during
6086 type construction. */
6087 if (this_offset == 0)
6088 break;
6090 offset = size_binop (PLUS_EXPR, offset, this_offset);
6091 bit_offset = double_int_add (bit_offset,
6092 tree_to_double_int
6093 (DECL_FIELD_BIT_OFFSET (field)));
6095 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6097 break;
6099 case ARRAY_REF:
6100 case ARRAY_RANGE_REF:
6102 tree index = TREE_OPERAND (exp, 1);
6103 tree low_bound = array_ref_low_bound (exp);
6104 tree unit_size = array_ref_element_size (exp);
6106 /* We assume all arrays have sizes that are a multiple of a byte.
6107 First subtract the lower bound, if any, in the type of the
6108 index, then convert to sizetype and multiply by the size of
6109 the array element. */
6110 if (! integer_zerop (low_bound))
6111 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6112 index, low_bound);
6114 offset = size_binop (PLUS_EXPR, offset,
6115 size_binop (MULT_EXPR,
6116 fold_convert (sizetype, index),
6117 unit_size));
6119 break;
6121 case REALPART_EXPR:
6122 break;
6124 case IMAGPART_EXPR:
6125 bit_offset = double_int_add (bit_offset,
6126 uhwi_to_double_int (*pbitsize));
6127 break;
6129 case VIEW_CONVERT_EXPR:
6130 if (keep_aligning && STRICT_ALIGNMENT
6131 && (TYPE_ALIGN (TREE_TYPE (exp))
6132 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6133 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6134 < BIGGEST_ALIGNMENT)
6135 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6136 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6137 goto done;
6138 break;
6140 case MEM_REF:
6141 /* Hand back the decl for MEM[&decl, off]. */
6142 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6144 tree off = TREE_OPERAND (exp, 1);
6145 if (!integer_zerop (off))
6147 double_int boff, coff = mem_ref_offset (exp);
6148 boff = double_int_lshift (coff,
6149 BITS_PER_UNIT == 8
6150 ? 3 : exact_log2 (BITS_PER_UNIT),
6151 HOST_BITS_PER_DOUBLE_INT, true);
6152 bit_offset = double_int_add (bit_offset, boff);
6154 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6156 goto done;
6158 default:
6159 goto done;
6162 /* If any reference in the chain is volatile, the effect is volatile. */
6163 if (TREE_THIS_VOLATILE (exp))
6164 *pvolatilep = 1;
6166 exp = TREE_OPERAND (exp, 0);
6168 done:
6170 /* If OFFSET is constant, see if we can return the whole thing as a
6171 constant bit position. Make sure to handle overflow during
6172 this conversion. */
6173 if (host_integerp (offset, 0))
6175 double_int tem = double_int_lshift (tree_to_double_int (offset),
6176 BITS_PER_UNIT == 8
6177 ? 3 : exact_log2 (BITS_PER_UNIT),
6178 HOST_BITS_PER_DOUBLE_INT, true);
6179 tem = double_int_add (tem, bit_offset);
6180 if (double_int_fits_in_shwi_p (tem))
6182 *pbitpos = double_int_to_shwi (tem);
6183 *poffset = offset = NULL_TREE;
6187 /* Otherwise, split it up. */
6188 if (offset)
6190 *pbitpos = double_int_to_shwi (bit_offset);
6191 *poffset = offset;
6194 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6195 if (mode == VOIDmode
6196 && blkmode_bitfield
6197 && (*pbitpos % BITS_PER_UNIT) == 0
6198 && (*pbitsize % BITS_PER_UNIT) == 0)
6199 *pmode = BLKmode;
6200 else
6201 *pmode = mode;
6203 return exp;
6206 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6207 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6208 EXP is marked as PACKED. */
6210 bool
6211 contains_packed_reference (const_tree exp)
6213 bool packed_p = false;
6215 while (1)
6217 switch (TREE_CODE (exp))
6219 case COMPONENT_REF:
6221 tree field = TREE_OPERAND (exp, 1);
6222 packed_p = DECL_PACKED (field)
6223 || TYPE_PACKED (TREE_TYPE (field))
6224 || TYPE_PACKED (TREE_TYPE (exp));
6225 if (packed_p)
6226 goto done;
6228 break;
6230 case BIT_FIELD_REF:
6231 case ARRAY_REF:
6232 case ARRAY_RANGE_REF:
6233 case REALPART_EXPR:
6234 case IMAGPART_EXPR:
6235 case VIEW_CONVERT_EXPR:
6236 break;
6238 default:
6239 goto done;
6241 exp = TREE_OPERAND (exp, 0);
6243 done:
6244 return packed_p;
6247 /* Return a tree of sizetype representing the size, in bytes, of the element
6248 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6250 tree
6251 array_ref_element_size (tree exp)
6253 tree aligned_size = TREE_OPERAND (exp, 3);
6254 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6255 location_t loc = EXPR_LOCATION (exp);
6257 /* If a size was specified in the ARRAY_REF, it's the size measured
6258 in alignment units of the element type. So multiply by that value. */
6259 if (aligned_size)
6261 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6262 sizetype from another type of the same width and signedness. */
6263 if (TREE_TYPE (aligned_size) != sizetype)
6264 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6265 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6266 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6269 /* Otherwise, take the size from that of the element type. Substitute
6270 any PLACEHOLDER_EXPR that we have. */
6271 else
6272 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6275 /* Return a tree representing the lower bound of the array mentioned in
6276 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6278 tree
6279 array_ref_low_bound (tree exp)
6281 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6283 /* If a lower bound is specified in EXP, use it. */
6284 if (TREE_OPERAND (exp, 2))
6285 return TREE_OPERAND (exp, 2);
6287 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6288 substituting for a PLACEHOLDER_EXPR as needed. */
6289 if (domain_type && TYPE_MIN_VALUE (domain_type))
6290 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6292 /* Otherwise, return a zero of the appropriate type. */
6293 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6296 /* Return a tree representing the upper bound of the array mentioned in
6297 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6299 tree
6300 array_ref_up_bound (tree exp)
6302 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6304 /* If there is a domain type and it has an upper bound, use it, substituting
6305 for a PLACEHOLDER_EXPR as needed. */
6306 if (domain_type && TYPE_MAX_VALUE (domain_type))
6307 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6309 /* Otherwise fail. */
6310 return NULL_TREE;
6313 /* Return a tree representing the offset, in bytes, of the field referenced
6314 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6316 tree
6317 component_ref_field_offset (tree exp)
6319 tree aligned_offset = TREE_OPERAND (exp, 2);
6320 tree field = TREE_OPERAND (exp, 1);
6321 location_t loc = EXPR_LOCATION (exp);
6323 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6324 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6325 value. */
6326 if (aligned_offset)
6328 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6329 sizetype from another type of the same width and signedness. */
6330 if (TREE_TYPE (aligned_offset) != sizetype)
6331 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6332 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6333 size_int (DECL_OFFSET_ALIGN (field)
6334 / BITS_PER_UNIT));
6337 /* Otherwise, take the offset from that of the field. Substitute
6338 any PLACEHOLDER_EXPR that we have. */
6339 else
6340 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6343 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6345 static unsigned HOST_WIDE_INT
6346 target_align (const_tree target)
6348 /* We might have a chain of nested references with intermediate misaligning
6349 bitfields components, so need to recurse to find out. */
6351 unsigned HOST_WIDE_INT this_align, outer_align;
6353 switch (TREE_CODE (target))
6355 case BIT_FIELD_REF:
6356 return 1;
6358 case COMPONENT_REF:
6359 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6360 outer_align = target_align (TREE_OPERAND (target, 0));
6361 return MIN (this_align, outer_align);
6363 case ARRAY_REF:
6364 case ARRAY_RANGE_REF:
6365 this_align = TYPE_ALIGN (TREE_TYPE (target));
6366 outer_align = target_align (TREE_OPERAND (target, 0));
6367 return MIN (this_align, outer_align);
6369 CASE_CONVERT:
6370 case NON_LVALUE_EXPR:
6371 case VIEW_CONVERT_EXPR:
6372 this_align = TYPE_ALIGN (TREE_TYPE (target));
6373 outer_align = target_align (TREE_OPERAND (target, 0));
6374 return MAX (this_align, outer_align);
6376 default:
6377 return TYPE_ALIGN (TREE_TYPE (target));
6382 /* Given an rtx VALUE that may contain additions and multiplications, return
6383 an equivalent value that just refers to a register, memory, or constant.
6384 This is done by generating instructions to perform the arithmetic and
6385 returning a pseudo-register containing the value.
6387 The returned value may be a REG, SUBREG, MEM or constant. */
6390 force_operand (rtx value, rtx target)
6392 rtx op1, op2;
6393 /* Use subtarget as the target for operand 0 of a binary operation. */
6394 rtx subtarget = get_subtarget (target);
6395 enum rtx_code code = GET_CODE (value);
6397 /* Check for subreg applied to an expression produced by loop optimizer. */
6398 if (code == SUBREG
6399 && !REG_P (SUBREG_REG (value))
6400 && !MEM_P (SUBREG_REG (value)))
6402 value
6403 = simplify_gen_subreg (GET_MODE (value),
6404 force_reg (GET_MODE (SUBREG_REG (value)),
6405 force_operand (SUBREG_REG (value),
6406 NULL_RTX)),
6407 GET_MODE (SUBREG_REG (value)),
6408 SUBREG_BYTE (value));
6409 code = GET_CODE (value);
6412 /* Check for a PIC address load. */
6413 if ((code == PLUS || code == MINUS)
6414 && XEXP (value, 0) == pic_offset_table_rtx
6415 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6416 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6417 || GET_CODE (XEXP (value, 1)) == CONST))
6419 if (!subtarget)
6420 subtarget = gen_reg_rtx (GET_MODE (value));
6421 emit_move_insn (subtarget, value);
6422 return subtarget;
6425 if (ARITHMETIC_P (value))
6427 op2 = XEXP (value, 1);
6428 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6429 subtarget = 0;
6430 if (code == MINUS && CONST_INT_P (op2))
6432 code = PLUS;
6433 op2 = negate_rtx (GET_MODE (value), op2);
6436 /* Check for an addition with OP2 a constant integer and our first
6437 operand a PLUS of a virtual register and something else. In that
6438 case, we want to emit the sum of the virtual register and the
6439 constant first and then add the other value. This allows virtual
6440 register instantiation to simply modify the constant rather than
6441 creating another one around this addition. */
6442 if (code == PLUS && CONST_INT_P (op2)
6443 && GET_CODE (XEXP (value, 0)) == PLUS
6444 && REG_P (XEXP (XEXP (value, 0), 0))
6445 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6446 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6448 rtx temp = expand_simple_binop (GET_MODE (value), code,
6449 XEXP (XEXP (value, 0), 0), op2,
6450 subtarget, 0, OPTAB_LIB_WIDEN);
6451 return expand_simple_binop (GET_MODE (value), code, temp,
6452 force_operand (XEXP (XEXP (value,
6453 0), 1), 0),
6454 target, 0, OPTAB_LIB_WIDEN);
6457 op1 = force_operand (XEXP (value, 0), subtarget);
6458 op2 = force_operand (op2, NULL_RTX);
6459 switch (code)
6461 case MULT:
6462 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6463 case DIV:
6464 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6465 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6466 target, 1, OPTAB_LIB_WIDEN);
6467 else
6468 return expand_divmod (0,
6469 FLOAT_MODE_P (GET_MODE (value))
6470 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6471 GET_MODE (value), op1, op2, target, 0);
6472 case MOD:
6473 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6474 target, 0);
6475 case UDIV:
6476 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6477 target, 1);
6478 case UMOD:
6479 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6480 target, 1);
6481 case ASHIFTRT:
6482 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6483 target, 0, OPTAB_LIB_WIDEN);
6484 default:
6485 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6486 target, 1, OPTAB_LIB_WIDEN);
6489 if (UNARY_P (value))
6491 if (!target)
6492 target = gen_reg_rtx (GET_MODE (value));
6493 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6494 switch (code)
6496 case ZERO_EXTEND:
6497 case SIGN_EXTEND:
6498 case TRUNCATE:
6499 case FLOAT_EXTEND:
6500 case FLOAT_TRUNCATE:
6501 convert_move (target, op1, code == ZERO_EXTEND);
6502 return target;
6504 case FIX:
6505 case UNSIGNED_FIX:
6506 expand_fix (target, op1, code == UNSIGNED_FIX);
6507 return target;
6509 case FLOAT:
6510 case UNSIGNED_FLOAT:
6511 expand_float (target, op1, code == UNSIGNED_FLOAT);
6512 return target;
6514 default:
6515 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6519 #ifdef INSN_SCHEDULING
6520 /* On machines that have insn scheduling, we want all memory reference to be
6521 explicit, so we need to deal with such paradoxical SUBREGs. */
6522 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6523 && (GET_MODE_SIZE (GET_MODE (value))
6524 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6525 value
6526 = simplify_gen_subreg (GET_MODE (value),
6527 force_reg (GET_MODE (SUBREG_REG (value)),
6528 force_operand (SUBREG_REG (value),
6529 NULL_RTX)),
6530 GET_MODE (SUBREG_REG (value)),
6531 SUBREG_BYTE (value));
6532 #endif
6534 return value;
6537 /* Subroutine of expand_expr: return nonzero iff there is no way that
6538 EXP can reference X, which is being modified. TOP_P is nonzero if this
6539 call is going to be used to determine whether we need a temporary
6540 for EXP, as opposed to a recursive call to this function.
6542 It is always safe for this routine to return zero since it merely
6543 searches for optimization opportunities. */
6546 safe_from_p (const_rtx x, tree exp, int top_p)
6548 rtx exp_rtl = 0;
6549 int i, nops;
6551 if (x == 0
6552 /* If EXP has varying size, we MUST use a target since we currently
6553 have no way of allocating temporaries of variable size
6554 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6555 So we assume here that something at a higher level has prevented a
6556 clash. This is somewhat bogus, but the best we can do. Only
6557 do this when X is BLKmode and when we are at the top level. */
6558 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6559 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6560 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6561 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6562 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6563 != INTEGER_CST)
6564 && GET_MODE (x) == BLKmode)
6565 /* If X is in the outgoing argument area, it is always safe. */
6566 || (MEM_P (x)
6567 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6568 || (GET_CODE (XEXP (x, 0)) == PLUS
6569 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6570 return 1;
6572 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6573 find the underlying pseudo. */
6574 if (GET_CODE (x) == SUBREG)
6576 x = SUBREG_REG (x);
6577 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6578 return 0;
6581 /* Now look at our tree code and possibly recurse. */
6582 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6584 case tcc_declaration:
6585 exp_rtl = DECL_RTL_IF_SET (exp);
6586 break;
6588 case tcc_constant:
6589 return 1;
6591 case tcc_exceptional:
6592 if (TREE_CODE (exp) == TREE_LIST)
6594 while (1)
6596 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6597 return 0;
6598 exp = TREE_CHAIN (exp);
6599 if (!exp)
6600 return 1;
6601 if (TREE_CODE (exp) != TREE_LIST)
6602 return safe_from_p (x, exp, 0);
6605 else if (TREE_CODE (exp) == CONSTRUCTOR)
6607 constructor_elt *ce;
6608 unsigned HOST_WIDE_INT idx;
6610 for (idx = 0;
6611 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6612 idx++)
6613 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6614 || !safe_from_p (x, ce->value, 0))
6615 return 0;
6616 return 1;
6618 else if (TREE_CODE (exp) == ERROR_MARK)
6619 return 1; /* An already-visited SAVE_EXPR? */
6620 else
6621 return 0;
6623 case tcc_statement:
6624 /* The only case we look at here is the DECL_INITIAL inside a
6625 DECL_EXPR. */
6626 return (TREE_CODE (exp) != DECL_EXPR
6627 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6628 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6629 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6631 case tcc_binary:
6632 case tcc_comparison:
6633 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6634 return 0;
6635 /* Fall through. */
6637 case tcc_unary:
6638 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6640 case tcc_expression:
6641 case tcc_reference:
6642 case tcc_vl_exp:
6643 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6644 the expression. If it is set, we conflict iff we are that rtx or
6645 both are in memory. Otherwise, we check all operands of the
6646 expression recursively. */
6648 switch (TREE_CODE (exp))
6650 case ADDR_EXPR:
6651 /* If the operand is static or we are static, we can't conflict.
6652 Likewise if we don't conflict with the operand at all. */
6653 if (staticp (TREE_OPERAND (exp, 0))
6654 || TREE_STATIC (exp)
6655 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6656 return 1;
6658 /* Otherwise, the only way this can conflict is if we are taking
6659 the address of a DECL a that address if part of X, which is
6660 very rare. */
6661 exp = TREE_OPERAND (exp, 0);
6662 if (DECL_P (exp))
6664 if (!DECL_RTL_SET_P (exp)
6665 || !MEM_P (DECL_RTL (exp)))
6666 return 0;
6667 else
6668 exp_rtl = XEXP (DECL_RTL (exp), 0);
6670 break;
6672 case MISALIGNED_INDIRECT_REF:
6673 case ALIGN_INDIRECT_REF:
6674 case INDIRECT_REF:
6675 if (MEM_P (x)
6676 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6677 get_alias_set (exp)))
6678 return 0;
6679 break;
6681 case CALL_EXPR:
6682 /* Assume that the call will clobber all hard registers and
6683 all of memory. */
6684 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6685 || MEM_P (x))
6686 return 0;
6687 break;
6689 case WITH_CLEANUP_EXPR:
6690 case CLEANUP_POINT_EXPR:
6691 /* Lowered by gimplify.c. */
6692 gcc_unreachable ();
6694 case SAVE_EXPR:
6695 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6697 default:
6698 break;
6701 /* If we have an rtx, we do not need to scan our operands. */
6702 if (exp_rtl)
6703 break;
6705 nops = TREE_OPERAND_LENGTH (exp);
6706 for (i = 0; i < nops; i++)
6707 if (TREE_OPERAND (exp, i) != 0
6708 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6709 return 0;
6711 break;
6713 case tcc_type:
6714 /* Should never get a type here. */
6715 gcc_unreachable ();
6718 /* If we have an rtl, find any enclosed object. Then see if we conflict
6719 with it. */
6720 if (exp_rtl)
6722 if (GET_CODE (exp_rtl) == SUBREG)
6724 exp_rtl = SUBREG_REG (exp_rtl);
6725 if (REG_P (exp_rtl)
6726 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6727 return 0;
6730 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6731 are memory and they conflict. */
6732 return ! (rtx_equal_p (x, exp_rtl)
6733 || (MEM_P (x) && MEM_P (exp_rtl)
6734 && true_dependence (exp_rtl, VOIDmode, x,
6735 rtx_addr_varies_p)));
6738 /* If we reach here, it is safe. */
6739 return 1;
6743 /* Return the highest power of two that EXP is known to be a multiple of.
6744 This is used in updating alignment of MEMs in array references. */
6746 unsigned HOST_WIDE_INT
6747 highest_pow2_factor (const_tree exp)
6749 unsigned HOST_WIDE_INT c0, c1;
6751 switch (TREE_CODE (exp))
6753 case INTEGER_CST:
6754 /* We can find the lowest bit that's a one. If the low
6755 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6756 We need to handle this case since we can find it in a COND_EXPR,
6757 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6758 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6759 later ICE. */
6760 if (TREE_OVERFLOW (exp))
6761 return BIGGEST_ALIGNMENT;
6762 else
6764 /* Note: tree_low_cst is intentionally not used here,
6765 we don't care about the upper bits. */
6766 c0 = TREE_INT_CST_LOW (exp);
6767 c0 &= -c0;
6768 return c0 ? c0 : BIGGEST_ALIGNMENT;
6770 break;
6772 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6773 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6774 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6775 return MIN (c0, c1);
6777 case MULT_EXPR:
6778 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6779 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6780 return c0 * c1;
6782 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6783 case CEIL_DIV_EXPR:
6784 if (integer_pow2p (TREE_OPERAND (exp, 1))
6785 && host_integerp (TREE_OPERAND (exp, 1), 1))
6787 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6788 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6789 return MAX (1, c0 / c1);
6791 break;
6793 case BIT_AND_EXPR:
6794 /* The highest power of two of a bit-and expression is the maximum of
6795 that of its operands. We typically get here for a complex LHS and
6796 a constant negative power of two on the RHS to force an explicit
6797 alignment, so don't bother looking at the LHS. */
6798 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6800 CASE_CONVERT:
6801 case SAVE_EXPR:
6802 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6804 case COMPOUND_EXPR:
6805 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6807 case COND_EXPR:
6808 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6809 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6810 return MIN (c0, c1);
6812 default:
6813 break;
6816 return 1;
6819 /* Similar, except that the alignment requirements of TARGET are
6820 taken into account. Assume it is at least as aligned as its
6821 type, unless it is a COMPONENT_REF in which case the layout of
6822 the structure gives the alignment. */
6824 static unsigned HOST_WIDE_INT
6825 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6827 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6828 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6830 return MAX (factor, talign);
6833 /* Return &VAR expression for emulated thread local VAR. */
6835 static tree
6836 emutls_var_address (tree var)
6838 tree emuvar = emutls_decl (var);
6839 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6840 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6841 tree arglist = build_tree_list (NULL_TREE, arg);
6842 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6843 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6847 /* Subroutine of expand_expr. Expand the two operands of a binary
6848 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6849 The value may be stored in TARGET if TARGET is nonzero. The
6850 MODIFIER argument is as documented by expand_expr. */
6852 static void
6853 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6854 enum expand_modifier modifier)
6856 if (! safe_from_p (target, exp1, 1))
6857 target = 0;
6858 if (operand_equal_p (exp0, exp1, 0))
6860 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6861 *op1 = copy_rtx (*op0);
6863 else
6865 /* If we need to preserve evaluation order, copy exp0 into its own
6866 temporary variable so that it can't be clobbered by exp1. */
6867 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6868 exp0 = save_expr (exp0);
6869 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6870 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6875 /* Return a MEM that contains constant EXP. DEFER is as for
6876 output_constant_def and MODIFIER is as for expand_expr. */
6878 static rtx
6879 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6881 rtx mem;
6883 mem = output_constant_def (exp, defer);
6884 if (modifier != EXPAND_INITIALIZER)
6885 mem = use_anchored_address (mem);
6886 return mem;
6889 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6890 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6892 static rtx
6893 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6894 enum expand_modifier modifier, addr_space_t as)
6896 rtx result, subtarget;
6897 tree inner, offset;
6898 HOST_WIDE_INT bitsize, bitpos;
6899 int volatilep, unsignedp;
6900 enum machine_mode mode1;
6902 /* If we are taking the address of a constant and are at the top level,
6903 we have to use output_constant_def since we can't call force_const_mem
6904 at top level. */
6905 /* ??? This should be considered a front-end bug. We should not be
6906 generating ADDR_EXPR of something that isn't an LVALUE. The only
6907 exception here is STRING_CST. */
6908 if (CONSTANT_CLASS_P (exp))
6909 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6911 /* Everything must be something allowed by is_gimple_addressable. */
6912 switch (TREE_CODE (exp))
6914 case INDIRECT_REF:
6915 /* This case will happen via recursion for &a->b. */
6916 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6918 case MEM_REF:
6920 tree tem = TREE_OPERAND (exp, 0);
6921 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6922 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6923 tem,
6924 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6925 return expand_expr (tem, target, tmode, modifier);
6928 case CONST_DECL:
6929 /* Expand the initializer like constants above. */
6930 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6932 case REALPART_EXPR:
6933 /* The real part of the complex number is always first, therefore
6934 the address is the same as the address of the parent object. */
6935 offset = 0;
6936 bitpos = 0;
6937 inner = TREE_OPERAND (exp, 0);
6938 break;
6940 case IMAGPART_EXPR:
6941 /* The imaginary part of the complex number is always second.
6942 The expression is therefore always offset by the size of the
6943 scalar type. */
6944 offset = 0;
6945 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6946 inner = TREE_OPERAND (exp, 0);
6947 break;
6949 case VAR_DECL:
6950 /* TLS emulation hook - replace __thread VAR's &VAR with
6951 __emutls_get_address (&_emutls.VAR). */
6952 if (! targetm.have_tls
6953 && TREE_CODE (exp) == VAR_DECL
6954 && DECL_THREAD_LOCAL_P (exp))
6956 exp = emutls_var_address (exp);
6957 return expand_expr (exp, target, tmode, modifier);
6959 /* Fall through. */
6961 default:
6962 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6963 expand_expr, as that can have various side effects; LABEL_DECLs for
6964 example, may not have their DECL_RTL set yet. Expand the rtl of
6965 CONSTRUCTORs too, which should yield a memory reference for the
6966 constructor's contents. Assume language specific tree nodes can
6967 be expanded in some interesting way. */
6968 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6969 if (DECL_P (exp)
6970 || TREE_CODE (exp) == CONSTRUCTOR
6971 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6973 result = expand_expr (exp, target, tmode,
6974 modifier == EXPAND_INITIALIZER
6975 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6977 /* If the DECL isn't in memory, then the DECL wasn't properly
6978 marked TREE_ADDRESSABLE, which will be either a front-end
6979 or a tree optimizer bug. */
6980 gcc_assert (MEM_P (result));
6981 result = XEXP (result, 0);
6983 /* ??? Is this needed anymore? */
6984 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6986 assemble_external (exp);
6987 TREE_USED (exp) = 1;
6990 if (modifier != EXPAND_INITIALIZER
6991 && modifier != EXPAND_CONST_ADDRESS)
6992 result = force_operand (result, target);
6993 return result;
6996 /* Pass FALSE as the last argument to get_inner_reference although
6997 we are expanding to RTL. The rationale is that we know how to
6998 handle "aligning nodes" here: we can just bypass them because
6999 they won't change the final object whose address will be returned
7000 (they actually exist only for that purpose). */
7001 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7002 &mode1, &unsignedp, &volatilep, false);
7003 break;
7006 /* We must have made progress. */
7007 gcc_assert (inner != exp);
7009 subtarget = offset || bitpos ? NULL_RTX : target;
7010 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7011 inner alignment, force the inner to be sufficiently aligned. */
7012 if (CONSTANT_CLASS_P (inner)
7013 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7015 inner = copy_node (inner);
7016 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7017 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7018 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7020 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7022 if (offset)
7024 rtx tmp;
7026 if (modifier != EXPAND_NORMAL)
7027 result = force_operand (result, NULL);
7028 tmp = expand_expr (offset, NULL_RTX, tmode,
7029 modifier == EXPAND_INITIALIZER
7030 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7032 result = convert_memory_address_addr_space (tmode, result, as);
7033 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7035 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7036 result = gen_rtx_PLUS (tmode, result, tmp);
7037 else
7039 subtarget = bitpos ? NULL_RTX : target;
7040 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7041 1, OPTAB_LIB_WIDEN);
7045 if (bitpos)
7047 /* Someone beforehand should have rejected taking the address
7048 of such an object. */
7049 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7051 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7052 if (modifier < EXPAND_SUM)
7053 result = force_operand (result, target);
7056 return result;
7059 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7060 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7062 static rtx
7063 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7064 enum expand_modifier modifier)
7066 addr_space_t as = ADDR_SPACE_GENERIC;
7067 enum machine_mode address_mode = Pmode;
7068 enum machine_mode pointer_mode = ptr_mode;
7069 enum machine_mode rmode;
7070 rtx result;
7072 /* Target mode of VOIDmode says "whatever's natural". */
7073 if (tmode == VOIDmode)
7074 tmode = TYPE_MODE (TREE_TYPE (exp));
7076 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7078 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7079 address_mode = targetm.addr_space.address_mode (as);
7080 pointer_mode = targetm.addr_space.pointer_mode (as);
7083 /* We can get called with some Weird Things if the user does silliness
7084 like "(short) &a". In that case, convert_memory_address won't do
7085 the right thing, so ignore the given target mode. */
7086 if (tmode != address_mode && tmode != pointer_mode)
7087 tmode = address_mode;
7089 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7090 tmode, modifier, as);
7092 /* Despite expand_expr claims concerning ignoring TMODE when not
7093 strictly convenient, stuff breaks if we don't honor it. Note
7094 that combined with the above, we only do this for pointer modes. */
7095 rmode = GET_MODE (result);
7096 if (rmode == VOIDmode)
7097 rmode = tmode;
7098 if (rmode != tmode)
7099 result = convert_memory_address_addr_space (tmode, result, as);
7101 return result;
7104 /* Generate code for computing CONSTRUCTOR EXP.
7105 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7106 is TRUE, instead of creating a temporary variable in memory
7107 NULL is returned and the caller needs to handle it differently. */
7109 static rtx
7110 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7111 bool avoid_temp_mem)
7113 tree type = TREE_TYPE (exp);
7114 enum machine_mode mode = TYPE_MODE (type);
7116 /* Try to avoid creating a temporary at all. This is possible
7117 if all of the initializer is zero.
7118 FIXME: try to handle all [0..255] initializers we can handle
7119 with memset. */
7120 if (TREE_STATIC (exp)
7121 && !TREE_ADDRESSABLE (exp)
7122 && target != 0 && mode == BLKmode
7123 && all_zeros_p (exp))
7125 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7126 return target;
7129 /* All elts simple constants => refer to a constant in memory. But
7130 if this is a non-BLKmode mode, let it store a field at a time
7131 since that should make a CONST_INT or CONST_DOUBLE when we
7132 fold. Likewise, if we have a target we can use, it is best to
7133 store directly into the target unless the type is large enough
7134 that memcpy will be used. If we are making an initializer and
7135 all operands are constant, put it in memory as well.
7137 FIXME: Avoid trying to fill vector constructors piece-meal.
7138 Output them with output_constant_def below unless we're sure
7139 they're zeros. This should go away when vector initializers
7140 are treated like VECTOR_CST instead of arrays. */
7141 if ((TREE_STATIC (exp)
7142 && ((mode == BLKmode
7143 && ! (target != 0 && safe_from_p (target, exp, 1)))
7144 || TREE_ADDRESSABLE (exp)
7145 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7146 && (! MOVE_BY_PIECES_P
7147 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7148 TYPE_ALIGN (type)))
7149 && ! mostly_zeros_p (exp))))
7150 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7151 && TREE_CONSTANT (exp)))
7153 rtx constructor;
7155 if (avoid_temp_mem)
7156 return NULL_RTX;
7158 constructor = expand_expr_constant (exp, 1, modifier);
7160 if (modifier != EXPAND_CONST_ADDRESS
7161 && modifier != EXPAND_INITIALIZER
7162 && modifier != EXPAND_SUM)
7163 constructor = validize_mem (constructor);
7165 return constructor;
7168 /* Handle calls that pass values in multiple non-contiguous
7169 locations. The Irix 6 ABI has examples of this. */
7170 if (target == 0 || ! safe_from_p (target, exp, 1)
7171 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7173 if (avoid_temp_mem)
7174 return NULL_RTX;
7176 target
7177 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7178 | (TREE_READONLY (exp)
7179 * TYPE_QUAL_CONST))),
7180 0, TREE_ADDRESSABLE (exp), 1);
7183 store_constructor (exp, target, 0, int_expr_size (exp));
7184 return target;
7188 /* expand_expr: generate code for computing expression EXP.
7189 An rtx for the computed value is returned. The value is never null.
7190 In the case of a void EXP, const0_rtx is returned.
7192 The value may be stored in TARGET if TARGET is nonzero.
7193 TARGET is just a suggestion; callers must assume that
7194 the rtx returned may not be the same as TARGET.
7196 If TARGET is CONST0_RTX, it means that the value will be ignored.
7198 If TMODE is not VOIDmode, it suggests generating the
7199 result in mode TMODE. But this is done only when convenient.
7200 Otherwise, TMODE is ignored and the value generated in its natural mode.
7201 TMODE is just a suggestion; callers must assume that
7202 the rtx returned may not have mode TMODE.
7204 Note that TARGET may have neither TMODE nor MODE. In that case, it
7205 probably will not be used.
7207 If MODIFIER is EXPAND_SUM then when EXP is an addition
7208 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7209 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7210 products as above, or REG or MEM, or constant.
7211 Ordinarily in such cases we would output mul or add instructions
7212 and then return a pseudo reg containing the sum.
7214 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7215 it also marks a label as absolutely required (it can't be dead).
7216 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7217 This is used for outputting expressions used in initializers.
7219 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7220 with a constant address even if that address is not normally legitimate.
7221 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7223 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7224 a call parameter. Such targets require special care as we haven't yet
7225 marked TARGET so that it's safe from being trashed by libcalls. We
7226 don't want to use TARGET for anything but the final result;
7227 Intermediate values must go elsewhere. Additionally, calls to
7228 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7230 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7231 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7232 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7233 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7234 recursively. */
7237 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7238 enum expand_modifier modifier, rtx *alt_rtl)
7240 rtx ret;
7242 /* Handle ERROR_MARK before anybody tries to access its type. */
7243 if (TREE_CODE (exp) == ERROR_MARK
7244 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7246 ret = CONST0_RTX (tmode);
7247 return ret ? ret : const0_rtx;
7250 /* If this is an expression of some kind and it has an associated line
7251 number, then emit the line number before expanding the expression.
7253 We need to save and restore the file and line information so that
7254 errors discovered during expansion are emitted with the right
7255 information. It would be better of the diagnostic routines
7256 used the file/line information embedded in the tree nodes rather
7257 than globals. */
7258 if (cfun && EXPR_HAS_LOCATION (exp))
7260 location_t saved_location = input_location;
7261 location_t saved_curr_loc = get_curr_insn_source_location ();
7262 tree saved_block = get_curr_insn_block ();
7263 input_location = EXPR_LOCATION (exp);
7264 set_curr_insn_source_location (input_location);
7266 /* Record where the insns produced belong. */
7267 set_curr_insn_block (TREE_BLOCK (exp));
7269 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7271 input_location = saved_location;
7272 set_curr_insn_block (saved_block);
7273 set_curr_insn_source_location (saved_curr_loc);
7275 else
7277 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7280 return ret;
7284 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7285 enum expand_modifier modifier)
7287 rtx op0, op1, op2, temp;
7288 tree type;
7289 int unsignedp;
7290 enum machine_mode mode;
7291 enum tree_code code = ops->code;
7292 optab this_optab;
7293 rtx subtarget, original_target;
7294 int ignore;
7295 bool reduce_bit_field;
7296 location_t loc = ops->location;
7297 tree treeop0, treeop1;
7298 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7299 ? reduce_to_bit_field_precision ((expr), \
7300 target, \
7301 type) \
7302 : (expr))
7304 type = ops->type;
7305 mode = TYPE_MODE (type);
7306 unsignedp = TYPE_UNSIGNED (type);
7308 treeop0 = ops->op0;
7309 treeop1 = ops->op1;
7311 /* We should be called only on simple (binary or unary) expressions,
7312 exactly those that are valid in gimple expressions that aren't
7313 GIMPLE_SINGLE_RHS (or invalid). */
7314 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7315 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7316 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7318 ignore = (target == const0_rtx
7319 || ((CONVERT_EXPR_CODE_P (code)
7320 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7321 && TREE_CODE (type) == VOID_TYPE));
7323 /* We should be called only if we need the result. */
7324 gcc_assert (!ignore);
7326 /* An operation in what may be a bit-field type needs the
7327 result to be reduced to the precision of the bit-field type,
7328 which is narrower than that of the type's mode. */
7329 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7330 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7332 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7333 target = 0;
7335 /* Use subtarget as the target for operand 0 of a binary operation. */
7336 subtarget = get_subtarget (target);
7337 original_target = target;
7339 switch (code)
7341 case NON_LVALUE_EXPR:
7342 case PAREN_EXPR:
7343 CASE_CONVERT:
7344 if (treeop0 == error_mark_node)
7345 return const0_rtx;
7347 if (TREE_CODE (type) == UNION_TYPE)
7349 tree valtype = TREE_TYPE (treeop0);
7351 /* If both input and output are BLKmode, this conversion isn't doing
7352 anything except possibly changing memory attribute. */
7353 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7355 rtx result = expand_expr (treeop0, target, tmode,
7356 modifier);
7358 result = copy_rtx (result);
7359 set_mem_attributes (result, type, 0);
7360 return result;
7363 if (target == 0)
7365 if (TYPE_MODE (type) != BLKmode)
7366 target = gen_reg_rtx (TYPE_MODE (type));
7367 else
7368 target = assign_temp (type, 0, 1, 1);
7371 if (MEM_P (target))
7372 /* Store data into beginning of memory target. */
7373 store_expr (treeop0,
7374 adjust_address (target, TYPE_MODE (valtype), 0),
7375 modifier == EXPAND_STACK_PARM,
7376 false);
7378 else
7380 gcc_assert (REG_P (target));
7382 /* Store this field into a union of the proper type. */
7383 store_field (target,
7384 MIN ((int_size_in_bytes (TREE_TYPE
7385 (treeop0))
7386 * BITS_PER_UNIT),
7387 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7388 0, TYPE_MODE (valtype), treeop0,
7389 type, 0, false);
7392 /* Return the entire union. */
7393 return target;
7396 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7398 op0 = expand_expr (treeop0, target, VOIDmode,
7399 modifier);
7401 /* If the signedness of the conversion differs and OP0 is
7402 a promoted SUBREG, clear that indication since we now
7403 have to do the proper extension. */
7404 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7405 && GET_CODE (op0) == SUBREG)
7406 SUBREG_PROMOTED_VAR_P (op0) = 0;
7408 return REDUCE_BIT_FIELD (op0);
7411 op0 = expand_expr (treeop0, NULL_RTX, mode,
7412 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7413 if (GET_MODE (op0) == mode)
7416 /* If OP0 is a constant, just convert it into the proper mode. */
7417 else if (CONSTANT_P (op0))
7419 tree inner_type = TREE_TYPE (treeop0);
7420 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7422 if (modifier == EXPAND_INITIALIZER)
7423 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7424 subreg_lowpart_offset (mode,
7425 inner_mode));
7426 else
7427 op0= convert_modes (mode, inner_mode, op0,
7428 TYPE_UNSIGNED (inner_type));
7431 else if (modifier == EXPAND_INITIALIZER)
7432 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7434 else if (target == 0)
7435 op0 = convert_to_mode (mode, op0,
7436 TYPE_UNSIGNED (TREE_TYPE
7437 (treeop0)));
7438 else
7440 convert_move (target, op0,
7441 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7442 op0 = target;
7445 return REDUCE_BIT_FIELD (op0);
7447 case ADDR_SPACE_CONVERT_EXPR:
7449 tree treeop0_type = TREE_TYPE (treeop0);
7450 addr_space_t as_to;
7451 addr_space_t as_from;
7453 gcc_assert (POINTER_TYPE_P (type));
7454 gcc_assert (POINTER_TYPE_P (treeop0_type));
7456 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7457 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7459 /* Conversions between pointers to the same address space should
7460 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7461 gcc_assert (as_to != as_from);
7463 /* Ask target code to handle conversion between pointers
7464 to overlapping address spaces. */
7465 if (targetm.addr_space.subset_p (as_to, as_from)
7466 || targetm.addr_space.subset_p (as_from, as_to))
7468 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7469 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7470 gcc_assert (op0);
7471 return op0;
7474 /* For disjoint address spaces, converting anything but
7475 a null pointer invokes undefined behaviour. We simply
7476 always return a null pointer here. */
7477 return CONST0_RTX (mode);
7480 case POINTER_PLUS_EXPR:
7481 /* Even though the sizetype mode and the pointer's mode can be different
7482 expand is able to handle this correctly and get the correct result out
7483 of the PLUS_EXPR code. */
7484 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7485 if sizetype precision is smaller than pointer precision. */
7486 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7487 treeop1 = fold_convert_loc (loc, type,
7488 fold_convert_loc (loc, ssizetype,
7489 treeop1));
7490 case PLUS_EXPR:
7491 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7492 something else, make sure we add the register to the constant and
7493 then to the other thing. This case can occur during strength
7494 reduction and doing it this way will produce better code if the
7495 frame pointer or argument pointer is eliminated.
7497 fold-const.c will ensure that the constant is always in the inner
7498 PLUS_EXPR, so the only case we need to do anything about is if
7499 sp, ap, or fp is our second argument, in which case we must swap
7500 the innermost first argument and our second argument. */
7502 if (TREE_CODE (treeop0) == PLUS_EXPR
7503 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7504 && TREE_CODE (treeop1) == VAR_DECL
7505 && (DECL_RTL (treeop1) == frame_pointer_rtx
7506 || DECL_RTL (treeop1) == stack_pointer_rtx
7507 || DECL_RTL (treeop1) == arg_pointer_rtx))
7509 tree t = treeop1;
7511 treeop1 = TREE_OPERAND (treeop0, 0);
7512 TREE_OPERAND (treeop0, 0) = t;
7515 /* If the result is to be ptr_mode and we are adding an integer to
7516 something, we might be forming a constant. So try to use
7517 plus_constant. If it produces a sum and we can't accept it,
7518 use force_operand. This allows P = &ARR[const] to generate
7519 efficient code on machines where a SYMBOL_REF is not a valid
7520 address.
7522 If this is an EXPAND_SUM call, always return the sum. */
7523 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7524 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7526 if (modifier == EXPAND_STACK_PARM)
7527 target = 0;
7528 if (TREE_CODE (treeop0) == INTEGER_CST
7529 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7530 && TREE_CONSTANT (treeop1))
7532 rtx constant_part;
7534 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7535 EXPAND_SUM);
7536 /* Use immed_double_const to ensure that the constant is
7537 truncated according to the mode of OP1, then sign extended
7538 to a HOST_WIDE_INT. Using the constant directly can result
7539 in non-canonical RTL in a 64x32 cross compile. */
7540 constant_part
7541 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7542 (HOST_WIDE_INT) 0,
7543 TYPE_MODE (TREE_TYPE (treeop1)));
7544 op1 = plus_constant (op1, INTVAL (constant_part));
7545 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7546 op1 = force_operand (op1, target);
7547 return REDUCE_BIT_FIELD (op1);
7550 else if (TREE_CODE (treeop1) == INTEGER_CST
7551 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7552 && TREE_CONSTANT (treeop0))
7554 rtx constant_part;
7556 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7557 (modifier == EXPAND_INITIALIZER
7558 ? EXPAND_INITIALIZER : EXPAND_SUM));
7559 if (! CONSTANT_P (op0))
7561 op1 = expand_expr (treeop1, NULL_RTX,
7562 VOIDmode, modifier);
7563 /* Return a PLUS if modifier says it's OK. */
7564 if (modifier == EXPAND_SUM
7565 || modifier == EXPAND_INITIALIZER)
7566 return simplify_gen_binary (PLUS, mode, op0, op1);
7567 goto binop2;
7569 /* Use immed_double_const to ensure that the constant is
7570 truncated according to the mode of OP1, then sign extended
7571 to a HOST_WIDE_INT. Using the constant directly can result
7572 in non-canonical RTL in a 64x32 cross compile. */
7573 constant_part
7574 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7575 (HOST_WIDE_INT) 0,
7576 TYPE_MODE (TREE_TYPE (treeop0)));
7577 op0 = plus_constant (op0, INTVAL (constant_part));
7578 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7579 op0 = force_operand (op0, target);
7580 return REDUCE_BIT_FIELD (op0);
7584 /* No sense saving up arithmetic to be done
7585 if it's all in the wrong mode to form part of an address.
7586 And force_operand won't know whether to sign-extend or
7587 zero-extend. */
7588 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7589 || mode != ptr_mode)
7591 expand_operands (treeop0, treeop1,
7592 subtarget, &op0, &op1, EXPAND_NORMAL);
7593 if (op0 == const0_rtx)
7594 return op1;
7595 if (op1 == const0_rtx)
7596 return op0;
7597 goto binop2;
7600 expand_operands (treeop0, treeop1,
7601 subtarget, &op0, &op1, modifier);
7602 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7604 case MINUS_EXPR:
7605 /* For initializers, we are allowed to return a MINUS of two
7606 symbolic constants. Here we handle all cases when both operands
7607 are constant. */
7608 /* Handle difference of two symbolic constants,
7609 for the sake of an initializer. */
7610 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7611 && really_constant_p (treeop0)
7612 && really_constant_p (treeop1))
7614 expand_operands (treeop0, treeop1,
7615 NULL_RTX, &op0, &op1, modifier);
7617 /* If the last operand is a CONST_INT, use plus_constant of
7618 the negated constant. Else make the MINUS. */
7619 if (CONST_INT_P (op1))
7620 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7621 else
7622 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7625 /* No sense saving up arithmetic to be done
7626 if it's all in the wrong mode to form part of an address.
7627 And force_operand won't know whether to sign-extend or
7628 zero-extend. */
7629 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7630 || mode != ptr_mode)
7631 goto binop;
7633 expand_operands (treeop0, treeop1,
7634 subtarget, &op0, &op1, modifier);
7636 /* Convert A - const to A + (-const). */
7637 if (CONST_INT_P (op1))
7639 op1 = negate_rtx (mode, op1);
7640 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7643 goto binop2;
7645 case WIDEN_MULT_PLUS_EXPR:
7646 case WIDEN_MULT_MINUS_EXPR:
7647 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7648 op2 = expand_normal (ops->op2);
7649 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7650 target, unsignedp);
7651 return target;
7653 case WIDEN_MULT_EXPR:
7654 /* If first operand is constant, swap them.
7655 Thus the following special case checks need only
7656 check the second operand. */
7657 if (TREE_CODE (treeop0) == INTEGER_CST)
7659 tree t1 = treeop0;
7660 treeop0 = treeop1;
7661 treeop1 = t1;
7664 /* First, check if we have a multiplication of one signed and one
7665 unsigned operand. */
7666 if (TREE_CODE (treeop1) != INTEGER_CST
7667 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7668 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7670 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7671 this_optab = usmul_widen_optab;
7672 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7674 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7676 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7677 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7678 EXPAND_NORMAL);
7679 else
7680 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7681 EXPAND_NORMAL);
7682 goto binop3;
7686 /* Check for a multiplication with matching signedness. */
7687 else if ((TREE_CODE (treeop1) == INTEGER_CST
7688 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7689 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7690 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7692 tree op0type = TREE_TYPE (treeop0);
7693 enum machine_mode innermode = TYPE_MODE (op0type);
7694 bool zextend_p = TYPE_UNSIGNED (op0type);
7695 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7696 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7698 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7700 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7702 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7703 EXPAND_NORMAL);
7704 temp = expand_widening_mult (mode, op0, op1, target,
7705 unsignedp, this_optab);
7706 return REDUCE_BIT_FIELD (temp);
7708 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7709 && innermode == word_mode)
7711 rtx htem, hipart;
7712 op0 = expand_normal (treeop0);
7713 if (TREE_CODE (treeop1) == INTEGER_CST)
7714 op1 = convert_modes (innermode, mode,
7715 expand_normal (treeop1), unsignedp);
7716 else
7717 op1 = expand_normal (treeop1);
7718 temp = expand_binop (mode, other_optab, op0, op1, target,
7719 unsignedp, OPTAB_LIB_WIDEN);
7720 hipart = gen_highpart (innermode, temp);
7721 htem = expand_mult_highpart_adjust (innermode, hipart,
7722 op0, op1, hipart,
7723 zextend_p);
7724 if (htem != hipart)
7725 emit_move_insn (hipart, htem);
7726 return REDUCE_BIT_FIELD (temp);
7730 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7731 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7732 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7733 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7735 case MULT_EXPR:
7736 /* If this is a fixed-point operation, then we cannot use the code
7737 below because "expand_mult" doesn't support sat/no-sat fixed-point
7738 multiplications. */
7739 if (ALL_FIXED_POINT_MODE_P (mode))
7740 goto binop;
7742 /* If first operand is constant, swap them.
7743 Thus the following special case checks need only
7744 check the second operand. */
7745 if (TREE_CODE (treeop0) == INTEGER_CST)
7747 tree t1 = treeop0;
7748 treeop0 = treeop1;
7749 treeop1 = t1;
7752 /* Attempt to return something suitable for generating an
7753 indexed address, for machines that support that. */
7755 if (modifier == EXPAND_SUM && mode == ptr_mode
7756 && host_integerp (treeop1, 0))
7758 tree exp1 = treeop1;
7760 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7761 EXPAND_SUM);
7763 if (!REG_P (op0))
7764 op0 = force_operand (op0, NULL_RTX);
7765 if (!REG_P (op0))
7766 op0 = copy_to_mode_reg (mode, op0);
7768 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7769 gen_int_mode (tree_low_cst (exp1, 0),
7770 TYPE_MODE (TREE_TYPE (exp1)))));
7773 if (modifier == EXPAND_STACK_PARM)
7774 target = 0;
7776 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7777 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7779 case TRUNC_DIV_EXPR:
7780 case FLOOR_DIV_EXPR:
7781 case CEIL_DIV_EXPR:
7782 case ROUND_DIV_EXPR:
7783 case EXACT_DIV_EXPR:
7784 /* If this is a fixed-point operation, then we cannot use the code
7785 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7786 divisions. */
7787 if (ALL_FIXED_POINT_MODE_P (mode))
7788 goto binop;
7790 if (modifier == EXPAND_STACK_PARM)
7791 target = 0;
7792 /* Possible optimization: compute the dividend with EXPAND_SUM
7793 then if the divisor is constant can optimize the case
7794 where some terms of the dividend have coeffs divisible by it. */
7795 expand_operands (treeop0, treeop1,
7796 subtarget, &op0, &op1, EXPAND_NORMAL);
7797 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7799 case RDIV_EXPR:
7800 goto binop;
7802 case TRUNC_MOD_EXPR:
7803 case FLOOR_MOD_EXPR:
7804 case CEIL_MOD_EXPR:
7805 case ROUND_MOD_EXPR:
7806 if (modifier == EXPAND_STACK_PARM)
7807 target = 0;
7808 expand_operands (treeop0, treeop1,
7809 subtarget, &op0, &op1, EXPAND_NORMAL);
7810 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7812 case FIXED_CONVERT_EXPR:
7813 op0 = expand_normal (treeop0);
7814 if (target == 0 || modifier == EXPAND_STACK_PARM)
7815 target = gen_reg_rtx (mode);
7817 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7818 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7819 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7820 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7821 else
7822 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7823 return target;
7825 case FIX_TRUNC_EXPR:
7826 op0 = expand_normal (treeop0);
7827 if (target == 0 || modifier == EXPAND_STACK_PARM)
7828 target = gen_reg_rtx (mode);
7829 expand_fix (target, op0, unsignedp);
7830 return target;
7832 case FLOAT_EXPR:
7833 op0 = expand_normal (treeop0);
7834 if (target == 0 || modifier == EXPAND_STACK_PARM)
7835 target = gen_reg_rtx (mode);
7836 /* expand_float can't figure out what to do if FROM has VOIDmode.
7837 So give it the correct mode. With -O, cse will optimize this. */
7838 if (GET_MODE (op0) == VOIDmode)
7839 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7840 op0);
7841 expand_float (target, op0,
7842 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7843 return target;
7845 case NEGATE_EXPR:
7846 op0 = expand_expr (treeop0, subtarget,
7847 VOIDmode, EXPAND_NORMAL);
7848 if (modifier == EXPAND_STACK_PARM)
7849 target = 0;
7850 temp = expand_unop (mode,
7851 optab_for_tree_code (NEGATE_EXPR, type,
7852 optab_default),
7853 op0, target, 0);
7854 gcc_assert (temp);
7855 return REDUCE_BIT_FIELD (temp);
7857 case ABS_EXPR:
7858 op0 = expand_expr (treeop0, subtarget,
7859 VOIDmode, EXPAND_NORMAL);
7860 if (modifier == EXPAND_STACK_PARM)
7861 target = 0;
7863 /* ABS_EXPR is not valid for complex arguments. */
7864 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7865 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7867 /* Unsigned abs is simply the operand. Testing here means we don't
7868 risk generating incorrect code below. */
7869 if (TYPE_UNSIGNED (type))
7870 return op0;
7872 return expand_abs (mode, op0, target, unsignedp,
7873 safe_from_p (target, treeop0, 1));
7875 case MAX_EXPR:
7876 case MIN_EXPR:
7877 target = original_target;
7878 if (target == 0
7879 || modifier == EXPAND_STACK_PARM
7880 || (MEM_P (target) && MEM_VOLATILE_P (target))
7881 || GET_MODE (target) != mode
7882 || (REG_P (target)
7883 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7884 target = gen_reg_rtx (mode);
7885 expand_operands (treeop0, treeop1,
7886 target, &op0, &op1, EXPAND_NORMAL);
7888 /* First try to do it with a special MIN or MAX instruction.
7889 If that does not win, use a conditional jump to select the proper
7890 value. */
7891 this_optab = optab_for_tree_code (code, type, optab_default);
7892 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7893 OPTAB_WIDEN);
7894 if (temp != 0)
7895 return temp;
7897 /* At this point, a MEM target is no longer useful; we will get better
7898 code without it. */
7900 if (! REG_P (target))
7901 target = gen_reg_rtx (mode);
7903 /* If op1 was placed in target, swap op0 and op1. */
7904 if (target != op0 && target == op1)
7906 temp = op0;
7907 op0 = op1;
7908 op1 = temp;
7911 /* We generate better code and avoid problems with op1 mentioning
7912 target by forcing op1 into a pseudo if it isn't a constant. */
7913 if (! CONSTANT_P (op1))
7914 op1 = force_reg (mode, op1);
7917 enum rtx_code comparison_code;
7918 rtx cmpop1 = op1;
7920 if (code == MAX_EXPR)
7921 comparison_code = unsignedp ? GEU : GE;
7922 else
7923 comparison_code = unsignedp ? LEU : LE;
7925 /* Canonicalize to comparisons against 0. */
7926 if (op1 == const1_rtx)
7928 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7929 or (a != 0 ? a : 1) for unsigned.
7930 For MIN we are safe converting (a <= 1 ? a : 1)
7931 into (a <= 0 ? a : 1) */
7932 cmpop1 = const0_rtx;
7933 if (code == MAX_EXPR)
7934 comparison_code = unsignedp ? NE : GT;
7936 if (op1 == constm1_rtx && !unsignedp)
7938 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7939 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7940 cmpop1 = const0_rtx;
7941 if (code == MIN_EXPR)
7942 comparison_code = LT;
7944 #ifdef HAVE_conditional_move
7945 /* Use a conditional move if possible. */
7946 if (can_conditionally_move_p (mode))
7948 rtx insn;
7950 /* ??? Same problem as in expmed.c: emit_conditional_move
7951 forces a stack adjustment via compare_from_rtx, and we
7952 lose the stack adjustment if the sequence we are about
7953 to create is discarded. */
7954 do_pending_stack_adjust ();
7956 start_sequence ();
7958 /* Try to emit the conditional move. */
7959 insn = emit_conditional_move (target, comparison_code,
7960 op0, cmpop1, mode,
7961 op0, op1, mode,
7962 unsignedp);
7964 /* If we could do the conditional move, emit the sequence,
7965 and return. */
7966 if (insn)
7968 rtx seq = get_insns ();
7969 end_sequence ();
7970 emit_insn (seq);
7971 return target;
7974 /* Otherwise discard the sequence and fall back to code with
7975 branches. */
7976 end_sequence ();
7978 #endif
7979 if (target != op0)
7980 emit_move_insn (target, op0);
7982 temp = gen_label_rtx ();
7983 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7984 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7985 -1);
7987 emit_move_insn (target, op1);
7988 emit_label (temp);
7989 return target;
7991 case BIT_NOT_EXPR:
7992 op0 = expand_expr (treeop0, subtarget,
7993 VOIDmode, EXPAND_NORMAL);
7994 if (modifier == EXPAND_STACK_PARM)
7995 target = 0;
7996 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7997 gcc_assert (temp);
7998 return temp;
8000 /* ??? Can optimize bitwise operations with one arg constant.
8001 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8002 and (a bitwise1 b) bitwise2 b (etc)
8003 but that is probably not worth while. */
8005 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8006 boolean values when we want in all cases to compute both of them. In
8007 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8008 as actual zero-or-1 values and then bitwise anding. In cases where
8009 there cannot be any side effects, better code would be made by
8010 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8011 how to recognize those cases. */
8013 case TRUTH_AND_EXPR:
8014 code = BIT_AND_EXPR;
8015 case BIT_AND_EXPR:
8016 goto binop;
8018 case TRUTH_OR_EXPR:
8019 code = BIT_IOR_EXPR;
8020 case BIT_IOR_EXPR:
8021 goto binop;
8023 case TRUTH_XOR_EXPR:
8024 code = BIT_XOR_EXPR;
8025 case BIT_XOR_EXPR:
8026 goto binop;
8028 case LROTATE_EXPR:
8029 case RROTATE_EXPR:
8030 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8031 || (GET_MODE_PRECISION (TYPE_MODE (type))
8032 == TYPE_PRECISION (type)));
8033 /* fall through */
8035 case LSHIFT_EXPR:
8036 case RSHIFT_EXPR:
8037 /* If this is a fixed-point operation, then we cannot use the code
8038 below because "expand_shift" doesn't support sat/no-sat fixed-point
8039 shifts. */
8040 if (ALL_FIXED_POINT_MODE_P (mode))
8041 goto binop;
8043 if (! safe_from_p (subtarget, treeop1, 1))
8044 subtarget = 0;
8045 if (modifier == EXPAND_STACK_PARM)
8046 target = 0;
8047 op0 = expand_expr (treeop0, subtarget,
8048 VOIDmode, EXPAND_NORMAL);
8049 temp = expand_shift (code, mode, op0, treeop1, target,
8050 unsignedp);
8051 if (code == LSHIFT_EXPR)
8052 temp = REDUCE_BIT_FIELD (temp);
8053 return temp;
8055 /* Could determine the answer when only additive constants differ. Also,
8056 the addition of one can be handled by changing the condition. */
8057 case LT_EXPR:
8058 case LE_EXPR:
8059 case GT_EXPR:
8060 case GE_EXPR:
8061 case EQ_EXPR:
8062 case NE_EXPR:
8063 case UNORDERED_EXPR:
8064 case ORDERED_EXPR:
8065 case UNLT_EXPR:
8066 case UNLE_EXPR:
8067 case UNGT_EXPR:
8068 case UNGE_EXPR:
8069 case UNEQ_EXPR:
8070 case LTGT_EXPR:
8071 temp = do_store_flag (ops,
8072 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8073 tmode != VOIDmode ? tmode : mode);
8074 if (temp)
8075 return temp;
8077 /* Use a compare and a jump for BLKmode comparisons, or for function
8078 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8080 if ((target == 0
8081 || modifier == EXPAND_STACK_PARM
8082 || ! safe_from_p (target, treeop0, 1)
8083 || ! safe_from_p (target, treeop1, 1)
8084 /* Make sure we don't have a hard reg (such as function's return
8085 value) live across basic blocks, if not optimizing. */
8086 || (!optimize && REG_P (target)
8087 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8088 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8090 emit_move_insn (target, const0_rtx);
8092 op1 = gen_label_rtx ();
8093 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8095 emit_move_insn (target, const1_rtx);
8097 emit_label (op1);
8098 return target;
8100 case TRUTH_NOT_EXPR:
8101 if (modifier == EXPAND_STACK_PARM)
8102 target = 0;
8103 op0 = expand_expr (treeop0, target,
8104 VOIDmode, EXPAND_NORMAL);
8105 /* The parser is careful to generate TRUTH_NOT_EXPR
8106 only with operands that are always zero or one. */
8107 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8108 target, 1, OPTAB_LIB_WIDEN);
8109 gcc_assert (temp);
8110 return temp;
8112 case COMPLEX_EXPR:
8113 /* Get the rtx code of the operands. */
8114 op0 = expand_normal (treeop0);
8115 op1 = expand_normal (treeop1);
8117 if (!target)
8118 target = gen_reg_rtx (TYPE_MODE (type));
8120 /* Move the real (op0) and imaginary (op1) parts to their location. */
8121 write_complex_part (target, op0, false);
8122 write_complex_part (target, op1, true);
8124 return target;
8126 case WIDEN_SUM_EXPR:
8128 tree oprnd0 = treeop0;
8129 tree oprnd1 = treeop1;
8131 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8132 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8133 target, unsignedp);
8134 return target;
8137 case REDUC_MAX_EXPR:
8138 case REDUC_MIN_EXPR:
8139 case REDUC_PLUS_EXPR:
8141 op0 = expand_normal (treeop0);
8142 this_optab = optab_for_tree_code (code, type, optab_default);
8143 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8144 gcc_assert (temp);
8145 return temp;
8148 case VEC_EXTRACT_EVEN_EXPR:
8149 case VEC_EXTRACT_ODD_EXPR:
8151 expand_operands (treeop0, treeop1,
8152 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8153 this_optab = optab_for_tree_code (code, type, optab_default);
8154 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8155 OPTAB_WIDEN);
8156 gcc_assert (temp);
8157 return temp;
8160 case VEC_INTERLEAVE_HIGH_EXPR:
8161 case VEC_INTERLEAVE_LOW_EXPR:
8163 expand_operands (treeop0, treeop1,
8164 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8165 this_optab = optab_for_tree_code (code, type, optab_default);
8166 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8167 OPTAB_WIDEN);
8168 gcc_assert (temp);
8169 return temp;
8172 case VEC_LSHIFT_EXPR:
8173 case VEC_RSHIFT_EXPR:
8175 target = expand_vec_shift_expr (ops, target);
8176 return target;
8179 case VEC_UNPACK_HI_EXPR:
8180 case VEC_UNPACK_LO_EXPR:
8182 op0 = expand_normal (treeop0);
8183 this_optab = optab_for_tree_code (code, type, optab_default);
8184 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8185 target, unsignedp);
8186 gcc_assert (temp);
8187 return temp;
8190 case VEC_UNPACK_FLOAT_HI_EXPR:
8191 case VEC_UNPACK_FLOAT_LO_EXPR:
8193 op0 = expand_normal (treeop0);
8194 /* The signedness is determined from input operand. */
8195 this_optab = optab_for_tree_code (code,
8196 TREE_TYPE (treeop0),
8197 optab_default);
8198 temp = expand_widen_pattern_expr
8199 (ops, op0, NULL_RTX, NULL_RTX,
8200 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8202 gcc_assert (temp);
8203 return temp;
8206 case VEC_WIDEN_MULT_HI_EXPR:
8207 case VEC_WIDEN_MULT_LO_EXPR:
8209 tree oprnd0 = treeop0;
8210 tree oprnd1 = treeop1;
8212 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8213 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8214 target, unsignedp);
8215 gcc_assert (target);
8216 return target;
8219 case VEC_PACK_TRUNC_EXPR:
8220 case VEC_PACK_SAT_EXPR:
8221 case VEC_PACK_FIX_TRUNC_EXPR:
8222 mode = TYPE_MODE (TREE_TYPE (treeop0));
8223 goto binop;
8225 default:
8226 gcc_unreachable ();
8229 /* Here to do an ordinary binary operator. */
8230 binop:
8231 expand_operands (treeop0, treeop1,
8232 subtarget, &op0, &op1, EXPAND_NORMAL);
8233 binop2:
8234 this_optab = optab_for_tree_code (code, type, optab_default);
8235 binop3:
8236 if (modifier == EXPAND_STACK_PARM)
8237 target = 0;
8238 temp = expand_binop (mode, this_optab, op0, op1, target,
8239 unsignedp, OPTAB_LIB_WIDEN);
8240 gcc_assert (temp);
8241 return REDUCE_BIT_FIELD (temp);
8243 #undef REDUCE_BIT_FIELD
8246 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8247 enum expand_modifier modifier, rtx *alt_rtl)
8249 rtx op0, op1, temp, decl_rtl;
8250 tree type;
8251 int unsignedp;
8252 enum machine_mode mode;
8253 enum tree_code code = TREE_CODE (exp);
8254 optab this_optab;
8255 rtx subtarget, original_target;
8256 int ignore;
8257 tree context;
8258 bool reduce_bit_field;
8259 location_t loc = EXPR_LOCATION (exp);
8260 struct separate_ops ops;
8261 tree treeop0, treeop1, treeop2;
8262 tree ssa_name = NULL_TREE;
8263 gimple g;
8265 type = TREE_TYPE (exp);
8266 mode = TYPE_MODE (type);
8267 unsignedp = TYPE_UNSIGNED (type);
8269 treeop0 = treeop1 = treeop2 = NULL_TREE;
8270 if (!VL_EXP_CLASS_P (exp))
8271 switch (TREE_CODE_LENGTH (code))
8273 default:
8274 case 3: treeop2 = TREE_OPERAND (exp, 2);
8275 case 2: treeop1 = TREE_OPERAND (exp, 1);
8276 case 1: treeop0 = TREE_OPERAND (exp, 0);
8277 case 0: break;
8279 ops.code = code;
8280 ops.type = type;
8281 ops.op0 = treeop0;
8282 ops.op1 = treeop1;
8283 ops.op2 = treeop2;
8284 ops.location = loc;
8286 ignore = (target == const0_rtx
8287 || ((CONVERT_EXPR_CODE_P (code)
8288 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8289 && TREE_CODE (type) == VOID_TYPE));
8291 /* An operation in what may be a bit-field type needs the
8292 result to be reduced to the precision of the bit-field type,
8293 which is narrower than that of the type's mode. */
8294 reduce_bit_field = (!ignore
8295 && TREE_CODE (type) == INTEGER_TYPE
8296 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8298 /* If we are going to ignore this result, we need only do something
8299 if there is a side-effect somewhere in the expression. If there
8300 is, short-circuit the most common cases here. Note that we must
8301 not call expand_expr with anything but const0_rtx in case this
8302 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8304 if (ignore)
8306 if (! TREE_SIDE_EFFECTS (exp))
8307 return const0_rtx;
8309 /* Ensure we reference a volatile object even if value is ignored, but
8310 don't do this if all we are doing is taking its address. */
8311 if (TREE_THIS_VOLATILE (exp)
8312 && TREE_CODE (exp) != FUNCTION_DECL
8313 && mode != VOIDmode && mode != BLKmode
8314 && modifier != EXPAND_CONST_ADDRESS)
8316 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8317 if (MEM_P (temp))
8318 temp = copy_to_reg (temp);
8319 return const0_rtx;
8322 if (TREE_CODE_CLASS (code) == tcc_unary
8323 || code == COMPONENT_REF || code == INDIRECT_REF)
8324 return expand_expr (treeop0, const0_rtx, VOIDmode,
8325 modifier);
8327 else if (TREE_CODE_CLASS (code) == tcc_binary
8328 || TREE_CODE_CLASS (code) == tcc_comparison
8329 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8331 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8332 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8333 return const0_rtx;
8335 else if (code == BIT_FIELD_REF)
8337 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8338 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8339 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8340 return const0_rtx;
8343 target = 0;
8346 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8347 target = 0;
8349 /* Use subtarget as the target for operand 0 of a binary operation. */
8350 subtarget = get_subtarget (target);
8351 original_target = target;
8353 switch (code)
8355 case LABEL_DECL:
8357 tree function = decl_function_context (exp);
8359 temp = label_rtx (exp);
8360 temp = gen_rtx_LABEL_REF (Pmode, temp);
8362 if (function != current_function_decl
8363 && function != 0)
8364 LABEL_REF_NONLOCAL_P (temp) = 1;
8366 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8367 return temp;
8370 case SSA_NAME:
8371 /* ??? ivopts calls expander, without any preparation from
8372 out-of-ssa. So fake instructions as if this was an access to the
8373 base variable. This unnecessarily allocates a pseudo, see how we can
8374 reuse it, if partition base vars have it set already. */
8375 if (!currently_expanding_to_rtl)
8376 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8377 NULL);
8379 g = get_gimple_for_ssa_name (exp);
8380 if (g)
8381 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8382 modifier, NULL);
8384 ssa_name = exp;
8385 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8386 exp = SSA_NAME_VAR (ssa_name);
8387 goto expand_decl_rtl;
8389 case PARM_DECL:
8390 case VAR_DECL:
8391 /* If a static var's type was incomplete when the decl was written,
8392 but the type is complete now, lay out the decl now. */
8393 if (DECL_SIZE (exp) == 0
8394 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8395 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8396 layout_decl (exp, 0);
8398 /* TLS emulation hook - replace __thread vars with
8399 *__emutls_get_address (&_emutls.var). */
8400 if (! targetm.have_tls
8401 && TREE_CODE (exp) == VAR_DECL
8402 && DECL_THREAD_LOCAL_P (exp))
8404 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8405 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8408 /* ... fall through ... */
8410 case FUNCTION_DECL:
8411 case RESULT_DECL:
8412 decl_rtl = DECL_RTL (exp);
8413 expand_decl_rtl:
8414 gcc_assert (decl_rtl);
8415 decl_rtl = copy_rtx (decl_rtl);
8416 /* Record writes to register variables. */
8417 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8418 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8420 int i = REGNO (decl_rtl);
8421 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8422 while (nregs)
8424 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8425 i++;
8426 nregs--;
8430 /* Ensure variable marked as used even if it doesn't go through
8431 a parser. If it hasn't be used yet, write out an external
8432 definition. */
8433 if (! TREE_USED (exp))
8435 assemble_external (exp);
8436 TREE_USED (exp) = 1;
8439 /* Show we haven't gotten RTL for this yet. */
8440 temp = 0;
8442 /* Variables inherited from containing functions should have
8443 been lowered by this point. */
8444 context = decl_function_context (exp);
8445 gcc_assert (!context
8446 || context == current_function_decl
8447 || TREE_STATIC (exp)
8448 /* ??? C++ creates functions that are not TREE_STATIC. */
8449 || TREE_CODE (exp) == FUNCTION_DECL);
8451 /* This is the case of an array whose size is to be determined
8452 from its initializer, while the initializer is still being parsed.
8453 See expand_decl. */
8455 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8456 temp = validize_mem (decl_rtl);
8458 /* If DECL_RTL is memory, we are in the normal case and the
8459 address is not valid, get the address into a register. */
8461 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8463 if (alt_rtl)
8464 *alt_rtl = decl_rtl;
8465 decl_rtl = use_anchored_address (decl_rtl);
8466 if (modifier != EXPAND_CONST_ADDRESS
8467 && modifier != EXPAND_SUM
8468 && !memory_address_addr_space_p (DECL_MODE (exp),
8469 XEXP (decl_rtl, 0),
8470 MEM_ADDR_SPACE (decl_rtl)))
8471 temp = replace_equiv_address (decl_rtl,
8472 copy_rtx (XEXP (decl_rtl, 0)));
8475 /* If we got something, return it. But first, set the alignment
8476 if the address is a register. */
8477 if (temp != 0)
8479 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8480 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8482 return temp;
8485 /* If the mode of DECL_RTL does not match that of the decl, it
8486 must be a promoted value. We return a SUBREG of the wanted mode,
8487 but mark it so that we know that it was already extended. */
8488 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8490 enum machine_mode pmode;
8492 /* Get the signedness to be used for this variable. Ensure we get
8493 the same mode we got when the variable was declared. */
8494 if (code == SSA_NAME
8495 && (g = SSA_NAME_DEF_STMT (ssa_name))
8496 && gimple_code (g) == GIMPLE_CALL)
8497 pmode = promote_function_mode (type, mode, &unsignedp,
8498 TREE_TYPE
8499 (TREE_TYPE (gimple_call_fn (g))),
8501 else
8502 pmode = promote_decl_mode (exp, &unsignedp);
8503 gcc_assert (GET_MODE (decl_rtl) == pmode);
8505 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8506 SUBREG_PROMOTED_VAR_P (temp) = 1;
8507 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8508 return temp;
8511 return decl_rtl;
8513 case INTEGER_CST:
8514 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8515 TREE_INT_CST_HIGH (exp), mode);
8517 return temp;
8519 case VECTOR_CST:
8521 tree tmp = NULL_TREE;
8522 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8523 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8524 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8525 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8526 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8527 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8528 return const_vector_from_tree (exp);
8529 if (GET_MODE_CLASS (mode) == MODE_INT)
8531 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8532 if (type_for_mode)
8533 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8535 if (!tmp)
8536 tmp = build_constructor_from_list (type,
8537 TREE_VECTOR_CST_ELTS (exp));
8538 return expand_expr (tmp, ignore ? const0_rtx : target,
8539 tmode, modifier);
8542 case CONST_DECL:
8543 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8545 case REAL_CST:
8546 /* If optimized, generate immediate CONST_DOUBLE
8547 which will be turned into memory by reload if necessary.
8549 We used to force a register so that loop.c could see it. But
8550 this does not allow gen_* patterns to perform optimizations with
8551 the constants. It also produces two insns in cases like "x = 1.0;".
8552 On most machines, floating-point constants are not permitted in
8553 many insns, so we'd end up copying it to a register in any case.
8555 Now, we do the copying in expand_binop, if appropriate. */
8556 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8557 TYPE_MODE (TREE_TYPE (exp)));
8559 case FIXED_CST:
8560 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8561 TYPE_MODE (TREE_TYPE (exp)));
8563 case COMPLEX_CST:
8564 /* Handle evaluating a complex constant in a CONCAT target. */
8565 if (original_target && GET_CODE (original_target) == CONCAT)
8567 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8568 rtx rtarg, itarg;
8570 rtarg = XEXP (original_target, 0);
8571 itarg = XEXP (original_target, 1);
8573 /* Move the real and imaginary parts separately. */
8574 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8575 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8577 if (op0 != rtarg)
8578 emit_move_insn (rtarg, op0);
8579 if (op1 != itarg)
8580 emit_move_insn (itarg, op1);
8582 return original_target;
8585 /* ... fall through ... */
8587 case STRING_CST:
8588 temp = expand_expr_constant (exp, 1, modifier);
8590 /* temp contains a constant address.
8591 On RISC machines where a constant address isn't valid,
8592 make some insns to get that address into a register. */
8593 if (modifier != EXPAND_CONST_ADDRESS
8594 && modifier != EXPAND_INITIALIZER
8595 && modifier != EXPAND_SUM
8596 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8597 MEM_ADDR_SPACE (temp)))
8598 return replace_equiv_address (temp,
8599 copy_rtx (XEXP (temp, 0)));
8600 return temp;
8602 case SAVE_EXPR:
8604 tree val = treeop0;
8605 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8607 if (!SAVE_EXPR_RESOLVED_P (exp))
8609 /* We can indeed still hit this case, typically via builtin
8610 expanders calling save_expr immediately before expanding
8611 something. Assume this means that we only have to deal
8612 with non-BLKmode values. */
8613 gcc_assert (GET_MODE (ret) != BLKmode);
8615 val = build_decl (EXPR_LOCATION (exp),
8616 VAR_DECL, NULL, TREE_TYPE (exp));
8617 DECL_ARTIFICIAL (val) = 1;
8618 DECL_IGNORED_P (val) = 1;
8619 treeop0 = val;
8620 TREE_OPERAND (exp, 0) = treeop0;
8621 SAVE_EXPR_RESOLVED_P (exp) = 1;
8623 if (!CONSTANT_P (ret))
8624 ret = copy_to_reg (ret);
8625 SET_DECL_RTL (val, ret);
8628 return ret;
8632 case CONSTRUCTOR:
8633 /* If we don't need the result, just ensure we evaluate any
8634 subexpressions. */
8635 if (ignore)
8637 unsigned HOST_WIDE_INT idx;
8638 tree value;
8640 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8641 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8643 return const0_rtx;
8646 return expand_constructor (exp, target, modifier, false);
8648 case MISALIGNED_INDIRECT_REF:
8649 case ALIGN_INDIRECT_REF:
8650 case INDIRECT_REF:
8652 tree exp1 = treeop0;
8653 addr_space_t as = ADDR_SPACE_GENERIC;
8654 enum machine_mode address_mode = Pmode;
8656 if (modifier != EXPAND_WRITE)
8658 tree t;
8660 t = fold_read_from_constant_string (exp);
8661 if (t)
8662 return expand_expr (t, target, tmode, modifier);
8665 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8667 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8668 address_mode = targetm.addr_space.address_mode (as);
8671 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8672 op0 = memory_address_addr_space (mode, op0, as);
8674 if (code == ALIGN_INDIRECT_REF)
8676 int align = TYPE_ALIGN_UNIT (type);
8677 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8678 op0 = memory_address_addr_space (mode, op0, as);
8681 temp = gen_rtx_MEM (mode, op0);
8683 set_mem_attributes (temp, exp, 0);
8684 set_mem_addr_space (temp, as);
8686 /* Resolve the misalignment now, so that we don't have to remember
8687 to resolve it later. Of course, this only works for reads. */
8688 if (code == MISALIGNED_INDIRECT_REF)
8690 int icode;
8691 rtx reg, insn;
8693 gcc_assert (modifier == EXPAND_NORMAL
8694 || modifier == EXPAND_STACK_PARM);
8696 /* The vectorizer should have already checked the mode. */
8697 icode = optab_handler (movmisalign_optab, mode);
8698 gcc_assert (icode != CODE_FOR_nothing);
8700 /* We've already validated the memory, and we're creating a
8701 new pseudo destination. The predicates really can't fail. */
8702 reg = gen_reg_rtx (mode);
8704 /* Nor can the insn generator. */
8705 insn = GEN_FCN (icode) (reg, temp);
8706 emit_insn (insn);
8708 return reg;
8711 return temp;
8714 case TARGET_MEM_REF:
8716 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8717 struct mem_address addr;
8718 tree base;
8720 get_address_description (exp, &addr);
8721 op0 = addr_for_mem_ref (&addr, as, true);
8722 op0 = memory_address_addr_space (mode, op0, as);
8723 temp = gen_rtx_MEM (mode, op0);
8724 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8725 set_mem_addr_space (temp, as);
8726 base = get_base_address (TMR_ORIGINAL (exp));
8727 if (INDIRECT_REF_P (base)
8728 && TMR_BASE (exp)
8729 && TREE_CODE (TMR_BASE (exp)) == SSA_NAME
8730 && POINTER_TYPE_P (TREE_TYPE (TMR_BASE (exp))))
8732 set_mem_expr (temp, build1 (INDIRECT_REF,
8733 TREE_TYPE (exp), TMR_BASE (exp)));
8734 set_mem_offset (temp, NULL_RTX);
8737 return temp;
8739 case MEM_REF:
8741 addr_space_t as
8742 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8743 enum machine_mode address_mode;
8744 tree base = TREE_OPERAND (exp, 0);
8745 /* Handle expansion of non-aliased memory with non-BLKmode. That
8746 might end up in a register. */
8747 if (TREE_CODE (base) == ADDR_EXPR)
8749 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8750 tree bit_offset;
8751 base = TREE_OPERAND (base, 0);
8752 if (!DECL_P (base))
8754 HOST_WIDE_INT off;
8755 base = get_addr_base_and_unit_offset (base, &off);
8756 gcc_assert (base);
8757 offset += off;
8759 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8760 decl we must use bitfield operations. */
8761 if (DECL_P (base)
8762 && !TREE_ADDRESSABLE (base)
8763 && DECL_MODE (base) != BLKmode
8764 && DECL_RTL_SET_P (base)
8765 && !MEM_P (DECL_RTL (base)))
8767 tree bftype;
8768 if (offset == 0
8769 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8770 && (GET_MODE_BITSIZE (DECL_MODE (base))
8771 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8772 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8773 TREE_TYPE (exp), base),
8774 target, tmode, modifier);
8775 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8776 bftype = TREE_TYPE (base);
8777 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8778 bftype = TREE_TYPE (exp);
8779 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8780 base,
8781 TYPE_SIZE (TREE_TYPE (exp)),
8782 bit_offset),
8783 target, tmode, modifier);
8786 address_mode = targetm.addr_space.address_mode (as);
8787 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, address_mode,
8788 EXPAND_NORMAL);
8789 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8791 rtx off;
8792 off = immed_double_int_const (mem_ref_offset (exp), address_mode);
8793 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8795 op0 = memory_address_addr_space (mode, op0, as);
8796 temp = gen_rtx_MEM (mode, op0);
8797 set_mem_attributes (temp, exp, 0);
8798 set_mem_addr_space (temp, as);
8799 if (TREE_THIS_VOLATILE (exp))
8800 MEM_VOLATILE_P (temp) = 1;
8801 return temp;
8804 case ARRAY_REF:
8807 tree array = treeop0;
8808 tree index = treeop1;
8810 /* Fold an expression like: "foo"[2].
8811 This is not done in fold so it won't happen inside &.
8812 Don't fold if this is for wide characters since it's too
8813 difficult to do correctly and this is a very rare case. */
8815 if (modifier != EXPAND_CONST_ADDRESS
8816 && modifier != EXPAND_INITIALIZER
8817 && modifier != EXPAND_MEMORY)
8819 tree t = fold_read_from_constant_string (exp);
8821 if (t)
8822 return expand_expr (t, target, tmode, modifier);
8825 /* If this is a constant index into a constant array,
8826 just get the value from the array. Handle both the cases when
8827 we have an explicit constructor and when our operand is a variable
8828 that was declared const. */
8830 if (modifier != EXPAND_CONST_ADDRESS
8831 && modifier != EXPAND_INITIALIZER
8832 && modifier != EXPAND_MEMORY
8833 && TREE_CODE (array) == CONSTRUCTOR
8834 && ! TREE_SIDE_EFFECTS (array)
8835 && TREE_CODE (index) == INTEGER_CST)
8837 unsigned HOST_WIDE_INT ix;
8838 tree field, value;
8840 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8841 field, value)
8842 if (tree_int_cst_equal (field, index))
8844 if (!TREE_SIDE_EFFECTS (value))
8845 return expand_expr (fold (value), target, tmode, modifier);
8846 break;
8850 else if (optimize >= 1
8851 && modifier != EXPAND_CONST_ADDRESS
8852 && modifier != EXPAND_INITIALIZER
8853 && modifier != EXPAND_MEMORY
8854 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8855 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8856 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8857 && targetm.binds_local_p (array))
8859 if (TREE_CODE (index) == INTEGER_CST)
8861 tree init = DECL_INITIAL (array);
8863 if (TREE_CODE (init) == CONSTRUCTOR)
8865 unsigned HOST_WIDE_INT ix;
8866 tree field, value;
8868 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8869 field, value)
8870 if (tree_int_cst_equal (field, index))
8872 if (TREE_SIDE_EFFECTS (value))
8873 break;
8875 if (TREE_CODE (value) == CONSTRUCTOR)
8877 /* If VALUE is a CONSTRUCTOR, this
8878 optimization is only useful if
8879 this doesn't store the CONSTRUCTOR
8880 into memory. If it does, it is more
8881 efficient to just load the data from
8882 the array directly. */
8883 rtx ret = expand_constructor (value, target,
8884 modifier, true);
8885 if (ret == NULL_RTX)
8886 break;
8889 return expand_expr (fold (value), target, tmode,
8890 modifier);
8893 else if(TREE_CODE (init) == STRING_CST)
8895 tree index1 = index;
8896 tree low_bound = array_ref_low_bound (exp);
8897 index1 = fold_convert_loc (loc, sizetype,
8898 treeop1);
8900 /* Optimize the special-case of a zero lower bound.
8902 We convert the low_bound to sizetype to avoid some problems
8903 with constant folding. (E.g. suppose the lower bound is 1,
8904 and its mode is QI. Without the conversion,l (ARRAY
8905 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8906 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8908 if (! integer_zerop (low_bound))
8909 index1 = size_diffop_loc (loc, index1,
8910 fold_convert_loc (loc, sizetype,
8911 low_bound));
8913 if (0 > compare_tree_int (index1,
8914 TREE_STRING_LENGTH (init)))
8916 tree type = TREE_TYPE (TREE_TYPE (init));
8917 enum machine_mode mode = TYPE_MODE (type);
8919 if (GET_MODE_CLASS (mode) == MODE_INT
8920 && GET_MODE_SIZE (mode) == 1)
8921 return gen_int_mode (TREE_STRING_POINTER (init)
8922 [TREE_INT_CST_LOW (index1)],
8923 mode);
8929 goto normal_inner_ref;
8931 case COMPONENT_REF:
8932 /* If the operand is a CONSTRUCTOR, we can just extract the
8933 appropriate field if it is present. */
8934 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8936 unsigned HOST_WIDE_INT idx;
8937 tree field, value;
8939 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8940 idx, field, value)
8941 if (field == treeop1
8942 /* We can normally use the value of the field in the
8943 CONSTRUCTOR. However, if this is a bitfield in
8944 an integral mode that we can fit in a HOST_WIDE_INT,
8945 we must mask only the number of bits in the bitfield,
8946 since this is done implicitly by the constructor. If
8947 the bitfield does not meet either of those conditions,
8948 we can't do this optimization. */
8949 && (! DECL_BIT_FIELD (field)
8950 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8951 && (GET_MODE_BITSIZE (DECL_MODE (field))
8952 <= HOST_BITS_PER_WIDE_INT))))
8954 if (DECL_BIT_FIELD (field)
8955 && modifier == EXPAND_STACK_PARM)
8956 target = 0;
8957 op0 = expand_expr (value, target, tmode, modifier);
8958 if (DECL_BIT_FIELD (field))
8960 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8961 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8963 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8965 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8966 op0 = expand_and (imode, op0, op1, target);
8968 else
8970 tree count
8971 = build_int_cst (NULL_TREE,
8972 GET_MODE_BITSIZE (imode) - bitsize);
8974 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8975 target, 0);
8976 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8977 target, 0);
8981 return op0;
8984 goto normal_inner_ref;
8986 case BIT_FIELD_REF:
8987 case ARRAY_RANGE_REF:
8988 normal_inner_ref:
8990 enum machine_mode mode1, mode2;
8991 HOST_WIDE_INT bitsize, bitpos;
8992 tree offset;
8993 int volatilep = 0, must_force_mem;
8994 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8995 &mode1, &unsignedp, &volatilep, true);
8996 rtx orig_op0, memloc;
8998 /* If we got back the original object, something is wrong. Perhaps
8999 we are evaluating an expression too early. In any event, don't
9000 infinitely recurse. */
9001 gcc_assert (tem != exp);
9003 /* If TEM's type is a union of variable size, pass TARGET to the inner
9004 computation, since it will need a temporary and TARGET is known
9005 to have to do. This occurs in unchecked conversion in Ada. */
9006 orig_op0 = op0
9007 = expand_expr (tem,
9008 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9009 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9010 != INTEGER_CST)
9011 && modifier != EXPAND_STACK_PARM
9012 ? target : NULL_RTX),
9013 VOIDmode,
9014 (modifier == EXPAND_INITIALIZER
9015 || modifier == EXPAND_CONST_ADDRESS
9016 || modifier == EXPAND_STACK_PARM)
9017 ? modifier : EXPAND_NORMAL);
9020 /* If the bitfield is volatile, we want to access it in the
9021 field's mode, not the computed mode. */
9022 if (volatilep
9023 && GET_CODE (op0) == MEM
9024 && flag_strict_volatile_bitfields > 0)
9025 op0 = adjust_address (op0, mode1, 0);
9027 mode2
9028 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9030 /* If we have either an offset, a BLKmode result, or a reference
9031 outside the underlying object, we must force it to memory.
9032 Such a case can occur in Ada if we have unchecked conversion
9033 of an expression from a scalar type to an aggregate type or
9034 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9035 passed a partially uninitialized object or a view-conversion
9036 to a larger size. */
9037 must_force_mem = (offset
9038 || mode1 == BLKmode
9039 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9041 /* Handle CONCAT first. */
9042 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9044 if (bitpos == 0
9045 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9046 return op0;
9047 if (bitpos == 0
9048 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9049 && bitsize)
9051 op0 = XEXP (op0, 0);
9052 mode2 = GET_MODE (op0);
9054 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9055 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9056 && bitpos
9057 && bitsize)
9059 op0 = XEXP (op0, 1);
9060 bitpos = 0;
9061 mode2 = GET_MODE (op0);
9063 else
9064 /* Otherwise force into memory. */
9065 must_force_mem = 1;
9068 /* If this is a constant, put it in a register if it is a legitimate
9069 constant and we don't need a memory reference. */
9070 if (CONSTANT_P (op0)
9071 && mode2 != BLKmode
9072 && LEGITIMATE_CONSTANT_P (op0)
9073 && !must_force_mem)
9074 op0 = force_reg (mode2, op0);
9076 /* Otherwise, if this is a constant, try to force it to the constant
9077 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9078 is a legitimate constant. */
9079 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9080 op0 = validize_mem (memloc);
9082 /* Otherwise, if this is a constant or the object is not in memory
9083 and need be, put it there. */
9084 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9086 tree nt = build_qualified_type (TREE_TYPE (tem),
9087 (TYPE_QUALS (TREE_TYPE (tem))
9088 | TYPE_QUAL_CONST));
9089 memloc = assign_temp (nt, 1, 1, 1);
9090 emit_move_insn (memloc, op0);
9091 op0 = memloc;
9094 if (offset)
9096 enum machine_mode address_mode;
9097 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9098 EXPAND_SUM);
9100 gcc_assert (MEM_P (op0));
9102 address_mode
9103 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9104 if (GET_MODE (offset_rtx) != address_mode)
9105 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9107 if (GET_MODE (op0) == BLKmode
9108 /* A constant address in OP0 can have VOIDmode, we must
9109 not try to call force_reg in that case. */
9110 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9111 && bitsize != 0
9112 && (bitpos % bitsize) == 0
9113 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9114 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9116 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9117 bitpos = 0;
9120 op0 = offset_address (op0, offset_rtx,
9121 highest_pow2_factor (offset));
9124 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9125 record its alignment as BIGGEST_ALIGNMENT. */
9126 if (MEM_P (op0) && bitpos == 0 && offset != 0
9127 && is_aligning_offset (offset, tem))
9128 set_mem_align (op0, BIGGEST_ALIGNMENT);
9130 /* Don't forget about volatility even if this is a bitfield. */
9131 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9133 if (op0 == orig_op0)
9134 op0 = copy_rtx (op0);
9136 MEM_VOLATILE_P (op0) = 1;
9139 /* In cases where an aligned union has an unaligned object
9140 as a field, we might be extracting a BLKmode value from
9141 an integer-mode (e.g., SImode) object. Handle this case
9142 by doing the extract into an object as wide as the field
9143 (which we know to be the width of a basic mode), then
9144 storing into memory, and changing the mode to BLKmode. */
9145 if (mode1 == VOIDmode
9146 || REG_P (op0) || GET_CODE (op0) == SUBREG
9147 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9148 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9149 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9150 && modifier != EXPAND_CONST_ADDRESS
9151 && modifier != EXPAND_INITIALIZER)
9152 /* If the field is volatile, we always want an aligned
9153 access. */
9154 || (volatilep && flag_strict_volatile_bitfields > 0)
9155 /* If the field isn't aligned enough to fetch as a memref,
9156 fetch it as a bit field. */
9157 || (mode1 != BLKmode
9158 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9159 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9160 || (MEM_P (op0)
9161 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9162 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9163 && ((modifier == EXPAND_CONST_ADDRESS
9164 || modifier == EXPAND_INITIALIZER)
9165 ? STRICT_ALIGNMENT
9166 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9167 || (bitpos % BITS_PER_UNIT != 0)))
9168 /* If the type and the field are a constant size and the
9169 size of the type isn't the same size as the bitfield,
9170 we must use bitfield operations. */
9171 || (bitsize >= 0
9172 && TYPE_SIZE (TREE_TYPE (exp))
9173 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9174 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9175 bitsize)))
9177 enum machine_mode ext_mode = mode;
9179 if (ext_mode == BLKmode
9180 && ! (target != 0 && MEM_P (op0)
9181 && MEM_P (target)
9182 && bitpos % BITS_PER_UNIT == 0))
9183 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9185 if (ext_mode == BLKmode)
9187 if (target == 0)
9188 target = assign_temp (type, 0, 1, 1);
9190 if (bitsize == 0)
9191 return target;
9193 /* In this case, BITPOS must start at a byte boundary and
9194 TARGET, if specified, must be a MEM. */
9195 gcc_assert (MEM_P (op0)
9196 && (!target || MEM_P (target))
9197 && !(bitpos % BITS_PER_UNIT));
9199 emit_block_move (target,
9200 adjust_address (op0, VOIDmode,
9201 bitpos / BITS_PER_UNIT),
9202 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9203 / BITS_PER_UNIT),
9204 (modifier == EXPAND_STACK_PARM
9205 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9207 return target;
9210 op0 = validize_mem (op0);
9212 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9213 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9215 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9216 (modifier == EXPAND_STACK_PARM
9217 ? NULL_RTX : target),
9218 ext_mode, ext_mode);
9220 /* If the result is a record type and BITSIZE is narrower than
9221 the mode of OP0, an integral mode, and this is a big endian
9222 machine, we must put the field into the high-order bits. */
9223 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9224 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9225 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9226 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9227 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9228 - bitsize),
9229 op0, 1);
9231 /* If the result type is BLKmode, store the data into a temporary
9232 of the appropriate type, but with the mode corresponding to the
9233 mode for the data we have (op0's mode). It's tempting to make
9234 this a constant type, since we know it's only being stored once,
9235 but that can cause problems if we are taking the address of this
9236 COMPONENT_REF because the MEM of any reference via that address
9237 will have flags corresponding to the type, which will not
9238 necessarily be constant. */
9239 if (mode == BLKmode)
9241 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9242 rtx new_rtx;
9244 /* If the reference doesn't use the alias set of its type,
9245 we cannot create the temporary using that type. */
9246 if (component_uses_parent_alias_set (exp))
9248 new_rtx = assign_stack_local (ext_mode, size, 0);
9249 set_mem_alias_set (new_rtx, get_alias_set (exp));
9251 else
9252 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9254 emit_move_insn (new_rtx, op0);
9255 op0 = copy_rtx (new_rtx);
9256 PUT_MODE (op0, BLKmode);
9257 set_mem_attributes (op0, exp, 1);
9260 return op0;
9263 /* If the result is BLKmode, use that to access the object
9264 now as well. */
9265 if (mode == BLKmode)
9266 mode1 = BLKmode;
9268 /* Get a reference to just this component. */
9269 if (modifier == EXPAND_CONST_ADDRESS
9270 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9271 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9272 else
9273 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9275 if (op0 == orig_op0)
9276 op0 = copy_rtx (op0);
9278 set_mem_attributes (op0, exp, 0);
9279 if (REG_P (XEXP (op0, 0)))
9280 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9282 MEM_VOLATILE_P (op0) |= volatilep;
9283 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9284 || modifier == EXPAND_CONST_ADDRESS
9285 || modifier == EXPAND_INITIALIZER)
9286 return op0;
9287 else if (target == 0)
9288 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9290 convert_move (target, op0, unsignedp);
9291 return target;
9294 case OBJ_TYPE_REF:
9295 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9297 case CALL_EXPR:
9298 /* All valid uses of __builtin_va_arg_pack () are removed during
9299 inlining. */
9300 if (CALL_EXPR_VA_ARG_PACK (exp))
9301 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9303 tree fndecl = get_callee_fndecl (exp), attr;
9305 if (fndecl
9306 && (attr = lookup_attribute ("error",
9307 DECL_ATTRIBUTES (fndecl))) != NULL)
9308 error ("%Kcall to %qs declared with attribute error: %s",
9309 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9310 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9311 if (fndecl
9312 && (attr = lookup_attribute ("warning",
9313 DECL_ATTRIBUTES (fndecl))) != NULL)
9314 warning_at (tree_nonartificial_location (exp),
9315 0, "%Kcall to %qs declared with attribute warning: %s",
9316 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9317 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9319 /* Check for a built-in function. */
9320 if (fndecl && DECL_BUILT_IN (fndecl))
9322 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9323 return expand_builtin (exp, target, subtarget, tmode, ignore);
9326 return expand_call (exp, target, ignore);
9328 case VIEW_CONVERT_EXPR:
9329 op0 = NULL_RTX;
9331 /* If we are converting to BLKmode, try to avoid an intermediate
9332 temporary by fetching an inner memory reference. */
9333 if (mode == BLKmode
9334 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9335 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9336 && handled_component_p (treeop0))
9338 enum machine_mode mode1;
9339 HOST_WIDE_INT bitsize, bitpos;
9340 tree offset;
9341 int unsignedp;
9342 int volatilep = 0;
9343 tree tem
9344 = get_inner_reference (treeop0, &bitsize, &bitpos,
9345 &offset, &mode1, &unsignedp, &volatilep,
9346 true);
9347 rtx orig_op0;
9349 /* ??? We should work harder and deal with non-zero offsets. */
9350 if (!offset
9351 && (bitpos % BITS_PER_UNIT) == 0
9352 && bitsize >= 0
9353 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9355 /* See the normal_inner_ref case for the rationale. */
9356 orig_op0
9357 = expand_expr (tem,
9358 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9359 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9360 != INTEGER_CST)
9361 && modifier != EXPAND_STACK_PARM
9362 ? target : NULL_RTX),
9363 VOIDmode,
9364 (modifier == EXPAND_INITIALIZER
9365 || modifier == EXPAND_CONST_ADDRESS
9366 || modifier == EXPAND_STACK_PARM)
9367 ? modifier : EXPAND_NORMAL);
9369 if (MEM_P (orig_op0))
9371 op0 = orig_op0;
9373 /* Get a reference to just this component. */
9374 if (modifier == EXPAND_CONST_ADDRESS
9375 || modifier == EXPAND_SUM
9376 || modifier == EXPAND_INITIALIZER)
9377 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9378 else
9379 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9381 if (op0 == orig_op0)
9382 op0 = copy_rtx (op0);
9384 set_mem_attributes (op0, treeop0, 0);
9385 if (REG_P (XEXP (op0, 0)))
9386 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9388 MEM_VOLATILE_P (op0) |= volatilep;
9393 if (!op0)
9394 op0 = expand_expr (treeop0,
9395 NULL_RTX, VOIDmode, modifier);
9397 /* If the input and output modes are both the same, we are done. */
9398 if (mode == GET_MODE (op0))
9400 /* If neither mode is BLKmode, and both modes are the same size
9401 then we can use gen_lowpart. */
9402 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9403 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9404 && !COMPLEX_MODE_P (GET_MODE (op0)))
9406 if (GET_CODE (op0) == SUBREG)
9407 op0 = force_reg (GET_MODE (op0), op0);
9408 op0 = gen_lowpart (mode, op0);
9410 /* If both types are integral, convert from one mode to the other. */
9411 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9412 op0 = convert_modes (mode, GET_MODE (op0), op0,
9413 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9414 /* As a last resort, spill op0 to memory, and reload it in a
9415 different mode. */
9416 else if (!MEM_P (op0))
9418 /* If the operand is not a MEM, force it into memory. Since we
9419 are going to be changing the mode of the MEM, don't call
9420 force_const_mem for constants because we don't allow pool
9421 constants to change mode. */
9422 tree inner_type = TREE_TYPE (treeop0);
9424 gcc_assert (!TREE_ADDRESSABLE (exp));
9426 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9427 target
9428 = assign_stack_temp_for_type
9429 (TYPE_MODE (inner_type),
9430 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9432 emit_move_insn (target, op0);
9433 op0 = target;
9436 /* At this point, OP0 is in the correct mode. If the output type is
9437 such that the operand is known to be aligned, indicate that it is.
9438 Otherwise, we need only be concerned about alignment for non-BLKmode
9439 results. */
9440 if (MEM_P (op0))
9442 op0 = copy_rtx (op0);
9444 if (TYPE_ALIGN_OK (type))
9445 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9446 else if (STRICT_ALIGNMENT
9447 && mode != BLKmode
9448 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9450 tree inner_type = TREE_TYPE (treeop0);
9451 HOST_WIDE_INT temp_size
9452 = MAX (int_size_in_bytes (inner_type),
9453 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9454 rtx new_rtx
9455 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9456 rtx new_with_op0_mode
9457 = adjust_address (new_rtx, GET_MODE (op0), 0);
9459 gcc_assert (!TREE_ADDRESSABLE (exp));
9461 if (GET_MODE (op0) == BLKmode)
9462 emit_block_move (new_with_op0_mode, op0,
9463 GEN_INT (GET_MODE_SIZE (mode)),
9464 (modifier == EXPAND_STACK_PARM
9465 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9466 else
9467 emit_move_insn (new_with_op0_mode, op0);
9469 op0 = new_rtx;
9472 op0 = adjust_address (op0, mode, 0);
9475 return op0;
9477 /* Use a compare and a jump for BLKmode comparisons, or for function
9478 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9480 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9481 are occassionally created by folding during expansion. */
9482 case TRUTH_ANDIF_EXPR:
9483 case TRUTH_ORIF_EXPR:
9484 if (! ignore
9485 && (target == 0
9486 || modifier == EXPAND_STACK_PARM
9487 || ! safe_from_p (target, treeop0, 1)
9488 || ! safe_from_p (target, treeop1, 1)
9489 /* Make sure we don't have a hard reg (such as function's return
9490 value) live across basic blocks, if not optimizing. */
9491 || (!optimize && REG_P (target)
9492 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9493 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9495 if (target)
9496 emit_move_insn (target, const0_rtx);
9498 op1 = gen_label_rtx ();
9499 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9501 if (target)
9502 emit_move_insn (target, const1_rtx);
9504 emit_label (op1);
9505 return ignore ? const0_rtx : target;
9507 case STATEMENT_LIST:
9509 tree_stmt_iterator iter;
9511 gcc_assert (ignore);
9513 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9514 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9516 return const0_rtx;
9518 case COND_EXPR:
9519 /* A COND_EXPR with its type being VOID_TYPE represents a
9520 conditional jump and is handled in
9521 expand_gimple_cond_expr. */
9522 gcc_assert (!VOID_TYPE_P (type));
9524 /* Note that COND_EXPRs whose type is a structure or union
9525 are required to be constructed to contain assignments of
9526 a temporary variable, so that we can evaluate them here
9527 for side effect only. If type is void, we must do likewise. */
9529 gcc_assert (!TREE_ADDRESSABLE (type)
9530 && !ignore
9531 && TREE_TYPE (treeop1) != void_type_node
9532 && TREE_TYPE (treeop2) != void_type_node);
9534 /* If we are not to produce a result, we have no target. Otherwise,
9535 if a target was specified use it; it will not be used as an
9536 intermediate target unless it is safe. If no target, use a
9537 temporary. */
9539 if (modifier != EXPAND_STACK_PARM
9540 && original_target
9541 && safe_from_p (original_target, treeop0, 1)
9542 && GET_MODE (original_target) == mode
9543 #ifdef HAVE_conditional_move
9544 && (! can_conditionally_move_p (mode)
9545 || REG_P (original_target))
9546 #endif
9547 && !MEM_P (original_target))
9548 temp = original_target;
9549 else
9550 temp = assign_temp (type, 0, 0, 1);
9552 do_pending_stack_adjust ();
9553 NO_DEFER_POP;
9554 op0 = gen_label_rtx ();
9555 op1 = gen_label_rtx ();
9556 jumpifnot (treeop0, op0, -1);
9557 store_expr (treeop1, temp,
9558 modifier == EXPAND_STACK_PARM,
9559 false);
9561 emit_jump_insn (gen_jump (op1));
9562 emit_barrier ();
9563 emit_label (op0);
9564 store_expr (treeop2, temp,
9565 modifier == EXPAND_STACK_PARM,
9566 false);
9568 emit_label (op1);
9569 OK_DEFER_POP;
9570 return temp;
9572 case VEC_COND_EXPR:
9573 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9574 return target;
9576 case MODIFY_EXPR:
9578 tree lhs = treeop0;
9579 tree rhs = treeop1;
9580 gcc_assert (ignore);
9582 /* Check for |= or &= of a bitfield of size one into another bitfield
9583 of size 1. In this case, (unless we need the result of the
9584 assignment) we can do this more efficiently with a
9585 test followed by an assignment, if necessary.
9587 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9588 things change so we do, this code should be enhanced to
9589 support it. */
9590 if (TREE_CODE (lhs) == COMPONENT_REF
9591 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9592 || TREE_CODE (rhs) == BIT_AND_EXPR)
9593 && TREE_OPERAND (rhs, 0) == lhs
9594 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9595 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9596 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9598 rtx label = gen_label_rtx ();
9599 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9600 do_jump (TREE_OPERAND (rhs, 1),
9601 value ? label : 0,
9602 value ? 0 : label, -1);
9603 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9604 MOVE_NONTEMPORAL (exp));
9605 do_pending_stack_adjust ();
9606 emit_label (label);
9607 return const0_rtx;
9610 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9611 return const0_rtx;
9614 case ADDR_EXPR:
9615 return expand_expr_addr_expr (exp, target, tmode, modifier);
9617 case REALPART_EXPR:
9618 op0 = expand_normal (treeop0);
9619 return read_complex_part (op0, false);
9621 case IMAGPART_EXPR:
9622 op0 = expand_normal (treeop0);
9623 return read_complex_part (op0, true);
9625 case RETURN_EXPR:
9626 case LABEL_EXPR:
9627 case GOTO_EXPR:
9628 case SWITCH_EXPR:
9629 case ASM_EXPR:
9630 /* Expanded in cfgexpand.c. */
9631 gcc_unreachable ();
9633 case TRY_CATCH_EXPR:
9634 case CATCH_EXPR:
9635 case EH_FILTER_EXPR:
9636 case TRY_FINALLY_EXPR:
9637 /* Lowered by tree-eh.c. */
9638 gcc_unreachable ();
9640 case WITH_CLEANUP_EXPR:
9641 case CLEANUP_POINT_EXPR:
9642 case TARGET_EXPR:
9643 case CASE_LABEL_EXPR:
9644 case VA_ARG_EXPR:
9645 case BIND_EXPR:
9646 case INIT_EXPR:
9647 case CONJ_EXPR:
9648 case COMPOUND_EXPR:
9649 case PREINCREMENT_EXPR:
9650 case PREDECREMENT_EXPR:
9651 case POSTINCREMENT_EXPR:
9652 case POSTDECREMENT_EXPR:
9653 case LOOP_EXPR:
9654 case EXIT_EXPR:
9655 /* Lowered by gimplify.c. */
9656 gcc_unreachable ();
9658 case FDESC_EXPR:
9659 /* Function descriptors are not valid except for as
9660 initialization constants, and should not be expanded. */
9661 gcc_unreachable ();
9663 case WITH_SIZE_EXPR:
9664 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9665 have pulled out the size to use in whatever context it needed. */
9666 return expand_expr_real (treeop0, original_target, tmode,
9667 modifier, alt_rtl);
9669 case REALIGN_LOAD_EXPR:
9671 tree oprnd0 = treeop0;
9672 tree oprnd1 = treeop1;
9673 tree oprnd2 = treeop2;
9674 rtx op2;
9676 this_optab = optab_for_tree_code (code, type, optab_default);
9677 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9678 op2 = expand_normal (oprnd2);
9679 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9680 target, unsignedp);
9681 gcc_assert (temp);
9682 return temp;
9685 case DOT_PROD_EXPR:
9687 tree oprnd0 = treeop0;
9688 tree oprnd1 = treeop1;
9689 tree oprnd2 = treeop2;
9690 rtx op2;
9692 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9693 op2 = expand_normal (oprnd2);
9694 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9695 target, unsignedp);
9696 return target;
9699 case COMPOUND_LITERAL_EXPR:
9701 /* Initialize the anonymous variable declared in the compound
9702 literal, then return the variable. */
9703 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9705 /* Create RTL for this variable. */
9706 if (!DECL_RTL_SET_P (decl))
9708 if (DECL_HARD_REGISTER (decl))
9709 /* The user specified an assembler name for this variable.
9710 Set that up now. */
9711 rest_of_decl_compilation (decl, 0, 0);
9712 else
9713 expand_decl (decl);
9716 return expand_expr_real (decl, original_target, tmode,
9717 modifier, alt_rtl);
9720 default:
9721 return expand_expr_real_2 (&ops, target, tmode, modifier);
9725 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9726 signedness of TYPE), possibly returning the result in TARGET. */
9727 static rtx
9728 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9730 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9731 if (target && GET_MODE (target) != GET_MODE (exp))
9732 target = 0;
9733 /* For constant values, reduce using build_int_cst_type. */
9734 if (CONST_INT_P (exp))
9736 HOST_WIDE_INT value = INTVAL (exp);
9737 tree t = build_int_cst_type (type, value);
9738 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9740 else if (TYPE_UNSIGNED (type))
9742 rtx mask = immed_double_int_const (double_int_mask (prec),
9743 GET_MODE (exp));
9744 return expand_and (GET_MODE (exp), exp, mask, target);
9746 else
9748 tree count = build_int_cst (NULL_TREE,
9749 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9750 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9751 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9755 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9756 when applied to the address of EXP produces an address known to be
9757 aligned more than BIGGEST_ALIGNMENT. */
9759 static int
9760 is_aligning_offset (const_tree offset, const_tree exp)
9762 /* Strip off any conversions. */
9763 while (CONVERT_EXPR_P (offset))
9764 offset = TREE_OPERAND (offset, 0);
9766 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9767 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9768 if (TREE_CODE (offset) != BIT_AND_EXPR
9769 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9770 || compare_tree_int (TREE_OPERAND (offset, 1),
9771 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9772 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9773 return 0;
9775 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9776 It must be NEGATE_EXPR. Then strip any more conversions. */
9777 offset = TREE_OPERAND (offset, 0);
9778 while (CONVERT_EXPR_P (offset))
9779 offset = TREE_OPERAND (offset, 0);
9781 if (TREE_CODE (offset) != NEGATE_EXPR)
9782 return 0;
9784 offset = TREE_OPERAND (offset, 0);
9785 while (CONVERT_EXPR_P (offset))
9786 offset = TREE_OPERAND (offset, 0);
9788 /* This must now be the address of EXP. */
9789 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9792 /* Return the tree node if an ARG corresponds to a string constant or zero
9793 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9794 in bytes within the string that ARG is accessing. The type of the
9795 offset will be `sizetype'. */
9797 tree
9798 string_constant (tree arg, tree *ptr_offset)
9800 tree array, offset, lower_bound;
9801 STRIP_NOPS (arg);
9803 if (TREE_CODE (arg) == ADDR_EXPR)
9805 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9807 *ptr_offset = size_zero_node;
9808 return TREE_OPERAND (arg, 0);
9810 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9812 array = TREE_OPERAND (arg, 0);
9813 offset = size_zero_node;
9815 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9817 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9818 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9819 if (TREE_CODE (array) != STRING_CST
9820 && TREE_CODE (array) != VAR_DECL)
9821 return 0;
9823 /* Check if the array has a nonzero lower bound. */
9824 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9825 if (!integer_zerop (lower_bound))
9827 /* If the offset and base aren't both constants, return 0. */
9828 if (TREE_CODE (lower_bound) != INTEGER_CST)
9829 return 0;
9830 if (TREE_CODE (offset) != INTEGER_CST)
9831 return 0;
9832 /* Adjust offset by the lower bound. */
9833 offset = size_diffop (fold_convert (sizetype, offset),
9834 fold_convert (sizetype, lower_bound));
9837 else
9838 return 0;
9840 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9842 tree arg0 = TREE_OPERAND (arg, 0);
9843 tree arg1 = TREE_OPERAND (arg, 1);
9845 STRIP_NOPS (arg0);
9846 STRIP_NOPS (arg1);
9848 if (TREE_CODE (arg0) == ADDR_EXPR
9849 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9850 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9852 array = TREE_OPERAND (arg0, 0);
9853 offset = arg1;
9855 else if (TREE_CODE (arg1) == ADDR_EXPR
9856 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9857 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9859 array = TREE_OPERAND (arg1, 0);
9860 offset = arg0;
9862 else
9863 return 0;
9865 else
9866 return 0;
9868 if (TREE_CODE (array) == STRING_CST)
9870 *ptr_offset = fold_convert (sizetype, offset);
9871 return array;
9873 else if (TREE_CODE (array) == VAR_DECL)
9875 int length;
9877 /* Variables initialized to string literals can be handled too. */
9878 if (DECL_INITIAL (array) == NULL_TREE
9879 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9880 return 0;
9882 /* If they are read-only, non-volatile and bind locally. */
9883 if (! TREE_READONLY (array)
9884 || TREE_SIDE_EFFECTS (array)
9885 || ! targetm.binds_local_p (array))
9886 return 0;
9888 /* Avoid const char foo[4] = "abcde"; */
9889 if (DECL_SIZE_UNIT (array) == NULL_TREE
9890 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9891 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9892 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9893 return 0;
9895 /* If variable is bigger than the string literal, OFFSET must be constant
9896 and inside of the bounds of the string literal. */
9897 offset = fold_convert (sizetype, offset);
9898 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9899 && (! host_integerp (offset, 1)
9900 || compare_tree_int (offset, length) >= 0))
9901 return 0;
9903 *ptr_offset = offset;
9904 return DECL_INITIAL (array);
9907 return 0;
9910 /* Generate code to calculate OPS, and exploded expression
9911 using a store-flag instruction and return an rtx for the result.
9912 OPS reflects a comparison.
9914 If TARGET is nonzero, store the result there if convenient.
9916 Return zero if there is no suitable set-flag instruction
9917 available on this machine.
9919 Once expand_expr has been called on the arguments of the comparison,
9920 we are committed to doing the store flag, since it is not safe to
9921 re-evaluate the expression. We emit the store-flag insn by calling
9922 emit_store_flag, but only expand the arguments if we have a reason
9923 to believe that emit_store_flag will be successful. If we think that
9924 it will, but it isn't, we have to simulate the store-flag with a
9925 set/jump/set sequence. */
9927 static rtx
9928 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9930 enum rtx_code code;
9931 tree arg0, arg1, type;
9932 tree tem;
9933 enum machine_mode operand_mode;
9934 int unsignedp;
9935 rtx op0, op1;
9936 rtx subtarget = target;
9937 location_t loc = ops->location;
9939 arg0 = ops->op0;
9940 arg1 = ops->op1;
9942 /* Don't crash if the comparison was erroneous. */
9943 if (arg0 == error_mark_node || arg1 == error_mark_node)
9944 return const0_rtx;
9946 type = TREE_TYPE (arg0);
9947 operand_mode = TYPE_MODE (type);
9948 unsignedp = TYPE_UNSIGNED (type);
9950 /* We won't bother with BLKmode store-flag operations because it would mean
9951 passing a lot of information to emit_store_flag. */
9952 if (operand_mode == BLKmode)
9953 return 0;
9955 /* We won't bother with store-flag operations involving function pointers
9956 when function pointers must be canonicalized before comparisons. */
9957 #ifdef HAVE_canonicalize_funcptr_for_compare
9958 if (HAVE_canonicalize_funcptr_for_compare
9959 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9960 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9961 == FUNCTION_TYPE))
9962 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9963 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9964 == FUNCTION_TYPE))))
9965 return 0;
9966 #endif
9968 STRIP_NOPS (arg0);
9969 STRIP_NOPS (arg1);
9971 /* Get the rtx comparison code to use. We know that EXP is a comparison
9972 operation of some type. Some comparisons against 1 and -1 can be
9973 converted to comparisons with zero. Do so here so that the tests
9974 below will be aware that we have a comparison with zero. These
9975 tests will not catch constants in the first operand, but constants
9976 are rarely passed as the first operand. */
9978 switch (ops->code)
9980 case EQ_EXPR:
9981 code = EQ;
9982 break;
9983 case NE_EXPR:
9984 code = NE;
9985 break;
9986 case LT_EXPR:
9987 if (integer_onep (arg1))
9988 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9989 else
9990 code = unsignedp ? LTU : LT;
9991 break;
9992 case LE_EXPR:
9993 if (! unsignedp && integer_all_onesp (arg1))
9994 arg1 = integer_zero_node, code = LT;
9995 else
9996 code = unsignedp ? LEU : LE;
9997 break;
9998 case GT_EXPR:
9999 if (! unsignedp && integer_all_onesp (arg1))
10000 arg1 = integer_zero_node, code = GE;
10001 else
10002 code = unsignedp ? GTU : GT;
10003 break;
10004 case GE_EXPR:
10005 if (integer_onep (arg1))
10006 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10007 else
10008 code = unsignedp ? GEU : GE;
10009 break;
10011 case UNORDERED_EXPR:
10012 code = UNORDERED;
10013 break;
10014 case ORDERED_EXPR:
10015 code = ORDERED;
10016 break;
10017 case UNLT_EXPR:
10018 code = UNLT;
10019 break;
10020 case UNLE_EXPR:
10021 code = UNLE;
10022 break;
10023 case UNGT_EXPR:
10024 code = UNGT;
10025 break;
10026 case UNGE_EXPR:
10027 code = UNGE;
10028 break;
10029 case UNEQ_EXPR:
10030 code = UNEQ;
10031 break;
10032 case LTGT_EXPR:
10033 code = LTGT;
10034 break;
10036 default:
10037 gcc_unreachable ();
10040 /* Put a constant second. */
10041 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10042 || TREE_CODE (arg0) == FIXED_CST)
10044 tem = arg0; arg0 = arg1; arg1 = tem;
10045 code = swap_condition (code);
10048 /* If this is an equality or inequality test of a single bit, we can
10049 do this by shifting the bit being tested to the low-order bit and
10050 masking the result with the constant 1. If the condition was EQ,
10051 we xor it with 1. This does not require an scc insn and is faster
10052 than an scc insn even if we have it.
10054 The code to make this transformation was moved into fold_single_bit_test,
10055 so we just call into the folder and expand its result. */
10057 if ((code == NE || code == EQ)
10058 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10059 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10061 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10062 return expand_expr (fold_single_bit_test (loc,
10063 code == NE ? NE_EXPR : EQ_EXPR,
10064 arg0, arg1, type),
10065 target, VOIDmode, EXPAND_NORMAL);
10068 if (! get_subtarget (target)
10069 || GET_MODE (subtarget) != operand_mode)
10070 subtarget = 0;
10072 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10074 if (target == 0)
10075 target = gen_reg_rtx (mode);
10077 /* Try a cstore if possible. */
10078 return emit_store_flag_force (target, code, op0, op1,
10079 operand_mode, unsignedp, 1);
10083 /* Stubs in case we haven't got a casesi insn. */
10084 #ifndef HAVE_casesi
10085 # define HAVE_casesi 0
10086 # define gen_casesi(a, b, c, d, e) (0)
10087 # define CODE_FOR_casesi CODE_FOR_nothing
10088 #endif
10090 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10091 0 otherwise (i.e. if there is no casesi instruction). */
10093 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10094 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10095 rtx fallback_label ATTRIBUTE_UNUSED)
10097 enum machine_mode index_mode = SImode;
10098 int index_bits = GET_MODE_BITSIZE (index_mode);
10099 rtx op1, op2, index;
10100 enum machine_mode op_mode;
10102 if (! HAVE_casesi)
10103 return 0;
10105 /* Convert the index to SImode. */
10106 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10108 enum machine_mode omode = TYPE_MODE (index_type);
10109 rtx rangertx = expand_normal (range);
10111 /* We must handle the endpoints in the original mode. */
10112 index_expr = build2 (MINUS_EXPR, index_type,
10113 index_expr, minval);
10114 minval = integer_zero_node;
10115 index = expand_normal (index_expr);
10116 if (default_label)
10117 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10118 omode, 1, default_label);
10119 /* Now we can safely truncate. */
10120 index = convert_to_mode (index_mode, index, 0);
10122 else
10124 if (TYPE_MODE (index_type) != index_mode)
10126 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10127 index_expr = fold_convert (index_type, index_expr);
10130 index = expand_normal (index_expr);
10133 do_pending_stack_adjust ();
10135 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10136 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10137 (index, op_mode))
10138 index = copy_to_mode_reg (op_mode, index);
10140 op1 = expand_normal (minval);
10142 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10143 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10144 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10145 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10146 (op1, op_mode))
10147 op1 = copy_to_mode_reg (op_mode, op1);
10149 op2 = expand_normal (range);
10151 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10152 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10153 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10154 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10155 (op2, op_mode))
10156 op2 = copy_to_mode_reg (op_mode, op2);
10158 emit_jump_insn (gen_casesi (index, op1, op2,
10159 table_label, !default_label
10160 ? fallback_label : default_label));
10161 return 1;
10164 /* Attempt to generate a tablejump instruction; same concept. */
10165 #ifndef HAVE_tablejump
10166 #define HAVE_tablejump 0
10167 #define gen_tablejump(x, y) (0)
10168 #endif
10170 /* Subroutine of the next function.
10172 INDEX is the value being switched on, with the lowest value
10173 in the table already subtracted.
10174 MODE is its expected mode (needed if INDEX is constant).
10175 RANGE is the length of the jump table.
10176 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10178 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10179 index value is out of range. */
10181 static void
10182 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10183 rtx default_label)
10185 rtx temp, vector;
10187 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10188 cfun->cfg->max_jumptable_ents = INTVAL (range);
10190 /* Do an unsigned comparison (in the proper mode) between the index
10191 expression and the value which represents the length of the range.
10192 Since we just finished subtracting the lower bound of the range
10193 from the index expression, this comparison allows us to simultaneously
10194 check that the original index expression value is both greater than
10195 or equal to the minimum value of the range and less than or equal to
10196 the maximum value of the range. */
10198 if (default_label)
10199 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10200 default_label);
10202 /* If index is in range, it must fit in Pmode.
10203 Convert to Pmode so we can index with it. */
10204 if (mode != Pmode)
10205 index = convert_to_mode (Pmode, index, 1);
10207 /* Don't let a MEM slip through, because then INDEX that comes
10208 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10209 and break_out_memory_refs will go to work on it and mess it up. */
10210 #ifdef PIC_CASE_VECTOR_ADDRESS
10211 if (flag_pic && !REG_P (index))
10212 index = copy_to_mode_reg (Pmode, index);
10213 #endif
10215 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10216 GET_MODE_SIZE, because this indicates how large insns are. The other
10217 uses should all be Pmode, because they are addresses. This code
10218 could fail if addresses and insns are not the same size. */
10219 index = gen_rtx_PLUS (Pmode,
10220 gen_rtx_MULT (Pmode, index,
10221 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10222 gen_rtx_LABEL_REF (Pmode, table_label));
10223 #ifdef PIC_CASE_VECTOR_ADDRESS
10224 if (flag_pic)
10225 index = PIC_CASE_VECTOR_ADDRESS (index);
10226 else
10227 #endif
10228 index = memory_address (CASE_VECTOR_MODE, index);
10229 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10230 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10231 convert_move (temp, vector, 0);
10233 emit_jump_insn (gen_tablejump (temp, table_label));
10235 /* If we are generating PIC code or if the table is PC-relative, the
10236 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10237 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10238 emit_barrier ();
10242 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10243 rtx table_label, rtx default_label)
10245 rtx index;
10247 if (! HAVE_tablejump)
10248 return 0;
10250 index_expr = fold_build2 (MINUS_EXPR, index_type,
10251 fold_convert (index_type, index_expr),
10252 fold_convert (index_type, minval));
10253 index = expand_normal (index_expr);
10254 do_pending_stack_adjust ();
10256 do_tablejump (index, TYPE_MODE (index_type),
10257 convert_modes (TYPE_MODE (index_type),
10258 TYPE_MODE (TREE_TYPE (range)),
10259 expand_normal (range),
10260 TYPE_UNSIGNED (TREE_TYPE (range))),
10261 table_label, default_label);
10262 return 1;
10265 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10266 static rtx
10267 const_vector_from_tree (tree exp)
10269 rtvec v;
10270 int units, i;
10271 tree link, elt;
10272 enum machine_mode inner, mode;
10274 mode = TYPE_MODE (TREE_TYPE (exp));
10276 if (initializer_zerop (exp))
10277 return CONST0_RTX (mode);
10279 units = GET_MODE_NUNITS (mode);
10280 inner = GET_MODE_INNER (mode);
10282 v = rtvec_alloc (units);
10284 link = TREE_VECTOR_CST_ELTS (exp);
10285 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10287 elt = TREE_VALUE (link);
10289 if (TREE_CODE (elt) == REAL_CST)
10290 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10291 inner);
10292 else if (TREE_CODE (elt) == FIXED_CST)
10293 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10294 inner);
10295 else
10296 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10297 inner);
10300 /* Initialize remaining elements to 0. */
10301 for (; i < units; ++i)
10302 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10304 return gen_rtx_CONST_VECTOR (mode, v);
10308 /* Build a decl for a EH personality function named NAME. */
10310 tree
10311 build_personality_function (const char *name)
10313 tree decl, type;
10315 type = build_function_type_list (integer_type_node, integer_type_node,
10316 long_long_unsigned_type_node,
10317 ptr_type_node, ptr_type_node, NULL_TREE);
10318 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10319 get_identifier (name), type);
10320 DECL_ARTIFICIAL (decl) = 1;
10321 DECL_EXTERNAL (decl) = 1;
10322 TREE_PUBLIC (decl) = 1;
10324 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10325 are the flags assigned by targetm.encode_section_info. */
10326 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10328 return decl;
10331 /* Extracts the personality function of DECL and returns the corresponding
10332 libfunc. */
10335 get_personality_function (tree decl)
10337 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10338 enum eh_personality_kind pk;
10340 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10341 if (pk == eh_personality_none)
10342 return NULL;
10344 if (!personality
10345 && pk == eh_personality_any)
10346 personality = lang_hooks.eh_personality ();
10348 if (pk == eh_personality_lang)
10349 gcc_assert (personality != NULL_TREE);
10351 return XEXP (DECL_RTL (personality), 0);
10354 #include "gt-expr.h"