Do not report -Wnested-extern errors for __FUNCTION__/__PRETTY_FUNCTION__.
[official-gcc.git] / gcc / loop.c
blobd51fff7276f92596cca3a84ad049155b5177f280
1 /* Move constant computations out of loops.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This is the loop optimization pass of the compiler.
22 It finds invariant computations within loops and moves them
23 to the beginning of the loop. Then it identifies basic and
24 general induction variables. Strength reduction is applied to the general
25 induction variables, and induction variable elimination is applied to
26 the basic induction variables.
28 It also finds cases where
29 a register is set within the loop by zero-extending a narrower value
30 and changes these to zero the entire register once before the loop
31 and merely copy the low part within the loop.
33 Most of the complexity is in heuristics to decide when it is worth
34 while to do these things. */
36 #include <stdio.h>
37 #include "config.h"
38 #include "rtl.h"
39 #include "obstack.h"
40 #include "expr.h"
41 #include "insn-config.h"
42 #include "insn-flags.h"
43 #include "regs.h"
44 #include "hard-reg-set.h"
45 #include "recog.h"
46 #include "flags.h"
47 #include "real.h"
48 #include "loop.h"
50 /* Vector mapping INSN_UIDs to luids.
51 The luids are like uids but increase monotonically always.
52 We use them to see whether a jump comes from outside a given loop. */
54 int *uid_luid;
56 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
57 number the insn is contained in. */
59 int *uid_loop_num;
61 /* 1 + largest uid of any insn. */
63 int max_uid_for_loop;
65 /* 1 + luid of last insn. */
67 static int max_luid;
69 /* Number of loops detected in current function. Used as index to the
70 next few tables. */
72 static int max_loop_num;
74 /* Indexed by loop number, contains the first and last insn of each loop. */
76 static rtx *loop_number_loop_starts, *loop_number_loop_ends;
78 /* For each loop, gives the containing loop number, -1 if none. */
80 int *loop_outer_loop;
82 /* Indexed by loop number, contains a nonzero value if the "loop" isn't
83 really a loop (an insn outside the loop branches into it). */
85 static char *loop_invalid;
87 /* Indexed by loop number, links together all LABEL_REFs which refer to
88 code labels outside the loop. Used by routines that need to know all
89 loop exits, such as final_biv_value and final_giv_value.
91 This does not include loop exits due to return instructions. This is
92 because all bivs and givs are pseudos, and hence must be dead after a
93 return, so the presense of a return does not affect any of the
94 optimizations that use this info. It is simpler to just not include return
95 instructions on this list. */
97 rtx *loop_number_exit_labels;
99 /* Holds the number of loop iterations. It is zero if the number could not be
100 calculated. Must be unsigned since the number of iterations can
101 be as high as 2^wordsize-1. For loops with a wider iterator, this number
102 will will be zero if the number of loop iterations is too large for an
103 unsigned integer to hold. */
105 unsigned HOST_WIDE_INT loop_n_iterations;
107 /* Nonzero if there is a subroutine call in the current loop.
108 (unknown_address_altered is also nonzero in this case.) */
110 static int loop_has_call;
112 /* Nonzero if there is a volatile memory reference in the current
113 loop. */
115 static int loop_has_volatile;
117 /* Added loop_continue which is the NOTE_INSN_LOOP_CONT of the
118 current loop. A continue statement will generate a branch to
119 NEXT_INSN (loop_continue). */
121 static rtx loop_continue;
123 /* Indexed by register number, contains the number of times the reg
124 is set during the loop being scanned.
125 During code motion, a negative value indicates a reg that has been
126 made a candidate; in particular -2 means that it is an candidate that
127 we know is equal to a constant and -1 means that it is an candidate
128 not known equal to a constant.
129 After code motion, regs moved have 0 (which is accurate now)
130 while the failed candidates have the original number of times set.
132 Therefore, at all times, == 0 indicates an invariant register;
133 < 0 a conditionally invariant one. */
135 static short *n_times_set;
137 /* Original value of n_times_set; same except that this value
138 is not set negative for a reg whose sets have been made candidates
139 and not set to 0 for a reg that is moved. */
141 static short *n_times_used;
143 /* Index by register number, 1 indicates that the register
144 cannot be moved or strength reduced. */
146 static char *may_not_optimize;
148 /* Nonzero means reg N has already been moved out of one loop.
149 This reduces the desire to move it out of another. */
151 static char *moved_once;
153 /* Array of MEMs that are stored in this loop. If there are too many to fit
154 here, we just turn on unknown_address_altered. */
156 #define NUM_STORES 20
157 static rtx loop_store_mems[NUM_STORES];
159 /* Index of first available slot in above array. */
160 static int loop_store_mems_idx;
162 /* Nonzero if we don't know what MEMs were changed in the current loop.
163 This happens if the loop contains a call (in which case `loop_has_call'
164 will also be set) or if we store into more than NUM_STORES MEMs. */
166 static int unknown_address_altered;
168 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
169 static int num_movables;
171 /* Count of memory write instructions discovered in the loop. */
172 static int num_mem_sets;
174 /* Number of loops contained within the current one, including itself. */
175 static int loops_enclosed;
177 /* Bound on pseudo register number before loop optimization.
178 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
179 int max_reg_before_loop;
181 /* This obstack is used in product_cheap_p to allocate its rtl. It
182 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
183 If we used the same obstack that it did, we would be deallocating
184 that array. */
186 static struct obstack temp_obstack;
188 /* This is where the pointer to the obstack being used for RTL is stored. */
190 extern struct obstack *rtl_obstack;
192 #define obstack_chunk_alloc xmalloc
193 #define obstack_chunk_free free
195 extern char *oballoc ();
197 /* During the analysis of a loop, a chain of `struct movable's
198 is made to record all the movable insns found.
199 Then the entire chain can be scanned to decide which to move. */
201 struct movable
203 rtx insn; /* A movable insn */
204 rtx set_src; /* The expression this reg is set from. */
205 rtx set_dest; /* The destination of this SET. */
206 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
207 of any registers used within the LIBCALL. */
208 int consec; /* Number of consecutive following insns
209 that must be moved with this one. */
210 int regno; /* The register it sets */
211 short lifetime; /* lifetime of that register;
212 may be adjusted when matching movables
213 that load the same value are found. */
214 short savings; /* Number of insns we can move for this reg,
215 including other movables that force this
216 or match this one. */
217 unsigned int cond : 1; /* 1 if only conditionally movable */
218 unsigned int force : 1; /* 1 means MUST move this insn */
219 unsigned int global : 1; /* 1 means reg is live outside this loop */
220 /* If PARTIAL is 1, GLOBAL means something different:
221 that the reg is live outside the range from where it is set
222 to the following label. */
223 unsigned int done : 1; /* 1 inhibits further processing of this */
225 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
226 In particular, moving it does not make it
227 invariant. */
228 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
229 load SRC, rather than copying INSN. */
230 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
231 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
232 that we should avoid changing when clearing
233 the rest of the reg. */
234 struct movable *match; /* First entry for same value */
235 struct movable *forces; /* An insn that must be moved if this is */
236 struct movable *next;
239 FILE *loop_dump_stream;
241 /* Forward declarations. */
243 static void find_and_verify_loops ();
244 static void mark_loop_jump ();
245 static void prescan_loop ();
246 static int reg_in_basic_block_p ();
247 static int consec_sets_invariant_p ();
248 static rtx libcall_other_reg ();
249 static int labels_in_range_p ();
250 static void count_loop_regs_set ();
251 static void note_addr_stored ();
252 static int loop_reg_used_before_p ();
253 static void scan_loop ();
254 static void replace_call_address ();
255 static rtx skip_consec_insns ();
256 static int libcall_benefit ();
257 static void ignore_some_movables ();
258 static void force_movables ();
259 static void combine_movables ();
260 static int rtx_equal_for_loop_p ();
261 static void move_movables ();
262 static void strength_reduce ();
263 static int valid_initial_value_p ();
264 static void find_mem_givs ();
265 static void record_biv ();
266 static void check_final_value ();
267 static void record_giv ();
268 static void update_giv_derive ();
269 static int basic_induction_var ();
270 static rtx simplify_giv_expr ();
271 static int general_induction_var ();
272 static int consec_sets_giv ();
273 static int check_dbra_loop ();
274 static rtx express_from ();
275 static int combine_givs_p ();
276 static void combine_givs ();
277 static int product_cheap_p ();
278 static int maybe_eliminate_biv ();
279 static int maybe_eliminate_biv_1 ();
280 static int last_use_this_basic_block ();
281 static void record_initial ();
282 static void update_reg_last_use ();
284 /* Relative gain of eliminating various kinds of operations. */
285 int add_cost;
286 #if 0
287 int shift_cost;
288 int mult_cost;
289 #endif
291 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
292 copy the value of the strength reduced giv to its original register. */
293 int copy_cost;
295 void
296 init_loop ()
298 char *free_point = (char *) oballoc (1);
299 rtx reg = gen_rtx (REG, word_mode, 0);
300 rtx pow2 = GEN_INT (32);
301 rtx lea;
302 int i;
304 add_cost = rtx_cost (gen_rtx (PLUS, word_mode, reg, reg), SET);
306 /* We multiply by 2 to reconcile the difference in scale between
307 these two ways of computing costs. Otherwise the cost of a copy
308 will be far less than the cost of an add. */
310 copy_cost = 2 * 2;
312 /* Free the objects we just allocated. */
313 obfree (free_point);
315 /* Initialize the obstack used for rtl in product_cheap_p. */
316 gcc_obstack_init (&temp_obstack);
319 /* Entry point of this file. Perform loop optimization
320 on the current function. F is the first insn of the function
321 and DUMPFILE is a stream for output of a trace of actions taken
322 (or 0 if none should be output). */
324 void
325 loop_optimize (f, dumpfile)
326 /* f is the first instruction of a chain of insns for one function */
327 rtx f;
328 FILE *dumpfile;
330 register rtx insn;
331 register int i;
332 rtx end;
333 rtx last_insn;
335 loop_dump_stream = dumpfile;
337 init_recog_no_volatile ();
338 init_alias_analysis ();
340 max_reg_before_loop = max_reg_num ();
342 moved_once = (char *) alloca (max_reg_before_loop);
343 bzero (moved_once, max_reg_before_loop);
345 regs_may_share = 0;
347 /* Count the number of loops. */
349 max_loop_num = 0;
350 for (insn = f; insn; insn = NEXT_INSN (insn))
352 if (GET_CODE (insn) == NOTE
353 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
354 max_loop_num++;
357 /* Don't waste time if no loops. */
358 if (max_loop_num == 0)
359 return;
361 /* Get size to use for tables indexed by uids.
362 Leave some space for labels allocated by find_and_verify_loops. */
363 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
365 uid_luid = (int *) alloca (max_uid_for_loop * sizeof (int));
366 uid_loop_num = (int *) alloca (max_uid_for_loop * sizeof (int));
368 bzero (uid_luid, max_uid_for_loop * sizeof (int));
369 bzero (uid_loop_num, max_uid_for_loop * sizeof (int));
371 /* Allocate tables for recording each loop. We set each entry, so they need
372 not be zeroed. */
373 loop_number_loop_starts = (rtx *) alloca (max_loop_num * sizeof (rtx));
374 loop_number_loop_ends = (rtx *) alloca (max_loop_num * sizeof (rtx));
375 loop_outer_loop = (int *) alloca (max_loop_num * sizeof (int));
376 loop_invalid = (char *) alloca (max_loop_num * sizeof (char));
377 loop_number_exit_labels = (rtx *) alloca (max_loop_num * sizeof (rtx));
379 /* Find and process each loop.
380 First, find them, and record them in order of their beginnings. */
381 find_and_verify_loops (f);
383 /* Now find all register lifetimes. This must be done after
384 find_and_verify_loops, because it might reorder the insns in the
385 function. */
386 reg_scan (f, max_reg_num (), 1);
388 /* See if we went too far. */
389 if (get_max_uid () > max_uid_for_loop)
390 abort ();
392 /* Compute the mapping from uids to luids.
393 LUIDs are numbers assigned to insns, like uids,
394 except that luids increase monotonically through the code.
395 Don't assign luids to line-number NOTEs, so that the distance in luids
396 between two insns is not affected by -g. */
398 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
400 last_insn = insn;
401 if (GET_CODE (insn) != NOTE
402 || NOTE_LINE_NUMBER (insn) <= 0)
403 uid_luid[INSN_UID (insn)] = ++i;
404 else
405 /* Give a line number note the same luid as preceding insn. */
406 uid_luid[INSN_UID (insn)] = i;
409 max_luid = i + 1;
411 /* Don't leave gaps in uid_luid for insns that have been
412 deleted. It is possible that the first or last insn
413 using some register has been deleted by cross-jumping.
414 Make sure that uid_luid for that former insn's uid
415 points to the general area where that insn used to be. */
416 for (i = 0; i < max_uid_for_loop; i++)
418 uid_luid[0] = uid_luid[i];
419 if (uid_luid[0] != 0)
420 break;
422 for (i = 0; i < max_uid_for_loop; i++)
423 if (uid_luid[i] == 0)
424 uid_luid[i] = uid_luid[i - 1];
426 /* Create a mapping from loops to BLOCK tree nodes. */
427 if (flag_unroll_loops && write_symbols != NO_DEBUG)
428 find_loop_tree_blocks ();
430 /* Now scan the loops, last ones first, since this means inner ones are done
431 before outer ones. */
432 for (i = max_loop_num-1; i >= 0; i--)
433 if (! loop_invalid[i] && loop_number_loop_ends[i])
434 scan_loop (loop_number_loop_starts[i], loop_number_loop_ends[i],
435 max_reg_num ());
437 /* If debugging and unrolling loops, we must replicate the tree nodes
438 corresponding to the blocks inside the loop, so that the original one
439 to one mapping will remain. */
440 if (flag_unroll_loops && write_symbols != NO_DEBUG)
441 unroll_block_trees ();
444 /* Optimize one loop whose start is LOOP_START and end is END.
445 LOOP_START is the NOTE_INSN_LOOP_BEG and END is the matching
446 NOTE_INSN_LOOP_END. */
448 /* ??? Could also move memory writes out of loops if the destination address
449 is invariant, the source is invariant, the memory write is not volatile,
450 and if we can prove that no read inside the loop can read this address
451 before the write occurs. If there is a read of this address after the
452 write, then we can also mark the memory read as invariant. */
454 static void
455 scan_loop (loop_start, end, nregs)
456 rtx loop_start, end;
457 int nregs;
459 register int i;
460 register rtx p;
461 /* 1 if we are scanning insns that could be executed zero times. */
462 int maybe_never = 0;
463 /* 1 if we are scanning insns that might never be executed
464 due to a subroutine call which might exit before they are reached. */
465 int call_passed = 0;
466 /* For a rotated loop that is entered near the bottom,
467 this is the label at the top. Otherwise it is zero. */
468 rtx loop_top = 0;
469 /* Jump insn that enters the loop, or 0 if control drops in. */
470 rtx loop_entry_jump = 0;
471 /* Place in the loop where control enters. */
472 rtx scan_start;
473 /* Number of insns in the loop. */
474 int insn_count;
475 int in_libcall = 0;
476 int tem;
477 rtx temp;
478 /* The SET from an insn, if it is the only SET in the insn. */
479 rtx set, set1;
480 /* Chain describing insns movable in current loop. */
481 struct movable *movables = 0;
482 /* Last element in `movables' -- so we can add elements at the end. */
483 struct movable *last_movable = 0;
484 /* Ratio of extra register life span we can justify
485 for saving an instruction. More if loop doesn't call subroutines
486 since in that case saving an insn makes more difference
487 and more registers are available. */
488 int threshold;
489 /* If we have calls, contains the insn in which a register was used
490 if it was used exactly once; contains const0_rtx if it was used more
491 than once. */
492 rtx *reg_single_usage = 0;
494 n_times_set = (short *) alloca (nregs * sizeof (short));
495 n_times_used = (short *) alloca (nregs * sizeof (short));
496 may_not_optimize = (char *) alloca (nregs);
498 /* Determine whether this loop starts with a jump down to a test at
499 the end. This will occur for a small number of loops with a test
500 that is too complex to duplicate in front of the loop.
502 We search for the first insn or label in the loop, skipping NOTEs.
503 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
504 (because we might have a loop executed only once that contains a
505 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
506 (in case we have a degenerate loop).
508 Note that if we mistakenly think that a loop is entered at the top
509 when, in fact, it is entered at the exit test, the only effect will be
510 slightly poorer optimization. Making the opposite error can generate
511 incorrect code. Since very few loops now start with a jump to the
512 exit test, the code here to detect that case is very conservative. */
514 for (p = NEXT_INSN (loop_start);
515 p != end
516 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
517 && (GET_CODE (p) != NOTE
518 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
519 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
520 p = NEXT_INSN (p))
523 scan_start = p;
525 /* Set up variables describing this loop. */
526 prescan_loop (loop_start, end);
527 threshold = (loop_has_call ? 1 : 2) * (1 + n_non_fixed_regs);
529 /* If loop has a jump before the first label,
530 the true entry is the target of that jump.
531 Start scan from there.
532 But record in LOOP_TOP the place where the end-test jumps
533 back to so we can scan that after the end of the loop. */
534 if (GET_CODE (p) == JUMP_INSN)
536 loop_entry_jump = p;
538 /* Loop entry must be unconditional jump (and not a RETURN) */
539 if (simplejump_p (p)
540 && JUMP_LABEL (p) != 0
541 /* Check to see whether the jump actually
542 jumps out of the loop (meaning it's no loop).
543 This case can happen for things like
544 do {..} while (0). If this label was generated previously
545 by loop, we can't tell anything about it and have to reject
546 the loop. */
547 && INSN_UID (JUMP_LABEL (p)) < max_uid_for_loop
548 && INSN_LUID (JUMP_LABEL (p)) >= INSN_LUID (loop_start)
549 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (end))
551 loop_top = next_label (scan_start);
552 scan_start = JUMP_LABEL (p);
556 /* If SCAN_START was an insn created by loop, we don't know its luid
557 as required by loop_reg_used_before_p. So skip such loops. (This
558 test may never be true, but it's best to play it safe.)
560 Also, skip loops where we do not start scanning at a label. This
561 test also rejects loops starting with a JUMP_INSN that failed the
562 test above. */
564 if (INSN_UID (scan_start) >= max_uid_for_loop
565 || GET_CODE (scan_start) != CODE_LABEL)
567 if (loop_dump_stream)
568 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
569 INSN_UID (loop_start), INSN_UID (end));
570 return;
573 /* Count number of times each reg is set during this loop.
574 Set may_not_optimize[I] if it is not safe to move out
575 the setting of register I. If this loop has calls, set
576 reg_single_usage[I]. */
578 bzero (n_times_set, nregs * sizeof (short));
579 bzero (may_not_optimize, nregs);
581 if (loop_has_call)
583 reg_single_usage = (rtx *) alloca (nregs * sizeof (rtx));
584 bzero (reg_single_usage, nregs * sizeof (rtx));
587 count_loop_regs_set (loop_top ? loop_top : loop_start, end,
588 may_not_optimize, reg_single_usage, &insn_count, nregs);
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 may_not_optimize[i] = 1, n_times_set[i] = 1;
592 bcopy (n_times_set, n_times_used, nregs * sizeof (short));
594 if (loop_dump_stream)
596 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
597 INSN_UID (loop_start), INSN_UID (end), insn_count);
598 if (loop_continue)
599 fprintf (loop_dump_stream, "Continue at insn %d.\n",
600 INSN_UID (loop_continue));
603 /* Scan through the loop finding insns that are safe to move.
604 Set n_times_set negative for the reg being set, so that
605 this reg will be considered invariant for subsequent insns.
606 We consider whether subsequent insns use the reg
607 in deciding whether it is worth actually moving.
609 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
610 and therefore it is possible that the insns we are scanning
611 would never be executed. At such times, we must make sure
612 that it is safe to execute the insn once instead of zero times.
613 When MAYBE_NEVER is 0, all insns will be executed at least once
614 so that is not a problem. */
616 p = scan_start;
617 while (1)
619 p = NEXT_INSN (p);
620 /* At end of a straight-in loop, we are done.
621 At end of a loop entered at the bottom, scan the top. */
622 if (p == scan_start)
623 break;
624 if (p == end)
626 if (loop_top != 0)
627 p = NEXT_INSN (loop_top);
628 else
629 break;
630 if (p == scan_start)
631 break;
634 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
635 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
636 in_libcall = 1;
637 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
638 && find_reg_note (p, REG_RETVAL, NULL_RTX))
639 in_libcall = 0;
641 if (GET_CODE (p) == INSN
642 && (set = single_set (p))
643 && GET_CODE (SET_DEST (set)) == REG
644 && ! may_not_optimize[REGNO (SET_DEST (set))])
646 int tem1 = 0;
647 int tem2 = 0;
648 int move_insn = 0;
649 rtx src = SET_SRC (set);
650 rtx dependencies = 0;
652 /* Figure out what to use as a source of this insn. If a REG_EQUIV
653 note is given or if a REG_EQUAL note with a constant operand is
654 specified, use it as the source and mark that we should move
655 this insn by calling emit_move_insn rather that duplicating the
656 insn.
658 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
659 is present. */
660 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
661 if (temp)
662 src = XEXP (temp, 0), move_insn = 1;
663 else
665 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
666 if (temp && CONSTANT_P (XEXP (temp, 0)))
667 src = XEXP (temp, 0), move_insn = 1;
668 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
670 src = XEXP (temp, 0);
671 /* A libcall block can use regs that don't appear in
672 the equivalent expression. To move the libcall,
673 we must move those regs too. */
674 dependencies = libcall_other_reg (p, src);
678 /* Don't try to optimize a register that was made
679 by loop-optimization for an inner loop.
680 We don't know its life-span, so we can't compute the benefit. */
681 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
683 /* In order to move a register, we need to have one of three cases:
684 (1) it is used only in the same basic block as the set
685 (2) it is not a user variable and it is not used in the
686 exit test (this can cause the variable to be used
687 before it is set just like a user-variable).
688 (3) the set is guaranteed to be executed once the loop starts,
689 and the reg is not used until after that. */
690 else if (! ((! maybe_never
691 && ! loop_reg_used_before_p (set, p, loop_start,
692 scan_start, end))
693 || (! REG_USERVAR_P (SET_DEST (PATTERN (p)))
694 && ! REG_LOOP_TEST_P (SET_DEST (PATTERN (p))))
695 || reg_in_basic_block_p (p, SET_DEST (PATTERN (p)))))
697 else if ((tem = invariant_p (src))
698 && (dependencies == 0
699 || (tem2 = invariant_p (dependencies)) != 0)
700 && (n_times_set[REGNO (SET_DEST (set))] == 1
701 || (tem1
702 = consec_sets_invariant_p (SET_DEST (set),
703 n_times_set[REGNO (SET_DEST (set))],
704 p)))
705 /* If the insn can cause a trap (such as divide by zero),
706 can't move it unless it's guaranteed to be executed
707 once loop is entered. Even a function call might
708 prevent the trap insn from being reached
709 (since it might exit!) */
710 && ! ((maybe_never || call_passed)
711 && may_trap_p (src)))
713 register struct movable *m;
714 register int regno = REGNO (SET_DEST (set));
716 /* A potential lossage is where we have a case where two insns
717 can be combined as long as they are both in the loop, but
718 we move one of them outside the loop. For large loops,
719 this can lose. The most common case of this is the address
720 of a function being called.
722 Therefore, if this register is marked as being used exactly
723 once if we are in a loop with calls (a "large loop"), see if
724 we can replace the usage of this register with the source
725 of this SET. If we can, delete this insn.
727 Don't do this if P has a REG_RETVAL note or if we have
728 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
730 if (reg_single_usage && reg_single_usage[regno] != 0
731 && reg_single_usage[regno] != const0_rtx
732 && regno_first_uid[regno] == INSN_UID (p)
733 && (regno_last_uid[regno]
734 == INSN_UID (reg_single_usage[regno]))
735 && n_times_set[REGNO (SET_DEST (set))] == 1
736 && ! side_effects_p (SET_SRC (set))
737 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
738 #ifdef SMALL_REGISTER_CLASSES
739 && ! (GET_CODE (SET_SRC (set)) == REG
740 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)
741 #endif
742 /* This test is not redundant; SET_SRC (set) might be
743 a call-clobbered register and the life of REGNO
744 might span a call. */
745 && ! modified_between_p (SET_SRC (set), p,
746 reg_single_usage[regno])
747 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
748 reg_single_usage[regno]))
750 /* Replace any usage in a REG_EQUAL note. */
751 REG_NOTES (reg_single_usage[regno])
752 = replace_rtx (REG_NOTES (reg_single_usage[regno]),
753 SET_DEST (set), SET_SRC (set));
755 PUT_CODE (p, NOTE);
756 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
757 NOTE_SOURCE_FILE (p) = 0;
758 n_times_set[regno] = 0;
759 continue;
762 m = (struct movable *) alloca (sizeof (struct movable));
763 m->next = 0;
764 m->insn = p;
765 m->set_src = src;
766 m->dependencies = dependencies;
767 m->set_dest = SET_DEST (set);
768 m->force = 0;
769 m->consec = n_times_set[REGNO (SET_DEST (set))] - 1;
770 m->done = 0;
771 m->forces = 0;
772 m->partial = 0;
773 m->move_insn = move_insn;
774 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
775 m->savemode = VOIDmode;
776 m->regno = regno;
777 /* Set M->cond if either invariant_p or consec_sets_invariant_p
778 returned 2 (only conditionally invariant). */
779 m->cond = ((tem | tem1 | tem2) > 1);
780 m->global = (uid_luid[regno_last_uid[regno]] > INSN_LUID (end)
781 || uid_luid[regno_first_uid[regno]] < INSN_LUID (loop_start));
782 m->match = 0;
783 m->lifetime = (uid_luid[regno_last_uid[regno]]
784 - uid_luid[regno_first_uid[regno]]);
785 m->savings = n_times_used[regno];
786 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
787 m->savings += libcall_benefit (p);
788 n_times_set[regno] = move_insn ? -2 : -1;
789 /* Add M to the end of the chain MOVABLES. */
790 if (movables == 0)
791 movables = m;
792 else
793 last_movable->next = m;
794 last_movable = m;
796 if (m->consec > 0)
798 /* Skip this insn, not checking REG_LIBCALL notes. */
799 p = NEXT_INSN (p);
800 /* Skip the consecutive insns, if there are any. */
801 p = skip_consec_insns (p, m->consec);
802 /* Back up to the last insn of the consecutive group. */
803 p = prev_nonnote_insn (p);
805 /* We must now reset m->move_insn, m->is_equiv, and possibly
806 m->set_src to correspond to the effects of all the
807 insns. */
808 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
809 if (temp)
810 m->set_src = XEXP (temp, 0), m->move_insn = 1;
811 else
813 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
814 if (temp && CONSTANT_P (XEXP (temp, 0)))
815 m->set_src = XEXP (temp, 0), m->move_insn = 1;
816 else
817 m->move_insn = 0;
820 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
823 /* If this register is always set within a STRICT_LOW_PART
824 or set to zero, then its high bytes are constant.
825 So clear them outside the loop and within the loop
826 just load the low bytes.
827 We must check that the machine has an instruction to do so.
828 Also, if the value loaded into the register
829 depends on the same register, this cannot be done. */
830 else if (SET_SRC (set) == const0_rtx
831 && GET_CODE (NEXT_INSN (p)) == INSN
832 && (set1 = single_set (NEXT_INSN (p)))
833 && GET_CODE (set1) == SET
834 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
835 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
836 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
837 == SET_DEST (set))
838 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
840 register int regno = REGNO (SET_DEST (set));
841 if (n_times_set[regno] == 2)
843 register struct movable *m;
844 m = (struct movable *) alloca (sizeof (struct movable));
845 m->next = 0;
846 m->insn = p;
847 m->set_dest = SET_DEST (set);
848 m->dependencies = 0;
849 m->force = 0;
850 m->consec = 0;
851 m->done = 0;
852 m->forces = 0;
853 m->move_insn = 0;
854 m->partial = 1;
855 /* If the insn may not be executed on some cycles,
856 we can't clear the whole reg; clear just high part.
857 Not even if the reg is used only within this loop.
858 Consider this:
859 while (1)
860 while (s != t) {
861 if (foo ()) x = *s;
862 use (x);
864 Clearing x before the inner loop could clobber a value
865 being saved from the last time around the outer loop.
866 However, if the reg is not used outside this loop
867 and all uses of the register are in the same
868 basic block as the store, there is no problem.
870 If this insn was made by loop, we don't know its
871 INSN_LUID and hence must make a conservative
872 assumption. */
873 m->global = (INSN_UID (p) >= max_uid_for_loop
874 || (uid_luid[regno_last_uid[regno]]
875 > INSN_LUID (end))
876 || (uid_luid[regno_first_uid[regno]]
877 < INSN_LUID (p))
878 || (labels_in_range_p
879 (p, uid_luid[regno_first_uid[regno]])));
880 if (maybe_never && m->global)
881 m->savemode = GET_MODE (SET_SRC (set1));
882 else
883 m->savemode = VOIDmode;
884 m->regno = regno;
885 m->cond = 0;
886 m->match = 0;
887 m->lifetime = (uid_luid[regno_last_uid[regno]]
888 - uid_luid[regno_first_uid[regno]]);
889 m->savings = 1;
890 n_times_set[regno] = -1;
891 /* Add M to the end of the chain MOVABLES. */
892 if (movables == 0)
893 movables = m;
894 else
895 last_movable->next = m;
896 last_movable = m;
900 /* Past a call insn, we get to insns which might not be executed
901 because the call might exit. This matters for insns that trap.
902 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
903 so they don't count. */
904 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
905 call_passed = 1;
906 /* Past a label or a jump, we get to insns for which we
907 can't count on whether or how many times they will be
908 executed during each iteration. Therefore, we can
909 only move out sets of trivial variables
910 (those not used after the loop). */
911 /* This code appears in three places, once in scan_loop, and twice
912 in strength_reduce. */
913 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
914 /* If we enter the loop in the middle, and scan around to the
915 beginning, don't set maybe_never for that. This must be an
916 unconditional jump, otherwise the code at the top of the
917 loop might never be executed. Unconditional jumps are
918 followed a by barrier then loop end. */
919 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
920 && NEXT_INSN (NEXT_INSN (p)) == end
921 && simplejump_p (p)))
922 maybe_never = 1;
923 /* At the virtual top of a converted loop, insns are again known to
924 be executed: logically, the loop begins here even though the exit
925 code has been duplicated. */
926 else if (GET_CODE (p) == NOTE
927 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
928 maybe_never = call_passed = 0;
931 /* If one movable subsumes another, ignore that other. */
933 ignore_some_movables (movables);
935 /* For each movable insn, see if the reg that it loads
936 leads when it dies right into another conditionally movable insn.
937 If so, record that the second insn "forces" the first one,
938 since the second can be moved only if the first is. */
940 force_movables (movables);
942 /* See if there are multiple movable insns that load the same value.
943 If there are, make all but the first point at the first one
944 through the `match' field, and add the priorities of them
945 all together as the priority of the first. */
947 combine_movables (movables, nregs);
949 /* Now consider each movable insn to decide whether it is worth moving.
950 Store 0 in n_times_set for each reg that is moved. */
952 move_movables (movables, threshold,
953 insn_count, loop_start, end, nregs);
955 /* Now candidates that still are negative are those not moved.
956 Change n_times_set to indicate that those are not actually invariant. */
957 for (i = 0; i < nregs; i++)
958 if (n_times_set[i] < 0)
959 n_times_set[i] = n_times_used[i];
961 if (flag_strength_reduce)
962 strength_reduce (scan_start, end, loop_top,
963 insn_count, loop_start, end);
966 /* Add elements to *OUTPUT to record all the pseudo-regs
967 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
969 void
970 record_excess_regs (in_this, not_in_this, output)
971 rtx in_this, not_in_this;
972 rtx *output;
974 enum rtx_code code;
975 char *fmt;
976 int i;
978 code = GET_CODE (in_this);
980 switch (code)
982 case PC:
983 case CC0:
984 case CONST_INT:
985 case CONST_DOUBLE:
986 case CONST:
987 case SYMBOL_REF:
988 case LABEL_REF:
989 return;
991 case REG:
992 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
993 && ! reg_mentioned_p (in_this, not_in_this))
994 *output = gen_rtx (EXPR_LIST, VOIDmode, in_this, *output);
995 return;
998 fmt = GET_RTX_FORMAT (code);
999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1001 int j;
1003 switch (fmt[i])
1005 case 'E':
1006 for (j = 0; j < XVECLEN (in_this, i); j++)
1007 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1008 break;
1010 case 'e':
1011 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1012 break;
1017 /* Check what regs are referred to in the libcall block ending with INSN,
1018 aside from those mentioned in the equivalent value.
1019 If there are none, return 0.
1020 If there are one or more, return an EXPR_LIST containing all of them. */
1022 static rtx
1023 libcall_other_reg (insn, equiv)
1024 rtx insn, equiv;
1026 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1027 rtx p = XEXP (note, 0);
1028 rtx output = 0;
1030 /* First, find all the regs used in the libcall block
1031 that are not mentioned as inputs to the result. */
1033 while (p != insn)
1035 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1036 || GET_CODE (p) == CALL_INSN)
1037 record_excess_regs (PATTERN (p), equiv, &output);
1038 p = NEXT_INSN (p);
1041 return output;
1044 /* Return 1 if all uses of REG
1045 are between INSN and the end of the basic block. */
1047 static int
1048 reg_in_basic_block_p (insn, reg)
1049 rtx insn, reg;
1051 int regno = REGNO (reg);
1052 rtx p;
1054 if (regno_first_uid[regno] != INSN_UID (insn))
1055 return 0;
1057 /* Search this basic block for the already recorded last use of the reg. */
1058 for (p = insn; p; p = NEXT_INSN (p))
1060 switch (GET_CODE (p))
1062 case NOTE:
1063 break;
1065 case INSN:
1066 case CALL_INSN:
1067 /* Ordinary insn: if this is the last use, we win. */
1068 if (regno_last_uid[regno] == INSN_UID (p))
1069 return 1;
1070 break;
1072 case JUMP_INSN:
1073 /* Jump insn: if this is the last use, we win. */
1074 if (regno_last_uid[regno] == INSN_UID (p))
1075 return 1;
1076 /* Otherwise, it's the end of the basic block, so we lose. */
1077 return 0;
1079 case CODE_LABEL:
1080 case BARRIER:
1081 /* It's the end of the basic block, so we lose. */
1082 return 0;
1086 /* The "last use" doesn't follow the "first use"?? */
1087 abort ();
1090 /* Compute the benefit of eliminating the insns in the block whose
1091 last insn is LAST. This may be a group of insns used to compute a
1092 value directly or can contain a library call. */
1094 static int
1095 libcall_benefit (last)
1096 rtx last;
1098 rtx insn;
1099 int benefit = 0;
1101 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1102 insn != last; insn = NEXT_INSN (insn))
1104 if (GET_CODE (insn) == CALL_INSN)
1105 benefit += 10; /* Assume at least this many insns in a library
1106 routine. */
1107 else if (GET_CODE (insn) == INSN
1108 && GET_CODE (PATTERN (insn)) != USE
1109 && GET_CODE (PATTERN (insn)) != CLOBBER)
1110 benefit++;
1113 return benefit;
1116 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1118 static rtx
1119 skip_consec_insns (insn, count)
1120 rtx insn;
1121 int count;
1123 for (; count > 0; count--)
1125 rtx temp;
1127 /* If first insn of libcall sequence, skip to end. */
1128 /* Do this at start of loop, since INSN is guaranteed to
1129 be an insn here. */
1130 if (GET_CODE (insn) != NOTE
1131 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1132 insn = XEXP (temp, 0);
1134 do insn = NEXT_INSN (insn);
1135 while (GET_CODE (insn) == NOTE);
1138 return insn;
1141 /* Ignore any movable whose insn falls within a libcall
1142 which is part of another movable.
1143 We make use of the fact that the movable for the libcall value
1144 was made later and so appears later on the chain. */
1146 static void
1147 ignore_some_movables (movables)
1148 struct movable *movables;
1150 register struct movable *m, *m1;
1152 for (m = movables; m; m = m->next)
1154 /* Is this a movable for the value of a libcall? */
1155 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1156 if (note)
1158 rtx insn;
1159 /* Check for earlier movables inside that range,
1160 and mark them invalid. We cannot use LUIDs here because
1161 insns created by loop.c for prior loops don't have LUIDs.
1162 Rather than reject all such insns from movables, we just
1163 explicitly check each insn in the libcall (since invariant
1164 libcalls aren't that common). */
1165 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1166 for (m1 = movables; m1 != m; m1 = m1->next)
1167 if (m1->insn == insn)
1168 m1->done = 1;
1173 /* For each movable insn, see if the reg that it loads
1174 leads when it dies right into another conditionally movable insn.
1175 If so, record that the second insn "forces" the first one,
1176 since the second can be moved only if the first is. */
1178 static void
1179 force_movables (movables)
1180 struct movable *movables;
1182 register struct movable *m, *m1;
1183 for (m1 = movables; m1; m1 = m1->next)
1184 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1185 if (!m1->partial && !m1->done)
1187 int regno = m1->regno;
1188 for (m = m1->next; m; m = m->next)
1189 /* ??? Could this be a bug? What if CSE caused the
1190 register of M1 to be used after this insn?
1191 Since CSE does not update regno_last_uid,
1192 this insn M->insn might not be where it dies.
1193 But very likely this doesn't matter; what matters is
1194 that M's reg is computed from M1's reg. */
1195 if (INSN_UID (m->insn) == regno_last_uid[regno]
1196 && !m->done)
1197 break;
1198 if (m != 0 && m->set_src == m1->set_dest
1199 /* If m->consec, m->set_src isn't valid. */
1200 && m->consec == 0)
1201 m = 0;
1203 /* Increase the priority of the moving the first insn
1204 since it permits the second to be moved as well. */
1205 if (m != 0)
1207 m->forces = m1;
1208 m1->lifetime += m->lifetime;
1209 m1->savings += m1->savings;
1214 /* Find invariant expressions that are equal and can be combined into
1215 one register. */
1217 static void
1218 combine_movables (movables, nregs)
1219 struct movable *movables;
1220 int nregs;
1222 register struct movable *m;
1223 char *matched_regs = (char *) alloca (nregs);
1224 enum machine_mode mode;
1226 /* Regs that are set more than once are not allowed to match
1227 or be matched. I'm no longer sure why not. */
1228 /* Perhaps testing m->consec_sets would be more appropriate here? */
1230 for (m = movables; m; m = m->next)
1231 if (m->match == 0 && n_times_used[m->regno] == 1 && !m->partial)
1233 register struct movable *m1;
1234 int regno = m->regno;
1235 rtx reg_note, reg_note1;
1237 bzero (matched_regs, nregs);
1238 matched_regs[regno] = 1;
1240 for (m1 = movables; m1; m1 = m1->next)
1241 if (m != m1 && m1->match == 0 && n_times_used[m1->regno] == 1
1242 /* A reg used outside the loop mustn't be eliminated. */
1243 && !m1->global
1244 /* A reg used for zero-extending mustn't be eliminated. */
1245 && !m1->partial
1246 && (matched_regs[m1->regno]
1249 /* Can combine regs with different modes loaded from the
1250 same constant only if the modes are the same or
1251 if both are integer modes with M wider or the same
1252 width as M1. The check for integer is redundant, but
1253 safe, since the only case of differing destination
1254 modes with equal sources is when both sources are
1255 VOIDmode, i.e., CONST_INT. */
1256 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1257 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1258 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1259 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1260 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1261 /* See if the source of M1 says it matches M. */
1262 && ((GET_CODE (m1->set_src) == REG
1263 && matched_regs[REGNO (m1->set_src)])
1264 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1265 movables))))
1266 && ((m->dependencies == m1->dependencies)
1267 || rtx_equal_p (m->dependencies, m1->dependencies)))
1269 m->lifetime += m1->lifetime;
1270 m->savings += m1->savings;
1271 m1->done = 1;
1272 m1->match = m;
1273 matched_regs[m1->regno] = 1;
1277 /* Now combine the regs used for zero-extension.
1278 This can be done for those not marked `global'
1279 provided their lives don't overlap. */
1281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1282 mode = GET_MODE_WIDER_MODE (mode))
1284 register struct movable *m0 = 0;
1286 /* Combine all the registers for extension from mode MODE.
1287 Don't combine any that are used outside this loop. */
1288 for (m = movables; m; m = m->next)
1289 if (m->partial && ! m->global
1290 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1292 register struct movable *m1;
1293 int first = uid_luid[regno_first_uid[m->regno]];
1294 int last = uid_luid[regno_last_uid[m->regno]];
1296 if (m0 == 0)
1298 /* First one: don't check for overlap, just record it. */
1299 m0 = m;
1300 continue;
1303 /* Make sure they extend to the same mode.
1304 (Almost always true.) */
1305 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1306 continue;
1308 /* We already have one: check for overlap with those
1309 already combined together. */
1310 for (m1 = movables; m1 != m; m1 = m1->next)
1311 if (m1 == m0 || (m1->partial && m1->match == m0))
1312 if (! (uid_luid[regno_first_uid[m1->regno]] > last
1313 || uid_luid[regno_last_uid[m1->regno]] < first))
1314 goto overlap;
1316 /* No overlap: we can combine this with the others. */
1317 m0->lifetime += m->lifetime;
1318 m0->savings += m->savings;
1319 m->done = 1;
1320 m->match = m0;
1322 overlap: ;
1327 /* Return 1 if regs X and Y will become the same if moved. */
1329 static int
1330 regs_match_p (x, y, movables)
1331 rtx x, y;
1332 struct movable *movables;
1334 int xn = REGNO (x);
1335 int yn = REGNO (y);
1336 struct movable *mx, *my;
1338 for (mx = movables; mx; mx = mx->next)
1339 if (mx->regno == xn)
1340 break;
1342 for (my = movables; my; my = my->next)
1343 if (my->regno == yn)
1344 break;
1346 return (mx && my
1347 && ((mx->match == my->match && mx->match != 0)
1348 || mx->match == my
1349 || mx == my->match));
1352 /* Return 1 if X and Y are identical-looking rtx's.
1353 This is the Lisp function EQUAL for rtx arguments.
1355 If two registers are matching movables or a movable register and an
1356 equivalent constant, consider them equal. */
1358 static int
1359 rtx_equal_for_loop_p (x, y, movables)
1360 rtx x, y;
1361 struct movable *movables;
1363 register int i;
1364 register int j;
1365 register struct movable *m;
1366 register enum rtx_code code;
1367 register char *fmt;
1369 if (x == y)
1370 return 1;
1371 if (x == 0 || y == 0)
1372 return 0;
1374 code = GET_CODE (x);
1376 /* If we have a register and a constant, they may sometimes be
1377 equal. */
1378 if (GET_CODE (x) == REG && n_times_set[REGNO (x)] == -2
1379 && CONSTANT_P (y))
1380 for (m = movables; m; m = m->next)
1381 if (m->move_insn && m->regno == REGNO (x)
1382 && rtx_equal_p (m->set_src, y))
1383 return 1;
1385 else if (GET_CODE (y) == REG && n_times_set[REGNO (y)] == -2
1386 && CONSTANT_P (x))
1387 for (m = movables; m; m = m->next)
1388 if (m->move_insn && m->regno == REGNO (y)
1389 && rtx_equal_p (m->set_src, x))
1390 return 1;
1392 /* Otherwise, rtx's of different codes cannot be equal. */
1393 if (code != GET_CODE (y))
1394 return 0;
1396 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1397 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1399 if (GET_MODE (x) != GET_MODE (y))
1400 return 0;
1402 /* These three types of rtx's can be compared nonrecursively. */
1403 if (code == REG)
1404 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1406 if (code == LABEL_REF)
1407 return XEXP (x, 0) == XEXP (y, 0);
1408 if (code == SYMBOL_REF)
1409 return XSTR (x, 0) == XSTR (y, 0);
1411 /* Compare the elements. If any pair of corresponding elements
1412 fail to match, return 0 for the whole things. */
1414 fmt = GET_RTX_FORMAT (code);
1415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1417 switch (fmt[i])
1419 case 'w':
1420 if (XWINT (x, i) != XWINT (y, i))
1421 return 0;
1422 break;
1424 case 'i':
1425 if (XINT (x, i) != XINT (y, i))
1426 return 0;
1427 break;
1429 case 'E':
1430 /* Two vectors must have the same length. */
1431 if (XVECLEN (x, i) != XVECLEN (y, i))
1432 return 0;
1434 /* And the corresponding elements must match. */
1435 for (j = 0; j < XVECLEN (x, i); j++)
1436 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1437 return 0;
1438 break;
1440 case 'e':
1441 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1442 return 0;
1443 break;
1445 case 's':
1446 if (strcmp (XSTR (x, i), XSTR (y, i)))
1447 return 0;
1448 break;
1450 case 'u':
1451 /* These are just backpointers, so they don't matter. */
1452 break;
1454 case '0':
1455 break;
1457 /* It is believed that rtx's at this level will never
1458 contain anything but integers and other rtx's,
1459 except for within LABEL_REFs and SYMBOL_REFs. */
1460 default:
1461 abort ();
1464 return 1;
1467 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1468 insns in INSNS which use thet reference. */
1470 static void
1471 add_label_notes (x, insns)
1472 rtx x;
1473 rtx insns;
1475 enum rtx_code code = GET_CODE (x);
1476 int i, j;
1477 char *fmt;
1478 rtx insn;
1480 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1482 rtx next = next_real_insn (XEXP (x, 0));
1484 /* Don't record labels that refer to dispatch tables.
1485 This is not necessary, since the tablejump references the same label.
1486 And if we did record them, flow.c would make worse code. */
1487 if (next == 0
1488 || ! (GET_CODE (next) == JUMP_INSN
1489 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC)))
1492 for (insn = insns; insn; insn = NEXT_INSN (insn))
1493 if (reg_mentioned_p (XEXP (x, 0), insn))
1494 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL, XEXP (x, 0),
1495 REG_NOTES (insn));
1497 return;
1500 fmt = GET_RTX_FORMAT (code);
1501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1503 if (fmt[i] == 'e')
1504 add_label_notes (XEXP (x, i), insns);
1505 else if (fmt[i] == 'E')
1506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1507 add_label_notes (XVECEXP (x, i, j), insns);
1511 /* Scan MOVABLES, and move the insns that deserve to be moved.
1512 If two matching movables are combined, replace one reg with the
1513 other throughout. */
1515 static void
1516 move_movables (movables, threshold, insn_count, loop_start, end, nregs)
1517 struct movable *movables;
1518 int threshold;
1519 int insn_count;
1520 rtx loop_start;
1521 rtx end;
1522 int nregs;
1524 rtx new_start = 0;
1525 register struct movable *m;
1526 register rtx p;
1527 /* Map of pseudo-register replacements to handle combining
1528 when we move several insns that load the same value
1529 into different pseudo-registers. */
1530 rtx *reg_map = (rtx *) alloca (nregs * sizeof (rtx));
1531 char *already_moved = (char *) alloca (nregs);
1533 bzero (already_moved, nregs);
1534 bzero (reg_map, nregs * sizeof (rtx));
1536 num_movables = 0;
1538 for (m = movables; m; m = m->next)
1540 /* Describe this movable insn. */
1542 if (loop_dump_stream)
1544 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1545 INSN_UID (m->insn), m->regno, m->lifetime);
1546 if (m->consec > 0)
1547 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1548 if (m->cond)
1549 fprintf (loop_dump_stream, "cond ");
1550 if (m->force)
1551 fprintf (loop_dump_stream, "force ");
1552 if (m->global)
1553 fprintf (loop_dump_stream, "global ");
1554 if (m->done)
1555 fprintf (loop_dump_stream, "done ");
1556 if (m->move_insn)
1557 fprintf (loop_dump_stream, "move-insn ");
1558 if (m->match)
1559 fprintf (loop_dump_stream, "matches %d ",
1560 INSN_UID (m->match->insn));
1561 if (m->forces)
1562 fprintf (loop_dump_stream, "forces %d ",
1563 INSN_UID (m->forces->insn));
1566 /* Count movables. Value used in heuristics in strength_reduce. */
1567 num_movables++;
1569 /* Ignore the insn if it's already done (it matched something else).
1570 Otherwise, see if it is now safe to move. */
1572 if (!m->done
1573 && (! m->cond
1574 || (1 == invariant_p (m->set_src)
1575 && (m->dependencies == 0
1576 || 1 == invariant_p (m->dependencies))
1577 && (m->consec == 0
1578 || 1 == consec_sets_invariant_p (m->set_dest,
1579 m->consec + 1,
1580 m->insn))))
1581 && (! m->forces || m->forces->done))
1583 register int regno;
1584 register rtx p;
1585 int savings = m->savings;
1587 /* We have an insn that is safe to move.
1588 Compute its desirability. */
1590 p = m->insn;
1591 regno = m->regno;
1593 if (loop_dump_stream)
1594 fprintf (loop_dump_stream, "savings %d ", savings);
1596 if (moved_once[regno])
1598 insn_count *= 2;
1600 if (loop_dump_stream)
1601 fprintf (loop_dump_stream, "halved since already moved ");
1604 /* An insn MUST be moved if we already moved something else
1605 which is safe only if this one is moved too: that is,
1606 if already_moved[REGNO] is nonzero. */
1608 /* An insn is desirable to move if the new lifetime of the
1609 register is no more than THRESHOLD times the old lifetime.
1610 If it's not desirable, it means the loop is so big
1611 that moving won't speed things up much,
1612 and it is liable to make register usage worse. */
1614 /* It is also desirable to move if it can be moved at no
1615 extra cost because something else was already moved. */
1617 if (already_moved[regno]
1618 || (threshold * savings * m->lifetime) >= insn_count
1619 || (m->forces && m->forces->done
1620 && n_times_used[m->forces->regno] == 1))
1622 int count;
1623 register struct movable *m1;
1624 rtx first;
1626 /* Now move the insns that set the reg. */
1628 if (m->partial && m->match)
1630 rtx newpat, i1;
1631 rtx r1, r2;
1632 /* Find the end of this chain of matching regs.
1633 Thus, we load each reg in the chain from that one reg.
1634 And that reg is loaded with 0 directly,
1635 since it has ->match == 0. */
1636 for (m1 = m; m1->match; m1 = m1->match);
1637 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1638 SET_DEST (PATTERN (m1->insn)));
1639 i1 = emit_insn_before (newpat, loop_start);
1641 /* Mark the moved, invariant reg as being allowed to
1642 share a hard reg with the other matching invariant. */
1643 REG_NOTES (i1) = REG_NOTES (m->insn);
1644 r1 = SET_DEST (PATTERN (m->insn));
1645 r2 = SET_DEST (PATTERN (m1->insn));
1646 regs_may_share = gen_rtx (EXPR_LIST, VOIDmode, r1,
1647 gen_rtx (EXPR_LIST, VOIDmode, r2,
1648 regs_may_share));
1649 delete_insn (m->insn);
1651 if (new_start == 0)
1652 new_start = i1;
1654 if (loop_dump_stream)
1655 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1657 /* If we are to re-generate the item being moved with a
1658 new move insn, first delete what we have and then emit
1659 the move insn before the loop. */
1660 else if (m->move_insn)
1662 rtx i1, temp;
1664 for (count = m->consec; count >= 0; count--)
1666 /* If this is the first insn of a library call sequence,
1667 skip to the end. */
1668 if (GET_CODE (p) != NOTE
1669 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1670 p = XEXP (temp, 0);
1672 /* If this is the last insn of a libcall sequence, then
1673 delete every insn in the sequence except the last.
1674 The last insn is handled in the normal manner. */
1675 if (GET_CODE (p) != NOTE
1676 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1678 temp = XEXP (temp, 0);
1679 while (temp != p)
1680 temp = delete_insn (temp);
1683 p = delete_insn (p);
1686 start_sequence ();
1687 emit_move_insn (m->set_dest, m->set_src);
1688 temp = get_insns ();
1689 end_sequence ();
1691 add_label_notes (m->set_src, temp);
1693 i1 = emit_insns_before (temp, loop_start);
1694 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1695 REG_NOTES (i1)
1696 = gen_rtx (EXPR_LIST,
1697 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1698 m->set_src, REG_NOTES (i1));
1700 if (loop_dump_stream)
1701 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1703 /* The more regs we move, the less we like moving them. */
1704 threshold -= 3;
1706 else
1708 for (count = m->consec; count >= 0; count--)
1710 rtx i1, temp;
1712 /* If first insn of libcall sequence, skip to end. */
1713 /* Do this at start of loop, since p is guaranteed to
1714 be an insn here. */
1715 if (GET_CODE (p) != NOTE
1716 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1717 p = XEXP (temp, 0);
1719 /* If last insn of libcall sequence, move all
1720 insns except the last before the loop. The last
1721 insn is handled in the normal manner. */
1722 if (GET_CODE (p) != NOTE
1723 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1725 rtx fn_address = 0;
1726 rtx fn_reg = 0;
1727 rtx fn_address_insn = 0;
1729 first = 0;
1730 for (temp = XEXP (temp, 0); temp != p;
1731 temp = NEXT_INSN (temp))
1733 rtx body;
1734 rtx n;
1735 rtx next;
1737 if (GET_CODE (temp) == NOTE)
1738 continue;
1740 body = PATTERN (temp);
1742 /* Find the next insn after TEMP,
1743 not counting USE or NOTE insns. */
1744 for (next = NEXT_INSN (temp); next != p;
1745 next = NEXT_INSN (next))
1746 if (! (GET_CODE (next) == INSN
1747 && GET_CODE (PATTERN (next)) == USE)
1748 && GET_CODE (next) != NOTE)
1749 break;
1751 /* If that is the call, this may be the insn
1752 that loads the function address.
1754 Extract the function address from the insn
1755 that loads it into a register.
1756 If this insn was cse'd, we get incorrect code.
1758 So emit a new move insn that copies the
1759 function address into the register that the
1760 call insn will use. flow.c will delete any
1761 redundant stores that we have created. */
1762 if (GET_CODE (next) == CALL_INSN
1763 && GET_CODE (body) == SET
1764 && GET_CODE (SET_DEST (body)) == REG
1765 && (n = find_reg_note (temp, REG_EQUAL,
1766 NULL_RTX)))
1768 fn_reg = SET_SRC (body);
1769 if (GET_CODE (fn_reg) != REG)
1770 fn_reg = SET_DEST (body);
1771 fn_address = XEXP (n, 0);
1772 fn_address_insn = temp;
1774 /* We have the call insn.
1775 If it uses the register we suspect it might,
1776 load it with the correct address directly. */
1777 if (GET_CODE (temp) == CALL_INSN
1778 && fn_address != 0
1779 && reg_referenced_p (fn_reg, body))
1780 emit_insn_after (gen_move_insn (fn_reg,
1781 fn_address),
1782 fn_address_insn);
1784 if (GET_CODE (temp) == CALL_INSN)
1785 i1 = emit_call_insn_before (body, loop_start);
1786 else
1787 i1 = emit_insn_before (body, loop_start);
1788 if (first == 0)
1789 first = i1;
1790 if (temp == fn_address_insn)
1791 fn_address_insn = i1;
1792 REG_NOTES (i1) = REG_NOTES (temp);
1793 delete_insn (temp);
1796 if (m->savemode != VOIDmode)
1798 /* P sets REG to zero; but we should clear only
1799 the bits that are not covered by the mode
1800 m->savemode. */
1801 rtx reg = m->set_dest;
1802 rtx sequence;
1803 rtx tem;
1805 start_sequence ();
1806 tem = expand_binop
1807 (GET_MODE (reg), and_optab, reg,
1808 GEN_INT ((((HOST_WIDE_INT) 1
1809 << GET_MODE_BITSIZE (m->savemode)))
1810 - 1),
1811 reg, 1, OPTAB_LIB_WIDEN);
1812 if (tem == 0)
1813 abort ();
1814 if (tem != reg)
1815 emit_move_insn (reg, tem);
1816 sequence = gen_sequence ();
1817 end_sequence ();
1818 i1 = emit_insn_before (sequence, loop_start);
1820 else if (GET_CODE (p) == CALL_INSN)
1821 i1 = emit_call_insn_before (PATTERN (p), loop_start);
1822 else
1823 i1 = emit_insn_before (PATTERN (p), loop_start);
1825 REG_NOTES (i1) = REG_NOTES (p);
1827 /* If there is a REG_EQUAL note present whose value is
1828 not loop invariant, then delete it, since it may
1829 cause problems with later optimization passes.
1830 It is possible for cse to create such notes
1831 like this as a result of record_jump_cond. */
1833 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
1834 && ! invariant_p (XEXP (temp, 0)))
1835 remove_note (i1, temp);
1837 if (new_start == 0)
1838 new_start = i1;
1840 if (loop_dump_stream)
1841 fprintf (loop_dump_stream, " moved to %d",
1842 INSN_UID (i1));
1844 #if 0
1845 /* This isn't needed because REG_NOTES is copied
1846 below and is wrong since P might be a PARALLEL. */
1847 if (REG_NOTES (i1) == 0
1848 && ! m->partial /* But not if it's a zero-extend clr. */
1849 && ! m->global /* and not if used outside the loop
1850 (since it might get set outside). */
1851 && CONSTANT_P (SET_SRC (PATTERN (p))))
1852 REG_NOTES (i1)
1853 = gen_rtx (EXPR_LIST, REG_EQUAL,
1854 SET_SRC (PATTERN (p)), REG_NOTES (i1));
1855 #endif
1857 /* If library call, now fix the REG_NOTES that contain
1858 insn pointers, namely REG_LIBCALL on FIRST
1859 and REG_RETVAL on I1. */
1860 if (temp = find_reg_note (i1, REG_RETVAL, NULL_RTX))
1862 XEXP (temp, 0) = first;
1863 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
1864 XEXP (temp, 0) = i1;
1867 delete_insn (p);
1868 do p = NEXT_INSN (p);
1869 while (p && GET_CODE (p) == NOTE);
1872 /* The more regs we move, the less we like moving them. */
1873 threshold -= 3;
1876 /* Any other movable that loads the same register
1877 MUST be moved. */
1878 already_moved[regno] = 1;
1880 /* This reg has been moved out of one loop. */
1881 moved_once[regno] = 1;
1883 /* The reg set here is now invariant. */
1884 if (! m->partial)
1885 n_times_set[regno] = 0;
1887 m->done = 1;
1889 /* Change the length-of-life info for the register
1890 to say it lives at least the full length of this loop.
1891 This will help guide optimizations in outer loops. */
1893 if (uid_luid[regno_first_uid[regno]] > INSN_LUID (loop_start))
1894 /* This is the old insn before all the moved insns.
1895 We can't use the moved insn because it is out of range
1896 in uid_luid. Only the old insns have luids. */
1897 regno_first_uid[regno] = INSN_UID (loop_start);
1898 if (uid_luid[regno_last_uid[regno]] < INSN_LUID (end))
1899 regno_last_uid[regno] = INSN_UID (end);
1901 /* Combine with this moved insn any other matching movables. */
1903 if (! m->partial)
1904 for (m1 = movables; m1; m1 = m1->next)
1905 if (m1->match == m)
1907 rtx temp;
1909 /* Schedule the reg loaded by M1
1910 for replacement so that shares the reg of M.
1911 If the modes differ (only possible in restricted
1912 circumstances, make a SUBREG. */
1913 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
1914 reg_map[m1->regno] = m->set_dest;
1915 else
1916 reg_map[m1->regno]
1917 = gen_lowpart_common (GET_MODE (m1->set_dest),
1918 m->set_dest);
1920 /* Get rid of the matching insn
1921 and prevent further processing of it. */
1922 m1->done = 1;
1924 /* if library call, delete all insn except last, which
1925 is deleted below */
1926 if (temp = find_reg_note (m1->insn, REG_RETVAL,
1927 NULL_RTX))
1929 for (temp = XEXP (temp, 0); temp != m1->insn;
1930 temp = NEXT_INSN (temp))
1931 delete_insn (temp);
1933 delete_insn (m1->insn);
1935 /* Any other movable that loads the same register
1936 MUST be moved. */
1937 already_moved[m1->regno] = 1;
1939 /* The reg merged here is now invariant,
1940 if the reg it matches is invariant. */
1941 if (! m->partial)
1942 n_times_set[m1->regno] = 0;
1945 else if (loop_dump_stream)
1946 fprintf (loop_dump_stream, "not desirable");
1948 else if (loop_dump_stream && !m->match)
1949 fprintf (loop_dump_stream, "not safe");
1951 if (loop_dump_stream)
1952 fprintf (loop_dump_stream, "\n");
1955 if (new_start == 0)
1956 new_start = loop_start;
1958 /* Go through all the instructions in the loop, making
1959 all the register substitutions scheduled in REG_MAP. */
1960 for (p = new_start; p != end; p = NEXT_INSN (p))
1961 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1962 || GET_CODE (p) == CALL_INSN)
1964 replace_regs (PATTERN (p), reg_map, nregs, 0);
1965 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
1966 INSN_CODE (p) = -1;
1970 #if 0
1971 /* Scan X and replace the address of any MEM in it with ADDR.
1972 REG is the address that MEM should have before the replacement. */
1974 static void
1975 replace_call_address (x, reg, addr)
1976 rtx x, reg, addr;
1978 register enum rtx_code code;
1979 register int i;
1980 register char *fmt;
1982 if (x == 0)
1983 return;
1984 code = GET_CODE (x);
1985 switch (code)
1987 case PC:
1988 case CC0:
1989 case CONST_INT:
1990 case CONST_DOUBLE:
1991 case CONST:
1992 case SYMBOL_REF:
1993 case LABEL_REF:
1994 case REG:
1995 return;
1997 case SET:
1998 /* Short cut for very common case. */
1999 replace_call_address (XEXP (x, 1), reg, addr);
2000 return;
2002 case CALL:
2003 /* Short cut for very common case. */
2004 replace_call_address (XEXP (x, 0), reg, addr);
2005 return;
2007 case MEM:
2008 /* If this MEM uses a reg other than the one we expected,
2009 something is wrong. */
2010 if (XEXP (x, 0) != reg)
2011 abort ();
2012 XEXP (x, 0) = addr;
2013 return;
2016 fmt = GET_RTX_FORMAT (code);
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2019 if (fmt[i] == 'e')
2020 replace_call_address (XEXP (x, i), reg, addr);
2021 if (fmt[i] == 'E')
2023 register int j;
2024 for (j = 0; j < XVECLEN (x, i); j++)
2025 replace_call_address (XVECEXP (x, i, j), reg, addr);
2029 #endif
2031 /* Return the number of memory refs to addresses that vary
2032 in the rtx X. */
2034 static int
2035 count_nonfixed_reads (x)
2036 rtx x;
2038 register enum rtx_code code;
2039 register int i;
2040 register char *fmt;
2041 int value;
2043 if (x == 0)
2044 return 0;
2046 code = GET_CODE (x);
2047 switch (code)
2049 case PC:
2050 case CC0:
2051 case CONST_INT:
2052 case CONST_DOUBLE:
2053 case CONST:
2054 case SYMBOL_REF:
2055 case LABEL_REF:
2056 case REG:
2057 return 0;
2059 case MEM:
2060 return ((invariant_p (XEXP (x, 0)) != 1)
2061 + count_nonfixed_reads (XEXP (x, 0)));
2064 value = 0;
2065 fmt = GET_RTX_FORMAT (code);
2066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2068 if (fmt[i] == 'e')
2069 value += count_nonfixed_reads (XEXP (x, i));
2070 if (fmt[i] == 'E')
2072 register int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 value += count_nonfixed_reads (XVECEXP (x, i, j));
2077 return value;
2081 #if 0
2082 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2083 Replace it with an instruction to load just the low bytes
2084 if the machine supports such an instruction,
2085 and insert above LOOP_START an instruction to clear the register. */
2087 static void
2088 constant_high_bytes (p, loop_start)
2089 rtx p, loop_start;
2091 register rtx new;
2092 register int insn_code_number;
2094 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2095 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2097 new = gen_rtx (SET, VOIDmode,
2098 gen_rtx (STRICT_LOW_PART, VOIDmode,
2099 gen_rtx (SUBREG, GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2100 SET_DEST (PATTERN (p)),
2101 0)),
2102 XEXP (SET_SRC (PATTERN (p)), 0));
2103 insn_code_number = recog (new, p);
2105 if (insn_code_number)
2107 register int i;
2109 /* Clear destination register before the loop. */
2110 emit_insn_before (gen_rtx (SET, VOIDmode,
2111 SET_DEST (PATTERN (p)),
2112 const0_rtx),
2113 loop_start);
2115 /* Inside the loop, just load the low part. */
2116 PATTERN (p) = new;
2119 #endif
2121 /* Scan a loop setting the variables `unknown_address_altered',
2122 `num_mem_sets', `loop_continue', loops_enclosed', `loop_has_call',
2123 and `loop_has_volatile'.
2124 Also, fill in the array `loop_store_mems'. */
2126 static void
2127 prescan_loop (start, end)
2128 rtx start, end;
2130 register int level = 1;
2131 register rtx insn;
2133 unknown_address_altered = 0;
2134 loop_has_call = 0;
2135 loop_has_volatile = 0;
2136 loop_store_mems_idx = 0;
2138 num_mem_sets = 0;
2139 loops_enclosed = 1;
2140 loop_continue = 0;
2142 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2143 insn = NEXT_INSN (insn))
2145 if (GET_CODE (insn) == NOTE)
2147 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2149 ++level;
2150 /* Count number of loops contained in this one. */
2151 loops_enclosed++;
2153 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2155 --level;
2156 if (level == 0)
2158 end = insn;
2159 break;
2162 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2164 if (level == 1)
2165 loop_continue = insn;
2168 else if (GET_CODE (insn) == CALL_INSN)
2170 unknown_address_altered = 1;
2171 loop_has_call = 1;
2173 else
2175 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2177 if (volatile_refs_p (PATTERN (insn)))
2178 loop_has_volatile = 1;
2180 note_stores (PATTERN (insn), note_addr_stored);
2186 /* Scan the function looking for loops. Record the start and end of each loop.
2187 Also mark as invalid loops any loops that contain a setjmp or are branched
2188 to from outside the loop. */
2190 static void
2191 find_and_verify_loops (f)
2192 rtx f;
2194 rtx insn, label;
2195 int current_loop = -1;
2196 int next_loop = -1;
2197 int loop;
2199 /* If there are jumps to undefined labels,
2200 treat them as jumps out of any/all loops.
2201 This also avoids writing past end of tables when there are no loops. */
2202 uid_loop_num[0] = -1;
2204 /* Find boundaries of loops, mark which loops are contained within
2205 loops, and invalidate loops that have setjmp. */
2207 for (insn = f; insn; insn = NEXT_INSN (insn))
2209 if (GET_CODE (insn) == NOTE)
2210 switch (NOTE_LINE_NUMBER (insn))
2212 case NOTE_INSN_LOOP_BEG:
2213 loop_number_loop_starts[++next_loop] = insn;
2214 loop_number_loop_ends[next_loop] = 0;
2215 loop_outer_loop[next_loop] = current_loop;
2216 loop_invalid[next_loop] = 0;
2217 loop_number_exit_labels[next_loop] = 0;
2218 current_loop = next_loop;
2219 break;
2221 case NOTE_INSN_SETJMP:
2222 /* In this case, we must invalidate our current loop and any
2223 enclosing loop. */
2224 for (loop = current_loop; loop != -1; loop = loop_outer_loop[loop])
2226 loop_invalid[loop] = 1;
2227 if (loop_dump_stream)
2228 fprintf (loop_dump_stream,
2229 "\nLoop at %d ignored due to setjmp.\n",
2230 INSN_UID (loop_number_loop_starts[loop]));
2232 break;
2234 case NOTE_INSN_LOOP_END:
2235 if (current_loop == -1)
2236 abort ();
2238 loop_number_loop_ends[current_loop] = insn;
2239 current_loop = loop_outer_loop[current_loop];
2240 break;
2244 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2245 enclosing loop, but this doesn't matter. */
2246 uid_loop_num[INSN_UID (insn)] = current_loop;
2249 /* Any loop containing a label used in an initializer must be invalidated,
2250 because it can be jumped into from anywhere. */
2252 for (label = forced_labels; label; label = XEXP (label, 1))
2254 int loop_num;
2256 for (loop_num = uid_loop_num[INSN_UID (XEXP (label, 0))];
2257 loop_num != -1;
2258 loop_num = loop_outer_loop[loop_num])
2259 loop_invalid[loop_num] = 1;
2262 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2263 loop that it is not contained within, that loop is marked invalid.
2264 If any INSN or CALL_INSN uses a label's address, then the loop containing
2265 that label is marked invalid, because it could be jumped into from
2266 anywhere.
2268 Also look for blocks of code ending in an unconditional branch that
2269 exits the loop. If such a block is surrounded by a conditional
2270 branch around the block, move the block elsewhere (see below) and
2271 invert the jump to point to the code block. This may eliminate a
2272 label in our loop and will simplify processing by both us and a
2273 possible second cse pass. */
2275 for (insn = f; insn; insn = NEXT_INSN (insn))
2276 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2278 int this_loop_num = uid_loop_num[INSN_UID (insn)];
2280 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2282 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2283 if (note)
2285 int loop_num;
2287 for (loop_num = uid_loop_num[INSN_UID (XEXP (note, 0))];
2288 loop_num != -1;
2289 loop_num = loop_outer_loop[loop_num])
2290 loop_invalid[loop_num] = 1;
2294 if (GET_CODE (insn) != JUMP_INSN)
2295 continue;
2297 mark_loop_jump (PATTERN (insn), this_loop_num);
2299 /* See if this is an unconditional branch outside the loop. */
2300 if (this_loop_num != -1
2301 && (GET_CODE (PATTERN (insn)) == RETURN
2302 || (simplejump_p (insn)
2303 && (uid_loop_num[INSN_UID (JUMP_LABEL (insn))]
2304 != this_loop_num)))
2305 && get_max_uid () < max_uid_for_loop)
2307 rtx p;
2308 rtx our_next = next_real_insn (insn);
2310 /* Go backwards until we reach the start of the loop, a label,
2311 or a JUMP_INSN. */
2312 for (p = PREV_INSN (insn);
2313 GET_CODE (p) != CODE_LABEL
2314 && ! (GET_CODE (p) == NOTE
2315 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2316 && GET_CODE (p) != JUMP_INSN;
2317 p = PREV_INSN (p))
2320 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2321 we have a block of code to try to move.
2323 We look backward and then forward from the target of INSN
2324 to find a BARRIER at the same loop depth as the target.
2325 If we find such a BARRIER, we make a new label for the start
2326 of the block, invert the jump in P and point it to that label,
2327 and move the block of code to the spot we found. */
2329 if (GET_CODE (p) == JUMP_INSN
2330 && JUMP_LABEL (p) != 0
2331 /* Just ignore jumps to labels that were never emitted.
2332 These always indicate compilation errors. */
2333 && INSN_UID (JUMP_LABEL (p)) != 0
2334 && condjump_p (p)
2335 && ! simplejump_p (p)
2336 && next_real_insn (JUMP_LABEL (p)) == our_next)
2338 rtx target
2339 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2340 int target_loop_num = uid_loop_num[INSN_UID (target)];
2341 rtx loc;
2343 for (loc = target; loc; loc = PREV_INSN (loc))
2344 if (GET_CODE (loc) == BARRIER
2345 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2346 break;
2348 if (loc == 0)
2349 for (loc = target; loc; loc = NEXT_INSN (loc))
2350 if (GET_CODE (loc) == BARRIER
2351 && uid_loop_num[INSN_UID (loc)] == target_loop_num)
2352 break;
2354 if (loc)
2356 rtx cond_label = JUMP_LABEL (p);
2357 rtx new_label = get_label_after (p);
2359 /* Ensure our label doesn't go away. */
2360 LABEL_NUSES (cond_label)++;
2362 /* Verify that uid_loop_num is large enough and that
2363 we can invert P. */
2364 if (invert_jump (p, new_label))
2366 rtx q, r;
2368 /* Include the BARRIER after INSN and copy the
2369 block after LOC. */
2370 new_label = squeeze_notes (new_label, NEXT_INSN (insn));
2371 reorder_insns (new_label, NEXT_INSN (insn), loc);
2373 /* All those insns are now in TARGET_LOOP_NUM. */
2374 for (q = new_label; q != NEXT_INSN (NEXT_INSN (insn));
2375 q = NEXT_INSN (q))
2376 uid_loop_num[INSN_UID (q)] = target_loop_num;
2378 /* The label jumped to by INSN is no longer a loop exit.
2379 Unless INSN does not have a label (e.g., it is a
2380 RETURN insn), search loop_number_exit_labels to find
2381 its label_ref, and remove it. Also turn off
2382 LABEL_OUTSIDE_LOOP_P bit. */
2383 if (JUMP_LABEL (insn))
2385 for (q = 0,
2386 r = loop_number_exit_labels[this_loop_num];
2387 r; q = r, r = LABEL_NEXTREF (r))
2388 if (XEXP (r, 0) == JUMP_LABEL (insn))
2390 LABEL_OUTSIDE_LOOP_P (r) = 0;
2391 if (q)
2392 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2393 else
2394 loop_number_exit_labels[this_loop_num]
2395 = LABEL_NEXTREF (r);
2396 break;
2399 /* If we didn't find it, then something is wrong. */
2400 if (! r)
2401 abort ();
2404 /* P is now a jump outside the loop, so it must be put
2405 in loop_number_exit_labels, and marked as such.
2406 The easiest way to do this is to just call
2407 mark_loop_jump again for P. */
2408 mark_loop_jump (PATTERN (p), this_loop_num);
2410 /* If INSN now jumps to the insn after it,
2411 delete INSN. */
2412 if (JUMP_LABEL (insn) != 0
2413 && (next_real_insn (JUMP_LABEL (insn))
2414 == next_real_insn (insn)))
2415 delete_insn (insn);
2418 /* Continue the loop after where the conditional
2419 branch used to jump, since the only branch insn
2420 in the block (if it still remains) is an inter-loop
2421 branch and hence needs no processing. */
2422 insn = NEXT_INSN (cond_label);
2424 if (--LABEL_NUSES (cond_label) == 0)
2425 delete_insn (cond_label);
2432 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2433 loops it is contained in, mark the target loop invalid.
2435 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2437 static void
2438 mark_loop_jump (x, loop_num)
2439 rtx x;
2440 int loop_num;
2442 int dest_loop;
2443 int outer_loop;
2444 int i;
2446 switch (GET_CODE (x))
2448 case PC:
2449 case USE:
2450 case CLOBBER:
2451 case REG:
2452 case MEM:
2453 case CONST_INT:
2454 case CONST_DOUBLE:
2455 case RETURN:
2456 return;
2458 case CONST:
2459 /* There could be a label reference in here. */
2460 mark_loop_jump (XEXP (x, 0), loop_num);
2461 return;
2463 case PLUS:
2464 case MINUS:
2465 case MULT:
2466 case LSHIFT:
2467 mark_loop_jump (XEXP (x, 0), loop_num);
2468 mark_loop_jump (XEXP (x, 1), loop_num);
2469 return;
2471 case SIGN_EXTEND:
2472 case ZERO_EXTEND:
2473 mark_loop_jump (XEXP (x, 0), loop_num);
2474 return;
2476 case LABEL_REF:
2477 dest_loop = uid_loop_num[INSN_UID (XEXP (x, 0))];
2479 /* Link together all labels that branch outside the loop. This
2480 is used by final_[bg]iv_value and the loop unrolling code. Also
2481 mark this LABEL_REF so we know that this branch should predict
2482 false. */
2484 if (dest_loop != loop_num && loop_num != -1)
2486 LABEL_OUTSIDE_LOOP_P (x) = 1;
2487 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2488 loop_number_exit_labels[loop_num] = x;
2491 /* If this is inside a loop, but not in the current loop or one enclosed
2492 by it, it invalidates at least one loop. */
2494 if (dest_loop == -1)
2495 return;
2497 /* We must invalidate every nested loop containing the target of this
2498 label, except those that also contain the jump insn. */
2500 for (; dest_loop != -1; dest_loop = loop_outer_loop[dest_loop])
2502 /* Stop when we reach a loop that also contains the jump insn. */
2503 for (outer_loop = loop_num; outer_loop != -1;
2504 outer_loop = loop_outer_loop[outer_loop])
2505 if (dest_loop == outer_loop)
2506 return;
2508 /* If we get here, we know we need to invalidate a loop. */
2509 if (loop_dump_stream && ! loop_invalid[dest_loop])
2510 fprintf (loop_dump_stream,
2511 "\nLoop at %d ignored due to multiple entry points.\n",
2512 INSN_UID (loop_number_loop_starts[dest_loop]));
2514 loop_invalid[dest_loop] = 1;
2516 return;
2518 case SET:
2519 /* If this is not setting pc, ignore. */
2520 if (SET_DEST (x) == pc_rtx)
2521 mark_loop_jump (SET_SRC (x), loop_num);
2522 return;
2524 case IF_THEN_ELSE:
2525 mark_loop_jump (XEXP (x, 1), loop_num);
2526 mark_loop_jump (XEXP (x, 2), loop_num);
2527 return;
2529 case PARALLEL:
2530 case ADDR_VEC:
2531 for (i = 0; i < XVECLEN (x, 0); i++)
2532 mark_loop_jump (XVECEXP (x, 0, i), loop_num);
2533 return;
2535 case ADDR_DIFF_VEC:
2536 for (i = 0; i < XVECLEN (x, 1); i++)
2537 mark_loop_jump (XVECEXP (x, 1, i), loop_num);
2538 return;
2540 default:
2541 /* Treat anything else (such as a symbol_ref)
2542 as a branch out of this loop, but not into any loop. */
2544 if (loop_num != -1)
2546 LABEL_OUTSIDE_LOOP_P (x) = 1;
2547 LABEL_NEXTREF (x) = loop_number_exit_labels[loop_num];
2548 loop_number_exit_labels[loop_num] = x;
2551 return;
2555 /* Return nonzero if there is a label in the range from
2556 insn INSN to and including the insn whose luid is END
2557 INSN must have an assigned luid (i.e., it must not have
2558 been previously created by loop.c). */
2560 static int
2561 labels_in_range_p (insn, end)
2562 rtx insn;
2563 int end;
2565 while (insn && INSN_LUID (insn) <= end)
2567 if (GET_CODE (insn) == CODE_LABEL)
2568 return 1;
2569 insn = NEXT_INSN (insn);
2572 return 0;
2575 /* Record that a memory reference X is being set. */
2577 static void
2578 note_addr_stored (x)
2579 rtx x;
2581 register int i;
2583 if (x == 0 || GET_CODE (x) != MEM)
2584 return;
2586 /* Count number of memory writes.
2587 This affects heuristics in strength_reduce. */
2588 num_mem_sets++;
2590 if (unknown_address_altered)
2591 return;
2593 for (i = 0; i < loop_store_mems_idx; i++)
2594 if (rtx_equal_p (XEXP (loop_store_mems[i], 0), XEXP (x, 0))
2595 && MEM_IN_STRUCT_P (x) == MEM_IN_STRUCT_P (loop_store_mems[i]))
2597 /* We are storing at the same address as previously noted. Save the
2598 wider reference, treating BLKmode as wider. */
2599 if (GET_MODE (x) == BLKmode
2600 || (GET_MODE_SIZE (GET_MODE (x))
2601 > GET_MODE_SIZE (GET_MODE (loop_store_mems[i]))))
2602 loop_store_mems[i] = x;
2603 break;
2606 if (i == NUM_STORES)
2607 unknown_address_altered = 1;
2609 else if (i == loop_store_mems_idx)
2610 loop_store_mems[loop_store_mems_idx++] = x;
2613 /* Return nonzero if the rtx X is invariant over the current loop.
2615 The value is 2 if we refer to something only conditionally invariant.
2617 If `unknown_address_altered' is nonzero, no memory ref is invariant.
2618 Otherwise, a memory ref is invariant if it does not conflict with
2619 anything stored in `loop_store_mems'. */
2622 invariant_p (x)
2623 register rtx x;
2625 register int i;
2626 register enum rtx_code code;
2627 register char *fmt;
2628 int conditional = 0;
2630 if (x == 0)
2631 return 1;
2632 code = GET_CODE (x);
2633 switch (code)
2635 case CONST_INT:
2636 case CONST_DOUBLE:
2637 case SYMBOL_REF:
2638 case CONST:
2639 return 1;
2641 case LABEL_REF:
2642 /* A LABEL_REF is normally invariant, however, if we are unrolling
2643 loops, and this label is inside the loop, then it isn't invariant.
2644 This is because each unrolled copy of the loop body will have
2645 a copy of this label. If this was invariant, then an insn loading
2646 the address of this label into a register might get moved outside
2647 the loop, and then each loop body would end up using the same label.
2649 We don't know the loop bounds here though, so just fail for all
2650 labels. */
2651 if (flag_unroll_loops)
2652 return 0;
2653 else
2654 return 1;
2656 case PC:
2657 case CC0:
2658 case UNSPEC_VOLATILE:
2659 return 0;
2661 case REG:
2662 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
2663 since the reg might be set by initialization within the loop. */
2664 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
2665 return 1;
2666 if (loop_has_call
2667 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
2668 return 0;
2669 if (n_times_set[REGNO (x)] < 0)
2670 return 2;
2671 return n_times_set[REGNO (x)] == 0;
2673 case MEM:
2674 /* Read-only items (such as constants in a constant pool) are
2675 invariant if their address is. */
2676 if (RTX_UNCHANGING_P (x))
2677 break;
2679 /* If we filled the table (or had a subroutine call), any location
2680 in memory could have been clobbered. */
2681 if (unknown_address_altered
2682 /* Don't mess with volatile memory references. */
2683 || MEM_VOLATILE_P (x))
2684 return 0;
2686 /* See if there is any dependence between a store and this load. */
2687 for (i = loop_store_mems_idx - 1; i >= 0; i--)
2688 if (true_dependence (loop_store_mems[i], x))
2689 return 0;
2691 /* It's not invalidated by a store in memory
2692 but we must still verify the address is invariant. */
2693 break;
2695 case ASM_OPERANDS:
2696 /* Don't mess with insns declared volatile. */
2697 if (MEM_VOLATILE_P (x))
2698 return 0;
2701 fmt = GET_RTX_FORMAT (code);
2702 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2704 if (fmt[i] == 'e')
2706 int tem = invariant_p (XEXP (x, i));
2707 if (tem == 0)
2708 return 0;
2709 if (tem == 2)
2710 conditional = 1;
2712 else if (fmt[i] == 'E')
2714 register int j;
2715 for (j = 0; j < XVECLEN (x, i); j++)
2717 int tem = invariant_p (XVECEXP (x, i, j));
2718 if (tem == 0)
2719 return 0;
2720 if (tem == 2)
2721 conditional = 1;
2727 return 1 + conditional;
2731 /* Return nonzero if all the insns in the loop that set REG
2732 are INSN and the immediately following insns,
2733 and if each of those insns sets REG in an invariant way
2734 (not counting uses of REG in them).
2736 The value is 2 if some of these insns are only conditionally invariant.
2738 We assume that INSN itself is the first set of REG
2739 and that its source is invariant. */
2741 static int
2742 consec_sets_invariant_p (reg, n_sets, insn)
2743 int n_sets;
2744 rtx reg, insn;
2746 register rtx p = insn;
2747 register int regno = REGNO (reg);
2748 rtx temp;
2749 /* Number of sets we have to insist on finding after INSN. */
2750 int count = n_sets - 1;
2751 int old = n_times_set[regno];
2752 int value = 0;
2753 int this;
2755 /* If N_SETS hit the limit, we can't rely on its value. */
2756 if (n_sets == 127)
2757 return 0;
2759 n_times_set[regno] = 0;
2761 while (count > 0)
2763 register enum rtx_code code;
2764 rtx set;
2766 p = NEXT_INSN (p);
2767 code = GET_CODE (p);
2769 /* If library call, skip to end of of it. */
2770 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
2771 p = XEXP (temp, 0);
2773 this = 0;
2774 if (code == INSN
2775 && (set = single_set (p))
2776 && GET_CODE (SET_DEST (set)) == REG
2777 && REGNO (SET_DEST (set)) == regno)
2779 this = invariant_p (SET_SRC (set));
2780 if (this != 0)
2781 value |= this;
2782 else if (temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
2784 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
2785 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
2786 notes are OK. */
2787 this = (CONSTANT_P (XEXP (temp, 0))
2788 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
2789 && invariant_p (XEXP (temp, 0))));
2790 if (this != 0)
2791 value |= this;
2794 if (this != 0)
2795 count--;
2796 else if (code != NOTE)
2798 n_times_set[regno] = old;
2799 return 0;
2803 n_times_set[regno] = old;
2804 /* If invariant_p ever returned 2, we return 2. */
2805 return 1 + (value & 2);
2808 #if 0
2809 /* I don't think this condition is sufficient to allow INSN
2810 to be moved, so we no longer test it. */
2812 /* Return 1 if all insns in the basic block of INSN and following INSN
2813 that set REG are invariant according to TABLE. */
2815 static int
2816 all_sets_invariant_p (reg, insn, table)
2817 rtx reg, insn;
2818 short *table;
2820 register rtx p = insn;
2821 register int regno = REGNO (reg);
2823 while (1)
2825 register enum rtx_code code;
2826 p = NEXT_INSN (p);
2827 code = GET_CODE (p);
2828 if (code == CODE_LABEL || code == JUMP_INSN)
2829 return 1;
2830 if (code == INSN && GET_CODE (PATTERN (p)) == SET
2831 && GET_CODE (SET_DEST (PATTERN (p))) == REG
2832 && REGNO (SET_DEST (PATTERN (p))) == regno)
2834 if (!invariant_p (SET_SRC (PATTERN (p)), table))
2835 return 0;
2839 #endif /* 0 */
2841 /* Look at all uses (not sets) of registers in X. For each, if it is
2842 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
2843 a different insn, set USAGE[REGNO] to const0_rtx. */
2845 static void
2846 find_single_use_in_loop (insn, x, usage)
2847 rtx insn;
2848 rtx x;
2849 rtx *usage;
2851 enum rtx_code code = GET_CODE (x);
2852 char *fmt = GET_RTX_FORMAT (code);
2853 int i, j;
2855 if (code == REG)
2856 usage[REGNO (x)]
2857 = (usage[REGNO (x)] != 0 && usage[REGNO (x)] != insn)
2858 ? const0_rtx : insn;
2860 else if (code == SET)
2862 /* Don't count SET_DEST if it is a REG; otherwise count things
2863 in SET_DEST because if a register is partially modified, it won't
2864 show up as a potential movable so we don't care how USAGE is set
2865 for it. */
2866 if (GET_CODE (SET_DEST (x)) != REG)
2867 find_single_use_in_loop (insn, SET_DEST (x), usage);
2868 find_single_use_in_loop (insn, SET_SRC (x), usage);
2870 else
2871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2873 if (fmt[i] == 'e' && XEXP (x, i) != 0)
2874 find_single_use_in_loop (insn, XEXP (x, i), usage);
2875 else if (fmt[i] == 'E')
2876 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2877 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
2881 /* Increment N_TIMES_SET at the index of each register
2882 that is modified by an insn between FROM and TO.
2883 If the value of an element of N_TIMES_SET becomes 127 or more,
2884 stop incrementing it, to avoid overflow.
2886 Store in SINGLE_USAGE[I] the single insn in which register I is
2887 used, if it is only used once. Otherwise, it is set to 0 (for no
2888 uses) or const0_rtx for more than one use. This parameter may be zero,
2889 in which case this processing is not done.
2891 Store in *COUNT_PTR the number of actual instruction
2892 in the loop. We use this to decide what is worth moving out. */
2894 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
2895 In that case, it is the insn that last set reg n. */
2897 static void
2898 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
2899 register rtx from, to;
2900 char *may_not_move;
2901 rtx *single_usage;
2902 int *count_ptr;
2903 int nregs;
2905 register rtx *last_set = (rtx *) alloca (nregs * sizeof (rtx));
2906 register rtx insn;
2907 register int count = 0;
2908 register rtx dest;
2910 bzero (last_set, nregs * sizeof (rtx));
2911 for (insn = from; insn != to; insn = NEXT_INSN (insn))
2913 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2915 ++count;
2917 /* If requested, record registers that have exactly one use. */
2918 if (single_usage)
2920 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
2922 /* Include uses in REG_EQUAL notes. */
2923 if (REG_NOTES (insn))
2924 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
2927 if (GET_CODE (PATTERN (insn)) == CLOBBER
2928 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
2929 /* Don't move a reg that has an explicit clobber.
2930 We might do so sometimes, but it's not worth the pain. */
2931 may_not_move[REGNO (XEXP (PATTERN (insn), 0))] = 1;
2933 if (GET_CODE (PATTERN (insn)) == SET
2934 || GET_CODE (PATTERN (insn)) == CLOBBER)
2936 dest = SET_DEST (PATTERN (insn));
2937 while (GET_CODE (dest) == SUBREG
2938 || GET_CODE (dest) == ZERO_EXTRACT
2939 || GET_CODE (dest) == SIGN_EXTRACT
2940 || GET_CODE (dest) == STRICT_LOW_PART)
2941 dest = XEXP (dest, 0);
2942 if (GET_CODE (dest) == REG)
2944 register int regno = REGNO (dest);
2945 /* If this is the first setting of this reg
2946 in current basic block, and it was set before,
2947 it must be set in two basic blocks, so it cannot
2948 be moved out of the loop. */
2949 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2950 may_not_move[regno] = 1;
2951 /* If this is not first setting in current basic block,
2952 see if reg was used in between previous one and this.
2953 If so, neither one can be moved. */
2954 if (last_set[regno] != 0
2955 && reg_used_between_p (dest, last_set[regno], insn))
2956 may_not_move[regno] = 1;
2957 if (n_times_set[regno] < 127)
2958 ++n_times_set[regno];
2959 last_set[regno] = insn;
2962 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2964 register int i;
2965 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2967 register rtx x = XVECEXP (PATTERN (insn), 0, i);
2968 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
2969 /* Don't move a reg that has an explicit clobber.
2970 It's not worth the pain to try to do it correctly. */
2971 may_not_move[REGNO (XEXP (x, 0))] = 1;
2973 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2975 dest = SET_DEST (x);
2976 while (GET_CODE (dest) == SUBREG
2977 || GET_CODE (dest) == ZERO_EXTRACT
2978 || GET_CODE (dest) == SIGN_EXTRACT
2979 || GET_CODE (dest) == STRICT_LOW_PART)
2980 dest = XEXP (dest, 0);
2981 if (GET_CODE (dest) == REG)
2983 register int regno = REGNO (dest);
2984 if (n_times_set[regno] > 0 && last_set[regno] == 0)
2985 may_not_move[regno] = 1;
2986 if (last_set[regno] != 0
2987 && reg_used_between_p (dest, last_set[regno], insn))
2988 may_not_move[regno] = 1;
2989 if (n_times_set[regno] < 127)
2990 ++n_times_set[regno];
2991 last_set[regno] = insn;
2997 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
2998 bzero (last_set, nregs * sizeof (rtx));
3000 *count_ptr = count;
3003 /* Given a loop that is bounded by LOOP_START and LOOP_END
3004 and that is entered at SCAN_START,
3005 return 1 if the register set in SET contained in insn INSN is used by
3006 any insn that precedes INSN in cyclic order starting
3007 from the loop entry point.
3009 We don't want to use INSN_LUID here because if we restrict INSN to those
3010 that have a valid INSN_LUID, it means we cannot move an invariant out
3011 from an inner loop past two loops. */
3013 static int
3014 loop_reg_used_before_p (set, insn, loop_start, scan_start, loop_end)
3015 rtx set, insn, loop_start, scan_start, loop_end;
3017 rtx reg = SET_DEST (set);
3018 rtx p;
3020 /* Scan forward checking for register usage. If we hit INSN, we
3021 are done. Otherwise, if we hit LOOP_END, wrap around to LOOP_START. */
3022 for (p = scan_start; p != insn; p = NEXT_INSN (p))
3024 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3025 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3026 return 1;
3028 if (p == loop_end)
3029 p = loop_start;
3032 return 0;
3035 /* A "basic induction variable" or biv is a pseudo reg that is set
3036 (within this loop) only by incrementing or decrementing it. */
3037 /* A "general induction variable" or giv is a pseudo reg whose
3038 value is a linear function of a biv. */
3040 /* Bivs are recognized by `basic_induction_var';
3041 Givs by `general_induct_var'. */
3043 /* Indexed by register number, indicates whether or not register is an
3044 induction variable, and if so what type. */
3046 enum iv_mode *reg_iv_type;
3048 /* Indexed by register number, contains pointer to `struct induction'
3049 if register is an induction variable. This holds general info for
3050 all induction variables. */
3052 struct induction **reg_iv_info;
3054 /* Indexed by register number, contains pointer to `struct iv_class'
3055 if register is a basic induction variable. This holds info describing
3056 the class (a related group) of induction variables that the biv belongs
3057 to. */
3059 struct iv_class **reg_biv_class;
3061 /* The head of a list which links together (via the next field)
3062 every iv class for the current loop. */
3064 struct iv_class *loop_iv_list;
3066 /* Communication with routines called via `note_stores'. */
3068 static rtx note_insn;
3070 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3072 static rtx addr_placeholder;
3074 /* ??? Unfinished optimizations, and possible future optimizations,
3075 for the strength reduction code. */
3077 /* ??? There is one more optimization you might be interested in doing: to
3078 allocate pseudo registers for frequently-accessed memory locations.
3079 If the same memory location is referenced each time around, it might
3080 be possible to copy it into a register before and out after.
3081 This is especially useful when the memory location is a variable which
3082 is in a stack slot because somewhere its address is taken. If the
3083 loop doesn't contain a function call and the variable isn't volatile,
3084 it is safe to keep the value in a register for the duration of the
3085 loop. One tricky thing is that the copying of the value back from the
3086 register has to be done on all exits from the loop. You need to check that
3087 all the exits from the loop go to the same place. */
3089 /* ??? The interaction of biv elimination, and recognition of 'constant'
3090 bivs, may cause problems. */
3092 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3093 performance problems.
3095 Perhaps don't eliminate things that can be combined with an addressing
3096 mode. Find all givs that have the same biv, mult_val, and add_val;
3097 then for each giv, check to see if its only use dies in a following
3098 memory address. If so, generate a new memory address and check to see
3099 if it is valid. If it is valid, then store the modified memory address,
3100 otherwise, mark the giv as not done so that it will get its own iv. */
3102 /* ??? Could try to optimize branches when it is known that a biv is always
3103 positive. */
3105 /* ??? When replace a biv in a compare insn, we should replace with closest
3106 giv so that an optimized branch can still be recognized by the combiner,
3107 e.g. the VAX acb insn. */
3109 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3110 was rerun in loop_optimize whenever a register was added or moved.
3111 Also, some of the optimizations could be a little less conservative. */
3113 /* Perform strength reduction and induction variable elimination. */
3115 /* Pseudo registers created during this function will be beyond the last
3116 valid index in several tables including n_times_set and regno_last_uid.
3117 This does not cause a problem here, because the added registers cannot be
3118 givs outside of their loop, and hence will never be reconsidered.
3119 But scan_loop must check regnos to make sure they are in bounds. */
3121 static void
3122 strength_reduce (scan_start, end, loop_top, insn_count,
3123 loop_start, loop_end)
3124 rtx scan_start;
3125 rtx end;
3126 rtx loop_top;
3127 int insn_count;
3128 rtx loop_start;
3129 rtx loop_end;
3131 rtx p;
3132 rtx set;
3133 rtx inc_val;
3134 rtx mult_val;
3135 rtx dest_reg;
3136 /* This is 1 if current insn is not executed at least once for every loop
3137 iteration. */
3138 int not_every_iteration = 0;
3139 /* This is 1 if current insn may be executed more than once for every
3140 loop iteration. */
3141 int maybe_multiple = 0;
3142 /* Temporary list pointers for traversing loop_iv_list. */
3143 struct iv_class *bl, **backbl;
3144 /* Ratio of extra register life span we can justify
3145 for saving an instruction. More if loop doesn't call subroutines
3146 since in that case saving an insn makes more difference
3147 and more registers are available. */
3148 /* ??? could set this to last value of threshold in move_movables */
3149 int threshold = (loop_has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3150 /* Map of pseudo-register replacements. */
3151 rtx *reg_map;
3152 int call_seen;
3153 rtx test;
3154 rtx end_insert_before;
3156 reg_iv_type = (enum iv_mode *) alloca (max_reg_before_loop
3157 * sizeof (enum iv_mode *));
3158 bzero ((char *) reg_iv_type, max_reg_before_loop * sizeof (enum iv_mode *));
3159 reg_iv_info = (struct induction **)
3160 alloca (max_reg_before_loop * sizeof (struct induction *));
3161 bzero ((char *) reg_iv_info, (max_reg_before_loop
3162 * sizeof (struct induction *)));
3163 reg_biv_class = (struct iv_class **)
3164 alloca (max_reg_before_loop * sizeof (struct iv_class *));
3165 bzero ((char *) reg_biv_class, (max_reg_before_loop
3166 * sizeof (struct iv_class *)));
3168 loop_iv_list = 0;
3169 addr_placeholder = gen_reg_rtx (Pmode);
3171 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3172 must be put before this insn, so that they will appear in the right
3173 order (i.e. loop order).
3175 If loop_end is the end of the current function, then emit a
3176 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3177 dummy note insn. */
3178 if (NEXT_INSN (loop_end) != 0)
3179 end_insert_before = NEXT_INSN (loop_end);
3180 else
3181 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3183 /* Scan through loop to find all possible bivs. */
3185 p = scan_start;
3186 while (1)
3188 p = NEXT_INSN (p);
3189 /* At end of a straight-in loop, we are done.
3190 At end of a loop entered at the bottom, scan the top. */
3191 if (p == scan_start)
3192 break;
3193 if (p == end)
3195 if (loop_top != 0)
3196 p = NEXT_INSN (loop_top);
3197 else
3198 break;
3199 if (p == scan_start)
3200 break;
3203 if (GET_CODE (p) == INSN
3204 && (set = single_set (p))
3205 && GET_CODE (SET_DEST (set)) == REG)
3207 dest_reg = SET_DEST (set);
3208 if (REGNO (dest_reg) < max_reg_before_loop
3209 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
3210 && reg_iv_type[REGNO (dest_reg)] != NOT_BASIC_INDUCT)
3212 if (basic_induction_var (SET_SRC (set), dest_reg, p,
3213 &inc_val, &mult_val))
3215 /* It is a possible basic induction variable.
3216 Create and initialize an induction structure for it. */
3218 struct induction *v
3219 = (struct induction *) alloca (sizeof (struct induction));
3221 record_biv (v, p, dest_reg, inc_val, mult_val,
3222 not_every_iteration, maybe_multiple);
3223 reg_iv_type[REGNO (dest_reg)] = BASIC_INDUCT;
3225 else if (REGNO (dest_reg) < max_reg_before_loop)
3226 reg_iv_type[REGNO (dest_reg)] = NOT_BASIC_INDUCT;
3230 /* Past CODE_LABEL, we get to insns that may be executed multiple
3231 times. The only way we can be sure that they can't is if every
3232 every jump insn between here and the end of the loop either
3233 returns, exits the loop, or is a forward jump. */
3235 if (GET_CODE (p) == CODE_LABEL)
3237 rtx insn = p;
3239 maybe_multiple = 0;
3241 while (1)
3243 insn = NEXT_INSN (insn);
3244 if (insn == scan_start)
3245 break;
3246 if (insn == end)
3248 if (loop_top != 0)
3249 insn = NEXT_INSN (loop_top);
3250 else
3251 break;
3252 if (insn == scan_start)
3253 break;
3256 if (GET_CODE (insn) == JUMP_INSN
3257 && GET_CODE (PATTERN (insn)) != RETURN
3258 && (! condjump_p (insn)
3259 || (JUMP_LABEL (insn) != 0
3260 && (INSN_UID (JUMP_LABEL (insn)) >= max_uid_for_loop
3261 || INSN_UID (insn) >= max_uid_for_loop
3262 || (INSN_LUID (JUMP_LABEL (insn))
3263 < INSN_LUID (insn))))))
3265 maybe_multiple = 1;
3266 break;
3271 /* Past a label or a jump, we get to insns for which we can't count
3272 on whether or how many times they will be executed during each
3273 iteration. */
3274 /* This code appears in three places, once in scan_loop, and twice
3275 in strength_reduce. */
3276 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3277 /* If we enter the loop in the middle, and scan around to the
3278 beginning, don't set not_every_iteration for that.
3279 This can be any kind of jump, since we want to know if insns
3280 will be executed if the loop is executed. */
3281 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3282 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3283 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3284 not_every_iteration = 1;
3286 /* At the virtual top of a converted loop, insns are again known to
3287 be executed each iteration: logically, the loop begins here
3288 even though the exit code has been duplicated. */
3290 else if (GET_CODE (p) == NOTE
3291 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3292 not_every_iteration = 0;
3294 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3295 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3296 or not an insn is known to be executed each iteration of the
3297 loop, whether or not any iterations are known to occur.
3299 Therefore, if we have just passed a label and have no more labels
3300 between here and the test insn of the loop, we know these insns
3301 will be executed each iteration. This can also happen if we
3302 have just passed a jump, for example, when there are nested loops. */
3304 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3305 && no_labels_between_p (p, loop_end))
3306 not_every_iteration = 0;
3309 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3310 Make a sanity check against n_times_set. */
3311 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3313 if (reg_iv_type[bl->regno] != BASIC_INDUCT
3314 /* Above happens if register modified by subreg, etc. */
3315 /* Make sure it is not recognized as a basic induction var: */
3316 || n_times_set[bl->regno] != bl->biv_count
3317 /* If never incremented, it is invariant that we decided not to
3318 move. So leave it alone. */
3319 || ! bl->incremented)
3321 if (loop_dump_stream)
3322 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3323 bl->regno,
3324 (reg_iv_type[bl->regno] != BASIC_INDUCT
3325 ? "not induction variable"
3326 : (! bl->incremented ? "never incremented"
3327 : "count error")));
3329 reg_iv_type[bl->regno] = NOT_BASIC_INDUCT;
3330 *backbl = bl->next;
3332 else
3334 backbl = &bl->next;
3336 if (loop_dump_stream)
3337 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3341 /* Exit if there are no bivs. */
3342 if (! loop_iv_list)
3344 /* Can still unroll the loop anyways, but indicate that there is no
3345 strength reduction info available. */
3346 if (flag_unroll_loops)
3347 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 0);
3349 return;
3352 /* Find initial value for each biv by searching backwards from loop_start,
3353 halting at first label. Also record any test condition. */
3355 call_seen = 0;
3356 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3358 note_insn = p;
3360 if (GET_CODE (p) == CALL_INSN)
3361 call_seen = 1;
3363 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3364 || GET_CODE (p) == CALL_INSN)
3365 note_stores (PATTERN (p), record_initial);
3367 /* Record any test of a biv that branches around the loop if no store
3368 between it and the start of loop. We only care about tests with
3369 constants and registers and only certain of those. */
3370 if (GET_CODE (p) == JUMP_INSN
3371 && JUMP_LABEL (p) != 0
3372 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3373 && (test = get_condition_for_loop (p)) != 0
3374 && GET_CODE (XEXP (test, 0)) == REG
3375 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3376 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3377 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3378 && bl->init_insn == 0)
3380 /* If an NE test, we have an initial value! */
3381 if (GET_CODE (test) == NE)
3383 bl->init_insn = p;
3384 bl->init_set = gen_rtx (SET, VOIDmode,
3385 XEXP (test, 0), XEXP (test, 1));
3387 else
3388 bl->initial_test = test;
3392 /* Look at the each biv and see if we can say anything better about its
3393 initial value from any initializing insns set up above. (This is done
3394 in two passes to avoid missing SETs in a PARALLEL.) */
3395 for (bl = loop_iv_list; bl; bl = bl->next)
3397 rtx src;
3399 if (! bl->init_insn)
3400 continue;
3402 src = SET_SRC (bl->init_set);
3404 if (loop_dump_stream)
3405 fprintf (loop_dump_stream,
3406 "Biv %d initialized at insn %d: initial value ",
3407 bl->regno, INSN_UID (bl->init_insn));
3409 if (valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
3411 bl->initial_value = src;
3413 if (loop_dump_stream)
3415 if (GET_CODE (src) == CONST_INT)
3416 fprintf (loop_dump_stream, "%d\n", INTVAL (src));
3417 else
3419 print_rtl (loop_dump_stream, src);
3420 fprintf (loop_dump_stream, "\n");
3424 else
3426 /* Biv initial value is not simple move,
3427 so let it keep initial value of "itself". */
3429 if (loop_dump_stream)
3430 fprintf (loop_dump_stream, "is complex\n");
3434 /* Search the loop for general induction variables. */
3436 /* A register is a giv if: it is only set once, it is a function of a
3437 biv and a constant (or invariant), and it is not a biv. */
3439 not_every_iteration = 0;
3440 p = scan_start;
3441 while (1)
3443 p = NEXT_INSN (p);
3444 /* At end of a straight-in loop, we are done.
3445 At end of a loop entered at the bottom, scan the top. */
3446 if (p == scan_start)
3447 break;
3448 if (p == end)
3450 if (loop_top != 0)
3451 p = NEXT_INSN (loop_top);
3452 else
3453 break;
3454 if (p == scan_start)
3455 break;
3458 /* Look for a general induction variable in a register. */
3459 if (GET_CODE (p) == INSN
3460 && (set = single_set (p))
3461 && GET_CODE (SET_DEST (set)) == REG
3462 && ! may_not_optimize[REGNO (SET_DEST (set))])
3464 rtx src_reg;
3465 rtx add_val;
3466 rtx mult_val;
3467 int benefit;
3468 rtx regnote = 0;
3470 dest_reg = SET_DEST (set);
3471 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
3472 continue;
3474 if (/* SET_SRC is a giv. */
3475 ((benefit = general_induction_var (SET_SRC (set),
3476 &src_reg, &add_val,
3477 &mult_val))
3478 /* Equivalent expression is a giv. */
3479 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
3480 && (benefit = general_induction_var (XEXP (regnote, 0),
3481 &src_reg,
3482 &add_val, &mult_val))))
3483 /* Don't try to handle any regs made by loop optimization.
3484 We have nothing on them in regno_first_uid, etc. */
3485 && REGNO (dest_reg) < max_reg_before_loop
3486 /* Don't recognize a BASIC_INDUCT_VAR here. */
3487 && dest_reg != src_reg
3488 /* This must be the only place where the register is set. */
3489 && (n_times_set[REGNO (dest_reg)] == 1
3490 /* or all sets must be consecutive and make a giv. */
3491 || (benefit = consec_sets_giv (benefit, p,
3492 src_reg, dest_reg,
3493 &add_val, &mult_val))))
3495 int count;
3496 struct induction *v
3497 = (struct induction *) alloca (sizeof (struct induction));
3498 rtx temp;
3500 /* If this is a library call, increase benefit. */
3501 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
3502 benefit += libcall_benefit (p);
3504 /* Skip the consecutive insns, if there are any. */
3505 for (count = n_times_set[REGNO (dest_reg)] - 1;
3506 count > 0; count--)
3508 /* If first insn of libcall sequence, skip to end.
3509 Do this at start of loop, since INSN is guaranteed to
3510 be an insn here. */
3511 if (GET_CODE (p) != NOTE
3512 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3513 p = XEXP (temp, 0);
3515 do p = NEXT_INSN (p);
3516 while (GET_CODE (p) == NOTE);
3519 record_giv (v, p, src_reg, dest_reg, mult_val, add_val, benefit,
3520 DEST_REG, not_every_iteration, NULL_PTR, loop_start,
3521 loop_end);
3526 #ifndef DONT_REDUCE_ADDR
3527 /* Look for givs which are memory addresses. */
3528 /* This resulted in worse code on a VAX 8600. I wonder if it
3529 still does. */
3530 if (GET_CODE (p) == INSN)
3531 find_mem_givs (PATTERN (p), p, not_every_iteration, loop_start,
3532 loop_end);
3533 #endif
3535 /* Update the status of whether giv can derive other givs. This can
3536 change when we pass a label or an insn that updates a biv. */
3537 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3538 || GET_CODE (p) == CODE_LABEL)
3539 update_giv_derive (p);
3541 /* Past a label or a jump, we get to insns for which we can't count
3542 on whether or how many times they will be executed during each
3543 iteration. */
3544 /* This code appears in three places, once in scan_loop, and twice
3545 in strength_reduce. */
3546 if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
3547 /* If we enter the loop in the middle, and scan around
3548 to the beginning, don't set not_every_iteration for that.
3549 This can be any kind of jump, since we want to know if insns
3550 will be executed if the loop is executed. */
3551 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop_top
3552 && ((NEXT_INSN (NEXT_INSN (p)) == loop_end && simplejump_p (p))
3553 || (NEXT_INSN (p) == loop_end && condjump_p (p)))))
3554 not_every_iteration = 1;
3556 /* At the virtual top of a converted loop, insns are again known to
3557 be executed each iteration: logically, the loop begins here
3558 even though the exit code has been duplicated. */
3560 else if (GET_CODE (p) == NOTE
3561 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP)
3562 not_every_iteration = 0;
3564 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3565 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3566 or not an insn is known to be executed each iteration of the
3567 loop, whether or not any iterations are known to occur.
3569 Therefore, if we have just passed a label and have no more labels
3570 between here and the test insn of the loop, we know these insns
3571 will be executed each iteration. */
3573 if (not_every_iteration && GET_CODE (p) == CODE_LABEL
3574 && no_labels_between_p (p, loop_end))
3575 not_every_iteration = 0;
3578 /* Try to calculate and save the number of loop iterations. This is
3579 set to zero if the actual number can not be calculated. This must
3580 be called after all giv's have been identified, since otherwise it may
3581 fail if the iteration variable is a giv. */
3583 loop_n_iterations = loop_iterations (loop_start, loop_end);
3585 /* Now for each giv for which we still don't know whether or not it is
3586 replaceable, check to see if it is replaceable because its final value
3587 can be calculated. This must be done after loop_iterations is called,
3588 so that final_giv_value will work correctly. */
3590 for (bl = loop_iv_list; bl; bl = bl->next)
3592 struct induction *v;
3594 for (v = bl->giv; v; v = v->next_iv)
3595 if (! v->replaceable && ! v->not_replaceable)
3596 check_final_value (v, loop_start, loop_end);
3599 /* Try to prove that the loop counter variable (if any) is always
3600 nonnegative; if so, record that fact with a REG_NONNEG note
3601 so that "decrement and branch until zero" insn can be used. */
3602 check_dbra_loop (loop_end, insn_count, loop_start);
3604 /* Create reg_map to hold substitutions for replaceable giv regs. */
3605 reg_map = (rtx *) alloca (max_reg_before_loop * sizeof (rtx));
3606 bzero ((char *) reg_map, max_reg_before_loop * sizeof (rtx));
3608 /* Examine each iv class for feasibility of strength reduction/induction
3609 variable elimination. */
3611 for (bl = loop_iv_list; bl; bl = bl->next)
3613 struct induction *v;
3614 int benefit;
3615 int all_reduced;
3616 rtx final_value = 0;
3618 /* Test whether it will be possible to eliminate this biv
3619 provided all givs are reduced. This is possible if either
3620 the reg is not used outside the loop, or we can compute
3621 what its final value will be.
3623 For architectures with a decrement_and_branch_until_zero insn,
3624 don't do this if we put a REG_NONNEG note on the endtest for
3625 this biv. */
3627 /* Compare against bl->init_insn rather than loop_start.
3628 We aren't concerned with any uses of the biv between
3629 init_insn and loop_start since these won't be affected
3630 by the value of the biv elsewhere in the function, so
3631 long as init_insn doesn't use the biv itself.
3632 March 14, 1989 -- self@bayes.arc.nasa.gov */
3634 if ((uid_luid[regno_last_uid[bl->regno]] < INSN_LUID (loop_end)
3635 && bl->init_insn
3636 && INSN_UID (bl->init_insn) < max_uid_for_loop
3637 && uid_luid[regno_first_uid[bl->regno]] >= INSN_LUID (bl->init_insn)
3638 #ifdef HAVE_decrement_and_branch_until_zero
3639 && ! bl->nonneg
3640 #endif
3641 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
3642 || ((final_value = final_biv_value (bl, loop_start, loop_end))
3643 #ifdef HAVE_decrement_and_branch_until_zero
3644 && ! bl->nonneg
3645 #endif
3647 bl->eliminable = maybe_eliminate_biv (bl, loop_start, end, 0,
3648 threshold, insn_count);
3649 else
3651 if (loop_dump_stream)
3653 fprintf (loop_dump_stream,
3654 "Cannot eliminate biv %d.\n",
3655 bl->regno);
3656 fprintf (loop_dump_stream,
3657 "First use: insn %d, last use: insn %d.\n",
3658 regno_first_uid[bl->regno],
3659 regno_last_uid[bl->regno]);
3663 /* Combine all giv's for this iv_class. */
3664 combine_givs (bl);
3666 /* This will be true at the end, if all givs which depend on this
3667 biv have been strength reduced.
3668 We can't (currently) eliminate the biv unless this is so. */
3669 all_reduced = 1;
3671 /* Check each giv in this class to see if we will benefit by reducing
3672 it. Skip giv's combined with others. */
3673 for (v = bl->giv; v; v = v->next_iv)
3675 struct induction *tv;
3677 if (v->ignore || v->same)
3678 continue;
3680 benefit = v->benefit;
3682 /* Reduce benefit if not replaceable, since we will insert
3683 a move-insn to replace the insn that calculates this giv.
3684 Don't do this unless the giv is a user variable, since it
3685 will often be marked non-replaceable because of the duplication
3686 of the exit code outside the loop. In such a case, the copies
3687 we insert are dead and will be deleted. So they don't have
3688 a cost. Similar situations exist. */
3689 /* ??? The new final_[bg]iv_value code does a much better job
3690 of finding replaceable giv's, and hence this code may no longer
3691 be necessary. */
3692 if (! v->replaceable && ! bl->eliminable
3693 && REG_USERVAR_P (v->dest_reg))
3694 benefit -= copy_cost;
3696 /* Decrease the benefit to count the add-insns that we will
3697 insert to increment the reduced reg for the giv. */
3698 benefit -= add_cost * bl->biv_count;
3700 /* Decide whether to strength-reduce this giv or to leave the code
3701 unchanged (recompute it from the biv each time it is used).
3702 This decision can be made independently for each giv. */
3704 /* ??? Perhaps attempt to guess whether autoincrement will handle
3705 some of the new add insns; if so, can increase BENEFIT
3706 (undo the subtraction of add_cost that was done above). */
3708 /* If an insn is not to be strength reduced, then set its ignore
3709 flag, and clear all_reduced. */
3711 /* A giv that depends on a reversed biv must be reduced if it is
3712 used after the loop exit, otherwise, it would have the wrong
3713 value after the loop exit. To make it simple, just reduce all
3714 of such giv's whether or not we know they are used after the loop
3715 exit. */
3717 if (v->lifetime * threshold * benefit < insn_count
3718 && ! bl->reversed)
3720 if (loop_dump_stream)
3721 fprintf (loop_dump_stream,
3722 "giv of insn %d not worth while, %d vs %d.\n",
3723 INSN_UID (v->insn),
3724 v->lifetime * threshold * benefit, insn_count);
3725 v->ignore = 1;
3726 all_reduced = 0;
3728 else
3730 /* Check that we can increment the reduced giv without a
3731 multiply insn. If not, reject it. */
3733 for (tv = bl->biv; tv; tv = tv->next_iv)
3734 if (tv->mult_val == const1_rtx
3735 && ! product_cheap_p (tv->add_val, v->mult_val))
3737 if (loop_dump_stream)
3738 fprintf (loop_dump_stream,
3739 "giv of insn %d: would need a multiply.\n",
3740 INSN_UID (v->insn));
3741 v->ignore = 1;
3742 all_reduced = 0;
3743 break;
3748 /* Reduce each giv that we decided to reduce. */
3750 for (v = bl->giv; v; v = v->next_iv)
3752 struct induction *tv;
3753 if (! v->ignore && v->same == 0)
3755 v->new_reg = gen_reg_rtx (v->mode);
3757 /* For each place where the biv is incremented,
3758 add an insn to increment the new, reduced reg for the giv. */
3759 for (tv = bl->biv; tv; tv = tv->next_iv)
3761 if (tv->mult_val == const1_rtx)
3762 emit_iv_add_mult (tv->add_val, v->mult_val,
3763 v->new_reg, v->new_reg, tv->insn);
3764 else /* tv->mult_val == const0_rtx */
3765 /* A multiply is acceptable here
3766 since this is presumed to be seldom executed. */
3767 emit_iv_add_mult (tv->add_val, v->mult_val,
3768 v->add_val, v->new_reg, tv->insn);
3771 /* Add code at loop start to initialize giv's reduced reg. */
3773 emit_iv_add_mult (bl->initial_value, v->mult_val,
3774 v->add_val, v->new_reg, loop_start);
3778 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
3779 as not reduced.
3781 For each giv register that can be reduced now: if replaceable,
3782 substitute reduced reg wherever the old giv occurs;
3783 else add new move insn "giv_reg = reduced_reg".
3785 Also check for givs whose first use is their definition and whose
3786 last use is the definition of another giv. If so, it is likely
3787 dead and should not be used to eliminate a biv. */
3788 for (v = bl->giv; v; v = v->next_iv)
3790 if (v->same && v->same->ignore)
3791 v->ignore = 1;
3793 if (v->ignore)
3794 continue;
3796 if (v->giv_type == DEST_REG
3797 && regno_first_uid[REGNO (v->dest_reg)] == INSN_UID (v->insn))
3799 struct induction *v1;
3801 for (v1 = bl->giv; v1; v1 = v1->next_iv)
3802 if (regno_last_uid[REGNO (v->dest_reg)] == INSN_UID (v1->insn))
3803 v->maybe_dead = 1;
3806 /* Update expression if this was combined, in case other giv was
3807 replaced. */
3808 if (v->same)
3809 v->new_reg = replace_rtx (v->new_reg,
3810 v->same->dest_reg, v->same->new_reg);
3812 if (v->giv_type == DEST_ADDR)
3813 /* Store reduced reg as the address in the memref where we found
3814 this giv. */
3815 *v->location = v->new_reg;
3816 else if (v->replaceable)
3818 reg_map[REGNO (v->dest_reg)] = v->new_reg;
3820 #if 0
3821 /* I can no longer duplicate the original problem. Perhaps
3822 this is unnecessary now? */
3824 /* Replaceable; it isn't strictly necessary to delete the old
3825 insn and emit a new one, because v->dest_reg is now dead.
3827 However, especially when unrolling loops, the special
3828 handling for (set REG0 REG1) in the second cse pass may
3829 make v->dest_reg live again. To avoid this problem, emit
3830 an insn to set the original giv reg from the reduced giv.
3831 We can not delete the original insn, since it may be part
3832 of a LIBCALL, and the code in flow that eliminates dead
3833 libcalls will fail if it is deleted. */
3834 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3835 v->insn);
3836 #endif
3838 else
3840 /* Not replaceable; emit an insn to set the original giv reg from
3841 the reduced giv, same as above. */
3842 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
3843 v->insn);
3846 /* When a loop is reversed, givs which depend on the reversed
3847 biv, and which are live outside the loop, must be set to their
3848 correct final value. This insn is only needed if the giv is
3849 not replaceable. The correct final value is the same as the
3850 value that the giv starts the reversed loop with. */
3851 if (bl->reversed && ! v->replaceable)
3852 emit_iv_add_mult (bl->initial_value, v->mult_val,
3853 v->add_val, v->dest_reg, end_insert_before);
3854 else if (v->final_value)
3856 rtx insert_before;
3858 /* If the loop has multiple exits, emit the insn before the
3859 loop to ensure that it will always be executed no matter
3860 how the loop exits. Otherwise, emit the insn after the loop,
3861 since this is slightly more efficient. */
3862 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3863 insert_before = loop_start;
3864 else
3865 insert_before = end_insert_before;
3866 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
3867 insert_before);
3869 #if 0
3870 /* If the insn to set the final value of the giv was emitted
3871 before the loop, then we must delete the insn inside the loop
3872 that sets it. If this is a LIBCALL, then we must delete
3873 every insn in the libcall. Note, however, that
3874 final_giv_value will only succeed when there are multiple
3875 exits if the giv is dead at each exit, hence it does not
3876 matter that the original insn remains because it is dead
3877 anyways. */
3878 /* Delete the insn inside the loop that sets the giv since
3879 the giv is now set before (or after) the loop. */
3880 delete_insn (v->insn);
3881 #endif
3884 if (loop_dump_stream)
3886 fprintf (loop_dump_stream, "giv at %d reduced to ",
3887 INSN_UID (v->insn));
3888 print_rtl (loop_dump_stream, v->new_reg);
3889 fprintf (loop_dump_stream, "\n");
3893 /* All the givs based on the biv bl have been reduced if they
3894 merit it. */
3896 /* For each giv not marked as maybe dead that has been combined with a
3897 second giv, clear any "maybe dead" mark on that second giv.
3898 v->new_reg will either be or refer to the register of the giv it
3899 combined with.
3901 Doing this clearing avoids problems in biv elimination where a
3902 giv's new_reg is a complex value that can't be put in the insn but
3903 the giv combined with (with a reg as new_reg) is marked maybe_dead.
3904 Since the register will be used in either case, we'd prefer it be
3905 used from the simpler giv. */
3907 for (v = bl->giv; v; v = v->next_iv)
3908 if (! v->maybe_dead && v->same)
3909 v->same->maybe_dead = 0;
3911 /* Try to eliminate the biv, if it is a candidate.
3912 This won't work if ! all_reduced,
3913 since the givs we planned to use might not have been reduced.
3915 We have to be careful that we didn't initially think we could eliminate
3916 this biv because of a giv that we now think may be dead and shouldn't
3917 be used as a biv replacement.
3919 Also, there is the possibility that we may have a giv that looks
3920 like it can be used to eliminate a biv, but the resulting insn
3921 isn't valid. This can happen, for example, on the 88k, where a
3922 JUMP_INSN can compare a register only with zero. Attempts to
3923 replace it with a compare with a constant will fail.
3925 Note that in cases where this call fails, we may have replaced some
3926 of the occurrences of the biv with a giv, but no harm was done in
3927 doing so in the rare cases where it can occur. */
3929 if (all_reduced == 1 && bl->eliminable
3930 && maybe_eliminate_biv (bl, loop_start, end, 1,
3931 threshold, insn_count))
3934 /* ?? If we created a new test to bypass the loop entirely,
3935 or otherwise drop straight in, based on this test, then
3936 we might want to rewrite it also. This way some later
3937 pass has more hope of removing the initialization of this
3938 biv entirely. */
3940 /* If final_value != 0, then the biv may be used after loop end
3941 and we must emit an insn to set it just in case.
3943 Reversed bivs already have an insn after the loop setting their
3944 value, so we don't need another one. We can't calculate the
3945 proper final value for such a biv here anyways. */
3946 if (final_value != 0 && ! bl->reversed)
3948 rtx insert_before;
3950 /* If the loop has multiple exits, emit the insn before the
3951 loop to ensure that it will always be executed no matter
3952 how the loop exits. Otherwise, emit the insn after the
3953 loop, since this is slightly more efficient. */
3954 if (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3955 insert_before = loop_start;
3956 else
3957 insert_before = end_insert_before;
3959 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
3960 end_insert_before);
3963 #if 0
3964 /* Delete all of the instructions inside the loop which set
3965 the biv, as they are all dead. If is safe to delete them,
3966 because an insn setting a biv will never be part of a libcall. */
3967 /* However, deleting them will invalidate the regno_last_uid info,
3968 so keeping them around is more convenient. Final_biv_value
3969 will only succeed when there are multiple exits if the biv
3970 is dead at each exit, hence it does not matter that the original
3971 insn remains, because it is dead anyways. */
3972 for (v = bl->biv; v; v = v->next_iv)
3973 delete_insn (v->insn);
3974 #endif
3976 if (loop_dump_stream)
3977 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
3978 bl->regno);
3982 /* Go through all the instructions in the loop, making all the
3983 register substitutions scheduled in REG_MAP. */
3985 for (p = loop_start; p != end; p = NEXT_INSN (p))
3986 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
3987 || GET_CODE (p) == CALL_INSN)
3989 replace_regs (PATTERN (p), reg_map, max_reg_before_loop, 0);
3990 replace_regs (REG_NOTES (p), reg_map, max_reg_before_loop, 0);
3991 INSN_CODE (p) = -1;
3994 /* Unroll loops from within strength reduction so that we can use the
3995 induction variable information that strength_reduce has already
3996 collected. */
3998 if (flag_unroll_loops)
3999 unroll_loop (loop_end, insn_count, loop_start, end_insert_before, 1);
4001 if (loop_dump_stream)
4002 fprintf (loop_dump_stream, "\n");
4005 /* Return 1 if X is a valid source for an initial value (or as value being
4006 compared against in an initial test).
4008 X must be either a register or constant and must not be clobbered between
4009 the current insn and the start of the loop.
4011 INSN is the insn containing X. */
4013 static int
4014 valid_initial_value_p (x, insn, call_seen, loop_start)
4015 rtx x;
4016 rtx insn;
4017 int call_seen;
4018 rtx loop_start;
4020 if (CONSTANT_P (x))
4021 return 1;
4023 /* Only consider pseudos we know about initialized in insns whose luids
4024 we know. */
4025 if (GET_CODE (x) != REG
4026 || REGNO (x) >= max_reg_before_loop)
4027 return 0;
4029 /* Don't use call-clobbered registers across a call which clobbers it. On
4030 some machines, don't use any hard registers at all. */
4031 if (REGNO (x) < FIRST_PSEUDO_REGISTER
4032 #ifndef SMALL_REGISTER_CLASSES
4033 && call_used_regs[REGNO (x)] && call_seen
4034 #endif
4036 return 0;
4038 /* Don't use registers that have been clobbered before the start of the
4039 loop. */
4040 if (reg_set_between_p (x, insn, loop_start))
4041 return 0;
4043 return 1;
4046 /* Scan X for memory refs and check each memory address
4047 as a possible giv. INSN is the insn whose pattern X comes from.
4048 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4049 every loop iteration. */
4051 static void
4052 find_mem_givs (x, insn, not_every_iteration, loop_start, loop_end)
4053 rtx x;
4054 rtx insn;
4055 int not_every_iteration;
4056 rtx loop_start, loop_end;
4058 register int i, j;
4059 register enum rtx_code code;
4060 register char *fmt;
4062 if (x == 0)
4063 return;
4065 code = GET_CODE (x);
4066 switch (code)
4068 case REG:
4069 case CONST_INT:
4070 case CONST:
4071 case CONST_DOUBLE:
4072 case SYMBOL_REF:
4073 case LABEL_REF:
4074 case PC:
4075 case CC0:
4076 case ADDR_VEC:
4077 case ADDR_DIFF_VEC:
4078 case USE:
4079 case CLOBBER:
4080 return;
4082 case MEM:
4084 rtx src_reg;
4085 rtx add_val;
4086 rtx mult_val;
4087 int benefit;
4089 benefit = general_induction_var (XEXP (x, 0),
4090 &src_reg, &add_val, &mult_val);
4092 /* Don't make a DEST_ADDR giv with mult_val == 1 && add_val == 0.
4093 Such a giv isn't useful. */
4094 if (benefit > 0 && (mult_val != const1_rtx || add_val != const0_rtx))
4096 /* Found one; record it. */
4097 struct induction *v
4098 = (struct induction *) oballoc (sizeof (struct induction));
4100 record_giv (v, insn, src_reg, addr_placeholder, mult_val,
4101 add_val, benefit, DEST_ADDR, not_every_iteration,
4102 &XEXP (x, 0), loop_start, loop_end);
4104 v->mem_mode = GET_MODE (x);
4106 return;
4110 /* Recursively scan the subexpressions for other mem refs. */
4112 fmt = GET_RTX_FORMAT (code);
4113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4114 if (fmt[i] == 'e')
4115 find_mem_givs (XEXP (x, i), insn, not_every_iteration, loop_start,
4116 loop_end);
4117 else if (fmt[i] == 'E')
4118 for (j = 0; j < XVECLEN (x, i); j++)
4119 find_mem_givs (XVECEXP (x, i, j), insn, not_every_iteration,
4120 loop_start, loop_end);
4123 /* Fill in the data about one biv update.
4124 V is the `struct induction' in which we record the biv. (It is
4125 allocated by the caller, with alloca.)
4126 INSN is the insn that sets it.
4127 DEST_REG is the biv's reg.
4129 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4130 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4131 being set to INC_VAL.
4133 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4134 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4135 can be executed more than once per iteration. If MAYBE_MULTIPLE
4136 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4137 executed exactly once per iteration. */
4139 static void
4140 record_biv (v, insn, dest_reg, inc_val, mult_val,
4141 not_every_iteration, maybe_multiple)
4142 struct induction *v;
4143 rtx insn;
4144 rtx dest_reg;
4145 rtx inc_val;
4146 rtx mult_val;
4147 int not_every_iteration;
4148 int maybe_multiple;
4150 struct iv_class *bl;
4152 v->insn = insn;
4153 v->src_reg = dest_reg;
4154 v->dest_reg = dest_reg;
4155 v->mult_val = mult_val;
4156 v->add_val = inc_val;
4157 v->mode = GET_MODE (dest_reg);
4158 v->always_computable = ! not_every_iteration;
4159 v->maybe_multiple = maybe_multiple;
4161 /* Add this to the reg's iv_class, creating a class
4162 if this is the first incrementation of the reg. */
4164 bl = reg_biv_class[REGNO (dest_reg)];
4165 if (bl == 0)
4167 /* Create and initialize new iv_class. */
4169 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
4171 bl->regno = REGNO (dest_reg);
4172 bl->biv = 0;
4173 bl->giv = 0;
4174 bl->biv_count = 0;
4175 bl->giv_count = 0;
4177 /* Set initial value to the reg itself. */
4178 bl->initial_value = dest_reg;
4179 /* We haven't seen the initializing insn yet */
4180 bl->init_insn = 0;
4181 bl->init_set = 0;
4182 bl->initial_test = 0;
4183 bl->incremented = 0;
4184 bl->eliminable = 0;
4185 bl->nonneg = 0;
4186 bl->reversed = 0;
4187 bl->total_benefit = 0;
4189 /* Add this class to loop_iv_list. */
4190 bl->next = loop_iv_list;
4191 loop_iv_list = bl;
4193 /* Put it in the array of biv register classes. */
4194 reg_biv_class[REGNO (dest_reg)] = bl;
4197 /* Update IV_CLASS entry for this biv. */
4198 v->next_iv = bl->biv;
4199 bl->biv = v;
4200 bl->biv_count++;
4201 if (mult_val == const1_rtx)
4202 bl->incremented = 1;
4204 if (loop_dump_stream)
4206 fprintf (loop_dump_stream,
4207 "Insn %d: possible biv, reg %d,",
4208 INSN_UID (insn), REGNO (dest_reg));
4209 if (GET_CODE (inc_val) == CONST_INT)
4210 fprintf (loop_dump_stream, " const = %d\n",
4211 INTVAL (inc_val));
4212 else
4214 fprintf (loop_dump_stream, " const = ");
4215 print_rtl (loop_dump_stream, inc_val);
4216 fprintf (loop_dump_stream, "\n");
4221 /* Fill in the data about one giv.
4222 V is the `struct induction' in which we record the giv. (It is
4223 allocated by the caller, with alloca.)
4224 INSN is the insn that sets it.
4225 BENEFIT estimates the savings from deleting this insn.
4226 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4227 into a register or is used as a memory address.
4229 SRC_REG is the biv reg which the giv is computed from.
4230 DEST_REG is the giv's reg (if the giv is stored in a reg).
4231 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4232 LOCATION points to the place where this giv's value appears in INSN. */
4234 static void
4235 record_giv (v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
4236 type, not_every_iteration, location, loop_start, loop_end)
4237 struct induction *v;
4238 rtx insn;
4239 rtx src_reg;
4240 rtx dest_reg;
4241 rtx mult_val, add_val;
4242 int benefit;
4243 enum g_types type;
4244 int not_every_iteration;
4245 rtx *location;
4246 rtx loop_start, loop_end;
4248 struct induction *b;
4249 struct iv_class *bl;
4250 rtx set = single_set (insn);
4251 rtx p;
4253 v->insn = insn;
4254 v->src_reg = src_reg;
4255 v->giv_type = type;
4256 v->dest_reg = dest_reg;
4257 v->mult_val = mult_val;
4258 v->add_val = add_val;
4259 v->benefit = benefit;
4260 v->location = location;
4261 v->cant_derive = 0;
4262 v->combined_with = 0;
4263 v->maybe_multiple = 0;
4264 v->maybe_dead = 0;
4265 v->derive_adjustment = 0;
4266 v->same = 0;
4267 v->ignore = 0;
4268 v->new_reg = 0;
4269 v->final_value = 0;
4271 /* The v->always_computable field is used in update_giv_derive, to
4272 determine whether a giv can be used to derive another giv. For a
4273 DEST_REG giv, INSN computes a new value for the giv, so its value
4274 isn't computable if INSN insn't executed every iteration.
4275 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4276 it does not compute a new value. Hence the value is always computable
4277 regardless of whether INSN is executed each iteration. */
4279 if (type == DEST_ADDR)
4280 v->always_computable = 1;
4281 else
4282 v->always_computable = ! not_every_iteration;
4284 if (type == DEST_ADDR)
4286 v->mode = GET_MODE (*location);
4287 v->lifetime = 1;
4288 v->times_used = 1;
4290 else /* type == DEST_REG */
4292 v->mode = GET_MODE (SET_DEST (set));
4294 v->lifetime = (uid_luid[regno_last_uid[REGNO (dest_reg)]]
4295 - uid_luid[regno_first_uid[REGNO (dest_reg)]]);
4297 v->times_used = n_times_used[REGNO (dest_reg)];
4299 /* If the lifetime is zero, it means that this register is
4300 really a dead store. So mark this as a giv that can be
4301 ignored. This will not prevent the biv from being eliminated. */
4302 if (v->lifetime == 0)
4303 v->ignore = 1;
4305 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
4306 reg_iv_info[REGNO (dest_reg)] = v;
4309 /* Add the giv to the class of givs computed from one biv. */
4311 bl = reg_biv_class[REGNO (src_reg)];
4312 if (bl)
4314 v->next_iv = bl->giv;
4315 bl->giv = v;
4316 /* Don't count DEST_ADDR. This is supposed to count the number of
4317 insns that calculate givs. */
4318 if (type == DEST_REG)
4319 bl->giv_count++;
4320 bl->total_benefit += benefit;
4322 else
4323 /* Fatal error, biv missing for this giv? */
4324 abort ();
4326 if (type == DEST_ADDR)
4327 v->replaceable = 1;
4328 else
4330 /* The giv can be replaced outright by the reduced register only if all
4331 of the following conditions are true:
4332 - the insn that sets the giv is always executed on any iteration
4333 on which the giv is used at all
4334 (there are two ways to deduce this:
4335 either the insn is executed on every iteration,
4336 or all uses follow that insn in the same basic block),
4337 - the giv is not used outside the loop
4338 - no assignments to the biv occur during the giv's lifetime. */
4340 if (regno_first_uid[REGNO (dest_reg)] == INSN_UID (insn)
4341 /* Previous line always fails if INSN was moved by loop opt. */
4342 && uid_luid[regno_last_uid[REGNO (dest_reg)]] < INSN_LUID (loop_end)
4343 && (! not_every_iteration
4344 || last_use_this_basic_block (dest_reg, insn)))
4346 /* Now check that there are no assignments to the biv within the
4347 giv's lifetime. This requires two separate checks. */
4349 /* Check each biv update, and fail if any are between the first
4350 and last use of the giv.
4352 If this loop contains an inner loop that was unrolled, then
4353 the insn modifying the biv may have been emitted by the loop
4354 unrolling code, and hence does not have a valid luid. Just
4355 mark the biv as not replaceable in this case. It is not very
4356 useful as a biv, because it is used in two different loops.
4357 It is very unlikely that we would be able to optimize the giv
4358 using this biv anyways. */
4360 v->replaceable = 1;
4361 for (b = bl->biv; b; b = b->next_iv)
4363 if (INSN_UID (b->insn) >= max_uid_for_loop
4364 || ((uid_luid[INSN_UID (b->insn)]
4365 >= uid_luid[regno_first_uid[REGNO (dest_reg)]])
4366 && (uid_luid[INSN_UID (b->insn)]
4367 <= uid_luid[regno_last_uid[REGNO (dest_reg)]])))
4369 v->replaceable = 0;
4370 v->not_replaceable = 1;
4371 break;
4375 /* Check each insn between the first and last use of the giv,
4376 and fail if any of them are branches that jump to a named label
4377 outside this range, but still inside the loop. This catches
4378 cases of spaghetti code where the execution order of insns
4379 is not linear, and hence the above test fails. For example,
4380 in the following code, j is not replaceable:
4381 for (i = 0; i < 100; ) {
4382 L0: j = 4*i; goto L1;
4383 L2: k = j; goto L3;
4384 L1: i++; goto L2;
4385 L3: ; }
4386 printf ("k = %d\n", k); }
4387 This test is conservative, but this test succeeds rarely enough
4388 that it isn't a problem. See also check_final_value below. */
4390 if (v->replaceable)
4391 for (p = insn;
4392 INSN_UID (p) >= max_uid_for_loop
4393 || INSN_LUID (p) < uid_luid[regno_last_uid[REGNO (dest_reg)]];
4394 p = NEXT_INSN (p))
4396 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4397 && LABEL_NAME (JUMP_LABEL (p))
4398 && ((INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start)
4399 && (INSN_LUID (JUMP_LABEL (p))
4400 < uid_luid[regno_first_uid[REGNO (dest_reg)]]))
4401 || (INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end)
4402 && (INSN_LUID (JUMP_LABEL (p))
4403 > uid_luid[regno_last_uid[REGNO (dest_reg)]]))))
4405 v->replaceable = 0;
4406 v->not_replaceable = 1;
4408 if (loop_dump_stream)
4409 fprintf (loop_dump_stream,
4410 "Found branch outside giv lifetime.\n");
4412 break;
4416 else
4418 /* May still be replaceable, we don't have enough info here to
4419 decide. */
4420 v->replaceable = 0;
4421 v->not_replaceable = 0;
4425 if (loop_dump_stream)
4427 if (type == DEST_REG)
4428 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
4429 INSN_UID (insn), REGNO (dest_reg));
4430 else
4431 fprintf (loop_dump_stream, "Insn %d: dest address",
4432 INSN_UID (insn));
4434 fprintf (loop_dump_stream, " src reg %d benefit %d",
4435 REGNO (src_reg), v->benefit);
4436 fprintf (loop_dump_stream, " used %d lifetime %d",
4437 v->times_used, v->lifetime);
4439 if (v->replaceable)
4440 fprintf (loop_dump_stream, " replaceable");
4442 if (GET_CODE (mult_val) == CONST_INT)
4443 fprintf (loop_dump_stream, " mult %d",
4444 INTVAL (mult_val));
4445 else
4447 fprintf (loop_dump_stream, " mult ");
4448 print_rtl (loop_dump_stream, mult_val);
4451 if (GET_CODE (add_val) == CONST_INT)
4452 fprintf (loop_dump_stream, " add %d",
4453 INTVAL (add_val));
4454 else
4456 fprintf (loop_dump_stream, " add ");
4457 print_rtl (loop_dump_stream, add_val);
4461 if (loop_dump_stream)
4462 fprintf (loop_dump_stream, "\n");
4467 /* All this does is determine whether a giv can be made replaceable because
4468 its final value can be calculated. This code can not be part of record_giv
4469 above, because final_giv_value requires that the number of loop iterations
4470 be known, and that can not be accurately calculated until after all givs
4471 have been identified. */
4473 static void
4474 check_final_value (v, loop_start, loop_end)
4475 struct induction *v;
4476 rtx loop_start, loop_end;
4478 struct iv_class *bl;
4479 rtx final_value = 0;
4480 rtx tem;
4482 bl = reg_biv_class[REGNO (v->src_reg)];
4484 /* DEST_ADDR givs will never reach here, because they are always marked
4485 replaceable above in record_giv. */
4487 /* The giv can be replaced outright by the reduced register only if all
4488 of the following conditions are true:
4489 - the insn that sets the giv is always executed on any iteration
4490 on which the giv is used at all
4491 (there are two ways to deduce this:
4492 either the insn is executed on every iteration,
4493 or all uses follow that insn in the same basic block),
4494 - its final value can be calculated (this condition is different
4495 than the one above in record_giv)
4496 - no assignments to the biv occur during the giv's lifetime. */
4498 #if 0
4499 /* This is only called now when replaceable is known to be false. */
4500 /* Clear replaceable, so that it won't confuse final_giv_value. */
4501 v->replaceable = 0;
4502 #endif
4504 if ((final_value = final_giv_value (v, loop_start, loop_end))
4505 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
4507 int biv_increment_seen = 0;
4508 rtx p = v->insn;
4509 rtx last_giv_use;
4511 v->replaceable = 1;
4513 /* When trying to determine whether or not a biv increment occurs
4514 during the lifetime of the giv, we can ignore uses of the variable
4515 outside the loop because final_value is true. Hence we can not
4516 use regno_last_uid and regno_first_uid as above in record_giv. */
4518 /* Search the loop to determine whether any assignments to the
4519 biv occur during the giv's lifetime. Start with the insn
4520 that sets the giv, and search around the loop until we come
4521 back to that insn again.
4523 Also fail if there is a jump within the giv's lifetime that jumps
4524 to somewhere outside the lifetime but still within the loop. This
4525 catches spaghetti code where the execution order is not linear, and
4526 hence the above test fails. Here we assume that the giv lifetime
4527 does not extend from one iteration of the loop to the next, so as
4528 to make the test easier. Since the lifetime isn't known yet,
4529 this requires two loops. See also record_giv above. */
4531 last_giv_use = v->insn;
4533 while (1)
4535 p = NEXT_INSN (p);
4536 if (p == loop_end)
4537 p = NEXT_INSN (loop_start);
4538 if (p == v->insn)
4539 break;
4541 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4542 || GET_CODE (p) == CALL_INSN)
4544 if (biv_increment_seen)
4546 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4548 v->replaceable = 0;
4549 v->not_replaceable = 1;
4550 break;
4553 else if (GET_CODE (PATTERN (p)) == SET
4554 && SET_DEST (PATTERN (p)) == v->src_reg)
4555 biv_increment_seen = 1;
4556 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
4557 last_giv_use = p;
4561 /* Now that the lifetime of the giv is known, check for branches
4562 from within the lifetime to outside the lifetime if it is still
4563 replaceable. */
4565 if (v->replaceable)
4567 p = v->insn;
4568 while (1)
4570 p = NEXT_INSN (p);
4571 if (p == loop_end)
4572 p = NEXT_INSN (loop_start);
4573 if (p == last_giv_use)
4574 break;
4576 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
4577 && LABEL_NAME (JUMP_LABEL (p))
4578 && ((INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (v->insn)
4579 && INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop_start))
4580 || (INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (last_giv_use)
4581 && INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop_end))))
4583 v->replaceable = 0;
4584 v->not_replaceable = 1;
4586 if (loop_dump_stream)
4587 fprintf (loop_dump_stream,
4588 "Found branch outside giv lifetime.\n");
4590 break;
4595 /* If it is replaceable, then save the final value. */
4596 if (v->replaceable)
4597 v->final_value = final_value;
4600 if (loop_dump_stream && v->replaceable)
4601 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
4602 INSN_UID (v->insn), REGNO (v->dest_reg));
4605 /* Update the status of whether a giv can derive other givs.
4607 We need to do something special if there is or may be an update to the biv
4608 between the time the giv is defined and the time it is used to derive
4609 another giv.
4611 In addition, a giv that is only conditionally set is not allowed to
4612 derive another giv once a label has been passed.
4614 The cases we look at are when a label or an update to a biv is passed. */
4616 static void
4617 update_giv_derive (p)
4618 rtx p;
4620 struct iv_class *bl;
4621 struct induction *biv, *giv;
4622 rtx tem;
4623 int dummy;
4625 /* Search all IV classes, then all bivs, and finally all givs.
4627 There are three cases we are concerned with. First we have the situation
4628 of a giv that is only updated conditionally. In that case, it may not
4629 derive any givs after a label is passed.
4631 The second case is when a biv update occurs, or may occur, after the
4632 definition of a giv. For certain biv updates (see below) that are
4633 known to occur between the giv definition and use, we can adjust the
4634 giv definition. For others, or when the biv update is conditional,
4635 we must prevent the giv from deriving any other givs. There are two
4636 sub-cases within this case.
4638 If this is a label, we are concerned with any biv update that is done
4639 conditionally, since it may be done after the giv is defined followed by
4640 a branch here (actually, we need to pass both a jump and a label, but
4641 this extra tracking doesn't seem worth it).
4643 If this is a jump, we are concerned about any biv update that may be
4644 executed multiple times. We are actually only concerned about
4645 backward jumps, but it is probably not worth performing the test
4646 on the jump again here.
4648 If this is a biv update, we must adjust the giv status to show that a
4649 subsequent biv update was performed. If this adjustment cannot be done,
4650 the giv cannot derive further givs. */
4652 for (bl = loop_iv_list; bl; bl = bl->next)
4653 for (biv = bl->biv; biv; biv = biv->next_iv)
4654 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
4655 || biv->insn == p)
4657 for (giv = bl->giv; giv; giv = giv->next_iv)
4659 /* If cant_derive is already true, there is no point in
4660 checking all of these conditions again. */
4661 if (giv->cant_derive)
4662 continue;
4664 /* If this giv is conditionally set and we have passed a label,
4665 it cannot derive anything. */
4666 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
4667 giv->cant_derive = 1;
4669 /* Skip givs that have mult_val == 0, since
4670 they are really invariants. Also skip those that are
4671 replaceable, since we know their lifetime doesn't contain
4672 any biv update. */
4673 else if (giv->mult_val == const0_rtx || giv->replaceable)
4674 continue;
4676 /* The only way we can allow this giv to derive another
4677 is if this is a biv increment and we can form the product
4678 of biv->add_val and giv->mult_val. In this case, we will
4679 be able to compute a compensation. */
4680 else if (biv->insn == p)
4682 tem = 0;
4684 if (biv->mult_val == const1_rtx)
4685 tem = simplify_giv_expr (gen_rtx (MULT, giv->mode,
4686 biv->add_val,
4687 giv->mult_val),
4688 &dummy);
4690 if (tem && giv->derive_adjustment)
4691 tem = simplify_giv_expr (gen_rtx (PLUS, giv->mode, tem,
4692 giv->derive_adjustment),
4693 &dummy);
4694 if (tem)
4695 giv->derive_adjustment = tem;
4696 else
4697 giv->cant_derive = 1;
4699 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
4700 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
4701 giv->cant_derive = 1;
4706 /* Check whether an insn is an increment legitimate for a basic induction var.
4707 X is the source of insn P.
4708 DEST_REG is the putative biv, also the destination of the insn.
4709 We accept patterns of these forms:
4710 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
4711 REG = INVARIANT + REG
4713 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
4714 and store the additive term into *INC_VAL.
4716 If X is an assignment of an invariant into DEST_REG, we set
4717 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
4719 We also want to detect a BIV when it corresponds to a variable
4720 whose mode was promoted via PROMOTED_MODE. In that case, an increment
4721 of the variable may be a PLUS that adds a SUBREG of that variable to
4722 an invariant and then sign- or zero-extends the result of the PLUS
4723 into the variable.
4725 Most GIVs in such cases will be in the promoted mode, since that is the
4726 probably the natural computation mode (and almost certainly the mode
4727 used for addresses) on the machine. So we view the pseudo-reg containing
4728 the variable as the BIV, as if it were simply incremented.
4730 Note that treating the entire pseudo as a BIV will result in making
4731 simple increments to any GIVs based on it. However, if the variable
4732 overflows in its declared mode but not its promoted mode, the result will
4733 be incorrect. This is acceptable if the variable is signed, since
4734 overflows in such cases are undefined, but not if it is unsigned, since
4735 those overflows are defined. So we only check for SIGN_EXTEND and
4736 not ZERO_EXTEND.
4738 If we cannot find a biv, we return 0. */
4740 static int
4741 basic_induction_var (x, dest_reg, p, inc_val, mult_val)
4742 register rtx x;
4743 rtx p;
4744 rtx dest_reg;
4745 rtx *inc_val;
4746 rtx *mult_val;
4748 register enum rtx_code code;
4749 rtx arg;
4750 rtx insn, set = 0;
4752 code = GET_CODE (x);
4753 switch (code)
4755 case PLUS:
4756 if (XEXP (x, 0) == dest_reg
4757 || (GET_CODE (XEXP (x, 0)) == SUBREG
4758 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
4759 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
4760 arg = XEXP (x, 1);
4761 else if (XEXP (x, 1) == dest_reg
4762 || (GET_CODE (XEXP (x, 1)) == SUBREG
4763 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
4764 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
4765 arg = XEXP (x, 0);
4766 else
4767 return 0;
4769 if (invariant_p (arg) != 1)
4770 return 0;
4772 *inc_val = convert_to_mode (GET_MODE (dest_reg), arg, 0);;
4773 *mult_val = const1_rtx;
4774 return 1;
4776 case SUBREG:
4777 /* If this is a SUBREG for a promoted variable, check the inner
4778 value. */
4779 if (SUBREG_PROMOTED_VAR_P (x))
4780 return basic_induction_var (SUBREG_REG (x), dest_reg, p,
4781 inc_val, mult_val);
4783 case REG:
4784 /* If this register is assigned in the previous insn, look at its
4785 source, but don't go outside the loop or past a label. */
4787 for (insn = PREV_INSN (p);
4788 (insn && GET_CODE (insn) == NOTE
4789 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4790 insn = PREV_INSN (insn))
4793 if (insn)
4794 set = single_set (insn);
4796 if (set != 0 && SET_DEST (set) == x)
4797 return basic_induction_var (SET_SRC (set), dest_reg, insn,
4798 inc_val, mult_val);
4799 /* ... fall through ... */
4801 /* Can accept constant setting of biv only when inside inner most loop.
4802 Otherwise, a biv of an inner loop may be incorrectly recognized
4803 as a biv of the outer loop,
4804 causing code to be moved INTO the inner loop. */
4805 case MEM:
4806 if (invariant_p (x) != 1)
4807 return 0;
4808 case CONST_INT:
4809 case SYMBOL_REF:
4810 case CONST:
4811 if (loops_enclosed == 1)
4813 *inc_val = convert_to_mode (GET_MODE (dest_reg), x, 0);;
4814 *mult_val = const0_rtx;
4815 return 1;
4817 else
4818 return 0;
4820 case SIGN_EXTEND:
4821 return basic_induction_var (XEXP (x, 0), dest_reg, p,
4822 inc_val, mult_val);
4823 case ASHIFTRT:
4824 /* Similar, since this can be a sign extension. */
4825 for (insn = PREV_INSN (p);
4826 (insn && GET_CODE (insn) == NOTE
4827 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
4828 insn = PREV_INSN (insn))
4831 if (insn)
4832 set = single_set (insn);
4834 if (set && SET_DEST (set) == XEXP (x, 0)
4835 && GET_CODE (XEXP (x, 1)) == CONST_INT
4836 && INTVAL (XEXP (x, 1)) >= 0
4837 && GET_CODE (SET_SRC (set)) == ASHIFT
4838 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
4839 return basic_induction_var (XEXP (SET_SRC (set), 0), dest_reg, insn,
4840 inc_val, mult_val);
4841 return 0;
4843 default:
4844 return 0;
4848 /* A general induction variable (giv) is any quantity that is a linear
4849 function of a basic induction variable,
4850 i.e. giv = biv * mult_val + add_val.
4851 The coefficients can be any loop invariant quantity.
4852 A giv need not be computed directly from the biv;
4853 it can be computed by way of other givs. */
4855 /* Determine whether X computes a giv.
4856 If it does, return a nonzero value
4857 which is the benefit from eliminating the computation of X;
4858 set *SRC_REG to the register of the biv that it is computed from;
4859 set *ADD_VAL and *MULT_VAL to the coefficients,
4860 such that the value of X is biv * mult + add; */
4862 static int
4863 general_induction_var (x, src_reg, add_val, mult_val)
4864 rtx x;
4865 rtx *src_reg;
4866 rtx *add_val;
4867 rtx *mult_val;
4869 rtx orig_x = x;
4870 int benefit = 0;
4871 char *storage;
4873 /* If this is an invariant, forget it, it isn't a giv. */
4874 if (invariant_p (x) == 1)
4875 return 0;
4877 /* See if the expression could be a giv and get its form.
4878 Mark our place on the obstack in case we don't find a giv. */
4879 storage = (char *) oballoc (0);
4880 x = simplify_giv_expr (x, &benefit);
4881 if (x == 0)
4883 obfree (storage);
4884 return 0;
4887 switch (GET_CODE (x))
4889 case USE:
4890 case CONST_INT:
4891 /* Since this is now an invariant and wasn't before, it must be a giv
4892 with MULT_VAL == 0. It doesn't matter which BIV we associate this
4893 with. */
4894 *src_reg = loop_iv_list->biv->dest_reg;
4895 *mult_val = const0_rtx;
4896 *add_val = x;
4897 break;
4899 case REG:
4900 /* This is equivalent to a BIV. */
4901 *src_reg = x;
4902 *mult_val = const1_rtx;
4903 *add_val = const0_rtx;
4904 break;
4906 case PLUS:
4907 /* Either (plus (biv) (invar)) or
4908 (plus (mult (biv) (invar_1)) (invar_2)). */
4909 if (GET_CODE (XEXP (x, 0)) == MULT)
4911 *src_reg = XEXP (XEXP (x, 0), 0);
4912 *mult_val = XEXP (XEXP (x, 0), 1);
4914 else
4916 *src_reg = XEXP (x, 0);
4917 *mult_val = const1_rtx;
4919 *add_val = XEXP (x, 1);
4920 break;
4922 case MULT:
4923 /* ADD_VAL is zero. */
4924 *src_reg = XEXP (x, 0);
4925 *mult_val = XEXP (x, 1);
4926 *add_val = const0_rtx;
4927 break;
4929 default:
4930 abort ();
4933 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
4934 unless they are CONST_INT). */
4935 if (GET_CODE (*add_val) == USE)
4936 *add_val = XEXP (*add_val, 0);
4937 if (GET_CODE (*mult_val) == USE)
4938 *mult_val = XEXP (*mult_val, 0);
4940 benefit += rtx_cost (orig_x, SET);
4942 /* Always return some benefit if this is a giv so it will be detected
4943 as such. This allows elimination of bivs that might otherwise
4944 not be eliminated. */
4945 return benefit == 0 ? 1 : benefit;
4948 /* Given an expression, X, try to form it as a linear function of a biv.
4949 We will canonicalize it to be of the form
4950 (plus (mult (BIV) (invar_1))
4951 (invar_2))
4952 with possible degeneracies.
4954 The invariant expressions must each be of a form that can be used as a
4955 machine operand. We surround then with a USE rtx (a hack, but localized
4956 and certainly unambiguous!) if not a CONST_INT for simplicity in this
4957 routine; it is the caller's responsibility to strip them.
4959 If no such canonicalization is possible (i.e., two biv's are used or an
4960 expression that is neither invariant nor a biv or giv), this routine
4961 returns 0.
4963 For a non-zero return, the result will have a code of CONST_INT, USE,
4964 REG (for a BIV), PLUS, or MULT. No other codes will occur.
4966 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
4968 static rtx
4969 simplify_giv_expr (x, benefit)
4970 rtx x;
4971 int *benefit;
4973 enum machine_mode mode = GET_MODE (x);
4974 rtx arg0, arg1;
4975 rtx tem;
4977 /* If this is not an integer mode, or if we cannot do arithmetic in this
4978 mode, this can't be a giv. */
4979 if (mode != VOIDmode
4980 && (GET_MODE_CLASS (mode) != MODE_INT
4981 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
4982 return 0;
4984 switch (GET_CODE (x))
4986 case PLUS:
4987 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
4988 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
4989 if (arg0 == 0 || arg1 == 0)
4990 return 0;
4992 /* Put constant last, CONST_INT last if both constant. */
4993 if ((GET_CODE (arg0) == USE
4994 || GET_CODE (arg0) == CONST_INT)
4995 && GET_CODE (arg1) != CONST_INT)
4996 tem = arg0, arg0 = arg1, arg1 = tem;
4998 /* Handle addition of zero, then addition of an invariant. */
4999 if (arg1 == const0_rtx)
5000 return arg0;
5001 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
5002 switch (GET_CODE (arg0))
5004 case CONST_INT:
5005 case USE:
5006 /* Both invariant. Only valid if sum is machine operand.
5007 First strip off possible USE on first operand. */
5008 if (GET_CODE (arg0) == USE)
5009 arg0 = XEXP (arg0, 0);
5011 tem = 0;
5012 if (CONSTANT_P (arg0) && GET_CODE (arg1) == CONST_INT)
5014 tem = plus_constant (arg0, INTVAL (arg1));
5015 if (GET_CODE (tem) != CONST_INT)
5016 tem = gen_rtx (USE, mode, tem);
5019 return tem;
5021 case REG:
5022 case MULT:
5023 /* biv + invar or mult + invar. Return sum. */
5024 return gen_rtx (PLUS, mode, arg0, arg1);
5026 case PLUS:
5027 /* (a + invar_1) + invar_2. Associate. */
5028 return simplify_giv_expr (gen_rtx (PLUS, mode,
5029 XEXP (arg0, 0),
5030 gen_rtx (PLUS, mode,
5031 XEXP (arg0, 1), arg1)),
5032 benefit);
5034 default:
5035 abort ();
5038 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5039 MULT to reduce cases. */
5040 if (GET_CODE (arg0) == REG)
5041 arg0 = gen_rtx (MULT, mode, arg0, const1_rtx);
5042 if (GET_CODE (arg1) == REG)
5043 arg1 = gen_rtx (MULT, mode, arg1, const1_rtx);
5045 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5046 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5047 Recurse to associate the second PLUS. */
5048 if (GET_CODE (arg1) == MULT)
5049 tem = arg0, arg0 = arg1, arg1 = tem;
5051 if (GET_CODE (arg1) == PLUS)
5052 return simplify_giv_expr (gen_rtx (PLUS, mode,
5053 gen_rtx (PLUS, mode,
5054 arg0, XEXP (arg1, 0)),
5055 XEXP (arg1, 1)),
5056 benefit);
5058 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5059 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
5060 abort ();
5062 if (XEXP (arg0, 0) != XEXP (arg1, 0))
5063 return 0;
5065 return simplify_giv_expr (gen_rtx (MULT, mode,
5066 XEXP (arg0, 0),
5067 gen_rtx (PLUS, mode,
5068 XEXP (arg0, 1),
5069 XEXP (arg1, 1))),
5070 benefit);
5072 case MINUS:
5073 /* Handle "a - b" as "a + b * (-1)". */
5074 return simplify_giv_expr (gen_rtx (PLUS, mode,
5075 XEXP (x, 0),
5076 gen_rtx (MULT, mode,
5077 XEXP (x, 1), constm1_rtx)),
5078 benefit);
5080 case MULT:
5081 arg0 = simplify_giv_expr (XEXP (x, 0), benefit);
5082 arg1 = simplify_giv_expr (XEXP (x, 1), benefit);
5083 if (arg0 == 0 || arg1 == 0)
5084 return 0;
5086 /* Put constant last, CONST_INT last if both constant. */
5087 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
5088 && GET_CODE (arg1) != CONST_INT)
5089 tem = arg0, arg0 = arg1, arg1 = tem;
5091 /* If second argument is not now constant, not giv. */
5092 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
5093 return 0;
5095 /* Handle multiply by 0 or 1. */
5096 if (arg1 == const0_rtx)
5097 return const0_rtx;
5099 else if (arg1 == const1_rtx)
5100 return arg0;
5102 switch (GET_CODE (arg0))
5104 case REG:
5105 /* biv * invar. Done. */
5106 return gen_rtx (MULT, mode, arg0, arg1);
5108 case CONST_INT:
5109 /* Product of two constants. */
5110 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
5112 case USE:
5113 /* invar * invar. Not giv. */
5114 return 0;
5116 case MULT:
5117 /* (a * invar_1) * invar_2. Associate. */
5118 return simplify_giv_expr (gen_rtx (MULT, mode,
5119 XEXP (arg0, 0),
5120 gen_rtx (MULT, mode,
5121 XEXP (arg0, 1), arg1)),
5122 benefit);
5124 case PLUS:
5125 /* (a + invar_1) * invar_2. Distribute. */
5126 return simplify_giv_expr (gen_rtx (PLUS, mode,
5127 gen_rtx (MULT, mode,
5128 XEXP (arg0, 0), arg1),
5129 gen_rtx (MULT, mode,
5130 XEXP (arg0, 1), arg1)),
5131 benefit);
5133 default:
5134 abort ();
5137 case ASHIFT:
5138 case LSHIFT:
5139 /* Shift by constant is multiply by power of two. */
5140 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
5141 return 0;
5143 return simplify_giv_expr (gen_rtx (MULT, mode,
5144 XEXP (x, 0),
5145 GEN_INT ((HOST_WIDE_INT) 1
5146 << INTVAL (XEXP (x, 1)))),
5147 benefit);
5149 case NEG:
5150 /* "-a" is "a * (-1)" */
5151 return simplify_giv_expr (gen_rtx (MULT, mode, XEXP (x, 0), constm1_rtx),
5152 benefit);
5154 case NOT:
5155 /* "~a" is "-a - 1". Silly, but easy. */
5156 return simplify_giv_expr (gen_rtx (MINUS, mode,
5157 gen_rtx (NEG, mode, XEXP (x, 0)),
5158 const1_rtx),
5159 benefit);
5161 case USE:
5162 /* Already in proper form for invariant. */
5163 return x;
5165 case REG:
5166 /* If this is a new register, we can't deal with it. */
5167 if (REGNO (x) >= max_reg_before_loop)
5168 return 0;
5170 /* Check for biv or giv. */
5171 switch (reg_iv_type[REGNO (x)])
5173 case BASIC_INDUCT:
5174 return x;
5175 case GENERAL_INDUCT:
5177 struct induction *v = reg_iv_info[REGNO (x)];
5179 /* Form expression from giv and add benefit. Ensure this giv
5180 can derive another and subtract any needed adjustment if so. */
5181 *benefit += v->benefit;
5182 if (v->cant_derive)
5183 return 0;
5185 tem = gen_rtx (PLUS, mode, gen_rtx (MULT, mode,
5186 v->src_reg, v->mult_val),
5187 v->add_val);
5188 if (v->derive_adjustment)
5189 tem = gen_rtx (MINUS, mode, tem, v->derive_adjustment);
5190 return simplify_giv_expr (tem, benefit);
5194 /* Fall through to general case. */
5195 default:
5196 /* If invariant, return as USE (unless CONST_INT).
5197 Otherwise, not giv. */
5198 if (GET_CODE (x) == USE)
5199 x = XEXP (x, 0);
5201 if (invariant_p (x) == 1)
5203 if (GET_CODE (x) == CONST_INT)
5204 return x;
5205 else
5206 return gen_rtx (USE, mode, x);
5208 else
5209 return 0;
5213 /* Help detect a giv that is calculated by several consecutive insns;
5214 for example,
5215 giv = biv * M
5216 giv = giv + A
5217 The caller has already identified the first insn P as having a giv as dest;
5218 we check that all other insns that set the same register follow
5219 immediately after P, that they alter nothing else,
5220 and that the result of the last is still a giv.
5222 The value is 0 if the reg set in P is not really a giv.
5223 Otherwise, the value is the amount gained by eliminating
5224 all the consecutive insns that compute the value.
5226 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
5227 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
5229 The coefficients of the ultimate giv value are stored in
5230 *MULT_VAL and *ADD_VAL. */
5232 static int
5233 consec_sets_giv (first_benefit, p, src_reg, dest_reg,
5234 add_val, mult_val)
5235 int first_benefit;
5236 rtx p;
5237 rtx src_reg;
5238 rtx dest_reg;
5239 rtx *add_val;
5240 rtx *mult_val;
5242 int count;
5243 enum rtx_code code;
5244 int benefit;
5245 rtx temp;
5246 rtx set;
5248 /* Indicate that this is a giv so that we can update the value produced in
5249 each insn of the multi-insn sequence.
5251 This induction structure will be used only by the call to
5252 general_induction_var below, so we can allocate it on our stack.
5253 If this is a giv, our caller will replace the induct var entry with
5254 a new induction structure. */
5255 struct induction *v
5256 = (struct induction *) alloca (sizeof (struct induction));
5257 v->src_reg = src_reg;
5258 v->mult_val = *mult_val;
5259 v->add_val = *add_val;
5260 v->benefit = first_benefit;
5261 v->cant_derive = 0;
5262 v->derive_adjustment = 0;
5264 reg_iv_type[REGNO (dest_reg)] = GENERAL_INDUCT;
5265 reg_iv_info[REGNO (dest_reg)] = v;
5267 count = n_times_set[REGNO (dest_reg)] - 1;
5269 while (count > 0)
5271 p = NEXT_INSN (p);
5272 code = GET_CODE (p);
5274 /* If libcall, skip to end of call sequence. */
5275 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
5276 p = XEXP (temp, 0);
5278 if (code == INSN
5279 && (set = single_set (p))
5280 && GET_CODE (SET_DEST (set)) == REG
5281 && SET_DEST (set) == dest_reg
5282 && ((benefit = general_induction_var (SET_SRC (set), &src_reg,
5283 add_val, mult_val))
5284 /* Giv created by equivalent expression. */
5285 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
5286 && (benefit = general_induction_var (XEXP (temp, 0), &src_reg,
5287 add_val, mult_val))))
5288 && src_reg == v->src_reg)
5290 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5291 benefit += libcall_benefit (p);
5293 count--;
5294 v->mult_val = *mult_val;
5295 v->add_val = *add_val;
5296 v->benefit = benefit;
5298 else if (code != NOTE)
5300 /* Allow insns that set something other than this giv to a
5301 constant. Such insns are needed on machines which cannot
5302 include long constants and should not disqualify a giv. */
5303 if (code == INSN
5304 && (set = single_set (p))
5305 && SET_DEST (set) != dest_reg
5306 && CONSTANT_P (SET_SRC (set)))
5307 continue;
5309 reg_iv_type[REGNO (dest_reg)] = UNKNOWN_INDUCT;
5310 return 0;
5314 return v->benefit;
5317 /* Return an rtx, if any, that expresses giv G2 as a function of the register
5318 represented by G1. If no such expression can be found, or it is clear that
5319 it cannot possibly be a valid address, 0 is returned.
5321 To perform the computation, we note that
5322 G1 = a * v + b and
5323 G2 = c * v + d
5324 where `v' is the biv.
5326 So G2 = (c/a) * G1 + (d - b*c/a) */
5328 #ifdef ADDRESS_COST
5329 static rtx
5330 express_from (g1, g2)
5331 struct induction *g1, *g2;
5333 rtx mult, add;
5335 /* The value that G1 will be multiplied by must be a constant integer. Also,
5336 the only chance we have of getting a valid address is if b*c/a (see above
5337 for notation) is also an integer. */
5338 if (GET_CODE (g1->mult_val) != CONST_INT
5339 || GET_CODE (g2->mult_val) != CONST_INT
5340 || GET_CODE (g1->add_val) != CONST_INT
5341 || g1->mult_val == const0_rtx
5342 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
5343 return 0;
5345 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
5346 add = plus_constant (g2->add_val, - INTVAL (g1->add_val) * INTVAL (mult));
5348 /* Form simplified final result. */
5349 if (mult == const0_rtx)
5350 return add;
5351 else if (mult == const1_rtx)
5352 mult = g1->dest_reg;
5353 else
5354 mult = gen_rtx (MULT, g2->mode, g1->dest_reg, mult);
5356 if (add == const0_rtx)
5357 return mult;
5358 else
5359 return gen_rtx (PLUS, g2->mode, mult, add);
5361 #endif
5363 /* Return 1 if giv G2 can be combined with G1. This means that G2 can use
5364 (either directly or via an address expression) a register used to represent
5365 G1. Set g2->new_reg to a represtation of G1 (normally just
5366 g1->dest_reg). */
5368 static int
5369 combine_givs_p (g1, g2)
5370 struct induction *g1, *g2;
5372 rtx tem;
5374 /* If these givs are identical, they can be combined. */
5375 if (rtx_equal_p (g1->mult_val, g2->mult_val)
5376 && rtx_equal_p (g1->add_val, g2->add_val))
5378 g2->new_reg = g1->dest_reg;
5379 return 1;
5382 #ifdef ADDRESS_COST
5383 /* If G2 can be expressed as a function of G1 and that function is valid
5384 as an address and no more expensive than using a register for G2,
5385 the expression of G2 in terms of G1 can be used. */
5386 if (g2->giv_type == DEST_ADDR
5387 && (tem = express_from (g1, g2)) != 0
5388 && memory_address_p (g2->mem_mode, tem)
5389 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location))
5391 g2->new_reg = tem;
5392 return 1;
5394 #endif
5396 return 0;
5399 /* Check all pairs of givs for iv_class BL and see if any can be combined with
5400 any other. If so, point SAME to the giv combined with and set NEW_REG to
5401 be an expression (in terms of the other giv's DEST_REG) equivalent to the
5402 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
5404 static void
5405 combine_givs (bl)
5406 struct iv_class *bl;
5408 struct induction *g1, *g2;
5409 int pass;
5411 for (g1 = bl->giv; g1; g1 = g1->next_iv)
5412 for (pass = 0; pass <= 1; pass++)
5413 for (g2 = bl->giv; g2; g2 = g2->next_iv)
5414 if (g1 != g2
5415 /* First try to combine with replaceable givs, then all givs. */
5416 && (g1->replaceable || pass == 1)
5417 /* If either has already been combined or is to be ignored, can't
5418 combine. */
5419 && ! g1->ignore && ! g2->ignore && ! g1->same && ! g2->same
5420 /* If something has been based on G2, G2 cannot itself be based
5421 on something else. */
5422 && ! g2->combined_with
5423 && combine_givs_p (g1, g2))
5425 /* g2->new_reg set by `combine_givs_p' */
5426 g2->same = g1;
5427 g1->combined_with = 1;
5428 g1->benefit += g2->benefit;
5429 /* ??? The new final_[bg]iv_value code does a much better job
5430 of finding replaceable giv's, and hence this code may no
5431 longer be necessary. */
5432 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
5433 g1->benefit -= copy_cost;
5434 g1->lifetime += g2->lifetime;
5435 g1->times_used += g2->times_used;
5437 if (loop_dump_stream)
5438 fprintf (loop_dump_stream, "giv at %d combined with giv at %d\n",
5439 INSN_UID (g2->insn), INSN_UID (g1->insn));
5443 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
5445 void
5446 emit_iv_add_mult (b, m, a, reg, insert_before)
5447 rtx b; /* initial value of basic induction variable */
5448 rtx m; /* multiplicative constant */
5449 rtx a; /* additive constant */
5450 rtx reg; /* destination register */
5451 rtx insert_before;
5453 rtx seq;
5454 rtx result;
5456 /* Prevent unexpected sharing of these rtx. */
5457 a = copy_rtx (a);
5458 b = copy_rtx (b);
5460 /* Increase the lifetime of any invariants moved further in code. */
5461 update_reg_last_use (a, insert_before);
5462 update_reg_last_use (b, insert_before);
5463 update_reg_last_use (m, insert_before);
5465 start_sequence ();
5466 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
5467 if (reg != result)
5468 emit_move_insn (reg, result);
5469 seq = gen_sequence ();
5470 end_sequence ();
5472 emit_insn_before (seq, insert_before);
5475 /* Test whether A * B can be computed without
5476 an actual multiply insn. Value is 1 if so. */
5478 static int
5479 product_cheap_p (a, b)
5480 rtx a;
5481 rtx b;
5483 int i;
5484 rtx tmp;
5485 struct obstack *old_rtl_obstack = rtl_obstack;
5486 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
5487 int win = 1;
5489 /* If only one is constant, make it B. */
5490 if (GET_CODE (a) == CONST_INT)
5491 tmp = a, a = b, b = tmp;
5493 /* If first constant, both constant, so don't need multiply. */
5494 if (GET_CODE (a) == CONST_INT)
5495 return 1;
5497 /* If second not constant, neither is constant, so would need multiply. */
5498 if (GET_CODE (b) != CONST_INT)
5499 return 0;
5501 /* One operand is constant, so might not need multiply insn. Generate the
5502 code for the multiply and see if a call or multiply, or long sequence
5503 of insns is generated. */
5505 rtl_obstack = &temp_obstack;
5506 start_sequence ();
5507 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
5508 tmp = gen_sequence ();
5509 end_sequence ();
5511 if (GET_CODE (tmp) == SEQUENCE)
5513 if (XVEC (tmp, 0) == 0)
5514 win = 1;
5515 else if (XVECLEN (tmp, 0) > 3)
5516 win = 0;
5517 else
5518 for (i = 0; i < XVECLEN (tmp, 0); i++)
5520 rtx insn = XVECEXP (tmp, 0, i);
5522 if (GET_CODE (insn) != INSN
5523 || (GET_CODE (PATTERN (insn)) == SET
5524 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
5525 || (GET_CODE (PATTERN (insn)) == PARALLEL
5526 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
5527 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
5529 win = 0;
5530 break;
5534 else if (GET_CODE (tmp) == SET
5535 && GET_CODE (SET_SRC (tmp)) == MULT)
5536 win = 0;
5537 else if (GET_CODE (tmp) == PARALLEL
5538 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
5539 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
5540 win = 0;
5542 /* Free any storage we obtained in generating this multiply and restore rtl
5543 allocation to its normal obstack. */
5544 obstack_free (&temp_obstack, storage);
5545 rtl_obstack = old_rtl_obstack;
5547 return win;
5550 /* Check to see if loop can be terminated by a "decrement and branch until
5551 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
5552 Also try reversing an increment loop to a decrement loop
5553 to see if the optimization can be performed.
5554 Value is nonzero if optimization was performed. */
5556 /* This is useful even if the architecture doesn't have such an insn,
5557 because it might change a loops which increments from 0 to n to a loop
5558 which decrements from n to 0. A loop that decrements to zero is usually
5559 faster than one that increments from zero. */
5561 /* ??? This could be rewritten to use some of the loop unrolling procedures,
5562 such as approx_final_value, biv_total_increment, loop_iterations, and
5563 final_[bg]iv_value. */
5565 static int
5566 check_dbra_loop (loop_end, insn_count, loop_start)
5567 rtx loop_end;
5568 int insn_count;
5569 rtx loop_start;
5571 struct iv_class *bl;
5572 rtx reg;
5573 rtx jump_label;
5574 rtx final_value;
5575 rtx start_value;
5576 enum rtx_code branch_code;
5577 rtx new_add_val;
5578 rtx comparison;
5579 rtx before_comparison;
5580 rtx p;
5582 /* If last insn is a conditional branch, and the insn before tests a
5583 register value, try to optimize it. Otherwise, we can't do anything. */
5585 comparison = get_condition_for_loop (PREV_INSN (loop_end));
5586 if (comparison == 0)
5587 return 0;
5589 /* Check all of the bivs to see if the compare uses one of them.
5590 Skip biv's set more than once because we can't guarantee that
5591 it will be zero on the last iteration. Also skip if the biv is
5592 used between its update and the test insn. */
5594 for (bl = loop_iv_list; bl; bl = bl->next)
5596 if (bl->biv_count == 1
5597 && bl->biv->dest_reg == XEXP (comparison, 0)
5598 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
5599 PREV_INSN (PREV_INSN (loop_end))))
5600 break;
5603 if (! bl)
5604 return 0;
5606 /* Look for the case where the basic induction variable is always
5607 nonnegative, and equals zero on the last iteration.
5608 In this case, add a reg_note REG_NONNEG, which allows the
5609 m68k DBRA instruction to be used. */
5611 if (((GET_CODE (comparison) == GT
5612 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5613 && INTVAL (XEXP (comparison, 1)) == -1)
5614 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
5615 && GET_CODE (bl->biv->add_val) == CONST_INT
5616 && INTVAL (bl->biv->add_val) < 0)
5618 /* Initial value must be greater than 0,
5619 init_val % -dec_value == 0 to ensure that it equals zero on
5620 the last iteration */
5622 if (GET_CODE (bl->initial_value) == CONST_INT
5623 && INTVAL (bl->initial_value) > 0
5624 && (INTVAL (bl->initial_value) %
5625 (-INTVAL (bl->biv->add_val))) == 0)
5627 /* register always nonnegative, add REG_NOTE to branch */
5628 REG_NOTES (PREV_INSN (loop_end))
5629 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5630 REG_NOTES (PREV_INSN (loop_end)));
5631 bl->nonneg = 1;
5633 return 1;
5636 /* If the decrement is 1 and the value was tested as >= 0 before
5637 the loop, then we can safely optimize. */
5638 for (p = loop_start; p; p = PREV_INSN (p))
5640 if (GET_CODE (p) == CODE_LABEL)
5641 break;
5642 if (GET_CODE (p) != JUMP_INSN)
5643 continue;
5645 before_comparison = get_condition_for_loop (p);
5646 if (before_comparison
5647 && XEXP (before_comparison, 0) == bl->biv->dest_reg
5648 && GET_CODE (before_comparison) == LT
5649 && XEXP (before_comparison, 1) == const0_rtx
5650 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
5651 && INTVAL (bl->biv->add_val) == -1)
5653 REG_NOTES (PREV_INSN (loop_end))
5654 = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5655 REG_NOTES (PREV_INSN (loop_end)));
5656 bl->nonneg = 1;
5658 return 1;
5662 else if (num_mem_sets <= 1)
5664 /* Try to change inc to dec, so can apply above optimization. */
5665 /* Can do this if:
5666 all registers modified are induction variables or invariant,
5667 all memory references have non-overlapping addresses
5668 (obviously true if only one write)
5669 allow 2 insns for the compare/jump at the end of the loop. */
5670 int num_nonfixed_reads = 0;
5671 /* 1 if the iteration var is used only to count iterations. */
5672 int no_use_except_counting = 0;
5674 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5675 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5676 num_nonfixed_reads += count_nonfixed_reads (PATTERN (p));
5678 if (bl->giv_count == 0
5679 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
5681 rtx bivreg = regno_reg_rtx[bl->regno];
5683 /* If there are no givs for this biv, and the only exit is the
5684 fall through at the end of the the loop, then
5685 see if perhaps there are no uses except to count. */
5686 no_use_except_counting = 1;
5687 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
5688 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5690 rtx set = single_set (p);
5692 if (set && GET_CODE (SET_DEST (set)) == REG
5693 && REGNO (SET_DEST (set)) == bl->regno)
5694 /* An insn that sets the biv is okay. */
5696 else if (p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
5697 || p == prev_nonnote_insn (loop_end))
5698 /* Don't bother about the end test. */
5700 else if (reg_mentioned_p (bivreg, PATTERN (p)))
5701 /* Any other use of the biv is no good. */
5703 no_use_except_counting = 0;
5704 break;
5709 /* This code only acts for innermost loops. Also it simplifies
5710 the memory address check by only reversing loops with
5711 zero or one memory access.
5712 Two memory accesses could involve parts of the same array,
5713 and that can't be reversed. */
5715 if (num_nonfixed_reads <= 1
5716 && !loop_has_call
5717 && !loop_has_volatile
5718 && (no_use_except_counting
5719 || (bl->giv_count + bl->biv_count + num_mem_sets
5720 + num_movables + 2 == insn_count)))
5722 rtx condition = get_condition_for_loop (PREV_INSN (loop_end));
5723 int win;
5724 rtx tem;
5726 /* Loop can be reversed. */
5727 if (loop_dump_stream)
5728 fprintf (loop_dump_stream, "Can reverse loop\n");
5730 /* Now check other conditions:
5731 initial_value must be zero,
5732 final_value % add_val == 0, so that when reversed, the
5733 biv will be zero on the last iteration.
5735 This test can probably be improved since +/- 1 in the constant
5736 can be obtained by changing LT to LE and vice versa; this is
5737 confusing. */
5739 if (comparison && bl->initial_value == const0_rtx
5740 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
5741 /* LE gets turned into LT */
5742 && GET_CODE (comparison) == LT
5743 && (INTVAL (XEXP (comparison, 1))
5744 % INTVAL (bl->biv->add_val)) == 0)
5746 /* Register will always be nonnegative, with value
5747 0 on last iteration if loop reversed */
5749 /* Save some info needed to produce the new insns. */
5750 reg = bl->biv->dest_reg;
5751 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
5752 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
5754 final_value = XEXP (comparison, 1);
5755 start_value = GEN_INT (INTVAL (XEXP (comparison, 1))
5756 - INTVAL (bl->biv->add_val));
5758 /* Initialize biv to start_value before loop start.
5759 The old initializing insn will be deleted as a
5760 dead store by flow.c. */
5761 emit_insn_before (gen_move_insn (reg, start_value), loop_start);
5763 /* Add insn to decrement register, and delete insn
5764 that incremented the register. */
5765 p = emit_insn_before (gen_add2_insn (reg, new_add_val),
5766 bl->biv->insn);
5767 delete_insn (bl->biv->insn);
5769 /* Update biv info to reflect its new status. */
5770 bl->biv->insn = p;
5771 bl->initial_value = start_value;
5772 bl->biv->add_val = new_add_val;
5774 /* Inc LABEL_NUSES so that delete_insn will
5775 not delete the label. */
5776 LABEL_NUSES (XEXP (jump_label, 0)) ++;
5778 /* Emit an insn after the end of the loop to set the biv's
5779 proper exit value if it is used anywhere outside the loop. */
5780 if ((regno_last_uid[bl->regno]
5781 != INSN_UID (PREV_INSN (PREV_INSN (loop_end))))
5782 || ! bl->init_insn
5783 || regno_first_uid[bl->regno] != INSN_UID (bl->init_insn))
5784 emit_insn_after (gen_move_insn (reg, final_value),
5785 loop_end);
5787 /* Delete compare/branch at end of loop. */
5788 delete_insn (PREV_INSN (loop_end));
5789 delete_insn (PREV_INSN (loop_end));
5791 /* Add new compare/branch insn at end of loop. */
5792 start_sequence ();
5793 emit_cmp_insn (reg, const0_rtx, GE, NULL_RTX,
5794 GET_MODE (reg), 0, 0);
5795 emit_jump_insn (gen_bge (XEXP (jump_label, 0)));
5796 tem = gen_sequence ();
5797 end_sequence ();
5798 emit_jump_insn_before (tem, loop_end);
5800 for (tem = PREV_INSN (loop_end);
5801 tem && GET_CODE (tem) != JUMP_INSN; tem = PREV_INSN (tem))
5803 if (tem)
5805 JUMP_LABEL (tem) = XEXP (jump_label, 0);
5807 /* Increment of LABEL_NUSES done above. */
5808 /* Register is now always nonnegative,
5809 so add REG_NONNEG note to the branch. */
5810 REG_NOTES (tem) = gen_rtx (EXPR_LIST, REG_NONNEG, NULL_RTX,
5811 REG_NOTES (tem));
5814 bl->nonneg = 1;
5816 /* Mark that this biv has been reversed. Each giv which depends
5817 on this biv, and which is also live past the end of the loop
5818 will have to be fixed up. */
5820 bl->reversed = 1;
5822 if (loop_dump_stream)
5823 fprintf (loop_dump_stream,
5824 "Reversed loop and added reg_nonneg\n");
5826 return 1;
5831 return 0;
5834 /* Verify whether the biv BL appears to be eliminable,
5835 based on the insns in the loop that refer to it.
5836 LOOP_START is the first insn of the loop, and END is the end insn.
5838 If ELIMINATE_P is non-zero, actually do the elimination.
5840 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
5841 determine whether invariant insns should be placed inside or at the
5842 start of the loop. */
5844 static int
5845 maybe_eliminate_biv (bl, loop_start, end, eliminate_p, threshold, insn_count)
5846 struct iv_class *bl;
5847 rtx loop_start;
5848 rtx end;
5849 int eliminate_p;
5850 int threshold, insn_count;
5852 rtx reg = bl->biv->dest_reg;
5853 rtx p, set;
5854 struct induction *v;
5856 /* Scan all insns in the loop, stopping if we find one that uses the
5857 biv in a way that we cannot eliminate. */
5859 for (p = loop_start; p != end; p = NEXT_INSN (p))
5861 enum rtx_code code = GET_CODE (p);
5862 rtx where = threshold >= insn_count ? loop_start : p;
5864 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
5865 && reg_mentioned_p (reg, PATTERN (p))
5866 && ! maybe_eliminate_biv_1 (PATTERN (p), p, bl, eliminate_p, where))
5868 if (loop_dump_stream)
5869 fprintf (loop_dump_stream,
5870 "Cannot eliminate biv %d: biv used in insn %d.\n",
5871 bl->regno, INSN_UID (p));
5872 break;
5876 if (p == end)
5878 if (loop_dump_stream)
5879 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
5880 bl->regno, eliminate_p ? "was" : "can be");
5881 return 1;
5884 return 0;
5887 /* If BL appears in X (part of the pattern of INSN), see if we can
5888 eliminate its use. If so, return 1. If not, return 0.
5890 If BIV does not appear in X, return 1.
5892 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
5893 where extra insns should be added. Depending on how many items have been
5894 moved out of the loop, it will either be before INSN or at the start of
5895 the loop. */
5897 static int
5898 maybe_eliminate_biv_1 (x, insn, bl, eliminate_p, where)
5899 rtx x, insn;
5900 struct iv_class *bl;
5901 int eliminate_p;
5902 rtx where;
5904 enum rtx_code code = GET_CODE (x);
5905 rtx reg = bl->biv->dest_reg;
5906 enum machine_mode mode = GET_MODE (reg);
5907 struct induction *v;
5908 rtx arg, new, tem;
5909 int arg_operand;
5910 char *fmt;
5911 int i, j;
5913 switch (code)
5915 case REG:
5916 /* If we haven't already been able to do something with this BIV,
5917 we can't eliminate it. */
5918 if (x == reg)
5919 return 0;
5920 return 1;
5922 case SET:
5923 /* If this sets the BIV, it is not a problem. */
5924 if (SET_DEST (x) == reg)
5925 return 1;
5927 /* If this is an insn that defines a giv, it is also ok because
5928 it will go away when the giv is reduced. */
5929 for (v = bl->giv; v; v = v->next_iv)
5930 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
5931 return 1;
5933 #ifdef HAVE_cc0
5934 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
5936 /* Can replace with any giv that was reduced and
5937 that has (MULT_VAL != 0) and (ADD_VAL == 0).
5938 Require a constant for MULT_VAL, so we know it's nonzero. */
5940 for (v = bl->giv; v; v = v->next_iv)
5941 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5942 && v->add_val == const0_rtx
5943 && ! v->ignore && ! v->maybe_dead
5944 && v->mode == mode)
5946 if (! eliminate_p)
5947 return 1;
5949 /* If the giv has the opposite direction of change,
5950 then reverse the comparison. */
5951 if (INTVAL (v->mult_val) < 0)
5952 new = gen_rtx (COMPARE, GET_MODE (v->new_reg),
5953 const0_rtx, v->new_reg);
5954 else
5955 new = v->new_reg;
5957 /* We can probably test that giv's reduced reg. */
5958 if (validate_change (insn, &SET_SRC (x), new, 0))
5959 return 1;
5962 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
5963 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
5964 Require a constant for MULT_VAL, so we know it's nonzero. */
5966 for (v = bl->giv; v; v = v->next_iv)
5967 if (CONSTANT_P (v->mult_val) && v->mult_val != const0_rtx
5968 && ! v->ignore && ! v->maybe_dead
5969 && v->mode == mode)
5971 if (! eliminate_p)
5972 return 1;
5974 /* If the giv has the opposite direction of change,
5975 then reverse the comparison. */
5976 if (INTVAL (v->mult_val) < 0)
5977 new = gen_rtx (COMPARE, VOIDmode, copy_rtx (v->add_val),
5978 v->new_reg);
5979 else
5980 new = gen_rtx (COMPARE, VOIDmode, v->new_reg,
5981 copy_rtx (v->add_val));
5983 /* Replace biv with the giv's reduced register. */
5984 update_reg_last_use (v->add_val, insn);
5985 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
5986 return 1;
5988 /* Insn doesn't support that constant or invariant. Copy it
5989 into a register (it will be a loop invariant.) */
5990 tem = gen_reg_rtx (GET_MODE (v->new_reg));
5992 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
5993 where);
5995 if (validate_change (insn, &SET_SRC (PATTERN (insn)),
5996 gen_rtx (COMPARE, VOIDmode,
5997 v->new_reg, tem), 0))
5998 return 1;
6001 #endif
6002 break;
6004 case COMPARE:
6005 case EQ: case NE:
6006 case GT: case GE: case GTU: case GEU:
6007 case LT: case LE: case LTU: case LEU:
6008 /* See if either argument is the biv. */
6009 if (XEXP (x, 0) == reg)
6010 arg = XEXP (x, 1), arg_operand = 1;
6011 else if (XEXP (x, 1) == reg)
6012 arg = XEXP (x, 0), arg_operand = 0;
6013 else
6014 break;
6016 if (CONSTANT_P (arg))
6018 /* First try to replace with any giv that has constant positive
6019 mult_val and constant add_val. We might be able to support
6020 negative mult_val, but it seems complex to do it in general. */
6022 for (v = bl->giv; v; v = v->next_iv)
6023 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6024 && CONSTANT_P (v->add_val)
6025 && ! v->ignore && ! v->maybe_dead
6026 && v->mode == mode)
6028 if (! eliminate_p)
6029 return 1;
6031 /* Replace biv with the giv's reduced reg. */
6032 XEXP (x, 1-arg_operand) = v->new_reg;
6034 /* If all constants are actually constant integers and
6035 the derived constant can be directly placed in the COMPARE,
6036 do so. */
6037 if (GET_CODE (arg) == CONST_INT
6038 && GET_CODE (v->mult_val) == CONST_INT
6039 && GET_CODE (v->add_val) == CONST_INT
6040 && validate_change (insn, &XEXP (x, arg_operand),
6041 GEN_INT (INTVAL (arg)
6042 * INTVAL (v->mult_val)
6043 + INTVAL (v->add_val)), 0))
6044 return 1;
6046 /* Otherwise, load it into a register. */
6047 tem = gen_reg_rtx (mode);
6048 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6049 if (validate_change (insn, &XEXP (x, arg_operand), tem, 0))
6050 return 1;
6052 /* If that failed, put back the change we made above. */
6053 XEXP (x, 1-arg_operand) = reg;
6056 /* Look for giv with positive constant mult_val and nonconst add_val.
6057 Insert insns to calculate new compare value. */
6059 for (v = bl->giv; v; v = v->next_iv)
6060 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6061 && ! v->ignore && ! v->maybe_dead
6062 && v->mode == mode)
6064 rtx tem;
6066 if (! eliminate_p)
6067 return 1;
6069 tem = gen_reg_rtx (mode);
6071 /* Replace biv with giv's reduced register. */
6072 validate_change (insn, &XEXP (x, 1 - arg_operand),
6073 v->new_reg, 1);
6075 /* Compute value to compare against. */
6076 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
6077 /* Use it in this insn. */
6078 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6079 if (apply_change_group ())
6080 return 1;
6083 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
6085 if (invariant_p (arg) == 1)
6087 /* Look for giv with constant positive mult_val and nonconst
6088 add_val. Insert insns to compute new compare value. */
6090 for (v = bl->giv; v; v = v->next_iv)
6091 if (CONSTANT_P (v->mult_val) && INTVAL (v->mult_val) > 0
6092 && ! v->ignore && ! v->maybe_dead
6093 && v->mode == mode)
6095 rtx tem;
6097 if (! eliminate_p)
6098 return 1;
6100 tem = gen_reg_rtx (mode);
6102 /* Replace biv with giv's reduced register. */
6103 validate_change (insn, &XEXP (x, 1 - arg_operand),
6104 v->new_reg, 1);
6106 /* Compute value to compare against. */
6107 emit_iv_add_mult (arg, v->mult_val, v->add_val,
6108 tem, where);
6109 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
6110 if (apply_change_group ())
6111 return 1;
6115 /* This code has problems. Basically, you can't know when
6116 seeing if we will eliminate BL, whether a particular giv
6117 of ARG will be reduced. If it isn't going to be reduced,
6118 we can't eliminate BL. We can try forcing it to be reduced,
6119 but that can generate poor code.
6121 The problem is that the benefit of reducing TV, below should
6122 be increased if BL can actually be eliminated, but this means
6123 we might have to do a topological sort of the order in which
6124 we try to process biv. It doesn't seem worthwhile to do
6125 this sort of thing now. */
6127 #if 0
6128 /* Otherwise the reg compared with had better be a biv. */
6129 if (GET_CODE (arg) != REG
6130 || reg_iv_type[REGNO (arg)] != BASIC_INDUCT)
6131 return 0;
6133 /* Look for a pair of givs, one for each biv,
6134 with identical coefficients. */
6135 for (v = bl->giv; v; v = v->next_iv)
6137 struct induction *tv;
6139 if (v->ignore || v->maybe_dead || v->mode != mode)
6140 continue;
6142 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
6143 if (! tv->ignore && ! tv->maybe_dead
6144 && rtx_equal_p (tv->mult_val, v->mult_val)
6145 && rtx_equal_p (tv->add_val, v->add_val)
6146 && tv->mode == mode)
6148 if (! eliminate_p)
6149 return 1;
6151 /* Replace biv with its giv's reduced reg. */
6152 XEXP (x, 1-arg_operand) = v->new_reg;
6153 /* Replace other operand with the other giv's
6154 reduced reg. */
6155 XEXP (x, arg_operand) = tv->new_reg;
6156 return 1;
6159 #endif
6162 /* If we get here, the biv can't be eliminated. */
6163 return 0;
6165 case MEM:
6166 /* If this address is a DEST_ADDR giv, it doesn't matter if the
6167 biv is used in it, since it will be replaced. */
6168 for (v = bl->giv; v; v = v->next_iv)
6169 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
6170 return 1;
6171 break;
6174 /* See if any subexpression fails elimination. */
6175 fmt = GET_RTX_FORMAT (code);
6176 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6178 switch (fmt[i])
6180 case 'e':
6181 if (! maybe_eliminate_biv_1 (XEXP (x, i), insn, bl,
6182 eliminate_p, where))
6183 return 0;
6184 break;
6186 case 'E':
6187 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6188 if (! maybe_eliminate_biv_1 (XVECEXP (x, i, j), insn, bl,
6189 eliminate_p, where))
6190 return 0;
6191 break;
6195 return 1;
6198 /* Return nonzero if the last use of REG
6199 is in an insn following INSN in the same basic block. */
6201 static int
6202 last_use_this_basic_block (reg, insn)
6203 rtx reg;
6204 rtx insn;
6206 rtx n;
6207 for (n = insn;
6208 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
6209 n = NEXT_INSN (n))
6211 if (regno_last_uid[REGNO (reg)] == INSN_UID (n))
6212 return 1;
6214 return 0;
6217 /* Called via `note_stores' to record the initial value of a biv. Here we
6218 just record the location of the set and process it later. */
6220 static void
6221 record_initial (dest, set)
6222 rtx dest;
6223 rtx set;
6225 struct iv_class *bl;
6227 if (GET_CODE (dest) != REG
6228 || REGNO (dest) >= max_reg_before_loop
6229 || reg_iv_type[REGNO (dest)] != BASIC_INDUCT
6230 /* Reject this insn if the source isn't valid for the mode of DEST. */
6231 || GET_MODE (dest) != GET_MODE (SET_DEST (set)))
6232 return;
6234 bl = reg_biv_class[REGNO (dest)];
6236 /* If this is the first set found, record it. */
6237 if (bl->init_insn == 0)
6239 bl->init_insn = note_insn;
6240 bl->init_set = set;
6244 /* If any of the registers in X are "old" and currently have a last use earlier
6245 than INSN, update them to have a last use of INSN. Their actual last use
6246 will be the previous insn but it will not have a valid uid_luid so we can't
6247 use it. */
6249 static void
6250 update_reg_last_use (x, insn)
6251 rtx x;
6252 rtx insn;
6254 /* Check for the case where INSN does not have a valid luid. In this case,
6255 there is no need to modify the regno_last_uid, as this can only happen
6256 when code is inserted after the loop_end to set a pseudo's final value,
6257 and hence this insn will never be the last use of x. */
6258 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
6259 && INSN_UID (insn) < max_uid_for_loop
6260 && uid_luid[regno_last_uid[REGNO (x)]] < uid_luid[INSN_UID (insn)])
6261 regno_last_uid[REGNO (x)] = INSN_UID (insn);
6262 else
6264 register int i, j;
6265 register char *fmt = GET_RTX_FORMAT (GET_CODE (x));
6266 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6268 if (fmt[i] == 'e')
6269 update_reg_last_use (XEXP (x, i), insn);
6270 else if (fmt[i] == 'E')
6271 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6272 update_reg_last_use (XVECEXP (x, i, j), insn);
6277 /* Given a jump insn JUMP, return the condition that will cause it to branch
6278 to its JUMP_LABEL. If the condition cannot be understood, or is an
6279 inequality floating-point comparison which needs to be reversed, 0 will
6280 be returned.
6282 If EARLIEST is non-zero, it is a pointer to a place where the earliest
6283 insn used in locating the condition was found. If a replacement test
6284 of the condition is desired, it should be placed in front of that
6285 insn and we will be sure that the inputs are still valid.
6287 The condition will be returned in a canonical form to simplify testing by
6288 callers. Specifically:
6290 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
6291 (2) Both operands will be machine operands; (cc0) will have been replaced.
6292 (3) If an operand is a constant, it will be the second operand.
6293 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
6294 for GE, GEU, and LEU. */
6297 get_condition (jump, earliest)
6298 rtx jump;
6299 rtx *earliest;
6301 enum rtx_code code;
6302 rtx prev = jump;
6303 rtx set;
6304 rtx tem;
6305 rtx op0, op1;
6306 int reverse_code = 0;
6307 int did_reverse_condition = 0;
6309 /* If this is not a standard conditional jump, we can't parse it. */
6310 if (GET_CODE (jump) != JUMP_INSN
6311 || ! condjump_p (jump) || simplejump_p (jump))
6312 return 0;
6314 code = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 0));
6315 op0 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 0);
6316 op1 = XEXP (XEXP (SET_SRC (PATTERN (jump)), 0), 1);
6318 if (earliest)
6319 *earliest = jump;
6321 /* If this branches to JUMP_LABEL when the condition is false, reverse
6322 the condition. */
6323 if (GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
6324 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump))
6325 code = reverse_condition (code), did_reverse_condition ^= 1;
6327 /* If we are comparing a register with zero, see if the register is set
6328 in the previous insn to a COMPARE or a comparison operation. Perform
6329 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
6330 in cse.c */
6332 while (GET_RTX_CLASS (code) == '<' && op1 == const0_rtx)
6334 /* Set non-zero when we find something of interest. */
6335 rtx x = 0;
6337 #ifdef HAVE_cc0
6338 /* If comparison with cc0, import actual comparison from compare
6339 insn. */
6340 if (op0 == cc0_rtx)
6342 if ((prev = prev_nonnote_insn (prev)) == 0
6343 || GET_CODE (prev) != INSN
6344 || (set = single_set (prev)) == 0
6345 || SET_DEST (set) != cc0_rtx)
6346 return 0;
6348 op0 = SET_SRC (set);
6349 op1 = CONST0_RTX (GET_MODE (op0));
6350 if (earliest)
6351 *earliest = prev;
6353 #endif
6355 /* If this is a COMPARE, pick up the two things being compared. */
6356 if (GET_CODE (op0) == COMPARE)
6358 op1 = XEXP (op0, 1);
6359 op0 = XEXP (op0, 0);
6360 continue;
6362 else if (GET_CODE (op0) != REG)
6363 break;
6365 /* Go back to the previous insn. Stop if it is not an INSN. We also
6366 stop if it isn't a single set or if it has a REG_INC note because
6367 we don't want to bother dealing with it. */
6369 if ((prev = prev_nonnote_insn (prev)) == 0
6370 || GET_CODE (prev) != INSN
6371 || FIND_REG_INC_NOTE (prev, 0)
6372 || (set = single_set (prev)) == 0)
6373 break;
6375 /* If this is setting OP0, get what it sets it to if it looks
6376 relevant. */
6377 if (SET_DEST (set) == op0)
6379 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
6381 if ((GET_CODE (SET_SRC (set)) == COMPARE
6382 || (((code == NE
6383 || (code == LT
6384 && GET_MODE_CLASS (inner_mode) == MODE_INT
6385 && (GET_MODE_BITSIZE (inner_mode)
6386 <= HOST_BITS_PER_WIDE_INT)
6387 && (STORE_FLAG_VALUE
6388 & ((HOST_WIDE_INT) 1
6389 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6390 #ifdef FLOAT_STORE_FLAG_VALUE
6391 || (code == LT
6392 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6393 && FLOAT_STORE_FLAG_VALUE < 0)
6394 #endif
6396 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')))
6397 x = SET_SRC (set);
6398 else if (((code == EQ
6399 || (code == GE
6400 && (GET_MODE_BITSIZE (inner_mode)
6401 <= HOST_BITS_PER_WIDE_INT)
6402 && GET_MODE_CLASS (inner_mode) == MODE_INT
6403 && (STORE_FLAG_VALUE
6404 & ((HOST_WIDE_INT) 1
6405 << (GET_MODE_BITSIZE (inner_mode) - 1))))
6406 #ifdef FLOAT_STORE_FLAG_VALUE
6407 || (code == GE
6408 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
6409 && FLOAT_STORE_FLAG_VALUE < 0)
6410 #endif
6412 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<')
6414 /* We might have reversed a LT to get a GE here. But this wasn't
6415 actually the comparison of data, so we don't flag that we
6416 have had to reverse the condition. */
6417 did_reverse_condition ^= 1;
6418 reverse_code = 1;
6419 x = SET_SRC (set);
6423 else if (reg_set_p (op0, prev))
6424 /* If this sets OP0, but not directly, we have to give up. */
6425 break;
6427 if (x)
6429 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
6430 code = GET_CODE (x);
6431 if (reverse_code)
6433 code = reverse_condition (code);
6434 did_reverse_condition ^= 1;
6435 reverse_code = 0;
6438 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6439 if (earliest)
6440 *earliest = prev;
6444 /* If constant is first, put it last. */
6445 if (CONSTANT_P (op0))
6446 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6448 /* If OP0 is the result of a comparison, we weren't able to find what
6449 was really being compared, so fail. */
6450 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6451 return 0;
6453 /* Canonicalize any ordered comparison with integers involving equality
6454 if we can do computations in the relevant mode and we do not
6455 overflow. */
6457 if (GET_CODE (op1) == CONST_INT
6458 && GET_MODE (op0) != VOIDmode
6459 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
6461 HOST_WIDE_INT const_val = INTVAL (op1);
6462 unsigned HOST_WIDE_INT uconst_val = const_val;
6463 unsigned HOST_WIDE_INT max_val
6464 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
6466 switch (code)
6468 case LE:
6469 if (const_val != max_val >> 1)
6470 code = LT, op1 = GEN_INT (const_val + 1);
6471 break;
6473 case GE:
6474 if (const_val
6475 != (((HOST_WIDE_INT) 1
6476 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
6477 code = GT, op1 = GEN_INT (const_val - 1);
6478 break;
6480 case LEU:
6481 if (uconst_val != max_val)
6482 code = LTU, op1 = GEN_INT (uconst_val + 1);
6483 break;
6485 case GEU:
6486 if (uconst_val != 0)
6487 code = GTU, op1 = GEN_INT (uconst_val - 1);
6488 break;
6492 /* If this was floating-point and we reversed anything other than an
6493 EQ or NE, return zero. */
6494 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
6495 && did_reverse_condition && code != NE && code != EQ
6496 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
6497 return 0;
6499 #ifdef HAVE_cc0
6500 /* Never return CC0; return zero instead. */
6501 if (op0 == cc0_rtx)
6502 return 0;
6503 #endif
6505 return gen_rtx (code, VOIDmode, op0, op1);
6508 /* Similar to above routine, except that we also put an invariant last
6509 unless both operands are invariants. */
6512 get_condition_for_loop (x)
6513 rtx x;
6515 rtx comparison = get_condition (x, NULL_PTR);
6517 if (comparison == 0
6518 || ! invariant_p (XEXP (comparison, 0))
6519 || invariant_p (XEXP (comparison, 1)))
6520 return comparison;
6522 return gen_rtx (swap_condition (GET_CODE (comparison)), VOIDmode,
6523 XEXP (comparison, 1), XEXP (comparison, 0));