(decl_attributes): Added argument.
[official-gcc.git] / gcc / explow.c
blob78e379716dea1447f1f06fee96d609c270e2a2a7
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 #include "config.h"
22 #include "rtl.h"
23 #include "tree.h"
24 #include "flags.h"
25 #include "expr.h"
26 #include "hard-reg-set.h"
27 #include "insn-config.h"
28 #include "recog.h"
29 #include "insn-flags.h"
30 #include "insn-codes.h"
32 /* Return an rtx for the sum of X and the integer C.
34 This function should be used via the `plus_constant' macro. */
36 rtx
37 plus_constant_wide (x, c)
38 register rtx x;
39 register HOST_WIDE_INT c;
41 register RTX_CODE code;
42 register enum machine_mode mode;
43 register rtx tem;
44 int all_constant = 0;
46 if (c == 0)
47 return x;
49 restart:
51 code = GET_CODE (x);
52 mode = GET_MODE (x);
53 switch (code)
55 case CONST_INT:
56 return GEN_INT (INTVAL (x) + c);
58 case CONST_DOUBLE:
60 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
61 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
62 HOST_WIDE_INT l2 = c;
63 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
64 HOST_WIDE_INT lv, hv;
66 add_double (l1, h1, l2, h2, &lv, &hv);
68 return immed_double_const (lv, hv, VOIDmode);
71 case MEM:
72 /* If this is a reference to the constant pool, try replacing it with
73 a reference to a new constant. If the resulting address isn't
74 valid, don't return it because we have no way to validize it. */
75 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
76 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
78 tem
79 = force_const_mem (GET_MODE (x),
80 plus_constant (get_pool_constant (XEXP (x, 0)),
81 c));
82 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
83 return tem;
85 break;
87 case CONST:
88 /* If adding to something entirely constant, set a flag
89 so that we can add a CONST around the result. */
90 x = XEXP (x, 0);
91 all_constant = 1;
92 goto restart;
94 case SYMBOL_REF:
95 case LABEL_REF:
96 all_constant = 1;
97 break;
99 case PLUS:
100 /* The interesting case is adding the integer to a sum.
101 Look for constant term in the sum and combine
102 with C. For an integer constant term, we make a combined
103 integer. For a constant term that is not an explicit integer,
104 we cannot really combine, but group them together anyway.
106 Use a recursive call in case the remaining operand is something
107 that we handle specially, such as a SYMBOL_REF. */
109 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
110 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
111 else if (CONSTANT_P (XEXP (x, 0)))
112 return gen_rtx (PLUS, mode,
113 plus_constant (XEXP (x, 0), c),
114 XEXP (x, 1));
115 else if (CONSTANT_P (XEXP (x, 1)))
116 return gen_rtx (PLUS, mode,
117 XEXP (x, 0),
118 plus_constant (XEXP (x, 1), c));
121 if (c != 0)
122 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
124 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
125 return x;
126 else if (all_constant)
127 return gen_rtx (CONST, mode, x);
128 else
129 return x;
132 /* This is the same as `plus_constant', except that it handles LO_SUM.
134 This function should be used via the `plus_constant_for_output' macro. */
137 plus_constant_for_output_wide (x, c)
138 register rtx x;
139 register HOST_WIDE_INT c;
141 register RTX_CODE code = GET_CODE (x);
142 register enum machine_mode mode = GET_MODE (x);
143 int all_constant = 0;
145 if (GET_CODE (x) == LO_SUM)
146 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
147 plus_constant_for_output (XEXP (x, 1), c));
149 else
150 return plus_constant (x, c);
153 /* If X is a sum, return a new sum like X but lacking any constant terms.
154 Add all the removed constant terms into *CONSTPTR.
155 X itself is not altered. The result != X if and only if
156 it is not isomorphic to X. */
159 eliminate_constant_term (x, constptr)
160 rtx x;
161 rtx *constptr;
163 register rtx x0, x1;
164 rtx tem;
166 if (GET_CODE (x) != PLUS)
167 return x;
169 /* First handle constants appearing at this level explicitly. */
170 if (GET_CODE (XEXP (x, 1)) == CONST_INT
171 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
172 XEXP (x, 1)))
173 && GET_CODE (tem) == CONST_INT)
175 *constptr = tem;
176 return eliminate_constant_term (XEXP (x, 0), constptr);
179 tem = const0_rtx;
180 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
181 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
182 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
183 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
184 *constptr, tem))
185 && GET_CODE (tem) == CONST_INT)
187 *constptr = tem;
188 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
191 return x;
194 /* Returns the insn that next references REG after INSN, or 0
195 if REG is clobbered before next referenced or we cannot find
196 an insn that references REG in a straight-line piece of code. */
199 find_next_ref (reg, insn)
200 rtx reg;
201 rtx insn;
203 rtx next;
205 for (insn = NEXT_INSN (insn); insn; insn = next)
207 next = NEXT_INSN (insn);
208 if (GET_CODE (insn) == NOTE)
209 continue;
210 if (GET_CODE (insn) == CODE_LABEL
211 || GET_CODE (insn) == BARRIER)
212 return 0;
213 if (GET_CODE (insn) == INSN
214 || GET_CODE (insn) == JUMP_INSN
215 || GET_CODE (insn) == CALL_INSN)
217 if (reg_set_p (reg, insn))
218 return 0;
219 if (reg_mentioned_p (reg, PATTERN (insn)))
220 return insn;
221 if (GET_CODE (insn) == JUMP_INSN)
223 if (simplejump_p (insn))
224 next = JUMP_LABEL (insn);
225 else
226 return 0;
228 if (GET_CODE (insn) == CALL_INSN
229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
230 && call_used_regs[REGNO (reg)])
231 return 0;
233 else
234 abort ();
236 return 0;
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (exp)
243 tree exp;
245 tree size = size_in_bytes (TREE_TYPE (exp));
247 if (TREE_CODE (size) != INTEGER_CST
248 && contains_placeholder_p (size))
249 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
251 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
254 /* Return a copy of X in which all memory references
255 and all constants that involve symbol refs
256 have been replaced with new temporary registers.
257 Also emit code to load the memory locations and constants
258 into those registers.
260 If X contains no such constants or memory references,
261 X itself (not a copy) is returned.
263 If a constant is found in the address that is not a legitimate constant
264 in an insn, it is left alone in the hope that it might be valid in the
265 address.
267 X may contain no arithmetic except addition, subtraction and multiplication.
268 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
270 static rtx
271 break_out_memory_refs (x)
272 register rtx x;
274 if (GET_CODE (x) == MEM
275 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
276 && GET_MODE (x) != VOIDmode))
277 x = force_reg (GET_MODE (x), x);
278 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
279 || GET_CODE (x) == MULT)
281 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
282 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
284 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
285 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
288 return x;
291 /* Given a memory address or facsimile X, construct a new address,
292 currently equivalent, that is stable: future stores won't change it.
294 X must be composed of constants, register and memory references
295 combined with addition, subtraction and multiplication:
296 in other words, just what you can get from expand_expr if sum_ok is 1.
298 Works by making copies of all regs and memory locations used
299 by X and combining them the same way X does.
300 You could also stabilize the reference to this address
301 by copying the address to a register with copy_to_reg;
302 but then you wouldn't get indexed addressing in the reference. */
305 copy_all_regs (x)
306 register rtx x;
308 if (GET_CODE (x) == REG)
310 if (REGNO (x) != FRAME_POINTER_REGNUM
311 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
312 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
313 #endif
315 x = copy_to_reg (x);
317 else if (GET_CODE (x) == MEM)
318 x = copy_to_reg (x);
319 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
320 || GET_CODE (x) == MULT)
322 register rtx op0 = copy_all_regs (XEXP (x, 0));
323 register rtx op1 = copy_all_regs (XEXP (x, 1));
324 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
325 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
327 return x;
330 /* Return something equivalent to X but valid as a memory address
331 for something of mode MODE. When X is not itself valid, this
332 works by copying X or subexpressions of it into registers. */
335 memory_address (mode, x)
336 enum machine_mode mode;
337 register rtx x;
339 register rtx oldx = x;
341 /* By passing constant addresses thru registers
342 we get a chance to cse them. */
343 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
344 x = force_reg (Pmode, x);
346 /* Accept a QUEUED that refers to a REG
347 even though that isn't a valid address.
348 On attempting to put this in an insn we will call protect_from_queue
349 which will turn it into a REG, which is valid. */
350 else if (GET_CODE (x) == QUEUED
351 && GET_CODE (QUEUED_VAR (x)) == REG)
354 /* We get better cse by rejecting indirect addressing at this stage.
355 Let the combiner create indirect addresses where appropriate.
356 For now, generate the code so that the subexpressions useful to share
357 are visible. But not if cse won't be done! */
358 else
360 if (! cse_not_expected && GET_CODE (x) != REG)
361 x = break_out_memory_refs (x);
363 /* At this point, any valid address is accepted. */
364 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
366 /* If it was valid before but breaking out memory refs invalidated it,
367 use it the old way. */
368 if (memory_address_p (mode, oldx))
369 goto win2;
371 /* Perform machine-dependent transformations on X
372 in certain cases. This is not necessary since the code
373 below can handle all possible cases, but machine-dependent
374 transformations can make better code. */
375 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
377 /* PLUS and MULT can appear in special ways
378 as the result of attempts to make an address usable for indexing.
379 Usually they are dealt with by calling force_operand, below.
380 But a sum containing constant terms is special
381 if removing them makes the sum a valid address:
382 then we generate that address in a register
383 and index off of it. We do this because it often makes
384 shorter code, and because the addresses thus generated
385 in registers often become common subexpressions. */
386 if (GET_CODE (x) == PLUS)
388 rtx constant_term = const0_rtx;
389 rtx y = eliminate_constant_term (x, &constant_term);
390 if (constant_term == const0_rtx
391 || ! memory_address_p (mode, y))
392 x = force_operand (x, NULL_RTX);
393 else
395 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
396 if (! memory_address_p (mode, y))
397 x = force_operand (x, NULL_RTX);
398 else
399 x = y;
403 if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
404 x = force_operand (x, NULL_RTX);
406 /* If we have a register that's an invalid address,
407 it must be a hard reg of the wrong class. Copy it to a pseudo. */
408 else if (GET_CODE (x) == REG)
409 x = copy_to_reg (x);
411 /* Last resort: copy the value to a register, since
412 the register is a valid address. */
413 else
414 x = force_reg (Pmode, x);
416 goto done;
418 win2:
419 x = oldx;
420 win:
421 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
422 /* Don't copy an addr via a reg if it is one of our stack slots. */
423 && ! (GET_CODE (x) == PLUS
424 && (XEXP (x, 0) == virtual_stack_vars_rtx
425 || XEXP (x, 0) == virtual_incoming_args_rtx)))
427 if (general_operand (x, Pmode))
428 x = force_reg (Pmode, x);
429 else
430 x = force_operand (x, NULL_RTX);
434 done:
436 /* If we didn't change the address, we are done. Otherwise, mark
437 a reg as a pointer if we have REG or REG + CONST_INT. */
438 if (oldx == x)
439 return x;
440 else if (GET_CODE (x) == REG)
441 mark_reg_pointer (x);
442 else if (GET_CODE (x) == PLUS
443 && GET_CODE (XEXP (x, 0)) == REG
444 && GET_CODE (XEXP (x, 1)) == CONST_INT)
445 mark_reg_pointer (XEXP (x, 0));
447 /* OLDX may have been the address on a temporary. Update the address
448 to indicate that X is now used. */
449 update_temp_slot_address (oldx, x);
451 return x;
454 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
457 memory_address_noforce (mode, x)
458 enum machine_mode mode;
459 rtx x;
461 int ambient_force_addr = flag_force_addr;
462 rtx val;
464 flag_force_addr = 0;
465 val = memory_address (mode, x);
466 flag_force_addr = ambient_force_addr;
467 return val;
470 /* Convert a mem ref into one with a valid memory address.
471 Pass through anything else unchanged. */
474 validize_mem (ref)
475 rtx ref;
477 if (GET_CODE (ref) != MEM)
478 return ref;
479 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
480 return ref;
481 /* Don't alter REF itself, since that is probably a stack slot. */
482 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
485 /* Return a modified copy of X with its memory address copied
486 into a temporary register to protect it from side effects.
487 If X is not a MEM, it is returned unchanged (and not copied).
488 Perhaps even if it is a MEM, if there is no need to change it. */
491 stabilize (x)
492 rtx x;
494 register rtx addr;
495 if (GET_CODE (x) != MEM)
496 return x;
497 addr = XEXP (x, 0);
498 if (rtx_unstable_p (addr))
500 rtx temp = copy_all_regs (addr);
501 rtx mem;
502 if (GET_CODE (temp) != REG)
503 temp = copy_to_reg (temp);
504 mem = gen_rtx (MEM, GET_MODE (x), temp);
506 /* Mark returned memref with in_struct if it's in an array or
507 structure. Copy const and volatile from original memref. */
509 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
510 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
511 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
512 return mem;
514 return x;
517 /* Copy the value or contents of X to a new temp reg and return that reg. */
520 copy_to_reg (x)
521 rtx x;
523 register rtx temp = gen_reg_rtx (GET_MODE (x));
525 /* If not an operand, must be an address with PLUS and MULT so
526 do the computation. */
527 if (! general_operand (x, VOIDmode))
528 x = force_operand (x, temp);
530 if (x != temp)
531 emit_move_insn (temp, x);
533 return temp;
536 /* Like copy_to_reg but always give the new register mode Pmode
537 in case X is a constant. */
540 copy_addr_to_reg (x)
541 rtx x;
543 return copy_to_mode_reg (Pmode, x);
546 /* Like copy_to_reg but always give the new register mode MODE
547 in case X is a constant. */
550 copy_to_mode_reg (mode, x)
551 enum machine_mode mode;
552 rtx x;
554 register rtx temp = gen_reg_rtx (mode);
556 /* If not an operand, must be an address with PLUS and MULT so
557 do the computation. */
558 if (! general_operand (x, VOIDmode))
559 x = force_operand (x, temp);
561 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
562 abort ();
563 if (x != temp)
564 emit_move_insn (temp, x);
565 return temp;
568 /* Load X into a register if it is not already one.
569 Use mode MODE for the register.
570 X should be valid for mode MODE, but it may be a constant which
571 is valid for all integer modes; that's why caller must specify MODE.
573 The caller must not alter the value in the register we return,
574 since we mark it as a "constant" register. */
577 force_reg (mode, x)
578 enum machine_mode mode;
579 rtx x;
581 register rtx temp, insn, set;
583 if (GET_CODE (x) == REG)
584 return x;
585 temp = gen_reg_rtx (mode);
586 insn = emit_move_insn (temp, x);
588 /* Let optimizers know that TEMP's value never changes
589 and that X can be substituted for it. Don't get confused
590 if INSN set something else (such as a SUBREG of TEMP). */
591 if (CONSTANT_P (x)
592 && (set = single_set (insn)) != 0
593 && SET_DEST (set) == temp)
595 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
597 if (note)
598 XEXP (note, 0) = x;
599 else
600 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
602 return temp;
605 /* If X is a memory ref, copy its contents to a new temp reg and return
606 that reg. Otherwise, return X. */
609 force_not_mem (x)
610 rtx x;
612 register rtx temp;
613 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
614 return x;
615 temp = gen_reg_rtx (GET_MODE (x));
616 emit_move_insn (temp, x);
617 return temp;
620 /* Copy X to TARGET (if it's nonzero and a reg)
621 or to a new temp reg and return that reg.
622 MODE is the mode to use for X in case it is a constant. */
625 copy_to_suggested_reg (x, target, mode)
626 rtx x, target;
627 enum machine_mode mode;
629 register rtx temp;
631 if (target && GET_CODE (target) == REG)
632 temp = target;
633 else
634 temp = gen_reg_rtx (mode);
636 emit_move_insn (temp, x);
637 return temp;
640 /* Return the mode to use to store a scalar of TYPE and MODE.
641 PUNSIGNEDP points to the signedness of the type and may be adjusted
642 to show what signedness to use on extension operations.
644 FOR_CALL is non-zero if this call is promoting args for a call. */
646 enum machine_mode
647 promote_mode (type, mode, punsignedp, for_call)
648 tree type;
649 enum machine_mode mode;
650 int *punsignedp;
651 int for_call;
653 enum tree_code code = TREE_CODE (type);
654 int unsignedp = *punsignedp;
656 #ifdef PROMOTE_FOR_CALL_ONLY
657 if (! for_call)
658 return mode;
659 #endif
661 switch (code)
663 #ifdef PROMOTE_MODE
664 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
665 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
666 PROMOTE_MODE (mode, unsignedp, type);
667 break;
668 #endif
670 case POINTER_TYPE:
671 break;
674 *punsignedp = unsignedp;
675 return mode;
678 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
679 This pops when ADJUST is positive. ADJUST need not be constant. */
681 void
682 adjust_stack (adjust)
683 rtx adjust;
685 rtx temp;
686 adjust = protect_from_queue (adjust, 0);
688 if (adjust == const0_rtx)
689 return;
691 temp = expand_binop (Pmode,
692 #ifdef STACK_GROWS_DOWNWARD
693 add_optab,
694 #else
695 sub_optab,
696 #endif
697 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
698 OPTAB_LIB_WIDEN);
700 if (temp != stack_pointer_rtx)
701 emit_move_insn (stack_pointer_rtx, temp);
704 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
705 This pushes when ADJUST is positive. ADJUST need not be constant. */
707 void
708 anti_adjust_stack (adjust)
709 rtx adjust;
711 rtx temp;
712 adjust = protect_from_queue (adjust, 0);
714 if (adjust == const0_rtx)
715 return;
717 temp = expand_binop (Pmode,
718 #ifdef STACK_GROWS_DOWNWARD
719 sub_optab,
720 #else
721 add_optab,
722 #endif
723 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
724 OPTAB_LIB_WIDEN);
726 if (temp != stack_pointer_rtx)
727 emit_move_insn (stack_pointer_rtx, temp);
730 /* Round the size of a block to be pushed up to the boundary required
731 by this machine. SIZE is the desired size, which need not be constant. */
734 round_push (size)
735 rtx size;
737 #ifdef STACK_BOUNDARY
738 int align = STACK_BOUNDARY / BITS_PER_UNIT;
739 if (align == 1)
740 return size;
741 if (GET_CODE (size) == CONST_INT)
743 int new = (INTVAL (size) + align - 1) / align * align;
744 if (INTVAL (size) != new)
745 size = GEN_INT (new);
747 else
749 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
750 but we know it can't. So add ourselves and then do TRUNC_DIV_EXPR. */
751 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
752 NULL_RTX, 1, OPTAB_LIB_WIDEN);
753 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
754 NULL_RTX, 1);
755 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
757 #endif /* STACK_BOUNDARY */
758 return size;
761 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
762 to a previously-created save area. If no save area has been allocated,
763 this function will allocate one. If a save area is specified, it
764 must be of the proper mode.
766 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
767 are emitted at the current position. */
769 void
770 emit_stack_save (save_level, psave, after)
771 enum save_level save_level;
772 rtx *psave;
773 rtx after;
775 rtx sa = *psave;
776 /* The default is that we use a move insn and save in a Pmode object. */
777 rtx (*fcn) () = gen_move_insn;
778 enum machine_mode mode = Pmode;
780 /* See if this machine has anything special to do for this kind of save. */
781 switch (save_level)
783 #ifdef HAVE_save_stack_block
784 case SAVE_BLOCK:
785 if (HAVE_save_stack_block)
787 fcn = gen_save_stack_block;
788 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
790 break;
791 #endif
792 #ifdef HAVE_save_stack_function
793 case SAVE_FUNCTION:
794 if (HAVE_save_stack_function)
796 fcn = gen_save_stack_function;
797 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
799 break;
800 #endif
801 #ifdef HAVE_save_stack_nonlocal
802 case SAVE_NONLOCAL:
803 if (HAVE_save_stack_nonlocal)
805 fcn = gen_save_stack_nonlocal;
806 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
808 break;
809 #endif
812 /* If there is no save area and we have to allocate one, do so. Otherwise
813 verify the save area is the proper mode. */
815 if (sa == 0)
817 if (mode != VOIDmode)
819 if (save_level == SAVE_NONLOCAL)
820 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
821 else
822 *psave = sa = gen_reg_rtx (mode);
825 else
827 if (mode == VOIDmode || GET_MODE (sa) != mode)
828 abort ();
831 if (after)
833 rtx seq;
835 start_sequence ();
836 /* We must validize inside the sequence, to ensure that any instructions
837 created by the validize call also get moved to the right place. */
838 if (sa != 0)
839 sa = validize_mem (sa);
840 emit_insn (fcn (sa, stack_pointer_rtx));
841 seq = gen_sequence ();
842 end_sequence ();
843 emit_insn_after (seq, after);
845 else
847 if (sa != 0)
848 sa = validize_mem (sa);
849 emit_insn (fcn (sa, stack_pointer_rtx));
853 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
854 area made by emit_stack_save. If it is zero, we have nothing to do.
856 Put any emitted insns after insn AFTER, if nonzero, otherwise at
857 current position. */
859 void
860 emit_stack_restore (save_level, sa, after)
861 enum save_level save_level;
862 rtx after;
863 rtx sa;
865 /* The default is that we use a move insn. */
866 rtx (*fcn) () = gen_move_insn;
868 /* See if this machine has anything special to do for this kind of save. */
869 switch (save_level)
871 #ifdef HAVE_restore_stack_block
872 case SAVE_BLOCK:
873 if (HAVE_restore_stack_block)
874 fcn = gen_restore_stack_block;
875 break;
876 #endif
877 #ifdef HAVE_restore_stack_function
878 case SAVE_FUNCTION:
879 if (HAVE_restore_stack_function)
880 fcn = gen_restore_stack_function;
881 break;
882 #endif
883 #ifdef HAVE_restore_stack_nonlocal
885 case SAVE_NONLOCAL:
886 if (HAVE_restore_stack_nonlocal)
887 fcn = gen_restore_stack_nonlocal;
888 break;
889 #endif
892 if (sa != 0)
893 sa = validize_mem (sa);
895 if (after)
897 rtx seq;
899 start_sequence ();
900 emit_insn (fcn (stack_pointer_rtx, sa));
901 seq = gen_sequence ();
902 end_sequence ();
903 emit_insn_after (seq, after);
905 else
906 emit_insn (fcn (stack_pointer_rtx, sa));
909 /* Return an rtx representing the address of an area of memory dynamically
910 pushed on the stack. This region of memory is always aligned to
911 a multiple of BIGGEST_ALIGNMENT.
913 Any required stack pointer alignment is preserved.
915 SIZE is an rtx representing the size of the area.
916 TARGET is a place in which the address can be placed.
918 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
921 allocate_dynamic_stack_space (size, target, known_align)
922 rtx size;
923 rtx target;
924 int known_align;
926 /* If we're asking for zero bytes, it doesn't matter what we point
927 to since we can't derefference it. But return a reasonable
928 address anyway. */
929 if (size == const0_rtx)
930 return virtual_stack_dynamic_rtx;
932 /* Otherwise, show we're calling alloca or equivalent. */
933 current_function_calls_alloca = 1;
935 /* Ensure the size is in the proper mode. */
936 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
937 size = convert_to_mode (Pmode, size, 1);
939 /* We will need to ensure that the address we return is aligned to
940 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
941 always know its final value at this point in the compilation (it
942 might depend on the size of the outgoing parameter lists, for
943 example), so we must align the value to be returned in that case.
944 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
945 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
946 We must also do an alignment operation on the returned value if
947 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
949 If we have to align, we must leave space in SIZE for the hole
950 that might result from the alignment operation. */
952 #if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
953 #define MUST_ALIGN
954 #endif
956 #if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
957 #define MUST_ALIGN
958 #endif
960 #ifdef MUST_ALIGN
962 #if 0 /* It turns out we must always make extra space, if MUST_ALIGN
963 because we must always round the address up at the end,
964 because we don't know whether the dynamic offset
965 will mess up the desired alignment. */
966 /* If we have to round the address up regardless of known_align,
967 make extra space regardless, also. */
968 if (known_align % BIGGEST_ALIGNMENT != 0)
969 #endif
971 if (GET_CODE (size) == CONST_INT)
972 size = GEN_INT (INTVAL (size)
973 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
974 else
975 size = expand_binop (Pmode, add_optab, size,
976 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
977 NULL_RTX, 1, OPTAB_LIB_WIDEN);
980 #endif
982 #ifdef SETJMP_VIA_SAVE_AREA
983 /* If setjmp restores regs from a save area in the stack frame,
984 avoid clobbering the reg save area. Note that the offset of
985 virtual_incoming_args_rtx includes the preallocated stack args space.
986 It would be no problem to clobber that, but it's on the wrong side
987 of the old save area. */
989 rtx dynamic_offset
990 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
991 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
992 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
993 NULL_RTX, 1, OPTAB_LIB_WIDEN);
995 #endif /* SETJMP_VIA_SAVE_AREA */
997 /* Round the size to a multiple of the required stack alignment.
998 Since the stack if presumed to be rounded before this allocation,
999 this will maintain the required alignment.
1001 If the stack grows downward, we could save an insn by subtracting
1002 SIZE from the stack pointer and then aligning the stack pointer.
1003 The problem with this is that the stack pointer may be unaligned
1004 between the execution of the subtraction and alignment insns and
1005 some machines do not allow this. Even on those that do, some
1006 signal handlers malfunction if a signal should occur between those
1007 insns. Since this is an extremely rare event, we have no reliable
1008 way of knowing which systems have this problem. So we avoid even
1009 momentarily mis-aligning the stack. */
1011 #ifdef STACK_BOUNDARY
1012 /* If we added a variable amount to SIZE,
1013 we can no longer assume it is aligned. */
1014 #if !defined (SETJMP_VIA_SAVE_AREA) && !defined (MUST_ALIGN)
1015 if (known_align % STACK_BOUNDARY != 0)
1016 #endif
1017 size = round_push (size);
1018 #endif
1020 do_pending_stack_adjust ();
1022 /* Don't use a TARGET that isn't a pseudo. */
1023 if (target == 0 || GET_CODE (target) != REG
1024 || REGNO (target) < FIRST_PSEUDO_REGISTER)
1025 target = gen_reg_rtx (Pmode);
1027 mark_reg_pointer (target);
1029 #ifndef STACK_GROWS_DOWNWARD
1030 emit_move_insn (target, virtual_stack_dynamic_rtx);
1031 #endif
1033 /* Perform the required allocation from the stack. Some systems do
1034 this differently than simply incrementing/decrementing from the
1035 stack pointer. */
1036 #ifdef HAVE_allocate_stack
1037 if (HAVE_allocate_stack)
1039 enum machine_mode mode
1040 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
1042 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1043 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1044 (size, mode)))
1045 size = copy_to_mode_reg (mode, size);
1047 emit_insn (gen_allocate_stack (size));
1049 else
1050 #endif
1051 anti_adjust_stack (size);
1053 #ifdef STACK_GROWS_DOWNWARD
1054 emit_move_insn (target, virtual_stack_dynamic_rtx);
1055 #endif
1057 #ifdef MUST_ALIGN
1058 #if 0 /* Even if we know the stack pointer has enough alignment,
1059 there's no way to tell whether virtual_stack_dynamic_rtx shares that
1060 alignment, so we still need to round the address up. */
1061 if (known_align % BIGGEST_ALIGNMENT != 0)
1062 #endif
1064 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1065 but we know it can't. So add ourselves and then do TRUNC_DIV_EXPR. */
1066 target = expand_binop (Pmode, add_optab, target,
1067 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1068 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1069 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1070 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1071 NULL_RTX, 1);
1072 target = expand_mult (Pmode, target,
1073 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1074 NULL_RTX, 1);
1076 #endif
1078 /* Some systems require a particular insn to refer to the stack
1079 to make the pages exist. */
1080 #ifdef HAVE_probe
1081 if (HAVE_probe)
1082 emit_insn (gen_probe ());
1083 #endif
1085 /* Record the new stack level for nonlocal gotos. */
1086 if (nonlocal_goto_handler_slot != 0)
1087 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1089 return target;
1092 /* Return an rtx representing the register or memory location
1093 in which a scalar value of data type VALTYPE
1094 was returned by a function call to function FUNC.
1095 FUNC is a FUNCTION_DECL node if the precise function is known,
1096 otherwise 0. */
1099 hard_function_value (valtype, func)
1100 tree valtype;
1101 tree func;
1103 rtx val = FUNCTION_VALUE (valtype, func);
1104 if (GET_CODE (val) == REG
1105 && GET_MODE (val) == BLKmode)
1107 int bytes = int_size_in_bytes (valtype);
1108 enum machine_mode tmpmode;
1109 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1110 tmpmode != MAX_MACHINE_MODE;
1111 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1113 /* Have we found a large enough mode? */
1114 if (GET_MODE_SIZE (tmpmode) >= bytes)
1115 break;
1118 /* No suitable mode found. */
1119 if (tmpmode == MAX_MACHINE_MODE)
1120 abort ();
1122 PUT_MODE (val, tmpmode);
1124 return val;
1127 /* Return an rtx representing the register or memory location
1128 in which a scalar value of mode MODE was returned by a library call. */
1131 hard_libcall_value (mode)
1132 enum machine_mode mode;
1134 return LIBCALL_VALUE (mode);
1137 /* Look up the tree code for a given rtx code
1138 to provide the arithmetic operation for REAL_ARITHMETIC.
1139 The function returns an int because the caller may not know
1140 what `enum tree_code' means. */
1143 rtx_to_tree_code (code)
1144 enum rtx_code code;
1146 enum tree_code tcode;
1148 switch (code)
1150 case PLUS:
1151 tcode = PLUS_EXPR;
1152 break;
1153 case MINUS:
1154 tcode = MINUS_EXPR;
1155 break;
1156 case MULT:
1157 tcode = MULT_EXPR;
1158 break;
1159 case DIV:
1160 tcode = RDIV_EXPR;
1161 break;
1162 case SMIN:
1163 tcode = MIN_EXPR;
1164 break;
1165 case SMAX:
1166 tcode = MAX_EXPR;
1167 break;
1168 default:
1169 tcode = LAST_AND_UNUSED_TREE_CODE;
1170 break;
1172 return ((int) tcode);