Merge trunk version 195164 into gupc branch.
[official-gcc.git] / gcc / cp / class.c
blob605dd16c7115dd28baf72944cd06822120425bdd
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "toplev.h"
32 #include "target.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "splay-tree.h"
37 #include "pointer-set.h"
38 #include "hash-table.h"
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
43 int current_class_depth;
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
53 /* The _TYPE node for the class. */
54 tree type;
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
68 typedef struct vtbl_init_data_s
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 } vtbl_init_data;
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static tree get_basefndecls (tree, tree);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static void check_field_decl (tree, tree, int *, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static void check_bases (tree, int *, int *);
149 static void check_bases_and_members (tree);
150 static tree create_vtable_ptr (tree, tree *);
151 static void include_empty_classes (record_layout_info);
152 static void layout_class_type (tree, tree *);
153 static void propagate_binfo_offsets (tree, tree);
154 static void layout_virtual_bases (record_layout_info, splay_tree);
155 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
156 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
158 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset (tree, tree, vtbl_init_data *);
160 static void layout_vtable_decl (tree, int);
161 static tree dfs_find_final_overrider_pre (tree, void *);
162 static tree dfs_find_final_overrider_post (tree, void *);
163 static tree find_final_overrider (tree, tree, tree);
164 static int make_new_vtable (tree, tree);
165 static tree get_primary_binfo (tree);
166 static int maybe_indent_hierarchy (FILE *, int, int);
167 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
168 static void dump_class_hierarchy (tree);
169 static void dump_class_hierarchy_1 (FILE *, int, tree);
170 static void dump_array (FILE *, tree);
171 static void dump_vtable (tree, tree, tree);
172 static void dump_vtt (tree, tree);
173 static void dump_thunk (FILE *, int, tree);
174 static tree build_vtable (tree, tree, tree);
175 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
176 static void layout_nonempty_base_or_field (record_layout_info,
177 tree, tree, splay_tree);
178 static tree end_of_class (tree, int);
179 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
180 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
181 vec<constructor_elt, va_gc> **);
182 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
183 vec<constructor_elt, va_gc> **);
184 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
185 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
186 static void clone_constructors_and_destructors (tree);
187 static tree build_clone (tree, tree);
188 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
189 static void build_ctor_vtbl_group (tree, tree);
190 static void build_vtt (tree);
191 static tree binfo_ctor_vtable (tree);
192 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
193 tree *);
194 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
195 static tree dfs_fixup_binfo_vtbls (tree, void *);
196 static int record_subobject_offset (tree, tree, splay_tree);
197 static int check_subobject_offset (tree, tree, splay_tree);
198 static int walk_subobject_offsets (tree, subobject_offset_fn,
199 tree, splay_tree, tree, int);
200 static void record_subobject_offsets (tree, tree, splay_tree, bool);
201 static int layout_conflict_p (tree, tree, splay_tree, int);
202 static int splay_tree_compare_integer_csts (splay_tree_key k1,
203 splay_tree_key k2);
204 static void warn_about_ambiguous_bases (tree);
205 static bool type_requires_array_cookie (tree);
206 static bool contains_empty_class_p (tree);
207 static bool base_derived_from (tree, tree);
208 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
209 static tree end_of_base (tree);
210 static tree get_vcall_index (tree, tree);
212 /* Variables shared between class.c and call.c. */
214 int n_vtables = 0;
215 int n_vtable_entries = 0;
216 int n_vtable_searches = 0;
217 int n_vtable_elems = 0;
218 int n_convert_harshness = 0;
219 int n_compute_conversion_costs = 0;
220 int n_inner_fields_searched = 0;
222 /* Convert to or from a base subobject. EXPR is an expression of type
223 `A' or `A*', an expression of type `B' or `B*' is returned. To
224 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
225 the B base instance within A. To convert base A to derived B, CODE
226 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
227 In this latter case, A must not be a morally virtual base of B.
228 NONNULL is true if EXPR is known to be non-NULL (this is only
229 needed when EXPR is of pointer type). CV qualifiers are preserved
230 from EXPR. */
232 tree
233 build_base_path (enum tree_code code,
234 tree expr,
235 tree binfo,
236 int nonnull,
237 tsubst_flags_t complain)
239 tree v_binfo = NULL_TREE;
240 tree d_binfo = NULL_TREE;
241 tree probe;
242 tree offset;
243 tree target_type;
244 tree null_test = NULL;
245 tree ptr_target_type;
246 int fixed_type_p;
247 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
248 bool has_empty = false;
249 bool virtual_access;
251 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
252 return error_mark_node;
254 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
256 d_binfo = probe;
257 if (is_empty_class (BINFO_TYPE (probe)))
258 has_empty = true;
259 if (!v_binfo && BINFO_VIRTUAL_P (probe))
260 v_binfo = probe;
263 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
264 if (want_pointer)
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
267 if (code == PLUS_EXPR
268 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
270 /* This can happen when adjust_result_of_qualified_name_lookup can't
271 find a unique base binfo in a call to a member function. We
272 couldn't give the diagnostic then since we might have been calling
273 a static member function, so we do it now. */
274 if (complain & tf_error)
276 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
277 ba_unique, NULL, complain);
278 gcc_assert (base == error_mark_node);
280 return error_mark_node;
283 gcc_assert ((code == MINUS_EXPR
284 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
285 || code == PLUS_EXPR);
287 if (binfo == d_binfo)
288 /* Nothing to do. */
289 return expr;
291 if (code == MINUS_EXPR && v_binfo)
293 if (complain & tf_error)
294 error ("cannot convert from base %qT to derived type %qT via "
295 "virtual base %qT", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
296 BINFO_TYPE (v_binfo));
297 return error_mark_node;
300 if (!want_pointer)
301 /* This must happen before the call to save_expr. */
302 expr = cp_build_addr_expr (expr, complain);
303 else
304 expr = mark_rvalue_use (expr);
306 offset = BINFO_OFFSET (binfo);
307 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
308 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
309 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
310 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
311 expression returned matches the input. */
312 target_type = cp_build_qualified_type
313 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
314 ptr_target_type = build_pointer_type (target_type);
316 /* Do we need to look in the vtable for the real offset? */
317 virtual_access = (v_binfo && fixed_type_p <= 0);
319 /* Don't bother with the calculations inside sizeof; they'll ICE if the
320 source type is incomplete and the pointer value doesn't matter. In a
321 template (even in fold_non_dependent_expr), we don't have vtables set
322 up properly yet, and the value doesn't matter there either; we're just
323 interested in the result of overload resolution. */
324 if (cp_unevaluated_operand != 0
325 || in_template_function ())
327 expr = build_nop (ptr_target_type, expr);
328 if (!want_pointer)
329 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
330 return expr;
333 /* If we're in an NSDMI, we don't have the full constructor context yet
334 that we need for converting to a virtual base, so just build a stub
335 CONVERT_EXPR and expand it later in bot_replace. */
336 if (virtual_access && fixed_type_p < 0
337 && current_scope () != current_function_decl)
339 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
340 CONVERT_EXPR_VBASE_PATH (expr) = true;
341 if (!want_pointer)
342 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, RO_NULL);
343 return expr;
346 /* Do we need to check for a null pointer? */
347 if (want_pointer && !nonnull)
349 /* If we know the conversion will not actually change the value
350 of EXPR, then we can avoid testing the expression for NULL.
351 We have to avoid generating a COMPONENT_REF for a base class
352 field, because other parts of the compiler know that such
353 expressions are always non-NULL. */
354 if (!virtual_access && integer_zerop (offset))
355 return build_nop (ptr_target_type, expr);
356 null_test = error_mark_node;
359 /* Protect against multiple evaluation if necessary. */
360 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
361 expr = save_expr (expr);
363 /* Now that we've saved expr, build the real null test. */
364 if (null_test)
366 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
367 null_test = fold_build2_loc (input_location, NE_EXPR, boolean_type_node,
368 expr, zero);
371 /* If this is a simple base reference, express it as a COMPONENT_REF. */
372 if (code == PLUS_EXPR && !virtual_access
373 /* We don't build base fields for empty bases, and they aren't very
374 interesting to the optimizers anyway. */
375 && !has_empty)
377 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
378 expr = build_simple_base_path (expr, binfo);
379 if (want_pointer)
380 expr = build_address (expr);
381 target_type = TREE_TYPE (expr);
382 goto out;
385 if (virtual_access)
387 /* Going via virtual base V_BINFO. We need the static offset
388 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
389 V_BINFO. That offset is an entry in D_BINFO's vtable. */
390 tree v_offset;
392 if (fixed_type_p < 0 && in_base_initializer)
394 /* In a base member initializer, we cannot rely on the
395 vtable being set up. We have to indirect via the
396 vtt_parm. */
397 tree t;
399 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
400 t = build_pointer_type (t);
401 v_offset = convert (t, current_vtt_parm);
402 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
404 else
405 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, RO_NULL,
406 complain),
407 TREE_TYPE (TREE_TYPE (expr)));
409 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
410 v_offset = build1 (NOP_EXPR,
411 build_pointer_type (ptrdiff_type_node),
412 v_offset);
413 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
414 TREE_CONSTANT (v_offset) = 1;
416 offset = convert_to_integer (ptrdiff_type_node,
417 size_diffop_loc (input_location, offset,
418 BINFO_OFFSET (v_binfo)));
420 if (!integer_zerop (offset))
421 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
423 if (fixed_type_p < 0)
424 /* Negative fixed_type_p means this is a constructor or destructor;
425 virtual base layout is fixed in in-charge [cd]tors, but not in
426 base [cd]tors. */
427 offset = build3 (COND_EXPR, ptrdiff_type_node,
428 build2 (EQ_EXPR, boolean_type_node,
429 current_in_charge_parm, integer_zero_node),
430 v_offset,
431 convert_to_integer (ptrdiff_type_node,
432 BINFO_OFFSET (binfo)));
433 else
434 offset = v_offset;
437 if (want_pointer)
438 target_type = ptr_target_type;
440 expr = build1 (NOP_EXPR, ptr_target_type, expr);
442 if (!integer_zerop (offset))
444 offset = fold_convert (sizetype, offset);
445 if (code == MINUS_EXPR)
446 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
447 expr = fold_build_pointer_plus (expr, offset);
449 else
450 null_test = NULL;
452 if (!want_pointer)
453 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
455 out:
456 if (null_test)
457 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
458 build_zero_cst (target_type));
460 return expr;
463 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
464 Perform a derived-to-base conversion by recursively building up a
465 sequence of COMPONENT_REFs to the appropriate base fields. */
467 static tree
468 build_simple_base_path (tree expr, tree binfo)
470 tree type = BINFO_TYPE (binfo);
471 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
472 tree field;
474 if (d_binfo == NULL_TREE)
476 tree temp;
478 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
480 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
481 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
482 an lvalue in the front end; only _DECLs and _REFs are lvalues
483 in the back end. */
484 temp = unary_complex_lvalue (ADDR_EXPR, expr);
485 if (temp)
486 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
488 return expr;
491 /* Recurse. */
492 expr = build_simple_base_path (expr, d_binfo);
494 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
495 field; field = DECL_CHAIN (field))
496 /* Is this the base field created by build_base_field? */
497 if (TREE_CODE (field) == FIELD_DECL
498 && DECL_FIELD_IS_BASE (field)
499 && TREE_TYPE (field) == type
500 /* If we're looking for a field in the most-derived class,
501 also check the field offset; we can have two base fields
502 of the same type if one is an indirect virtual base and one
503 is a direct non-virtual base. */
504 && (BINFO_INHERITANCE_CHAIN (d_binfo)
505 || tree_int_cst_equal (byte_position (field),
506 BINFO_OFFSET (binfo))))
508 /* We don't use build_class_member_access_expr here, as that
509 has unnecessary checks, and more importantly results in
510 recursive calls to dfs_walk_once. */
511 int type_quals = cp_type_quals (TREE_TYPE (expr));
513 expr = build3 (COMPONENT_REF,
514 cp_build_qualified_type (type, type_quals),
515 expr, field, NULL_TREE);
516 expr = fold_if_not_in_template (expr);
518 /* Mark the expression const or volatile, as appropriate.
519 Even though we've dealt with the type above, we still have
520 to mark the expression itself. */
521 if (type_quals & TYPE_QUAL_CONST)
522 TREE_READONLY (expr) = 1;
523 if (type_quals & TYPE_QUAL_VOLATILE)
524 TREE_THIS_VOLATILE (expr) = 1;
526 return expr;
529 /* Didn't find the base field?!? */
530 gcc_unreachable ();
533 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
534 type is a class type or a pointer to a class type. In the former
535 case, TYPE is also a class type; in the latter it is another
536 pointer type. If CHECK_ACCESS is true, an error message is emitted
537 if TYPE is inaccessible. If OBJECT has pointer type, the value is
538 assumed to be non-NULL. */
540 tree
541 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
542 tsubst_flags_t complain)
544 tree binfo;
545 tree object_type;
547 if (TYPE_PTR_P (TREE_TYPE (object)))
549 object_type = TREE_TYPE (TREE_TYPE (object));
550 type = TREE_TYPE (type);
552 else
553 object_type = TREE_TYPE (object);
555 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
556 NULL, complain);
557 if (!binfo || binfo == error_mark_node)
558 return error_mark_node;
560 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
563 /* EXPR is an expression with unqualified class type. BASE is a base
564 binfo of that class type. Returns EXPR, converted to the BASE
565 type. This function assumes that EXPR is the most derived class;
566 therefore virtual bases can be found at their static offsets. */
568 tree
569 convert_to_base_statically (tree expr, tree base)
571 tree expr_type;
573 expr_type = TREE_TYPE (expr);
574 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
576 /* If this is a non-empty base, use a COMPONENT_REF. */
577 if (!is_empty_class (BINFO_TYPE (base)))
578 return build_simple_base_path (expr, base);
580 /* We use fold_build2 and fold_convert below to simplify the trees
581 provided to the optimizers. It is not safe to call these functions
582 when processing a template because they do not handle C++-specific
583 trees. */
584 gcc_assert (!processing_template_decl);
585 expr = cp_build_addr_expr (expr, tf_warning_or_error);
586 if (!integer_zerop (BINFO_OFFSET (base)))
587 expr = fold_build_pointer_plus_loc (input_location,
588 expr, BINFO_OFFSET (base));
589 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
590 expr = build_fold_indirect_ref_loc (input_location, expr);
593 return expr;
597 tree
598 build_vfield_ref (tree datum, tree type)
600 tree vfield, vcontext;
602 if (datum == error_mark_node)
603 return error_mark_node;
605 /* First, convert to the requested type. */
606 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
607 datum = convert_to_base (datum, type, /*check_access=*/false,
608 /*nonnull=*/true, tf_warning_or_error);
610 /* Second, the requested type may not be the owner of its own vptr.
611 If not, convert to the base class that owns it. We cannot use
612 convert_to_base here, because VCONTEXT may appear more than once
613 in the inheritance hierarchy of TYPE, and thus direct conversion
614 between the types may be ambiguous. Following the path back up
615 one step at a time via primary bases avoids the problem. */
616 vfield = TYPE_VFIELD (type);
617 vcontext = DECL_CONTEXT (vfield);
618 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
620 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
621 type = TREE_TYPE (datum);
624 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
627 /* Given an object INSTANCE, return an expression which yields the
628 vtable element corresponding to INDEX. There are many special
629 cases for INSTANCE which we take care of here, mainly to avoid
630 creating extra tree nodes when we don't have to. */
632 static tree
633 build_vtbl_ref_1 (tree instance, tree idx)
635 tree aref;
636 tree vtbl = NULL_TREE;
638 /* Try to figure out what a reference refers to, and
639 access its virtual function table directly. */
641 int cdtorp = 0;
642 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
644 tree basetype = non_reference (TREE_TYPE (instance));
646 if (fixed_type && !cdtorp)
648 tree binfo = lookup_base (fixed_type, basetype,
649 ba_unique, NULL, tf_none);
650 if (binfo && binfo != error_mark_node)
651 vtbl = unshare_expr (BINFO_VTABLE (binfo));
654 if (!vtbl)
655 vtbl = build_vfield_ref (instance, basetype);
657 aref = build_array_ref (input_location, vtbl, idx);
658 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
660 return aref;
663 tree
664 build_vtbl_ref (tree instance, tree idx)
666 tree aref = build_vtbl_ref_1 (instance, idx);
668 return aref;
671 /* Given a stable object pointer INSTANCE_PTR, return an expression which
672 yields a function pointer corresponding to vtable element INDEX. */
674 tree
675 build_vfn_ref (tree instance_ptr, tree idx)
677 tree aref;
679 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
680 tf_warning_or_error),
681 idx);
683 /* When using function descriptors, the address of the
684 vtable entry is treated as a function pointer. */
685 if (TARGET_VTABLE_USES_DESCRIPTORS)
686 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
687 cp_build_addr_expr (aref, tf_warning_or_error));
689 /* Remember this as a method reference, for later devirtualization. */
690 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
692 return aref;
695 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
696 for the given TYPE. */
698 static tree
699 get_vtable_name (tree type)
701 return mangle_vtbl_for_type (type);
704 /* DECL is an entity associated with TYPE, like a virtual table or an
705 implicitly generated constructor. Determine whether or not DECL
706 should have external or internal linkage at the object file
707 level. This routine does not deal with COMDAT linkage and other
708 similar complexities; it simply sets TREE_PUBLIC if it possible for
709 entities in other translation units to contain copies of DECL, in
710 the abstract. */
712 void
713 set_linkage_according_to_type (tree /*type*/, tree decl)
715 TREE_PUBLIC (decl) = 1;
716 determine_visibility (decl);
719 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
720 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
721 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
723 static tree
724 build_vtable (tree class_type, tree name, tree vtable_type)
726 tree decl;
728 decl = build_lang_decl (VAR_DECL, name, vtable_type);
729 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
730 now to avoid confusion in mangle_decl. */
731 SET_DECL_ASSEMBLER_NAME (decl, name);
732 DECL_CONTEXT (decl) = class_type;
733 DECL_ARTIFICIAL (decl) = 1;
734 TREE_STATIC (decl) = 1;
735 TREE_READONLY (decl) = 1;
736 DECL_VIRTUAL_P (decl) = 1;
737 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
738 DECL_VTABLE_OR_VTT_P (decl) = 1;
739 /* At one time the vtable info was grabbed 2 words at a time. This
740 fails on sparc unless you have 8-byte alignment. (tiemann) */
741 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
742 DECL_ALIGN (decl));
743 set_linkage_according_to_type (class_type, decl);
744 /* The vtable has not been defined -- yet. */
745 DECL_EXTERNAL (decl) = 1;
746 DECL_NOT_REALLY_EXTERN (decl) = 1;
748 /* Mark the VAR_DECL node representing the vtable itself as a
749 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
750 is rather important that such things be ignored because any
751 effort to actually generate DWARF for them will run into
752 trouble when/if we encounter code like:
754 #pragma interface
755 struct S { virtual void member (); };
757 because the artificial declaration of the vtable itself (as
758 manufactured by the g++ front end) will say that the vtable is
759 a static member of `S' but only *after* the debug output for
760 the definition of `S' has already been output. This causes
761 grief because the DWARF entry for the definition of the vtable
762 will try to refer back to an earlier *declaration* of the
763 vtable as a static member of `S' and there won't be one. We
764 might be able to arrange to have the "vtable static member"
765 attached to the member list for `S' before the debug info for
766 `S' get written (which would solve the problem) but that would
767 require more intrusive changes to the g++ front end. */
768 DECL_IGNORED_P (decl) = 1;
770 return decl;
773 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
774 or even complete. If this does not exist, create it. If COMPLETE is
775 nonzero, then complete the definition of it -- that will render it
776 impossible to actually build the vtable, but is useful to get at those
777 which are known to exist in the runtime. */
779 tree
780 get_vtable_decl (tree type, int complete)
782 tree decl;
784 if (CLASSTYPE_VTABLES (type))
785 return CLASSTYPE_VTABLES (type);
787 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
788 CLASSTYPE_VTABLES (type) = decl;
790 if (complete)
792 DECL_EXTERNAL (decl) = 1;
793 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
796 return decl;
799 /* Build the primary virtual function table for TYPE. If BINFO is
800 non-NULL, build the vtable starting with the initial approximation
801 that it is the same as the one which is the head of the association
802 list. Returns a nonzero value if a new vtable is actually
803 created. */
805 static int
806 build_primary_vtable (tree binfo, tree type)
808 tree decl;
809 tree virtuals;
811 decl = get_vtable_decl (type, /*complete=*/0);
813 if (binfo)
815 if (BINFO_NEW_VTABLE_MARKED (binfo))
816 /* We have already created a vtable for this base, so there's
817 no need to do it again. */
818 return 0;
820 virtuals = copy_list (BINFO_VIRTUALS (binfo));
821 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
822 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
823 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
825 else
827 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
828 virtuals = NULL_TREE;
831 if (GATHER_STATISTICS)
833 n_vtables += 1;
834 n_vtable_elems += list_length (virtuals);
837 /* Initialize the association list for this type, based
838 on our first approximation. */
839 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
840 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
841 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
842 return 1;
845 /* Give BINFO a new virtual function table which is initialized
846 with a skeleton-copy of its original initialization. The only
847 entry that changes is the `delta' entry, so we can really
848 share a lot of structure.
850 FOR_TYPE is the most derived type which caused this table to
851 be needed.
853 Returns nonzero if we haven't met BINFO before.
855 The order in which vtables are built (by calling this function) for
856 an object must remain the same, otherwise a binary incompatibility
857 can result. */
859 static int
860 build_secondary_vtable (tree binfo)
862 if (BINFO_NEW_VTABLE_MARKED (binfo))
863 /* We already created a vtable for this base. There's no need to
864 do it again. */
865 return 0;
867 /* Remember that we've created a vtable for this BINFO, so that we
868 don't try to do so again. */
869 SET_BINFO_NEW_VTABLE_MARKED (binfo);
871 /* Make fresh virtual list, so we can smash it later. */
872 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
874 /* Secondary vtables are laid out as part of the same structure as
875 the primary vtable. */
876 BINFO_VTABLE (binfo) = NULL_TREE;
877 return 1;
880 /* Create a new vtable for BINFO which is the hierarchy dominated by
881 T. Return nonzero if we actually created a new vtable. */
883 static int
884 make_new_vtable (tree t, tree binfo)
886 if (binfo == TYPE_BINFO (t))
887 /* In this case, it is *type*'s vtable we are modifying. We start
888 with the approximation that its vtable is that of the
889 immediate base class. */
890 return build_primary_vtable (binfo, t);
891 else
892 /* This is our very own copy of `basetype' to play with. Later,
893 we will fill in all the virtual functions that override the
894 virtual functions in these base classes which are not defined
895 by the current type. */
896 return build_secondary_vtable (binfo);
899 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
900 (which is in the hierarchy dominated by T) list FNDECL as its
901 BV_FN. DELTA is the required constant adjustment from the `this'
902 pointer where the vtable entry appears to the `this' required when
903 the function is actually called. */
905 static void
906 modify_vtable_entry (tree t,
907 tree binfo,
908 tree fndecl,
909 tree delta,
910 tree *virtuals)
912 tree v;
914 v = *virtuals;
916 if (fndecl != BV_FN (v)
917 || !tree_int_cst_equal (delta, BV_DELTA (v)))
919 /* We need a new vtable for BINFO. */
920 if (make_new_vtable (t, binfo))
922 /* If we really did make a new vtable, we also made a copy
923 of the BINFO_VIRTUALS list. Now, we have to find the
924 corresponding entry in that list. */
925 *virtuals = BINFO_VIRTUALS (binfo);
926 while (BV_FN (*virtuals) != BV_FN (v))
927 *virtuals = TREE_CHAIN (*virtuals);
928 v = *virtuals;
931 BV_DELTA (v) = delta;
932 BV_VCALL_INDEX (v) = NULL_TREE;
933 BV_FN (v) = fndecl;
938 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
939 the USING_DECL naming METHOD. Returns true if the method could be
940 added to the method vec. */
942 bool
943 add_method (tree type, tree method, tree using_decl)
945 unsigned slot;
946 tree overload;
947 bool template_conv_p = false;
948 bool conv_p;
949 vec<tree, va_gc> *method_vec;
950 bool complete_p;
951 bool insert_p = false;
952 tree current_fns;
953 tree fns;
955 if (method == error_mark_node)
956 return false;
958 complete_p = COMPLETE_TYPE_P (type);
959 conv_p = DECL_CONV_FN_P (method);
960 if (conv_p)
961 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
962 && DECL_TEMPLATE_CONV_FN_P (method));
964 method_vec = CLASSTYPE_METHOD_VEC (type);
965 if (!method_vec)
967 /* Make a new method vector. We start with 8 entries. We must
968 allocate at least two (for constructors and destructors), and
969 we're going to end up with an assignment operator at some
970 point as well. */
971 vec_alloc (method_vec, 8);
972 /* Create slots for constructors and destructors. */
973 method_vec->quick_push (NULL_TREE);
974 method_vec->quick_push (NULL_TREE);
975 CLASSTYPE_METHOD_VEC (type) = method_vec;
978 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
979 grok_special_member_properties (method);
981 /* Constructors and destructors go in special slots. */
982 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
983 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
984 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
986 slot = CLASSTYPE_DESTRUCTOR_SLOT;
988 if (TYPE_FOR_JAVA (type))
990 if (!DECL_ARTIFICIAL (method))
991 error ("Java class %qT cannot have a destructor", type);
992 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
993 error ("Java class %qT cannot have an implicit non-trivial "
994 "destructor",
995 type);
998 else
1000 tree m;
1002 insert_p = true;
1003 /* See if we already have an entry with this name. */
1004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1005 vec_safe_iterate (method_vec, slot, &m);
1006 ++slot)
1008 m = OVL_CURRENT (m);
1009 if (template_conv_p)
1011 if (TREE_CODE (m) == TEMPLATE_DECL
1012 && DECL_TEMPLATE_CONV_FN_P (m))
1013 insert_p = false;
1014 break;
1016 if (conv_p && !DECL_CONV_FN_P (m))
1017 break;
1018 if (DECL_NAME (m) == DECL_NAME (method))
1020 insert_p = false;
1021 break;
1023 if (complete_p
1024 && !DECL_CONV_FN_P (m)
1025 && DECL_NAME (m) > DECL_NAME (method))
1026 break;
1029 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1031 /* Check to see if we've already got this method. */
1032 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1034 tree fn = OVL_CURRENT (fns);
1035 tree fn_type;
1036 tree method_type;
1037 tree parms1;
1038 tree parms2;
1040 if (TREE_CODE (fn) != TREE_CODE (method))
1041 continue;
1043 /* [over.load] Member function declarations with the
1044 same name and the same parameter types cannot be
1045 overloaded if any of them is a static member
1046 function declaration.
1048 [namespace.udecl] When a using-declaration brings names
1049 from a base class into a derived class scope, member
1050 functions in the derived class override and/or hide member
1051 functions with the same name and parameter types in a base
1052 class (rather than conflicting). */
1053 fn_type = TREE_TYPE (fn);
1054 method_type = TREE_TYPE (method);
1055 parms1 = TYPE_ARG_TYPES (fn_type);
1056 parms2 = TYPE_ARG_TYPES (method_type);
1058 /* Compare the quals on the 'this' parm. Don't compare
1059 the whole types, as used functions are treated as
1060 coming from the using class in overload resolution. */
1061 if (! DECL_STATIC_FUNCTION_P (fn)
1062 && ! DECL_STATIC_FUNCTION_P (method)
1063 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1064 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1065 && (cp_type_quals (TREE_TYPE (TREE_VALUE (parms1)))
1066 != cp_type_quals (TREE_TYPE (TREE_VALUE (parms2)))))
1067 continue;
1069 /* For templates, the return type and template parameters
1070 must be identical. */
1071 if (TREE_CODE (fn) == TEMPLATE_DECL
1072 && (!same_type_p (TREE_TYPE (fn_type),
1073 TREE_TYPE (method_type))
1074 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1075 DECL_TEMPLATE_PARMS (method))))
1076 continue;
1078 if (! DECL_STATIC_FUNCTION_P (fn))
1079 parms1 = TREE_CHAIN (parms1);
1080 if (! DECL_STATIC_FUNCTION_P (method))
1081 parms2 = TREE_CHAIN (parms2);
1083 if (compparms (parms1, parms2)
1084 && (!DECL_CONV_FN_P (fn)
1085 || same_type_p (TREE_TYPE (fn_type),
1086 TREE_TYPE (method_type))))
1088 /* For function versions, their parms and types match
1089 but they are not duplicates. Record function versions
1090 as and when they are found. extern "C" functions are
1091 not treated as versions. */
1092 if (TREE_CODE (fn) == FUNCTION_DECL
1093 && TREE_CODE (method) == FUNCTION_DECL
1094 && !DECL_EXTERN_C_P (fn)
1095 && !DECL_EXTERN_C_P (method)
1096 && targetm.target_option.function_versions (fn, method))
1098 /* Mark functions as versions if necessary. Modify the mangled
1099 decl name if necessary. */
1100 if (!DECL_FUNCTION_VERSIONED (fn))
1102 DECL_FUNCTION_VERSIONED (fn) = 1;
1103 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1104 mangle_decl (fn);
1106 if (!DECL_FUNCTION_VERSIONED (method))
1108 DECL_FUNCTION_VERSIONED (method) = 1;
1109 if (DECL_ASSEMBLER_NAME_SET_P (method))
1110 mangle_decl (method);
1112 record_function_versions (fn, method);
1113 continue;
1115 if (DECL_INHERITED_CTOR_BASE (method))
1117 if (DECL_INHERITED_CTOR_BASE (fn))
1119 error_at (DECL_SOURCE_LOCATION (method),
1120 "%q#D inherited from %qT", method,
1121 DECL_INHERITED_CTOR_BASE (method));
1122 error_at (DECL_SOURCE_LOCATION (fn),
1123 "conflicts with version inherited from %qT",
1124 DECL_INHERITED_CTOR_BASE (fn));
1126 /* Otherwise defer to the other function. */
1127 return false;
1129 if (using_decl)
1131 if (DECL_CONTEXT (fn) == type)
1132 /* Defer to the local function. */
1133 return false;
1135 else
1137 error ("%q+#D cannot be overloaded", method);
1138 error ("with %q+#D", fn);
1141 /* We don't call duplicate_decls here to merge the
1142 declarations because that will confuse things if the
1143 methods have inline definitions. In particular, we
1144 will crash while processing the definitions. */
1145 return false;
1149 /* A class should never have more than one destructor. */
1150 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1151 return false;
1153 /* Add the new binding. */
1154 if (using_decl)
1156 overload = ovl_cons (method, current_fns);
1157 OVL_USED (overload) = true;
1159 else
1160 overload = build_overload (method, current_fns);
1162 if (conv_p)
1163 TYPE_HAS_CONVERSION (type) = 1;
1164 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1165 push_class_level_binding (DECL_NAME (method), overload);
1167 if (insert_p)
1169 bool reallocated;
1171 /* We only expect to add few methods in the COMPLETE_P case, so
1172 just make room for one more method in that case. */
1173 if (complete_p)
1174 reallocated = vec_safe_reserve_exact (method_vec, 1);
1175 else
1176 reallocated = vec_safe_reserve (method_vec, 1);
1177 if (reallocated)
1178 CLASSTYPE_METHOD_VEC (type) = method_vec;
1179 if (slot == method_vec->length ())
1180 method_vec->quick_push (overload);
1181 else
1182 method_vec->quick_insert (slot, overload);
1184 else
1185 /* Replace the current slot. */
1186 (*method_vec)[slot] = overload;
1187 return true;
1190 /* Subroutines of finish_struct. */
1192 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1193 legit, otherwise return 0. */
1195 static int
1196 alter_access (tree t, tree fdecl, tree access)
1198 tree elem;
1200 if (!DECL_LANG_SPECIFIC (fdecl))
1201 retrofit_lang_decl (fdecl);
1203 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1205 elem = purpose_member (t, DECL_ACCESS (fdecl));
1206 if (elem)
1208 if (TREE_VALUE (elem) != access)
1210 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1211 error ("conflicting access specifications for method"
1212 " %q+D, ignored", TREE_TYPE (fdecl));
1213 else
1214 error ("conflicting access specifications for field %qE, ignored",
1215 DECL_NAME (fdecl));
1217 else
1219 /* They're changing the access to the same thing they changed
1220 it to before. That's OK. */
1224 else
1226 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1227 tf_warning_or_error);
1228 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1229 return 1;
1231 return 0;
1234 /* Process the USING_DECL, which is a member of T. */
1236 static void
1237 handle_using_decl (tree using_decl, tree t)
1239 tree decl = USING_DECL_DECLS (using_decl);
1240 tree name = DECL_NAME (using_decl);
1241 tree access
1242 = TREE_PRIVATE (using_decl) ? access_private_node
1243 : TREE_PROTECTED (using_decl) ? access_protected_node
1244 : access_public_node;
1245 tree flist = NULL_TREE;
1246 tree old_value;
1248 gcc_assert (!processing_template_decl && decl);
1250 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1251 tf_warning_or_error);
1252 if (old_value)
1254 if (is_overloaded_fn (old_value))
1255 old_value = OVL_CURRENT (old_value);
1257 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1258 /* OK */;
1259 else
1260 old_value = NULL_TREE;
1263 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1265 if (is_overloaded_fn (decl))
1266 flist = decl;
1268 if (! old_value)
1270 else if (is_overloaded_fn (old_value))
1272 if (flist)
1273 /* It's OK to use functions from a base when there are functions with
1274 the same name already present in the current class. */;
1275 else
1277 error ("%q+D invalid in %q#T", using_decl, t);
1278 error (" because of local method %q+#D with same name",
1279 OVL_CURRENT (old_value));
1280 return;
1283 else if (!DECL_ARTIFICIAL (old_value))
1285 error ("%q+D invalid in %q#T", using_decl, t);
1286 error (" because of local member %q+#D with same name", old_value);
1287 return;
1290 /* Make type T see field decl FDECL with access ACCESS. */
1291 if (flist)
1292 for (; flist; flist = OVL_NEXT (flist))
1294 add_method (t, OVL_CURRENT (flist), using_decl);
1295 alter_access (t, OVL_CURRENT (flist), access);
1297 else
1298 alter_access (t, decl, access);
1301 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1302 types with abi tags, add the corresponding identifiers to the VEC in
1303 *DATA and set IDENTIFIER_MARKED. */
1305 struct abi_tag_data
1307 tree t;
1308 tree subob;
1311 static tree
1312 find_abi_tags_r (tree *tp, int */*walk_subtrees*/, void *data)
1314 if (!TAGGED_TYPE_P (*tp))
1315 return NULL_TREE;
1317 if (tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (*tp)))
1319 struct abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1320 for (tree list = TREE_VALUE (attributes); list;
1321 list = TREE_CHAIN (list))
1323 tree tag = TREE_VALUE (list);
1324 tree id = get_identifier (TREE_STRING_POINTER (tag));
1325 if (!IDENTIFIER_MARKED (id))
1327 if (TYPE_P (p->subob))
1329 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1330 "that base %qT has", p->t, tag, p->subob);
1331 inform (location_of (p->subob), "%qT declared here",
1332 p->subob);
1334 else
1336 warning (OPT_Wabi_tag, "%qT does not have the %E abi tag "
1337 "that %qT (used in the type of %qD) has",
1338 p->t, tag, *tp, p->subob);
1339 inform (location_of (p->subob), "%qD declared here",
1340 p->subob);
1341 inform (location_of (*tp), "%qT declared here", *tp);
1346 return NULL_TREE;
1349 /* Check that class T has all the abi tags that subobject SUBOB has, or
1350 warn if not. */
1352 static void
1353 check_abi_tags (tree t, tree subob)
1355 tree attributes = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1356 if (attributes)
1358 for (tree list = TREE_VALUE (attributes); list;
1359 list = TREE_CHAIN (list))
1361 tree tag = TREE_VALUE (list);
1362 tree id = get_identifier (TREE_STRING_POINTER (tag));
1363 IDENTIFIER_MARKED (id) = true;
1367 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1368 struct abi_tag_data data = { t, subob };
1370 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1372 if (attributes)
1374 for (tree list = TREE_VALUE (attributes); list;
1375 list = TREE_CHAIN (list))
1377 tree tag = TREE_VALUE (list);
1378 tree id = get_identifier (TREE_STRING_POINTER (tag));
1379 IDENTIFIER_MARKED (id) = false;
1384 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1385 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1386 properties of the bases. */
1388 static void
1389 check_bases (tree t,
1390 int* cant_have_const_ctor_p,
1391 int* no_const_asn_ref_p)
1393 int i;
1394 bool seen_non_virtual_nearly_empty_base_p = 0;
1395 int seen_tm_mask = 0;
1396 tree base_binfo;
1397 tree binfo;
1398 tree field = NULL_TREE;
1400 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1401 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1402 if (TREE_CODE (field) == FIELD_DECL)
1403 break;
1405 for (binfo = TYPE_BINFO (t), i = 0;
1406 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1408 tree basetype = TREE_TYPE (base_binfo);
1410 gcc_assert (COMPLETE_TYPE_P (basetype));
1412 if (CLASSTYPE_FINAL (basetype))
1413 error ("cannot derive from %<final%> base %qT in derived type %qT",
1414 basetype, t);
1416 /* If any base class is non-literal, so is the derived class. */
1417 if (!CLASSTYPE_LITERAL_P (basetype))
1418 CLASSTYPE_LITERAL_P (t) = false;
1420 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1421 here because the case of virtual functions but non-virtual
1422 dtor is handled in finish_struct_1. */
1423 if (!TYPE_POLYMORPHIC_P (basetype))
1424 warning (OPT_Weffc__,
1425 "base class %q#T has a non-virtual destructor", basetype);
1427 /* If the base class doesn't have copy constructors or
1428 assignment operators that take const references, then the
1429 derived class cannot have such a member automatically
1430 generated. */
1431 if (TYPE_HAS_COPY_CTOR (basetype)
1432 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1433 *cant_have_const_ctor_p = 1;
1434 if (TYPE_HAS_COPY_ASSIGN (basetype)
1435 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1436 *no_const_asn_ref_p = 1;
1438 if (BINFO_VIRTUAL_P (base_binfo))
1439 /* A virtual base does not effect nearly emptiness. */
1441 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1443 if (seen_non_virtual_nearly_empty_base_p)
1444 /* And if there is more than one nearly empty base, then the
1445 derived class is not nearly empty either. */
1446 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1447 else
1448 /* Remember we've seen one. */
1449 seen_non_virtual_nearly_empty_base_p = 1;
1451 else if (!is_empty_class (basetype))
1452 /* If the base class is not empty or nearly empty, then this
1453 class cannot be nearly empty. */
1454 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1456 /* A lot of properties from the bases also apply to the derived
1457 class. */
1458 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1459 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1460 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1461 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1462 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1463 || !TYPE_HAS_COPY_ASSIGN (basetype));
1464 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1465 || !TYPE_HAS_COPY_CTOR (basetype));
1466 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1467 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1468 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1469 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1470 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1471 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1472 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1473 || TYPE_HAS_COMPLEX_DFLT (basetype));
1475 /* A standard-layout class is a class that:
1477 * has no non-standard-layout base classes, */
1478 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1479 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1481 tree basefield;
1482 /* ...has no base classes of the same type as the first non-static
1483 data member... */
1484 if (field && DECL_CONTEXT (field) == t
1485 && (same_type_ignoring_top_level_qualifiers_p
1486 (TREE_TYPE (field), basetype)))
1487 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1488 else
1489 /* ...either has no non-static data members in the most-derived
1490 class and at most one base class with non-static data
1491 members, or has no base classes with non-static data
1492 members */
1493 for (basefield = TYPE_FIELDS (basetype); basefield;
1494 basefield = DECL_CHAIN (basefield))
1495 if (TREE_CODE (basefield) == FIELD_DECL)
1497 if (field)
1498 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1499 else
1500 field = basefield;
1501 break;
1505 /* Don't bother collecting tm attributes if transactional memory
1506 support is not enabled. */
1507 if (flag_tm)
1509 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1510 if (tm_attr)
1511 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1514 check_abi_tags (t, basetype);
1517 /* If one of the base classes had TM attributes, and the current class
1518 doesn't define its own, then the current class inherits one. */
1519 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1521 tree tm_attr = tm_mask_to_attr (seen_tm_mask & -seen_tm_mask);
1522 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1526 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1527 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1528 that have had a nearly-empty virtual primary base stolen by some
1529 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1530 T. */
1532 static void
1533 determine_primary_bases (tree t)
1535 unsigned i;
1536 tree primary = NULL_TREE;
1537 tree type_binfo = TYPE_BINFO (t);
1538 tree base_binfo;
1540 /* Determine the primary bases of our bases. */
1541 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1542 base_binfo = TREE_CHAIN (base_binfo))
1544 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1546 /* See if we're the non-virtual primary of our inheritance
1547 chain. */
1548 if (!BINFO_VIRTUAL_P (base_binfo))
1550 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1551 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1553 if (parent_primary
1554 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1555 BINFO_TYPE (parent_primary)))
1556 /* We are the primary binfo. */
1557 BINFO_PRIMARY_P (base_binfo) = 1;
1559 /* Determine if we have a virtual primary base, and mark it so.
1561 if (primary && BINFO_VIRTUAL_P (primary))
1563 tree this_primary = copied_binfo (primary, base_binfo);
1565 if (BINFO_PRIMARY_P (this_primary))
1566 /* Someone already claimed this base. */
1567 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1568 else
1570 tree delta;
1572 BINFO_PRIMARY_P (this_primary) = 1;
1573 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1575 /* A virtual binfo might have been copied from within
1576 another hierarchy. As we're about to use it as a
1577 primary base, make sure the offsets match. */
1578 delta = size_diffop_loc (input_location,
1579 convert (ssizetype,
1580 BINFO_OFFSET (base_binfo)),
1581 convert (ssizetype,
1582 BINFO_OFFSET (this_primary)));
1584 propagate_binfo_offsets (this_primary, delta);
1589 /* First look for a dynamic direct non-virtual base. */
1590 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1592 tree basetype = BINFO_TYPE (base_binfo);
1594 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1596 primary = base_binfo;
1597 goto found;
1601 /* A "nearly-empty" virtual base class can be the primary base
1602 class, if no non-virtual polymorphic base can be found. Look for
1603 a nearly-empty virtual dynamic base that is not already a primary
1604 base of something in the hierarchy. If there is no such base,
1605 just pick the first nearly-empty virtual base. */
1607 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1608 base_binfo = TREE_CHAIN (base_binfo))
1609 if (BINFO_VIRTUAL_P (base_binfo)
1610 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1612 if (!BINFO_PRIMARY_P (base_binfo))
1614 /* Found one that is not primary. */
1615 primary = base_binfo;
1616 goto found;
1618 else if (!primary)
1619 /* Remember the first candidate. */
1620 primary = base_binfo;
1623 found:
1624 /* If we've got a primary base, use it. */
1625 if (primary)
1627 tree basetype = BINFO_TYPE (primary);
1629 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1630 if (BINFO_PRIMARY_P (primary))
1631 /* We are stealing a primary base. */
1632 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1633 BINFO_PRIMARY_P (primary) = 1;
1634 if (BINFO_VIRTUAL_P (primary))
1636 tree delta;
1638 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1639 /* A virtual binfo might have been copied from within
1640 another hierarchy. As we're about to use it as a primary
1641 base, make sure the offsets match. */
1642 delta = size_diffop_loc (input_location, ssize_int (0),
1643 convert (ssizetype, BINFO_OFFSET (primary)));
1645 propagate_binfo_offsets (primary, delta);
1648 primary = TYPE_BINFO (basetype);
1650 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1651 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1652 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1656 /* Update the variant types of T. */
1658 void
1659 fixup_type_variants (tree t)
1661 tree variants;
1663 if (!t)
1664 return;
1666 for (variants = TYPE_NEXT_VARIANT (t);
1667 variants;
1668 variants = TYPE_NEXT_VARIANT (variants))
1670 /* These fields are in the _TYPE part of the node, not in
1671 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1672 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1673 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1674 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1675 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1677 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1679 TYPE_BINFO (variants) = TYPE_BINFO (t);
1681 /* Copy whatever these are holding today. */
1682 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1683 TYPE_METHODS (variants) = TYPE_METHODS (t);
1684 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1688 /* Early variant fixups: we apply attributes at the beginning of the class
1689 definition, and we need to fix up any variants that have already been
1690 made via elaborated-type-specifier so that check_qualified_type works. */
1692 void
1693 fixup_attribute_variants (tree t)
1695 tree variants;
1697 if (!t)
1698 return;
1700 for (variants = TYPE_NEXT_VARIANT (t);
1701 variants;
1702 variants = TYPE_NEXT_VARIANT (variants))
1704 /* These are the two fields that check_qualified_type looks at and
1705 are affected by attributes. */
1706 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1707 TYPE_ALIGN (variants) = TYPE_ALIGN (t);
1711 /* Set memoizing fields and bits of T (and its variants) for later
1712 use. */
1714 static void
1715 finish_struct_bits (tree t)
1717 /* Fix up variants (if any). */
1718 fixup_type_variants (t);
1720 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1721 /* For a class w/o baseclasses, 'finish_struct' has set
1722 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1723 Similarly for a class whose base classes do not have vtables.
1724 When neither of these is true, we might have removed abstract
1725 virtuals (by providing a definition), added some (by declaring
1726 new ones), or redeclared ones from a base class. We need to
1727 recalculate what's really an abstract virtual at this point (by
1728 looking in the vtables). */
1729 get_pure_virtuals (t);
1731 /* If this type has a copy constructor or a destructor, force its
1732 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1733 nonzero. This will cause it to be passed by invisible reference
1734 and prevent it from being returned in a register. */
1735 if (type_has_nontrivial_copy_init (t)
1736 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1738 tree variants;
1739 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1740 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1742 SET_TYPE_MODE (variants, BLKmode);
1743 TREE_ADDRESSABLE (variants) = 1;
1748 /* Issue warnings about T having private constructors, but no friends,
1749 and so forth.
1751 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1752 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1753 non-private static member functions. */
1755 static void
1756 maybe_warn_about_overly_private_class (tree t)
1758 int has_member_fn = 0;
1759 int has_nonprivate_method = 0;
1760 tree fn;
1762 if (!warn_ctor_dtor_privacy
1763 /* If the class has friends, those entities might create and
1764 access instances, so we should not warn. */
1765 || (CLASSTYPE_FRIEND_CLASSES (t)
1766 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1767 /* We will have warned when the template was declared; there's
1768 no need to warn on every instantiation. */
1769 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1770 /* There's no reason to even consider warning about this
1771 class. */
1772 return;
1774 /* We only issue one warning, if more than one applies, because
1775 otherwise, on code like:
1777 class A {
1778 // Oops - forgot `public:'
1779 A();
1780 A(const A&);
1781 ~A();
1784 we warn several times about essentially the same problem. */
1786 /* Check to see if all (non-constructor, non-destructor) member
1787 functions are private. (Since there are no friends or
1788 non-private statics, we can't ever call any of the private member
1789 functions.) */
1790 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
1791 /* We're not interested in compiler-generated methods; they don't
1792 provide any way to call private members. */
1793 if (!DECL_ARTIFICIAL (fn))
1795 if (!TREE_PRIVATE (fn))
1797 if (DECL_STATIC_FUNCTION_P (fn))
1798 /* A non-private static member function is just like a
1799 friend; it can create and invoke private member
1800 functions, and be accessed without a class
1801 instance. */
1802 return;
1804 has_nonprivate_method = 1;
1805 /* Keep searching for a static member function. */
1807 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1808 has_member_fn = 1;
1811 if (!has_nonprivate_method && has_member_fn)
1813 /* There are no non-private methods, and there's at least one
1814 private member function that isn't a constructor or
1815 destructor. (If all the private members are
1816 constructors/destructors we want to use the code below that
1817 issues error messages specifically referring to
1818 constructors/destructors.) */
1819 unsigned i;
1820 tree binfo = TYPE_BINFO (t);
1822 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1823 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1825 has_nonprivate_method = 1;
1826 break;
1828 if (!has_nonprivate_method)
1830 warning (OPT_Wctor_dtor_privacy,
1831 "all member functions in class %qT are private", t);
1832 return;
1836 /* Even if some of the member functions are non-private, the class
1837 won't be useful for much if all the constructors or destructors
1838 are private: such an object can never be created or destroyed. */
1839 fn = CLASSTYPE_DESTRUCTORS (t);
1840 if (fn && TREE_PRIVATE (fn))
1842 warning (OPT_Wctor_dtor_privacy,
1843 "%q#T only defines a private destructor and has no friends",
1845 return;
1848 /* Warn about classes that have private constructors and no friends. */
1849 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1850 /* Implicitly generated constructors are always public. */
1851 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1852 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1854 int nonprivate_ctor = 0;
1856 /* If a non-template class does not define a copy
1857 constructor, one is defined for it, enabling it to avoid
1858 this warning. For a template class, this does not
1859 happen, and so we would normally get a warning on:
1861 template <class T> class C { private: C(); };
1863 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
1864 complete non-template or fully instantiated classes have this
1865 flag set. */
1866 if (!TYPE_HAS_COPY_CTOR (t))
1867 nonprivate_ctor = 1;
1868 else
1869 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1871 tree ctor = OVL_CURRENT (fn);
1872 /* Ideally, we wouldn't count copy constructors (or, in
1873 fact, any constructor that takes an argument of the
1874 class type as a parameter) because such things cannot
1875 be used to construct an instance of the class unless
1876 you already have one. But, for now at least, we're
1877 more generous. */
1878 if (! TREE_PRIVATE (ctor))
1880 nonprivate_ctor = 1;
1881 break;
1885 if (nonprivate_ctor == 0)
1887 warning (OPT_Wctor_dtor_privacy,
1888 "%q#T only defines private constructors and has no friends",
1890 return;
1895 static struct {
1896 gt_pointer_operator new_value;
1897 void *cookie;
1898 } resort_data;
1900 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1902 static int
1903 method_name_cmp (const void* m1_p, const void* m2_p)
1905 const tree *const m1 = (const tree *) m1_p;
1906 const tree *const m2 = (const tree *) m2_p;
1908 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1909 return 0;
1910 if (*m1 == NULL_TREE)
1911 return -1;
1912 if (*m2 == NULL_TREE)
1913 return 1;
1914 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1915 return -1;
1916 return 1;
1919 /* This routine compares two fields like method_name_cmp but using the
1920 pointer operator in resort_field_decl_data. */
1922 static int
1923 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1925 const tree *const m1 = (const tree *) m1_p;
1926 const tree *const m2 = (const tree *) m2_p;
1927 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1928 return 0;
1929 if (*m1 == NULL_TREE)
1930 return -1;
1931 if (*m2 == NULL_TREE)
1932 return 1;
1934 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1935 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1936 resort_data.new_value (&d1, resort_data.cookie);
1937 resort_data.new_value (&d2, resort_data.cookie);
1938 if (d1 < d2)
1939 return -1;
1941 return 1;
1944 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1946 void
1947 resort_type_method_vec (void* obj,
1948 void* /*orig_obj*/,
1949 gt_pointer_operator new_value,
1950 void* cookie)
1952 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
1953 int len = vec_safe_length (method_vec);
1954 size_t slot;
1955 tree fn;
1957 /* The type conversion ops have to live at the front of the vec, so we
1958 can't sort them. */
1959 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1960 vec_safe_iterate (method_vec, slot, &fn);
1961 ++slot)
1962 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1963 break;
1965 if (len - slot > 1)
1967 resort_data.new_value = new_value;
1968 resort_data.cookie = cookie;
1969 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
1970 resort_method_name_cmp);
1974 /* Warn about duplicate methods in fn_fields.
1976 Sort methods that are not special (i.e., constructors, destructors,
1977 and type conversion operators) so that we can find them faster in
1978 search. */
1980 static void
1981 finish_struct_methods (tree t)
1983 tree fn_fields;
1984 vec<tree, va_gc> *method_vec;
1985 int slot, len;
1987 method_vec = CLASSTYPE_METHOD_VEC (t);
1988 if (!method_vec)
1989 return;
1991 len = method_vec->length ();
1993 /* Clear DECL_IN_AGGR_P for all functions. */
1994 for (fn_fields = TYPE_METHODS (t); fn_fields;
1995 fn_fields = DECL_CHAIN (fn_fields))
1996 DECL_IN_AGGR_P (fn_fields) = 0;
1998 /* Issue warnings about private constructors and such. If there are
1999 no methods, then some public defaults are generated. */
2000 maybe_warn_about_overly_private_class (t);
2002 /* The type conversion ops have to live at the front of the vec, so we
2003 can't sort them. */
2004 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2005 method_vec->iterate (slot, &fn_fields);
2006 ++slot)
2007 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2008 break;
2009 if (len - slot > 1)
2010 qsort (method_vec->address () + slot,
2011 len-slot, sizeof (tree), method_name_cmp);
2014 /* Make BINFO's vtable have N entries, including RTTI entries,
2015 vbase and vcall offsets, etc. Set its type and call the back end
2016 to lay it out. */
2018 static void
2019 layout_vtable_decl (tree binfo, int n)
2021 tree atype;
2022 tree vtable;
2024 atype = build_array_of_n_type (vtable_entry_type, n);
2025 layout_type (atype);
2027 /* We may have to grow the vtable. */
2028 vtable = get_vtbl_decl_for_binfo (binfo);
2029 if (!same_type_p (TREE_TYPE (vtable), atype))
2031 TREE_TYPE (vtable) = atype;
2032 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2033 layout_decl (vtable, 0);
2037 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2038 have the same signature. */
2041 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2043 /* One destructor overrides another if they are the same kind of
2044 destructor. */
2045 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2046 && special_function_p (base_fndecl) == special_function_p (fndecl))
2047 return 1;
2048 /* But a non-destructor never overrides a destructor, nor vice
2049 versa, nor do different kinds of destructors override
2050 one-another. For example, a complete object destructor does not
2051 override a deleting destructor. */
2052 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2053 return 0;
2055 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2056 || (DECL_CONV_FN_P (fndecl)
2057 && DECL_CONV_FN_P (base_fndecl)
2058 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2059 DECL_CONV_FN_TYPE (base_fndecl))))
2061 tree types, base_types;
2062 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2063 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
2064 if ((cp_type_quals (TREE_TYPE (TREE_VALUE (base_types)))
2065 == cp_type_quals (TREE_TYPE (TREE_VALUE (types))))
2066 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
2067 return 1;
2069 return 0;
2072 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2073 subobject. */
2075 static bool
2076 base_derived_from (tree derived, tree base)
2078 tree probe;
2080 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2082 if (probe == derived)
2083 return true;
2084 else if (BINFO_VIRTUAL_P (probe))
2085 /* If we meet a virtual base, we can't follow the inheritance
2086 any more. See if the complete type of DERIVED contains
2087 such a virtual base. */
2088 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2089 != NULL_TREE);
2091 return false;
2094 typedef struct find_final_overrider_data_s {
2095 /* The function for which we are trying to find a final overrider. */
2096 tree fn;
2097 /* The base class in which the function was declared. */
2098 tree declaring_base;
2099 /* The candidate overriders. */
2100 tree candidates;
2101 /* Path to most derived. */
2102 vec<tree> path;
2103 } find_final_overrider_data;
2105 /* Add the overrider along the current path to FFOD->CANDIDATES.
2106 Returns true if an overrider was found; false otherwise. */
2108 static bool
2109 dfs_find_final_overrider_1 (tree binfo,
2110 find_final_overrider_data *ffod,
2111 unsigned depth)
2113 tree method;
2115 /* If BINFO is not the most derived type, try a more derived class.
2116 A definition there will overrider a definition here. */
2117 if (depth)
2119 depth--;
2120 if (dfs_find_final_overrider_1
2121 (ffod->path[depth], ffod, depth))
2122 return true;
2125 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2126 if (method)
2128 tree *candidate = &ffod->candidates;
2130 /* Remove any candidates overridden by this new function. */
2131 while (*candidate)
2133 /* If *CANDIDATE overrides METHOD, then METHOD
2134 cannot override anything else on the list. */
2135 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2136 return true;
2137 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2138 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2139 *candidate = TREE_CHAIN (*candidate);
2140 else
2141 candidate = &TREE_CHAIN (*candidate);
2144 /* Add the new function. */
2145 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2146 return true;
2149 return false;
2152 /* Called from find_final_overrider via dfs_walk. */
2154 static tree
2155 dfs_find_final_overrider_pre (tree binfo, void *data)
2157 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2159 if (binfo == ffod->declaring_base)
2160 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2161 ffod->path.safe_push (binfo);
2163 return NULL_TREE;
2166 static tree
2167 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2169 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2170 ffod->path.pop ();
2172 return NULL_TREE;
2175 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2176 FN and whose TREE_VALUE is the binfo for the base where the
2177 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2178 DERIVED) is the base object in which FN is declared. */
2180 static tree
2181 find_final_overrider (tree derived, tree binfo, tree fn)
2183 find_final_overrider_data ffod;
2185 /* Getting this right is a little tricky. This is valid:
2187 struct S { virtual void f (); };
2188 struct T { virtual void f (); };
2189 struct U : public S, public T { };
2191 even though calling `f' in `U' is ambiguous. But,
2193 struct R { virtual void f(); };
2194 struct S : virtual public R { virtual void f (); };
2195 struct T : virtual public R { virtual void f (); };
2196 struct U : public S, public T { };
2198 is not -- there's no way to decide whether to put `S::f' or
2199 `T::f' in the vtable for `R'.
2201 The solution is to look at all paths to BINFO. If we find
2202 different overriders along any two, then there is a problem. */
2203 if (DECL_THUNK_P (fn))
2204 fn = THUNK_TARGET (fn);
2206 /* Determine the depth of the hierarchy. */
2207 ffod.fn = fn;
2208 ffod.declaring_base = binfo;
2209 ffod.candidates = NULL_TREE;
2210 ffod.path.create (30);
2212 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2213 dfs_find_final_overrider_post, &ffod);
2215 ffod.path.release ();
2217 /* If there was no winner, issue an error message. */
2218 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2219 return error_mark_node;
2221 return ffod.candidates;
2224 /* Return the index of the vcall offset for FN when TYPE is used as a
2225 virtual base. */
2227 static tree
2228 get_vcall_index (tree fn, tree type)
2230 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2231 tree_pair_p p;
2232 unsigned ix;
2234 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2235 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2236 || same_signature_p (fn, p->purpose))
2237 return p->value;
2239 /* There should always be an appropriate index. */
2240 gcc_unreachable ();
2243 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2244 dominated by T. FN is the old function; VIRTUALS points to the
2245 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2246 of that entry in the list. */
2248 static void
2249 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2250 unsigned ix)
2252 tree b;
2253 tree overrider;
2254 tree delta;
2255 tree virtual_base;
2256 tree first_defn;
2257 tree overrider_fn, overrider_target;
2258 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2259 tree over_return, base_return;
2260 bool lost = false;
2262 /* Find the nearest primary base (possibly binfo itself) which defines
2263 this function; this is the class the caller will convert to when
2264 calling FN through BINFO. */
2265 for (b = binfo; ; b = get_primary_binfo (b))
2267 gcc_assert (b);
2268 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2269 break;
2271 /* The nearest definition is from a lost primary. */
2272 if (BINFO_LOST_PRIMARY_P (b))
2273 lost = true;
2275 first_defn = b;
2277 /* Find the final overrider. */
2278 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2279 if (overrider == error_mark_node)
2281 error ("no unique final overrider for %qD in %qT", target_fn, t);
2282 return;
2284 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2286 /* Check for adjusting covariant return types. */
2287 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2288 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2290 if (POINTER_TYPE_P (over_return)
2291 && TREE_CODE (over_return) == TREE_CODE (base_return)
2292 && CLASS_TYPE_P (TREE_TYPE (over_return))
2293 && CLASS_TYPE_P (TREE_TYPE (base_return))
2294 /* If the overrider is invalid, don't even try. */
2295 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2297 /* If FN is a covariant thunk, we must figure out the adjustment
2298 to the final base FN was converting to. As OVERRIDER_TARGET might
2299 also be converting to the return type of FN, we have to
2300 combine the two conversions here. */
2301 tree fixed_offset, virtual_offset;
2303 over_return = TREE_TYPE (over_return);
2304 base_return = TREE_TYPE (base_return);
2306 if (DECL_THUNK_P (fn))
2308 gcc_assert (DECL_RESULT_THUNK_P (fn));
2309 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2310 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2312 else
2313 fixed_offset = virtual_offset = NULL_TREE;
2315 if (virtual_offset)
2316 /* Find the equivalent binfo within the return type of the
2317 overriding function. We will want the vbase offset from
2318 there. */
2319 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2320 over_return);
2321 else if (!same_type_ignoring_top_level_qualifiers_p
2322 (over_return, base_return))
2324 /* There was no existing virtual thunk (which takes
2325 precedence). So find the binfo of the base function's
2326 return type within the overriding function's return type.
2327 We cannot call lookup base here, because we're inside a
2328 dfs_walk, and will therefore clobber the BINFO_MARKED
2329 flags. Fortunately we know the covariancy is valid (it
2330 has already been checked), so we can just iterate along
2331 the binfos, which have been chained in inheritance graph
2332 order. Of course it is lame that we have to repeat the
2333 search here anyway -- we should really be caching pieces
2334 of the vtable and avoiding this repeated work. */
2335 tree thunk_binfo, base_binfo;
2337 /* Find the base binfo within the overriding function's
2338 return type. We will always find a thunk_binfo, except
2339 when the covariancy is invalid (which we will have
2340 already diagnosed). */
2341 for (base_binfo = TYPE_BINFO (base_return),
2342 thunk_binfo = TYPE_BINFO (over_return);
2343 thunk_binfo;
2344 thunk_binfo = TREE_CHAIN (thunk_binfo))
2345 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2346 BINFO_TYPE (base_binfo)))
2347 break;
2349 /* See if virtual inheritance is involved. */
2350 for (virtual_offset = thunk_binfo;
2351 virtual_offset;
2352 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2353 if (BINFO_VIRTUAL_P (virtual_offset))
2354 break;
2356 if (virtual_offset
2357 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2359 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2361 if (virtual_offset)
2363 /* We convert via virtual base. Adjust the fixed
2364 offset to be from there. */
2365 offset =
2366 size_diffop (offset,
2367 convert (ssizetype,
2368 BINFO_OFFSET (virtual_offset)));
2370 if (fixed_offset)
2371 /* There was an existing fixed offset, this must be
2372 from the base just converted to, and the base the
2373 FN was thunking to. */
2374 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2375 else
2376 fixed_offset = offset;
2380 if (fixed_offset || virtual_offset)
2381 /* Replace the overriding function with a covariant thunk. We
2382 will emit the overriding function in its own slot as
2383 well. */
2384 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2385 fixed_offset, virtual_offset);
2387 else
2388 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2389 !DECL_THUNK_P (fn));
2391 /* If we need a covariant thunk, then we may need to adjust first_defn.
2392 The ABI specifies that the thunks emitted with a function are
2393 determined by which bases the function overrides, so we need to be
2394 sure that we're using a thunk for some overridden base; even if we
2395 know that the necessary this adjustment is zero, there may not be an
2396 appropriate zero-this-adjusment thunk for us to use since thunks for
2397 overriding virtual bases always use the vcall offset.
2399 Furthermore, just choosing any base that overrides this function isn't
2400 quite right, as this slot won't be used for calls through a type that
2401 puts a covariant thunk here. Calling the function through such a type
2402 will use a different slot, and that slot is the one that determines
2403 the thunk emitted for that base.
2405 So, keep looking until we find the base that we're really overriding
2406 in this slot: the nearest primary base that doesn't use a covariant
2407 thunk in this slot. */
2408 if (overrider_target != overrider_fn)
2410 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2411 /* We already know that the overrider needs a covariant thunk. */
2412 b = get_primary_binfo (b);
2413 for (; ; b = get_primary_binfo (b))
2415 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2416 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2417 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2418 break;
2419 if (BINFO_LOST_PRIMARY_P (b))
2420 lost = true;
2422 first_defn = b;
2425 /* Assume that we will produce a thunk that convert all the way to
2426 the final overrider, and not to an intermediate virtual base. */
2427 virtual_base = NULL_TREE;
2429 /* See if we can convert to an intermediate virtual base first, and then
2430 use the vcall offset located there to finish the conversion. */
2431 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2433 /* If we find the final overrider, then we can stop
2434 walking. */
2435 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2436 BINFO_TYPE (TREE_VALUE (overrider))))
2437 break;
2439 /* If we find a virtual base, and we haven't yet found the
2440 overrider, then there is a virtual base between the
2441 declaring base (first_defn) and the final overrider. */
2442 if (BINFO_VIRTUAL_P (b))
2444 virtual_base = b;
2445 break;
2449 /* Compute the constant adjustment to the `this' pointer. The
2450 `this' pointer, when this function is called, will point at BINFO
2451 (or one of its primary bases, which are at the same offset). */
2452 if (virtual_base)
2453 /* The `this' pointer needs to be adjusted from the declaration to
2454 the nearest virtual base. */
2455 delta = size_diffop_loc (input_location,
2456 convert (ssizetype, BINFO_OFFSET (virtual_base)),
2457 convert (ssizetype, BINFO_OFFSET (first_defn)));
2458 else if (lost)
2459 /* If the nearest definition is in a lost primary, we don't need an
2460 entry in our vtable. Except possibly in a constructor vtable,
2461 if we happen to get our primary back. In that case, the offset
2462 will be zero, as it will be a primary base. */
2463 delta = size_zero_node;
2464 else
2465 /* The `this' pointer needs to be adjusted from pointing to
2466 BINFO to pointing at the base where the final overrider
2467 appears. */
2468 delta = size_diffop_loc (input_location,
2469 convert (ssizetype,
2470 BINFO_OFFSET (TREE_VALUE (overrider))),
2471 convert (ssizetype, BINFO_OFFSET (binfo)));
2473 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2475 if (virtual_base)
2476 BV_VCALL_INDEX (*virtuals)
2477 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2478 else
2479 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2481 BV_LOST_PRIMARY (*virtuals) = lost;
2484 /* Called from modify_all_vtables via dfs_walk. */
2486 static tree
2487 dfs_modify_vtables (tree binfo, void* data)
2489 tree t = (tree) data;
2490 tree virtuals;
2491 tree old_virtuals;
2492 unsigned ix;
2494 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2495 /* A base without a vtable needs no modification, and its bases
2496 are uninteresting. */
2497 return dfs_skip_bases;
2499 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2500 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2501 /* Don't do the primary vtable, if it's new. */
2502 return NULL_TREE;
2504 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2505 /* There's no need to modify the vtable for a non-virtual primary
2506 base; we're not going to use that vtable anyhow. We do still
2507 need to do this for virtual primary bases, as they could become
2508 non-primary in a construction vtable. */
2509 return NULL_TREE;
2511 make_new_vtable (t, binfo);
2513 /* Now, go through each of the virtual functions in the virtual
2514 function table for BINFO. Find the final overrider, and update
2515 the BINFO_VIRTUALS list appropriately. */
2516 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2517 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2518 virtuals;
2519 ix++, virtuals = TREE_CHAIN (virtuals),
2520 old_virtuals = TREE_CHAIN (old_virtuals))
2521 update_vtable_entry_for_fn (t,
2522 binfo,
2523 BV_FN (old_virtuals),
2524 &virtuals, ix);
2526 return NULL_TREE;
2529 /* Update all of the primary and secondary vtables for T. Create new
2530 vtables as required, and initialize their RTTI information. Each
2531 of the functions in VIRTUALS is declared in T and may override a
2532 virtual function from a base class; find and modify the appropriate
2533 entries to point to the overriding functions. Returns a list, in
2534 declaration order, of the virtual functions that are declared in T,
2535 but do not appear in the primary base class vtable, and which
2536 should therefore be appended to the end of the vtable for T. */
2538 static tree
2539 modify_all_vtables (tree t, tree virtuals)
2541 tree binfo = TYPE_BINFO (t);
2542 tree *fnsp;
2544 /* Update all of the vtables. */
2545 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2547 /* Add virtual functions not already in our primary vtable. These
2548 will be both those introduced by this class, and those overridden
2549 from secondary bases. It does not include virtuals merely
2550 inherited from secondary bases. */
2551 for (fnsp = &virtuals; *fnsp; )
2553 tree fn = TREE_VALUE (*fnsp);
2555 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2556 || DECL_VINDEX (fn) == error_mark_node)
2558 /* We don't need to adjust the `this' pointer when
2559 calling this function. */
2560 BV_DELTA (*fnsp) = integer_zero_node;
2561 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2563 /* This is a function not already in our vtable. Keep it. */
2564 fnsp = &TREE_CHAIN (*fnsp);
2566 else
2567 /* We've already got an entry for this function. Skip it. */
2568 *fnsp = TREE_CHAIN (*fnsp);
2571 return virtuals;
2574 /* Get the base virtual function declarations in T that have the
2575 indicated NAME. */
2577 static tree
2578 get_basefndecls (tree name, tree t)
2580 tree methods;
2581 tree base_fndecls = NULL_TREE;
2582 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2583 int i;
2585 /* Find virtual functions in T with the indicated NAME. */
2586 i = lookup_fnfields_1 (t, name);
2587 if (i != -1)
2588 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2589 methods;
2590 methods = OVL_NEXT (methods))
2592 tree method = OVL_CURRENT (methods);
2594 if (TREE_CODE (method) == FUNCTION_DECL
2595 && DECL_VINDEX (method))
2596 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2599 if (base_fndecls)
2600 return base_fndecls;
2602 for (i = 0; i < n_baseclasses; i++)
2604 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2605 base_fndecls = chainon (get_basefndecls (name, basetype),
2606 base_fndecls);
2609 return base_fndecls;
2612 /* If this declaration supersedes the declaration of
2613 a method declared virtual in the base class, then
2614 mark this field as being virtual as well. */
2616 void
2617 check_for_override (tree decl, tree ctype)
2619 bool overrides_found = false;
2620 if (TREE_CODE (decl) == TEMPLATE_DECL)
2621 /* In [temp.mem] we have:
2623 A specialization of a member function template does not
2624 override a virtual function from a base class. */
2625 return;
2626 if ((DECL_DESTRUCTOR_P (decl)
2627 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2628 || DECL_CONV_FN_P (decl))
2629 && look_for_overrides (ctype, decl)
2630 && !DECL_STATIC_FUNCTION_P (decl))
2631 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2632 the error_mark_node so that we know it is an overriding
2633 function. */
2635 DECL_VINDEX (decl) = decl;
2636 overrides_found = true;
2639 if (DECL_VIRTUAL_P (decl))
2641 if (!DECL_VINDEX (decl))
2642 DECL_VINDEX (decl) = error_mark_node;
2643 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2644 if (DECL_DESTRUCTOR_P (decl))
2645 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2647 else if (DECL_FINAL_P (decl))
2648 error ("%q+#D marked final, but is not virtual", decl);
2649 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2650 error ("%q+#D marked override, but does not override", decl);
2653 /* Warn about hidden virtual functions that are not overridden in t.
2654 We know that constructors and destructors don't apply. */
2656 static void
2657 warn_hidden (tree t)
2659 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
2660 tree fns;
2661 size_t i;
2663 /* We go through each separately named virtual function. */
2664 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2665 vec_safe_iterate (method_vec, i, &fns);
2666 ++i)
2668 tree fn;
2669 tree name;
2670 tree fndecl;
2671 tree base_fndecls;
2672 tree base_binfo;
2673 tree binfo;
2674 int j;
2676 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2677 have the same name. Figure out what name that is. */
2678 name = DECL_NAME (OVL_CURRENT (fns));
2679 /* There are no possibly hidden functions yet. */
2680 base_fndecls = NULL_TREE;
2681 /* Iterate through all of the base classes looking for possibly
2682 hidden functions. */
2683 for (binfo = TYPE_BINFO (t), j = 0;
2684 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2686 tree basetype = BINFO_TYPE (base_binfo);
2687 base_fndecls = chainon (get_basefndecls (name, basetype),
2688 base_fndecls);
2691 /* If there are no functions to hide, continue. */
2692 if (!base_fndecls)
2693 continue;
2695 /* Remove any overridden functions. */
2696 for (fn = fns; fn; fn = OVL_NEXT (fn))
2698 fndecl = OVL_CURRENT (fn);
2699 if (DECL_VINDEX (fndecl))
2701 tree *prev = &base_fndecls;
2703 while (*prev)
2704 /* If the method from the base class has the same
2705 signature as the method from the derived class, it
2706 has been overridden. */
2707 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2708 *prev = TREE_CHAIN (*prev);
2709 else
2710 prev = &TREE_CHAIN (*prev);
2714 /* Now give a warning for all base functions without overriders,
2715 as they are hidden. */
2716 while (base_fndecls)
2718 /* Here we know it is a hider, and no overrider exists. */
2719 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2720 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2721 base_fndecls = TREE_CHAIN (base_fndecls);
2726 /* Check for things that are invalid. There are probably plenty of other
2727 things we should check for also. */
2729 static void
2730 finish_struct_anon (tree t)
2732 tree field;
2734 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2736 if (TREE_STATIC (field))
2737 continue;
2738 if (TREE_CODE (field) != FIELD_DECL)
2739 continue;
2741 if (DECL_NAME (field) == NULL_TREE
2742 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2744 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2745 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2746 for (; elt; elt = DECL_CHAIN (elt))
2748 /* We're generally only interested in entities the user
2749 declared, but we also find nested classes by noticing
2750 the TYPE_DECL that we create implicitly. You're
2751 allowed to put one anonymous union inside another,
2752 though, so we explicitly tolerate that. We use
2753 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2754 we also allow unnamed types used for defining fields. */
2755 if (DECL_ARTIFICIAL (elt)
2756 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2757 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2758 continue;
2760 if (TREE_CODE (elt) != FIELD_DECL)
2762 if (is_union)
2763 permerror (input_location, "%q+#D invalid; an anonymous union can "
2764 "only have non-static data members", elt);
2765 else
2766 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2767 "only have non-static data members", elt);
2768 continue;
2771 if (TREE_PRIVATE (elt))
2773 if (is_union)
2774 permerror (input_location, "private member %q+#D in anonymous union", elt);
2775 else
2776 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2778 else if (TREE_PROTECTED (elt))
2780 if (is_union)
2781 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2782 else
2783 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2786 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2787 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2793 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2794 will be used later during class template instantiation.
2795 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2796 a non-static member data (FIELD_DECL), a member function
2797 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2798 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2799 When FRIEND_P is nonzero, T is either a friend class
2800 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2801 (FUNCTION_DECL, TEMPLATE_DECL). */
2803 void
2804 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2806 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2807 if (CLASSTYPE_TEMPLATE_INFO (type))
2808 CLASSTYPE_DECL_LIST (type)
2809 = tree_cons (friend_p ? NULL_TREE : type,
2810 t, CLASSTYPE_DECL_LIST (type));
2813 /* This function is called from declare_virt_assop_and_dtor via
2814 dfs_walk_all.
2816 DATA is a type that direcly or indirectly inherits the base
2817 represented by BINFO. If BINFO contains a virtual assignment [copy
2818 assignment or move assigment] operator or a virtual constructor,
2819 declare that function in DATA if it hasn't been already declared. */
2821 static tree
2822 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2824 tree bv, fn, t = (tree)data;
2825 tree opname = ansi_assopname (NOP_EXPR);
2827 gcc_assert (t && CLASS_TYPE_P (t));
2828 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2830 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2831 /* A base without a vtable needs no modification, and its bases
2832 are uninteresting. */
2833 return dfs_skip_bases;
2835 if (BINFO_PRIMARY_P (binfo))
2836 /* If this is a primary base, then we have already looked at the
2837 virtual functions of its vtable. */
2838 return NULL_TREE;
2840 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
2842 fn = BV_FN (bv);
2844 if (DECL_NAME (fn) == opname)
2846 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
2847 lazily_declare_fn (sfk_copy_assignment, t);
2848 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
2849 lazily_declare_fn (sfk_move_assignment, t);
2851 else if (DECL_DESTRUCTOR_P (fn)
2852 && CLASSTYPE_LAZY_DESTRUCTOR (t))
2853 lazily_declare_fn (sfk_destructor, t);
2856 return NULL_TREE;
2859 /* If the class type T has a direct or indirect base that contains a
2860 virtual assignment operator or a virtual destructor, declare that
2861 function in T if it hasn't been already declared. */
2863 static void
2864 declare_virt_assop_and_dtor (tree t)
2866 if (!(TYPE_POLYMORPHIC_P (t)
2867 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
2868 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
2869 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
2870 return;
2872 dfs_walk_all (TYPE_BINFO (t),
2873 dfs_declare_virt_assop_and_dtor,
2874 NULL, t);
2877 /* Declare the inheriting constructor for class T inherited from base
2878 constructor CTOR with the parameter array PARMS of size NPARMS. */
2880 static void
2881 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
2883 /* We don't declare an inheriting ctor that would be a default,
2884 copy or move ctor for derived or base. */
2885 if (nparms == 0)
2886 return;
2887 if (nparms == 1
2888 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
2890 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
2891 if (parm == t || parm == DECL_CONTEXT (ctor))
2892 return;
2895 tree parmlist = void_list_node;
2896 for (int i = nparms - 1; i >= 0; i--)
2897 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
2898 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
2899 t, false, ctor, parmlist);
2900 if (add_method (t, fn, NULL_TREE))
2902 DECL_CHAIN (fn) = TYPE_METHODS (t);
2903 TYPE_METHODS (t) = fn;
2907 /* Declare all the inheriting constructors for class T inherited from base
2908 constructor CTOR. */
2910 static void
2911 one_inherited_ctor (tree ctor, tree t)
2913 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
2915 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
2916 int i = 0;
2917 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
2919 if (TREE_PURPOSE (parms))
2920 one_inheriting_sig (t, ctor, new_parms, i);
2921 new_parms[i++] = TREE_VALUE (parms);
2923 one_inheriting_sig (t, ctor, new_parms, i);
2924 if (parms == NULL_TREE)
2926 warning (OPT_Winherited_variadic_ctor,
2927 "the ellipsis in %qD is not inherited", ctor);
2928 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
2932 /* Create default constructors, assignment operators, and so forth for
2933 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2934 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2935 the class cannot have a default constructor, copy constructor
2936 taking a const reference argument, or an assignment operator taking
2937 a const reference, respectively. */
2939 static void
2940 add_implicitly_declared_members (tree t, tree* access_decls,
2941 int cant_have_const_cctor,
2942 int cant_have_const_assignment)
2944 bool move_ok = false;
2946 if (cxx_dialect >= cxx0x && !CLASSTYPE_DESTRUCTORS (t)
2947 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
2948 && !type_has_move_constructor (t) && !type_has_move_assign (t))
2949 move_ok = true;
2951 /* Destructor. */
2952 if (!CLASSTYPE_DESTRUCTORS (t))
2954 /* In general, we create destructors lazily. */
2955 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2957 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2958 && TYPE_FOR_JAVA (t))
2959 /* But if this is a Java class, any non-trivial destructor is
2960 invalid, even if compiler-generated. Therefore, if the
2961 destructor is non-trivial we create it now. */
2962 lazily_declare_fn (sfk_destructor, t);
2965 /* [class.ctor]
2967 If there is no user-declared constructor for a class, a default
2968 constructor is implicitly declared. */
2969 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2971 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2972 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2973 if (cxx_dialect >= cxx0x)
2974 TYPE_HAS_CONSTEXPR_CTOR (t)
2975 /* This might force the declaration. */
2976 = type_has_constexpr_default_constructor (t);
2979 /* [class.ctor]
2981 If a class definition does not explicitly declare a copy
2982 constructor, one is declared implicitly. */
2983 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
2985 TYPE_HAS_COPY_CTOR (t) = 1;
2986 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
2987 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2988 if (move_ok)
2989 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
2992 /* If there is no assignment operator, one will be created if and
2993 when it is needed. For now, just record whether or not the type
2994 of the parameter to the assignment operator will be a const or
2995 non-const reference. */
2996 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
2998 TYPE_HAS_COPY_ASSIGN (t) = 1;
2999 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3000 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3001 if (move_ok)
3002 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3005 /* We can't be lazy about declaring functions that might override
3006 a virtual function from a base class. */
3007 declare_virt_assop_and_dtor (t);
3009 while (*access_decls)
3011 tree using_decl = TREE_VALUE (*access_decls);
3012 tree decl = USING_DECL_DECLS (using_decl);
3013 if (DECL_SELF_REFERENCE_P (decl))
3015 /* declare, then remove the decl */
3016 tree ctor_list = lookup_fnfields_slot (TREE_TYPE (decl),
3017 ctor_identifier);
3018 location_t loc = input_location;
3019 input_location = DECL_SOURCE_LOCATION (using_decl);
3020 if (ctor_list)
3021 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3022 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3023 *access_decls = TREE_CHAIN (*access_decls);
3024 input_location = loc;
3026 else
3027 access_decls = &TREE_CHAIN (*access_decls);
3031 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3032 count the number of fields in TYPE, including anonymous union
3033 members. */
3035 static int
3036 count_fields (tree fields)
3038 tree x;
3039 int n_fields = 0;
3040 for (x = fields; x; x = DECL_CHAIN (x))
3042 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3043 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3044 else
3045 n_fields += 1;
3047 return n_fields;
3050 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3051 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3052 elts, starting at offset IDX. */
3054 static int
3055 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3057 tree x;
3058 for (x = fields; x; x = DECL_CHAIN (x))
3060 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3061 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3062 else
3063 field_vec->elts[idx++] = x;
3065 return idx;
3068 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3069 starting at offset IDX. */
3071 static int
3072 add_enum_fields_to_record_type (tree enumtype,
3073 struct sorted_fields_type *field_vec,
3074 int idx)
3076 tree values;
3077 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3078 field_vec->elts[idx++] = TREE_VALUE (values);
3079 return idx;
3082 /* FIELD is a bit-field. We are finishing the processing for its
3083 enclosing type. Issue any appropriate messages and set appropriate
3084 flags. Returns false if an error has been diagnosed. */
3086 static bool
3087 check_bitfield_decl (tree field)
3089 tree type = TREE_TYPE (field);
3090 tree w;
3092 /* Extract the declared width of the bitfield, which has been
3093 temporarily stashed in DECL_INITIAL. */
3094 w = DECL_INITIAL (field);
3095 gcc_assert (w != NULL_TREE);
3096 /* Remove the bit-field width indicator so that the rest of the
3097 compiler does not treat that value as an initializer. */
3098 DECL_INITIAL (field) = NULL_TREE;
3100 /* Detect invalid bit-field type. */
3101 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3103 error ("bit-field %q+#D with non-integral type", field);
3104 w = error_mark_node;
3106 else
3108 location_t loc = input_location;
3109 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3110 STRIP_NOPS (w);
3112 /* detect invalid field size. */
3113 input_location = DECL_SOURCE_LOCATION (field);
3114 w = cxx_constant_value (w);
3115 input_location = loc;
3117 if (TREE_CODE (w) != INTEGER_CST)
3119 error ("bit-field %q+D width not an integer constant", field);
3120 w = error_mark_node;
3122 else if (tree_int_cst_sgn (w) < 0)
3124 error ("negative width in bit-field %q+D", field);
3125 w = error_mark_node;
3127 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3129 error ("zero width for bit-field %q+D", field);
3130 w = error_mark_node;
3132 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
3133 && TREE_CODE (type) != ENUMERAL_TYPE
3134 && TREE_CODE (type) != BOOLEAN_TYPE)
3135 warning (0, "width of %q+D exceeds its type", field);
3136 else if (TREE_CODE (type) == ENUMERAL_TYPE
3137 && (0 > (compare_tree_int
3138 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3139 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
3142 if (w != error_mark_node)
3144 DECL_SIZE (field) = convert (bitsizetype, w);
3145 DECL_BIT_FIELD (field) = 1;
3146 return true;
3148 else
3150 /* Non-bit-fields are aligned for their type. */
3151 DECL_BIT_FIELD (field) = 0;
3152 CLEAR_DECL_C_BIT_FIELD (field);
3153 return false;
3157 /* FIELD is a non bit-field. We are finishing the processing for its
3158 enclosing type T. Issue any appropriate messages and set appropriate
3159 flags. */
3161 static void
3162 check_field_decl (tree field,
3163 tree t,
3164 int* cant_have_const_ctor,
3165 int* no_const_asn_ref,
3166 int* any_default_members)
3168 tree type = strip_array_types (TREE_TYPE (field));
3170 /* In C++98 an anonymous union cannot contain any fields which would change
3171 the settings of CANT_HAVE_CONST_CTOR and friends. */
3172 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx0x)
3174 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3175 structs. So, we recurse through their fields here. */
3176 else if (ANON_AGGR_TYPE_P (type))
3178 tree fields;
3180 for (fields = TYPE_FIELDS (type); fields; fields = DECL_CHAIN (fields))
3181 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3182 check_field_decl (fields, t, cant_have_const_ctor,
3183 no_const_asn_ref, any_default_members);
3185 /* Check members with class type for constructors, destructors,
3186 etc. */
3187 else if (CLASS_TYPE_P (type))
3189 /* Never let anything with uninheritable virtuals
3190 make it through without complaint. */
3191 abstract_virtuals_error (field, type);
3193 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx0x)
3195 static bool warned;
3196 int oldcount = errorcount;
3197 if (TYPE_NEEDS_CONSTRUCTING (type))
3198 error ("member %q+#D with constructor not allowed in union",
3199 field);
3200 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3201 error ("member %q+#D with destructor not allowed in union", field);
3202 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3203 error ("member %q+#D with copy assignment operator not allowed in union",
3204 field);
3205 if (!warned && errorcount > oldcount)
3207 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3208 "only available with -std=c++11 or -std=gnu++11");
3209 warned = true;
3212 else
3214 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3215 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3216 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3217 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3218 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3219 || !TYPE_HAS_COPY_ASSIGN (type));
3220 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3221 || !TYPE_HAS_COPY_CTOR (type));
3222 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3223 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3224 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3225 || TYPE_HAS_COMPLEX_DFLT (type));
3228 if (TYPE_HAS_COPY_CTOR (type)
3229 && !TYPE_HAS_CONST_COPY_CTOR (type))
3230 *cant_have_const_ctor = 1;
3232 if (TYPE_HAS_COPY_ASSIGN (type)
3233 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3234 *no_const_asn_ref = 1;
3237 check_abi_tags (t, field);
3239 if (DECL_INITIAL (field) != NULL_TREE)
3241 /* `build_class_init_list' does not recognize
3242 non-FIELD_DECLs. */
3243 if (TREE_CODE (t) == UNION_TYPE && *any_default_members != 0)
3244 error ("multiple fields in union %qT initialized", t);
3245 *any_default_members = 1;
3249 /* Check the data members (both static and non-static), class-scoped
3250 typedefs, etc., appearing in the declaration of T. Issue
3251 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3252 declaration order) of access declarations; each TREE_VALUE in this
3253 list is a USING_DECL.
3255 In addition, set the following flags:
3257 EMPTY_P
3258 The class is empty, i.e., contains no non-static data members.
3260 CANT_HAVE_CONST_CTOR_P
3261 This class cannot have an implicitly generated copy constructor
3262 taking a const reference.
3264 CANT_HAVE_CONST_ASN_REF
3265 This class cannot have an implicitly generated assignment
3266 operator taking a const reference.
3268 All of these flags should be initialized before calling this
3269 function.
3271 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3272 fields can be added by adding to this chain. */
3274 static void
3275 check_field_decls (tree t, tree *access_decls,
3276 int *cant_have_const_ctor_p,
3277 int *no_const_asn_ref_p)
3279 tree *field;
3280 tree *next;
3281 bool has_pointers;
3282 int any_default_members;
3283 int cant_pack = 0;
3284 int field_access = -1;
3286 /* Assume there are no access declarations. */
3287 *access_decls = NULL_TREE;
3288 /* Assume this class has no pointer members. */
3289 has_pointers = false;
3290 /* Assume none of the members of this class have default
3291 initializations. */
3292 any_default_members = 0;
3294 for (field = &TYPE_FIELDS (t); *field; field = next)
3296 tree x = *field;
3297 tree type = TREE_TYPE (x);
3298 int this_field_access;
3300 next = &DECL_CHAIN (x);
3302 if (TREE_CODE (x) == USING_DECL)
3304 /* Save the access declarations for our caller. */
3305 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3306 continue;
3309 if (TREE_CODE (x) == TYPE_DECL
3310 || TREE_CODE (x) == TEMPLATE_DECL)
3311 continue;
3313 /* If we've gotten this far, it's a data member, possibly static,
3314 or an enumerator. */
3315 if (TREE_CODE (x) != CONST_DECL)
3316 DECL_CONTEXT (x) = t;
3318 /* When this goes into scope, it will be a non-local reference. */
3319 DECL_NONLOCAL (x) = 1;
3321 if (TREE_CODE (t) == UNION_TYPE)
3323 /* [class.union]
3325 If a union contains a static data member, or a member of
3326 reference type, the program is ill-formed. */
3327 if (TREE_CODE (x) == VAR_DECL)
3329 error ("%q+D may not be static because it is a member of a union", x);
3330 continue;
3332 if (TREE_CODE (type) == REFERENCE_TYPE)
3334 error ("%q+D may not have reference type %qT because"
3335 " it is a member of a union",
3336 x, type);
3337 continue;
3341 /* Perform error checking that did not get done in
3342 grokdeclarator. */
3343 if (TREE_CODE (type) == FUNCTION_TYPE)
3345 error ("field %q+D invalidly declared function type", x);
3346 type = build_pointer_type (type);
3347 TREE_TYPE (x) = type;
3349 else if (TREE_CODE (type) == METHOD_TYPE)
3351 error ("field %q+D invalidly declared method type", x);
3352 type = build_pointer_type (type);
3353 TREE_TYPE (x) = type;
3356 if (type == error_mark_node)
3357 continue;
3359 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
3360 continue;
3362 /* Now it can only be a FIELD_DECL. */
3364 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3365 CLASSTYPE_NON_AGGREGATE (t) = 1;
3367 /* If at least one non-static data member is non-literal, the whole
3368 class becomes non-literal. Note: if the type is incomplete we
3369 will complain later on. */
3370 if (COMPLETE_TYPE_P (type) && !literal_type_p (type))
3371 CLASSTYPE_LITERAL_P (t) = false;
3373 /* A standard-layout class is a class that:
3375 has the same access control (Clause 11) for all non-static data members,
3376 ... */
3377 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3378 if (field_access == -1)
3379 field_access = this_field_access;
3380 else if (this_field_access != field_access)
3381 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3383 /* If this is of reference type, check if it needs an init. */
3384 if (TREE_CODE (type) == REFERENCE_TYPE)
3386 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3387 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3388 if (DECL_INITIAL (x) == NULL_TREE)
3389 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3391 /* ARM $12.6.2: [A member initializer list] (or, for an
3392 aggregate, initialization by a brace-enclosed list) is the
3393 only way to initialize nonstatic const and reference
3394 members. */
3395 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3396 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3399 type = strip_array_types (type);
3401 if (TYPE_PACKED (t))
3403 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3405 warning
3407 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3409 cant_pack = 1;
3411 else if (DECL_C_BIT_FIELD (x)
3412 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3413 DECL_PACKED (x) = 1;
3416 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3417 /* We don't treat zero-width bitfields as making a class
3418 non-empty. */
3420 else
3422 /* The class is non-empty. */
3423 CLASSTYPE_EMPTY_P (t) = 0;
3424 /* The class is not even nearly empty. */
3425 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3426 /* If one of the data members contains an empty class,
3427 so does T. */
3428 if (CLASS_TYPE_P (type)
3429 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3430 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3433 /* This is used by -Weffc++ (see below). Warn only for pointers
3434 to members which might hold dynamic memory. So do not warn
3435 for pointers to functions or pointers to members. */
3436 if (TYPE_PTR_P (type)
3437 && !TYPE_PTRFN_P (type))
3438 has_pointers = true;
3440 if (CLASS_TYPE_P (type))
3442 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3443 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3444 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3445 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3448 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3449 CLASSTYPE_HAS_MUTABLE (t) = 1;
3451 if (! layout_pod_type_p (type))
3452 /* DR 148 now allows pointers to members (which are POD themselves),
3453 to be allowed in POD structs. */
3454 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3456 if (!std_layout_type_p (type))
3457 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3459 if (! zero_init_p (type))
3460 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3462 /* We set DECL_C_BIT_FIELD in grokbitfield.
3463 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3464 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3465 check_field_decl (x, t,
3466 cant_have_const_ctor_p,
3467 no_const_asn_ref_p,
3468 &any_default_members);
3470 /* Now that we've removed bit-field widths from DECL_INITIAL,
3471 anything left in DECL_INITIAL is an NSDMI that makes the class
3472 non-aggregate. */
3473 if (DECL_INITIAL (x))
3474 CLASSTYPE_NON_AGGREGATE (t) = true;
3476 /* If any field is const, the structure type is pseudo-const. */
3477 if (CP_TYPE_CONST_P (type))
3479 C_TYPE_FIELDS_READONLY (t) = 1;
3480 if (DECL_INITIAL (x) == NULL_TREE)
3481 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3483 /* ARM $12.6.2: [A member initializer list] (or, for an
3484 aggregate, initialization by a brace-enclosed list) is the
3485 only way to initialize nonstatic const and reference
3486 members. */
3487 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3488 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3490 /* A field that is pseudo-const makes the structure likewise. */
3491 else if (CLASS_TYPE_P (type))
3493 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3494 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3495 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3496 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3499 /* Core issue 80: A nonstatic data member is required to have a
3500 different name from the class iff the class has a
3501 user-declared constructor. */
3502 if (constructor_name_p (DECL_NAME (x), t)
3503 && TYPE_HAS_USER_CONSTRUCTOR (t))
3504 permerror (input_location, "field %q+#D with same name as class", x);
3507 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3508 it should also define a copy constructor and an assignment operator to
3509 implement the correct copy semantic (deep vs shallow, etc.). As it is
3510 not feasible to check whether the constructors do allocate dynamic memory
3511 and store it within members, we approximate the warning like this:
3513 -- Warn only if there are members which are pointers
3514 -- Warn only if there is a non-trivial constructor (otherwise,
3515 there cannot be memory allocated).
3516 -- Warn only if there is a non-trivial destructor. We assume that the
3517 user at least implemented the cleanup correctly, and a destructor
3518 is needed to free dynamic memory.
3520 This seems enough for practical purposes. */
3521 if (warn_ecpp
3522 && has_pointers
3523 && TYPE_HAS_USER_CONSTRUCTOR (t)
3524 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3525 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3527 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3529 if (! TYPE_HAS_COPY_CTOR (t))
3531 warning (OPT_Weffc__,
3532 " but does not override %<%T(const %T&)%>", t, t);
3533 if (!TYPE_HAS_COPY_ASSIGN (t))
3534 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3536 else if (! TYPE_HAS_COPY_ASSIGN (t))
3537 warning (OPT_Weffc__,
3538 " but does not override %<operator=(const %T&)%>", t);
3541 /* Non-static data member initializers make the default constructor
3542 non-trivial. */
3543 if (any_default_members)
3545 TYPE_NEEDS_CONSTRUCTING (t) = true;
3546 TYPE_HAS_COMPLEX_DFLT (t) = true;
3549 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3550 if (cant_pack)
3551 TYPE_PACKED (t) = 0;
3553 /* Check anonymous struct/anonymous union fields. */
3554 finish_struct_anon (t);
3556 /* We've built up the list of access declarations in reverse order.
3557 Fix that now. */
3558 *access_decls = nreverse (*access_decls);
3561 /* If TYPE is an empty class type, records its OFFSET in the table of
3562 OFFSETS. */
3564 static int
3565 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3567 splay_tree_node n;
3569 if (!is_empty_class (type))
3570 return 0;
3572 /* Record the location of this empty object in OFFSETS. */
3573 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3574 if (!n)
3575 n = splay_tree_insert (offsets,
3576 (splay_tree_key) offset,
3577 (splay_tree_value) NULL_TREE);
3578 n->value = ((splay_tree_value)
3579 tree_cons (NULL_TREE,
3580 type,
3581 (tree) n->value));
3583 return 0;
3586 /* Returns nonzero if TYPE is an empty class type and there is
3587 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3589 static int
3590 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3592 splay_tree_node n;
3593 tree t;
3595 if (!is_empty_class (type))
3596 return 0;
3598 /* Record the location of this empty object in OFFSETS. */
3599 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3600 if (!n)
3601 return 0;
3603 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3604 if (same_type_p (TREE_VALUE (t), type))
3605 return 1;
3607 return 0;
3610 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3611 F for every subobject, passing it the type, offset, and table of
3612 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3613 be traversed.
3615 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3616 than MAX_OFFSET will not be walked.
3618 If F returns a nonzero value, the traversal ceases, and that value
3619 is returned. Otherwise, returns zero. */
3621 static int
3622 walk_subobject_offsets (tree type,
3623 subobject_offset_fn f,
3624 tree offset,
3625 splay_tree offsets,
3626 tree max_offset,
3627 int vbases_p)
3629 int r = 0;
3630 tree type_binfo = NULL_TREE;
3632 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3633 stop. */
3634 if (max_offset && INT_CST_LT (max_offset, offset))
3635 return 0;
3637 if (type == error_mark_node)
3638 return 0;
3640 if (!TYPE_P (type))
3642 if (abi_version_at_least (2))
3643 type_binfo = type;
3644 type = BINFO_TYPE (type);
3647 if (CLASS_TYPE_P (type))
3649 tree field;
3650 tree binfo;
3651 int i;
3653 /* Avoid recursing into objects that are not interesting. */
3654 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3655 return 0;
3657 /* Record the location of TYPE. */
3658 r = (*f) (type, offset, offsets);
3659 if (r)
3660 return r;
3662 /* Iterate through the direct base classes of TYPE. */
3663 if (!type_binfo)
3664 type_binfo = TYPE_BINFO (type);
3665 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3667 tree binfo_offset;
3669 if (abi_version_at_least (2)
3670 && BINFO_VIRTUAL_P (binfo))
3671 continue;
3673 if (!vbases_p
3674 && BINFO_VIRTUAL_P (binfo)
3675 && !BINFO_PRIMARY_P (binfo))
3676 continue;
3678 if (!abi_version_at_least (2))
3679 binfo_offset = size_binop (PLUS_EXPR,
3680 offset,
3681 BINFO_OFFSET (binfo));
3682 else
3684 tree orig_binfo;
3685 /* We cannot rely on BINFO_OFFSET being set for the base
3686 class yet, but the offsets for direct non-virtual
3687 bases can be calculated by going back to the TYPE. */
3688 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3689 binfo_offset = size_binop (PLUS_EXPR,
3690 offset,
3691 BINFO_OFFSET (orig_binfo));
3694 r = walk_subobject_offsets (binfo,
3696 binfo_offset,
3697 offsets,
3698 max_offset,
3699 (abi_version_at_least (2)
3700 ? /*vbases_p=*/0 : vbases_p));
3701 if (r)
3702 return r;
3705 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3707 unsigned ix;
3708 vec<tree, va_gc> *vbases;
3710 /* Iterate through the virtual base classes of TYPE. In G++
3711 3.2, we included virtual bases in the direct base class
3712 loop above, which results in incorrect results; the
3713 correct offsets for virtual bases are only known when
3714 working with the most derived type. */
3715 if (vbases_p)
3716 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3717 vec_safe_iterate (vbases, ix, &binfo); ix++)
3719 r = walk_subobject_offsets (binfo,
3721 size_binop (PLUS_EXPR,
3722 offset,
3723 BINFO_OFFSET (binfo)),
3724 offsets,
3725 max_offset,
3726 /*vbases_p=*/0);
3727 if (r)
3728 return r;
3730 else
3732 /* We still have to walk the primary base, if it is
3733 virtual. (If it is non-virtual, then it was walked
3734 above.) */
3735 tree vbase = get_primary_binfo (type_binfo);
3737 if (vbase && BINFO_VIRTUAL_P (vbase)
3738 && BINFO_PRIMARY_P (vbase)
3739 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3741 r = (walk_subobject_offsets
3742 (vbase, f, offset,
3743 offsets, max_offset, /*vbases_p=*/0));
3744 if (r)
3745 return r;
3750 /* Iterate through the fields of TYPE. */
3751 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3752 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3754 tree field_offset;
3756 if (abi_version_at_least (2))
3757 field_offset = byte_position (field);
3758 else
3759 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3760 field_offset = DECL_FIELD_OFFSET (field);
3762 r = walk_subobject_offsets (TREE_TYPE (field),
3764 size_binop (PLUS_EXPR,
3765 offset,
3766 field_offset),
3767 offsets,
3768 max_offset,
3769 /*vbases_p=*/1);
3770 if (r)
3771 return r;
3774 else if (TREE_CODE (type) == ARRAY_TYPE)
3776 tree element_type = strip_array_types (type);
3777 tree domain = TYPE_DOMAIN (type);
3778 tree index;
3780 /* Avoid recursing into objects that are not interesting. */
3781 if (!CLASS_TYPE_P (element_type)
3782 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3783 return 0;
3785 /* Step through each of the elements in the array. */
3786 for (index = size_zero_node;
3787 /* G++ 3.2 had an off-by-one error here. */
3788 (abi_version_at_least (2)
3789 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3790 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3791 index = size_binop (PLUS_EXPR, index, size_one_node))
3793 r = walk_subobject_offsets (TREE_TYPE (type),
3795 offset,
3796 offsets,
3797 max_offset,
3798 /*vbases_p=*/1);
3799 if (r)
3800 return r;
3801 offset = size_binop (PLUS_EXPR, offset,
3802 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3803 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3804 there's no point in iterating through the remaining
3805 elements of the array. */
3806 if (max_offset && INT_CST_LT (max_offset, offset))
3807 break;
3811 return 0;
3814 /* Record all of the empty subobjects of TYPE (either a type or a
3815 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3816 is being placed at OFFSET; otherwise, it is a base class that is
3817 being placed at OFFSET. */
3819 static void
3820 record_subobject_offsets (tree type,
3821 tree offset,
3822 splay_tree offsets,
3823 bool is_data_member)
3825 tree max_offset;
3826 /* If recording subobjects for a non-static data member or a
3827 non-empty base class , we do not need to record offsets beyond
3828 the size of the biggest empty class. Additional data members
3829 will go at the end of the class. Additional base classes will go
3830 either at offset zero (if empty, in which case they cannot
3831 overlap with offsets past the size of the biggest empty class) or
3832 at the end of the class.
3834 However, if we are placing an empty base class, then we must record
3835 all offsets, as either the empty class is at offset zero (where
3836 other empty classes might later be placed) or at the end of the
3837 class (where other objects might then be placed, so other empty
3838 subobjects might later overlap). */
3839 if (is_data_member
3840 || !is_empty_class (BINFO_TYPE (type)))
3841 max_offset = sizeof_biggest_empty_class;
3842 else
3843 max_offset = NULL_TREE;
3844 walk_subobject_offsets (type, record_subobject_offset, offset,
3845 offsets, max_offset, is_data_member);
3848 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3849 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3850 virtual bases of TYPE are examined. */
3852 static int
3853 layout_conflict_p (tree type,
3854 tree offset,
3855 splay_tree offsets,
3856 int vbases_p)
3858 splay_tree_node max_node;
3860 /* Get the node in OFFSETS that indicates the maximum offset where
3861 an empty subobject is located. */
3862 max_node = splay_tree_max (offsets);
3863 /* If there aren't any empty subobjects, then there's no point in
3864 performing this check. */
3865 if (!max_node)
3866 return 0;
3868 return walk_subobject_offsets (type, check_subobject_offset, offset,
3869 offsets, (tree) (max_node->key),
3870 vbases_p);
3873 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3874 non-static data member of the type indicated by RLI. BINFO is the
3875 binfo corresponding to the base subobject, OFFSETS maps offsets to
3876 types already located at those offsets. This function determines
3877 the position of the DECL. */
3879 static void
3880 layout_nonempty_base_or_field (record_layout_info rli,
3881 tree decl,
3882 tree binfo,
3883 splay_tree offsets)
3885 tree offset = NULL_TREE;
3886 bool field_p;
3887 tree type;
3889 if (binfo)
3891 /* For the purposes of determining layout conflicts, we want to
3892 use the class type of BINFO; TREE_TYPE (DECL) will be the
3893 CLASSTYPE_AS_BASE version, which does not contain entries for
3894 zero-sized bases. */
3895 type = TREE_TYPE (binfo);
3896 field_p = false;
3898 else
3900 type = TREE_TYPE (decl);
3901 field_p = true;
3904 /* Try to place the field. It may take more than one try if we have
3905 a hard time placing the field without putting two objects of the
3906 same type at the same address. */
3907 while (1)
3909 struct record_layout_info_s old_rli = *rli;
3911 /* Place this field. */
3912 place_field (rli, decl);
3913 offset = byte_position (decl);
3915 /* We have to check to see whether or not there is already
3916 something of the same type at the offset we're about to use.
3917 For example, consider:
3919 struct S {};
3920 struct T : public S { int i; };
3921 struct U : public S, public T {};
3923 Here, we put S at offset zero in U. Then, we can't put T at
3924 offset zero -- its S component would be at the same address
3925 as the S we already allocated. So, we have to skip ahead.
3926 Since all data members, including those whose type is an
3927 empty class, have nonzero size, any overlap can happen only
3928 with a direct or indirect base-class -- it can't happen with
3929 a data member. */
3930 /* In a union, overlap is permitted; all members are placed at
3931 offset zero. */
3932 if (TREE_CODE (rli->t) == UNION_TYPE)
3933 break;
3934 /* G++ 3.2 did not check for overlaps when placing a non-empty
3935 virtual base. */
3936 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3937 break;
3938 if (layout_conflict_p (field_p ? type : binfo, offset,
3939 offsets, field_p))
3941 /* Strip off the size allocated to this field. That puts us
3942 at the first place we could have put the field with
3943 proper alignment. */
3944 *rli = old_rli;
3946 /* Bump up by the alignment required for the type. */
3947 rli->bitpos
3948 = size_binop (PLUS_EXPR, rli->bitpos,
3949 bitsize_int (binfo
3950 ? CLASSTYPE_ALIGN (type)
3951 : TYPE_ALIGN (type)));
3952 normalize_rli (rli);
3954 else
3955 /* There was no conflict. We're done laying out this field. */
3956 break;
3959 /* Now that we know where it will be placed, update its
3960 BINFO_OFFSET. */
3961 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3962 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3963 this point because their BINFO_OFFSET is copied from another
3964 hierarchy. Therefore, we may not need to add the entire
3965 OFFSET. */
3966 propagate_binfo_offsets (binfo,
3967 size_diffop_loc (input_location,
3968 convert (ssizetype, offset),
3969 convert (ssizetype,
3970 BINFO_OFFSET (binfo))));
3973 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3975 static int
3976 empty_base_at_nonzero_offset_p (tree type,
3977 tree offset,
3978 splay_tree /*offsets*/)
3980 return is_empty_class (type) && !integer_zerop (offset);
3983 /* Layout the empty base BINFO. EOC indicates the byte currently just
3984 past the end of the class, and should be correctly aligned for a
3985 class of the type indicated by BINFO; OFFSETS gives the offsets of
3986 the empty bases allocated so far. T is the most derived
3987 type. Return nonzero iff we added it at the end. */
3989 static bool
3990 layout_empty_base (record_layout_info rli, tree binfo,
3991 tree eoc, splay_tree offsets)
3993 tree alignment;
3994 tree basetype = BINFO_TYPE (binfo);
3995 bool atend = false;
3997 /* This routine should only be used for empty classes. */
3998 gcc_assert (is_empty_class (basetype));
3999 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4001 if (!integer_zerop (BINFO_OFFSET (binfo)))
4003 if (abi_version_at_least (2))
4004 propagate_binfo_offsets
4005 (binfo, size_diffop_loc (input_location,
4006 size_zero_node, BINFO_OFFSET (binfo)));
4007 else
4008 warning (OPT_Wabi,
4009 "offset of empty base %qT may not be ABI-compliant and may"
4010 "change in a future version of GCC",
4011 BINFO_TYPE (binfo));
4014 /* This is an empty base class. We first try to put it at offset
4015 zero. */
4016 if (layout_conflict_p (binfo,
4017 BINFO_OFFSET (binfo),
4018 offsets,
4019 /*vbases_p=*/0))
4021 /* That didn't work. Now, we move forward from the next
4022 available spot in the class. */
4023 atend = true;
4024 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
4025 while (1)
4027 if (!layout_conflict_p (binfo,
4028 BINFO_OFFSET (binfo),
4029 offsets,
4030 /*vbases_p=*/0))
4031 /* We finally found a spot where there's no overlap. */
4032 break;
4034 /* There's overlap here, too. Bump along to the next spot. */
4035 propagate_binfo_offsets (binfo, alignment);
4039 if (CLASSTYPE_USER_ALIGN (basetype))
4041 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4042 if (warn_packed)
4043 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4044 TYPE_USER_ALIGN (rli->t) = 1;
4047 return atend;
4050 /* Layout the base given by BINFO in the class indicated by RLI.
4051 *BASE_ALIGN is a running maximum of the alignments of
4052 any base class. OFFSETS gives the location of empty base
4053 subobjects. T is the most derived type. Return nonzero if the new
4054 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4055 *NEXT_FIELD, unless BINFO is for an empty base class.
4057 Returns the location at which the next field should be inserted. */
4059 static tree *
4060 build_base_field (record_layout_info rli, tree binfo,
4061 splay_tree offsets, tree *next_field)
4063 tree t = rli->t;
4064 tree basetype = BINFO_TYPE (binfo);
4066 if (!COMPLETE_TYPE_P (basetype))
4067 /* This error is now reported in xref_tag, thus giving better
4068 location information. */
4069 return next_field;
4071 /* Place the base class. */
4072 if (!is_empty_class (basetype))
4074 tree decl;
4076 /* The containing class is non-empty because it has a non-empty
4077 base class. */
4078 CLASSTYPE_EMPTY_P (t) = 0;
4080 /* Create the FIELD_DECL. */
4081 decl = build_decl (input_location,
4082 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4083 DECL_ARTIFICIAL (decl) = 1;
4084 DECL_IGNORED_P (decl) = 1;
4085 DECL_FIELD_CONTEXT (decl) = t;
4086 if (CLASSTYPE_AS_BASE (basetype))
4088 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4089 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4090 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
4091 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4092 DECL_MODE (decl) = TYPE_MODE (basetype);
4093 DECL_FIELD_IS_BASE (decl) = 1;
4095 /* Try to place the field. It may take more than one try if we
4096 have a hard time placing the field without putting two
4097 objects of the same type at the same address. */
4098 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4099 /* Add the new FIELD_DECL to the list of fields for T. */
4100 DECL_CHAIN (decl) = *next_field;
4101 *next_field = decl;
4102 next_field = &DECL_CHAIN (decl);
4105 else
4107 tree eoc;
4108 bool atend;
4110 /* On some platforms (ARM), even empty classes will not be
4111 byte-aligned. */
4112 eoc = round_up_loc (input_location,
4113 rli_size_unit_so_far (rli),
4114 CLASSTYPE_ALIGN_UNIT (basetype));
4115 atend = layout_empty_base (rli, binfo, eoc, offsets);
4116 /* A nearly-empty class "has no proper base class that is empty,
4117 not morally virtual, and at an offset other than zero." */
4118 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4120 if (atend)
4121 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4122 /* The check above (used in G++ 3.2) is insufficient because
4123 an empty class placed at offset zero might itself have an
4124 empty base at a nonzero offset. */
4125 else if (walk_subobject_offsets (basetype,
4126 empty_base_at_nonzero_offset_p,
4127 size_zero_node,
4128 /*offsets=*/NULL,
4129 /*max_offset=*/NULL_TREE,
4130 /*vbases_p=*/true))
4132 if (abi_version_at_least (2))
4133 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4134 else
4135 warning (OPT_Wabi,
4136 "class %qT will be considered nearly empty in a "
4137 "future version of GCC", t);
4141 /* We do not create a FIELD_DECL for empty base classes because
4142 it might overlap some other field. We want to be able to
4143 create CONSTRUCTORs for the class by iterating over the
4144 FIELD_DECLs, and the back end does not handle overlapping
4145 FIELD_DECLs. */
4147 /* An empty virtual base causes a class to be non-empty
4148 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4149 here because that was already done when the virtual table
4150 pointer was created. */
4153 /* Record the offsets of BINFO and its base subobjects. */
4154 record_subobject_offsets (binfo,
4155 BINFO_OFFSET (binfo),
4156 offsets,
4157 /*is_data_member=*/false);
4159 return next_field;
4162 /* Layout all of the non-virtual base classes. Record empty
4163 subobjects in OFFSETS. T is the most derived type. Return nonzero
4164 if the type cannot be nearly empty. The fields created
4165 corresponding to the base classes will be inserted at
4166 *NEXT_FIELD. */
4168 static void
4169 build_base_fields (record_layout_info rli,
4170 splay_tree offsets, tree *next_field)
4172 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4173 subobjects. */
4174 tree t = rli->t;
4175 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4176 int i;
4178 /* The primary base class is always allocated first. */
4179 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4180 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4181 offsets, next_field);
4183 /* Now allocate the rest of the bases. */
4184 for (i = 0; i < n_baseclasses; ++i)
4186 tree base_binfo;
4188 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4190 /* The primary base was already allocated above, so we don't
4191 need to allocate it again here. */
4192 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4193 continue;
4195 /* Virtual bases are added at the end (a primary virtual base
4196 will have already been added). */
4197 if (BINFO_VIRTUAL_P (base_binfo))
4198 continue;
4200 next_field = build_base_field (rli, base_binfo,
4201 offsets, next_field);
4205 /* Go through the TYPE_METHODS of T issuing any appropriate
4206 diagnostics, figuring out which methods override which other
4207 methods, and so forth. */
4209 static void
4210 check_methods (tree t)
4212 tree x;
4214 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4216 check_for_override (x, t);
4217 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
4218 error ("initializer specified for non-virtual method %q+D", x);
4219 /* The name of the field is the original field name
4220 Save this in auxiliary field for later overloading. */
4221 if (DECL_VINDEX (x))
4223 TYPE_POLYMORPHIC_P (t) = 1;
4224 if (DECL_PURE_VIRTUAL_P (x))
4225 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4227 /* All user-provided destructors are non-trivial.
4228 Constructors and assignment ops are handled in
4229 grok_special_member_properties. */
4230 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4231 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4235 /* FN is a constructor or destructor. Clone the declaration to create
4236 a specialized in-charge or not-in-charge version, as indicated by
4237 NAME. */
4239 static tree
4240 build_clone (tree fn, tree name)
4242 tree parms;
4243 tree clone;
4245 /* Copy the function. */
4246 clone = copy_decl (fn);
4247 /* Reset the function name. */
4248 DECL_NAME (clone) = name;
4249 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4250 /* Remember where this function came from. */
4251 DECL_ABSTRACT_ORIGIN (clone) = fn;
4252 /* Make it easy to find the CLONE given the FN. */
4253 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4254 DECL_CHAIN (fn) = clone;
4256 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4257 if (TREE_CODE (clone) == TEMPLATE_DECL)
4259 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4260 DECL_TEMPLATE_RESULT (clone) = result;
4261 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4262 DECL_TI_TEMPLATE (result) = clone;
4263 TREE_TYPE (clone) = TREE_TYPE (result);
4264 return clone;
4267 DECL_CLONED_FUNCTION (clone) = fn;
4268 /* There's no pending inline data for this function. */
4269 DECL_PENDING_INLINE_INFO (clone) = NULL;
4270 DECL_PENDING_INLINE_P (clone) = 0;
4272 /* The base-class destructor is not virtual. */
4273 if (name == base_dtor_identifier)
4275 DECL_VIRTUAL_P (clone) = 0;
4276 if (TREE_CODE (clone) != TEMPLATE_DECL)
4277 DECL_VINDEX (clone) = NULL_TREE;
4280 /* If there was an in-charge parameter, drop it from the function
4281 type. */
4282 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4284 tree basetype;
4285 tree parmtypes;
4286 tree exceptions;
4288 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4289 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4290 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4291 /* Skip the `this' parameter. */
4292 parmtypes = TREE_CHAIN (parmtypes);
4293 /* Skip the in-charge parameter. */
4294 parmtypes = TREE_CHAIN (parmtypes);
4295 /* And the VTT parm, in a complete [cd]tor. */
4296 if (DECL_HAS_VTT_PARM_P (fn)
4297 && ! DECL_NEEDS_VTT_PARM_P (clone))
4298 parmtypes = TREE_CHAIN (parmtypes);
4299 /* If this is subobject constructor or destructor, add the vtt
4300 parameter. */
4301 TREE_TYPE (clone)
4302 = build_method_type_directly (basetype,
4303 TREE_TYPE (TREE_TYPE (clone)),
4304 parmtypes);
4305 if (exceptions)
4306 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4307 exceptions);
4308 TREE_TYPE (clone)
4309 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4310 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4313 /* Copy the function parameters. */
4314 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4315 /* Remove the in-charge parameter. */
4316 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4318 DECL_CHAIN (DECL_ARGUMENTS (clone))
4319 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4320 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4322 /* And the VTT parm, in a complete [cd]tor. */
4323 if (DECL_HAS_VTT_PARM_P (fn))
4325 if (DECL_NEEDS_VTT_PARM_P (clone))
4326 DECL_HAS_VTT_PARM_P (clone) = 1;
4327 else
4329 DECL_CHAIN (DECL_ARGUMENTS (clone))
4330 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4331 DECL_HAS_VTT_PARM_P (clone) = 0;
4335 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4337 DECL_CONTEXT (parms) = clone;
4338 cxx_dup_lang_specific_decl (parms);
4341 /* Create the RTL for this function. */
4342 SET_DECL_RTL (clone, NULL);
4343 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4345 if (pch_file)
4346 note_decl_for_pch (clone);
4348 return clone;
4351 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4352 not invoke this function directly.
4354 For a non-thunk function, returns the address of the slot for storing
4355 the function it is a clone of. Otherwise returns NULL_TREE.
4357 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4358 cloned_function is unset. This is to support the separate
4359 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4360 on a template makes sense, but not the former. */
4362 tree *
4363 decl_cloned_function_p (const_tree decl, bool just_testing)
4365 tree *ptr;
4366 if (just_testing)
4367 decl = STRIP_TEMPLATE (decl);
4369 if (TREE_CODE (decl) != FUNCTION_DECL
4370 || !DECL_LANG_SPECIFIC (decl)
4371 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4373 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4374 if (!just_testing)
4375 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4376 else
4377 #endif
4378 return NULL;
4381 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4382 if (just_testing && *ptr == NULL_TREE)
4383 return NULL;
4384 else
4385 return ptr;
4388 /* Produce declarations for all appropriate clones of FN. If
4389 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4390 CLASTYPE_METHOD_VEC as well. */
4392 void
4393 clone_function_decl (tree fn, int update_method_vec_p)
4395 tree clone;
4397 /* Avoid inappropriate cloning. */
4398 if (DECL_CHAIN (fn)
4399 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4400 return;
4402 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4404 /* For each constructor, we need two variants: an in-charge version
4405 and a not-in-charge version. */
4406 clone = build_clone (fn, complete_ctor_identifier);
4407 if (update_method_vec_p)
4408 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4409 clone = build_clone (fn, base_ctor_identifier);
4410 if (update_method_vec_p)
4411 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4413 else
4415 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4417 /* For each destructor, we need three variants: an in-charge
4418 version, a not-in-charge version, and an in-charge deleting
4419 version. We clone the deleting version first because that
4420 means it will go second on the TYPE_METHODS list -- and that
4421 corresponds to the correct layout order in the virtual
4422 function table.
4424 For a non-virtual destructor, we do not build a deleting
4425 destructor. */
4426 if (DECL_VIRTUAL_P (fn))
4428 clone = build_clone (fn, deleting_dtor_identifier);
4429 if (update_method_vec_p)
4430 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4432 clone = build_clone (fn, complete_dtor_identifier);
4433 if (update_method_vec_p)
4434 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4435 clone = build_clone (fn, base_dtor_identifier);
4436 if (update_method_vec_p)
4437 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4440 /* Note that this is an abstract function that is never emitted. */
4441 DECL_ABSTRACT (fn) = 1;
4444 /* DECL is an in charge constructor, which is being defined. This will
4445 have had an in class declaration, from whence clones were
4446 declared. An out-of-class definition can specify additional default
4447 arguments. As it is the clones that are involved in overload
4448 resolution, we must propagate the information from the DECL to its
4449 clones. */
4451 void
4452 adjust_clone_args (tree decl)
4454 tree clone;
4456 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4457 clone = DECL_CHAIN (clone))
4459 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4460 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4461 tree decl_parms, clone_parms;
4463 clone_parms = orig_clone_parms;
4465 /* Skip the 'this' parameter. */
4466 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4467 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4469 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4470 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4471 if (DECL_HAS_VTT_PARM_P (decl))
4472 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4474 clone_parms = orig_clone_parms;
4475 if (DECL_HAS_VTT_PARM_P (clone))
4476 clone_parms = TREE_CHAIN (clone_parms);
4478 for (decl_parms = orig_decl_parms; decl_parms;
4479 decl_parms = TREE_CHAIN (decl_parms),
4480 clone_parms = TREE_CHAIN (clone_parms))
4482 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4483 TREE_TYPE (clone_parms)));
4485 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4487 /* A default parameter has been added. Adjust the
4488 clone's parameters. */
4489 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4490 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4491 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4492 tree type;
4494 clone_parms = orig_decl_parms;
4496 if (DECL_HAS_VTT_PARM_P (clone))
4498 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4499 TREE_VALUE (orig_clone_parms),
4500 clone_parms);
4501 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4503 type = build_method_type_directly (basetype,
4504 TREE_TYPE (TREE_TYPE (clone)),
4505 clone_parms);
4506 if (exceptions)
4507 type = build_exception_variant (type, exceptions);
4508 if (attrs)
4509 type = cp_build_type_attribute_variant (type, attrs);
4510 TREE_TYPE (clone) = type;
4512 clone_parms = NULL_TREE;
4513 break;
4516 gcc_assert (!clone_parms);
4520 /* For each of the constructors and destructors in T, create an
4521 in-charge and not-in-charge variant. */
4523 static void
4524 clone_constructors_and_destructors (tree t)
4526 tree fns;
4528 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4529 out now. */
4530 if (!CLASSTYPE_METHOD_VEC (t))
4531 return;
4533 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4534 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4535 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4536 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4539 /* Deduce noexcept for a destructor DTOR. */
4541 void
4542 deduce_noexcept_on_destructor (tree dtor)
4544 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4546 tree ctx = DECL_CONTEXT (dtor);
4547 tree implicit_fn = implicitly_declare_fn (sfk_destructor, ctx,
4548 /*const_p=*/false,
4549 NULL, NULL);
4550 tree eh_spec = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (implicit_fn));
4551 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4555 /* For each destructor in T, deduce noexcept:
4557 12.4/3: A declaration of a destructor that does not have an
4558 exception-specification is implicitly considered to have the
4559 same exception-specification as an implicit declaration (15.4). */
4561 static void
4562 deduce_noexcept_on_destructors (tree t)
4564 tree fns;
4566 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4567 out now. */
4568 if (!CLASSTYPE_METHOD_VEC (t))
4569 return;
4571 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4572 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4575 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4576 of TYPE for virtual functions which FNDECL overrides. Return a
4577 mask of the tm attributes found therein. */
4579 static int
4580 look_for_tm_attr_overrides (tree type, tree fndecl)
4582 tree binfo = TYPE_BINFO (type);
4583 tree base_binfo;
4584 int ix, found = 0;
4586 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4588 tree o, basetype = BINFO_TYPE (base_binfo);
4590 if (!TYPE_POLYMORPHIC_P (basetype))
4591 continue;
4593 o = look_for_overrides_here (basetype, fndecl);
4594 if (o)
4595 found |= tm_attr_to_mask (find_tm_attribute
4596 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4597 else
4598 found |= look_for_tm_attr_overrides (basetype, fndecl);
4601 return found;
4604 /* Subroutine of set_method_tm_attributes. Handle the checks and
4605 inheritance for one virtual method FNDECL. */
4607 static void
4608 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4610 tree tm_attr;
4611 int found, have;
4613 found = look_for_tm_attr_overrides (type, fndecl);
4615 /* If FNDECL doesn't actually override anything (i.e. T is the
4616 class that first declares FNDECL virtual), then we're done. */
4617 if (found == 0)
4618 return;
4620 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4621 have = tm_attr_to_mask (tm_attr);
4623 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4624 tm_pure must match exactly, otherwise no weakening of
4625 tm_safe > tm_callable > nothing. */
4626 /* ??? The tm_pure attribute didn't make the transition to the
4627 multivendor language spec. */
4628 if (have == TM_ATTR_PURE)
4630 if (found != TM_ATTR_PURE)
4632 found &= -found;
4633 goto err_override;
4636 /* If the overridden function is tm_pure, then FNDECL must be. */
4637 else if (found == TM_ATTR_PURE && tm_attr)
4638 goto err_override;
4639 /* Look for base class combinations that cannot be satisfied. */
4640 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4642 found &= ~TM_ATTR_PURE;
4643 found &= -found;
4644 error_at (DECL_SOURCE_LOCATION (fndecl),
4645 "method overrides both %<transaction_pure%> and %qE methods",
4646 tm_mask_to_attr (found));
4648 /* If FNDECL did not declare an attribute, then inherit the most
4649 restrictive one. */
4650 else if (tm_attr == NULL)
4652 apply_tm_attr (fndecl, tm_mask_to_attr (found & -found));
4654 /* Otherwise validate that we're not weaker than a function
4655 that is being overridden. */
4656 else
4658 found &= -found;
4659 if (found <= TM_ATTR_CALLABLE && have > found)
4660 goto err_override;
4662 return;
4664 err_override:
4665 error_at (DECL_SOURCE_LOCATION (fndecl),
4666 "method declared %qE overriding %qE method",
4667 tm_attr, tm_mask_to_attr (found));
4670 /* For each of the methods in T, propagate a class-level tm attribute. */
4672 static void
4673 set_method_tm_attributes (tree t)
4675 tree class_tm_attr, fndecl;
4677 /* Don't bother collecting tm attributes if transactional memory
4678 support is not enabled. */
4679 if (!flag_tm)
4680 return;
4682 /* Process virtual methods first, as they inherit directly from the
4683 base virtual function and also require validation of new attributes. */
4684 if (TYPE_CONTAINS_VPTR_P (t))
4686 tree vchain;
4687 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4688 vchain = TREE_CHAIN (vchain))
4690 fndecl = BV_FN (vchain);
4691 if (DECL_THUNK_P (fndecl))
4692 fndecl = THUNK_TARGET (fndecl);
4693 set_one_vmethod_tm_attributes (t, fndecl);
4697 /* If the class doesn't have an attribute, nothing more to do. */
4698 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4699 if (class_tm_attr == NULL)
4700 return;
4702 /* Any method that does not yet have a tm attribute inherits
4703 the one from the class. */
4704 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
4706 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4707 apply_tm_attr (fndecl, class_tm_attr);
4711 /* Returns true iff class T has a user-defined constructor other than
4712 the default constructor. */
4714 bool
4715 type_has_user_nondefault_constructor (tree t)
4717 tree fns;
4719 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4720 return false;
4722 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4724 tree fn = OVL_CURRENT (fns);
4725 if (!DECL_ARTIFICIAL (fn)
4726 && (TREE_CODE (fn) == TEMPLATE_DECL
4727 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4728 != NULL_TREE)))
4729 return true;
4732 return false;
4735 /* Returns the defaulted constructor if T has one. Otherwise, returns
4736 NULL_TREE. */
4738 tree
4739 in_class_defaulted_default_constructor (tree t)
4741 tree fns, args;
4743 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4744 return NULL_TREE;
4746 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4748 tree fn = OVL_CURRENT (fns);
4750 if (DECL_DEFAULTED_IN_CLASS_P (fn))
4752 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4753 while (args && TREE_PURPOSE (args))
4754 args = TREE_CHAIN (args);
4755 if (!args || args == void_list_node)
4756 return fn;
4760 return NULL_TREE;
4763 /* Returns true iff FN is a user-provided function, i.e. user-declared
4764 and not defaulted at its first declaration; or explicit, private,
4765 protected, or non-const. */
4767 bool
4768 user_provided_p (tree fn)
4770 if (TREE_CODE (fn) == TEMPLATE_DECL)
4771 return true;
4772 else
4773 return (!DECL_ARTIFICIAL (fn)
4774 && !DECL_DEFAULTED_IN_CLASS_P (fn));
4777 /* Returns true iff class T has a user-provided constructor. */
4779 bool
4780 type_has_user_provided_constructor (tree t)
4782 tree fns;
4784 if (!CLASS_TYPE_P (t))
4785 return false;
4787 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4788 return false;
4790 /* This can happen in error cases; avoid crashing. */
4791 if (!CLASSTYPE_METHOD_VEC (t))
4792 return false;
4794 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4795 if (user_provided_p (OVL_CURRENT (fns)))
4796 return true;
4798 return false;
4801 /* Returns true iff class T has a user-provided default constructor. */
4803 bool
4804 type_has_user_provided_default_constructor (tree t)
4806 tree fns;
4808 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4809 return false;
4811 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4813 tree fn = OVL_CURRENT (fns);
4814 if (TREE_CODE (fn) == FUNCTION_DECL
4815 && user_provided_p (fn)
4816 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)))
4817 return true;
4820 return false;
4823 /* If default-initialization leaves part of TYPE uninitialized, returns
4824 a DECL for the field or TYPE itself (DR 253). */
4826 tree
4827 default_init_uninitialized_part (tree type)
4829 tree t, r, binfo;
4830 int i;
4832 type = strip_array_types (type);
4833 if (!CLASS_TYPE_P (type))
4834 return type;
4835 if (type_has_user_provided_default_constructor (type))
4836 return NULL_TREE;
4837 for (binfo = TYPE_BINFO (type), i = 0;
4838 BINFO_BASE_ITERATE (binfo, i, t); ++i)
4840 r = default_init_uninitialized_part (BINFO_TYPE (t));
4841 if (r)
4842 return r;
4844 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
4845 if (TREE_CODE (t) == FIELD_DECL
4846 && !DECL_ARTIFICIAL (t)
4847 && !DECL_INITIAL (t))
4849 r = default_init_uninitialized_part (TREE_TYPE (t));
4850 if (r)
4851 return DECL_P (r) ? r : t;
4854 return NULL_TREE;
4857 /* Returns true iff for class T, a trivial synthesized default constructor
4858 would be constexpr. */
4860 bool
4861 trivial_default_constructor_is_constexpr (tree t)
4863 /* A defaulted trivial default constructor is constexpr
4864 if there is nothing to initialize. */
4865 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
4866 return is_really_empty_class (t);
4869 /* Returns true iff class T has a constexpr default constructor. */
4871 bool
4872 type_has_constexpr_default_constructor (tree t)
4874 tree fns;
4876 if (!CLASS_TYPE_P (t))
4878 /* The caller should have stripped an enclosing array. */
4879 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
4880 return false;
4882 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
4884 if (!TYPE_HAS_COMPLEX_DFLT (t))
4885 return trivial_default_constructor_is_constexpr (t);
4886 /* Non-trivial, we need to check subobject constructors. */
4887 lazily_declare_fn (sfk_constructor, t);
4889 fns = locate_ctor (t);
4890 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
4893 /* Returns true iff class TYPE has a virtual destructor. */
4895 bool
4896 type_has_virtual_destructor (tree type)
4898 tree dtor;
4900 if (!CLASS_TYPE_P (type))
4901 return false;
4903 gcc_assert (COMPLETE_TYPE_P (type));
4904 dtor = CLASSTYPE_DESTRUCTORS (type);
4905 return (dtor && DECL_VIRTUAL_P (dtor));
4908 /* Returns true iff class T has a move constructor. */
4910 bool
4911 type_has_move_constructor (tree t)
4913 tree fns;
4915 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4917 gcc_assert (COMPLETE_TYPE_P (t));
4918 lazily_declare_fn (sfk_move_constructor, t);
4921 if (!CLASSTYPE_METHOD_VEC (t))
4922 return false;
4924 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4925 if (move_fn_p (OVL_CURRENT (fns)))
4926 return true;
4928 return false;
4931 /* Returns true iff class T has a move assignment operator. */
4933 bool
4934 type_has_move_assign (tree t)
4936 tree fns;
4938 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4940 gcc_assert (COMPLETE_TYPE_P (t));
4941 lazily_declare_fn (sfk_move_assignment, t);
4944 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4945 fns; fns = OVL_NEXT (fns))
4946 if (move_fn_p (OVL_CURRENT (fns)))
4947 return true;
4949 return false;
4952 /* Returns true iff class T has a move constructor that was explicitly
4953 declared in the class body. Note that this is different from
4954 "user-provided", which doesn't include functions that are defaulted in
4955 the class. */
4957 bool
4958 type_has_user_declared_move_constructor (tree t)
4960 tree fns;
4962 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4963 return false;
4965 if (!CLASSTYPE_METHOD_VEC (t))
4966 return false;
4968 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4970 tree fn = OVL_CURRENT (fns);
4971 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4972 return true;
4975 return false;
4978 /* Returns true iff class T has a move assignment operator that was
4979 explicitly declared in the class body. */
4981 bool
4982 type_has_user_declared_move_assign (tree t)
4984 tree fns;
4986 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
4987 return false;
4989 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
4990 fns; fns = OVL_NEXT (fns))
4992 tree fn = OVL_CURRENT (fns);
4993 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
4994 return true;
4997 return false;
5000 /* Nonzero if we need to build up a constructor call when initializing an
5001 object of this class, either because it has a user-provided constructor
5002 or because it doesn't have a default constructor (so we need to give an
5003 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5004 what you care about is whether or not an object can be produced by a
5005 constructor (e.g. so we don't set TREE_READONLY on const variables of
5006 such type); use this function when what you care about is whether or not
5007 to try to call a constructor to create an object. The latter case is
5008 the former plus some cases of constructors that cannot be called. */
5010 bool
5011 type_build_ctor_call (tree t)
5013 tree inner;
5014 if (TYPE_NEEDS_CONSTRUCTING (t))
5015 return true;
5016 inner = strip_array_types (t);
5017 return (CLASS_TYPE_P (inner) && !TYPE_HAS_DEFAULT_CONSTRUCTOR (inner)
5018 && !ANON_AGGR_TYPE_P (inner));
5021 /* Remove all zero-width bit-fields from T. */
5023 static void
5024 remove_zero_width_bit_fields (tree t)
5026 tree *fieldsp;
5028 fieldsp = &TYPE_FIELDS (t);
5029 while (*fieldsp)
5031 if (TREE_CODE (*fieldsp) == FIELD_DECL
5032 && DECL_C_BIT_FIELD (*fieldsp)
5033 /* We should not be confused by the fact that grokbitfield
5034 temporarily sets the width of the bit field into
5035 DECL_INITIAL (*fieldsp).
5036 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5037 to that width. */
5038 && integer_zerop (DECL_SIZE (*fieldsp)))
5039 *fieldsp = DECL_CHAIN (*fieldsp);
5040 else
5041 fieldsp = &DECL_CHAIN (*fieldsp);
5045 /* Returns TRUE iff we need a cookie when dynamically allocating an
5046 array whose elements have the indicated class TYPE. */
5048 static bool
5049 type_requires_array_cookie (tree type)
5051 tree fns;
5052 bool has_two_argument_delete_p = false;
5054 gcc_assert (CLASS_TYPE_P (type));
5056 /* If there's a non-trivial destructor, we need a cookie. In order
5057 to iterate through the array calling the destructor for each
5058 element, we'll have to know how many elements there are. */
5059 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5060 return true;
5062 /* If the usual deallocation function is a two-argument whose second
5063 argument is of type `size_t', then we have to pass the size of
5064 the array to the deallocation function, so we will need to store
5065 a cookie. */
5066 fns = lookup_fnfields (TYPE_BINFO (type),
5067 ansi_opname (VEC_DELETE_EXPR),
5068 /*protect=*/0);
5069 /* If there are no `operator []' members, or the lookup is
5070 ambiguous, then we don't need a cookie. */
5071 if (!fns || fns == error_mark_node)
5072 return false;
5073 /* Loop through all of the functions. */
5074 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5076 tree fn;
5077 tree second_parm;
5079 /* Select the current function. */
5080 fn = OVL_CURRENT (fns);
5081 /* See if this function is a one-argument delete function. If
5082 it is, then it will be the usual deallocation function. */
5083 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5084 if (second_parm == void_list_node)
5085 return false;
5086 /* Do not consider this function if its second argument is an
5087 ellipsis. */
5088 if (!second_parm)
5089 continue;
5090 /* Otherwise, if we have a two-argument function and the second
5091 argument is `size_t', it will be the usual deallocation
5092 function -- unless there is one-argument function, too. */
5093 if (TREE_CHAIN (second_parm) == void_list_node
5094 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5095 has_two_argument_delete_p = true;
5098 return has_two_argument_delete_p;
5101 /* Finish computing the `literal type' property of class type T.
5103 At this point, we have already processed base classes and
5104 non-static data members. We need to check whether the copy
5105 constructor is trivial, the destructor is trivial, and there
5106 is a trivial default constructor or at least one constexpr
5107 constructor other than the copy constructor. */
5109 static void
5110 finalize_literal_type_property (tree t)
5112 tree fn;
5114 if (cxx_dialect < cxx0x
5115 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5116 CLASSTYPE_LITERAL_P (t) = false;
5117 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5118 && CLASSTYPE_NON_AGGREGATE (t)
5119 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5120 CLASSTYPE_LITERAL_P (t) = false;
5122 if (!CLASSTYPE_LITERAL_P (t))
5123 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5124 if (DECL_DECLARED_CONSTEXPR_P (fn)
5125 && TREE_CODE (fn) != TEMPLATE_DECL
5126 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5127 && !DECL_CONSTRUCTOR_P (fn))
5129 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5130 if (!DECL_GENERATED_P (fn))
5132 error ("enclosing class of constexpr non-static member "
5133 "function %q+#D is not a literal type", fn);
5134 explain_non_literal_class (t);
5139 /* T is a non-literal type used in a context which requires a constant
5140 expression. Explain why it isn't literal. */
5142 void
5143 explain_non_literal_class (tree t)
5145 static struct pointer_set_t *diagnosed;
5147 if (!CLASS_TYPE_P (t))
5148 return;
5149 t = TYPE_MAIN_VARIANT (t);
5151 if (diagnosed == NULL)
5152 diagnosed = pointer_set_create ();
5153 if (pointer_set_insert (diagnosed, t) != 0)
5154 /* Already explained. */
5155 return;
5157 inform (0, "%q+T is not literal because:", t);
5158 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5159 inform (0, " %q+T has a non-trivial destructor", t);
5160 else if (CLASSTYPE_NON_AGGREGATE (t)
5161 && !TYPE_HAS_TRIVIAL_DFLT (t)
5162 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5164 inform (0, " %q+T is not an aggregate, does not have a trivial "
5165 "default constructor, and has no constexpr constructor that "
5166 "is not a copy or move constructor", t);
5167 if (TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5168 && !type_has_user_provided_default_constructor (t))
5170 /* Note that we can't simply call locate_ctor because when the
5171 constructor is deleted it just returns NULL_TREE. */
5172 tree fns;
5173 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5175 tree fn = OVL_CURRENT (fns);
5176 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5178 parms = skip_artificial_parms_for (fn, parms);
5180 if (sufficient_parms_p (parms))
5182 if (DECL_DELETED_FN (fn))
5183 maybe_explain_implicit_delete (fn);
5184 else
5185 explain_invalid_constexpr_fn (fn);
5186 break;
5191 else
5193 tree binfo, base_binfo, field; int i;
5194 for (binfo = TYPE_BINFO (t), i = 0;
5195 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5197 tree basetype = TREE_TYPE (base_binfo);
5198 if (!CLASSTYPE_LITERAL_P (basetype))
5200 inform (0, " base class %qT of %q+T is non-literal",
5201 basetype, t);
5202 explain_non_literal_class (basetype);
5203 return;
5206 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5208 tree ftype;
5209 if (TREE_CODE (field) != FIELD_DECL)
5210 continue;
5211 ftype = TREE_TYPE (field);
5212 if (!literal_type_p (ftype))
5214 inform (0, " non-static data member %q+D has "
5215 "non-literal type", field);
5216 if (CLASS_TYPE_P (ftype))
5217 explain_non_literal_class (ftype);
5223 /* Check the validity of the bases and members declared in T. Add any
5224 implicitly-generated functions (like copy-constructors and
5225 assignment operators). Compute various flag bits (like
5226 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5227 level: i.e., independently of the ABI in use. */
5229 static void
5230 check_bases_and_members (tree t)
5232 /* Nonzero if the implicitly generated copy constructor should take
5233 a non-const reference argument. */
5234 int cant_have_const_ctor;
5235 /* Nonzero if the implicitly generated assignment operator
5236 should take a non-const reference argument. */
5237 int no_const_asn_ref;
5238 tree access_decls;
5239 bool saved_complex_asn_ref;
5240 bool saved_nontrivial_dtor;
5241 tree fn;
5243 /* By default, we use const reference arguments and generate default
5244 constructors. */
5245 cant_have_const_ctor = 0;
5246 no_const_asn_ref = 0;
5248 /* Deduce noexcept on destructors. */
5249 if (cxx_dialect >= cxx0x)
5250 deduce_noexcept_on_destructors (t);
5252 /* Check all the base-classes. */
5253 check_bases (t, &cant_have_const_ctor,
5254 &no_const_asn_ref);
5256 /* Check all the method declarations. */
5257 check_methods (t);
5259 /* Save the initial values of these flags which only indicate whether
5260 or not the class has user-provided functions. As we analyze the
5261 bases and members we can set these flags for other reasons. */
5262 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5263 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5265 /* Check all the data member declarations. We cannot call
5266 check_field_decls until we have called check_bases check_methods,
5267 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5268 being set appropriately. */
5269 check_field_decls (t, &access_decls,
5270 &cant_have_const_ctor,
5271 &no_const_asn_ref);
5273 /* A nearly-empty class has to be vptr-containing; a nearly empty
5274 class contains just a vptr. */
5275 if (!TYPE_CONTAINS_VPTR_P (t))
5276 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5278 /* Do some bookkeeping that will guide the generation of implicitly
5279 declared member functions. */
5280 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5281 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5282 /* We need to call a constructor for this class if it has a
5283 user-provided constructor, or if the default constructor is going
5284 to initialize the vptr. (This is not an if-and-only-if;
5285 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5286 themselves need constructing.) */
5287 TYPE_NEEDS_CONSTRUCTING (t)
5288 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5289 /* [dcl.init.aggr]
5291 An aggregate is an array or a class with no user-provided
5292 constructors ... and no virtual functions.
5294 Again, other conditions for being an aggregate are checked
5295 elsewhere. */
5296 CLASSTYPE_NON_AGGREGATE (t)
5297 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
5298 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5299 retain the old definition internally for ABI reasons. */
5300 CLASSTYPE_NON_LAYOUT_POD_P (t)
5301 |= (CLASSTYPE_NON_AGGREGATE (t)
5302 || saved_nontrivial_dtor || saved_complex_asn_ref);
5303 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5304 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5305 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5306 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5308 /* If the class has no user-declared constructor, but does have
5309 non-static const or reference data members that can never be
5310 initialized, issue a warning. */
5311 if (warn_uninitialized
5312 /* Classes with user-declared constructors are presumed to
5313 initialize these members. */
5314 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5315 /* Aggregates can be initialized with brace-enclosed
5316 initializers. */
5317 && CLASSTYPE_NON_AGGREGATE (t))
5319 tree field;
5321 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5323 tree type;
5325 if (TREE_CODE (field) != FIELD_DECL
5326 || DECL_INITIAL (field) != NULL_TREE)
5327 continue;
5329 type = TREE_TYPE (field);
5330 if (TREE_CODE (type) == REFERENCE_TYPE)
5331 warning (OPT_Wuninitialized, "non-static reference %q+#D "
5332 "in class without a constructor", field);
5333 else if (CP_TYPE_CONST_P (type)
5334 && (!CLASS_TYPE_P (type)
5335 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5336 warning (OPT_Wuninitialized, "non-static const member %q+#D "
5337 "in class without a constructor", field);
5341 /* Synthesize any needed methods. */
5342 add_implicitly_declared_members (t, &access_decls,
5343 cant_have_const_ctor,
5344 no_const_asn_ref);
5346 /* Check defaulted declarations here so we have cant_have_const_ctor
5347 and don't need to worry about clones. */
5348 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5349 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5351 int copy = copy_fn_p (fn);
5352 if (copy > 0)
5354 bool imp_const_p
5355 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5356 : !no_const_asn_ref);
5357 bool fn_const_p = (copy == 2);
5359 if (fn_const_p && !imp_const_p)
5360 /* If the function is defaulted outside the class, we just
5361 give the synthesis error. */
5362 error ("%q+D declared to take const reference, but implicit "
5363 "declaration would take non-const", fn);
5365 defaulted_late_check (fn);
5368 if (LAMBDA_TYPE_P (t))
5370 /* "The closure type associated with a lambda-expression has a deleted
5371 default constructor and a deleted copy assignment operator." */
5372 TYPE_NEEDS_CONSTRUCTING (t) = 1;
5373 TYPE_HAS_COMPLEX_DFLT (t) = 1;
5374 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
5375 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 0;
5377 /* "This class type is not an aggregate." */
5378 CLASSTYPE_NON_AGGREGATE (t) = 1;
5381 /* Compute the 'literal type' property before we
5382 do anything with non-static member functions. */
5383 finalize_literal_type_property (t);
5385 /* Create the in-charge and not-in-charge variants of constructors
5386 and destructors. */
5387 clone_constructors_and_destructors (t);
5389 /* Process the using-declarations. */
5390 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5391 handle_using_decl (TREE_VALUE (access_decls), t);
5393 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5394 finish_struct_methods (t);
5396 /* Figure out whether or not we will need a cookie when dynamically
5397 allocating an array of this type. */
5398 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5399 = type_requires_array_cookie (t);
5402 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5403 accordingly. If a new vfield was created (because T doesn't have a
5404 primary base class), then the newly created field is returned. It
5405 is not added to the TYPE_FIELDS list; it is the caller's
5406 responsibility to do that. Accumulate declared virtual functions
5407 on VIRTUALS_P. */
5409 static tree
5410 create_vtable_ptr (tree t, tree* virtuals_p)
5412 tree fn;
5414 /* Collect the virtual functions declared in T. */
5415 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5416 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5417 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5419 tree new_virtual = make_node (TREE_LIST);
5421 BV_FN (new_virtual) = fn;
5422 BV_DELTA (new_virtual) = integer_zero_node;
5423 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5425 TREE_CHAIN (new_virtual) = *virtuals_p;
5426 *virtuals_p = new_virtual;
5429 /* If we couldn't find an appropriate base class, create a new field
5430 here. Even if there weren't any new virtual functions, we might need a
5431 new virtual function table if we're supposed to include vptrs in
5432 all classes that need them. */
5433 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5435 /* We build this decl with vtbl_ptr_type_node, which is a
5436 `vtable_entry_type*'. It might seem more precise to use
5437 `vtable_entry_type (*)[N]' where N is the number of virtual
5438 functions. However, that would require the vtable pointer in
5439 base classes to have a different type than the vtable pointer
5440 in derived classes. We could make that happen, but that
5441 still wouldn't solve all the problems. In particular, the
5442 type-based alias analysis code would decide that assignments
5443 to the base class vtable pointer can't alias assignments to
5444 the derived class vtable pointer, since they have different
5445 types. Thus, in a derived class destructor, where the base
5446 class constructor was inlined, we could generate bad code for
5447 setting up the vtable pointer.
5449 Therefore, we use one type for all vtable pointers. We still
5450 use a type-correct type; it's just doesn't indicate the array
5451 bounds. That's better than using `void*' or some such; it's
5452 cleaner, and it let's the alias analysis code know that these
5453 stores cannot alias stores to void*! */
5454 tree field;
5456 field = build_decl (input_location,
5457 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5458 DECL_VIRTUAL_P (field) = 1;
5459 DECL_ARTIFICIAL (field) = 1;
5460 DECL_FIELD_CONTEXT (field) = t;
5461 DECL_FCONTEXT (field) = t;
5462 if (TYPE_PACKED (t))
5463 DECL_PACKED (field) = 1;
5465 TYPE_VFIELD (t) = field;
5467 /* This class is non-empty. */
5468 CLASSTYPE_EMPTY_P (t) = 0;
5470 return field;
5473 return NULL_TREE;
5476 /* Add OFFSET to all base types of BINFO which is a base in the
5477 hierarchy dominated by T.
5479 OFFSET, which is a type offset, is number of bytes. */
5481 static void
5482 propagate_binfo_offsets (tree binfo, tree offset)
5484 int i;
5485 tree primary_binfo;
5486 tree base_binfo;
5488 /* Update BINFO's offset. */
5489 BINFO_OFFSET (binfo)
5490 = convert (sizetype,
5491 size_binop (PLUS_EXPR,
5492 convert (ssizetype, BINFO_OFFSET (binfo)),
5493 offset));
5495 /* Find the primary base class. */
5496 primary_binfo = get_primary_binfo (binfo);
5498 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5499 propagate_binfo_offsets (primary_binfo, offset);
5501 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5502 downwards. */
5503 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5505 /* Don't do the primary base twice. */
5506 if (base_binfo == primary_binfo)
5507 continue;
5509 if (BINFO_VIRTUAL_P (base_binfo))
5510 continue;
5512 propagate_binfo_offsets (base_binfo, offset);
5516 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5517 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5518 empty subobjects of T. */
5520 static void
5521 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5523 tree vbase;
5524 tree t = rli->t;
5525 bool first_vbase = true;
5526 tree *next_field;
5528 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5529 return;
5531 if (!abi_version_at_least(2))
5533 /* In G++ 3.2, we incorrectly rounded the size before laying out
5534 the virtual bases. */
5535 finish_record_layout (rli, /*free_p=*/false);
5536 #ifdef STRUCTURE_SIZE_BOUNDARY
5537 /* Packed structures don't need to have minimum size. */
5538 if (! TYPE_PACKED (t))
5539 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
5540 #endif
5541 rli->offset = TYPE_SIZE_UNIT (t);
5542 rli->bitpos = bitsize_zero_node;
5543 rli->record_align = TYPE_ALIGN (t);
5546 /* Find the last field. The artificial fields created for virtual
5547 bases will go after the last extant field to date. */
5548 next_field = &TYPE_FIELDS (t);
5549 while (*next_field)
5550 next_field = &DECL_CHAIN (*next_field);
5552 /* Go through the virtual bases, allocating space for each virtual
5553 base that is not already a primary base class. These are
5554 allocated in inheritance graph order. */
5555 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5557 if (!BINFO_VIRTUAL_P (vbase))
5558 continue;
5560 if (!BINFO_PRIMARY_P (vbase))
5562 tree basetype = TREE_TYPE (vbase);
5564 /* This virtual base is not a primary base of any class in the
5565 hierarchy, so we have to add space for it. */
5566 next_field = build_base_field (rli, vbase,
5567 offsets, next_field);
5569 /* If the first virtual base might have been placed at a
5570 lower address, had we started from CLASSTYPE_SIZE, rather
5571 than TYPE_SIZE, issue a warning. There can be both false
5572 positives and false negatives from this warning in rare
5573 cases; to deal with all the possibilities would probably
5574 require performing both layout algorithms and comparing
5575 the results which is not particularly tractable. */
5576 if (warn_abi
5577 && first_vbase
5578 && (tree_int_cst_lt
5579 (size_binop (CEIL_DIV_EXPR,
5580 round_up_loc (input_location,
5581 CLASSTYPE_SIZE (t),
5582 CLASSTYPE_ALIGN (basetype)),
5583 bitsize_unit_node),
5584 BINFO_OFFSET (vbase))))
5585 warning (OPT_Wabi,
5586 "offset of virtual base %qT is not ABI-compliant and "
5587 "may change in a future version of GCC",
5588 basetype);
5590 first_vbase = false;
5595 /* Returns the offset of the byte just past the end of the base class
5596 BINFO. */
5598 static tree
5599 end_of_base (tree binfo)
5601 tree size;
5603 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5604 size = TYPE_SIZE_UNIT (char_type_node);
5605 else if (is_empty_class (BINFO_TYPE (binfo)))
5606 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5607 allocate some space for it. It cannot have virtual bases, so
5608 TYPE_SIZE_UNIT is fine. */
5609 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5610 else
5611 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5613 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5616 /* Returns the offset of the byte just past the end of the base class
5617 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
5618 only non-virtual bases are included. */
5620 static tree
5621 end_of_class (tree t, int include_virtuals_p)
5623 tree result = size_zero_node;
5624 vec<tree, va_gc> *vbases;
5625 tree binfo;
5626 tree base_binfo;
5627 tree offset;
5628 int i;
5630 for (binfo = TYPE_BINFO (t), i = 0;
5631 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5633 if (!include_virtuals_p
5634 && BINFO_VIRTUAL_P (base_binfo)
5635 && (!BINFO_PRIMARY_P (base_binfo)
5636 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5637 continue;
5639 offset = end_of_base (base_binfo);
5640 if (INT_CST_LT_UNSIGNED (result, offset))
5641 result = offset;
5644 /* G++ 3.2 did not check indirect virtual bases. */
5645 if (abi_version_at_least (2) && include_virtuals_p)
5646 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5647 vec_safe_iterate (vbases, i, &base_binfo); i++)
5649 offset = end_of_base (base_binfo);
5650 if (INT_CST_LT_UNSIGNED (result, offset))
5651 result = offset;
5654 return result;
5657 /* Warn about bases of T that are inaccessible because they are
5658 ambiguous. For example:
5660 struct S {};
5661 struct T : public S {};
5662 struct U : public S, public T {};
5664 Here, `(S*) new U' is not allowed because there are two `S'
5665 subobjects of U. */
5667 static void
5668 warn_about_ambiguous_bases (tree t)
5670 int i;
5671 vec<tree, va_gc> *vbases;
5672 tree basetype;
5673 tree binfo;
5674 tree base_binfo;
5676 /* If there are no repeated bases, nothing can be ambiguous. */
5677 if (!CLASSTYPE_REPEATED_BASE_P (t))
5678 return;
5680 /* Check direct bases. */
5681 for (binfo = TYPE_BINFO (t), i = 0;
5682 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5684 basetype = BINFO_TYPE (base_binfo);
5686 if (!uniquely_derived_from_p (basetype, t))
5687 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
5688 basetype, t);
5691 /* Check for ambiguous virtual bases. */
5692 if (extra_warnings)
5693 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5694 vec_safe_iterate (vbases, i, &binfo); i++)
5696 basetype = BINFO_TYPE (binfo);
5698 if (!uniquely_derived_from_p (basetype, t))
5699 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
5700 "to ambiguity", basetype, t);
5704 /* Compare two INTEGER_CSTs K1 and K2. */
5706 static int
5707 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
5709 return tree_int_cst_compare ((tree) k1, (tree) k2);
5712 /* Increase the size indicated in RLI to account for empty classes
5713 that are "off the end" of the class. */
5715 static void
5716 include_empty_classes (record_layout_info rli)
5718 tree eoc;
5719 tree rli_size;
5721 /* It might be the case that we grew the class to allocate a
5722 zero-sized base class. That won't be reflected in RLI, yet,
5723 because we are willing to overlay multiple bases at the same
5724 offset. However, now we need to make sure that RLI is big enough
5725 to reflect the entire class. */
5726 eoc = end_of_class (rli->t,
5727 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
5728 rli_size = rli_size_unit_so_far (rli);
5729 if (TREE_CODE (rli_size) == INTEGER_CST
5730 && INT_CST_LT_UNSIGNED (rli_size, eoc))
5732 if (!abi_version_at_least (2))
5733 /* In version 1 of the ABI, the size of a class that ends with
5734 a bitfield was not rounded up to a whole multiple of a
5735 byte. Because rli_size_unit_so_far returns only the number
5736 of fully allocated bytes, any extra bits were not included
5737 in the size. */
5738 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
5739 else
5740 /* The size should have been rounded to a whole byte. */
5741 gcc_assert (tree_int_cst_equal
5742 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
5743 rli->bitpos
5744 = size_binop (PLUS_EXPR,
5745 rli->bitpos,
5746 size_binop (MULT_EXPR,
5747 convert (bitsizetype,
5748 size_binop (MINUS_EXPR,
5749 eoc, rli_size)),
5750 bitsize_int (BITS_PER_UNIT)));
5751 normalize_rli (rli);
5755 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
5756 BINFO_OFFSETs for all of the base-classes. Position the vtable
5757 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
5759 static void
5760 layout_class_type (tree t, tree *virtuals_p)
5762 tree non_static_data_members;
5763 tree field;
5764 tree vptr;
5765 record_layout_info rli;
5766 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
5767 types that appear at that offset. */
5768 splay_tree empty_base_offsets;
5769 /* True if the last field layed out was a bit-field. */
5770 bool last_field_was_bitfield = false;
5771 /* The location at which the next field should be inserted. */
5772 tree *next_field;
5773 /* T, as a base class. */
5774 tree base_t;
5776 /* Keep track of the first non-static data member. */
5777 non_static_data_members = TYPE_FIELDS (t);
5779 /* Start laying out the record. */
5780 rli = start_record_layout (t);
5782 /* Mark all the primary bases in the hierarchy. */
5783 determine_primary_bases (t);
5785 /* Create a pointer to our virtual function table. */
5786 vptr = create_vtable_ptr (t, virtuals_p);
5788 /* The vptr is always the first thing in the class. */
5789 if (vptr)
5791 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
5792 TYPE_FIELDS (t) = vptr;
5793 next_field = &DECL_CHAIN (vptr);
5794 place_field (rli, vptr);
5796 else
5797 next_field = &TYPE_FIELDS (t);
5799 /* Build FIELD_DECLs for all of the non-virtual base-types. */
5800 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
5801 NULL, NULL);
5802 build_base_fields (rli, empty_base_offsets, next_field);
5804 /* Layout the non-static data members. */
5805 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
5807 tree type;
5808 tree padding;
5810 /* We still pass things that aren't non-static data members to
5811 the back end, in case it wants to do something with them. */
5812 if (TREE_CODE (field) != FIELD_DECL)
5814 place_field (rli, field);
5815 /* If the static data member has incomplete type, keep track
5816 of it so that it can be completed later. (The handling
5817 of pending statics in finish_record_layout is
5818 insufficient; consider:
5820 struct S1;
5821 struct S2 { static S1 s1; };
5823 At this point, finish_record_layout will be called, but
5824 S1 is still incomplete.) */
5825 if (TREE_CODE (field) == VAR_DECL)
5827 maybe_register_incomplete_var (field);
5828 /* The visibility of static data members is determined
5829 at their point of declaration, not their point of
5830 definition. */
5831 determine_visibility (field);
5833 continue;
5836 type = TREE_TYPE (field);
5837 if (type == error_mark_node)
5838 continue;
5840 padding = NULL_TREE;
5842 /* If this field is a bit-field whose width is greater than its
5843 type, then there are some special rules for allocating
5844 it. */
5845 if (DECL_C_BIT_FIELD (field)
5846 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
5848 unsigned int itk;
5849 tree integer_type;
5850 bool was_unnamed_p = false;
5851 /* We must allocate the bits as if suitably aligned for the
5852 longest integer type that fits in this many bits. type
5853 of the field. Then, we are supposed to use the left over
5854 bits as additional padding. */
5855 for (itk = itk_char; itk != itk_none; ++itk)
5856 if (integer_types[itk] != NULL_TREE
5857 && (INT_CST_LT (size_int (MAX_FIXED_MODE_SIZE),
5858 TYPE_SIZE (integer_types[itk]))
5859 || INT_CST_LT (DECL_SIZE (field),
5860 TYPE_SIZE (integer_types[itk]))))
5861 break;
5863 /* ITK now indicates a type that is too large for the
5864 field. We have to back up by one to find the largest
5865 type that fits. */
5868 --itk;
5869 integer_type = integer_types[itk];
5870 } while (itk > 0 && integer_type == NULL_TREE);
5872 /* Figure out how much additional padding is required. GCC
5873 3.2 always created a padding field, even if it had zero
5874 width. */
5875 if (!abi_version_at_least (2)
5876 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
5878 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
5879 /* In a union, the padding field must have the full width
5880 of the bit-field; all fields start at offset zero. */
5881 padding = DECL_SIZE (field);
5882 else
5884 if (TREE_CODE (t) == UNION_TYPE)
5885 warning (OPT_Wabi, "size assigned to %qT may not be "
5886 "ABI-compliant and may change in a future "
5887 "version of GCC",
5889 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
5890 TYPE_SIZE (integer_type));
5893 #ifdef PCC_BITFIELD_TYPE_MATTERS
5894 /* An unnamed bitfield does not normally affect the
5895 alignment of the containing class on a target where
5896 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
5897 make any exceptions for unnamed bitfields when the
5898 bitfields are longer than their types. Therefore, we
5899 temporarily give the field a name. */
5900 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
5902 was_unnamed_p = true;
5903 DECL_NAME (field) = make_anon_name ();
5905 #endif
5906 DECL_SIZE (field) = TYPE_SIZE (integer_type);
5907 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
5908 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
5909 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5910 empty_base_offsets);
5911 if (was_unnamed_p)
5912 DECL_NAME (field) = NULL_TREE;
5913 /* Now that layout has been performed, set the size of the
5914 field to the size of its declared type; the rest of the
5915 field is effectively invisible. */
5916 DECL_SIZE (field) = TYPE_SIZE (type);
5917 /* We must also reset the DECL_MODE of the field. */
5918 if (abi_version_at_least (2))
5919 DECL_MODE (field) = TYPE_MODE (type);
5920 else if (warn_abi
5921 && DECL_MODE (field) != TYPE_MODE (type))
5922 /* Versions of G++ before G++ 3.4 did not reset the
5923 DECL_MODE. */
5924 warning (OPT_Wabi,
5925 "the offset of %qD may not be ABI-compliant and may "
5926 "change in a future version of GCC", field);
5928 else
5929 layout_nonempty_base_or_field (rli, field, NULL_TREE,
5930 empty_base_offsets);
5932 /* Remember the location of any empty classes in FIELD. */
5933 if (abi_version_at_least (2))
5934 record_subobject_offsets (TREE_TYPE (field),
5935 byte_position(field),
5936 empty_base_offsets,
5937 /*is_data_member=*/true);
5939 /* If a bit-field does not immediately follow another bit-field,
5940 and yet it starts in the middle of a byte, we have failed to
5941 comply with the ABI. */
5942 if (warn_abi
5943 && DECL_C_BIT_FIELD (field)
5944 /* The TREE_NO_WARNING flag gets set by Objective-C when
5945 laying out an Objective-C class. The ObjC ABI differs
5946 from the C++ ABI, and so we do not want a warning
5947 here. */
5948 && !TREE_NO_WARNING (field)
5949 && !last_field_was_bitfield
5950 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
5951 DECL_FIELD_BIT_OFFSET (field),
5952 bitsize_unit_node)))
5953 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
5954 "change in a future version of GCC", field);
5956 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
5957 offset of the field. */
5958 if (warn_abi
5959 && !abi_version_at_least (2)
5960 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
5961 byte_position (field))
5962 && contains_empty_class_p (TREE_TYPE (field)))
5963 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
5964 "classes to be placed at different locations in a "
5965 "future version of GCC", field);
5967 /* The middle end uses the type of expressions to determine the
5968 possible range of expression values. In order to optimize
5969 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
5970 must be made aware of the width of "i", via its type.
5972 Because C++ does not have integer types of arbitrary width,
5973 we must (for the purposes of the front end) convert from the
5974 type assigned here to the declared type of the bitfield
5975 whenever a bitfield expression is used as an rvalue.
5976 Similarly, when assigning a value to a bitfield, the value
5977 must be converted to the type given the bitfield here. */
5978 if (DECL_C_BIT_FIELD (field))
5980 unsigned HOST_WIDE_INT width;
5981 tree ftype = TREE_TYPE (field);
5982 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
5983 if (width != TYPE_PRECISION (ftype))
5985 TREE_TYPE (field)
5986 = c_build_bitfield_integer_type (width,
5987 TYPE_UNSIGNED (ftype));
5988 TREE_TYPE (field)
5989 = cp_build_qualified_type (TREE_TYPE (field),
5990 cp_type_quals (ftype));
5994 /* If we needed additional padding after this field, add it
5995 now. */
5996 if (padding)
5998 tree padding_field;
6000 padding_field = build_decl (input_location,
6001 FIELD_DECL,
6002 NULL_TREE,
6003 char_type_node);
6004 DECL_BIT_FIELD (padding_field) = 1;
6005 DECL_SIZE (padding_field) = padding;
6006 DECL_CONTEXT (padding_field) = t;
6007 DECL_ARTIFICIAL (padding_field) = 1;
6008 DECL_IGNORED_P (padding_field) = 1;
6009 layout_nonempty_base_or_field (rli, padding_field,
6010 NULL_TREE,
6011 empty_base_offsets);
6014 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6017 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
6019 /* Make sure that we are on a byte boundary so that the size of
6020 the class without virtual bases will always be a round number
6021 of bytes. */
6022 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6023 normalize_rli (rli);
6026 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
6027 padding. */
6028 if (!abi_version_at_least (2))
6029 include_empty_classes(rli);
6031 /* Delete all zero-width bit-fields from the list of fields. Now
6032 that the type is laid out they are no longer important. */
6033 remove_zero_width_bit_fields (t);
6035 /* Create the version of T used for virtual bases. We do not use
6036 make_class_type for this version; this is an artificial type. For
6037 a POD type, we just reuse T. */
6038 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6040 base_t = make_node (TREE_CODE (t));
6042 /* Set the size and alignment for the new type. In G++ 3.2, all
6043 empty classes were considered to have size zero when used as
6044 base classes. */
6045 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
6047 TYPE_SIZE (base_t) = bitsize_zero_node;
6048 TYPE_SIZE_UNIT (base_t) = size_zero_node;
6049 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
6050 warning (OPT_Wabi,
6051 "layout of classes derived from empty class %qT "
6052 "may change in a future version of GCC",
6055 else
6057 tree eoc;
6059 /* If the ABI version is not at least two, and the last
6060 field was a bit-field, RLI may not be on a byte
6061 boundary. In particular, rli_size_unit_so_far might
6062 indicate the last complete byte, while rli_size_so_far
6063 indicates the total number of bits used. Therefore,
6064 rli_size_so_far, rather than rli_size_unit_so_far, is
6065 used to compute TYPE_SIZE_UNIT. */
6066 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6067 TYPE_SIZE_UNIT (base_t)
6068 = size_binop (MAX_EXPR,
6069 convert (sizetype,
6070 size_binop (CEIL_DIV_EXPR,
6071 rli_size_so_far (rli),
6072 bitsize_int (BITS_PER_UNIT))),
6073 eoc);
6074 TYPE_SIZE (base_t)
6075 = size_binop (MAX_EXPR,
6076 rli_size_so_far (rli),
6077 size_binop (MULT_EXPR,
6078 convert (bitsizetype, eoc),
6079 bitsize_int (BITS_PER_UNIT)));
6081 TYPE_ALIGN (base_t) = rli->record_align;
6082 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6084 /* Copy the fields from T. */
6085 next_field = &TYPE_FIELDS (base_t);
6086 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6087 if (TREE_CODE (field) == FIELD_DECL)
6089 *next_field = build_decl (input_location,
6090 FIELD_DECL,
6091 DECL_NAME (field),
6092 TREE_TYPE (field));
6093 DECL_CONTEXT (*next_field) = base_t;
6094 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
6095 DECL_FIELD_BIT_OFFSET (*next_field)
6096 = DECL_FIELD_BIT_OFFSET (field);
6097 DECL_SIZE (*next_field) = DECL_SIZE (field);
6098 DECL_MODE (*next_field) = DECL_MODE (field);
6099 next_field = &DECL_CHAIN (*next_field);
6102 /* Record the base version of the type. */
6103 CLASSTYPE_AS_BASE (t) = base_t;
6104 TYPE_CONTEXT (base_t) = t;
6106 else
6107 CLASSTYPE_AS_BASE (t) = t;
6109 /* Every empty class contains an empty class. */
6110 if (CLASSTYPE_EMPTY_P (t))
6111 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6113 /* Set the TYPE_DECL for this type to contain the right
6114 value for DECL_OFFSET, so that we can use it as part
6115 of a COMPONENT_REF for multiple inheritance. */
6116 layout_decl (TYPE_MAIN_DECL (t), 0);
6118 /* Now fix up any virtual base class types that we left lying
6119 around. We must get these done before we try to lay out the
6120 virtual function table. As a side-effect, this will remove the
6121 base subobject fields. */
6122 layout_virtual_bases (rli, empty_base_offsets);
6124 /* Make sure that empty classes are reflected in RLI at this
6125 point. */
6126 include_empty_classes(rli);
6128 /* Make sure not to create any structures with zero size. */
6129 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6130 place_field (rli,
6131 build_decl (input_location,
6132 FIELD_DECL, NULL_TREE, char_type_node));
6134 /* If this is a non-POD, declaring it packed makes a difference to how it
6135 can be used as a field; don't let finalize_record_size undo it. */
6136 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6137 rli->packed_maybe_necessary = true;
6139 /* Let the back end lay out the type. */
6140 finish_record_layout (rli, /*free_p=*/true);
6142 /* Warn about bases that can't be talked about due to ambiguity. */
6143 warn_about_ambiguous_bases (t);
6145 /* Now that we're done with layout, give the base fields the real types. */
6146 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6147 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6148 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6150 /* Clean up. */
6151 splay_tree_delete (empty_base_offsets);
6153 if (CLASSTYPE_EMPTY_P (t)
6154 && tree_int_cst_lt (sizeof_biggest_empty_class,
6155 TYPE_SIZE_UNIT (t)))
6156 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6159 /* Determine the "key method" for the class type indicated by TYPE,
6160 and set CLASSTYPE_KEY_METHOD accordingly. */
6162 void
6163 determine_key_method (tree type)
6165 tree method;
6167 if (TYPE_FOR_JAVA (type)
6168 || processing_template_decl
6169 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6170 || CLASSTYPE_INTERFACE_KNOWN (type))
6171 return;
6173 /* The key method is the first non-pure virtual function that is not
6174 inline at the point of class definition. On some targets the
6175 key function may not be inline; those targets should not call
6176 this function until the end of the translation unit. */
6177 for (method = TYPE_METHODS (type); method != NULL_TREE;
6178 method = DECL_CHAIN (method))
6179 if (DECL_VINDEX (method) != NULL_TREE
6180 && ! DECL_DECLARED_INLINE_P (method)
6181 && ! DECL_PURE_VIRTUAL_P (method))
6183 CLASSTYPE_KEY_METHOD (type) = method;
6184 break;
6187 return;
6191 /* Allocate and return an instance of struct sorted_fields_type with
6192 N fields. */
6194 static struct sorted_fields_type *
6195 sorted_fields_type_new (int n)
6197 struct sorted_fields_type *sft;
6198 sft = ggc_alloc_sorted_fields_type (sizeof (struct sorted_fields_type)
6199 + n * sizeof (tree));
6200 sft->len = n;
6202 return sft;
6206 /* Perform processing required when the definition of T (a class type)
6207 is complete. */
6209 void
6210 finish_struct_1 (tree t)
6212 tree x;
6213 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6214 tree virtuals = NULL_TREE;
6216 if (COMPLETE_TYPE_P (t))
6218 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6219 error ("redefinition of %q#T", t);
6220 popclass ();
6221 return;
6224 /* If this type was previously laid out as a forward reference,
6225 make sure we lay it out again. */
6226 TYPE_SIZE (t) = NULL_TREE;
6227 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6229 /* Make assumptions about the class; we'll reset the flags if
6230 necessary. */
6231 CLASSTYPE_EMPTY_P (t) = 1;
6232 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6233 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6234 CLASSTYPE_LITERAL_P (t) = true;
6236 /* Do end-of-class semantic processing: checking the validity of the
6237 bases and members and add implicitly generated methods. */
6238 check_bases_and_members (t);
6240 /* Find the key method. */
6241 if (TYPE_CONTAINS_VPTR_P (t))
6243 /* The Itanium C++ ABI permits the key method to be chosen when
6244 the class is defined -- even though the key method so
6245 selected may later turn out to be an inline function. On
6246 some systems (such as ARM Symbian OS) the key method cannot
6247 be determined until the end of the translation unit. On such
6248 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6249 will cause the class to be added to KEYED_CLASSES. Then, in
6250 finish_file we will determine the key method. */
6251 if (targetm.cxx.key_method_may_be_inline ())
6252 determine_key_method (t);
6254 /* If a polymorphic class has no key method, we may emit the vtable
6255 in every translation unit where the class definition appears. */
6256 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6257 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6260 /* Layout the class itself. */
6261 layout_class_type (t, &virtuals);
6262 if (CLASSTYPE_AS_BASE (t) != t)
6263 /* We use the base type for trivial assignments, and hence it
6264 needs a mode. */
6265 compute_record_mode (CLASSTYPE_AS_BASE (t));
6267 virtuals = modify_all_vtables (t, nreverse (virtuals));
6269 /* If necessary, create the primary vtable for this class. */
6270 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6272 /* We must enter these virtuals into the table. */
6273 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6274 build_primary_vtable (NULL_TREE, t);
6275 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6276 /* Here we know enough to change the type of our virtual
6277 function table, but we will wait until later this function. */
6278 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6280 /* If we're warning about ABI tags, check the types of the new
6281 virtual functions. */
6282 if (warn_abi_tag)
6283 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6284 check_abi_tags (t, TREE_VALUE (v));
6287 if (TYPE_CONTAINS_VPTR_P (t))
6289 int vindex;
6290 tree fn;
6292 if (BINFO_VTABLE (TYPE_BINFO (t)))
6293 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6294 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6295 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6297 /* Add entries for virtual functions introduced by this class. */
6298 BINFO_VIRTUALS (TYPE_BINFO (t))
6299 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
6301 /* Set DECL_VINDEX for all functions declared in this class. */
6302 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
6304 fn = TREE_CHAIN (fn),
6305 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
6306 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
6308 tree fndecl = BV_FN (fn);
6310 if (DECL_THUNK_P (fndecl))
6311 /* A thunk. We should never be calling this entry directly
6312 from this vtable -- we'd use the entry for the non
6313 thunk base function. */
6314 DECL_VINDEX (fndecl) = NULL_TREE;
6315 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
6316 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
6320 finish_struct_bits (t);
6321 set_method_tm_attributes (t);
6323 /* Complete the rtl for any static member objects of the type we're
6324 working on. */
6325 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6326 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
6327 && TREE_TYPE (x) != error_mark_node
6328 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
6329 DECL_MODE (x) = TYPE_MODE (t);
6331 /* Done with FIELDS...now decide whether to sort these for
6332 faster lookups later.
6334 We use a small number because most searches fail (succeeding
6335 ultimately as the search bores through the inheritance
6336 hierarchy), and we want this failure to occur quickly. */
6338 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
6340 /* Complain if one of the field types requires lower visibility. */
6341 constrain_class_visibility (t);
6343 /* Make the rtl for any new vtables we have created, and unmark
6344 the base types we marked. */
6345 finish_vtbls (t);
6347 /* Build the VTT for T. */
6348 build_vtt (t);
6350 /* This warning does not make sense for Java classes, since they
6351 cannot have destructors. */
6352 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
6354 tree dtor;
6356 dtor = CLASSTYPE_DESTRUCTORS (t);
6357 if (/* An implicitly declared destructor is always public. And,
6358 if it were virtual, we would have created it by now. */
6359 !dtor
6360 || (!DECL_VINDEX (dtor)
6361 && (/* public non-virtual */
6362 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
6363 || (/* non-public non-virtual with friends */
6364 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
6365 && (CLASSTYPE_FRIEND_CLASSES (t)
6366 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
6367 warning (OPT_Wnon_virtual_dtor,
6368 "%q#T has virtual functions and accessible"
6369 " non-virtual destructor", t);
6372 complete_vars (t);
6374 if (warn_overloaded_virtual)
6375 warn_hidden (t);
6377 /* Class layout, assignment of virtual table slots, etc., is now
6378 complete. Give the back end a chance to tweak the visibility of
6379 the class or perform any other required target modifications. */
6380 targetm.cxx.adjust_class_at_definition (t);
6382 maybe_suppress_debug_info (t);
6384 dump_class_hierarchy (t);
6386 /* Finish debugging output for this type. */
6387 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
6389 if (TYPE_TRANSPARENT_AGGR (t))
6391 tree field = first_field (t);
6392 if (field == NULL_TREE || error_operand_p (field))
6394 error ("type transparent %q#T does not have any fields", t);
6395 TYPE_TRANSPARENT_AGGR (t) = 0;
6397 else if (DECL_ARTIFICIAL (field))
6399 if (DECL_FIELD_IS_BASE (field))
6400 error ("type transparent class %qT has base classes", t);
6401 else
6403 gcc_checking_assert (DECL_VIRTUAL_P (field));
6404 error ("type transparent class %qT has virtual functions", t);
6406 TYPE_TRANSPARENT_AGGR (t) = 0;
6408 else if (TYPE_MODE (t) != DECL_MODE (field))
6410 error ("type transparent %q#T cannot be made transparent because "
6411 "the type of the first field has a different ABI from the "
6412 "class overall", t);
6413 TYPE_TRANSPARENT_AGGR (t) = 0;
6418 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6419 equal to THRESHOLD or greater than THRESHOLD. */
6421 static void
6422 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
6424 int n_fields = count_fields (fields);
6425 if (n_fields >= threshold)
6427 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6428 add_fields_to_record_type (fields, field_vec, 0);
6429 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6430 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6434 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6436 void
6437 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
6439 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
6440 if (sorted_fields)
6442 int i;
6443 int n_fields
6444 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
6445 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
6447 for (i = 0; i < sorted_fields->len; ++i)
6448 field_vec->elts[i] = sorted_fields->elts[i];
6450 add_enum_fields_to_record_type (enumtype, field_vec,
6451 sorted_fields->len);
6452 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
6453 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
6457 /* When T was built up, the member declarations were added in reverse
6458 order. Rearrange them to declaration order. */
6460 void
6461 unreverse_member_declarations (tree t)
6463 tree next;
6464 tree prev;
6465 tree x;
6467 /* The following lists are all in reverse order. Put them in
6468 declaration order now. */
6469 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
6470 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
6472 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6473 reverse order, so we can't just use nreverse. */
6474 prev = NULL_TREE;
6475 for (x = TYPE_FIELDS (t);
6476 x && TREE_CODE (x) != TYPE_DECL;
6477 x = next)
6479 next = DECL_CHAIN (x);
6480 DECL_CHAIN (x) = prev;
6481 prev = x;
6483 if (prev)
6485 DECL_CHAIN (TYPE_FIELDS (t)) = x;
6486 if (prev)
6487 TYPE_FIELDS (t) = prev;
6491 tree
6492 finish_struct (tree t, tree attributes)
6494 location_t saved_loc = input_location;
6496 /* Now that we've got all the field declarations, reverse everything
6497 as necessary. */
6498 unreverse_member_declarations (t);
6500 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
6502 /* Nadger the current location so that diagnostics point to the start of
6503 the struct, not the end. */
6504 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
6506 if (processing_template_decl)
6508 tree x;
6510 finish_struct_methods (t);
6511 TYPE_SIZE (t) = bitsize_zero_node;
6512 TYPE_SIZE_UNIT (t) = size_zero_node;
6514 /* We need to emit an error message if this type was used as a parameter
6515 and it is an abstract type, even if it is a template. We construct
6516 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6517 account and we call complete_vars with this type, which will check
6518 the PARM_DECLS. Note that while the type is being defined,
6519 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6520 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6521 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
6522 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
6523 if (DECL_PURE_VIRTUAL_P (x))
6524 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
6525 complete_vars (t);
6526 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6527 an enclosing scope is a template class, so that this function be
6528 found by lookup_fnfields_1 when the using declaration is not
6529 instantiated yet. */
6530 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
6531 if (TREE_CODE (x) == USING_DECL)
6533 tree fn = strip_using_decl (x);
6534 if (is_overloaded_fn (fn))
6535 for (; fn; fn = OVL_NEXT (fn))
6536 add_method (t, OVL_CURRENT (fn), x);
6539 /* Remember current #pragma pack value. */
6540 TYPE_PRECISION (t) = maximum_field_alignment;
6542 /* Fix up any variants we've already built. */
6543 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
6545 TYPE_SIZE (x) = TYPE_SIZE (t);
6546 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
6547 TYPE_FIELDS (x) = TYPE_FIELDS (t);
6548 TYPE_METHODS (x) = TYPE_METHODS (t);
6551 else
6552 finish_struct_1 (t);
6554 input_location = saved_loc;
6556 TYPE_BEING_DEFINED (t) = 0;
6558 if (current_class_type)
6559 popclass ();
6560 else
6561 error ("trying to finish struct, but kicked out due to previous parse errors");
6563 if (processing_template_decl && at_function_scope_p ()
6564 /* Lambdas are defined by the LAMBDA_EXPR. */
6565 && !LAMBDA_TYPE_P (t))
6566 add_stmt (build_min (TAG_DEFN, t));
6568 return t;
6571 /* Hash table to avoid endless recursion when handling references. */
6572 static hash_table <pointer_hash <tree_node> > fixed_type_or_null_ref_ht;
6574 /* Return the dynamic type of INSTANCE, if known.
6575 Used to determine whether the virtual function table is needed
6576 or not.
6578 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6579 of our knowledge of its type. *NONNULL should be initialized
6580 before this function is called. */
6582 static tree
6583 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
6585 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6587 switch (TREE_CODE (instance))
6589 case INDIRECT_REF:
6590 if (POINTER_TYPE_P (TREE_TYPE (instance)))
6591 return NULL_TREE;
6592 else
6593 return RECUR (TREE_OPERAND (instance, 0));
6595 case CALL_EXPR:
6596 /* This is a call to a constructor, hence it's never zero. */
6597 if (TREE_HAS_CONSTRUCTOR (instance))
6599 if (nonnull)
6600 *nonnull = 1;
6601 return TREE_TYPE (instance);
6603 return NULL_TREE;
6605 case SAVE_EXPR:
6606 /* This is a call to a constructor, hence it's never zero. */
6607 if (TREE_HAS_CONSTRUCTOR (instance))
6609 if (nonnull)
6610 *nonnull = 1;
6611 return TREE_TYPE (instance);
6613 return RECUR (TREE_OPERAND (instance, 0));
6615 case POINTER_PLUS_EXPR:
6616 case PLUS_EXPR:
6617 case MINUS_EXPR:
6618 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
6619 return RECUR (TREE_OPERAND (instance, 0));
6620 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
6621 /* Propagate nonnull. */
6622 return RECUR (TREE_OPERAND (instance, 0));
6624 return NULL_TREE;
6626 CASE_CONVERT:
6627 return RECUR (TREE_OPERAND (instance, 0));
6629 case ADDR_EXPR:
6630 instance = TREE_OPERAND (instance, 0);
6631 if (nonnull)
6633 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6634 with a real object -- given &p->f, p can still be null. */
6635 tree t = get_base_address (instance);
6636 /* ??? Probably should check DECL_WEAK here. */
6637 if (t && DECL_P (t))
6638 *nonnull = 1;
6640 return RECUR (instance);
6642 case COMPONENT_REF:
6643 /* If this component is really a base class reference, then the field
6644 itself isn't definitive. */
6645 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
6646 return RECUR (TREE_OPERAND (instance, 0));
6647 return RECUR (TREE_OPERAND (instance, 1));
6649 case VAR_DECL:
6650 case FIELD_DECL:
6651 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
6652 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
6654 if (nonnull)
6655 *nonnull = 1;
6656 return TREE_TYPE (TREE_TYPE (instance));
6658 /* fall through... */
6659 case TARGET_EXPR:
6660 case PARM_DECL:
6661 case RESULT_DECL:
6662 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
6664 if (nonnull)
6665 *nonnull = 1;
6666 return TREE_TYPE (instance);
6668 else if (instance == current_class_ptr)
6670 if (nonnull)
6671 *nonnull = 1;
6673 /* if we're in a ctor or dtor, we know our type. If
6674 current_class_ptr is set but we aren't in a function, we're in
6675 an NSDMI (and therefore a constructor). */
6676 if (current_scope () != current_function_decl
6677 || (DECL_LANG_SPECIFIC (current_function_decl)
6678 && (DECL_CONSTRUCTOR_P (current_function_decl)
6679 || DECL_DESTRUCTOR_P (current_function_decl))))
6681 if (cdtorp)
6682 *cdtorp = 1;
6683 return TREE_TYPE (TREE_TYPE (instance));
6686 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
6688 /* We only need one hash table because it is always left empty. */
6689 if (!fixed_type_or_null_ref_ht.is_created ())
6690 fixed_type_or_null_ref_ht.create (37);
6692 /* Reference variables should be references to objects. */
6693 if (nonnull)
6694 *nonnull = 1;
6696 /* Enter the INSTANCE in a table to prevent recursion; a
6697 variable's initializer may refer to the variable
6698 itself. */
6699 if (TREE_CODE (instance) == VAR_DECL
6700 && DECL_INITIAL (instance)
6701 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
6702 && !fixed_type_or_null_ref_ht.find (instance))
6704 tree type;
6705 tree_node **slot;
6707 slot = fixed_type_or_null_ref_ht.find_slot (instance, INSERT);
6708 *slot = instance;
6709 type = RECUR (DECL_INITIAL (instance));
6710 fixed_type_or_null_ref_ht.remove_elt (instance);
6712 return type;
6715 return NULL_TREE;
6717 default:
6718 return NULL_TREE;
6720 #undef RECUR
6723 /* Return nonzero if the dynamic type of INSTANCE is known, and
6724 equivalent to the static type. We also handle the case where
6725 INSTANCE is really a pointer. Return negative if this is a
6726 ctor/dtor. There the dynamic type is known, but this might not be
6727 the most derived base of the original object, and hence virtual
6728 bases may not be layed out according to this type.
6730 Used to determine whether the virtual function table is needed
6731 or not.
6733 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6734 of our knowledge of its type. *NONNULL should be initialized
6735 before this function is called. */
6738 resolves_to_fixed_type_p (tree instance, int* nonnull)
6740 tree t = TREE_TYPE (instance);
6741 int cdtorp = 0;
6742 tree fixed;
6744 /* processing_template_decl can be false in a template if we're in
6745 fold_non_dependent_expr, but we still want to suppress this check. */
6746 if (in_template_function ())
6748 /* In a template we only care about the type of the result. */
6749 if (nonnull)
6750 *nonnull = true;
6751 return true;
6754 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
6755 if (fixed == NULL_TREE)
6756 return 0;
6757 if (POINTER_TYPE_P (t))
6758 t = TREE_TYPE (t);
6759 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
6760 return 0;
6761 return cdtorp ? -1 : 1;
6765 void
6766 init_class_processing (void)
6768 current_class_depth = 0;
6769 current_class_stack_size = 10;
6770 current_class_stack
6771 = XNEWVEC (struct class_stack_node, current_class_stack_size);
6772 vec_alloc (local_classes, 8);
6773 sizeof_biggest_empty_class = size_zero_node;
6775 ridpointers[(int) RID_PUBLIC] = access_public_node;
6776 ridpointers[(int) RID_PRIVATE] = access_private_node;
6777 ridpointers[(int) RID_PROTECTED] = access_protected_node;
6780 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
6782 static void
6783 restore_class_cache (void)
6785 tree type;
6787 /* We are re-entering the same class we just left, so we don't
6788 have to search the whole inheritance matrix to find all the
6789 decls to bind again. Instead, we install the cached
6790 class_shadowed list and walk through it binding names. */
6791 push_binding_level (previous_class_level);
6792 class_binding_level = previous_class_level;
6793 /* Restore IDENTIFIER_TYPE_VALUE. */
6794 for (type = class_binding_level->type_shadowed;
6795 type;
6796 type = TREE_CHAIN (type))
6797 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
6800 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
6801 appropriate for TYPE.
6803 So that we may avoid calls to lookup_name, we cache the _TYPE
6804 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
6806 For multiple inheritance, we perform a two-pass depth-first search
6807 of the type lattice. */
6809 void
6810 pushclass (tree type)
6812 class_stack_node_t csn;
6814 type = TYPE_MAIN_VARIANT (type);
6816 /* Make sure there is enough room for the new entry on the stack. */
6817 if (current_class_depth + 1 >= current_class_stack_size)
6819 current_class_stack_size *= 2;
6820 current_class_stack
6821 = XRESIZEVEC (struct class_stack_node, current_class_stack,
6822 current_class_stack_size);
6825 /* Insert a new entry on the class stack. */
6826 csn = current_class_stack + current_class_depth;
6827 csn->name = current_class_name;
6828 csn->type = current_class_type;
6829 csn->access = current_access_specifier;
6830 csn->names_used = 0;
6831 csn->hidden = 0;
6832 current_class_depth++;
6834 /* Now set up the new type. */
6835 current_class_name = TYPE_NAME (type);
6836 if (TREE_CODE (current_class_name) == TYPE_DECL)
6837 current_class_name = DECL_NAME (current_class_name);
6838 current_class_type = type;
6840 /* By default, things in classes are private, while things in
6841 structures or unions are public. */
6842 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
6843 ? access_private_node
6844 : access_public_node);
6846 if (previous_class_level
6847 && type != previous_class_level->this_entity
6848 && current_class_depth == 1)
6850 /* Forcibly remove any old class remnants. */
6851 invalidate_class_lookup_cache ();
6854 if (!previous_class_level
6855 || type != previous_class_level->this_entity
6856 || current_class_depth > 1)
6857 pushlevel_class ();
6858 else
6859 restore_class_cache ();
6862 /* When we exit a toplevel class scope, we save its binding level so
6863 that we can restore it quickly. Here, we've entered some other
6864 class, so we must invalidate our cache. */
6866 void
6867 invalidate_class_lookup_cache (void)
6869 previous_class_level = NULL;
6872 /* Get out of the current class scope. If we were in a class scope
6873 previously, that is the one popped to. */
6875 void
6876 popclass (void)
6878 poplevel_class ();
6880 current_class_depth--;
6881 current_class_name = current_class_stack[current_class_depth].name;
6882 current_class_type = current_class_stack[current_class_depth].type;
6883 current_access_specifier = current_class_stack[current_class_depth].access;
6884 if (current_class_stack[current_class_depth].names_used)
6885 splay_tree_delete (current_class_stack[current_class_depth].names_used);
6888 /* Mark the top of the class stack as hidden. */
6890 void
6891 push_class_stack (void)
6893 if (current_class_depth)
6894 ++current_class_stack[current_class_depth - 1].hidden;
6897 /* Mark the top of the class stack as un-hidden. */
6899 void
6900 pop_class_stack (void)
6902 if (current_class_depth)
6903 --current_class_stack[current_class_depth - 1].hidden;
6906 /* Returns 1 if the class type currently being defined is either T or
6907 a nested type of T. */
6909 bool
6910 currently_open_class (tree t)
6912 int i;
6914 if (!CLASS_TYPE_P (t))
6915 return false;
6917 t = TYPE_MAIN_VARIANT (t);
6919 /* We start looking from 1 because entry 0 is from global scope,
6920 and has no type. */
6921 for (i = current_class_depth; i > 0; --i)
6923 tree c;
6924 if (i == current_class_depth)
6925 c = current_class_type;
6926 else
6928 if (current_class_stack[i].hidden)
6929 break;
6930 c = current_class_stack[i].type;
6932 if (!c)
6933 continue;
6934 if (same_type_p (c, t))
6935 return true;
6937 return false;
6940 /* If either current_class_type or one of its enclosing classes are derived
6941 from T, return the appropriate type. Used to determine how we found
6942 something via unqualified lookup. */
6944 tree
6945 currently_open_derived_class (tree t)
6947 int i;
6949 /* The bases of a dependent type are unknown. */
6950 if (dependent_type_p (t))
6951 return NULL_TREE;
6953 if (!current_class_type)
6954 return NULL_TREE;
6956 if (DERIVED_FROM_P (t, current_class_type))
6957 return current_class_type;
6959 for (i = current_class_depth - 1; i > 0; --i)
6961 if (current_class_stack[i].hidden)
6962 break;
6963 if (DERIVED_FROM_P (t, current_class_stack[i].type))
6964 return current_class_stack[i].type;
6967 return NULL_TREE;
6970 /* Returns the innermost class type which is not a lambda closure type. */
6972 tree
6973 current_nonlambda_class_type (void)
6975 int i;
6977 /* We start looking from 1 because entry 0 is from global scope,
6978 and has no type. */
6979 for (i = current_class_depth; i > 0; --i)
6981 tree c;
6982 if (i == current_class_depth)
6983 c = current_class_type;
6984 else
6986 if (current_class_stack[i].hidden)
6987 break;
6988 c = current_class_stack[i].type;
6990 if (!c)
6991 continue;
6992 if (!LAMBDA_TYPE_P (c))
6993 return c;
6995 return NULL_TREE;
6998 /* When entering a class scope, all enclosing class scopes' names with
6999 static meaning (static variables, static functions, types and
7000 enumerators) have to be visible. This recursive function calls
7001 pushclass for all enclosing class contexts until global or a local
7002 scope is reached. TYPE is the enclosed class. */
7004 void
7005 push_nested_class (tree type)
7007 /* A namespace might be passed in error cases, like A::B:C. */
7008 if (type == NULL_TREE
7009 || !CLASS_TYPE_P (type))
7010 return;
7012 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7014 pushclass (type);
7017 /* Undoes a push_nested_class call. */
7019 void
7020 pop_nested_class (void)
7022 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7024 popclass ();
7025 if (context && CLASS_TYPE_P (context))
7026 pop_nested_class ();
7029 /* Returns the number of extern "LANG" blocks we are nested within. */
7032 current_lang_depth (void)
7034 return vec_safe_length (current_lang_base);
7037 /* Set global variables CURRENT_LANG_NAME to appropriate value
7038 so that behavior of name-mangling machinery is correct. */
7040 void
7041 push_lang_context (tree name)
7043 vec_safe_push (current_lang_base, current_lang_name);
7045 if (name == lang_name_cplusplus)
7047 current_lang_name = name;
7049 else if (name == lang_name_java)
7051 current_lang_name = name;
7052 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7053 (See record_builtin_java_type in decl.c.) However, that causes
7054 incorrect debug entries if these types are actually used.
7055 So we re-enable debug output after extern "Java". */
7056 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7057 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7058 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7059 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7060 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7061 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7062 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7063 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7065 else if (name == lang_name_c)
7067 current_lang_name = name;
7069 else
7070 error ("language string %<\"%E\"%> not recognized", name);
7073 /* Get out of the current language scope. */
7075 void
7076 pop_lang_context (void)
7078 current_lang_name = current_lang_base->pop ();
7081 /* Type instantiation routines. */
7083 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7084 matches the TARGET_TYPE. If there is no satisfactory match, return
7085 error_mark_node, and issue an error & warning messages under
7086 control of FLAGS. Permit pointers to member function if FLAGS
7087 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7088 a template-id, and EXPLICIT_TARGS are the explicitly provided
7089 template arguments.
7091 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7092 is the base path used to reference those member functions. If
7093 the address is resolved to a member function, access checks will be
7094 performed and errors issued if appropriate. */
7096 static tree
7097 resolve_address_of_overloaded_function (tree target_type,
7098 tree overload,
7099 tsubst_flags_t flags,
7100 bool template_only,
7101 tree explicit_targs,
7102 tree access_path)
7104 /* Here's what the standard says:
7106 [over.over]
7108 If the name is a function template, template argument deduction
7109 is done, and if the argument deduction succeeds, the deduced
7110 arguments are used to generate a single template function, which
7111 is added to the set of overloaded functions considered.
7113 Non-member functions and static member functions match targets of
7114 type "pointer-to-function" or "reference-to-function." Nonstatic
7115 member functions match targets of type "pointer-to-member
7116 function;" the function type of the pointer to member is used to
7117 select the member function from the set of overloaded member
7118 functions. If a nonstatic member function is selected, the
7119 reference to the overloaded function name is required to have the
7120 form of a pointer to member as described in 5.3.1.
7122 If more than one function is selected, any template functions in
7123 the set are eliminated if the set also contains a non-template
7124 function, and any given template function is eliminated if the
7125 set contains a second template function that is more specialized
7126 than the first according to the partial ordering rules 14.5.5.2.
7127 After such eliminations, if any, there shall remain exactly one
7128 selected function. */
7130 int is_ptrmem = 0;
7131 /* We store the matches in a TREE_LIST rooted here. The functions
7132 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7133 interoperability with most_specialized_instantiation. */
7134 tree matches = NULL_TREE;
7135 tree fn;
7136 tree target_fn_type;
7138 /* By the time we get here, we should be seeing only real
7139 pointer-to-member types, not the internal POINTER_TYPE to
7140 METHOD_TYPE representation. */
7141 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
7142 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7144 gcc_assert (is_overloaded_fn (overload));
7146 /* Check that the TARGET_TYPE is reasonable. */
7147 if (TYPE_PTRFN_P (target_type))
7148 /* This is OK. */;
7149 else if (TYPE_PTRMEMFUNC_P (target_type))
7150 /* This is OK, too. */
7151 is_ptrmem = 1;
7152 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7153 /* This is OK, too. This comes from a conversion to reference
7154 type. */
7155 target_type = build_reference_type (target_type);
7156 else
7158 if (flags & tf_error)
7159 error ("cannot resolve overloaded function %qD based on"
7160 " conversion to type %qT",
7161 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7162 return error_mark_node;
7165 /* Non-member functions and static member functions match targets of type
7166 "pointer-to-function" or "reference-to-function." Nonstatic member
7167 functions match targets of type "pointer-to-member-function;" the
7168 function type of the pointer to member is used to select the member
7169 function from the set of overloaded member functions.
7171 So figure out the FUNCTION_TYPE that we want to match against. */
7172 target_fn_type = static_fn_type (target_type);
7174 /* If we can find a non-template function that matches, we can just
7175 use it. There's no point in generating template instantiations
7176 if we're just going to throw them out anyhow. But, of course, we
7177 can only do this when we don't *need* a template function. */
7178 if (!template_only)
7180 tree fns;
7182 for (fns = overload; fns; fns = OVL_NEXT (fns))
7184 tree fn = OVL_CURRENT (fns);
7186 if (TREE_CODE (fn) == TEMPLATE_DECL)
7187 /* We're not looking for templates just yet. */
7188 continue;
7190 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7191 != is_ptrmem)
7192 /* We're looking for a non-static member, and this isn't
7193 one, or vice versa. */
7194 continue;
7196 /* Ignore functions which haven't been explicitly
7197 declared. */
7198 if (DECL_ANTICIPATED (fn))
7199 continue;
7201 /* See if there's a match. */
7202 if (same_type_p (target_fn_type, static_fn_type (fn)))
7203 matches = tree_cons (fn, NULL_TREE, matches);
7207 /* Now, if we've already got a match (or matches), there's no need
7208 to proceed to the template functions. But, if we don't have a
7209 match we need to look at them, too. */
7210 if (!matches)
7212 tree target_arg_types;
7213 tree target_ret_type;
7214 tree fns;
7215 tree *args;
7216 unsigned int nargs, ia;
7217 tree arg;
7219 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7220 target_ret_type = TREE_TYPE (target_fn_type);
7222 nargs = list_length (target_arg_types);
7223 args = XALLOCAVEC (tree, nargs);
7224 for (arg = target_arg_types, ia = 0;
7225 arg != NULL_TREE && arg != void_list_node;
7226 arg = TREE_CHAIN (arg), ++ia)
7227 args[ia] = TREE_VALUE (arg);
7228 nargs = ia;
7230 for (fns = overload; fns; fns = OVL_NEXT (fns))
7232 tree fn = OVL_CURRENT (fns);
7233 tree instantiation;
7234 tree targs;
7236 if (TREE_CODE (fn) != TEMPLATE_DECL)
7237 /* We're only looking for templates. */
7238 continue;
7240 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7241 != is_ptrmem)
7242 /* We're not looking for a non-static member, and this is
7243 one, or vice versa. */
7244 continue;
7246 /* Try to do argument deduction. */
7247 targs = make_tree_vec (DECL_NTPARMS (fn));
7248 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7249 nargs, target_ret_type,
7250 DEDUCE_EXACT, LOOKUP_NORMAL,
7251 false);
7252 if (instantiation == error_mark_node)
7253 /* Instantiation failed. */
7254 continue;
7256 /* See if there's a match. */
7257 if (same_type_p (target_fn_type, static_fn_type (instantiation)))
7258 matches = tree_cons (instantiation, fn, matches);
7261 /* Now, remove all but the most specialized of the matches. */
7262 if (matches)
7264 tree match = most_specialized_instantiation (matches);
7266 if (match != error_mark_node)
7267 matches = tree_cons (TREE_PURPOSE (match),
7268 NULL_TREE,
7269 NULL_TREE);
7273 /* Now we should have exactly one function in MATCHES. */
7274 if (matches == NULL_TREE)
7276 /* There were *no* matches. */
7277 if (flags & tf_error)
7279 error ("no matches converting function %qD to type %q#T",
7280 DECL_NAME (OVL_CURRENT (overload)),
7281 target_type);
7283 print_candidates (overload);
7285 return error_mark_node;
7287 else if (TREE_CHAIN (matches))
7289 /* There were too many matches. First check if they're all
7290 the same function. */
7291 tree match = NULL_TREE;
7293 fn = TREE_PURPOSE (matches);
7295 /* For multi-versioned functions, more than one match is just fine and
7296 decls_match will return false as they are different. */
7297 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
7298 if (!decls_match (fn, TREE_PURPOSE (match))
7299 && !targetm.target_option.function_versions
7300 (fn, TREE_PURPOSE (match)))
7301 break;
7303 if (match)
7305 if (flags & tf_error)
7307 error ("converting overloaded function %qD to type %q#T is ambiguous",
7308 DECL_NAME (OVL_FUNCTION (overload)),
7309 target_type);
7311 /* Since print_candidates expects the functions in the
7312 TREE_VALUE slot, we flip them here. */
7313 for (match = matches; match; match = TREE_CHAIN (match))
7314 TREE_VALUE (match) = TREE_PURPOSE (match);
7316 print_candidates (matches);
7319 return error_mark_node;
7323 /* Good, exactly one match. Now, convert it to the correct type. */
7324 fn = TREE_PURPOSE (matches);
7326 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
7327 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
7329 static int explained;
7331 if (!(flags & tf_error))
7332 return error_mark_node;
7334 permerror (input_location, "assuming pointer to member %qD", fn);
7335 if (!explained)
7337 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
7338 explained = 1;
7342 /* If a pointer to a function that is multi-versioned is requested, the
7343 pointer to the dispatcher function is returned instead. This works
7344 well because indirectly calling the function will dispatch the right
7345 function version at run-time. */
7346 if (DECL_FUNCTION_VERSIONED (fn))
7348 fn = get_function_version_dispatcher (fn);
7349 if (fn == NULL)
7350 return error_mark_node;
7351 /* Mark all the versions corresponding to the dispatcher as used. */
7352 if (!(flags & tf_conv))
7353 mark_versions_used (fn);
7356 /* If we're doing overload resolution purely for the purpose of
7357 determining conversion sequences, we should not consider the
7358 function used. If this conversion sequence is selected, the
7359 function will be marked as used at this point. */
7360 if (!(flags & tf_conv))
7362 /* Make =delete work with SFINAE. */
7363 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
7364 return error_mark_node;
7366 mark_used (fn);
7369 /* We could not check access to member functions when this
7370 expression was originally created since we did not know at that
7371 time to which function the expression referred. */
7372 if (DECL_FUNCTION_MEMBER_P (fn))
7374 gcc_assert (access_path);
7375 perform_or_defer_access_check (access_path, fn, fn, flags);
7378 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
7379 return cp_build_addr_expr (fn, flags);
7380 else
7382 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7383 will mark the function as addressed, but here we must do it
7384 explicitly. */
7385 cxx_mark_addressable (fn);
7387 return fn;
7391 /* This function will instantiate the type of the expression given in
7392 RHS to match the type of LHSTYPE. If errors exist, then return
7393 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
7394 we complain on errors. If we are not complaining, never modify rhs,
7395 as overload resolution wants to try many possible instantiations, in
7396 the hope that at least one will work.
7398 For non-recursive calls, LHSTYPE should be a function, pointer to
7399 function, or a pointer to member function. */
7401 tree
7402 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
7404 tsubst_flags_t flags_in = flags;
7405 tree access_path = NULL_TREE;
7407 flags &= ~tf_ptrmem_ok;
7409 if (lhstype == unknown_type_node)
7411 if (flags & tf_error)
7412 error ("not enough type information");
7413 return error_mark_node;
7416 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
7418 if (same_type_p (lhstype, TREE_TYPE (rhs)))
7419 return rhs;
7420 if (flag_ms_extensions
7421 && TYPE_PTRMEMFUNC_P (lhstype)
7422 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
7423 /* Microsoft allows `A::f' to be resolved to a
7424 pointer-to-member. */
7426 else
7428 if (flags & tf_error)
7429 error ("cannot convert %qE from type %qT to type %qT",
7430 rhs, TREE_TYPE (rhs), lhstype);
7431 return error_mark_node;
7435 if (BASELINK_P (rhs))
7437 access_path = BASELINK_ACCESS_BINFO (rhs);
7438 rhs = BASELINK_FUNCTIONS (rhs);
7441 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7442 deduce any type information. */
7443 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
7445 if (flags & tf_error)
7446 error ("not enough type information");
7447 return error_mark_node;
7450 /* There only a few kinds of expressions that may have a type
7451 dependent on overload resolution. */
7452 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
7453 || TREE_CODE (rhs) == COMPONENT_REF
7454 || really_overloaded_fn (rhs)
7455 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
7457 /* This should really only be used when attempting to distinguish
7458 what sort of a pointer to function we have. For now, any
7459 arithmetic operation which is not supported on pointers
7460 is rejected as an error. */
7462 switch (TREE_CODE (rhs))
7464 case COMPONENT_REF:
7466 tree member = TREE_OPERAND (rhs, 1);
7468 member = instantiate_type (lhstype, member, flags);
7469 if (member != error_mark_node
7470 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
7471 /* Do not lose object's side effects. */
7472 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
7473 TREE_OPERAND (rhs, 0), member);
7474 return member;
7477 case OFFSET_REF:
7478 rhs = TREE_OPERAND (rhs, 1);
7479 if (BASELINK_P (rhs))
7480 return instantiate_type (lhstype, rhs, flags_in);
7482 /* This can happen if we are forming a pointer-to-member for a
7483 member template. */
7484 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
7486 /* Fall through. */
7488 case TEMPLATE_ID_EXPR:
7490 tree fns = TREE_OPERAND (rhs, 0);
7491 tree args = TREE_OPERAND (rhs, 1);
7493 return
7494 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
7495 /*template_only=*/true,
7496 args, access_path);
7499 case OVERLOAD:
7500 case FUNCTION_DECL:
7501 return
7502 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
7503 /*template_only=*/false,
7504 /*explicit_targs=*/NULL_TREE,
7505 access_path);
7507 case ADDR_EXPR:
7509 if (PTRMEM_OK_P (rhs))
7510 flags |= tf_ptrmem_ok;
7512 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
7515 case ERROR_MARK:
7516 return error_mark_node;
7518 default:
7519 gcc_unreachable ();
7521 return error_mark_node;
7524 /* Return the name of the virtual function pointer field
7525 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7526 this may have to look back through base types to find the
7527 ultimate field name. (For single inheritance, these could
7528 all be the same name. Who knows for multiple inheritance). */
7530 static tree
7531 get_vfield_name (tree type)
7533 tree binfo, base_binfo;
7534 char *buf;
7536 for (binfo = TYPE_BINFO (type);
7537 BINFO_N_BASE_BINFOS (binfo);
7538 binfo = base_binfo)
7540 base_binfo = BINFO_BASE_BINFO (binfo, 0);
7542 if (BINFO_VIRTUAL_P (base_binfo)
7543 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
7544 break;
7547 type = BINFO_TYPE (binfo);
7548 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
7549 + TYPE_NAME_LENGTH (type) + 2);
7550 sprintf (buf, VFIELD_NAME_FORMAT,
7551 IDENTIFIER_POINTER (constructor_name (type)));
7552 return get_identifier (buf);
7555 void
7556 print_class_statistics (void)
7558 if (! GATHER_STATISTICS)
7559 return;
7561 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
7562 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
7563 if (n_vtables)
7565 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
7566 n_vtables, n_vtable_searches);
7567 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
7568 n_vtable_entries, n_vtable_elems);
7572 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7573 according to [class]:
7574 The class-name is also inserted
7575 into the scope of the class itself. For purposes of access checking,
7576 the inserted class name is treated as if it were a public member name. */
7578 void
7579 build_self_reference (void)
7581 tree name = constructor_name (current_class_type);
7582 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
7583 tree saved_cas;
7585 DECL_NONLOCAL (value) = 1;
7586 DECL_CONTEXT (value) = current_class_type;
7587 DECL_ARTIFICIAL (value) = 1;
7588 SET_DECL_SELF_REFERENCE_P (value);
7589 set_underlying_type (value);
7591 if (processing_template_decl)
7592 value = push_template_decl (value);
7594 saved_cas = current_access_specifier;
7595 current_access_specifier = access_public_node;
7596 finish_member_declaration (value);
7597 current_access_specifier = saved_cas;
7600 /* Returns 1 if TYPE contains only padding bytes. */
7603 is_empty_class (tree type)
7605 if (type == error_mark_node)
7606 return 0;
7608 if (! CLASS_TYPE_P (type))
7609 return 0;
7611 /* In G++ 3.2, whether or not a class was empty was determined by
7612 looking at its size. */
7613 if (abi_version_at_least (2))
7614 return CLASSTYPE_EMPTY_P (type);
7615 else
7616 return integer_zerop (CLASSTYPE_SIZE (type));
7619 /* Returns true if TYPE contains an empty class. */
7621 static bool
7622 contains_empty_class_p (tree type)
7624 if (is_empty_class (type))
7625 return true;
7626 if (CLASS_TYPE_P (type))
7628 tree field;
7629 tree binfo;
7630 tree base_binfo;
7631 int i;
7633 for (binfo = TYPE_BINFO (type), i = 0;
7634 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7635 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
7636 return true;
7637 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
7638 if (TREE_CODE (field) == FIELD_DECL
7639 && !DECL_ARTIFICIAL (field)
7640 && is_empty_class (TREE_TYPE (field)))
7641 return true;
7643 else if (TREE_CODE (type) == ARRAY_TYPE)
7644 return contains_empty_class_p (TREE_TYPE (type));
7645 return false;
7648 /* Returns true if TYPE contains no actual data, just various
7649 possible combinations of empty classes and possibly a vptr. */
7651 bool
7652 is_really_empty_class (tree type)
7654 if (CLASS_TYPE_P (type))
7656 tree field;
7657 tree binfo;
7658 tree base_binfo;
7659 int i;
7661 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
7662 out, but we'd like to be able to check this before then. */
7663 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
7664 return true;
7666 for (binfo = TYPE_BINFO (type), i = 0;
7667 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7668 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
7669 return false;
7670 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
7671 if (TREE_CODE (field) == FIELD_DECL
7672 && !DECL_ARTIFICIAL (field)
7673 && !is_really_empty_class (TREE_TYPE (field)))
7674 return false;
7675 return true;
7677 else if (TREE_CODE (type) == ARRAY_TYPE)
7678 return is_really_empty_class (TREE_TYPE (type));
7679 return false;
7682 /* Note that NAME was looked up while the current class was being
7683 defined and that the result of that lookup was DECL. */
7685 void
7686 maybe_note_name_used_in_class (tree name, tree decl)
7688 splay_tree names_used;
7690 /* If we're not defining a class, there's nothing to do. */
7691 if (!(innermost_scope_kind() == sk_class
7692 && TYPE_BEING_DEFINED (current_class_type)
7693 && !LAMBDA_TYPE_P (current_class_type)))
7694 return;
7696 /* If there's already a binding for this NAME, then we don't have
7697 anything to worry about. */
7698 if (lookup_member (current_class_type, name,
7699 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
7700 return;
7702 if (!current_class_stack[current_class_depth - 1].names_used)
7703 current_class_stack[current_class_depth - 1].names_used
7704 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
7705 names_used = current_class_stack[current_class_depth - 1].names_used;
7707 splay_tree_insert (names_used,
7708 (splay_tree_key) name,
7709 (splay_tree_value) decl);
7712 /* Note that NAME was declared (as DECL) in the current class. Check
7713 to see that the declaration is valid. */
7715 void
7716 note_name_declared_in_class (tree name, tree decl)
7718 splay_tree names_used;
7719 splay_tree_node n;
7721 /* Look to see if we ever used this name. */
7722 names_used
7723 = current_class_stack[current_class_depth - 1].names_used;
7724 if (!names_used)
7725 return;
7726 /* The C language allows members to be declared with a type of the same
7727 name, and the C++ standard says this diagnostic is not required. So
7728 allow it in extern "C" blocks unless predantic is specified.
7729 Allow it in all cases if -ms-extensions is specified. */
7730 if ((!pedantic && current_lang_name == lang_name_c)
7731 || flag_ms_extensions)
7732 return;
7733 n = splay_tree_lookup (names_used, (splay_tree_key) name);
7734 if (n)
7736 /* [basic.scope.class]
7738 A name N used in a class S shall refer to the same declaration
7739 in its context and when re-evaluated in the completed scope of
7740 S. */
7741 permerror (input_location, "declaration of %q#D", decl);
7742 permerror (input_location, "changes meaning of %qD from %q+#D",
7743 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
7747 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
7748 Secondary vtables are merged with primary vtables; this function
7749 will return the VAR_DECL for the primary vtable. */
7751 tree
7752 get_vtbl_decl_for_binfo (tree binfo)
7754 tree decl;
7756 decl = BINFO_VTABLE (binfo);
7757 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
7759 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
7760 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
7762 if (decl)
7763 gcc_assert (TREE_CODE (decl) == VAR_DECL);
7764 return decl;
7768 /* Returns the binfo for the primary base of BINFO. If the resulting
7769 BINFO is a virtual base, and it is inherited elsewhere in the
7770 hierarchy, then the returned binfo might not be the primary base of
7771 BINFO in the complete object. Check BINFO_PRIMARY_P or
7772 BINFO_LOST_PRIMARY_P to be sure. */
7774 static tree
7775 get_primary_binfo (tree binfo)
7777 tree primary_base;
7779 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
7780 if (!primary_base)
7781 return NULL_TREE;
7783 return copied_binfo (primary_base, binfo);
7786 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
7788 static int
7789 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
7791 if (!indented_p)
7792 fprintf (stream, "%*s", indent, "");
7793 return 1;
7796 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
7797 INDENT should be zero when called from the top level; it is
7798 incremented recursively. IGO indicates the next expected BINFO in
7799 inheritance graph ordering. */
7801 static tree
7802 dump_class_hierarchy_r (FILE *stream,
7803 int flags,
7804 tree binfo,
7805 tree igo,
7806 int indent)
7808 int indented = 0;
7809 tree base_binfo;
7810 int i;
7812 indented = maybe_indent_hierarchy (stream, indent, 0);
7813 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
7814 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
7815 (HOST_WIDE_INT) (uintptr_t) binfo);
7816 if (binfo != igo)
7818 fprintf (stream, "alternative-path\n");
7819 return igo;
7821 igo = TREE_CHAIN (binfo);
7823 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
7824 tree_low_cst (BINFO_OFFSET (binfo), 0));
7825 if (is_empty_class (BINFO_TYPE (binfo)))
7826 fprintf (stream, " empty");
7827 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
7828 fprintf (stream, " nearly-empty");
7829 if (BINFO_VIRTUAL_P (binfo))
7830 fprintf (stream, " virtual");
7831 fprintf (stream, "\n");
7833 indented = 0;
7834 if (BINFO_PRIMARY_P (binfo))
7836 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7837 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
7838 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
7839 TFF_PLAIN_IDENTIFIER),
7840 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
7842 if (BINFO_LOST_PRIMARY_P (binfo))
7844 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7845 fprintf (stream, " lost-primary");
7847 if (indented)
7848 fprintf (stream, "\n");
7850 if (!(flags & TDF_SLIM))
7852 int indented = 0;
7854 if (BINFO_SUBVTT_INDEX (binfo))
7856 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7857 fprintf (stream, " subvttidx=%s",
7858 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
7859 TFF_PLAIN_IDENTIFIER));
7861 if (BINFO_VPTR_INDEX (binfo))
7863 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7864 fprintf (stream, " vptridx=%s",
7865 expr_as_string (BINFO_VPTR_INDEX (binfo),
7866 TFF_PLAIN_IDENTIFIER));
7868 if (BINFO_VPTR_FIELD (binfo))
7870 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7871 fprintf (stream, " vbaseoffset=%s",
7872 expr_as_string (BINFO_VPTR_FIELD (binfo),
7873 TFF_PLAIN_IDENTIFIER));
7875 if (BINFO_VTABLE (binfo))
7877 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
7878 fprintf (stream, " vptr=%s",
7879 expr_as_string (BINFO_VTABLE (binfo),
7880 TFF_PLAIN_IDENTIFIER));
7883 if (indented)
7884 fprintf (stream, "\n");
7887 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
7888 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
7890 return igo;
7893 /* Dump the BINFO hierarchy for T. */
7895 static void
7896 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
7898 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7899 fprintf (stream, " size=%lu align=%lu\n",
7900 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
7901 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
7902 fprintf (stream, " base size=%lu base align=%lu\n",
7903 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
7904 / BITS_PER_UNIT),
7905 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
7906 / BITS_PER_UNIT));
7907 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
7908 fprintf (stream, "\n");
7911 /* Debug interface to hierarchy dumping. */
7913 void
7914 debug_class (tree t)
7916 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
7919 static void
7920 dump_class_hierarchy (tree t)
7922 int flags;
7923 FILE *stream = dump_begin (TDI_class, &flags);
7925 if (stream)
7927 dump_class_hierarchy_1 (stream, flags, t);
7928 dump_end (TDI_class, stream);
7932 static void
7933 dump_array (FILE * stream, tree decl)
7935 tree value;
7936 unsigned HOST_WIDE_INT ix;
7937 HOST_WIDE_INT elt;
7938 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
7940 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
7941 / BITS_PER_UNIT);
7942 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
7943 fprintf (stream, " %s entries",
7944 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
7945 TFF_PLAIN_IDENTIFIER));
7946 fprintf (stream, "\n");
7948 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
7949 ix, value)
7950 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
7951 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
7954 static void
7955 dump_vtable (tree t, tree binfo, tree vtable)
7957 int flags;
7958 FILE *stream = dump_begin (TDI_class, &flags);
7960 if (!stream)
7961 return;
7963 if (!(flags & TDF_SLIM))
7965 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
7967 fprintf (stream, "%s for %s",
7968 ctor_vtbl_p ? "Construction vtable" : "Vtable",
7969 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
7970 if (ctor_vtbl_p)
7972 if (!BINFO_VIRTUAL_P (binfo))
7973 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
7974 (HOST_WIDE_INT) (uintptr_t) binfo);
7975 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
7977 fprintf (stream, "\n");
7978 dump_array (stream, vtable);
7979 fprintf (stream, "\n");
7982 dump_end (TDI_class, stream);
7985 static void
7986 dump_vtt (tree t, tree vtt)
7988 int flags;
7989 FILE *stream = dump_begin (TDI_class, &flags);
7991 if (!stream)
7992 return;
7994 if (!(flags & TDF_SLIM))
7996 fprintf (stream, "VTT for %s\n",
7997 type_as_string (t, TFF_PLAIN_IDENTIFIER));
7998 dump_array (stream, vtt);
7999 fprintf (stream, "\n");
8002 dump_end (TDI_class, stream);
8005 /* Dump a function or thunk and its thunkees. */
8007 static void
8008 dump_thunk (FILE *stream, int indent, tree thunk)
8010 static const char spaces[] = " ";
8011 tree name = DECL_NAME (thunk);
8012 tree thunks;
8014 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8015 (void *)thunk,
8016 !DECL_THUNK_P (thunk) ? "function"
8017 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8018 name ? IDENTIFIER_POINTER (name) : "<unset>");
8019 if (DECL_THUNK_P (thunk))
8021 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8022 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8024 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8025 if (!virtual_adjust)
8026 /*NOP*/;
8027 else if (DECL_THIS_THUNK_P (thunk))
8028 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8029 tree_low_cst (virtual_adjust, 0));
8030 else
8031 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8032 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
8033 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8034 if (THUNK_ALIAS (thunk))
8035 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8037 fprintf (stream, "\n");
8038 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8039 dump_thunk (stream, indent + 2, thunks);
8042 /* Dump the thunks for FN. */
8044 void
8045 debug_thunks (tree fn)
8047 dump_thunk (stderr, 0, fn);
8050 /* Virtual function table initialization. */
8052 /* Create all the necessary vtables for T and its base classes. */
8054 static void
8055 finish_vtbls (tree t)
8057 tree vbase;
8058 vec<constructor_elt, va_gc> *v = NULL;
8059 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8061 /* We lay out the primary and secondary vtables in one contiguous
8062 vtable. The primary vtable is first, followed by the non-virtual
8063 secondary vtables in inheritance graph order. */
8064 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8065 vtable, t, &v);
8067 /* Then come the virtual bases, also in inheritance graph order. */
8068 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8070 if (!BINFO_VIRTUAL_P (vbase))
8071 continue;
8072 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8075 if (BINFO_VTABLE (TYPE_BINFO (t)))
8076 initialize_vtable (TYPE_BINFO (t), v);
8079 /* Initialize the vtable for BINFO with the INITS. */
8081 static void
8082 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8084 tree decl;
8086 layout_vtable_decl (binfo, vec_safe_length (inits));
8087 decl = get_vtbl_decl_for_binfo (binfo);
8088 initialize_artificial_var (decl, inits);
8089 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8092 /* Build the VTT (virtual table table) for T.
8093 A class requires a VTT if it has virtual bases.
8095 This holds
8096 1 - primary virtual pointer for complete object T
8097 2 - secondary VTTs for each direct non-virtual base of T which requires a
8099 3 - secondary virtual pointers for each direct or indirect base of T which
8100 has virtual bases or is reachable via a virtual path from T.
8101 4 - secondary VTTs for each direct or indirect virtual base of T.
8103 Secondary VTTs look like complete object VTTs without part 4. */
8105 static void
8106 build_vtt (tree t)
8108 tree type;
8109 tree vtt;
8110 tree index;
8111 vec<constructor_elt, va_gc> *inits;
8113 /* Build up the initializers for the VTT. */
8114 inits = NULL;
8115 index = size_zero_node;
8116 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8118 /* If we didn't need a VTT, we're done. */
8119 if (!inits)
8120 return;
8122 /* Figure out the type of the VTT. */
8123 type = build_array_of_n_type (const_ptr_type_node,
8124 inits->length ());
8126 /* Now, build the VTT object itself. */
8127 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8128 initialize_artificial_var (vtt, inits);
8129 /* Add the VTT to the vtables list. */
8130 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8131 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8133 dump_vtt (t, vtt);
8136 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8137 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8138 and CHAIN the vtable pointer for this binfo after construction is
8139 complete. VALUE can also be another BINFO, in which case we recurse. */
8141 static tree
8142 binfo_ctor_vtable (tree binfo)
8144 tree vt;
8146 while (1)
8148 vt = BINFO_VTABLE (binfo);
8149 if (TREE_CODE (vt) == TREE_LIST)
8150 vt = TREE_VALUE (vt);
8151 if (TREE_CODE (vt) == TREE_BINFO)
8152 binfo = vt;
8153 else
8154 break;
8157 return vt;
8160 /* Data for secondary VTT initialization. */
8161 typedef struct secondary_vptr_vtt_init_data_s
8163 /* Is this the primary VTT? */
8164 bool top_level_p;
8166 /* Current index into the VTT. */
8167 tree index;
8169 /* Vector of initializers built up. */
8170 vec<constructor_elt, va_gc> *inits;
8172 /* The type being constructed by this secondary VTT. */
8173 tree type_being_constructed;
8174 } secondary_vptr_vtt_init_data;
8176 /* Recursively build the VTT-initializer for BINFO (which is in the
8177 hierarchy dominated by T). INITS points to the end of the initializer
8178 list to date. INDEX is the VTT index where the next element will be
8179 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8180 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8181 for virtual bases of T. When it is not so, we build the constructor
8182 vtables for the BINFO-in-T variant. */
8184 static void
8185 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8186 tree *index)
8188 int i;
8189 tree b;
8190 tree init;
8191 secondary_vptr_vtt_init_data data;
8192 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8194 /* We only need VTTs for subobjects with virtual bases. */
8195 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8196 return;
8198 /* We need to use a construction vtable if this is not the primary
8199 VTT. */
8200 if (!top_level_p)
8202 build_ctor_vtbl_group (binfo, t);
8204 /* Record the offset in the VTT where this sub-VTT can be found. */
8205 BINFO_SUBVTT_INDEX (binfo) = *index;
8208 /* Add the address of the primary vtable for the complete object. */
8209 init = binfo_ctor_vtable (binfo);
8210 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8211 if (top_level_p)
8213 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8214 BINFO_VPTR_INDEX (binfo) = *index;
8216 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8218 /* Recursively add the secondary VTTs for non-virtual bases. */
8219 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8220 if (!BINFO_VIRTUAL_P (b))
8221 build_vtt_inits (b, t, inits, index);
8223 /* Add secondary virtual pointers for all subobjects of BINFO with
8224 either virtual bases or reachable along a virtual path, except
8225 subobjects that are non-virtual primary bases. */
8226 data.top_level_p = top_level_p;
8227 data.index = *index;
8228 data.inits = *inits;
8229 data.type_being_constructed = BINFO_TYPE (binfo);
8231 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8233 *index = data.index;
8235 /* data.inits might have grown as we added secondary virtual pointers.
8236 Make sure our caller knows about the new vector. */
8237 *inits = data.inits;
8239 if (top_level_p)
8240 /* Add the secondary VTTs for virtual bases in inheritance graph
8241 order. */
8242 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8244 if (!BINFO_VIRTUAL_P (b))
8245 continue;
8247 build_vtt_inits (b, t, inits, index);
8249 else
8250 /* Remove the ctor vtables we created. */
8251 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8254 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8255 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8257 static tree
8258 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8260 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8262 /* We don't care about bases that don't have vtables. */
8263 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8264 return dfs_skip_bases;
8266 /* We're only interested in proper subobjects of the type being
8267 constructed. */
8268 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8269 return NULL_TREE;
8271 /* We're only interested in bases with virtual bases or reachable
8272 via a virtual path from the type being constructed. */
8273 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8274 || binfo_via_virtual (binfo, data->type_being_constructed)))
8275 return dfs_skip_bases;
8277 /* We're not interested in non-virtual primary bases. */
8278 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8279 return NULL_TREE;
8281 /* Record the index where this secondary vptr can be found. */
8282 if (data->top_level_p)
8284 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8285 BINFO_VPTR_INDEX (binfo) = data->index;
8287 if (BINFO_VIRTUAL_P (binfo))
8289 /* It's a primary virtual base, and this is not a
8290 construction vtable. Find the base this is primary of in
8291 the inheritance graph, and use that base's vtable
8292 now. */
8293 while (BINFO_PRIMARY_P (binfo))
8294 binfo = BINFO_INHERITANCE_CHAIN (binfo);
8298 /* Add the initializer for the secondary vptr itself. */
8299 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
8301 /* Advance the vtt index. */
8302 data->index = size_binop (PLUS_EXPR, data->index,
8303 TYPE_SIZE_UNIT (ptr_type_node));
8305 return NULL_TREE;
8308 /* Called from build_vtt_inits via dfs_walk. After building
8309 constructor vtables and generating the sub-vtt from them, we need
8310 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8311 binfo of the base whose sub vtt was generated. */
8313 static tree
8314 dfs_fixup_binfo_vtbls (tree binfo, void* data)
8316 tree vtable = BINFO_VTABLE (binfo);
8318 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8319 /* If this class has no vtable, none of its bases do. */
8320 return dfs_skip_bases;
8322 if (!vtable)
8323 /* This might be a primary base, so have no vtable in this
8324 hierarchy. */
8325 return NULL_TREE;
8327 /* If we scribbled the construction vtable vptr into BINFO, clear it
8328 out now. */
8329 if (TREE_CODE (vtable) == TREE_LIST
8330 && (TREE_PURPOSE (vtable) == (tree) data))
8331 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
8333 return NULL_TREE;
8336 /* Build the construction vtable group for BINFO which is in the
8337 hierarchy dominated by T. */
8339 static void
8340 build_ctor_vtbl_group (tree binfo, tree t)
8342 tree type;
8343 tree vtbl;
8344 tree id;
8345 tree vbase;
8346 vec<constructor_elt, va_gc> *v;
8348 /* See if we've already created this construction vtable group. */
8349 id = mangle_ctor_vtbl_for_type (t, binfo);
8350 if (IDENTIFIER_GLOBAL_VALUE (id))
8351 return;
8353 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
8354 /* Build a version of VTBL (with the wrong type) for use in
8355 constructing the addresses of secondary vtables in the
8356 construction vtable group. */
8357 vtbl = build_vtable (t, id, ptr_type_node);
8358 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
8360 v = NULL;
8361 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
8362 binfo, vtbl, t, &v);
8364 /* Add the vtables for each of our virtual bases using the vbase in T
8365 binfo. */
8366 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8367 vbase;
8368 vbase = TREE_CHAIN (vbase))
8370 tree b;
8372 if (!BINFO_VIRTUAL_P (vbase))
8373 continue;
8374 b = copied_binfo (vbase, binfo);
8376 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
8379 /* Figure out the type of the construction vtable. */
8380 type = build_array_of_n_type (vtable_entry_type, v->length ());
8381 layout_type (type);
8382 TREE_TYPE (vtbl) = type;
8383 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
8384 layout_decl (vtbl, 0);
8386 /* Initialize the construction vtable. */
8387 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
8388 initialize_artificial_var (vtbl, v);
8389 dump_vtable (t, binfo, vtbl);
8392 /* Add the vtbl initializers for BINFO (and its bases other than
8393 non-virtual primaries) to the list of INITS. BINFO is in the
8394 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8395 the constructor the vtbl inits should be accumulated for. (If this
8396 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8397 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8398 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8399 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8400 but are not necessarily the same in terms of layout. */
8402 static void
8403 accumulate_vtbl_inits (tree binfo,
8404 tree orig_binfo,
8405 tree rtti_binfo,
8406 tree vtbl,
8407 tree t,
8408 vec<constructor_elt, va_gc> **inits)
8410 int i;
8411 tree base_binfo;
8412 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8414 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
8416 /* If it doesn't have a vptr, we don't do anything. */
8417 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
8418 return;
8420 /* If we're building a construction vtable, we're not interested in
8421 subobjects that don't require construction vtables. */
8422 if (ctor_vtbl_p
8423 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8424 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
8425 return;
8427 /* Build the initializers for the BINFO-in-T vtable. */
8428 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
8430 /* Walk the BINFO and its bases. We walk in preorder so that as we
8431 initialize each vtable we can figure out at what offset the
8432 secondary vtable lies from the primary vtable. We can't use
8433 dfs_walk here because we need to iterate through bases of BINFO
8434 and RTTI_BINFO simultaneously. */
8435 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8437 /* Skip virtual bases. */
8438 if (BINFO_VIRTUAL_P (base_binfo))
8439 continue;
8440 accumulate_vtbl_inits (base_binfo,
8441 BINFO_BASE_BINFO (orig_binfo, i),
8442 rtti_binfo, vtbl, t,
8443 inits);
8447 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8448 BINFO vtable to L. */
8450 static void
8451 dfs_accumulate_vtbl_inits (tree binfo,
8452 tree orig_binfo,
8453 tree rtti_binfo,
8454 tree orig_vtbl,
8455 tree t,
8456 vec<constructor_elt, va_gc> **l)
8458 tree vtbl = NULL_TREE;
8459 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8460 int n_inits;
8462 if (ctor_vtbl_p
8463 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
8465 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8466 primary virtual base. If it is not the same primary in
8467 the hierarchy of T, we'll need to generate a ctor vtable
8468 for it, to place at its location in T. If it is the same
8469 primary, we still need a VTT entry for the vtable, but it
8470 should point to the ctor vtable for the base it is a
8471 primary for within the sub-hierarchy of RTTI_BINFO.
8473 There are three possible cases:
8475 1) We are in the same place.
8476 2) We are a primary base within a lost primary virtual base of
8477 RTTI_BINFO.
8478 3) We are primary to something not a base of RTTI_BINFO. */
8480 tree b;
8481 tree last = NULL_TREE;
8483 /* First, look through the bases we are primary to for RTTI_BINFO
8484 or a virtual base. */
8485 b = binfo;
8486 while (BINFO_PRIMARY_P (b))
8488 b = BINFO_INHERITANCE_CHAIN (b);
8489 last = b;
8490 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8491 goto found;
8493 /* If we run out of primary links, keep looking down our
8494 inheritance chain; we might be an indirect primary. */
8495 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
8496 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
8497 break;
8498 found:
8500 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8501 base B and it is a base of RTTI_BINFO, this is case 2. In
8502 either case, we share our vtable with LAST, i.e. the
8503 derived-most base within B of which we are a primary. */
8504 if (b == rtti_binfo
8505 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
8506 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8507 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8508 binfo_ctor_vtable after everything's been set up. */
8509 vtbl = last;
8511 /* Otherwise, this is case 3 and we get our own. */
8513 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
8514 return;
8516 n_inits = vec_safe_length (*l);
8518 if (!vtbl)
8520 tree index;
8521 int non_fn_entries;
8523 /* Add the initializer for this vtable. */
8524 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
8525 &non_fn_entries, l);
8527 /* Figure out the position to which the VPTR should point. */
8528 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
8529 index = size_binop (MULT_EXPR,
8530 TYPE_SIZE_UNIT (vtable_entry_type),
8531 size_int (non_fn_entries + n_inits));
8532 vtbl = fold_build_pointer_plus (vtbl, index);
8535 if (ctor_vtbl_p)
8536 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8537 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8538 straighten this out. */
8539 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
8540 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
8541 /* Throw away any unneeded intializers. */
8542 (*l)->truncate (n_inits);
8543 else
8544 /* For an ordinary vtable, set BINFO_VTABLE. */
8545 BINFO_VTABLE (binfo) = vtbl;
8548 static GTY(()) tree abort_fndecl_addr;
8550 /* Construct the initializer for BINFO's virtual function table. BINFO
8551 is part of the hierarchy dominated by T. If we're building a
8552 construction vtable, the ORIG_BINFO is the binfo we should use to
8553 find the actual function pointers to put in the vtable - but they
8554 can be overridden on the path to most-derived in the graph that
8555 ORIG_BINFO belongs. Otherwise,
8556 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8557 BINFO that should be indicated by the RTTI information in the
8558 vtable; it will be a base class of T, rather than T itself, if we
8559 are building a construction vtable.
8561 The value returned is a TREE_LIST suitable for wrapping in a
8562 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8563 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8564 number of non-function entries in the vtable.
8566 It might seem that this function should never be called with a
8567 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8568 base is always subsumed by a derived class vtable. However, when
8569 we are building construction vtables, we do build vtables for
8570 primary bases; we need these while the primary base is being
8571 constructed. */
8573 static void
8574 build_vtbl_initializer (tree binfo,
8575 tree orig_binfo,
8576 tree t,
8577 tree rtti_binfo,
8578 int* non_fn_entries_p,
8579 vec<constructor_elt, va_gc> **inits)
8581 tree v;
8582 vtbl_init_data vid;
8583 unsigned ix, jx;
8584 tree vbinfo;
8585 vec<tree, va_gc> *vbases;
8586 constructor_elt *e;
8588 /* Initialize VID. */
8589 memset (&vid, 0, sizeof (vid));
8590 vid.binfo = binfo;
8591 vid.derived = t;
8592 vid.rtti_binfo = rtti_binfo;
8593 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8594 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
8595 vid.generate_vcall_entries = true;
8596 /* The first vbase or vcall offset is at index -3 in the vtable. */
8597 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
8599 /* Add entries to the vtable for RTTI. */
8600 build_rtti_vtbl_entries (binfo, &vid);
8602 /* Create an array for keeping track of the functions we've
8603 processed. When we see multiple functions with the same
8604 signature, we share the vcall offsets. */
8605 vec_alloc (vid.fns, 32);
8606 /* Add the vcall and vbase offset entries. */
8607 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
8609 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8610 build_vbase_offset_vtbl_entries. */
8611 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
8612 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
8613 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
8615 /* If the target requires padding between data entries, add that now. */
8616 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
8618 int n_entries = vec_safe_length (vid.inits);
8620 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
8622 /* Move data entries into their new positions and add padding
8623 after the new positions. Iterate backwards so we don't
8624 overwrite entries that we would need to process later. */
8625 for (ix = n_entries - 1;
8626 vid.inits->iterate (ix, &e);
8627 ix--)
8629 int j;
8630 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
8631 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
8633 (*vid.inits)[new_position] = *e;
8635 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
8637 constructor_elt *f = &(*vid.inits)[new_position - j];
8638 f->index = NULL_TREE;
8639 f->value = build1 (NOP_EXPR, vtable_entry_type,
8640 null_pointer_node);
8645 if (non_fn_entries_p)
8646 *non_fn_entries_p = vec_safe_length (vid.inits);
8648 /* The initializers for virtual functions were built up in reverse
8649 order. Straighten them out and add them to the running list in one
8650 step. */
8651 jx = vec_safe_length (*inits);
8652 vec_safe_grow (*inits, jx + vid.inits->length ());
8654 for (ix = vid.inits->length () - 1;
8655 vid.inits->iterate (ix, &e);
8656 ix--, jx++)
8657 (**inits)[jx] = *e;
8659 /* Go through all the ordinary virtual functions, building up
8660 initializers. */
8661 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
8663 tree delta;
8664 tree vcall_index;
8665 tree fn, fn_original;
8666 tree init = NULL_TREE;
8668 fn = BV_FN (v);
8669 fn_original = fn;
8670 if (DECL_THUNK_P (fn))
8672 if (!DECL_NAME (fn))
8673 finish_thunk (fn);
8674 if (THUNK_ALIAS (fn))
8676 fn = THUNK_ALIAS (fn);
8677 BV_FN (v) = fn;
8679 fn_original = THUNK_TARGET (fn);
8682 /* If the only definition of this function signature along our
8683 primary base chain is from a lost primary, this vtable slot will
8684 never be used, so just zero it out. This is important to avoid
8685 requiring extra thunks which cannot be generated with the function.
8687 We first check this in update_vtable_entry_for_fn, so we handle
8688 restored primary bases properly; we also need to do it here so we
8689 zero out unused slots in ctor vtables, rather than filling them
8690 with erroneous values (though harmless, apart from relocation
8691 costs). */
8692 if (BV_LOST_PRIMARY (v))
8693 init = size_zero_node;
8695 if (! init)
8697 /* Pull the offset for `this', and the function to call, out of
8698 the list. */
8699 delta = BV_DELTA (v);
8700 vcall_index = BV_VCALL_INDEX (v);
8702 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
8703 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
8705 /* You can't call an abstract virtual function; it's abstract.
8706 So, we replace these functions with __pure_virtual. */
8707 if (DECL_PURE_VIRTUAL_P (fn_original))
8709 fn = abort_fndecl;
8710 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8712 if (abort_fndecl_addr == NULL)
8713 abort_fndecl_addr
8714 = fold_convert (vfunc_ptr_type_node,
8715 build_fold_addr_expr (fn));
8716 init = abort_fndecl_addr;
8719 /* Likewise for deleted virtuals. */
8720 else if (DECL_DELETED_FN (fn_original))
8722 fn = get_identifier ("__cxa_deleted_virtual");
8723 if (!get_global_value_if_present (fn, &fn))
8724 fn = push_library_fn (fn, (build_function_type_list
8725 (void_type_node, NULL_TREE)),
8726 NULL_TREE);
8727 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8728 init = fold_convert (vfunc_ptr_type_node,
8729 build_fold_addr_expr (fn));
8731 else
8733 if (!integer_zerop (delta) || vcall_index)
8735 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
8736 if (!DECL_NAME (fn))
8737 finish_thunk (fn);
8739 /* Take the address of the function, considering it to be of an
8740 appropriate generic type. */
8741 if (!TARGET_VTABLE_USES_DESCRIPTORS)
8742 init = fold_convert (vfunc_ptr_type_node,
8743 build_fold_addr_expr (fn));
8747 /* And add it to the chain of initializers. */
8748 if (TARGET_VTABLE_USES_DESCRIPTORS)
8750 int i;
8751 if (init == size_zero_node)
8752 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8753 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8754 else
8755 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
8757 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
8758 fn, build_int_cst (NULL_TREE, i));
8759 TREE_CONSTANT (fdesc) = 1;
8761 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
8764 else
8765 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8769 /* Adds to vid->inits the initializers for the vbase and vcall
8770 offsets in BINFO, which is in the hierarchy dominated by T. */
8772 static void
8773 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
8775 tree b;
8777 /* If this is a derived class, we must first create entries
8778 corresponding to the primary base class. */
8779 b = get_primary_binfo (binfo);
8780 if (b)
8781 build_vcall_and_vbase_vtbl_entries (b, vid);
8783 /* Add the vbase entries for this base. */
8784 build_vbase_offset_vtbl_entries (binfo, vid);
8785 /* Add the vcall entries for this base. */
8786 build_vcall_offset_vtbl_entries (binfo, vid);
8789 /* Returns the initializers for the vbase offset entries in the vtable
8790 for BINFO (which is part of the class hierarchy dominated by T), in
8791 reverse order. VBASE_OFFSET_INDEX gives the vtable index
8792 where the next vbase offset will go. */
8794 static void
8795 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8797 tree vbase;
8798 tree t;
8799 tree non_primary_binfo;
8801 /* If there are no virtual baseclasses, then there is nothing to
8802 do. */
8803 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8804 return;
8806 t = vid->derived;
8808 /* We might be a primary base class. Go up the inheritance hierarchy
8809 until we find the most derived class of which we are a primary base:
8810 it is the offset of that which we need to use. */
8811 non_primary_binfo = binfo;
8812 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8814 tree b;
8816 /* If we have reached a virtual base, then it must be a primary
8817 base (possibly multi-level) of vid->binfo, or we wouldn't
8818 have called build_vcall_and_vbase_vtbl_entries for it. But it
8819 might be a lost primary, so just skip down to vid->binfo. */
8820 if (BINFO_VIRTUAL_P (non_primary_binfo))
8822 non_primary_binfo = vid->binfo;
8823 break;
8826 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
8827 if (get_primary_binfo (b) != non_primary_binfo)
8828 break;
8829 non_primary_binfo = b;
8832 /* Go through the virtual bases, adding the offsets. */
8833 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
8834 vbase;
8835 vbase = TREE_CHAIN (vbase))
8837 tree b;
8838 tree delta;
8840 if (!BINFO_VIRTUAL_P (vbase))
8841 continue;
8843 /* Find the instance of this virtual base in the complete
8844 object. */
8845 b = copied_binfo (vbase, binfo);
8847 /* If we've already got an offset for this virtual base, we
8848 don't need another one. */
8849 if (BINFO_VTABLE_PATH_MARKED (b))
8850 continue;
8851 BINFO_VTABLE_PATH_MARKED (b) = 1;
8853 /* Figure out where we can find this vbase offset. */
8854 delta = size_binop (MULT_EXPR,
8855 vid->index,
8856 convert (ssizetype,
8857 TYPE_SIZE_UNIT (vtable_entry_type)));
8858 if (vid->primary_vtbl_p)
8859 BINFO_VPTR_FIELD (b) = delta;
8861 if (binfo != TYPE_BINFO (t))
8862 /* The vbase offset had better be the same. */
8863 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
8865 /* The next vbase will come at a more negative offset. */
8866 vid->index = size_binop (MINUS_EXPR, vid->index,
8867 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
8869 /* The initializer is the delta from BINFO to this virtual base.
8870 The vbase offsets go in reverse inheritance-graph order, and
8871 we are walking in inheritance graph order so these end up in
8872 the right order. */
8873 delta = size_diffop_loc (input_location,
8874 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
8876 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
8877 fold_build1_loc (input_location, NOP_EXPR,
8878 vtable_entry_type, delta));
8882 /* Adds the initializers for the vcall offset entries in the vtable
8883 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
8884 to VID->INITS. */
8886 static void
8887 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
8889 /* We only need these entries if this base is a virtual base. We
8890 compute the indices -- but do not add to the vtable -- when
8891 building the main vtable for a class. */
8892 if (binfo == TYPE_BINFO (vid->derived)
8893 || (BINFO_VIRTUAL_P (binfo)
8894 /* If BINFO is RTTI_BINFO, then (since BINFO does not
8895 correspond to VID->DERIVED), we are building a primary
8896 construction virtual table. Since this is a primary
8897 virtual table, we do not need the vcall offsets for
8898 BINFO. */
8899 && binfo != vid->rtti_binfo))
8901 /* We need a vcall offset for each of the virtual functions in this
8902 vtable. For example:
8904 class A { virtual void f (); };
8905 class B1 : virtual public A { virtual void f (); };
8906 class B2 : virtual public A { virtual void f (); };
8907 class C: public B1, public B2 { virtual void f (); };
8909 A C object has a primary base of B1, which has a primary base of A. A
8910 C also has a secondary base of B2, which no longer has a primary base
8911 of A. So the B2-in-C construction vtable needs a secondary vtable for
8912 A, which will adjust the A* to a B2* to call f. We have no way of
8913 knowing what (or even whether) this offset will be when we define B2,
8914 so we store this "vcall offset" in the A sub-vtable and look it up in
8915 a "virtual thunk" for B2::f.
8917 We need entries for all the functions in our primary vtable and
8918 in our non-virtual bases' secondary vtables. */
8919 vid->vbase = binfo;
8920 /* If we are just computing the vcall indices -- but do not need
8921 the actual entries -- not that. */
8922 if (!BINFO_VIRTUAL_P (binfo))
8923 vid->generate_vcall_entries = false;
8924 /* Now, walk through the non-virtual bases, adding vcall offsets. */
8925 add_vcall_offset_vtbl_entries_r (binfo, vid);
8929 /* Build vcall offsets, starting with those for BINFO. */
8931 static void
8932 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
8934 int i;
8935 tree primary_binfo;
8936 tree base_binfo;
8938 /* Don't walk into virtual bases -- except, of course, for the
8939 virtual base for which we are building vcall offsets. Any
8940 primary virtual base will have already had its offsets generated
8941 through the recursion in build_vcall_and_vbase_vtbl_entries. */
8942 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
8943 return;
8945 /* If BINFO has a primary base, process it first. */
8946 primary_binfo = get_primary_binfo (binfo);
8947 if (primary_binfo)
8948 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
8950 /* Add BINFO itself to the list. */
8951 add_vcall_offset_vtbl_entries_1 (binfo, vid);
8953 /* Scan the non-primary bases of BINFO. */
8954 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8955 if (base_binfo != primary_binfo)
8956 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
8959 /* Called from build_vcall_offset_vtbl_entries_r. */
8961 static void
8962 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
8964 /* Make entries for the rest of the virtuals. */
8965 if (abi_version_at_least (2))
8967 tree orig_fn;
8969 /* The ABI requires that the methods be processed in declaration
8970 order. G++ 3.2 used the order in the vtable. */
8971 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
8972 orig_fn;
8973 orig_fn = DECL_CHAIN (orig_fn))
8974 if (DECL_VINDEX (orig_fn))
8975 add_vcall_offset (orig_fn, binfo, vid);
8977 else
8979 tree derived_virtuals;
8980 tree base_virtuals;
8981 tree orig_virtuals;
8982 /* If BINFO is a primary base, the most derived class which has
8983 BINFO as a primary base; otherwise, just BINFO. */
8984 tree non_primary_binfo;
8986 /* We might be a primary base class. Go up the inheritance hierarchy
8987 until we find the most derived class of which we are a primary base:
8988 it is the BINFO_VIRTUALS there that we need to consider. */
8989 non_primary_binfo = binfo;
8990 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
8992 tree b;
8994 /* If we have reached a virtual base, then it must be vid->vbase,
8995 because we ignore other virtual bases in
8996 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
8997 base (possibly multi-level) of vid->binfo, or we wouldn't
8998 have called build_vcall_and_vbase_vtbl_entries for it. But it
8999 might be a lost primary, so just skip down to vid->binfo. */
9000 if (BINFO_VIRTUAL_P (non_primary_binfo))
9002 gcc_assert (non_primary_binfo == vid->vbase);
9003 non_primary_binfo = vid->binfo;
9004 break;
9007 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9008 if (get_primary_binfo (b) != non_primary_binfo)
9009 break;
9010 non_primary_binfo = b;
9013 if (vid->ctor_vtbl_p)
9014 /* For a ctor vtable we need the equivalent binfo within the hierarchy
9015 where rtti_binfo is the most derived type. */
9016 non_primary_binfo
9017 = original_binfo (non_primary_binfo, vid->rtti_binfo);
9019 for (base_virtuals = BINFO_VIRTUALS (binfo),
9020 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
9021 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
9022 base_virtuals;
9023 base_virtuals = TREE_CHAIN (base_virtuals),
9024 derived_virtuals = TREE_CHAIN (derived_virtuals),
9025 orig_virtuals = TREE_CHAIN (orig_virtuals))
9027 tree orig_fn;
9029 /* Find the declaration that originally caused this function to
9030 be present in BINFO_TYPE (binfo). */
9031 orig_fn = BV_FN (orig_virtuals);
9033 /* When processing BINFO, we only want to generate vcall slots for
9034 function slots introduced in BINFO. So don't try to generate
9035 one if the function isn't even defined in BINFO. */
9036 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
9037 continue;
9039 add_vcall_offset (orig_fn, binfo, vid);
9044 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9046 static void
9047 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9049 size_t i;
9050 tree vcall_offset;
9051 tree derived_entry;
9053 /* If there is already an entry for a function with the same
9054 signature as FN, then we do not need a second vcall offset.
9055 Check the list of functions already present in the derived
9056 class vtable. */
9057 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9059 if (same_signature_p (derived_entry, orig_fn)
9060 /* We only use one vcall offset for virtual destructors,
9061 even though there are two virtual table entries. */
9062 || (DECL_DESTRUCTOR_P (derived_entry)
9063 && DECL_DESTRUCTOR_P (orig_fn)))
9064 return;
9067 /* If we are building these vcall offsets as part of building
9068 the vtable for the most derived class, remember the vcall
9069 offset. */
9070 if (vid->binfo == TYPE_BINFO (vid->derived))
9072 tree_pair_s elt = {orig_fn, vid->index};
9073 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9076 /* The next vcall offset will be found at a more negative
9077 offset. */
9078 vid->index = size_binop (MINUS_EXPR, vid->index,
9079 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9081 /* Keep track of this function. */
9082 vec_safe_push (vid->fns, orig_fn);
9084 if (vid->generate_vcall_entries)
9086 tree base;
9087 tree fn;
9089 /* Find the overriding function. */
9090 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9091 if (fn == error_mark_node)
9092 vcall_offset = build_zero_cst (vtable_entry_type);
9093 else
9095 base = TREE_VALUE (fn);
9097 /* The vbase we're working on is a primary base of
9098 vid->binfo. But it might be a lost primary, so its
9099 BINFO_OFFSET might be wrong, so we just use the
9100 BINFO_OFFSET from vid->binfo. */
9101 vcall_offset = size_diffop_loc (input_location,
9102 BINFO_OFFSET (base),
9103 BINFO_OFFSET (vid->binfo));
9104 vcall_offset = fold_build1_loc (input_location,
9105 NOP_EXPR, vtable_entry_type,
9106 vcall_offset);
9108 /* Add the initializer to the vtable. */
9109 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9113 /* Return vtbl initializers for the RTTI entries corresponding to the
9114 BINFO's vtable. The RTTI entries should indicate the object given
9115 by VID->rtti_binfo. */
9117 static void
9118 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9120 tree b;
9121 tree t;
9122 tree offset;
9123 tree decl;
9124 tree init;
9126 t = BINFO_TYPE (vid->rtti_binfo);
9128 /* To find the complete object, we will first convert to our most
9129 primary base, and then add the offset in the vtbl to that value. */
9130 b = binfo;
9131 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
9132 && !BINFO_LOST_PRIMARY_P (b))
9134 tree primary_base;
9136 primary_base = get_primary_binfo (b);
9137 gcc_assert (BINFO_PRIMARY_P (primary_base)
9138 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
9139 b = primary_base;
9141 offset = size_diffop_loc (input_location,
9142 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9144 /* The second entry is the address of the typeinfo object. */
9145 if (flag_rtti)
9146 decl = build_address (get_tinfo_decl (t));
9147 else
9148 decl = integer_zero_node;
9150 /* Convert the declaration to a type that can be stored in the
9151 vtable. */
9152 init = build_nop (vfunc_ptr_type_node, decl);
9153 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9155 /* Add the offset-to-top entry. It comes earlier in the vtable than
9156 the typeinfo entry. Convert the offset to look like a
9157 function pointer, so that we can put it in the vtable. */
9158 init = build_nop (vfunc_ptr_type_node, offset);
9159 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9162 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9163 accessibility. */
9165 bool
9166 uniquely_derived_from_p (tree parent, tree type)
9168 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9169 return base && base != error_mark_node;
9172 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9174 bool
9175 publicly_uniquely_derived_p (tree parent, tree type)
9177 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9178 NULL, tf_none);
9179 return base && base != error_mark_node;
9182 #include "gt-cp-class.h"