gotest: accept symbols with leading dot
[official-gcc.git] / gcc / ada / sem_ch13.adb
blob185cae90f526924a553bb0593eac8f6ade8f80b0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
74 with GNAT.Heap_Sort_G;
76 package body Sem_Ch13 is
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
176 -- "ABC" < "DEF"
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
206 procedure Register_Address_Clause_Check
207 (N : Node_Id;
208 X : Entity_Id;
209 A : Uint;
210 Y : Entity_Id;
211 Off : Boolean);
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
216 (N : Node_Id;
217 Cursor : Entity_Id;
218 Typ : Entity_Id;
219 Nam : Name_Id);
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
223 procedure Set_Biased
224 (E : Entity_Id;
225 N : Node_Id;
226 Msg : String;
227 Biased : Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
231 -- causing biasing.
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry is record
250 Eloc : Source_Ptr;
251 -- Source location used in warnings and error messages
253 Prag : Node_Id;
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
256 Scope : Node_Id;
257 -- The scope which encloses the pragma
258 end record;
260 package Compile_Time_Warnings_Errors is new Table.Table (
261 Table_Component_Type => CTWE_Entry,
262 Table_Index_Type => Int,
263 Table_Low_Bound => 1,
264 Table_Initial => 50,
265 Table_Increment => 200,
266 Table_Name => "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
277 -- the back end.
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry is record
284 Eloc : Source_Ptr; -- node used for posting warnings
285 Source : Entity_Id; -- source type for unchecked conversion
286 Target : Entity_Id; -- target type for unchecked conversion
287 Act_Unit : Entity_Id; -- actual function instantiated
288 end record;
290 package Unchecked_Conversions is new Table.Table (
291 Table_Component_Type => UC_Entry,
292 Table_Index_Type => Int,
293 Table_Low_Bound => 1,
294 Table_Initial => 50,
295 Table_Increment => 200,
296 Table_Name => "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record is record
316 N : Node_Id;
317 -- The address clause
319 X : Entity_Id;
320 -- The entity of the object subject to the address clause
322 A : Uint;
323 -- The value of the address in the first case
325 Y : Entity_Id;
326 -- The entity of the object being overlaid in the second case
328 Off : Boolean;
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed : Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
335 end record;
337 package Address_Clause_Checks is new Table.Table (
338 Table_Component_Type => Address_Clause_Check_Record,
339 Table_Index_Type => Int,
340 Table_Low_Bound => 1,
341 Table_Initial => 20,
342 Table_Increment => 200,
343 Table_Name => "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR : Address_Clause_Check_Record) return Boolean;
347 -- Return whether the alignment check generated for the address clause
348 -- is suppressed.
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR : Address_Clause_Check_Record) return Boolean
357 begin
358 if Checks_May_Be_Suppressed (ACCR.X) then
359 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
360 else
361 return ACCR.Alignment_Checks_Suppressed;
362 end if;
363 end Alignment_Checks_Suppressed;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
373 -- We use this as the maximum machine scalar size
375 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
377 CC : Node_Id;
378 Comp : Node_Id;
379 Num_CC : Natural;
381 begin
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
390 return;
391 end if;
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
403 -- later processing.
405 Num_CC := 0;
406 Comp := First_Component_Or_Discriminant (R);
407 while Present (Comp) loop
408 CC := Component_Clause (Comp);
410 if Present (CC) then
411 declare
412 Fbit : constant Uint := Static_Integer (First_Bit (CC));
413 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
415 begin
416 -- Case of component with last bit >= max machine scalar
418 if Lbit >= Max_Machine_Scalar_Size then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order then
428 Error_Msg_N
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC);
432 if Bytes_Big_Endian then
433 Error_Msg_N
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC);
436 else
437 Error_Msg_N
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC);
440 end if;
441 end if;
443 -- Give error message for RM 13.5.1(10) violation
445 else
446 Error_Msg_FE
447 ("machine scalar rules not followed for&",
448 First_Bit (CC), Comp);
450 Error_Msg_Uint_1 := Lbit + 1;
451 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
452 Error_Msg_F
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit (CC));
456 if (Lbit + 1) mod SSU /= 0 then
457 Error_Msg_Uint_1 := SSU;
458 Error_Msg_F
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit (CC));
462 else
463 Error_Msg_Uint_1 := Fbit;
464 Error_Msg_F
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit (CC));
467 end if;
468 end if;
470 -- OK case of machine scalar related component clause. For now,
471 -- just count them.
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
486 Sort_CC : declare
487 Comps : array (0 .. Num_CC) of Entity_Id;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt (Op1, Op2 : Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move (From : Natural; To : Natural);
495 -- Move routine for Sort
497 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
499 MaxL : Uint;
500 -- Maximum last bit value of any component in this set
502 MSS : Uint;
503 -- Corresponding machine scalar size
505 Start : Natural;
506 Stop : Natural;
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
511 -----------
512 -- CP_Lt --
513 -----------
515 function CP_Lt (Op1, Op2 : Natural) return Boolean is
516 begin
517 return
518 Position (Component_Clause (Comps (Op1))) <
519 Position (Component_Clause (Comps (Op2)));
520 end CP_Lt;
522 -------------
523 -- CP_Move --
524 -------------
526 procedure CP_Move (From : Natural; To : Natural) is
527 begin
528 Comps (To) := Comps (From);
529 end CP_Move;
531 -- Start of processing for Sort_CC
533 begin
534 -- Collect the machine scalar relevant component clauses
536 Num_CC := 0;
537 Comp := First_Component_Or_Discriminant (R);
538 while Present (Comp) loop
539 declare
540 CC : constant Node_Id := Component_Clause (Comp);
542 begin
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
548 -- error.
550 if Present (CC)
551 and then not Error_Posted (Last_Bit (CC))
552 and then Static_Integer (Last_Bit (CC)) <
553 Max_Machine_Scalar_Size
554 then
555 Num_CC := Num_CC + 1;
556 Comps (Num_CC) := Comp;
557 end if;
558 end;
560 Next_Component_Or_Discriminant (Comp);
561 end loop;
563 -- Sort by ascending position number
565 Sorting.Sort (Num_CC);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
572 Stop := 0;
573 while Stop < Num_CC loop
574 Start := Stop + 1;
575 Stop := Start;
576 MaxL :=
577 Static_Integer
578 (Last_Bit (Component_Clause (Comps (Start))));
579 while Stop < Num_CC loop
580 if Static_Integer
581 (Position (Component_Clause (Comps (Stop + 1)))) =
582 Static_Integer
583 (Position (Component_Clause (Comps (Stop))))
584 then
585 Stop := Stop + 1;
586 MaxL :=
587 UI_Max
588 (MaxL,
589 Static_Integer
590 (Last_Bit
591 (Component_Clause (Comps (Stop)))));
592 else
593 exit;
594 end if;
595 end loop;
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
604 -- smaller one.
606 MSS := Max_Machine_Scalar_Size;
607 while MSS mod 2 = 0
608 and then (MSS / 2) >= SSU
609 and then (MSS / 2) > MaxL
610 loop
611 MSS := MSS / 2;
612 end loop;
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
619 -- old new old new
621 -- 0 .. 0 7 .. 7 0 7
622 -- 0 .. 1 6 .. 7 0 6
623 -- 0 .. 2 5 .. 7 0 5
624 -- 0 .. 7 0 .. 7 0 4
626 -- 1 .. 1 6 .. 6 1 6
627 -- 1 .. 4 3 .. 6 1 3
628 -- 4 .. 7 0 .. 3 4 0
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C in Start .. Stop loop
634 declare
635 Comp : constant Entity_Id := Comps (C);
636 CC : constant Node_Id := Component_Clause (Comp);
638 LB : constant Uint := Static_Integer (Last_Bit (CC));
639 NFB : constant Uint := MSS - Uint_1 - LB;
640 NLB : constant Uint := NFB + Esize (Comp) - 1;
641 Pos : constant Uint := Static_Integer (Position (CC));
643 begin
644 if Warn_On_Reverse_Bit_Order then
645 Error_Msg_Uint_1 := MSS;
646 Error_Msg_N
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit (CC));
649 Error_Msg_Uint_1 := NFB;
650 Error_Msg_Uint_2 := NLB;
652 if Bytes_Big_Endian then
653 Error_Msg_NE
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit (CC), Comp);
656 else
657 Error_Msg_NE
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit (CC), Comp);
660 end if;
661 end if;
663 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
664 Set_Normalized_Position (Comp, Pos + NFB / SSU);
665 Set_Normalized_First_Bit (Comp, NFB mod SSU);
666 end;
667 end loop;
668 end loop;
669 end Sort_CC;
670 end Adjust_Record_For_Reverse_Bit_Order;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
677 CC : Node_Id;
678 Comp : Node_Id;
680 begin
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp := First_Component_Or_Discriminant (R);
686 while Present (Comp) loop
687 CC := Component_Clause (Comp);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present (CC) and then Ekind (R) = E_Record_Type then
697 declare
698 CFB : constant Uint := Component_Bit_Offset (Comp);
699 CSZ : constant Uint := Esize (Comp);
700 CLC : constant Node_Id := Component_Clause (Comp);
701 Pos : constant Node_Id := Position (CLC);
702 FB : constant Node_Id := First_Bit (CLC);
704 Storage_Unit_Offset : constant Uint :=
705 CFB / System_Storage_Unit;
707 Start_Bit : constant Uint :=
708 CFB mod System_Storage_Unit;
710 begin
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit + CSZ > System_Storage_Unit then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit mod System_Storage_Unit = 0
718 and then CSZ mod System_Storage_Unit = 0
719 then
720 Error_Msg_N
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC);
724 if Bytes_Big_Endian then
725 Error_Msg_N
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC);
728 else
729 Error_Msg_N
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC);
732 end if;
734 -- Do not allow non-contiguous field
736 else
737 Error_Msg_N
738 ("attempt to specify non-contiguous field not "
739 & "permitted", CLC);
740 Error_Msg_N
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC);
743 end if;
745 -- Case where field fits in one storage unit
747 else
748 -- Give warning if suspicious component clause
750 if Intval (FB) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
752 then
753 Error_Msg_N
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos);
756 Error_Msg_Uint_1 :=
757 Intval (Pos) + Intval (FB) /
758 System_Storage_Unit;
759 Error_Msg_N
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos);
762 end if;
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
769 -- old new old new
771 -- 0 .. 0 7 .. 7 0 7
772 -- 0 .. 1 6 .. 7 0 6
773 -- 0 .. 2 5 .. 7 0 5
774 -- 0 .. 7 0 .. 7 0 4
776 -- 1 .. 1 6 .. 6 1 6
777 -- 1 .. 4 3 .. 6 1 3
778 -- 4 .. 7 0 .. 3 4 0
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset (Comp,
784 (Storage_Unit_Offset * System_Storage_Unit) +
785 (System_Storage_Unit - 1) -
786 (Start_Bit + CSZ - 1));
788 Set_Normalized_Position (Comp,
789 Component_Bit_Offset (Comp) / System_Storage_Unit);
791 Set_Normalized_First_Bit (Comp,
792 Component_Bit_Offset (Comp) mod System_Storage_Unit);
793 end if;
794 end;
795 end if;
797 Next_Component_Or_Discriminant (Comp);
798 end loop;
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
806 begin
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment (Typ)
813 and then not Has_Alignment_Clause (Typ)
814 and then Size mod (Alignment (Typ) * SSU) /= 0
815 then
816 Init_Alignment (Typ);
817 end if;
818 end Alignment_Check_For_Size_Change;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
825 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
836 -- ..
837 -- type B is new A;
838 -- ..
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
862 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
863 Ent : constant Entity_Id := Entity (ASN);
864 Expr : constant Node_Id := Expression (ASN);
865 Id : constant Node_Id := Identifier (ASN);
867 begin
868 Error_Msg_Name_1 := Chars (Id);
870 if not Is_Type (Ent) then
871 Error_Msg_N ("aspect% can only apply to a type", Id);
872 return;
874 elsif not Is_First_Subtype (Ent) then
875 Error_Msg_N ("aspect% cannot apply to subtype", Id);
876 return;
878 elsif A_Id = Aspect_Default_Value
879 and then not Is_Scalar_Type (Ent)
880 then
881 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
882 return;
884 elsif A_Id = Aspect_Default_Component_Value then
885 if not Is_Array_Type (Ent) then
886 Error_Msg_N ("aspect% can only be applied to array type", Id);
887 return;
889 elsif not Is_Scalar_Type (Component_Type (Ent)) then
890 Error_Msg_N ("aspect% requires scalar components", Id);
891 return;
892 end if;
893 end if;
895 Set_Has_Default_Aspect (Base_Type (Ent));
897 if Is_Scalar_Type (Ent) then
898 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
899 else
900 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
901 end if;
902 end Analyze_Aspect_Default_Value;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
909 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
910 P : constant Entity_Id := Entity (ASN);
911 -- Entithy for parent type
913 N : Node_Id;
914 -- Item from Rep_Item chain
916 A : Aspect_Id;
918 begin
919 -- Loop through delayed aspects for the parent type
921 N := ASN;
922 while Present (N) loop
923 if Nkind (N) = N_Aspect_Specification then
924 exit when Entity (N) /= P;
926 if Is_Delayed_Aspect (N) then
927 A := Get_Aspect_Id (Chars (Identifier (N)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
936 case A is
938 -- Alignment
940 when Aspect_Alignment =>
941 if not Has_Alignment_Clause (E) then
942 Set_Alignment (E, Alignment (P));
943 end if;
945 -- Atomic
947 when Aspect_Atomic =>
948 if Is_Atomic (P) then
949 Set_Is_Atomic (E);
950 end if;
952 -- Atomic_Components
954 when Aspect_Atomic_Components =>
955 if Has_Atomic_Components (P) then
956 Set_Has_Atomic_Components (Base_Type (E));
957 end if;
959 -- Bit_Order
961 when Aspect_Bit_Order =>
962 if Is_Record_Type (E)
963 and then No (Get_Attribute_Definition_Clause
964 (E, Attribute_Bit_Order))
965 and then Reverse_Bit_Order (P)
966 then
967 Set_Reverse_Bit_Order (Base_Type (E));
968 end if;
970 -- Component_Size
972 when Aspect_Component_Size =>
973 if Is_Array_Type (E)
974 and then not Has_Component_Size_Clause (E)
975 then
976 Set_Component_Size
977 (Base_Type (E), Component_Size (P));
978 end if;
980 -- Machine_Radix
982 when Aspect_Machine_Radix =>
983 if Is_Decimal_Fixed_Point_Type (E)
984 and then not Has_Machine_Radix_Clause (E)
985 then
986 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
987 end if;
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
992 | Aspect_Size
994 if not Has_Size_Clause (E)
995 and then
996 No (Get_Attribute_Definition_Clause
997 (E, Attribute_Object_Size))
998 then
999 Set_Esize (E, Esize (P));
1000 end if;
1002 -- Pack
1004 when Aspect_Pack =>
1005 if not Is_Packed (E) then
1006 Set_Is_Packed (Base_Type (E));
1008 if Is_Bit_Packed_Array (P) then
1009 Set_Is_Bit_Packed_Array (Base_Type (E));
1010 Set_Packed_Array_Impl_Type
1011 (E, Packed_Array_Impl_Type (P));
1012 end if;
1013 end if;
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order =>
1018 if (Is_Record_Type (E) or else Is_Array_Type (E))
1019 and then No (Get_Attribute_Definition_Clause
1020 (E, Attribute_Scalar_Storage_Order))
1021 and then Reverse_Storage_Order (P)
1022 then
1023 Set_Reverse_Storage_Order (Base_Type (E));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1029 Set_SSO_Set_High_By_Default (Base_Type (E), False);
1030 end if;
1032 -- Small
1034 when Aspect_Small =>
1035 if Is_Fixed_Point_Type (E)
1036 and then not Has_Small_Clause (E)
1037 then
1038 Set_Small_Value (E, Small_Value (P));
1039 end if;
1041 -- Storage_Size
1043 when Aspect_Storage_Size =>
1044 if (Is_Access_Type (E) or else Is_Task_Type (E))
1045 and then not Has_Storage_Size_Clause (E)
1046 then
1047 Set_Storage_Size_Variable
1048 (Base_Type (E), Storage_Size_Variable (P));
1049 end if;
1051 -- Value_Size
1053 when Aspect_Value_Size =>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1059 null;
1061 -- Volatile
1063 when Aspect_Volatile =>
1064 if Is_Volatile (P) then
1065 Set_Is_Volatile (E);
1066 end if;
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access =>
1071 if Is_Volatile_Full_Access (P) then
1072 Set_Is_Volatile_Full_Access (E);
1073 end if;
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components =>
1078 if Has_Volatile_Components (P) then
1079 Set_Has_Volatile_Components (Base_Type (E));
1080 end if;
1082 -- That should be all the Rep Aspects
1084 when others =>
1085 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1086 null;
1087 end case;
1088 end if;
1089 end if;
1091 N := Next_Rep_Item (N);
1092 end loop;
1093 end Inherit_Delayed_Rep_Aspects;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1100 Ident : constant Node_Id := Identifier (ASN);
1101 A_Name : constant Name_Id := Chars (Ident);
1102 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1103 Ent : constant Entity_Id := Entity (ASN);
1104 Expr : constant Node_Id := Expression (ASN);
1105 Loc : constant Source_Ptr := Sloc (ASN);
1107 procedure Check_False_Aspect_For_Derived_Type;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1110 -- the parent.
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type is
1117 Par : Node_Id;
1119 begin
1120 -- We are only checking derived types
1122 if not Is_Derived_Type (E) then
1123 return;
1124 end if;
1126 Par := Nearest_Ancestor (E);
1128 case A_Id is
1129 when Aspect_Atomic
1130 | Aspect_Shared
1132 if not Is_Atomic (Par) then
1133 return;
1134 end if;
1136 when Aspect_Atomic_Components =>
1137 if not Has_Atomic_Components (Par) then
1138 return;
1139 end if;
1141 when Aspect_Discard_Names =>
1142 if not Discard_Names (Par) then
1143 return;
1144 end if;
1146 when Aspect_Pack =>
1147 if not Is_Packed (Par) then
1148 return;
1149 end if;
1151 when Aspect_Unchecked_Union =>
1152 if not Is_Unchecked_Union (Par) then
1153 return;
1154 end if;
1156 when Aspect_Volatile =>
1157 if not Is_Volatile (Par) then
1158 return;
1159 end if;
1161 when Aspect_Volatile_Components =>
1162 if not Has_Volatile_Components (Par) then
1163 return;
1164 end if;
1166 when Aspect_Volatile_Full_Access =>
1167 if not Is_Volatile_Full_Access (Par) then
1168 return;
1169 end if;
1171 when others =>
1172 return;
1173 end case;
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1 := A_Name;
1178 Error_Msg_NE
1179 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1180 end Check_False_Aspect_For_Derived_Type;
1182 -- Local variables
1184 Prag : Node_Id;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1188 begin
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False (Static_Boolean (Expr)) then
1194 Check_False_Aspect_For_Derived_Type;
1196 else
1197 Prag :=
1198 Make_Pragma (Loc,
1199 Pragma_Identifier =>
1200 Make_Identifier (Sloc (Ident), Chars (Ident)),
1201 Pragma_Argument_Associations => New_List (
1202 Make_Pragma_Argument_Association (Sloc (Ident),
1203 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1205 Set_From_Aspect_Specification (Prag, True);
1206 Set_Corresponding_Aspect (Prag, ASN);
1207 Set_Aspect_Rep_Item (ASN, Prag);
1208 Set_Is_Delayed_Aspect (Prag);
1209 Set_Parent (Prag, ASN);
1210 end if;
1211 end Make_Pragma_From_Boolean_Aspect;
1213 -- Local variables
1215 A_Id : Aspect_Id;
1216 ASN : Node_Id;
1217 Ritem : Node_Id;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1221 begin
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1229 if Is_Type (E) and then From_Nested_Package (E) then
1230 declare
1231 Pack : constant Entity_Id := Scope (E);
1233 begin
1234 Push_Scope (Pack);
1235 Install_Visible_Declarations (Pack);
1236 Install_Private_Declarations (Pack);
1237 Analyze_Aspects_At_Freeze_Point (E);
1239 if Is_Private_Type (E)
1240 and then Present (Full_View (E))
1241 then
1242 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1243 end if;
1245 End_Package_Scope (Pack);
1246 return;
1247 end;
1249 -- Aspects from other entities in different contexts are analyzed
1250 -- elsewhere.
1252 else
1253 return;
1254 end if;
1255 end if;
1257 -- Look for aspect specification entries for this entity
1259 ASN := First_Rep_Item (E);
1260 while Present (ASN) loop
1261 if Nkind (ASN) = N_Aspect_Specification then
1262 exit when Entity (ASN) /= E;
1264 if Is_Delayed_Aspect (ASN) then
1265 A_Id := Get_Aspect_Id (ASN);
1267 case A_Id is
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1286 null;
1288 -- Otherwise create a corresponding pragma
1290 else
1291 Make_Pragma_From_Boolean_Aspect (ASN);
1292 end if;
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type (E)
1306 and then not Comes_From_Source (E)
1307 and then E /= First_Subtype (E)
1308 then
1309 null;
1310 else
1311 Analyze_Aspect_Default_Value (ASN);
1312 end if;
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze (Expression (ASN));
1324 if Etype (Expression (ASN)) = Any_Type then
1325 Error_Msg_NE
1326 ("\aspect must be fully defined before & is frozen",
1327 ASN, E);
1328 end if;
1330 when Aspect_Iterable =>
1331 Validate_Iterable_Aspect (E, ASN);
1333 when others =>
1334 null;
1335 end case;
1337 Ritem := Aspect_Rep_Item (ASN);
1339 if Present (Ritem) then
1340 Analyze (Ritem);
1341 end if;
1342 end if;
1343 end if;
1345 Next_Rep_Item (ASN);
1346 end loop;
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects (E) then
1354 Inherit_Delayed_Rep_Aspects (ASN);
1355 end if;
1356 end Analyze_Aspects_At_Freeze_Point;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1363 pragma Assert (Present (E));
1365 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1369 (Prag : Node_Id;
1370 Is_Instance : Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1372 -- Abstract_State
1373 -- Attach_Handler
1374 -- Contract_Cases
1375 -- Depends
1376 -- Ghost
1377 -- Global
1378 -- Initial_Condition
1379 -- Initializes
1380 -- Post
1381 -- Pre
1382 -- Refined_Depends
1383 -- Refined_Global
1384 -- Refined_State
1385 -- SPARK_Mode
1386 -- Warnings
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1391 --------------
1392 -- Decorate --
1393 --------------
1395 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1396 begin
1397 Set_Aspect_Rep_Item (Asp, Prag);
1398 Set_Corresponding_Aspect (Prag, Asp);
1399 Set_From_Aspect_Specification (Prag);
1400 Set_Parent (Prag, Asp);
1401 end Decorate;
1403 -------------------
1404 -- Insert_Pragma --
1405 -------------------
1407 procedure Insert_Pragma
1408 (Prag : Node_Id;
1409 Is_Instance : Boolean := False)
1411 Aux : Node_Id;
1412 Decl : Node_Id;
1413 Decls : List_Id;
1414 Def : Node_Id;
1415 Inserted : Boolean := False;
1417 begin
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1421 -- pragma.
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1426 -- pragma Prag;
1428 if Nkind_In (N, N_Entry_Body,
1429 N_Package_Body,
1430 N_Protected_Body,
1431 N_Subprogram_Body,
1432 N_Task_Body)
1433 then
1434 Decls := Declarations (N);
1436 if No (Decls) then
1437 Decls := New_List;
1438 Set_Declarations (N, Decls);
1439 end if;
1441 Prepend_To (Decls, Prag);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1449 -- package Pack is
1450 -- pragma Prag;
1452 elsif Nkind_In (N, N_Generic_Package_Declaration,
1453 N_Package_Declaration)
1454 then
1455 Decls := Visible_Declarations (Specification (N));
1457 if No (Decls) then
1458 Decls := New_List;
1459 Set_Visible_Declarations (Specification (N), Decls);
1460 end if;
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1471 -- all formals.
1473 if Is_Instance then
1474 Decl := First (Decls);
1475 while Present (Decl) loop
1476 if Comes_From_Source (Decl) then
1477 Insert_Before (Decl, Prag);
1478 Inserted := True;
1479 exit;
1480 else
1481 Next (Decl);
1482 end if;
1483 end loop;
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted then
1488 Append_To (Decls, Prag);
1489 end if;
1491 -- Otherwise this is not a generic instance
1493 else
1494 Prepend_To (Decls, Prag);
1495 end if;
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1504 -- pragma Prag;
1506 elsif Nkind (N) = N_Protected_Type_Declaration then
1507 Def := Protected_Definition (N);
1509 if No (Def) then
1510 Def :=
1511 Make_Protected_Definition (Sloc (N),
1512 Visible_Declarations => New_List,
1513 End_Label => Empty);
1515 Set_Protected_Definition (N, Def);
1516 end if;
1518 Decls := Visible_Declarations (Def);
1520 if No (Decls) then
1521 Decls := New_List;
1522 Set_Visible_Declarations (Def, Decls);
1523 end if;
1525 Prepend_To (Decls, Prag);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1534 -- pragma Prag;
1536 elsif Nkind (N) = N_Task_Type_Declaration then
1537 Def := Task_Definition (N);
1539 if No (Def) then
1540 Def :=
1541 Make_Task_Definition (Sloc (N),
1542 Visible_Declarations => New_List,
1543 End_Label => Empty);
1545 Set_Task_Definition (N, Def);
1546 end if;
1548 Decls := Visible_Declarations (Def);
1550 if No (Decls) then
1551 Decls := New_List;
1552 Set_Visible_Declarations (Def, Decls);
1553 end if;
1555 Prepend_To (Decls, Prag);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1561 Aux := Aux_Decls_Node (Parent (N));
1563 if No (Pragmas_After (Aux)) then
1564 Set_Pragmas_After (Aux, New_List);
1565 end if;
1567 Prepend (Prag, Pragmas_After (Aux));
1569 -- Default, the pragma is inserted after the context
1571 else
1572 Insert_After (N, Prag);
1573 end if;
1574 end Insert_Pragma;
1576 -- Local variables
1578 Aspect : Node_Id;
1579 Aitem : Node_Id;
1580 Ent : Node_Id;
1582 L : constant List_Id := Aspect_Specifications (N);
1583 pragma Assert (Present (L));
1585 Ins_Node : Node_Id := N;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1591 begin
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect := First (L);
1614 Aspect_Loop : while Present (Aspect) loop
1615 Analyze_One_Aspect : declare
1616 Expr : constant Node_Id := Expression (Aspect);
1617 Id : constant Node_Id := Identifier (Aspect);
1618 Loc : constant Source_Ptr := Sloc (Aspect);
1619 Nam : constant Name_Id := Chars (Id);
1620 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1621 Anod : Node_Id;
1623 Delay_Required : Boolean;
1624 -- Set False if delay is not required
1626 Eloc : Source_Ptr := No_Location;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations : List_Id;
1647 Pragma_Name : Name_Id);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention is
1662 Conv : Node_Id;
1663 Dummy_1 : Node_Id;
1664 Dummy_2 : Node_Id;
1665 Dummy_3 : Node_Id;
1666 Expo : Node_Id;
1667 Imp : Node_Id;
1669 begin
1670 -- Obtain all interfacing aspects that apply to the related
1671 -- entity.
1673 Get_Interfacing_Aspects
1674 (Iface_Asp => Aspect,
1675 Conv_Asp => Dummy_1,
1676 EN_Asp => Dummy_2,
1677 Expo_Asp => Expo,
1678 Imp_Asp => Imp,
1679 LN_Asp => Dummy_3,
1680 Do_Checks => True);
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present (Expo) or else Present (Imp) then
1687 return;
1689 -- Otherwise Convention appears by itself
1691 else
1692 -- The aspect specifies a particular convention
1694 if Present (Expr) then
1695 Conv := New_Copy_Tree (Expr);
1697 -- Otherwise assume convention Ada
1699 else
1700 Conv := Make_Identifier (Loc, Name_Ada);
1701 end if;
1703 -- Generate:
1704 -- pragma Convention (<Conv>, <E>);
1706 Make_Aitem_Pragma
1707 (Pragma_Name => Name_Convention,
1708 Pragma_Argument_Associations => New_List (
1709 Make_Pragma_Argument_Association (Loc,
1710 Expression => Conv),
1711 Make_Pragma_Argument_Association (Loc,
1712 Expression => New_Occurrence_Of (E, Loc))));
1714 Decorate (Aspect, Aitem);
1715 Insert_Pragma (Aitem);
1716 end if;
1717 end Analyze_Aspect_Convention;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled is
1724 begin
1725 -- The aspect applies only to controlled records
1727 if not (Ekind (E) = E_Record_Type
1728 and then Is_Controlled_Active (E))
1729 then
1730 Error_Msg_N
1731 ("aspect % requires controlled record type", Aspect);
1732 return;
1733 end if;
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic then
1739 if Present (Expr) then
1740 Preanalyze_And_Resolve (Expr, Any_Boolean);
1741 end if;
1743 -- Otherwise the aspect resides in a nongeneric context
1745 else
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present (Expr) then
1750 Analyze_And_Resolve (Expr, Any_Boolean);
1752 if Is_OK_Static_Expression (Expr) then
1753 if Is_True (Static_Boolean (Expr)) then
1754 Set_Disable_Controlled (E);
1755 end if;
1757 -- Otherwise the expression is not static
1759 else
1760 Error_Msg_N
1761 ("expression of aspect % must be static", Aspect);
1762 end if;
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1767 else
1768 Set_Disable_Controlled (E);
1769 end if;
1770 end if;
1771 end Analyze_Aspect_Disable_Controlled;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import is
1778 Dummy_1 : Node_Id;
1779 Dummy_2 : Node_Id;
1780 Dummy_3 : Node_Id;
1781 Expo : Node_Id;
1782 Imp : Node_Id;
1784 begin
1785 -- Obtain all interfacing aspects that apply to the related
1786 -- entity.
1788 Get_Interfacing_Aspects
1789 (Iface_Asp => Aspect,
1790 Conv_Asp => Dummy_1,
1791 EN_Asp => Dummy_2,
1792 Expo_Asp => Expo,
1793 Imp_Asp => Imp,
1794 LN_Asp => Dummy_3,
1795 Do_Checks => True);
1797 -- The related entity cannot be subject to both aspects Export
1798 -- and Import.
1800 if Present (Expo) and then Present (Imp) then
1801 Error_Msg_N
1802 ("incompatible interfacing aspects given for &", E);
1803 Error_Msg_Sloc := Sloc (Expo);
1804 Error_Msg_N ("\aspect `Export` #", E);
1805 Error_Msg_Sloc := Sloc (Imp);
1806 Error_Msg_N ("\aspect `Import` #", E);
1807 end if;
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind (E) = E_Variable then
1813 Set_Never_Set_In_Source (E, False);
1814 end if;
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present (Expr)
1824 or else Is_True (Static_Boolean (Expr))
1825 then
1826 if A_Id = Aspect_Import then
1827 Set_Has_Completion (E);
1828 Set_Is_Imported (E);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind (N) = N_Object_Declaration
1833 and then Present (Expression (N))
1834 then
1835 Error_Msg_N
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression (N));
1838 end if;
1840 else
1841 pragma Assert (A_Id = Aspect_Export);
1842 Set_Is_Exported (E);
1843 end if;
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem := Build_Export_Import_Pragma (Aspect, E);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1853 else
1854 Aitem := Empty;
1855 end if;
1856 end Analyze_Aspect_Export_Import;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name is
1863 Dummy_1 : Node_Id;
1864 Dummy_2 : Node_Id;
1865 Dummy_3 : Node_Id;
1866 Expo : Node_Id;
1867 Imp : Node_Id;
1869 begin
1870 -- Obtain all interfacing aspects that apply to the related
1871 -- entity.
1873 Get_Interfacing_Aspects
1874 (Iface_Asp => Aspect,
1875 Conv_Asp => Dummy_1,
1876 EN_Asp => Dummy_2,
1877 Expo_Asp => Expo,
1878 Imp_Asp => Imp,
1879 LN_Asp => Dummy_3,
1880 Do_Checks => True);
1882 -- Ensure that aspect External_Name applies to aspect Export or
1883 -- Import.
1885 if A_Id = Aspect_External_Name then
1886 if No (Expo) and then No (Imp) then
1887 Error_Msg_N
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect);
1890 end if;
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1895 else
1896 pragma Assert (A_Id = Aspect_Link_Name);
1897 if No (Expo) and then No (Imp) then
1898 Error_Msg_N
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect);
1901 end if;
1902 end if;
1903 end Analyze_Aspect_External_Link_Name;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference is
1910 begin
1911 if not Is_Type (E) or else not Has_Discriminants (E) then
1912 Error_Msg_N
1913 ("aspect must apply to a type with discriminants", Expr);
1915 elsif not Is_Entity_Name (Expr) then
1916 Error_Msg_N
1917 ("aspect must name a discriminant of current type", Expr);
1919 else
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1925 declare
1926 Disc : Entity_Id := First_Discriminant (E);
1927 begin
1928 while Present (Disc) loop
1929 if Chars (Expr) = Chars (Disc)
1930 and then Ekind_In
1931 (Etype (Disc),
1932 E_Anonymous_Access_Subprogram_Type,
1933 E_Anonymous_Access_Type)
1934 then
1935 Set_Has_Implicit_Dereference (E);
1936 Set_Has_Implicit_Dereference (Disc);
1937 exit;
1938 end if;
1940 Next_Discriminant (Disc);
1941 end loop;
1943 -- Error if no proper access discriminant
1945 if Present (Disc) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1948 -- proper.
1950 if Is_Derived_Type (E)
1951 and then Has_Discriminants (Etype (E))
1952 then
1953 declare
1954 Parent_Disc : constant Entity_Id :=
1955 Get_Reference_Discriminant (Etype (E));
1956 begin
1957 if Present (Parent_Disc)
1958 and then Corresponding_Discriminant (Disc) /=
1959 Parent_Disc
1960 then
1961 Error_Msg_N
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr);
1964 end if;
1965 end;
1966 end if;
1968 else
1969 Error_Msg_NE
1970 ("not an access discriminant of&", Expr, E);
1971 end if;
1972 end;
1973 end if;
1975 end Analyze_Aspect_Implicit_Dereference;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations : List_Id;
1983 Pragma_Name : Name_Id)
1985 Args : List_Id := Pragma_Argument_Associations;
1987 begin
1988 -- We should never get here if aspect was disabled
1990 pragma Assert (not Is_Disabled (Aspect));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No (Args) or else No (Expression (First (Args))) then
1996 Args := No_List;
1997 end if;
1999 -- Build the pragma
2001 Aitem :=
2002 Make_Pragma (Loc,
2003 Pragma_Argument_Associations => Args,
2004 Pragma_Identifier =>
2005 Make_Identifier (Sloc (Id), Pragma_Name),
2006 Class_Present => Class_Present (Aspect),
2007 Split_PPC => Split_PPC (Aspect));
2009 -- Set additional semantic fields
2011 if Is_Ignored (Aspect) then
2012 Set_Is_Ignored (Aitem);
2013 elsif Is_Checked (Aspect) then
2014 Set_Is_Checked (Aitem);
2015 end if;
2017 Set_Corresponding_Aspect (Aitem, Aspect);
2018 Set_From_Aspect_Specification (Aitem);
2019 end Make_Aitem_Pragma;
2021 -- Start of processing for Analyze_One_Aspect
2023 begin
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed (Aspect) then
2027 goto Continue;
2028 end if;
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy (Aspect);
2036 if Is_Disabled (Aspect) then
2037 goto Continue;
2038 end if;
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present (Expr) then
2049 Eloc := Sloc (First_Node (Expr));
2050 end if;
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect (A_Id) then
2055 Check_Restriction
2056 (No_Implementation_Aspect_Specifications, Aspect);
2057 end if;
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed (Aspect);
2066 Set_Entity (Aspect, E);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent := New_Occurrence_Of (E, Sloc (Id));
2072 if A_Id = Aspect_Attach_Handler
2073 or else A_Id = Aspect_Interrupt_Handler
2074 then
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference (E, Id);
2081 end if;
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed (A_Id) then
2088 Anod := First (L);
2089 while Anod /= Aspect loop
2090 if Comes_From_Source (Aspect)
2091 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2092 then
2093 Error_Msg_Name_1 := Nam;
2094 Error_Msg_Sloc := Sloc (Anod);
2096 -- Case of same aspect specified twice
2098 if Class_Present (Anod) = Class_Present (Aspect) then
2099 if not Class_Present (Anod) then
2100 Error_Msg_NE
2101 ("aspect% for & previously given#",
2102 Id, E);
2103 else
2104 Error_Msg_NE
2105 ("aspect `%''Class` for & previously given#",
2106 Id, E);
2107 end if;
2108 end if;
2109 end if;
2111 Next (Anod);
2112 end loop;
2113 end if;
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect (A_Id) then
2118 Error_Msg_Name_1 := Nam;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2122 -- as a body.
2124 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2125 Error_Msg_N
2126 ("aspect % not allowed for renaming declaration",
2127 Aspect);
2128 end if;
2130 -- Not allowed for formal type declarations
2132 if Nkind (N) = N_Formal_Type_Declaration then
2133 Error_Msg_N
2134 ("aspect % not allowed for formal type declaration",
2135 Aspect);
2136 end if;
2137 end if;
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity (Id, New_Copy_Tree (Expr));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay (A_Id) is
2147 when Always_Delay =>
2148 Delay_Required := True;
2150 when Never_Delay =>
2151 Delay_Required := False;
2153 when Rep_Aspect =>
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id in Boolean_Aspects and then No (Expr) then
2162 Delay_Required := False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id not in Boolean_Aspects
2169 and then A_Id /= Aspect_Alignment
2170 and then Present (Expr)
2171 and then Nkind (Expr) = N_Integer_Literal
2172 then
2173 Delay_Required := False;
2175 -- All other cases are delayed
2177 else
2178 Delay_Required := True;
2179 Set_Has_Delayed_Rep_Aspects (E);
2180 end if;
2181 end case;
2183 -- Processing based on specific aspect
2185 case A_Id is
2186 when Aspect_Unimplemented =>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2191 when No_Aspect =>
2192 raise Program_Error;
2194 -- Case 1: Aspects corresponding to attribute definition
2195 -- clauses.
2197 when Aspect_Address
2198 | Aspect_Alignment
2199 | Aspect_Bit_Order
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2205 | Aspect_Input
2206 | Aspect_Iterable
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2210 | Aspect_Output
2211 | Aspect_Read
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Simple_Storage_Pool
2214 | Aspect_Size
2215 | Aspect_Small
2216 | Aspect_Storage_Pool
2217 | Aspect_Stream_Size
2218 | Aspect_Value_Size
2219 | Aspect_Variable_Indexing
2220 | Aspect_Write
2222 -- Indexing aspects apply only to tagged type
2224 if (A_Id = Aspect_Constant_Indexing
2225 or else
2226 A_Id = Aspect_Variable_Indexing)
2227 and then not (Is_Type (E)
2228 and then Is_Tagged_Type (E))
2229 then
2230 Error_Msg_N
2231 ("indexing aspect can only apply to a tagged type",
2232 Aspect);
2233 goto Continue;
2234 end if;
2236 -- For the case of aspect Address, we don't consider that we
2237 -- know the entity is never set in the source, since it is
2238 -- is likely aliasing is occurring.
2240 -- Note: one might think that the analysis of the resulting
2241 -- attribute definition clause would take care of that, but
2242 -- that's not the case since it won't be from source.
2244 if A_Id = Aspect_Address then
2245 Set_Never_Set_In_Source (E, False);
2246 end if;
2248 -- Correctness of the profile of a stream operation is
2249 -- verified at the freeze point, but we must detect the
2250 -- illegal specification of this aspect for a subtype now,
2251 -- to prevent malformed rep_item chains.
2253 if A_Id = Aspect_Input or else
2254 A_Id = Aspect_Output or else
2255 A_Id = Aspect_Read or else
2256 A_Id = Aspect_Write
2257 then
2258 if not Is_First_Subtype (E) then
2259 Error_Msg_N
2260 ("local name must be a first subtype", Aspect);
2261 goto Continue;
2263 -- If stream aspect applies to the class-wide type,
2264 -- the generated attribute definition applies to the
2265 -- class-wide type as well.
2267 elsif Class_Present (Aspect) then
2268 Ent :=
2269 Make_Attribute_Reference (Loc,
2270 Prefix => Ent,
2271 Attribute_Name => Name_Class);
2272 end if;
2273 end if;
2275 -- Construct the attribute_definition_clause. The expression
2276 -- in the aspect specification is simply shared with the
2277 -- constructed attribute, because it will be fully analyzed
2278 -- when the attribute is processed. However, in ASIS mode
2279 -- the aspect expression itself is preanalyzed and resolved
2280 -- to catch visibility errors that are otherwise caught
2281 -- later, and we create a separate copy of the expression
2282 -- to prevent analysis of a malformed tree (e.g. a function
2283 -- call with parameter associations).
2285 if ASIS_Mode then
2286 Aitem :=
2287 Make_Attribute_Definition_Clause (Loc,
2288 Name => Ent,
2289 Chars => Chars (Id),
2290 Expression => New_Copy_Tree (Expr));
2291 else
2292 Aitem :=
2293 Make_Attribute_Definition_Clause (Loc,
2294 Name => Ent,
2295 Chars => Chars (Id),
2296 Expression => Relocate_Node (Expr));
2297 end if;
2299 -- If the address is specified, then we treat the entity as
2300 -- referenced, to avoid spurious warnings. This is analogous
2301 -- to what is done with an attribute definition clause, but
2302 -- here we don't want to generate a reference because this
2303 -- is the point of definition of the entity.
2305 if A_Id = Aspect_Address then
2306 Set_Referenced (E);
2307 end if;
2309 -- Case 2: Aspects corresponding to pragmas
2311 -- Case 2a: Aspects corresponding to pragmas with two
2312 -- arguments, where the first argument is a local name
2313 -- referring to the entity, and the second argument is the
2314 -- aspect definition expression.
2316 -- Linker_Section/Suppress/Unsuppress
2318 when Aspect_Linker_Section
2319 | Aspect_Suppress
2320 | Aspect_Unsuppress
2322 Make_Aitem_Pragma
2323 (Pragma_Argument_Associations => New_List (
2324 Make_Pragma_Argument_Association (Loc,
2325 Expression => New_Occurrence_Of (E, Loc)),
2326 Make_Pragma_Argument_Association (Sloc (Expr),
2327 Expression => Relocate_Node (Expr))),
2328 Pragma_Name => Chars (Id));
2330 -- Linker_Section does not need delaying, as its argument
2331 -- must be a static string. Furthermore, if applied to
2332 -- an object with an explicit initialization, the object
2333 -- must be frozen in order to elaborate the initialization
2334 -- code. (This is already done for types with implicit
2335 -- initialization, such as protected types.)
2337 if A_Id = Aspect_Linker_Section
2338 and then Nkind (N) = N_Object_Declaration
2339 and then Has_Init_Expression (N)
2340 then
2341 Delay_Required := False;
2342 end if;
2344 -- Synchronization
2346 -- Corresponds to pragma Implemented, construct the pragma
2348 when Aspect_Synchronization =>
2349 Make_Aitem_Pragma
2350 (Pragma_Argument_Associations => New_List (
2351 Make_Pragma_Argument_Association (Loc,
2352 Expression => New_Occurrence_Of (E, Loc)),
2353 Make_Pragma_Argument_Association (Sloc (Expr),
2354 Expression => Relocate_Node (Expr))),
2355 Pragma_Name => Name_Implemented);
2357 -- Attach_Handler
2359 when Aspect_Attach_Handler =>
2360 Make_Aitem_Pragma
2361 (Pragma_Argument_Associations => New_List (
2362 Make_Pragma_Argument_Association (Sloc (Ent),
2363 Expression => Ent),
2364 Make_Pragma_Argument_Association (Sloc (Expr),
2365 Expression => Relocate_Node (Expr))),
2366 Pragma_Name => Name_Attach_Handler);
2368 -- We need to insert this pragma into the tree to get proper
2369 -- processing and to look valid from a placement viewpoint.
2371 Insert_Pragma (Aitem);
2372 goto Continue;
2374 -- Dynamic_Predicate, Predicate, Static_Predicate
2376 when Aspect_Dynamic_Predicate
2377 | Aspect_Predicate
2378 | Aspect_Static_Predicate
2380 -- These aspects apply only to subtypes
2382 if not Is_Type (E) then
2383 Error_Msg_N
2384 ("predicate can only be specified for a subtype",
2385 Aspect);
2386 goto Continue;
2388 elsif Is_Incomplete_Type (E) then
2389 Error_Msg_N
2390 ("predicate cannot apply to incomplete view", Aspect);
2392 elsif Is_Generic_Type (E) then
2393 Error_Msg_N
2394 ("predicate cannot apply to formal type", Aspect);
2395 goto Continue;
2396 end if;
2398 -- Construct the pragma (always a pragma Predicate, with
2399 -- flags recording whether it is static/dynamic). We also
2400 -- set flags recording this in the type itself.
2402 Make_Aitem_Pragma
2403 (Pragma_Argument_Associations => New_List (
2404 Make_Pragma_Argument_Association (Sloc (Ent),
2405 Expression => Ent),
2406 Make_Pragma_Argument_Association (Sloc (Expr),
2407 Expression => Relocate_Node (Expr))),
2408 Pragma_Name => Name_Predicate);
2410 -- Mark type has predicates, and remember what kind of
2411 -- aspect lead to this predicate (we need this to access
2412 -- the right set of check policies later on).
2414 Set_Has_Predicates (E);
2416 if A_Id = Aspect_Dynamic_Predicate then
2417 Set_Has_Dynamic_Predicate_Aspect (E);
2419 -- If the entity has a dynamic predicate, any inherited
2420 -- static predicate becomes dynamic as well, and the
2421 -- predicate function includes the conjunction of both.
2423 Set_Has_Static_Predicate_Aspect (E, False);
2425 elsif A_Id = Aspect_Static_Predicate then
2426 Set_Has_Static_Predicate_Aspect (E);
2427 end if;
2429 -- If the type is private, indicate that its completion
2430 -- has a freeze node, because that is the one that will
2431 -- be visible at freeze time.
2433 if Is_Private_Type (E) and then Present (Full_View (E)) then
2434 Set_Has_Predicates (Full_View (E));
2436 if A_Id = Aspect_Dynamic_Predicate then
2437 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2438 elsif A_Id = Aspect_Static_Predicate then
2439 Set_Has_Static_Predicate_Aspect (Full_View (E));
2440 end if;
2442 Set_Has_Delayed_Aspects (Full_View (E));
2443 Ensure_Freeze_Node (Full_View (E));
2444 end if;
2446 -- Predicate_Failure
2448 when Aspect_Predicate_Failure =>
2450 -- This aspect applies only to subtypes
2452 if not Is_Type (E) then
2453 Error_Msg_N
2454 ("predicate can only be specified for a subtype",
2455 Aspect);
2456 goto Continue;
2458 elsif Is_Incomplete_Type (E) then
2459 Error_Msg_N
2460 ("predicate cannot apply to incomplete view", Aspect);
2461 goto Continue;
2462 end if;
2464 -- Construct the pragma
2466 Make_Aitem_Pragma
2467 (Pragma_Argument_Associations => New_List (
2468 Make_Pragma_Argument_Association (Sloc (Ent),
2469 Expression => Ent),
2470 Make_Pragma_Argument_Association (Sloc (Expr),
2471 Expression => Relocate_Node (Expr))),
2472 Pragma_Name => Name_Predicate_Failure);
2474 Set_Has_Predicates (E);
2476 -- If the type is private, indicate that its completion
2477 -- has a freeze node, because that is the one that will
2478 -- be visible at freeze time.
2480 if Is_Private_Type (E) and then Present (Full_View (E)) then
2481 Set_Has_Predicates (Full_View (E));
2482 Set_Has_Delayed_Aspects (Full_View (E));
2483 Ensure_Freeze_Node (Full_View (E));
2484 end if;
2486 -- Case 2b: Aspects corresponding to pragmas with two
2487 -- arguments, where the second argument is a local name
2488 -- referring to the entity, and the first argument is the
2489 -- aspect definition expression.
2491 -- Convention
2493 when Aspect_Convention =>
2494 Analyze_Aspect_Convention;
2495 goto Continue;
2497 -- External_Name, Link_Name
2499 when Aspect_External_Name
2500 | Aspect_Link_Name
2502 Analyze_Aspect_External_Link_Name;
2503 goto Continue;
2505 -- CPU, Interrupt_Priority, Priority
2507 -- These three aspects can be specified for a subprogram spec
2508 -- or body, in which case we analyze the expression and export
2509 -- the value of the aspect.
2511 -- Previously, we generated an equivalent pragma for bodies
2512 -- (note that the specs cannot contain these pragmas). The
2513 -- pragma was inserted ahead of local declarations, rather than
2514 -- after the body. This leads to a certain duplication between
2515 -- the processing performed for the aspect and the pragma, but
2516 -- given the straightforward handling required it is simpler
2517 -- to duplicate than to translate the aspect in the spec into
2518 -- a pragma in the declarative part of the body.
2520 when Aspect_CPU
2521 | Aspect_Interrupt_Priority
2522 | Aspect_Priority
2524 if Nkind_In (N, N_Subprogram_Body,
2525 N_Subprogram_Declaration)
2526 then
2527 -- Analyze the aspect expression
2529 Analyze_And_Resolve (Expr, Standard_Integer);
2531 -- Interrupt_Priority aspect not allowed for main
2532 -- subprograms. RM D.1 does not forbid this explicitly,
2533 -- but RM J.15.11(6/3) does not permit pragma
2534 -- Interrupt_Priority for subprograms.
2536 if A_Id = Aspect_Interrupt_Priority then
2537 Error_Msg_N
2538 ("Interrupt_Priority aspect cannot apply to "
2539 & "subprogram", Expr);
2541 -- The expression must be static
2543 elsif not Is_OK_Static_Expression (Expr) then
2544 Flag_Non_Static_Expr
2545 ("aspect requires static expression!", Expr);
2547 -- Check whether this is the main subprogram. Issue a
2548 -- warning only if it is obviously not a main program
2549 -- (when it has parameters or when the subprogram is
2550 -- within a package).
2552 elsif Present (Parameter_Specifications
2553 (Specification (N)))
2554 or else not Is_Compilation_Unit (Defining_Entity (N))
2555 then
2556 -- See RM D.1(14/3) and D.16(12/3)
2558 Error_Msg_N
2559 ("aspect applied to subprogram other than the "
2560 & "main subprogram has no effect??", Expr);
2562 -- Otherwise check in range and export the value
2564 -- For the CPU aspect
2566 elsif A_Id = Aspect_CPU then
2567 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2569 -- Value is correct so we export the value to make
2570 -- it available at execution time.
2572 Set_Main_CPU
2573 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2575 else
2576 Error_Msg_N
2577 ("main subprogram CPU is out of range", Expr);
2578 end if;
2580 -- For the Priority aspect
2582 elsif A_Id = Aspect_Priority then
2583 if Is_In_Range (Expr, RTE (RE_Priority)) then
2585 -- Value is correct so we export the value to make
2586 -- it available at execution time.
2588 Set_Main_Priority
2589 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2591 -- Ignore pragma if Relaxed_RM_Semantics to support
2592 -- other targets/non GNAT compilers.
2594 elsif not Relaxed_RM_Semantics then
2595 Error_Msg_N
2596 ("main subprogram priority is out of range",
2597 Expr);
2598 end if;
2599 end if;
2601 -- Load an arbitrary entity from System.Tasking.Stages
2602 -- or System.Tasking.Restricted.Stages (depending on
2603 -- the supported profile) to make sure that one of these
2604 -- packages is implicitly with'ed, since we need to have
2605 -- the tasking run time active for the pragma Priority to
2606 -- have any effect. Previously we with'ed the package
2607 -- System.Tasking, but this package does not trigger the
2608 -- required initialization of the run-time library.
2610 declare
2611 Discard : Entity_Id;
2612 begin
2613 if Restricted_Profile then
2614 Discard := RTE (RE_Activate_Restricted_Tasks);
2615 else
2616 Discard := RTE (RE_Activate_Tasks);
2617 end if;
2618 end;
2620 -- Handling for these aspects in subprograms is complete
2622 goto Continue;
2624 -- For task and protected types pass the aspect as an
2625 -- attribute.
2627 else
2628 Aitem :=
2629 Make_Attribute_Definition_Clause (Loc,
2630 Name => Ent,
2631 Chars => Chars (Id),
2632 Expression => Relocate_Node (Expr));
2633 end if;
2635 -- Warnings
2637 when Aspect_Warnings =>
2638 Make_Aitem_Pragma
2639 (Pragma_Argument_Associations => New_List (
2640 Make_Pragma_Argument_Association (Sloc (Expr),
2641 Expression => Relocate_Node (Expr)),
2642 Make_Pragma_Argument_Association (Loc,
2643 Expression => New_Occurrence_Of (E, Loc))),
2644 Pragma_Name => Chars (Id));
2646 Decorate (Aspect, Aitem);
2647 Insert_Pragma (Aitem);
2648 goto Continue;
2650 -- Case 2c: Aspects corresponding to pragmas with three
2651 -- arguments.
2653 -- Invariant aspects have a first argument that references the
2654 -- entity, a second argument that is the expression and a third
2655 -- argument that is an appropriate message.
2657 -- Invariant, Type_Invariant
2659 when Aspect_Invariant
2660 | Aspect_Type_Invariant
2662 -- Analysis of the pragma will verify placement legality:
2663 -- an invariant must apply to a private type, or appear in
2664 -- the private part of a spec and apply to a completion.
2666 Make_Aitem_Pragma
2667 (Pragma_Argument_Associations => New_List (
2668 Make_Pragma_Argument_Association (Sloc (Ent),
2669 Expression => Ent),
2670 Make_Pragma_Argument_Association (Sloc (Expr),
2671 Expression => Relocate_Node (Expr))),
2672 Pragma_Name => Name_Invariant);
2674 -- Add message unless exception messages are suppressed
2676 if not Opt.Exception_Locations_Suppressed then
2677 Append_To (Pragma_Argument_Associations (Aitem),
2678 Make_Pragma_Argument_Association (Eloc,
2679 Chars => Name_Message,
2680 Expression =>
2681 Make_String_Literal (Eloc,
2682 Strval => "failed invariant from "
2683 & Build_Location_String (Eloc))));
2684 end if;
2686 -- For Invariant case, insert immediately after the entity
2687 -- declaration. We do not have to worry about delay issues
2688 -- since the pragma processing takes care of this.
2690 Delay_Required := False;
2692 -- Case 2d : Aspects that correspond to a pragma with one
2693 -- argument.
2695 -- Abstract_State
2697 -- Aspect Abstract_State introduces implicit declarations for
2698 -- all state abstraction entities it defines. To emulate this
2699 -- behavior, insert the pragma at the beginning of the visible
2700 -- declarations of the related package so that it is analyzed
2701 -- immediately.
2703 when Aspect_Abstract_State => Abstract_State : declare
2704 Context : Node_Id := N;
2706 begin
2707 -- When aspect Abstract_State appears on a generic package,
2708 -- it is propageted to the package instance. The context in
2709 -- this case is the instance spec.
2711 if Nkind (Context) = N_Package_Instantiation then
2712 Context := Instance_Spec (Context);
2713 end if;
2715 if Nkind_In (Context, N_Generic_Package_Declaration,
2716 N_Package_Declaration)
2717 then
2718 Make_Aitem_Pragma
2719 (Pragma_Argument_Associations => New_List (
2720 Make_Pragma_Argument_Association (Loc,
2721 Expression => Relocate_Node (Expr))),
2722 Pragma_Name => Name_Abstract_State);
2724 Decorate (Aspect, Aitem);
2725 Insert_Pragma
2726 (Prag => Aitem,
2727 Is_Instance =>
2728 Is_Generic_Instance (Defining_Entity (Context)));
2730 else
2731 Error_Msg_NE
2732 ("aspect & must apply to a package declaration",
2733 Aspect, Id);
2734 end if;
2736 goto Continue;
2737 end Abstract_State;
2739 -- Aspect Async_Readers is never delayed because it is
2740 -- equivalent to a source pragma which appears after the
2741 -- related object declaration.
2743 when Aspect_Async_Readers =>
2744 Make_Aitem_Pragma
2745 (Pragma_Argument_Associations => New_List (
2746 Make_Pragma_Argument_Association (Loc,
2747 Expression => Relocate_Node (Expr))),
2748 Pragma_Name => Name_Async_Readers);
2750 Decorate (Aspect, Aitem);
2751 Insert_Pragma (Aitem);
2752 goto Continue;
2754 -- Aspect Async_Writers is never delayed because it is
2755 -- equivalent to a source pragma which appears after the
2756 -- related object declaration.
2758 when Aspect_Async_Writers =>
2759 Make_Aitem_Pragma
2760 (Pragma_Argument_Associations => New_List (
2761 Make_Pragma_Argument_Association (Loc,
2762 Expression => Relocate_Node (Expr))),
2763 Pragma_Name => Name_Async_Writers);
2765 Decorate (Aspect, Aitem);
2766 Insert_Pragma (Aitem);
2767 goto Continue;
2769 -- Aspect Constant_After_Elaboration is never delayed because
2770 -- it is equivalent to a source pragma which appears after the
2771 -- related object declaration.
2773 when Aspect_Constant_After_Elaboration =>
2774 Make_Aitem_Pragma
2775 (Pragma_Argument_Associations => New_List (
2776 Make_Pragma_Argument_Association (Loc,
2777 Expression => Relocate_Node (Expr))),
2778 Pragma_Name =>
2779 Name_Constant_After_Elaboration);
2781 Decorate (Aspect, Aitem);
2782 Insert_Pragma (Aitem);
2783 goto Continue;
2785 -- Aspect Default_Internal_Condition is never delayed because
2786 -- it is equivalent to a source pragma which appears after the
2787 -- related private type. To deal with forward references, the
2788 -- generated pragma is stored in the rep chain of the related
2789 -- private type as types do not carry contracts. The pragma is
2790 -- wrapped inside of a procedure at the freeze point of the
2791 -- private type's full view.
2793 when Aspect_Default_Initial_Condition =>
2794 Make_Aitem_Pragma
2795 (Pragma_Argument_Associations => New_List (
2796 Make_Pragma_Argument_Association (Loc,
2797 Expression => Relocate_Node (Expr))),
2798 Pragma_Name =>
2799 Name_Default_Initial_Condition);
2801 Decorate (Aspect, Aitem);
2802 Insert_Pragma (Aitem);
2803 goto Continue;
2805 -- Default_Storage_Pool
2807 when Aspect_Default_Storage_Pool =>
2808 Make_Aitem_Pragma
2809 (Pragma_Argument_Associations => New_List (
2810 Make_Pragma_Argument_Association (Loc,
2811 Expression => Relocate_Node (Expr))),
2812 Pragma_Name =>
2813 Name_Default_Storage_Pool);
2815 Decorate (Aspect, Aitem);
2816 Insert_Pragma (Aitem);
2817 goto Continue;
2819 -- Depends
2821 -- Aspect Depends is never delayed because it is equivalent to
2822 -- a source pragma which appears after the related subprogram.
2823 -- To deal with forward references, the generated pragma is
2824 -- stored in the contract of the related subprogram and later
2825 -- analyzed at the end of the declarative region. See routine
2826 -- Analyze_Depends_In_Decl_Part for details.
2828 when Aspect_Depends =>
2829 Make_Aitem_Pragma
2830 (Pragma_Argument_Associations => New_List (
2831 Make_Pragma_Argument_Association (Loc,
2832 Expression => Relocate_Node (Expr))),
2833 Pragma_Name => Name_Depends);
2835 Decorate (Aspect, Aitem);
2836 Insert_Pragma (Aitem);
2837 goto Continue;
2839 -- Aspect Effecitve_Reads is never delayed because it is
2840 -- equivalent to a source pragma which appears after the
2841 -- related object declaration.
2843 when Aspect_Effective_Reads =>
2844 Make_Aitem_Pragma
2845 (Pragma_Argument_Associations => New_List (
2846 Make_Pragma_Argument_Association (Loc,
2847 Expression => Relocate_Node (Expr))),
2848 Pragma_Name => Name_Effective_Reads);
2850 Decorate (Aspect, Aitem);
2851 Insert_Pragma (Aitem);
2852 goto Continue;
2854 -- Aspect Effective_Writes is never delayed because it is
2855 -- equivalent to a source pragma which appears after the
2856 -- related object declaration.
2858 when Aspect_Effective_Writes =>
2859 Make_Aitem_Pragma
2860 (Pragma_Argument_Associations => New_List (
2861 Make_Pragma_Argument_Association (Loc,
2862 Expression => Relocate_Node (Expr))),
2863 Pragma_Name => Name_Effective_Writes);
2865 Decorate (Aspect, Aitem);
2866 Insert_Pragma (Aitem);
2867 goto Continue;
2869 -- Aspect Extensions_Visible is never delayed because it is
2870 -- equivalent to a source pragma which appears after the
2871 -- related subprogram.
2873 when Aspect_Extensions_Visible =>
2874 Make_Aitem_Pragma
2875 (Pragma_Argument_Associations => New_List (
2876 Make_Pragma_Argument_Association (Loc,
2877 Expression => Relocate_Node (Expr))),
2878 Pragma_Name => Name_Extensions_Visible);
2880 Decorate (Aspect, Aitem);
2881 Insert_Pragma (Aitem);
2882 goto Continue;
2884 -- Aspect Ghost is never delayed because it is equivalent to a
2885 -- source pragma which appears at the top of [generic] package
2886 -- declarations or after an object, a [generic] subprogram, or
2887 -- a type declaration.
2889 when Aspect_Ghost =>
2890 Make_Aitem_Pragma
2891 (Pragma_Argument_Associations => New_List (
2892 Make_Pragma_Argument_Association (Loc,
2893 Expression => Relocate_Node (Expr))),
2894 Pragma_Name => Name_Ghost);
2896 Decorate (Aspect, Aitem);
2897 Insert_Pragma (Aitem);
2898 goto Continue;
2900 -- Global
2902 -- Aspect Global is never delayed because it is equivalent to
2903 -- a source pragma which appears after the related subprogram.
2904 -- To deal with forward references, the generated pragma is
2905 -- stored in the contract of the related subprogram and later
2906 -- analyzed at the end of the declarative region. See routine
2907 -- Analyze_Global_In_Decl_Part for details.
2909 when Aspect_Global =>
2910 Make_Aitem_Pragma
2911 (Pragma_Argument_Associations => New_List (
2912 Make_Pragma_Argument_Association (Loc,
2913 Expression => Relocate_Node (Expr))),
2914 Pragma_Name => Name_Global);
2916 Decorate (Aspect, Aitem);
2917 Insert_Pragma (Aitem);
2918 goto Continue;
2920 -- Initial_Condition
2922 -- Aspect Initial_Condition is never delayed because it is
2923 -- equivalent to a source pragma which appears after the
2924 -- related package. To deal with forward references, the
2925 -- generated pragma is stored in the contract of the related
2926 -- package and later analyzed at the end of the declarative
2927 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2928 -- for details.
2930 when Aspect_Initial_Condition => Initial_Condition : declare
2931 Context : Node_Id := N;
2933 begin
2934 -- When aspect Initial_Condition appears on a generic
2935 -- package, it is propageted to the package instance. The
2936 -- context in this case is the instance spec.
2938 if Nkind (Context) = N_Package_Instantiation then
2939 Context := Instance_Spec (Context);
2940 end if;
2942 if Nkind_In (Context, N_Generic_Package_Declaration,
2943 N_Package_Declaration)
2944 then
2945 Make_Aitem_Pragma
2946 (Pragma_Argument_Associations => New_List (
2947 Make_Pragma_Argument_Association (Loc,
2948 Expression => Relocate_Node (Expr))),
2949 Pragma_Name =>
2950 Name_Initial_Condition);
2952 Decorate (Aspect, Aitem);
2953 Insert_Pragma
2954 (Prag => Aitem,
2955 Is_Instance =>
2956 Is_Generic_Instance (Defining_Entity (Context)));
2958 -- Otherwise the context is illegal
2960 else
2961 Error_Msg_NE
2962 ("aspect & must apply to a package declaration",
2963 Aspect, Id);
2964 end if;
2966 goto Continue;
2967 end Initial_Condition;
2969 -- Initializes
2971 -- Aspect Initializes is never delayed because it is equivalent
2972 -- to a source pragma appearing after the related package. To
2973 -- deal with forward references, the generated pragma is stored
2974 -- in the contract of the related package and later analyzed at
2975 -- the end of the declarative region. For details, see routine
2976 -- Analyze_Initializes_In_Decl_Part.
2978 when Aspect_Initializes => Initializes : declare
2979 Context : Node_Id := N;
2981 begin
2982 -- When aspect Initializes appears on a generic package,
2983 -- it is propageted to the package instance. The context
2984 -- in this case is the instance spec.
2986 if Nkind (Context) = N_Package_Instantiation then
2987 Context := Instance_Spec (Context);
2988 end if;
2990 if Nkind_In (Context, N_Generic_Package_Declaration,
2991 N_Package_Declaration)
2992 then
2993 Make_Aitem_Pragma
2994 (Pragma_Argument_Associations => New_List (
2995 Make_Pragma_Argument_Association (Loc,
2996 Expression => Relocate_Node (Expr))),
2997 Pragma_Name => Name_Initializes);
2999 Decorate (Aspect, Aitem);
3000 Insert_Pragma
3001 (Prag => Aitem,
3002 Is_Instance =>
3003 Is_Generic_Instance (Defining_Entity (Context)));
3005 -- Otherwise the context is illegal
3007 else
3008 Error_Msg_NE
3009 ("aspect & must apply to a package declaration",
3010 Aspect, Id);
3011 end if;
3013 goto Continue;
3014 end Initializes;
3016 -- Max_Queue_Length
3018 when Aspect_Max_Queue_Length =>
3019 Make_Aitem_Pragma
3020 (Pragma_Argument_Associations => New_List (
3021 Make_Pragma_Argument_Association (Loc,
3022 Expression => Relocate_Node (Expr))),
3023 Pragma_Name => Name_Max_Queue_Length);
3025 Decorate (Aspect, Aitem);
3026 Insert_Pragma (Aitem);
3027 goto Continue;
3029 -- Obsolescent
3031 when Aspect_Obsolescent => declare
3032 Args : List_Id;
3034 begin
3035 if No (Expr) then
3036 Args := No_List;
3037 else
3038 Args := New_List (
3039 Make_Pragma_Argument_Association (Sloc (Expr),
3040 Expression => Relocate_Node (Expr)));
3041 end if;
3043 Make_Aitem_Pragma
3044 (Pragma_Argument_Associations => Args,
3045 Pragma_Name => Chars (Id));
3046 end;
3048 -- Part_Of
3050 when Aspect_Part_Of =>
3051 if Nkind_In (N, N_Object_Declaration,
3052 N_Package_Instantiation)
3053 or else Is_Single_Concurrent_Type_Declaration (N)
3054 then
3055 Make_Aitem_Pragma
3056 (Pragma_Argument_Associations => New_List (
3057 Make_Pragma_Argument_Association (Loc,
3058 Expression => Relocate_Node (Expr))),
3059 Pragma_Name => Name_Part_Of);
3061 Decorate (Aspect, Aitem);
3062 Insert_Pragma (Aitem);
3064 else
3065 Error_Msg_NE
3066 ("aspect & must apply to package instantiation, "
3067 & "object, single protected type or single task type",
3068 Aspect, Id);
3069 end if;
3071 goto Continue;
3073 -- SPARK_Mode
3075 when Aspect_SPARK_Mode =>
3076 Make_Aitem_Pragma
3077 (Pragma_Argument_Associations => New_List (
3078 Make_Pragma_Argument_Association (Loc,
3079 Expression => Relocate_Node (Expr))),
3080 Pragma_Name => Name_SPARK_Mode);
3082 Decorate (Aspect, Aitem);
3083 Insert_Pragma (Aitem);
3084 goto Continue;
3086 -- Refined_Depends
3088 -- Aspect Refined_Depends is never delayed because it is
3089 -- equivalent to a source pragma which appears in the
3090 -- declarations of the related subprogram body. To deal with
3091 -- forward references, the generated pragma is stored in the
3092 -- contract of the related subprogram body and later analyzed
3093 -- at the end of the declarative region. For details, see
3094 -- routine Analyze_Refined_Depends_In_Decl_Part.
3096 when Aspect_Refined_Depends =>
3097 Make_Aitem_Pragma
3098 (Pragma_Argument_Associations => New_List (
3099 Make_Pragma_Argument_Association (Loc,
3100 Expression => Relocate_Node (Expr))),
3101 Pragma_Name => Name_Refined_Depends);
3103 Decorate (Aspect, Aitem);
3104 Insert_Pragma (Aitem);
3105 goto Continue;
3107 -- Refined_Global
3109 -- Aspect Refined_Global is never delayed because it is
3110 -- equivalent to a source pragma which appears in the
3111 -- declarations of the related subprogram body. To deal with
3112 -- forward references, the generated pragma is stored in the
3113 -- contract of the related subprogram body and later analyzed
3114 -- at the end of the declarative region. For details, see
3115 -- routine Analyze_Refined_Global_In_Decl_Part.
3117 when Aspect_Refined_Global =>
3118 Make_Aitem_Pragma
3119 (Pragma_Argument_Associations => New_List (
3120 Make_Pragma_Argument_Association (Loc,
3121 Expression => Relocate_Node (Expr))),
3122 Pragma_Name => Name_Refined_Global);
3124 Decorate (Aspect, Aitem);
3125 Insert_Pragma (Aitem);
3126 goto Continue;
3128 -- Refined_Post
3130 when Aspect_Refined_Post =>
3131 Make_Aitem_Pragma
3132 (Pragma_Argument_Associations => New_List (
3133 Make_Pragma_Argument_Association (Loc,
3134 Expression => Relocate_Node (Expr))),
3135 Pragma_Name => Name_Refined_Post);
3137 Decorate (Aspect, Aitem);
3138 Insert_Pragma (Aitem);
3139 goto Continue;
3141 -- Refined_State
3143 when Aspect_Refined_State =>
3145 -- The corresponding pragma for Refined_State is inserted in
3146 -- the declarations of the related package body. This action
3147 -- synchronizes both the source and from-aspect versions of
3148 -- the pragma.
3150 if Nkind (N) = N_Package_Body then
3151 Make_Aitem_Pragma
3152 (Pragma_Argument_Associations => New_List (
3153 Make_Pragma_Argument_Association (Loc,
3154 Expression => Relocate_Node (Expr))),
3155 Pragma_Name => Name_Refined_State);
3157 Decorate (Aspect, Aitem);
3158 Insert_Pragma (Aitem);
3160 -- Otherwise the context is illegal
3162 else
3163 Error_Msg_NE
3164 ("aspect & must apply to a package body", Aspect, Id);
3165 end if;
3167 goto Continue;
3169 -- Relative_Deadline
3171 when Aspect_Relative_Deadline =>
3172 Make_Aitem_Pragma
3173 (Pragma_Argument_Associations => New_List (
3174 Make_Pragma_Argument_Association (Loc,
3175 Expression => Relocate_Node (Expr))),
3176 Pragma_Name => Name_Relative_Deadline);
3178 -- If the aspect applies to a task, the corresponding pragma
3179 -- must appear within its declarations, not after.
3181 if Nkind (N) = N_Task_Type_Declaration then
3182 declare
3183 Def : Node_Id;
3184 V : List_Id;
3186 begin
3187 if No (Task_Definition (N)) then
3188 Set_Task_Definition (N,
3189 Make_Task_Definition (Loc,
3190 Visible_Declarations => New_List,
3191 End_Label => Empty));
3192 end if;
3194 Def := Task_Definition (N);
3195 V := Visible_Declarations (Def);
3196 if not Is_Empty_List (V) then
3197 Insert_Before (First (V), Aitem);
3199 else
3200 Set_Visible_Declarations (Def, New_List (Aitem));
3201 end if;
3203 goto Continue;
3204 end;
3205 end if;
3207 -- Secondary_Stack_Size
3209 -- Aspect Secondary_Stack_Size needs to be converted into a
3210 -- pragma for two reasons: the attribute is not analyzed until
3211 -- after the expansion of the task type declaration and the
3212 -- attribute does not have visibility on the discriminant.
3214 when Aspect_Secondary_Stack_Size =>
3215 Make_Aitem_Pragma
3216 (Pragma_Argument_Associations => New_List (
3217 Make_Pragma_Argument_Association (Loc,
3218 Expression => Relocate_Node (Expr))),
3219 Pragma_Name =>
3220 Name_Secondary_Stack_Size);
3222 Decorate (Aspect, Aitem);
3223 Insert_Pragma (Aitem);
3224 goto Continue;
3226 -- Volatile_Function
3228 -- Aspect Volatile_Function is never delayed because it is
3229 -- equivalent to a source pragma which appears after the
3230 -- related subprogram.
3232 when Aspect_Volatile_Function =>
3233 Make_Aitem_Pragma
3234 (Pragma_Argument_Associations => New_List (
3235 Make_Pragma_Argument_Association (Loc,
3236 Expression => Relocate_Node (Expr))),
3237 Pragma_Name => Name_Volatile_Function);
3239 Decorate (Aspect, Aitem);
3240 Insert_Pragma (Aitem);
3241 goto Continue;
3243 -- Case 2e: Annotate aspect
3245 when Aspect_Annotate =>
3246 declare
3247 Args : List_Id;
3248 Pargs : List_Id;
3249 Arg : Node_Id;
3251 begin
3252 -- The argument can be a single identifier
3254 if Nkind (Expr) = N_Identifier then
3256 -- One level of parens is allowed
3258 if Paren_Count (Expr) > 1 then
3259 Error_Msg_F ("extra parentheses ignored", Expr);
3260 end if;
3262 Set_Paren_Count (Expr, 0);
3264 -- Add the single item to the list
3266 Args := New_List (Expr);
3268 -- Otherwise we must have an aggregate
3270 elsif Nkind (Expr) = N_Aggregate then
3272 -- Must be positional
3274 if Present (Component_Associations (Expr)) then
3275 Error_Msg_F
3276 ("purely positional aggregate required", Expr);
3277 goto Continue;
3278 end if;
3280 -- Must not be parenthesized
3282 if Paren_Count (Expr) /= 0 then
3283 Error_Msg_F ("extra parentheses ignored", Expr);
3284 end if;
3286 -- List of arguments is list of aggregate expressions
3288 Args := Expressions (Expr);
3290 -- Anything else is illegal
3292 else
3293 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3294 goto Continue;
3295 end if;
3297 -- Prepare pragma arguments
3299 Pargs := New_List;
3300 Arg := First (Args);
3301 while Present (Arg) loop
3302 Append_To (Pargs,
3303 Make_Pragma_Argument_Association (Sloc (Arg),
3304 Expression => Relocate_Node (Arg)));
3305 Next (Arg);
3306 end loop;
3308 Append_To (Pargs,
3309 Make_Pragma_Argument_Association (Sloc (Ent),
3310 Chars => Name_Entity,
3311 Expression => Ent));
3313 Make_Aitem_Pragma
3314 (Pragma_Argument_Associations => Pargs,
3315 Pragma_Name => Name_Annotate);
3316 end;
3318 -- Case 3 : Aspects that don't correspond to pragma/attribute
3319 -- definition clause.
3321 -- Case 3a: The aspects listed below don't correspond to
3322 -- pragmas/attributes but do require delayed analysis.
3324 -- Default_Value can only apply to a scalar type
3326 when Aspect_Default_Value =>
3327 if not Is_Scalar_Type (E) then
3328 Error_Msg_N
3329 ("aspect Default_Value must apply to a scalar type", N);
3330 end if;
3332 Aitem := Empty;
3334 -- Default_Component_Value can only apply to an array type
3335 -- with scalar components.
3337 when Aspect_Default_Component_Value =>
3338 if not (Is_Array_Type (E)
3339 and then Is_Scalar_Type (Component_Type (E)))
3340 then
3341 Error_Msg_N
3342 ("aspect Default_Component_Value can only apply to an "
3343 & "array of scalar components", N);
3344 end if;
3346 Aitem := Empty;
3348 -- Case 3b: The aspects listed below don't correspond to
3349 -- pragmas/attributes and don't need delayed analysis.
3351 -- Implicit_Dereference
3353 -- For Implicit_Dereference, External_Name and Link_Name, only
3354 -- the legality checks are done during the analysis, thus no
3355 -- delay is required.
3357 when Aspect_Implicit_Dereference =>
3358 Analyze_Aspect_Implicit_Dereference;
3359 goto Continue;
3361 -- Dimension
3363 when Aspect_Dimension =>
3364 Analyze_Aspect_Dimension (N, Id, Expr);
3365 goto Continue;
3367 -- Dimension_System
3369 when Aspect_Dimension_System =>
3370 Analyze_Aspect_Dimension_System (N, Id, Expr);
3371 goto Continue;
3373 -- Case 4: Aspects requiring special handling
3375 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3376 -- pragmas take care of the delay.
3378 -- Pre/Post
3380 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3381 -- with a first argument that is the expression, and a second
3382 -- argument that is an informative message if the test fails.
3383 -- This is inserted right after the declaration, to get the
3384 -- required pragma placement. The processing for the pragmas
3385 -- takes care of the required delay.
3387 when Pre_Post_Aspects => Pre_Post : declare
3388 Pname : Name_Id;
3390 begin
3391 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3392 Pname := Name_Precondition;
3393 else
3394 Pname := Name_Postcondition;
3395 end if;
3397 -- Check that the class-wide predicate cannot be applied to
3398 -- an operation of a synchronized type. AI12-0182 forbids
3399 -- these altogether, while earlier language semantics made
3400 -- them legal on tagged synchronized types.
3402 -- Other legality checks are performed when analyzing the
3403 -- contract of the operation.
3405 if Class_Present (Aspect)
3406 and then Is_Concurrent_Type (Current_Scope)
3407 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3408 then
3409 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3410 Error_Msg_N
3411 ("aspect % can only be specified for a primitive "
3412 & "operation of a tagged type", Aspect);
3414 goto Continue;
3415 end if;
3417 -- If the expressions is of the form A and then B, then
3418 -- we generate separate Pre/Post aspects for the separate
3419 -- clauses. Since we allow multiple pragmas, there is no
3420 -- problem in allowing multiple Pre/Post aspects internally.
3421 -- These should be treated in reverse order (B first and
3422 -- A second) since they are later inserted just after N in
3423 -- the order they are treated. This way, the pragma for A
3424 -- ends up preceding the pragma for B, which may have an
3425 -- importance for the error raised (either constraint error
3426 -- or precondition error).
3428 -- We do not do this for Pre'Class, since we have to put
3429 -- these conditions together in a complex OR expression.
3431 -- We do not do this in ASIS mode, as ASIS relies on the
3432 -- original node representing the complete expression, when
3433 -- retrieving it through the source aspect table.
3435 if not ASIS_Mode
3436 and then (Pname = Name_Postcondition
3437 or else not Class_Present (Aspect))
3438 then
3439 while Nkind (Expr) = N_And_Then loop
3440 Insert_After (Aspect,
3441 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3442 Identifier => Identifier (Aspect),
3443 Expression => Relocate_Node (Left_Opnd (Expr)),
3444 Class_Present => Class_Present (Aspect),
3445 Split_PPC => True));
3446 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3447 Eloc := Sloc (Expr);
3448 end loop;
3449 end if;
3451 -- Build the precondition/postcondition pragma
3453 -- Add note about why we do NOT need Copy_Tree here???
3455 Make_Aitem_Pragma
3456 (Pragma_Argument_Associations => New_List (
3457 Make_Pragma_Argument_Association (Eloc,
3458 Chars => Name_Check,
3459 Expression => Relocate_Node (Expr))),
3460 Pragma_Name => Pname);
3462 -- Add message unless exception messages are suppressed
3464 if not Opt.Exception_Locations_Suppressed then
3465 Append_To (Pragma_Argument_Associations (Aitem),
3466 Make_Pragma_Argument_Association (Eloc,
3467 Chars => Name_Message,
3468 Expression =>
3469 Make_String_Literal (Eloc,
3470 Strval => "failed "
3471 & Get_Name_String (Pname)
3472 & " from "
3473 & Build_Location_String (Eloc))));
3474 end if;
3476 Set_Is_Delayed_Aspect (Aspect);
3478 -- For Pre/Post cases, insert immediately after the entity
3479 -- declaration, since that is the required pragma placement.
3480 -- Note that for these aspects, we do not have to worry
3481 -- about delay issues, since the pragmas themselves deal
3482 -- with delay of visibility for the expression analysis.
3484 Insert_Pragma (Aitem);
3486 goto Continue;
3487 end Pre_Post;
3489 -- Test_Case
3491 when Aspect_Test_Case => Test_Case : declare
3492 Args : List_Id;
3493 Comp_Expr : Node_Id;
3494 Comp_Assn : Node_Id;
3495 New_Expr : Node_Id;
3497 begin
3498 Args := New_List;
3500 if Nkind (Parent (N)) = N_Compilation_Unit then
3501 Error_Msg_Name_1 := Nam;
3502 Error_Msg_N ("incorrect placement of aspect `%`", E);
3503 goto Continue;
3504 end if;
3506 if Nkind (Expr) /= N_Aggregate then
3507 Error_Msg_Name_1 := Nam;
3508 Error_Msg_NE
3509 ("wrong syntax for aspect `%` for &", Id, E);
3510 goto Continue;
3511 end if;
3513 -- Make pragma expressions refer to the original aspect
3514 -- expressions through the Original_Node link. This is used
3515 -- in semantic analysis for ASIS mode, so that the original
3516 -- expression also gets analyzed.
3518 Comp_Expr := First (Expressions (Expr));
3519 while Present (Comp_Expr) loop
3520 New_Expr := Relocate_Node (Comp_Expr);
3521 Append_To (Args,
3522 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3523 Expression => New_Expr));
3524 Next (Comp_Expr);
3525 end loop;
3527 Comp_Assn := First (Component_Associations (Expr));
3528 while Present (Comp_Assn) loop
3529 if List_Length (Choices (Comp_Assn)) /= 1
3530 or else
3531 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3532 then
3533 Error_Msg_Name_1 := Nam;
3534 Error_Msg_NE
3535 ("wrong syntax for aspect `%` for &", Id, E);
3536 goto Continue;
3537 end if;
3539 Append_To (Args,
3540 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3541 Chars => Chars (First (Choices (Comp_Assn))),
3542 Expression =>
3543 Relocate_Node (Expression (Comp_Assn))));
3544 Next (Comp_Assn);
3545 end loop;
3547 -- Build the test-case pragma
3549 Make_Aitem_Pragma
3550 (Pragma_Argument_Associations => Args,
3551 Pragma_Name => Nam);
3552 end Test_Case;
3554 -- Contract_Cases
3556 when Aspect_Contract_Cases =>
3557 Make_Aitem_Pragma
3558 (Pragma_Argument_Associations => New_List (
3559 Make_Pragma_Argument_Association (Loc,
3560 Expression => Relocate_Node (Expr))),
3561 Pragma_Name => Nam);
3563 Decorate (Aspect, Aitem);
3564 Insert_Pragma (Aitem);
3565 goto Continue;
3567 -- Case 5: Special handling for aspects with an optional
3568 -- boolean argument.
3570 -- In the delayed case, the corresponding pragma cannot be
3571 -- generated yet because the evaluation of the boolean needs
3572 -- to be delayed till the freeze point.
3574 when Boolean_Aspects
3575 | Library_Unit_Aspects
3577 Set_Is_Boolean_Aspect (Aspect);
3579 -- Lock_Free aspect only apply to protected objects
3581 if A_Id = Aspect_Lock_Free then
3582 if Ekind (E) /= E_Protected_Type then
3583 Error_Msg_Name_1 := Nam;
3584 Error_Msg_N
3585 ("aspect % only applies to a protected object",
3586 Aspect);
3588 else
3589 -- Set the Uses_Lock_Free flag to True if there is no
3590 -- expression or if the expression is True. The
3591 -- evaluation of this aspect should be delayed to the
3592 -- freeze point (why???)
3594 if No (Expr)
3595 or else Is_True (Static_Boolean (Expr))
3596 then
3597 Set_Uses_Lock_Free (E);
3598 end if;
3600 Record_Rep_Item (E, Aspect);
3601 end if;
3603 goto Continue;
3605 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3606 Analyze_Aspect_Export_Import;
3608 -- Disable_Controlled
3610 elsif A_Id = Aspect_Disable_Controlled then
3611 Analyze_Aspect_Disable_Controlled;
3612 goto Continue;
3613 end if;
3615 -- Library unit aspects require special handling in the case
3616 -- of a package declaration, the pragma needs to be inserted
3617 -- in the list of declarations for the associated package.
3618 -- There is no issue of visibility delay for these aspects.
3620 if A_Id in Library_Unit_Aspects
3621 and then
3622 Nkind_In (N, N_Package_Declaration,
3623 N_Generic_Package_Declaration)
3624 and then Nkind (Parent (N)) /= N_Compilation_Unit
3626 -- Aspect is legal on a local instantiation of a library-
3627 -- level generic unit.
3629 and then not Is_Generic_Instance (Defining_Entity (N))
3630 then
3631 Error_Msg_N
3632 ("incorrect context for library unit aspect&", Id);
3633 goto Continue;
3634 end if;
3636 -- Cases where we do not delay, includes all cases where the
3637 -- expression is missing other than the above cases.
3639 if not Delay_Required or else No (Expr) then
3641 -- Exclude aspects Export and Import because their pragma
3642 -- syntax does not map directly to a Boolean aspect.
3644 if A_Id /= Aspect_Export
3645 and then A_Id /= Aspect_Import
3646 then
3647 Make_Aitem_Pragma
3648 (Pragma_Argument_Associations => New_List (
3649 Make_Pragma_Argument_Association (Sloc (Ent),
3650 Expression => Ent)),
3651 Pragma_Name => Chars (Id));
3652 end if;
3654 Delay_Required := False;
3656 -- In general cases, the corresponding pragma/attribute
3657 -- definition clause will be inserted later at the freezing
3658 -- point, and we do not need to build it now.
3660 else
3661 Aitem := Empty;
3662 end if;
3664 -- Storage_Size
3666 -- This is special because for access types we need to generate
3667 -- an attribute definition clause. This also works for single
3668 -- task declarations, but it does not work for task type
3669 -- declarations, because we have the case where the expression
3670 -- references a discriminant of the task type. That can't use
3671 -- an attribute definition clause because we would not have
3672 -- visibility on the discriminant. For that case we must
3673 -- generate a pragma in the task definition.
3675 when Aspect_Storage_Size =>
3677 -- Task type case
3679 if Ekind (E) = E_Task_Type then
3680 declare
3681 Decl : constant Node_Id := Declaration_Node (E);
3683 begin
3684 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3686 -- If no task definition, create one
3688 if No (Task_Definition (Decl)) then
3689 Set_Task_Definition (Decl,
3690 Make_Task_Definition (Loc,
3691 Visible_Declarations => Empty_List,
3692 End_Label => Empty));
3693 end if;
3695 -- Create a pragma and put it at the start of the task
3696 -- definition for the task type declaration.
3698 Make_Aitem_Pragma
3699 (Pragma_Argument_Associations => New_List (
3700 Make_Pragma_Argument_Association (Loc,
3701 Expression => Relocate_Node (Expr))),
3702 Pragma_Name => Name_Storage_Size);
3704 Prepend
3705 (Aitem,
3706 Visible_Declarations (Task_Definition (Decl)));
3707 goto Continue;
3708 end;
3710 -- All other cases, generate attribute definition
3712 else
3713 Aitem :=
3714 Make_Attribute_Definition_Clause (Loc,
3715 Name => Ent,
3716 Chars => Chars (Id),
3717 Expression => Relocate_Node (Expr));
3718 end if;
3719 end case;
3721 -- Attach the corresponding pragma/attribute definition clause to
3722 -- the aspect specification node.
3724 if Present (Aitem) then
3725 Set_From_Aspect_Specification (Aitem);
3726 end if;
3728 -- In the context of a compilation unit, we directly put the
3729 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3730 -- node (no delay is required here) except for aspects on a
3731 -- subprogram body (see below) and a generic package, for which we
3732 -- need to introduce the pragma before building the generic copy
3733 -- (see sem_ch12), and for package instantiations, where the
3734 -- library unit pragmas are better handled early.
3736 if Nkind (Parent (N)) = N_Compilation_Unit
3737 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3738 then
3739 declare
3740 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3742 begin
3743 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3745 -- For a Boolean aspect, create the corresponding pragma if
3746 -- no expression or if the value is True.
3748 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3749 if Is_True (Static_Boolean (Expr)) then
3750 Make_Aitem_Pragma
3751 (Pragma_Argument_Associations => New_List (
3752 Make_Pragma_Argument_Association (Sloc (Ent),
3753 Expression => Ent)),
3754 Pragma_Name => Chars (Id));
3756 Set_From_Aspect_Specification (Aitem, True);
3757 Set_Corresponding_Aspect (Aitem, Aspect);
3759 else
3760 goto Continue;
3761 end if;
3762 end if;
3764 -- If the aspect is on a subprogram body (relevant aspect
3765 -- is Inline), add the pragma in front of the declarations.
3767 if Nkind (N) = N_Subprogram_Body then
3768 if No (Declarations (N)) then
3769 Set_Declarations (N, New_List);
3770 end if;
3772 Prepend (Aitem, Declarations (N));
3774 elsif Nkind (N) = N_Generic_Package_Declaration then
3775 if No (Visible_Declarations (Specification (N))) then
3776 Set_Visible_Declarations (Specification (N), New_List);
3777 end if;
3779 Prepend (Aitem,
3780 Visible_Declarations (Specification (N)));
3782 elsif Nkind (N) = N_Package_Instantiation then
3783 declare
3784 Spec : constant Node_Id :=
3785 Specification (Instance_Spec (N));
3786 begin
3787 if No (Visible_Declarations (Spec)) then
3788 Set_Visible_Declarations (Spec, New_List);
3789 end if;
3791 Prepend (Aitem, Visible_Declarations (Spec));
3792 end;
3794 else
3795 if No (Pragmas_After (Aux)) then
3796 Set_Pragmas_After (Aux, New_List);
3797 end if;
3799 Append (Aitem, Pragmas_After (Aux));
3800 end if;
3802 goto Continue;
3803 end;
3804 end if;
3806 -- The evaluation of the aspect is delayed to the freezing point.
3807 -- The pragma or attribute clause if there is one is then attached
3808 -- to the aspect specification which is put in the rep item list.
3810 if Delay_Required then
3811 if Present (Aitem) then
3812 Set_Is_Delayed_Aspect (Aitem);
3813 Set_Aspect_Rep_Item (Aspect, Aitem);
3814 Set_Parent (Aitem, Aspect);
3815 end if;
3817 Set_Is_Delayed_Aspect (Aspect);
3819 -- In the case of Default_Value, link the aspect to base type
3820 -- as well, even though it appears on a first subtype. This is
3821 -- mandated by the semantics of the aspect. Do not establish
3822 -- the link when processing the base type itself as this leads
3823 -- to a rep item circularity. Verify that we are dealing with
3824 -- a scalar type to prevent cascaded errors.
3826 if A_Id = Aspect_Default_Value
3827 and then Is_Scalar_Type (E)
3828 and then Base_Type (E) /= E
3829 then
3830 Set_Has_Delayed_Aspects (Base_Type (E));
3831 Record_Rep_Item (Base_Type (E), Aspect);
3832 end if;
3834 Set_Has_Delayed_Aspects (E);
3835 Record_Rep_Item (E, Aspect);
3837 -- When delay is not required and the context is a package or a
3838 -- subprogram body, insert the pragma in the body declarations.
3840 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3841 if No (Declarations (N)) then
3842 Set_Declarations (N, New_List);
3843 end if;
3845 -- The pragma is added before source declarations
3847 Prepend_To (Declarations (N), Aitem);
3849 -- When delay is not required and the context is not a compilation
3850 -- unit, we simply insert the pragma/attribute definition clause
3851 -- in sequence.
3853 elsif Present (Aitem) then
3854 Insert_After (Ins_Node, Aitem);
3855 Ins_Node := Aitem;
3856 end if;
3857 end Analyze_One_Aspect;
3859 <<Continue>>
3860 Next (Aspect);
3861 end loop Aspect_Loop;
3863 if Has_Delayed_Aspects (E) then
3864 Ensure_Freeze_Node (E);
3865 end if;
3866 end Analyze_Aspect_Specifications;
3868 ---------------------------------------------------
3869 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3870 ---------------------------------------------------
3872 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3873 Body_Id : constant Entity_Id := Defining_Entity (N);
3875 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3876 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3877 -- error message depending on the aspects involved. Spec_Id denotes the
3878 -- entity of the corresponding spec.
3880 --------------------------------
3881 -- Diagnose_Misplaced_Aspects --
3882 --------------------------------
3884 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3885 procedure Misplaced_Aspect_Error
3886 (Asp : Node_Id;
3887 Ref_Nam : Name_Id);
3888 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3889 -- the name of the refined version of the aspect.
3891 ----------------------------
3892 -- Misplaced_Aspect_Error --
3893 ----------------------------
3895 procedure Misplaced_Aspect_Error
3896 (Asp : Node_Id;
3897 Ref_Nam : Name_Id)
3899 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3900 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3902 begin
3903 -- The corresponding spec already contains the aspect in question
3904 -- and the one appearing on the body must be the refined form:
3906 -- procedure P with Global ...;
3907 -- procedure P with Global ... is ... end P;
3908 -- ^
3909 -- Refined_Global
3911 if Has_Aspect (Spec_Id, Asp_Id) then
3912 Error_Msg_Name_1 := Asp_Nam;
3914 -- Subunits cannot carry aspects that apply to a subprogram
3915 -- declaration.
3917 if Nkind (Parent (N)) = N_Subunit then
3918 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3920 -- Otherwise suggest the refined form
3922 else
3923 Error_Msg_Name_2 := Ref_Nam;
3924 Error_Msg_N ("aspect % should be %", Asp);
3925 end if;
3927 -- Otherwise the aspect must appear on the spec, not on the body
3929 -- procedure P;
3930 -- procedure P with Global ... is ... end P;
3932 else
3933 Error_Msg_N
3934 ("aspect specification must appear on initial declaration",
3935 Asp);
3936 end if;
3937 end Misplaced_Aspect_Error;
3939 -- Local variables
3941 Asp : Node_Id;
3942 Asp_Nam : Name_Id;
3944 -- Start of processing for Diagnose_Misplaced_Aspects
3946 begin
3947 -- Iterate over the aspect specifications and emit specific errors
3948 -- where applicable.
3950 Asp := First (Aspect_Specifications (N));
3951 while Present (Asp) loop
3952 Asp_Nam := Chars (Identifier (Asp));
3954 -- Do not emit errors on aspects that can appear on a subprogram
3955 -- body. This scenario occurs when the aspect specification list
3956 -- contains both misplaced and properly placed aspects.
3958 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3959 null;
3961 -- Special diagnostics for SPARK aspects
3963 elsif Asp_Nam = Name_Depends then
3964 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3966 elsif Asp_Nam = Name_Global then
3967 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3969 elsif Asp_Nam = Name_Post then
3970 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3972 -- Otherwise a language-defined aspect is misplaced
3974 else
3975 Error_Msg_N
3976 ("aspect specification must appear on initial declaration",
3977 Asp);
3978 end if;
3980 Next (Asp);
3981 end loop;
3982 end Diagnose_Misplaced_Aspects;
3984 -- Local variables
3986 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3988 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3990 begin
3991 -- Language-defined aspects cannot be associated with a subprogram body
3992 -- [stub] if the subprogram has a spec. Certain implementation defined
3993 -- aspects are allowed to break this rule (for all applicable cases, see
3994 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3996 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3997 Diagnose_Misplaced_Aspects (Spec_Id);
3998 else
3999 Analyze_Aspect_Specifications (N, Body_Id);
4000 end if;
4001 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
4003 -----------------------
4004 -- Analyze_At_Clause --
4005 -----------------------
4007 -- An at clause is replaced by the corresponding Address attribute
4008 -- definition clause that is the preferred approach in Ada 95.
4010 procedure Analyze_At_Clause (N : Node_Id) is
4011 CS : constant Boolean := Comes_From_Source (N);
4013 begin
4014 -- This is an obsolescent feature
4016 Check_Restriction (No_Obsolescent_Features, N);
4018 if Warn_On_Obsolescent_Feature then
4019 Error_Msg_N
4020 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
4021 Error_Msg_N
4022 ("\?j?use address attribute definition clause instead", N);
4023 end if;
4025 -- Rewrite as address clause
4027 Rewrite (N,
4028 Make_Attribute_Definition_Clause (Sloc (N),
4029 Name => Identifier (N),
4030 Chars => Name_Address,
4031 Expression => Expression (N)));
4033 -- We preserve Comes_From_Source, since logically the clause still comes
4034 -- from the source program even though it is changed in form.
4036 Set_Comes_From_Source (N, CS);
4038 -- Analyze rewritten clause
4040 Analyze_Attribute_Definition_Clause (N);
4041 end Analyze_At_Clause;
4043 -----------------------------------------
4044 -- Analyze_Attribute_Definition_Clause --
4045 -----------------------------------------
4047 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
4048 Loc : constant Source_Ptr := Sloc (N);
4049 Nam : constant Node_Id := Name (N);
4050 Attr : constant Name_Id := Chars (N);
4051 Expr : constant Node_Id := Expression (N);
4052 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
4054 Ent : Entity_Id;
4055 -- The entity of Nam after it is analyzed. In the case of an incomplete
4056 -- type, this is the underlying type.
4058 U_Ent : Entity_Id;
4059 -- The underlying entity to which the attribute applies. Generally this
4060 -- is the Underlying_Type of Ent, except in the case where the clause
4061 -- applies to the full view of an incomplete or private type, in which
4062 -- case U_Ent is just a copy of Ent.
4064 FOnly : Boolean := False;
4065 -- Reset to True for subtype specific attribute (Alignment, Size)
4066 -- and for stream attributes, i.e. those cases where in the call to
4067 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4068 -- are checked. Note that the case of stream attributes is not clear
4069 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4070 -- Storage_Size for derived task types, but that is also clearly
4071 -- unintentional.
4073 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4074 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4075 -- definition clauses.
4077 function Duplicate_Clause return Boolean;
4078 -- This routine checks if the aspect for U_Ent being given by attribute
4079 -- definition clause N is for an aspect that has already been specified,
4080 -- and if so gives an error message. If there is a duplicate, True is
4081 -- returned, otherwise if there is no error, False is returned.
4083 procedure Check_Indexing_Functions;
4084 -- Check that the function in Constant_Indexing or Variable_Indexing
4085 -- attribute has the proper type structure. If the name is overloaded,
4086 -- check that some interpretation is legal.
4088 procedure Check_Iterator_Functions;
4089 -- Check that there is a single function in Default_Iterator attribute
4090 -- that has the proper type structure.
4092 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
4093 -- Common legality check for the previous two
4095 -----------------------------------
4096 -- Analyze_Stream_TSS_Definition --
4097 -----------------------------------
4099 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4100 Subp : Entity_Id := Empty;
4101 I : Interp_Index;
4102 It : Interp;
4103 Pnam : Entity_Id;
4105 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
4106 -- True for Read attribute, False for other attributes
4108 function Has_Good_Profile
4109 (Subp : Entity_Id;
4110 Report : Boolean := False) return Boolean;
4111 -- Return true if the entity is a subprogram with an appropriate
4112 -- profile for the attribute being defined. If result is False and
4113 -- Report is True, function emits appropriate error.
4115 ----------------------
4116 -- Has_Good_Profile --
4117 ----------------------
4119 function Has_Good_Profile
4120 (Subp : Entity_Id;
4121 Report : Boolean := False) return Boolean
4123 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4124 (False => E_Procedure, True => E_Function);
4125 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4126 F : Entity_Id;
4127 Typ : Entity_Id;
4129 begin
4130 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4131 return False;
4132 end if;
4134 F := First_Formal (Subp);
4136 if No (F)
4137 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4138 or else Designated_Type (Etype (F)) /=
4139 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4140 then
4141 return False;
4142 end if;
4144 if not Is_Function then
4145 Next_Formal (F);
4147 declare
4148 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4149 (False => E_In_Parameter,
4150 True => E_Out_Parameter);
4151 begin
4152 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4153 return False;
4154 end if;
4155 end;
4157 Typ := Etype (F);
4159 -- If the attribute specification comes from an aspect
4160 -- specification for a class-wide stream, the parameter must be
4161 -- a class-wide type of the entity to which the aspect applies.
4163 if From_Aspect_Specification (N)
4164 and then Class_Present (Parent (N))
4165 and then Is_Class_Wide_Type (Typ)
4166 then
4167 Typ := Etype (Typ);
4168 end if;
4170 else
4171 Typ := Etype (Subp);
4172 end if;
4174 -- Verify that the prefix of the attribute and the local name for
4175 -- the type of the formal match, or one is the class-wide of the
4176 -- other, in the case of a class-wide stream operation.
4178 if Base_Type (Typ) = Base_Type (Ent)
4179 or else (Is_Class_Wide_Type (Typ)
4180 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4181 or else (Is_Class_Wide_Type (Ent)
4182 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4183 then
4184 null;
4185 else
4186 return False;
4187 end if;
4189 if Present (Next_Formal (F)) then
4190 return False;
4192 elsif not Is_Scalar_Type (Typ)
4193 and then not Is_First_Subtype (Typ)
4194 and then not Is_Class_Wide_Type (Typ)
4195 then
4196 if Report and not Is_First_Subtype (Typ) then
4197 Error_Msg_N
4198 ("subtype of formal in stream operation must be a first "
4199 & "subtype", Parameter_Type (Parent (F)));
4200 end if;
4202 return False;
4204 else
4205 return True;
4206 end if;
4207 end Has_Good_Profile;
4209 -- Start of processing for Analyze_Stream_TSS_Definition
4211 begin
4212 FOnly := True;
4214 if not Is_Type (U_Ent) then
4215 Error_Msg_N ("local name must be a subtype", Nam);
4216 return;
4218 elsif not Is_First_Subtype (U_Ent) then
4219 Error_Msg_N ("local name must be a first subtype", Nam);
4220 return;
4221 end if;
4223 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4225 -- If Pnam is present, it can be either inherited from an ancestor
4226 -- type (in which case it is legal to redefine it for this type), or
4227 -- be a previous definition of the attribute for the same type (in
4228 -- which case it is illegal).
4230 -- In the first case, it will have been analyzed already, and we
4231 -- can check that its profile does not match the expected profile
4232 -- for a stream attribute of U_Ent. In the second case, either Pnam
4233 -- has been analyzed (and has the expected profile), or it has not
4234 -- been analyzed yet (case of a type that has not been frozen yet
4235 -- and for which the stream attribute has been set using Set_TSS).
4237 if Present (Pnam)
4238 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4239 then
4240 Error_Msg_Sloc := Sloc (Pnam);
4241 Error_Msg_Name_1 := Attr;
4242 Error_Msg_N ("% attribute already defined #", Nam);
4243 return;
4244 end if;
4246 Analyze (Expr);
4248 if Is_Entity_Name (Expr) then
4249 if not Is_Overloaded (Expr) then
4250 if Has_Good_Profile (Entity (Expr), Report => True) then
4251 Subp := Entity (Expr);
4252 end if;
4254 else
4255 Get_First_Interp (Expr, I, It);
4256 while Present (It.Nam) loop
4257 if Has_Good_Profile (It.Nam) then
4258 Subp := It.Nam;
4259 exit;
4260 end if;
4262 Get_Next_Interp (I, It);
4263 end loop;
4264 end if;
4265 end if;
4267 if Present (Subp) then
4268 if Is_Abstract_Subprogram (Subp) then
4269 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4270 return;
4272 -- A stream subprogram for an interface type must be a null
4273 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4274 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4276 elsif Is_Interface (U_Ent)
4277 and then not Is_Class_Wide_Type (U_Ent)
4278 and then not Inside_A_Generic
4279 and then
4280 (Ekind (Subp) = E_Function
4281 or else
4282 not Null_Present
4283 (Specification
4284 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4285 then
4286 Error_Msg_N
4287 ("stream subprogram for interface type must be null "
4288 & "procedure", Expr);
4289 end if;
4291 Set_Entity (Expr, Subp);
4292 Set_Etype (Expr, Etype (Subp));
4294 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4296 else
4297 Error_Msg_Name_1 := Attr;
4298 Error_Msg_N ("incorrect expression for% attribute", Expr);
4299 end if;
4300 end Analyze_Stream_TSS_Definition;
4302 ------------------------------
4303 -- Check_Indexing_Functions --
4304 ------------------------------
4306 procedure Check_Indexing_Functions is
4307 Indexing_Found : Boolean := False;
4309 procedure Check_Inherited_Indexing;
4310 -- For a derived type, check that no indexing aspect is specified
4311 -- for the type if it is also inherited
4313 procedure Check_One_Function (Subp : Entity_Id);
4314 -- Check one possible interpretation. Sets Indexing_Found True if a
4315 -- legal indexing function is found.
4317 procedure Illegal_Indexing (Msg : String);
4318 -- Diagnose illegal indexing function if not overloaded. In the
4319 -- overloaded case indicate that no legal interpretation exists.
4321 ------------------------------
4322 -- Check_Inherited_Indexing --
4323 ------------------------------
4325 procedure Check_Inherited_Indexing is
4326 Inherited : Node_Id;
4328 begin
4329 if Attr = Name_Constant_Indexing then
4330 Inherited :=
4331 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4332 else pragma Assert (Attr = Name_Variable_Indexing);
4333 Inherited :=
4334 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4335 end if;
4337 if Present (Inherited) then
4338 if Debug_Flag_Dot_XX then
4339 null;
4341 -- OK if current attribute_definition_clause is expansion of
4342 -- inherited aspect.
4344 elsif Aspect_Rep_Item (Inherited) = N then
4345 null;
4347 -- Indicate the operation that must be overridden, rather than
4348 -- redefining the indexing aspect.
4350 else
4351 Illegal_Indexing
4352 ("indexing function already inherited from parent type");
4353 Error_Msg_NE
4354 ("!override & instead",
4355 N, Entity (Expression (Inherited)));
4356 end if;
4357 end if;
4358 end Check_Inherited_Indexing;
4360 ------------------------
4361 -- Check_One_Function --
4362 ------------------------
4364 procedure Check_One_Function (Subp : Entity_Id) is
4365 Default_Element : Node_Id;
4366 Ret_Type : constant Entity_Id := Etype (Subp);
4368 begin
4369 if not Is_Overloadable (Subp) then
4370 Illegal_Indexing ("illegal indexing function for type&");
4371 return;
4373 elsif Scope (Subp) /= Scope (Ent) then
4374 if Nkind (Expr) = N_Expanded_Name then
4376 -- Indexing function can't be declared elsewhere
4378 Illegal_Indexing
4379 ("indexing function must be declared in scope of type&");
4380 end if;
4382 return;
4384 elsif No (First_Formal (Subp)) then
4385 Illegal_Indexing
4386 ("Indexing requires a function that applies to type&");
4387 return;
4389 elsif No (Next_Formal (First_Formal (Subp))) then
4390 Illegal_Indexing
4391 ("indexing function must have at least two parameters");
4392 return;
4394 elsif Is_Derived_Type (Ent) then
4395 Check_Inherited_Indexing;
4396 end if;
4398 if not Check_Primitive_Function (Subp) then
4399 Illegal_Indexing
4400 ("Indexing aspect requires a function that applies to type&");
4401 return;
4402 end if;
4404 -- If partial declaration exists, verify that it is not tagged.
4406 if Ekind (Current_Scope) = E_Package
4407 and then Has_Private_Declaration (Ent)
4408 and then From_Aspect_Specification (N)
4409 and then
4410 List_Containing (Parent (Ent)) =
4411 Private_Declarations
4412 (Specification (Unit_Declaration_Node (Current_Scope)))
4413 and then Nkind (N) = N_Attribute_Definition_Clause
4414 then
4415 declare
4416 Decl : Node_Id;
4418 begin
4419 Decl :=
4420 First (Visible_Declarations
4421 (Specification
4422 (Unit_Declaration_Node (Current_Scope))));
4424 while Present (Decl) loop
4425 if Nkind (Decl) = N_Private_Type_Declaration
4426 and then Ent = Full_View (Defining_Identifier (Decl))
4427 and then Tagged_Present (Decl)
4428 and then No (Aspect_Specifications (Decl))
4429 then
4430 Illegal_Indexing
4431 ("Indexing aspect cannot be specified on full view "
4432 & "if partial view is tagged");
4433 return;
4434 end if;
4436 Next (Decl);
4437 end loop;
4438 end;
4439 end if;
4441 -- An indexing function must return either the default element of
4442 -- the container, or a reference type. For variable indexing it
4443 -- must be the latter.
4445 Default_Element :=
4446 Find_Value_Of_Aspect
4447 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4449 if Present (Default_Element) then
4450 Analyze (Default_Element);
4451 end if;
4453 -- For variable_indexing the return type must be a reference type
4455 if Attr = Name_Variable_Indexing then
4456 if not Has_Implicit_Dereference (Ret_Type) then
4457 Illegal_Indexing
4458 ("variable indexing must return a reference type");
4459 return;
4461 elsif Is_Access_Constant
4462 (Etype (First_Discriminant (Ret_Type)))
4463 then
4464 Illegal_Indexing
4465 ("variable indexing must return an access to variable");
4466 return;
4467 end if;
4469 else
4470 if Has_Implicit_Dereference (Ret_Type)
4471 and then not
4472 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4473 then
4474 Illegal_Indexing
4475 ("constant indexing must return an access to constant");
4476 return;
4478 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4479 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4480 then
4481 Illegal_Indexing
4482 ("constant indexing must apply to an access to constant");
4483 return;
4484 end if;
4485 end if;
4487 -- All checks succeeded.
4489 Indexing_Found := True;
4490 end Check_One_Function;
4492 -----------------------
4493 -- Illegal_Indexing --
4494 -----------------------
4496 procedure Illegal_Indexing (Msg : String) is
4497 begin
4498 Error_Msg_NE (Msg, N, Ent);
4499 end Illegal_Indexing;
4501 -- Start of processing for Check_Indexing_Functions
4503 begin
4504 if In_Instance then
4505 Check_Inherited_Indexing;
4506 end if;
4508 Analyze (Expr);
4510 if not Is_Overloaded (Expr) then
4511 Check_One_Function (Entity (Expr));
4513 else
4514 declare
4515 I : Interp_Index;
4516 It : Interp;
4518 begin
4519 Indexing_Found := False;
4520 Get_First_Interp (Expr, I, It);
4521 while Present (It.Nam) loop
4523 -- Note that analysis will have added the interpretation
4524 -- that corresponds to the dereference. We only check the
4525 -- subprogram itself. Ignore homonyms that may come from
4526 -- derived types in the context.
4528 if Is_Overloadable (It.Nam)
4529 and then Comes_From_Source (It.Nam)
4530 then
4531 Check_One_Function (It.Nam);
4532 end if;
4534 Get_Next_Interp (I, It);
4535 end loop;
4536 end;
4537 end if;
4539 if not Indexing_Found and then not Error_Posted (N) then
4540 Error_Msg_NE
4541 ("aspect Indexing requires a local function that applies to "
4542 & "type&", Expr, Ent);
4543 end if;
4544 end Check_Indexing_Functions;
4546 ------------------------------
4547 -- Check_Iterator_Functions --
4548 ------------------------------
4550 procedure Check_Iterator_Functions is
4551 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4552 -- Check one possible interpretation for validity
4554 ----------------------------
4555 -- Valid_Default_Iterator --
4556 ----------------------------
4558 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4559 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4560 Formal : Entity_Id;
4562 begin
4563 if not Check_Primitive_Function (Subp) then
4564 return False;
4566 -- The return type must be derived from a type in an instance
4567 -- of Iterator.Interfaces, and thus its root type must have a
4568 -- predefined name.
4570 elsif Chars (Root_T) /= Name_Forward_Iterator
4571 and then Chars (Root_T) /= Name_Reversible_Iterator
4572 then
4573 return False;
4575 else
4576 Formal := First_Formal (Subp);
4577 end if;
4579 -- False if any subsequent formal has no default expression
4581 Formal := Next_Formal (Formal);
4582 while Present (Formal) loop
4583 if No (Expression (Parent (Formal))) then
4584 return False;
4585 end if;
4587 Next_Formal (Formal);
4588 end loop;
4590 -- True if all subsequent formals have default expressions
4592 return True;
4593 end Valid_Default_Iterator;
4595 -- Start of processing for Check_Iterator_Functions
4597 begin
4598 Analyze (Expr);
4600 if not Is_Entity_Name (Expr) then
4601 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4602 end if;
4604 if not Is_Overloaded (Expr) then
4605 if not Check_Primitive_Function (Entity (Expr)) then
4606 Error_Msg_NE
4607 ("aspect Indexing requires a function that applies to type&",
4608 Entity (Expr), Ent);
4609 end if;
4611 -- Flag the default_iterator as well as the denoted function.
4613 if not Valid_Default_Iterator (Entity (Expr)) then
4614 Error_Msg_N ("improper function for default iterator!", Expr);
4615 end if;
4617 else
4618 declare
4619 Default : Entity_Id := Empty;
4620 I : Interp_Index;
4621 It : Interp;
4623 begin
4624 Get_First_Interp (Expr, I, It);
4625 while Present (It.Nam) loop
4626 if not Check_Primitive_Function (It.Nam)
4627 or else not Valid_Default_Iterator (It.Nam)
4628 then
4629 Remove_Interp (I);
4631 elsif Present (Default) then
4633 -- An explicit one should override an implicit one
4635 if Comes_From_Source (Default) =
4636 Comes_From_Source (It.Nam)
4637 then
4638 Error_Msg_N ("default iterator must be unique", Expr);
4639 Error_Msg_Sloc := Sloc (Default);
4640 Error_Msg_N ("\\possible interpretation#", Expr);
4641 Error_Msg_Sloc := Sloc (It.Nam);
4642 Error_Msg_N ("\\possible interpretation#", Expr);
4644 elsif Comes_From_Source (It.Nam) then
4645 Default := It.Nam;
4646 end if;
4647 else
4648 Default := It.Nam;
4649 end if;
4651 Get_Next_Interp (I, It);
4652 end loop;
4654 if Present (Default) then
4655 Set_Entity (Expr, Default);
4656 Set_Is_Overloaded (Expr, False);
4657 else
4658 Error_Msg_N
4659 ("no interpretation is a valid default iterator!", Expr);
4660 end if;
4661 end;
4662 end if;
4663 end Check_Iterator_Functions;
4665 -------------------------------
4666 -- Check_Primitive_Function --
4667 -------------------------------
4669 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4670 Ctrl : Entity_Id;
4672 begin
4673 if Ekind (Subp) /= E_Function then
4674 return False;
4675 end if;
4677 if No (First_Formal (Subp)) then
4678 return False;
4679 else
4680 Ctrl := Etype (First_Formal (Subp));
4681 end if;
4683 -- To be a primitive operation subprogram has to be in same scope.
4685 if Scope (Ctrl) /= Scope (Subp) then
4686 return False;
4687 end if;
4689 -- Type of formal may be the class-wide type, an access to such,
4690 -- or an incomplete view.
4692 if Ctrl = Ent
4693 or else Ctrl = Class_Wide_Type (Ent)
4694 or else
4695 (Ekind (Ctrl) = E_Anonymous_Access_Type
4696 and then (Designated_Type (Ctrl) = Ent
4697 or else
4698 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4699 or else
4700 (Ekind (Ctrl) = E_Incomplete_Type
4701 and then Full_View (Ctrl) = Ent)
4702 then
4703 null;
4704 else
4705 return False;
4706 end if;
4708 return True;
4709 end Check_Primitive_Function;
4711 ----------------------
4712 -- Duplicate_Clause --
4713 ----------------------
4715 function Duplicate_Clause return Boolean is
4716 A : Node_Id;
4718 begin
4719 -- Nothing to do if this attribute definition clause comes from
4720 -- an aspect specification, since we could not be duplicating an
4721 -- explicit clause, and we dealt with the case of duplicated aspects
4722 -- in Analyze_Aspect_Specifications.
4724 if From_Aspect_Specification (N) then
4725 return False;
4726 end if;
4728 -- Otherwise current clause may duplicate previous clause, or a
4729 -- previously given pragma or aspect specification for the same
4730 -- aspect.
4732 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4734 if Present (A) then
4735 Error_Msg_Name_1 := Chars (N);
4736 Error_Msg_Sloc := Sloc (A);
4738 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4739 return True;
4740 end if;
4742 return False;
4743 end Duplicate_Clause;
4745 -- Start of processing for Analyze_Attribute_Definition_Clause
4747 begin
4748 -- The following code is a defense against recursion. Not clear that
4749 -- this can happen legitimately, but perhaps some error situations can
4750 -- cause it, and we did see this recursion during testing.
4752 if Analyzed (N) then
4753 return;
4754 else
4755 Set_Analyzed (N, True);
4756 end if;
4758 Check_Restriction_No_Use_Of_Attribute (N);
4760 -- Ignore some selected attributes in CodePeer mode since they are not
4761 -- relevant in this context.
4763 if CodePeer_Mode then
4764 case Id is
4766 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4767 -- internal representation of types by implicitly packing them.
4769 when Attribute_Component_Size =>
4770 Rewrite (N, Make_Null_Statement (Sloc (N)));
4771 return;
4773 when others =>
4774 null;
4775 end case;
4776 end if;
4778 -- Process Ignore_Rep_Clauses option
4780 if Ignore_Rep_Clauses then
4781 case Id is
4783 -- The following should be ignored. They do not affect legality
4784 -- and may be target dependent. The basic idea of -gnatI is to
4785 -- ignore any rep clauses that may be target dependent but do not
4786 -- affect legality (except possibly to be rejected because they
4787 -- are incompatible with the compilation target).
4789 when Attribute_Alignment
4790 | Attribute_Bit_Order
4791 | Attribute_Component_Size
4792 | Attribute_Default_Scalar_Storage_Order
4793 | Attribute_Machine_Radix
4794 | Attribute_Object_Size
4795 | Attribute_Scalar_Storage_Order
4796 | Attribute_Size
4797 | Attribute_Small
4798 | Attribute_Stream_Size
4799 | Attribute_Value_Size
4801 Kill_Rep_Clause (N);
4802 return;
4804 -- The following should not be ignored, because in the first place
4805 -- they are reasonably portable, and should not cause problems
4806 -- in compiling code from another target, and also they do affect
4807 -- legality, e.g. failing to provide a stream attribute for a type
4808 -- may make a program illegal.
4810 when Attribute_External_Tag
4811 | Attribute_Input
4812 | Attribute_Output
4813 | Attribute_Read
4814 | Attribute_Simple_Storage_Pool
4815 | Attribute_Storage_Pool
4816 | Attribute_Storage_Size
4817 | Attribute_Write
4819 null;
4821 -- We do not do anything here with address clauses, they will be
4822 -- removed by Freeze later on, but for now, it works better to
4823 -- keep them in the tree.
4825 when Attribute_Address =>
4826 null;
4828 -- Other cases are errors ("attribute& cannot be set with
4829 -- definition clause"), which will be caught below.
4831 when others =>
4832 null;
4833 end case;
4834 end if;
4836 Analyze (Nam);
4837 Ent := Entity (Nam);
4839 if Rep_Item_Too_Early (Ent, N) then
4840 return;
4841 end if;
4843 -- Rep clause applies to full view of incomplete type or private type if
4844 -- we have one (if not, this is a premature use of the type). However,
4845 -- certain semantic checks need to be done on the specified entity (i.e.
4846 -- the private view), so we save it in Ent.
4848 if Is_Private_Type (Ent)
4849 and then Is_Derived_Type (Ent)
4850 and then not Is_Tagged_Type (Ent)
4851 and then No (Full_View (Ent))
4852 then
4853 -- If this is a private type whose completion is a derivation from
4854 -- another private type, there is no full view, and the attribute
4855 -- belongs to the type itself, not its underlying parent.
4857 U_Ent := Ent;
4859 elsif Ekind (Ent) = E_Incomplete_Type then
4861 -- The attribute applies to the full view, set the entity of the
4862 -- attribute definition accordingly.
4864 Ent := Underlying_Type (Ent);
4865 U_Ent := Ent;
4866 Set_Entity (Nam, Ent);
4868 else
4869 U_Ent := Underlying_Type (Ent);
4870 end if;
4872 -- Avoid cascaded error
4874 if Etype (Nam) = Any_Type then
4875 return;
4877 -- Must be declared in current scope or in case of an aspect
4878 -- specification, must be visible in current scope.
4880 elsif Scope (Ent) /= Current_Scope
4881 and then
4882 not (From_Aspect_Specification (N)
4883 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4884 then
4885 Error_Msg_N ("entity must be declared in this scope", Nam);
4886 return;
4888 -- Must not be a source renaming (we do have some cases where the
4889 -- expander generates a renaming, and those cases are OK, in such
4890 -- cases any attribute applies to the renamed object as well).
4892 elsif Is_Object (Ent)
4893 and then Present (Renamed_Object (Ent))
4894 then
4895 -- Case of renamed object from source, this is an error
4897 if Comes_From_Source (Renamed_Object (Ent)) then
4898 Get_Name_String (Chars (N));
4899 Error_Msg_Strlen := Name_Len;
4900 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4901 Error_Msg_N
4902 ("~ clause not allowed for a renaming declaration "
4903 & "(RM 13.1(6))", Nam);
4904 return;
4906 -- For the case of a compiler generated renaming, the attribute
4907 -- definition clause applies to the renamed object created by the
4908 -- expander. The easiest general way to handle this is to create a
4909 -- copy of the attribute definition clause for this object.
4911 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4912 Insert_Action (N,
4913 Make_Attribute_Definition_Clause (Loc,
4914 Name =>
4915 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4916 Chars => Chars (N),
4917 Expression => Duplicate_Subexpr (Expression (N))));
4919 -- If the renamed object is not an entity, it must be a dereference
4920 -- of an unconstrained function call, and we must introduce a new
4921 -- declaration to capture the expression. This is needed in the case
4922 -- of 'Alignment, where the original declaration must be rewritten.
4924 else
4925 pragma Assert
4926 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4927 null;
4928 end if;
4930 -- If no underlying entity, use entity itself, applies to some
4931 -- previously detected error cases ???
4933 elsif No (U_Ent) then
4934 U_Ent := Ent;
4936 -- Cannot specify for a subtype (exception Object/Value_Size)
4938 elsif Is_Type (U_Ent)
4939 and then not Is_First_Subtype (U_Ent)
4940 and then Id /= Attribute_Object_Size
4941 and then Id /= Attribute_Value_Size
4942 and then not From_At_Mod (N)
4943 then
4944 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4945 return;
4946 end if;
4948 Set_Entity (N, U_Ent);
4950 -- Switch on particular attribute
4952 case Id is
4954 -------------
4955 -- Address --
4956 -------------
4958 -- Address attribute definition clause
4960 when Attribute_Address => Address : begin
4962 -- A little error check, catch for X'Address use X'Address;
4964 if Nkind (Nam) = N_Identifier
4965 and then Nkind (Expr) = N_Attribute_Reference
4966 and then Attribute_Name (Expr) = Name_Address
4967 and then Nkind (Prefix (Expr)) = N_Identifier
4968 and then Chars (Nam) = Chars (Prefix (Expr))
4969 then
4970 Error_Msg_NE
4971 ("address for & is self-referencing", Prefix (Expr), Ent);
4972 return;
4973 end if;
4975 -- Not that special case, carry on with analysis of expression
4977 Analyze_And_Resolve (Expr, RTE (RE_Address));
4979 -- Even when ignoring rep clauses we need to indicate that the
4980 -- entity has an address clause and thus it is legal to declare
4981 -- it imported. Freeze will get rid of the address clause later.
4982 -- Also call Set_Address_Taken to indicate that an address clause
4983 -- was present, even if we are about to remove it.
4985 if Ignore_Rep_Clauses then
4986 Set_Address_Taken (U_Ent);
4988 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4989 Record_Rep_Item (U_Ent, N);
4990 end if;
4992 return;
4993 end if;
4995 if Duplicate_Clause then
4996 null;
4998 -- Case of address clause for subprogram
5000 elsif Is_Subprogram (U_Ent) then
5001 if Has_Homonym (U_Ent) then
5002 Error_Msg_N
5003 ("address clause cannot be given for overloaded "
5004 & "subprogram", Nam);
5005 return;
5006 end if;
5008 -- For subprograms, all address clauses are permitted, and we
5009 -- mark the subprogram as having a deferred freeze so that Gigi
5010 -- will not elaborate it too soon.
5012 -- Above needs more comments, what is too soon about???
5014 Set_Has_Delayed_Freeze (U_Ent);
5016 -- Case of address clause for entry
5018 elsif Ekind (U_Ent) = E_Entry then
5019 if Nkind (Parent (N)) = N_Task_Body then
5020 Error_Msg_N
5021 ("entry address must be specified in task spec", Nam);
5022 return;
5023 end if;
5025 -- For entries, we require a constant address
5027 Check_Constant_Address_Clause (Expr, U_Ent);
5029 -- Special checks for task types
5031 if Is_Task_Type (Scope (U_Ent))
5032 and then Comes_From_Source (Scope (U_Ent))
5033 then
5034 Error_Msg_N
5035 ("??entry address declared for entry in task type", N);
5036 Error_Msg_N
5037 ("\??only one task can be declared of this type", N);
5038 end if;
5040 -- Entry address clauses are obsolescent
5042 Check_Restriction (No_Obsolescent_Features, N);
5044 if Warn_On_Obsolescent_Feature then
5045 Error_Msg_N
5046 ("?j?attaching interrupt to task entry is an obsolescent "
5047 & "feature (RM J.7.1)", N);
5048 Error_Msg_N
5049 ("\?j?use interrupt procedure instead", N);
5050 end if;
5052 -- Case of an address clause for a class-wide object, which is
5053 -- considered erroneous.
5055 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5056 Error_Msg_NE
5057 ("??class-wide object & must not be overlaid", Nam, U_Ent);
5058 Error_Msg_N
5059 ("\??Program_Error will be raised at run time", Nam);
5060 Insert_Action (Declaration_Node (U_Ent),
5061 Make_Raise_Program_Error (Loc,
5062 Reason => PE_Overlaid_Controlled_Object));
5063 return;
5065 -- Case of address clause for an object
5067 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
5068 declare
5069 Expr : constant Node_Id := Expression (N);
5070 O_Ent : Entity_Id;
5071 Off : Boolean;
5073 begin
5074 -- Exported variables cannot have an address clause, because
5075 -- this cancels the effect of the pragma Export.
5077 if Is_Exported (U_Ent) then
5078 Error_Msg_N
5079 ("cannot export object with address clause", Nam);
5080 return;
5081 end if;
5083 Find_Overlaid_Entity (N, O_Ent, Off);
5085 if Present (O_Ent) then
5087 -- If the object overlays a constant object, mark it so
5089 if Is_Constant_Object (O_Ent) then
5090 Set_Overlays_Constant (U_Ent);
5091 end if;
5093 -- If the address clause is of the form:
5095 -- for X'Address use Y'Address;
5097 -- or
5099 -- C : constant Address := Y'Address;
5100 -- ...
5101 -- for X'Address use C;
5103 -- then we make an entry in the table to check the size
5104 -- and alignment of the overlaying variable. But we defer
5105 -- this check till after code generation to take full
5106 -- advantage of the annotation done by the back end.
5108 -- If the entity has a generic type, the check will be
5109 -- performed in the instance if the actual type justifies
5110 -- it, and we do not insert the clause in the table to
5111 -- prevent spurious warnings.
5113 -- Note: we used to test Comes_From_Source and only give
5114 -- this warning for source entities, but we have removed
5115 -- this test. It really seems bogus to generate overlays
5116 -- that would trigger this warning in generated code.
5117 -- Furthermore, by removing the test, we handle the
5118 -- aspect case properly.
5120 if Is_Object (O_Ent)
5121 and then not Is_Generic_Type (Etype (U_Ent))
5122 and then Address_Clause_Overlay_Warnings
5123 then
5124 Register_Address_Clause_Check
5125 (N, U_Ent, No_Uint, O_Ent, Off);
5126 end if;
5128 -- If the overlay changes the storage order, mark the
5129 -- entity as being volatile to block any optimization
5130 -- for it since the construct is not really supported
5131 -- by the back end.
5133 if (Is_Record_Type (Etype (U_Ent))
5134 or else Is_Array_Type (Etype (U_Ent)))
5135 and then (Is_Record_Type (Etype (O_Ent))
5136 or else Is_Array_Type (Etype (O_Ent)))
5137 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5138 Reverse_Storage_Order (Etype (O_Ent))
5139 then
5140 Set_Treat_As_Volatile (U_Ent);
5141 end if;
5143 else
5144 -- If this is not an overlay, mark a variable as being
5145 -- volatile to prevent unwanted optimizations. It's a
5146 -- conservative interpretation of RM 13.3(19) for the
5147 -- cases where the compiler cannot detect potential
5148 -- aliasing issues easily and it also covers the case
5149 -- of an absolute address where the volatile aspect is
5150 -- kind of implicit.
5152 if Ekind (U_Ent) = E_Variable then
5153 Set_Treat_As_Volatile (U_Ent);
5154 end if;
5156 -- Make an entry in the table for an absolute address as
5157 -- above to check that the value is compatible with the
5158 -- alignment of the object.
5160 declare
5161 Addr : constant Node_Id := Address_Value (Expr);
5162 begin
5163 if Compile_Time_Known_Value (Addr)
5164 and then Address_Clause_Overlay_Warnings
5165 then
5166 Register_Address_Clause_Check
5167 (N, U_Ent, Expr_Value (Addr), Empty, False);
5168 end if;
5169 end;
5170 end if;
5172 -- Issue an unconditional warning for a constant overlaying
5173 -- a variable. For the reverse case, we will issue it only
5174 -- if the variable is modified.
5176 if Ekind (U_Ent) = E_Constant
5177 and then Present (O_Ent)
5178 and then not Overlays_Constant (U_Ent)
5179 and then Address_Clause_Overlay_Warnings
5180 then
5181 Error_Msg_N ("??constant overlays a variable", Expr);
5183 -- Imported variables can have an address clause, but then
5184 -- the import is pretty meaningless except to suppress
5185 -- initializations, so we do not need such variables to
5186 -- be statically allocated (and in fact it causes trouble
5187 -- if the address clause is a local value).
5189 elsif Is_Imported (U_Ent) then
5190 Set_Is_Statically_Allocated (U_Ent, False);
5191 end if;
5193 -- We mark a possible modification of a variable with an
5194 -- address clause, since it is likely aliasing is occurring.
5196 Note_Possible_Modification (Nam, Sure => False);
5198 -- Legality checks on the address clause for initialized
5199 -- objects is deferred until the freeze point, because
5200 -- a subsequent pragma might indicate that the object
5201 -- is imported and thus not initialized. Also, the address
5202 -- clause might involve entities that have yet to be
5203 -- elaborated.
5205 Set_Has_Delayed_Freeze (U_Ent);
5207 -- If an initialization call has been generated for this
5208 -- object, it needs to be deferred to after the freeze node
5209 -- we have just now added, otherwise GIGI will see a
5210 -- reference to the variable (as actual to the IP call)
5211 -- before its definition.
5213 declare
5214 Init_Call : constant Node_Id :=
5215 Remove_Init_Call (U_Ent, N);
5217 begin
5218 if Present (Init_Call) then
5219 Append_Freeze_Action (U_Ent, Init_Call);
5221 -- Reset Initialization_Statements pointer so that
5222 -- if there is a pragma Import further down, it can
5223 -- clear any default initialization.
5225 Set_Initialization_Statements (U_Ent, Init_Call);
5226 end if;
5227 end;
5229 -- Entity has delayed freeze, so we will generate an
5230 -- alignment check at the freeze point unless suppressed.
5232 if not Range_Checks_Suppressed (U_Ent)
5233 and then not Alignment_Checks_Suppressed (U_Ent)
5234 then
5235 Set_Check_Address_Alignment (N);
5236 end if;
5238 -- Kill the size check code, since we are not allocating
5239 -- the variable, it is somewhere else.
5241 Kill_Size_Check_Code (U_Ent);
5242 end;
5244 -- Not a valid entity for an address clause
5246 else
5247 Error_Msg_N ("address cannot be given for &", Nam);
5248 end if;
5249 end Address;
5251 ---------------
5252 -- Alignment --
5253 ---------------
5255 -- Alignment attribute definition clause
5257 when Attribute_Alignment => Alignment : declare
5258 Align : constant Uint := Get_Alignment_Value (Expr);
5259 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5261 begin
5262 FOnly := True;
5264 if not Is_Type (U_Ent)
5265 and then Ekind (U_Ent) /= E_Variable
5266 and then Ekind (U_Ent) /= E_Constant
5267 then
5268 Error_Msg_N ("alignment cannot be given for &", Nam);
5270 elsif Duplicate_Clause then
5271 null;
5273 elsif Align /= No_Uint then
5274 Set_Has_Alignment_Clause (U_Ent);
5276 -- Tagged type case, check for attempt to set alignment to a
5277 -- value greater than Max_Align, and reset if so. This error
5278 -- is suppressed in ASIS mode to allow for different ASIS
5279 -- back ends or ASIS-based tools to query the illegal clause.
5281 if Is_Tagged_Type (U_Ent)
5282 and then Align > Max_Align
5283 and then not ASIS_Mode
5284 then
5285 Error_Msg_N
5286 ("alignment for & set to Maximum_Aligment??", Nam);
5287 Set_Alignment (U_Ent, Max_Align);
5289 -- All other cases
5291 else
5292 Set_Alignment (U_Ent, Align);
5293 end if;
5295 -- For an array type, U_Ent is the first subtype. In that case,
5296 -- also set the alignment of the anonymous base type so that
5297 -- other subtypes (such as the itypes for aggregates of the
5298 -- type) also receive the expected alignment.
5300 if Is_Array_Type (U_Ent) then
5301 Set_Alignment (Base_Type (U_Ent), Align);
5302 end if;
5303 end if;
5304 end Alignment;
5306 ---------------
5307 -- Bit_Order --
5308 ---------------
5310 -- Bit_Order attribute definition clause
5312 when Attribute_Bit_Order =>
5313 if not Is_Record_Type (U_Ent) then
5314 Error_Msg_N
5315 ("Bit_Order can only be defined for record type", Nam);
5317 elsif Duplicate_Clause then
5318 null;
5320 else
5321 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5323 if Etype (Expr) = Any_Type then
5324 return;
5326 elsif not Is_OK_Static_Expression (Expr) then
5327 Flag_Non_Static_Expr
5328 ("Bit_Order requires static expression!", Expr);
5330 else
5331 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5332 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5333 end if;
5334 end if;
5335 end if;
5337 --------------------
5338 -- Component_Size --
5339 --------------------
5341 -- Component_Size attribute definition clause
5343 when Attribute_Component_Size => Component_Size_Case : declare
5344 Csize : constant Uint := Static_Integer (Expr);
5345 Ctyp : Entity_Id;
5346 Btype : Entity_Id;
5347 Biased : Boolean;
5348 New_Ctyp : Entity_Id;
5349 Decl : Node_Id;
5351 begin
5352 if not Is_Array_Type (U_Ent) then
5353 Error_Msg_N ("component size requires array type", Nam);
5354 return;
5355 end if;
5357 Btype := Base_Type (U_Ent);
5358 Ctyp := Component_Type (Btype);
5360 if Duplicate_Clause then
5361 null;
5363 elsif Rep_Item_Too_Early (Btype, N) then
5364 null;
5366 elsif Csize /= No_Uint then
5367 Check_Size (Expr, Ctyp, Csize, Biased);
5369 -- For the biased case, build a declaration for a subtype that
5370 -- will be used to represent the biased subtype that reflects
5371 -- the biased representation of components. We need the subtype
5372 -- to get proper conversions on referencing elements of the
5373 -- array.
5375 if Biased then
5376 New_Ctyp :=
5377 Make_Defining_Identifier (Loc,
5378 Chars =>
5379 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5381 Decl :=
5382 Make_Subtype_Declaration (Loc,
5383 Defining_Identifier => New_Ctyp,
5384 Subtype_Indication =>
5385 New_Occurrence_Of (Component_Type (Btype), Loc));
5387 Set_Parent (Decl, N);
5388 Analyze (Decl, Suppress => All_Checks);
5390 Set_Has_Delayed_Freeze (New_Ctyp, False);
5391 Set_Esize (New_Ctyp, Csize);
5392 Set_RM_Size (New_Ctyp, Csize);
5393 Init_Alignment (New_Ctyp);
5394 Set_Is_Itype (New_Ctyp, True);
5395 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5397 Set_Component_Type (Btype, New_Ctyp);
5398 Set_Biased (New_Ctyp, N, "component size clause");
5399 end if;
5401 Set_Component_Size (Btype, Csize);
5403 -- Deal with warning on overridden size
5405 if Warn_On_Overridden_Size
5406 and then Has_Size_Clause (Ctyp)
5407 and then RM_Size (Ctyp) /= Csize
5408 then
5409 Error_Msg_NE
5410 ("component size overrides size clause for&?S?", N, Ctyp);
5411 end if;
5413 Set_Has_Component_Size_Clause (Btype, True);
5414 Set_Has_Non_Standard_Rep (Btype, True);
5415 end if;
5416 end Component_Size_Case;
5418 -----------------------
5419 -- Constant_Indexing --
5420 -----------------------
5422 when Attribute_Constant_Indexing =>
5423 Check_Indexing_Functions;
5425 ---------
5426 -- CPU --
5427 ---------
5429 when Attribute_CPU =>
5431 -- CPU attribute definition clause not allowed except from aspect
5432 -- specification.
5434 if From_Aspect_Specification (N) then
5435 if not Is_Task_Type (U_Ent) then
5436 Error_Msg_N ("CPU can only be defined for task", Nam);
5438 elsif Duplicate_Clause then
5439 null;
5441 else
5442 -- The expression must be analyzed in the special manner
5443 -- described in "Handling of Default and Per-Object
5444 -- Expressions" in sem.ads.
5446 -- The visibility to the discriminants must be restored
5448 Push_Scope_And_Install_Discriminants (U_Ent);
5449 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5450 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5452 if not Is_OK_Static_Expression (Expr) then
5453 Check_Restriction (Static_Priorities, Expr);
5454 end if;
5455 end if;
5457 else
5458 Error_Msg_N
5459 ("attribute& cannot be set with definition clause", N);
5460 end if;
5462 ----------------------
5463 -- Default_Iterator --
5464 ----------------------
5466 when Attribute_Default_Iterator => Default_Iterator : declare
5467 Func : Entity_Id;
5468 Typ : Entity_Id;
5470 begin
5471 -- If target type is untagged, further checks are irrelevant
5473 if not Is_Tagged_Type (U_Ent) then
5474 Error_Msg_N
5475 ("aspect Default_Iterator applies to tagged type", Nam);
5476 return;
5477 end if;
5479 Check_Iterator_Functions;
5481 Analyze (Expr);
5483 if not Is_Entity_Name (Expr)
5484 or else Ekind (Entity (Expr)) /= E_Function
5485 then
5486 Error_Msg_N ("aspect Iterator must be a function", Expr);
5487 return;
5488 else
5489 Func := Entity (Expr);
5490 end if;
5492 -- The type of the first parameter must be T, T'class, or a
5493 -- corresponding access type (5.5.1 (8/3). If function is
5494 -- parameterless label type accordingly.
5496 if No (First_Formal (Func)) then
5497 Typ := Any_Type;
5498 else
5499 Typ := Etype (First_Formal (Func));
5500 end if;
5502 if Typ = U_Ent
5503 or else Typ = Class_Wide_Type (U_Ent)
5504 or else (Is_Access_Type (Typ)
5505 and then Designated_Type (Typ) = U_Ent)
5506 or else (Is_Access_Type (Typ)
5507 and then Designated_Type (Typ) =
5508 Class_Wide_Type (U_Ent))
5509 then
5510 null;
5512 else
5513 Error_Msg_NE
5514 ("Default Iterator must be a primitive of&", Func, U_Ent);
5515 end if;
5516 end Default_Iterator;
5518 ------------------------
5519 -- Dispatching_Domain --
5520 ------------------------
5522 when Attribute_Dispatching_Domain =>
5524 -- Dispatching_Domain attribute definition clause not allowed
5525 -- except from aspect specification.
5527 if From_Aspect_Specification (N) then
5528 if not Is_Task_Type (U_Ent) then
5529 Error_Msg_N
5530 ("Dispatching_Domain can only be defined for task", Nam);
5532 elsif Duplicate_Clause then
5533 null;
5535 else
5536 -- The expression must be analyzed in the special manner
5537 -- described in "Handling of Default and Per-Object
5538 -- Expressions" in sem.ads.
5540 -- The visibility to the discriminants must be restored
5542 Push_Scope_And_Install_Discriminants (U_Ent);
5544 Preanalyze_Spec_Expression
5545 (Expr, RTE (RE_Dispatching_Domain));
5547 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5548 end if;
5550 else
5551 Error_Msg_N
5552 ("attribute& cannot be set with definition clause", N);
5553 end if;
5555 ------------------
5556 -- External_Tag --
5557 ------------------
5559 when Attribute_External_Tag =>
5560 if not Is_Tagged_Type (U_Ent) then
5561 Error_Msg_N ("should be a tagged type", Nam);
5562 end if;
5564 if Duplicate_Clause then
5565 null;
5567 else
5568 Analyze_And_Resolve (Expr, Standard_String);
5570 if not Is_OK_Static_Expression (Expr) then
5571 Flag_Non_Static_Expr
5572 ("static string required for tag name!", Nam);
5573 end if;
5575 if not Is_Library_Level_Entity (U_Ent) then
5576 Error_Msg_NE
5577 ("??non-unique external tag supplied for &", N, U_Ent);
5578 Error_Msg_N
5579 ("\??same external tag applies to all subprogram calls",
5581 Error_Msg_N
5582 ("\??corresponding internal tag cannot be obtained", N);
5583 end if;
5584 end if;
5586 --------------------------
5587 -- Implicit_Dereference --
5588 --------------------------
5590 when Attribute_Implicit_Dereference =>
5592 -- Legality checks already performed at the point of the type
5593 -- declaration, aspect is not delayed.
5595 null;
5597 -----------
5598 -- Input --
5599 -----------
5601 when Attribute_Input =>
5602 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5603 Set_Has_Specified_Stream_Input (Ent);
5605 ------------------------
5606 -- Interrupt_Priority --
5607 ------------------------
5609 when Attribute_Interrupt_Priority =>
5611 -- Interrupt_Priority attribute definition clause not allowed
5612 -- except from aspect specification.
5614 if From_Aspect_Specification (N) then
5615 if not Is_Concurrent_Type (U_Ent) then
5616 Error_Msg_N
5617 ("Interrupt_Priority can only be defined for task and "
5618 & "protected object", Nam);
5620 elsif Duplicate_Clause then
5621 null;
5623 else
5624 -- The expression must be analyzed in the special manner
5625 -- described in "Handling of Default and Per-Object
5626 -- Expressions" in sem.ads.
5628 -- The visibility to the discriminants must be restored
5630 Push_Scope_And_Install_Discriminants (U_Ent);
5632 Preanalyze_Spec_Expression
5633 (Expr, RTE (RE_Interrupt_Priority));
5635 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5637 -- Check the No_Task_At_Interrupt_Priority restriction
5639 if Is_Task_Type (U_Ent) then
5640 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5641 end if;
5642 end if;
5644 else
5645 Error_Msg_N
5646 ("attribute& cannot be set with definition clause", N);
5647 end if;
5649 --------------
5650 -- Iterable --
5651 --------------
5653 when Attribute_Iterable =>
5654 Analyze (Expr);
5656 if Nkind (Expr) /= N_Aggregate then
5657 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5658 end if;
5660 declare
5661 Assoc : Node_Id;
5663 begin
5664 Assoc := First (Component_Associations (Expr));
5665 while Present (Assoc) loop
5666 if not Is_Entity_Name (Expression (Assoc)) then
5667 Error_Msg_N ("value must be a function", Assoc);
5668 end if;
5670 Next (Assoc);
5671 end loop;
5672 end;
5674 ----------------------
5675 -- Iterator_Element --
5676 ----------------------
5678 when Attribute_Iterator_Element =>
5679 Analyze (Expr);
5681 if not Is_Entity_Name (Expr)
5682 or else not Is_Type (Entity (Expr))
5683 then
5684 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5685 end if;
5687 -------------------
5688 -- Machine_Radix --
5689 -------------------
5691 -- Machine radix attribute definition clause
5693 when Attribute_Machine_Radix => Machine_Radix : declare
5694 Radix : constant Uint := Static_Integer (Expr);
5696 begin
5697 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5698 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5700 elsif Duplicate_Clause then
5701 null;
5703 elsif Radix /= No_Uint then
5704 Set_Has_Machine_Radix_Clause (U_Ent);
5705 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5707 if Radix = 2 then
5708 null;
5710 elsif Radix = 10 then
5711 Set_Machine_Radix_10 (U_Ent);
5713 -- The following error is suppressed in ASIS mode to allow for
5714 -- different ASIS back ends or ASIS-based tools to query the
5715 -- illegal clause.
5717 elsif not ASIS_Mode then
5718 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5719 end if;
5720 end if;
5721 end Machine_Radix;
5723 -----------------
5724 -- Object_Size --
5725 -----------------
5727 -- Object_Size attribute definition clause
5729 when Attribute_Object_Size => Object_Size : declare
5730 Size : constant Uint := Static_Integer (Expr);
5732 Biased : Boolean;
5733 pragma Warnings (Off, Biased);
5735 begin
5736 if not Is_Type (U_Ent) then
5737 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5739 elsif Duplicate_Clause then
5740 null;
5742 else
5743 Check_Size (Expr, U_Ent, Size, Biased);
5745 -- The following errors are suppressed in ASIS mode to allow
5746 -- for different ASIS back ends or ASIS-based tools to query
5747 -- the illegal clause.
5749 if ASIS_Mode then
5750 null;
5752 elsif Is_Scalar_Type (U_Ent) then
5753 if Size /= 8 and then Size /= 16 and then Size /= 32
5754 and then UI_Mod (Size, 64) /= 0
5755 then
5756 Error_Msg_N
5757 ("Object_Size must be 8, 16, 32, or multiple of 64",
5758 Expr);
5759 end if;
5761 elsif Size mod 8 /= 0 then
5762 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5763 end if;
5765 Set_Esize (U_Ent, Size);
5766 Set_Has_Object_Size_Clause (U_Ent);
5767 Alignment_Check_For_Size_Change (U_Ent, Size);
5768 end if;
5769 end Object_Size;
5771 ------------
5772 -- Output --
5773 ------------
5775 when Attribute_Output =>
5776 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5777 Set_Has_Specified_Stream_Output (Ent);
5779 --------------
5780 -- Priority --
5781 --------------
5783 when Attribute_Priority =>
5785 -- Priority attribute definition clause not allowed except from
5786 -- aspect specification.
5788 if From_Aspect_Specification (N) then
5789 if not (Is_Concurrent_Type (U_Ent)
5790 or else Ekind (U_Ent) = E_Procedure)
5791 then
5792 Error_Msg_N
5793 ("Priority can only be defined for task and protected "
5794 & "object", Nam);
5796 elsif Duplicate_Clause then
5797 null;
5799 else
5800 -- The expression must be analyzed in the special manner
5801 -- described in "Handling of Default and Per-Object
5802 -- Expressions" in sem.ads.
5804 -- The visibility to the discriminants must be restored
5806 Push_Scope_And_Install_Discriminants (U_Ent);
5807 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5808 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5810 if not Is_OK_Static_Expression (Expr) then
5811 Check_Restriction (Static_Priorities, Expr);
5812 end if;
5813 end if;
5815 else
5816 Error_Msg_N
5817 ("attribute& cannot be set with definition clause", N);
5818 end if;
5820 ----------
5821 -- Read --
5822 ----------
5824 when Attribute_Read =>
5825 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5826 Set_Has_Specified_Stream_Read (Ent);
5828 --------------------------
5829 -- Scalar_Storage_Order --
5830 --------------------------
5832 -- Scalar_Storage_Order attribute definition clause
5834 when Attribute_Scalar_Storage_Order =>
5835 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5836 Error_Msg_N
5837 ("Scalar_Storage_Order can only be defined for record or "
5838 & "array type", Nam);
5840 elsif Duplicate_Clause then
5841 null;
5843 else
5844 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5846 if Etype (Expr) = Any_Type then
5847 return;
5849 elsif not Is_OK_Static_Expression (Expr) then
5850 Flag_Non_Static_Expr
5851 ("Scalar_Storage_Order requires static expression!", Expr);
5853 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5855 -- Here for the case of a non-default (i.e. non-confirming)
5856 -- Scalar_Storage_Order attribute definition.
5858 if Support_Nondefault_SSO_On_Target then
5859 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5860 else
5861 Error_Msg_N
5862 ("non-default Scalar_Storage_Order not supported on "
5863 & "target", Expr);
5864 end if;
5865 end if;
5867 -- Clear SSO default indications since explicit setting of the
5868 -- order overrides the defaults.
5870 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5871 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5872 end if;
5874 ----------
5875 -- Size --
5876 ----------
5878 -- Size attribute definition clause
5880 when Attribute_Size => Size : declare
5881 Size : constant Uint := Static_Integer (Expr);
5882 Etyp : Entity_Id;
5883 Biased : Boolean;
5885 begin
5886 FOnly := True;
5888 if Duplicate_Clause then
5889 null;
5891 elsif not Is_Type (U_Ent)
5892 and then Ekind (U_Ent) /= E_Variable
5893 and then Ekind (U_Ent) /= E_Constant
5894 then
5895 Error_Msg_N ("size cannot be given for &", Nam);
5897 elsif Is_Array_Type (U_Ent)
5898 and then not Is_Constrained (U_Ent)
5899 then
5900 Error_Msg_N
5901 ("size cannot be given for unconstrained array", Nam);
5903 elsif Size /= No_Uint then
5904 if Is_Type (U_Ent) then
5905 Etyp := U_Ent;
5906 else
5907 Etyp := Etype (U_Ent);
5908 end if;
5910 -- Check size, note that Gigi is in charge of checking that the
5911 -- size of an array or record type is OK. Also we do not check
5912 -- the size in the ordinary fixed-point case, since it is too
5913 -- early to do so (there may be subsequent small clause that
5914 -- affects the size). We can check the size if a small clause
5915 -- has already been given.
5917 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5918 or else Has_Small_Clause (U_Ent)
5919 then
5920 Check_Size (Expr, Etyp, Size, Biased);
5921 Set_Biased (U_Ent, N, "size clause", Biased);
5922 end if;
5924 -- For types set RM_Size and Esize if possible
5926 if Is_Type (U_Ent) then
5927 Set_RM_Size (U_Ent, Size);
5929 -- For elementary types, increase Object_Size to power of 2,
5930 -- but not less than a storage unit in any case (normally
5931 -- this means it will be byte addressable).
5933 -- For all other types, nothing else to do, we leave Esize
5934 -- (object size) unset, the back end will set it from the
5935 -- size and alignment in an appropriate manner.
5937 -- In both cases, we check whether the alignment must be
5938 -- reset in the wake of the size change.
5940 if Is_Elementary_Type (U_Ent) then
5941 if Size <= System_Storage_Unit then
5942 Init_Esize (U_Ent, System_Storage_Unit);
5943 elsif Size <= 16 then
5944 Init_Esize (U_Ent, 16);
5945 elsif Size <= 32 then
5946 Init_Esize (U_Ent, 32);
5947 else
5948 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5949 end if;
5951 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5952 else
5953 Alignment_Check_For_Size_Change (U_Ent, Size);
5954 end if;
5956 -- For objects, set Esize only
5958 else
5959 -- The following error is suppressed in ASIS mode to allow
5960 -- for different ASIS back ends or ASIS-based tools to query
5961 -- the illegal clause.
5963 if Is_Elementary_Type (Etyp)
5964 and then Size /= System_Storage_Unit
5965 and then Size /= System_Storage_Unit * 2
5966 and then Size /= System_Storage_Unit * 4
5967 and then Size /= System_Storage_Unit * 8
5968 and then not ASIS_Mode
5969 then
5970 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5971 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5972 Error_Msg_N
5973 ("size for primitive object must be a power of 2 in "
5974 & "the range ^-^", N);
5975 end if;
5977 Set_Esize (U_Ent, Size);
5978 end if;
5980 Set_Has_Size_Clause (U_Ent);
5981 end if;
5982 end Size;
5984 -----------
5985 -- Small --
5986 -----------
5988 -- Small attribute definition clause
5990 when Attribute_Small => Small : declare
5991 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5992 Small : Ureal;
5994 begin
5995 Analyze_And_Resolve (Expr, Any_Real);
5997 if Etype (Expr) = Any_Type then
5998 return;
6000 elsif not Is_OK_Static_Expression (Expr) then
6001 Flag_Non_Static_Expr
6002 ("small requires static expression!", Expr);
6003 return;
6005 else
6006 Small := Expr_Value_R (Expr);
6008 if Small <= Ureal_0 then
6009 Error_Msg_N ("small value must be greater than zero", Expr);
6010 return;
6011 end if;
6013 end if;
6015 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6016 Error_Msg_N
6017 ("small requires an ordinary fixed point type", Nam);
6019 elsif Has_Small_Clause (U_Ent) then
6020 Error_Msg_N ("small already given for &", Nam);
6022 elsif Small > Delta_Value (U_Ent) then
6023 Error_Msg_N
6024 ("small value must not be greater than delta value", Nam);
6026 else
6027 Set_Small_Value (U_Ent, Small);
6028 Set_Small_Value (Implicit_Base, Small);
6029 Set_Has_Small_Clause (U_Ent);
6030 Set_Has_Small_Clause (Implicit_Base);
6031 Set_Has_Non_Standard_Rep (Implicit_Base);
6032 end if;
6033 end Small;
6035 ------------------
6036 -- Storage_Pool --
6037 ------------------
6039 -- Storage_Pool attribute definition clause
6041 when Attribute_Simple_Storage_Pool
6042 | Attribute_Storage_Pool
6044 Storage_Pool : declare
6045 Pool : Entity_Id;
6046 T : Entity_Id;
6048 begin
6049 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6050 Error_Msg_N
6051 ("storage pool cannot be given for access-to-subprogram type",
6052 Nam);
6053 return;
6055 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
6056 then
6057 Error_Msg_N
6058 ("storage pool can only be given for access types", Nam);
6059 return;
6061 elsif Is_Derived_Type (U_Ent) then
6062 Error_Msg_N
6063 ("storage pool cannot be given for a derived access type",
6064 Nam);
6066 elsif Duplicate_Clause then
6067 return;
6069 elsif Present (Associated_Storage_Pool (U_Ent)) then
6070 Error_Msg_N ("storage pool already given for &", Nam);
6071 return;
6072 end if;
6074 -- Check for Storage_Size previously given
6076 declare
6077 SS : constant Node_Id :=
6078 Get_Attribute_Definition_Clause
6079 (U_Ent, Attribute_Storage_Size);
6080 begin
6081 if Present (SS) then
6082 Check_Pool_Size_Clash (U_Ent, N, SS);
6083 end if;
6084 end;
6086 -- Storage_Pool case
6088 if Id = Attribute_Storage_Pool then
6089 Analyze_And_Resolve
6090 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6092 -- In the Simple_Storage_Pool case, we allow a variable of any
6093 -- simple storage pool type, so we Resolve without imposing an
6094 -- expected type.
6096 else
6097 Analyze_And_Resolve (Expr);
6099 if not Present (Get_Rep_Pragma
6100 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6101 then
6102 Error_Msg_N
6103 ("expression must be of a simple storage pool type", Expr);
6104 end if;
6105 end if;
6107 if not Denotes_Variable (Expr) then
6108 Error_Msg_N ("storage pool must be a variable", Expr);
6109 return;
6110 end if;
6112 if Nkind (Expr) = N_Type_Conversion then
6113 T := Etype (Expression (Expr));
6114 else
6115 T := Etype (Expr);
6116 end if;
6118 -- The Stack_Bounded_Pool is used internally for implementing
6119 -- access types with a Storage_Size. Since it only work properly
6120 -- when used on one specific type, we need to check that it is not
6121 -- hijacked improperly:
6123 -- type T is access Integer;
6124 -- for T'Storage_Size use n;
6125 -- type Q is access Float;
6126 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6128 if RTE_Available (RE_Stack_Bounded_Pool)
6129 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6130 then
6131 Error_Msg_N ("non-shareable internal Pool", Expr);
6132 return;
6133 end if;
6135 -- If the argument is a name that is not an entity name, then
6136 -- we construct a renaming operation to define an entity of
6137 -- type storage pool.
6139 if not Is_Entity_Name (Expr)
6140 and then Is_Object_Reference (Expr)
6141 then
6142 Pool := Make_Temporary (Loc, 'P', Expr);
6144 declare
6145 Rnode : constant Node_Id :=
6146 Make_Object_Renaming_Declaration (Loc,
6147 Defining_Identifier => Pool,
6148 Subtype_Mark =>
6149 New_Occurrence_Of (Etype (Expr), Loc),
6150 Name => Expr);
6152 begin
6153 -- If the attribute definition clause comes from an aspect
6154 -- clause, then insert the renaming before the associated
6155 -- entity's declaration, since the attribute clause has
6156 -- not yet been appended to the declaration list.
6158 if From_Aspect_Specification (N) then
6159 Insert_Before (Parent (Entity (N)), Rnode);
6160 else
6161 Insert_Before (N, Rnode);
6162 end if;
6164 Analyze (Rnode);
6165 Set_Associated_Storage_Pool (U_Ent, Pool);
6166 end;
6168 elsif Is_Entity_Name (Expr) then
6169 Pool := Entity (Expr);
6171 -- If pool is a renamed object, get original one. This can
6172 -- happen with an explicit renaming, and within instances.
6174 while Present (Renamed_Object (Pool))
6175 and then Is_Entity_Name (Renamed_Object (Pool))
6176 loop
6177 Pool := Entity (Renamed_Object (Pool));
6178 end loop;
6180 if Present (Renamed_Object (Pool))
6181 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6182 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6183 then
6184 Pool := Entity (Expression (Renamed_Object (Pool)));
6185 end if;
6187 Set_Associated_Storage_Pool (U_Ent, Pool);
6189 elsif Nkind (Expr) = N_Type_Conversion
6190 and then Is_Entity_Name (Expression (Expr))
6191 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6192 then
6193 Pool := Entity (Expression (Expr));
6194 Set_Associated_Storage_Pool (U_Ent, Pool);
6196 else
6197 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6198 return;
6199 end if;
6200 end Storage_Pool;
6202 ------------------
6203 -- Storage_Size --
6204 ------------------
6206 -- Storage_Size attribute definition clause
6208 when Attribute_Storage_Size => Storage_Size : declare
6209 Btype : constant Entity_Id := Base_Type (U_Ent);
6211 begin
6212 if Is_Task_Type (U_Ent) then
6214 -- Check obsolescent (but never obsolescent if from aspect)
6216 if not From_Aspect_Specification (N) then
6217 Check_Restriction (No_Obsolescent_Features, N);
6219 if Warn_On_Obsolescent_Feature then
6220 Error_Msg_N
6221 ("?j?storage size clause for task is an obsolescent "
6222 & "feature (RM J.9)", N);
6223 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6224 end if;
6225 end if;
6227 FOnly := True;
6228 end if;
6230 if not Is_Access_Type (U_Ent)
6231 and then Ekind (U_Ent) /= E_Task_Type
6232 then
6233 Error_Msg_N ("storage size cannot be given for &", Nam);
6235 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6236 Error_Msg_N
6237 ("storage size cannot be given for a derived access type",
6238 Nam);
6240 elsif Duplicate_Clause then
6241 null;
6243 else
6244 Analyze_And_Resolve (Expr, Any_Integer);
6246 if Is_Access_Type (U_Ent) then
6248 -- Check for Storage_Pool previously given
6250 declare
6251 SP : constant Node_Id :=
6252 Get_Attribute_Definition_Clause
6253 (U_Ent, Attribute_Storage_Pool);
6255 begin
6256 if Present (SP) then
6257 Check_Pool_Size_Clash (U_Ent, SP, N);
6258 end if;
6259 end;
6261 -- Special case of for x'Storage_Size use 0
6263 if Is_OK_Static_Expression (Expr)
6264 and then Expr_Value (Expr) = 0
6265 then
6266 Set_No_Pool_Assigned (Btype);
6267 end if;
6268 end if;
6270 Set_Has_Storage_Size_Clause (Btype);
6271 end if;
6272 end Storage_Size;
6274 -----------------
6275 -- Stream_Size --
6276 -----------------
6278 when Attribute_Stream_Size => Stream_Size : declare
6279 Size : constant Uint := Static_Integer (Expr);
6281 begin
6282 if Ada_Version <= Ada_95 then
6283 Check_Restriction (No_Implementation_Attributes, N);
6284 end if;
6286 if Duplicate_Clause then
6287 null;
6289 elsif Is_Elementary_Type (U_Ent) then
6291 -- The following errors are suppressed in ASIS mode to allow
6292 -- for different ASIS back ends or ASIS-based tools to query
6293 -- the illegal clause.
6295 if ASIS_Mode then
6296 null;
6298 elsif Size /= System_Storage_Unit
6299 and then Size /= System_Storage_Unit * 2
6300 and then Size /= System_Storage_Unit * 4
6301 and then Size /= System_Storage_Unit * 8
6302 then
6303 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6304 Error_Msg_N
6305 ("stream size for elementary type must be a power of 2 "
6306 & "and at least ^", N);
6308 elsif RM_Size (U_Ent) > Size then
6309 Error_Msg_Uint_1 := RM_Size (U_Ent);
6310 Error_Msg_N
6311 ("stream size for elementary type must be a power of 2 "
6312 & "and at least ^", N);
6313 end if;
6315 Set_Has_Stream_Size_Clause (U_Ent);
6317 else
6318 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6319 end if;
6320 end Stream_Size;
6322 ----------------
6323 -- Value_Size --
6324 ----------------
6326 -- Value_Size attribute definition clause
6328 when Attribute_Value_Size => Value_Size : declare
6329 Size : constant Uint := Static_Integer (Expr);
6330 Biased : Boolean;
6332 begin
6333 if not Is_Type (U_Ent) then
6334 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6336 elsif Duplicate_Clause then
6337 null;
6339 elsif Is_Array_Type (U_Ent)
6340 and then not Is_Constrained (U_Ent)
6341 then
6342 Error_Msg_N
6343 ("Value_Size cannot be given for unconstrained array", Nam);
6345 else
6346 if Is_Elementary_Type (U_Ent) then
6347 Check_Size (Expr, U_Ent, Size, Biased);
6348 Set_Biased (U_Ent, N, "value size clause", Biased);
6349 end if;
6351 Set_RM_Size (U_Ent, Size);
6352 end if;
6353 end Value_Size;
6355 -----------------------
6356 -- Variable_Indexing --
6357 -----------------------
6359 when Attribute_Variable_Indexing =>
6360 Check_Indexing_Functions;
6362 -----------
6363 -- Write --
6364 -----------
6366 when Attribute_Write =>
6367 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6368 Set_Has_Specified_Stream_Write (Ent);
6370 -- All other attributes cannot be set
6372 when others =>
6373 Error_Msg_N
6374 ("attribute& cannot be set with definition clause", N);
6375 end case;
6377 -- The test for the type being frozen must be performed after any
6378 -- expression the clause has been analyzed since the expression itself
6379 -- might cause freezing that makes the clause illegal.
6381 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6382 return;
6383 end if;
6384 end Analyze_Attribute_Definition_Clause;
6386 ----------------------------
6387 -- Analyze_Code_Statement --
6388 ----------------------------
6390 procedure Analyze_Code_Statement (N : Node_Id) is
6391 HSS : constant Node_Id := Parent (N);
6392 SBody : constant Node_Id := Parent (HSS);
6393 Subp : constant Entity_Id := Current_Scope;
6394 Stmt : Node_Id;
6395 Decl : Node_Id;
6396 StmtO : Node_Id;
6397 DeclO : Node_Id;
6399 begin
6400 -- Accept foreign code statements for CodePeer. The analysis is skipped
6401 -- to avoid rejecting unrecognized constructs.
6403 if CodePeer_Mode then
6404 Set_Analyzed (N);
6405 return;
6406 end if;
6408 -- Analyze and check we get right type, note that this implements the
6409 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6410 -- the only way that Asm_Insn could possibly be visible.
6412 Analyze_And_Resolve (Expression (N));
6414 if Etype (Expression (N)) = Any_Type then
6415 return;
6416 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6417 Error_Msg_N ("incorrect type for code statement", N);
6418 return;
6419 end if;
6421 Check_Code_Statement (N);
6423 -- Make sure we appear in the handled statement sequence of a subprogram
6424 -- (RM 13.8(3)).
6426 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6427 or else Nkind (SBody) /= N_Subprogram_Body
6428 then
6429 Error_Msg_N
6430 ("code statement can only appear in body of subprogram", N);
6431 return;
6432 end if;
6434 -- Do remaining checks (RM 13.8(3)) if not already done
6436 if not Is_Machine_Code_Subprogram (Subp) then
6437 Set_Is_Machine_Code_Subprogram (Subp);
6439 -- No exception handlers allowed
6441 if Present (Exception_Handlers (HSS)) then
6442 Error_Msg_N
6443 ("exception handlers not permitted in machine code subprogram",
6444 First (Exception_Handlers (HSS)));
6445 end if;
6447 -- No declarations other than use clauses and pragmas (we allow
6448 -- certain internally generated declarations as well).
6450 Decl := First (Declarations (SBody));
6451 while Present (Decl) loop
6452 DeclO := Original_Node (Decl);
6453 if Comes_From_Source (DeclO)
6454 and not Nkind_In (DeclO, N_Pragma,
6455 N_Use_Package_Clause,
6456 N_Use_Type_Clause,
6457 N_Implicit_Label_Declaration)
6458 then
6459 Error_Msg_N
6460 ("this declaration not allowed in machine code subprogram",
6461 DeclO);
6462 end if;
6464 Next (Decl);
6465 end loop;
6467 -- No statements other than code statements, pragmas, and labels.
6468 -- Again we allow certain internally generated statements.
6470 -- In Ada 2012, qualified expressions are names, and the code
6471 -- statement is initially parsed as a procedure call.
6473 Stmt := First (Statements (HSS));
6474 while Present (Stmt) loop
6475 StmtO := Original_Node (Stmt);
6477 -- A procedure call transformed into a code statement is OK
6479 if Ada_Version >= Ada_2012
6480 and then Nkind (StmtO) = N_Procedure_Call_Statement
6481 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6482 then
6483 null;
6485 elsif Comes_From_Source (StmtO)
6486 and then not Nkind_In (StmtO, N_Pragma,
6487 N_Label,
6488 N_Code_Statement)
6489 then
6490 Error_Msg_N
6491 ("this statement is not allowed in machine code subprogram",
6492 StmtO);
6493 end if;
6495 Next (Stmt);
6496 end loop;
6497 end if;
6498 end Analyze_Code_Statement;
6500 -----------------------------------------------
6501 -- Analyze_Enumeration_Representation_Clause --
6502 -----------------------------------------------
6504 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6505 Ident : constant Node_Id := Identifier (N);
6506 Aggr : constant Node_Id := Array_Aggregate (N);
6507 Enumtype : Entity_Id;
6508 Elit : Entity_Id;
6509 Expr : Node_Id;
6510 Assoc : Node_Id;
6511 Choice : Node_Id;
6512 Val : Uint;
6514 Err : Boolean := False;
6515 -- Set True to avoid cascade errors and crashes on incorrect source code
6517 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6518 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6519 -- Allowed range of universal integer (= allowed range of enum lit vals)
6521 Min : Uint;
6522 Max : Uint;
6523 -- Minimum and maximum values of entries
6525 Max_Node : Node_Id := Empty; -- init to avoid warning
6526 -- Pointer to node for literal providing max value
6528 begin
6529 if Ignore_Rep_Clauses then
6530 Kill_Rep_Clause (N);
6531 return;
6532 end if;
6534 -- Ignore enumeration rep clauses by default in CodePeer mode,
6535 -- unless -gnatd.I is specified, as a work around for potential false
6536 -- positive messages.
6538 if CodePeer_Mode and not Debug_Flag_Dot_II then
6539 return;
6540 end if;
6542 -- First some basic error checks
6544 Find_Type (Ident);
6545 Enumtype := Entity (Ident);
6547 if Enumtype = Any_Type
6548 or else Rep_Item_Too_Early (Enumtype, N)
6549 then
6550 return;
6551 else
6552 Enumtype := Underlying_Type (Enumtype);
6553 end if;
6555 if not Is_Enumeration_Type (Enumtype) then
6556 Error_Msg_NE
6557 ("enumeration type required, found}",
6558 Ident, First_Subtype (Enumtype));
6559 return;
6560 end if;
6562 -- Ignore rep clause on generic actual type. This will already have
6563 -- been flagged on the template as an error, and this is the safest
6564 -- way to ensure we don't get a junk cascaded message in the instance.
6566 if Is_Generic_Actual_Type (Enumtype) then
6567 return;
6569 -- Type must be in current scope
6571 elsif Scope (Enumtype) /= Current_Scope then
6572 Error_Msg_N ("type must be declared in this scope", Ident);
6573 return;
6575 -- Type must be a first subtype
6577 elsif not Is_First_Subtype (Enumtype) then
6578 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6579 return;
6581 -- Ignore duplicate rep clause
6583 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6584 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6585 return;
6587 -- Don't allow rep clause for standard [wide_[wide_]]character
6589 elsif Is_Standard_Character_Type (Enumtype) then
6590 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6591 return;
6593 -- Check that the expression is a proper aggregate (no parentheses)
6595 elsif Paren_Count (Aggr) /= 0 then
6596 Error_Msg
6597 ("extra parentheses surrounding aggregate not allowed",
6598 First_Sloc (Aggr));
6599 return;
6601 -- All tests passed, so set rep clause in place
6603 else
6604 Set_Has_Enumeration_Rep_Clause (Enumtype);
6605 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6606 end if;
6608 -- Now we process the aggregate. Note that we don't use the normal
6609 -- aggregate code for this purpose, because we don't want any of the
6610 -- normal expansion activities, and a number of special semantic
6611 -- rules apply (including the component type being any integer type)
6613 Elit := First_Literal (Enumtype);
6615 -- First the positional entries if any
6617 if Present (Expressions (Aggr)) then
6618 Expr := First (Expressions (Aggr));
6619 while Present (Expr) loop
6620 if No (Elit) then
6621 Error_Msg_N ("too many entries in aggregate", Expr);
6622 return;
6623 end if;
6625 Val := Static_Integer (Expr);
6627 -- Err signals that we found some incorrect entries processing
6628 -- the list. The final checks for completeness and ordering are
6629 -- skipped in this case.
6631 if Val = No_Uint then
6632 Err := True;
6634 elsif Val < Lo or else Hi < Val then
6635 Error_Msg_N ("value outside permitted range", Expr);
6636 Err := True;
6637 end if;
6639 Set_Enumeration_Rep (Elit, Val);
6640 Set_Enumeration_Rep_Expr (Elit, Expr);
6641 Next (Expr);
6642 Next (Elit);
6643 end loop;
6644 end if;
6646 -- Now process the named entries if present
6648 if Present (Component_Associations (Aggr)) then
6649 Assoc := First (Component_Associations (Aggr));
6650 while Present (Assoc) loop
6651 Choice := First (Choices (Assoc));
6653 if Present (Next (Choice)) then
6654 Error_Msg_N
6655 ("multiple choice not allowed here", Next (Choice));
6656 Err := True;
6657 end if;
6659 if Nkind (Choice) = N_Others_Choice then
6660 Error_Msg_N ("others choice not allowed here", Choice);
6661 Err := True;
6663 elsif Nkind (Choice) = N_Range then
6665 -- ??? should allow zero/one element range here
6667 Error_Msg_N ("range not allowed here", Choice);
6668 Err := True;
6670 else
6671 Analyze_And_Resolve (Choice, Enumtype);
6673 if Error_Posted (Choice) then
6674 Err := True;
6675 end if;
6677 if not Err then
6678 if Is_Entity_Name (Choice)
6679 and then Is_Type (Entity (Choice))
6680 then
6681 Error_Msg_N ("subtype name not allowed here", Choice);
6682 Err := True;
6684 -- ??? should allow static subtype with zero/one entry
6686 elsif Etype (Choice) = Base_Type (Enumtype) then
6687 if not Is_OK_Static_Expression (Choice) then
6688 Flag_Non_Static_Expr
6689 ("non-static expression used for choice!", Choice);
6690 Err := True;
6692 else
6693 Elit := Expr_Value_E (Choice);
6695 if Present (Enumeration_Rep_Expr (Elit)) then
6696 Error_Msg_Sloc :=
6697 Sloc (Enumeration_Rep_Expr (Elit));
6698 Error_Msg_NE
6699 ("representation for& previously given#",
6700 Choice, Elit);
6701 Err := True;
6702 end if;
6704 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6706 Expr := Expression (Assoc);
6707 Val := Static_Integer (Expr);
6709 if Val = No_Uint then
6710 Err := True;
6712 elsif Val < Lo or else Hi < Val then
6713 Error_Msg_N ("value outside permitted range", Expr);
6714 Err := True;
6715 end if;
6717 Set_Enumeration_Rep (Elit, Val);
6718 end if;
6719 end if;
6720 end if;
6721 end if;
6723 Next (Assoc);
6724 end loop;
6725 end if;
6727 -- Aggregate is fully processed. Now we check that a full set of
6728 -- representations was given, and that they are in range and in order.
6729 -- These checks are only done if no other errors occurred.
6731 if not Err then
6732 Min := No_Uint;
6733 Max := No_Uint;
6735 Elit := First_Literal (Enumtype);
6736 while Present (Elit) loop
6737 if No (Enumeration_Rep_Expr (Elit)) then
6738 Error_Msg_NE ("missing representation for&!", N, Elit);
6740 else
6741 Val := Enumeration_Rep (Elit);
6743 if Min = No_Uint then
6744 Min := Val;
6745 end if;
6747 if Val /= No_Uint then
6748 if Max /= No_Uint and then Val <= Max then
6749 Error_Msg_NE
6750 ("enumeration value for& not ordered!",
6751 Enumeration_Rep_Expr (Elit), Elit);
6752 end if;
6754 Max_Node := Enumeration_Rep_Expr (Elit);
6755 Max := Val;
6756 end if;
6758 -- If there is at least one literal whose representation is not
6759 -- equal to the Pos value, then note that this enumeration type
6760 -- has a non-standard representation.
6762 if Val /= Enumeration_Pos (Elit) then
6763 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6764 end if;
6765 end if;
6767 Next (Elit);
6768 end loop;
6770 -- Now set proper size information
6772 declare
6773 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6775 begin
6776 if Has_Size_Clause (Enumtype) then
6778 -- All OK, if size is OK now
6780 if RM_Size (Enumtype) >= Minsize then
6781 null;
6783 else
6784 -- Try if we can get by with biasing
6786 Minsize :=
6787 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6789 -- Error message if even biasing does not work
6791 if RM_Size (Enumtype) < Minsize then
6792 Error_Msg_Uint_1 := RM_Size (Enumtype);
6793 Error_Msg_Uint_2 := Max;
6794 Error_Msg_N
6795 ("previously given size (^) is too small "
6796 & "for this value (^)", Max_Node);
6798 -- If biasing worked, indicate that we now have biased rep
6800 else
6801 Set_Biased
6802 (Enumtype, Size_Clause (Enumtype), "size clause");
6803 end if;
6804 end if;
6806 else
6807 Set_RM_Size (Enumtype, Minsize);
6808 Set_Enum_Esize (Enumtype);
6809 end if;
6811 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6812 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6813 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6814 end;
6815 end if;
6817 -- We repeat the too late test in case it froze itself
6819 if Rep_Item_Too_Late (Enumtype, N) then
6820 null;
6821 end if;
6822 end Analyze_Enumeration_Representation_Clause;
6824 ----------------------------
6825 -- Analyze_Free_Statement --
6826 ----------------------------
6828 procedure Analyze_Free_Statement (N : Node_Id) is
6829 begin
6830 Analyze (Expression (N));
6831 end Analyze_Free_Statement;
6833 ---------------------------
6834 -- Analyze_Freeze_Entity --
6835 ---------------------------
6837 procedure Analyze_Freeze_Entity (N : Node_Id) is
6838 begin
6839 Freeze_Entity_Checks (N);
6840 end Analyze_Freeze_Entity;
6842 -----------------------------------
6843 -- Analyze_Freeze_Generic_Entity --
6844 -----------------------------------
6846 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6847 E : constant Entity_Id := Entity (N);
6849 begin
6850 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6851 Analyze_Aspects_At_Freeze_Point (E);
6852 end if;
6854 Freeze_Entity_Checks (N);
6855 end Analyze_Freeze_Generic_Entity;
6857 ------------------------------------------
6858 -- Analyze_Record_Representation_Clause --
6859 ------------------------------------------
6861 -- Note: we check as much as we can here, but we can't do any checks
6862 -- based on the position values (e.g. overlap checks) until freeze time
6863 -- because especially in Ada 2005 (machine scalar mode), the processing
6864 -- for non-standard bit order can substantially change the positions.
6865 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6866 -- for the remainder of this processing.
6868 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6869 Ident : constant Node_Id := Identifier (N);
6870 Biased : Boolean;
6871 CC : Node_Id;
6872 Comp : Entity_Id;
6873 Fbit : Uint;
6874 Hbit : Uint := Uint_0;
6875 Lbit : Uint;
6876 Ocomp : Entity_Id;
6877 Posit : Uint;
6878 Rectype : Entity_Id;
6879 Recdef : Node_Id;
6881 function Is_Inherited (Comp : Entity_Id) return Boolean;
6882 -- True if Comp is an inherited component in a record extension
6884 ------------------
6885 -- Is_Inherited --
6886 ------------------
6888 function Is_Inherited (Comp : Entity_Id) return Boolean is
6889 Comp_Base : Entity_Id;
6891 begin
6892 if Ekind (Rectype) = E_Record_Subtype then
6893 Comp_Base := Original_Record_Component (Comp);
6894 else
6895 Comp_Base := Comp;
6896 end if;
6898 return Comp_Base /= Original_Record_Component (Comp_Base);
6899 end Is_Inherited;
6901 -- Local variables
6903 Is_Record_Extension : Boolean;
6904 -- True if Rectype is a record extension
6906 CR_Pragma : Node_Id := Empty;
6907 -- Points to N_Pragma node if Complete_Representation pragma present
6909 -- Start of processing for Analyze_Record_Representation_Clause
6911 begin
6912 if Ignore_Rep_Clauses then
6913 Kill_Rep_Clause (N);
6914 return;
6915 end if;
6917 Find_Type (Ident);
6918 Rectype := Entity (Ident);
6920 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6921 return;
6922 else
6923 Rectype := Underlying_Type (Rectype);
6924 end if;
6926 -- First some basic error checks
6928 if not Is_Record_Type (Rectype) then
6929 Error_Msg_NE
6930 ("record type required, found}", Ident, First_Subtype (Rectype));
6931 return;
6933 elsif Scope (Rectype) /= Current_Scope then
6934 Error_Msg_N ("type must be declared in this scope", N);
6935 return;
6937 elsif not Is_First_Subtype (Rectype) then
6938 Error_Msg_N ("cannot give record rep clause for subtype", N);
6939 return;
6941 elsif Has_Record_Rep_Clause (Rectype) then
6942 Error_Msg_N ("duplicate record rep clause ignored", N);
6943 return;
6945 elsif Rep_Item_Too_Late (Rectype, N) then
6946 return;
6947 end if;
6949 -- We know we have a first subtype, now possibly go to the anonymous
6950 -- base type to determine whether Rectype is a record extension.
6952 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6953 Is_Record_Extension :=
6954 Nkind (Recdef) = N_Derived_Type_Definition
6955 and then Present (Record_Extension_Part (Recdef));
6957 if Present (Mod_Clause (N)) then
6958 declare
6959 Loc : constant Source_Ptr := Sloc (N);
6960 M : constant Node_Id := Mod_Clause (N);
6961 P : constant List_Id := Pragmas_Before (M);
6962 AtM_Nod : Node_Id;
6964 Mod_Val : Uint;
6965 pragma Warnings (Off, Mod_Val);
6967 begin
6968 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6970 if Warn_On_Obsolescent_Feature then
6971 Error_Msg_N
6972 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6973 Error_Msg_N
6974 ("\?j?use alignment attribute definition clause instead", N);
6975 end if;
6977 if Present (P) then
6978 Analyze_List (P);
6979 end if;
6981 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6982 -- the Mod clause into an alignment clause anyway, so that the
6983 -- back end can compute and back-annotate properly the size and
6984 -- alignment of types that may include this record.
6986 -- This seems dubious, this destroys the source tree in a manner
6987 -- not detectable by ASIS ???
6989 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6990 AtM_Nod :=
6991 Make_Attribute_Definition_Clause (Loc,
6992 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6993 Chars => Name_Alignment,
6994 Expression => Relocate_Node (Expression (M)));
6996 Set_From_At_Mod (AtM_Nod);
6997 Insert_After (N, AtM_Nod);
6998 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6999 Set_Mod_Clause (N, Empty);
7001 else
7002 -- Get the alignment value to perform error checking
7004 Mod_Val := Get_Alignment_Value (Expression (M));
7005 end if;
7006 end;
7007 end if;
7009 -- For untagged types, clear any existing component clauses for the
7010 -- type. If the type is derived, this is what allows us to override
7011 -- a rep clause for the parent. For type extensions, the representation
7012 -- of the inherited components is inherited, so we want to keep previous
7013 -- component clauses for completeness.
7015 if not Is_Tagged_Type (Rectype) then
7016 Comp := First_Component_Or_Discriminant (Rectype);
7017 while Present (Comp) loop
7018 Set_Component_Clause (Comp, Empty);
7019 Next_Component_Or_Discriminant (Comp);
7020 end loop;
7021 end if;
7023 -- All done if no component clauses
7025 CC := First (Component_Clauses (N));
7027 if No (CC) then
7028 return;
7029 end if;
7031 -- A representation like this applies to the base type
7033 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7034 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7035 Set_Has_Specified_Layout (Base_Type (Rectype));
7037 -- Process the component clauses
7039 while Present (CC) loop
7041 -- Pragma
7043 if Nkind (CC) = N_Pragma then
7044 Analyze (CC);
7046 -- The only pragma of interest is Complete_Representation
7048 if Pragma_Name (CC) = Name_Complete_Representation then
7049 CR_Pragma := CC;
7050 end if;
7052 -- Processing for real component clause
7054 else
7055 Posit := Static_Integer (Position (CC));
7056 Fbit := Static_Integer (First_Bit (CC));
7057 Lbit := Static_Integer (Last_Bit (CC));
7059 if Posit /= No_Uint
7060 and then Fbit /= No_Uint
7061 and then Lbit /= No_Uint
7062 then
7063 if Posit < 0 then
7064 Error_Msg_N ("position cannot be negative", Position (CC));
7066 elsif Fbit < 0 then
7067 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
7069 -- The Last_Bit specified in a component clause must not be
7070 -- less than the First_Bit minus one (RM-13.5.1(10)).
7072 elsif Lbit < Fbit - 1 then
7073 Error_Msg_N
7074 ("last bit cannot be less than first bit minus one",
7075 Last_Bit (CC));
7077 -- Values look OK, so find the corresponding record component
7078 -- Even though the syntax allows an attribute reference for
7079 -- implementation-defined components, GNAT does not allow the
7080 -- tag to get an explicit position.
7082 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7083 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7084 Error_Msg_N ("position of tag cannot be specified", CC);
7085 else
7086 Error_Msg_N ("illegal component name", CC);
7087 end if;
7089 else
7090 Comp := First_Entity (Rectype);
7091 while Present (Comp) loop
7092 exit when Chars (Comp) = Chars (Component_Name (CC));
7093 Next_Entity (Comp);
7094 end loop;
7096 if No (Comp) then
7098 -- Maybe component of base type that is absent from
7099 -- statically constrained first subtype.
7101 Comp := First_Entity (Base_Type (Rectype));
7102 while Present (Comp) loop
7103 exit when Chars (Comp) = Chars (Component_Name (CC));
7104 Next_Entity (Comp);
7105 end loop;
7106 end if;
7108 if No (Comp) then
7109 Error_Msg_N
7110 ("component clause is for non-existent field", CC);
7112 -- Ada 2012 (AI05-0026): Any name that denotes a
7113 -- discriminant of an object of an unchecked union type
7114 -- shall not occur within a record_representation_clause.
7116 -- The general restriction of using record rep clauses on
7117 -- Unchecked_Union types has now been lifted. Since it is
7118 -- possible to introduce a record rep clause which mentions
7119 -- the discriminant of an Unchecked_Union in non-Ada 2012
7120 -- code, this check is applied to all versions of the
7121 -- language.
7123 elsif Ekind (Comp) = E_Discriminant
7124 and then Is_Unchecked_Union (Rectype)
7125 then
7126 Error_Msg_N
7127 ("cannot reference discriminant of unchecked union",
7128 Component_Name (CC));
7130 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7131 Error_Msg_NE
7132 ("component clause not allowed for inherited "
7133 & "component&", CC, Comp);
7135 elsif Present (Component_Clause (Comp)) then
7137 -- Diagnose duplicate rep clause, or check consistency
7138 -- if this is an inherited component. In a double fault,
7139 -- there may be a duplicate inconsistent clause for an
7140 -- inherited component.
7142 if Scope (Original_Record_Component (Comp)) = Rectype
7143 or else Parent (Component_Clause (Comp)) = N
7144 then
7145 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7146 Error_Msg_N ("component clause previously given#", CC);
7148 else
7149 declare
7150 Rep1 : constant Node_Id := Component_Clause (Comp);
7151 begin
7152 if Intval (Position (Rep1)) /=
7153 Intval (Position (CC))
7154 or else Intval (First_Bit (Rep1)) /=
7155 Intval (First_Bit (CC))
7156 or else Intval (Last_Bit (Rep1)) /=
7157 Intval (Last_Bit (CC))
7158 then
7159 Error_Msg_N
7160 ("component clause inconsistent with "
7161 & "representation of ancestor", CC);
7163 elsif Warn_On_Redundant_Constructs then
7164 Error_Msg_N
7165 ("?r?redundant confirming component clause "
7166 & "for component!", CC);
7167 end if;
7168 end;
7169 end if;
7171 -- Normal case where this is the first component clause we
7172 -- have seen for this entity, so set it up properly.
7174 else
7175 -- Make reference for field in record rep clause and set
7176 -- appropriate entity field in the field identifier.
7178 Generate_Reference
7179 (Comp, Component_Name (CC), Set_Ref => False);
7180 Set_Entity (Component_Name (CC), Comp);
7182 -- Update Fbit and Lbit to the actual bit number
7184 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7185 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7187 if Has_Size_Clause (Rectype)
7188 and then RM_Size (Rectype) <= Lbit
7189 then
7190 Error_Msg_N
7191 ("bit number out of range of specified size",
7192 Last_Bit (CC));
7193 else
7194 Set_Component_Clause (Comp, CC);
7195 Set_Component_Bit_Offset (Comp, Fbit);
7196 Set_Esize (Comp, 1 + (Lbit - Fbit));
7197 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7198 Set_Normalized_Position (Comp, Fbit / SSU);
7200 if Warn_On_Overridden_Size
7201 and then Has_Size_Clause (Etype (Comp))
7202 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7203 then
7204 Error_Msg_NE
7205 ("?S?component size overrides size clause for&",
7206 Component_Name (CC), Etype (Comp));
7207 end if;
7209 -- This information is also set in the corresponding
7210 -- component of the base type, found by accessing the
7211 -- Original_Record_Component link if it is present.
7213 Ocomp := Original_Record_Component (Comp);
7215 if Hbit < Lbit then
7216 Hbit := Lbit;
7217 end if;
7219 Check_Size
7220 (Component_Name (CC),
7221 Etype (Comp),
7222 Esize (Comp),
7223 Biased);
7225 Set_Biased
7226 (Comp, First_Node (CC), "component clause", Biased);
7228 if Present (Ocomp) then
7229 Set_Component_Clause (Ocomp, CC);
7230 Set_Component_Bit_Offset (Ocomp, Fbit);
7231 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7232 Set_Normalized_Position (Ocomp, Fbit / SSU);
7233 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7235 Set_Normalized_Position_Max
7236 (Ocomp, Normalized_Position (Ocomp));
7238 -- Note: we don't use Set_Biased here, because we
7239 -- already gave a warning above if needed, and we
7240 -- would get a duplicate for the same name here.
7242 Set_Has_Biased_Representation
7243 (Ocomp, Has_Biased_Representation (Comp));
7244 end if;
7246 if Esize (Comp) < 0 then
7247 Error_Msg_N ("component size is negative", CC);
7248 end if;
7249 end if;
7250 end if;
7251 end if;
7252 end if;
7253 end if;
7255 Next (CC);
7256 end loop;
7258 -- Check missing components if Complete_Representation pragma appeared
7260 if Present (CR_Pragma) then
7261 Comp := First_Component_Or_Discriminant (Rectype);
7262 while Present (Comp) loop
7263 if No (Component_Clause (Comp)) then
7264 Error_Msg_NE
7265 ("missing component clause for &", CR_Pragma, Comp);
7266 end if;
7268 Next_Component_Or_Discriminant (Comp);
7269 end loop;
7271 -- Give missing components warning if required
7273 elsif Warn_On_Unrepped_Components then
7274 declare
7275 Num_Repped_Components : Nat := 0;
7276 Num_Unrepped_Components : Nat := 0;
7278 begin
7279 -- First count number of repped and unrepped components
7281 Comp := First_Component_Or_Discriminant (Rectype);
7282 while Present (Comp) loop
7283 if Present (Component_Clause (Comp)) then
7284 Num_Repped_Components := Num_Repped_Components + 1;
7285 else
7286 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7287 end if;
7289 Next_Component_Or_Discriminant (Comp);
7290 end loop;
7292 -- We are only interested in the case where there is at least one
7293 -- unrepped component, and at least half the components have rep
7294 -- clauses. We figure that if less than half have them, then the
7295 -- partial rep clause is really intentional. If the component
7296 -- type has no underlying type set at this point (as for a generic
7297 -- formal type), we don't know enough to give a warning on the
7298 -- component.
7300 if Num_Unrepped_Components > 0
7301 and then Num_Unrepped_Components < Num_Repped_Components
7302 then
7303 Comp := First_Component_Or_Discriminant (Rectype);
7304 while Present (Comp) loop
7305 if No (Component_Clause (Comp))
7306 and then Comes_From_Source (Comp)
7307 and then Present (Underlying_Type (Etype (Comp)))
7308 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7309 or else Size_Known_At_Compile_Time
7310 (Underlying_Type (Etype (Comp))))
7311 and then not Has_Warnings_Off (Rectype)
7313 -- Ignore discriminant in unchecked union, since it is
7314 -- not there, and cannot have a component clause.
7316 and then (not Is_Unchecked_Union (Rectype)
7317 or else Ekind (Comp) /= E_Discriminant)
7318 then
7319 Error_Msg_Sloc := Sloc (Comp);
7320 Error_Msg_NE
7321 ("?C?no component clause given for & declared #",
7322 N, Comp);
7323 end if;
7325 Next_Component_Or_Discriminant (Comp);
7326 end loop;
7327 end if;
7328 end;
7329 end if;
7330 end Analyze_Record_Representation_Clause;
7332 -------------------------------------
7333 -- Build_Discrete_Static_Predicate --
7334 -------------------------------------
7336 procedure Build_Discrete_Static_Predicate
7337 (Typ : Entity_Id;
7338 Expr : Node_Id;
7339 Nam : Name_Id)
7341 Loc : constant Source_Ptr := Sloc (Expr);
7343 Non_Static : exception;
7344 -- Raised if something non-static is found
7346 Btyp : constant Entity_Id := Base_Type (Typ);
7348 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7349 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7350 -- Low bound and high bound value of base type of Typ
7352 TLo : Uint;
7353 THi : Uint;
7354 -- Bounds for constructing the static predicate. We use the bound of the
7355 -- subtype if it is static, otherwise the corresponding base type bound.
7356 -- Note: a non-static subtype can have a static predicate.
7358 type REnt is record
7359 Lo, Hi : Uint;
7360 end record;
7361 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7362 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7363 -- value.
7365 type RList is array (Nat range <>) of REnt;
7366 -- A list of ranges. The ranges are sorted in increasing order, and are
7367 -- disjoint (there is a gap of at least one value between each range in
7368 -- the table). A value is in the set of ranges in Rlist if it lies
7369 -- within one of these ranges.
7371 False_Range : constant RList :=
7372 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7373 -- An empty set of ranges represents a range list that can never be
7374 -- satisfied, since there are no ranges in which the value could lie,
7375 -- so it does not lie in any of them. False_Range is a canonical value
7376 -- for this empty set, but general processing should test for an Rlist
7377 -- with length zero (see Is_False predicate), since other null ranges
7378 -- may appear which must be treated as False.
7380 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7381 -- Range representing True, value must be in the base range
7383 function "and" (Left : RList; Right : RList) return RList;
7384 -- And's together two range lists, returning a range list. This is a set
7385 -- intersection operation.
7387 function "or" (Left : RList; Right : RList) return RList;
7388 -- Or's together two range lists, returning a range list. This is a set
7389 -- union operation.
7391 function "not" (Right : RList) return RList;
7392 -- Returns complement of a given range list, i.e. a range list
7393 -- representing all the values in TLo .. THi that are not in the input
7394 -- operand Right.
7396 function Build_Val (V : Uint) return Node_Id;
7397 -- Return an analyzed N_Identifier node referencing this value, suitable
7398 -- for use as an entry in the Static_Discrte_Predicate list. This node
7399 -- is typed with the base type.
7401 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7402 -- Return an analyzed N_Range node referencing this range, suitable for
7403 -- use as an entry in the Static_Discrete_Predicate list. This node is
7404 -- typed with the base type.
7406 function Get_RList (Exp : Node_Id) return RList;
7407 -- This is a recursive routine that converts the given expression into a
7408 -- list of ranges, suitable for use in building the static predicate.
7410 function Is_False (R : RList) return Boolean;
7411 pragma Inline (Is_False);
7412 -- Returns True if the given range list is empty, and thus represents a
7413 -- False list of ranges that can never be satisfied.
7415 function Is_True (R : RList) return Boolean;
7416 -- Returns True if R trivially represents the True predicate by having a
7417 -- single range from BLo to BHi.
7419 function Is_Type_Ref (N : Node_Id) return Boolean;
7420 pragma Inline (Is_Type_Ref);
7421 -- Returns if True if N is a reference to the type for the predicate in
7422 -- the expression (i.e. if it is an identifier whose Chars field matches
7423 -- the Nam given in the call). N must not be parenthesized, if the type
7424 -- name appears in parens, this routine will return False.
7426 function Lo_Val (N : Node_Id) return Uint;
7427 -- Given an entry from a Static_Discrete_Predicate list that is either
7428 -- a static expression or static range, gets either the expression value
7429 -- or the low bound of the range.
7431 function Hi_Val (N : Node_Id) return Uint;
7432 -- Given an entry from a Static_Discrete_Predicate list that is either
7433 -- a static expression or static range, gets either the expression value
7434 -- or the high bound of the range.
7436 function Membership_Entry (N : Node_Id) return RList;
7437 -- Given a single membership entry (range, value, or subtype), returns
7438 -- the corresponding range list. Raises Static_Error if not static.
7440 function Membership_Entries (N : Node_Id) return RList;
7441 -- Given an element on an alternatives list of a membership operation,
7442 -- returns the range list corresponding to this entry and all following
7443 -- entries (i.e. returns the "or" of this list of values).
7445 function Stat_Pred (Typ : Entity_Id) return RList;
7446 -- Given a type, if it has a static predicate, then return the predicate
7447 -- as a range list, otherwise raise Non_Static.
7449 -----------
7450 -- "and" --
7451 -----------
7453 function "and" (Left : RList; Right : RList) return RList is
7454 FEnt : REnt;
7455 -- First range of result
7457 SLeft : Nat := Left'First;
7458 -- Start of rest of left entries
7460 SRight : Nat := Right'First;
7461 -- Start of rest of right entries
7463 begin
7464 -- If either range is True, return the other
7466 if Is_True (Left) then
7467 return Right;
7468 elsif Is_True (Right) then
7469 return Left;
7470 end if;
7472 -- If either range is False, return False
7474 if Is_False (Left) or else Is_False (Right) then
7475 return False_Range;
7476 end if;
7478 -- Loop to remove entries at start that are disjoint, and thus just
7479 -- get discarded from the result entirely.
7481 loop
7482 -- If no operands left in either operand, result is false
7484 if SLeft > Left'Last or else SRight > Right'Last then
7485 return False_Range;
7487 -- Discard first left operand entry if disjoint with right
7489 elsif Left (SLeft).Hi < Right (SRight).Lo then
7490 SLeft := SLeft + 1;
7492 -- Discard first right operand entry if disjoint with left
7494 elsif Right (SRight).Hi < Left (SLeft).Lo then
7495 SRight := SRight + 1;
7497 -- Otherwise we have an overlapping entry
7499 else
7500 exit;
7501 end if;
7502 end loop;
7504 -- Now we have two non-null operands, and first entries overlap. The
7505 -- first entry in the result will be the overlapping part of these
7506 -- two entries.
7508 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7509 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7511 -- Now we can remove the entry that ended at a lower value, since its
7512 -- contribution is entirely contained in Fent.
7514 if Left (SLeft).Hi <= Right (SRight).Hi then
7515 SLeft := SLeft + 1;
7516 else
7517 SRight := SRight + 1;
7518 end if;
7520 -- Compute result by concatenating this first entry with the "and" of
7521 -- the remaining parts of the left and right operands. Note that if
7522 -- either of these is empty, "and" will yield empty, so that we will
7523 -- end up with just Fent, which is what we want in that case.
7525 return
7526 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7527 end "and";
7529 -----------
7530 -- "not" --
7531 -----------
7533 function "not" (Right : RList) return RList is
7534 begin
7535 -- Return True if False range
7537 if Is_False (Right) then
7538 return True_Range;
7539 end if;
7541 -- Return False if True range
7543 if Is_True (Right) then
7544 return False_Range;
7545 end if;
7547 -- Here if not trivial case
7549 declare
7550 Result : RList (1 .. Right'Length + 1);
7551 -- May need one more entry for gap at beginning and end
7553 Count : Nat := 0;
7554 -- Number of entries stored in Result
7556 begin
7557 -- Gap at start
7559 if Right (Right'First).Lo > TLo then
7560 Count := Count + 1;
7561 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7562 end if;
7564 -- Gaps between ranges
7566 for J in Right'First .. Right'Last - 1 loop
7567 Count := Count + 1;
7568 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7569 end loop;
7571 -- Gap at end
7573 if Right (Right'Last).Hi < THi then
7574 Count := Count + 1;
7575 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7576 end if;
7578 return Result (1 .. Count);
7579 end;
7580 end "not";
7582 ----------
7583 -- "or" --
7584 ----------
7586 function "or" (Left : RList; Right : RList) return RList is
7587 FEnt : REnt;
7588 -- First range of result
7590 SLeft : Nat := Left'First;
7591 -- Start of rest of left entries
7593 SRight : Nat := Right'First;
7594 -- Start of rest of right entries
7596 begin
7597 -- If either range is True, return True
7599 if Is_True (Left) or else Is_True (Right) then
7600 return True_Range;
7601 end if;
7603 -- If either range is False (empty), return the other
7605 if Is_False (Left) then
7606 return Right;
7607 elsif Is_False (Right) then
7608 return Left;
7609 end if;
7611 -- Initialize result first entry from left or right operand depending
7612 -- on which starts with the lower range.
7614 if Left (SLeft).Lo < Right (SRight).Lo then
7615 FEnt := Left (SLeft);
7616 SLeft := SLeft + 1;
7617 else
7618 FEnt := Right (SRight);
7619 SRight := SRight + 1;
7620 end if;
7622 -- This loop eats ranges from left and right operands that are
7623 -- contiguous with the first range we are gathering.
7625 loop
7626 -- Eat first entry in left operand if contiguous or overlapped by
7627 -- gathered first operand of result.
7629 if SLeft <= Left'Last
7630 and then Left (SLeft).Lo <= FEnt.Hi + 1
7631 then
7632 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7633 SLeft := SLeft + 1;
7635 -- Eat first entry in right operand if contiguous or overlapped by
7636 -- gathered right operand of result.
7638 elsif SRight <= Right'Last
7639 and then Right (SRight).Lo <= FEnt.Hi + 1
7640 then
7641 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7642 SRight := SRight + 1;
7644 -- All done if no more entries to eat
7646 else
7647 exit;
7648 end if;
7649 end loop;
7651 -- Obtain result as the first entry we just computed, concatenated
7652 -- to the "or" of the remaining results (if one operand is empty,
7653 -- this will just concatenate with the other
7655 return
7656 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7657 end "or";
7659 -----------------
7660 -- Build_Range --
7661 -----------------
7663 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7664 Result : Node_Id;
7665 begin
7666 Result :=
7667 Make_Range (Loc,
7668 Low_Bound => Build_Val (Lo),
7669 High_Bound => Build_Val (Hi));
7670 Set_Etype (Result, Btyp);
7671 Set_Analyzed (Result);
7672 return Result;
7673 end Build_Range;
7675 ---------------
7676 -- Build_Val --
7677 ---------------
7679 function Build_Val (V : Uint) return Node_Id is
7680 Result : Node_Id;
7682 begin
7683 if Is_Enumeration_Type (Typ) then
7684 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7685 else
7686 Result := Make_Integer_Literal (Loc, V);
7687 end if;
7689 Set_Etype (Result, Btyp);
7690 Set_Is_Static_Expression (Result);
7691 Set_Analyzed (Result);
7692 return Result;
7693 end Build_Val;
7695 ---------------
7696 -- Get_RList --
7697 ---------------
7699 function Get_RList (Exp : Node_Id) return RList is
7700 Op : Node_Kind;
7701 Val : Uint;
7703 begin
7704 -- Static expression can only be true or false
7706 if Is_OK_Static_Expression (Exp) then
7707 if Expr_Value (Exp) = 0 then
7708 return False_Range;
7709 else
7710 return True_Range;
7711 end if;
7712 end if;
7714 -- Otherwise test node type
7716 Op := Nkind (Exp);
7718 case Op is
7720 -- And
7722 when N_And_Then
7723 | N_Op_And
7725 return Get_RList (Left_Opnd (Exp))
7727 Get_RList (Right_Opnd (Exp));
7729 -- Or
7731 when N_Op_Or
7732 | N_Or_Else
7734 return Get_RList (Left_Opnd (Exp))
7736 Get_RList (Right_Opnd (Exp));
7738 -- Not
7740 when N_Op_Not =>
7741 return not Get_RList (Right_Opnd (Exp));
7743 -- Comparisons of type with static value
7745 when N_Op_Compare =>
7747 -- Type is left operand
7749 if Is_Type_Ref (Left_Opnd (Exp))
7750 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7751 then
7752 Val := Expr_Value (Right_Opnd (Exp));
7754 -- Typ is right operand
7756 elsif Is_Type_Ref (Right_Opnd (Exp))
7757 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7758 then
7759 Val := Expr_Value (Left_Opnd (Exp));
7761 -- Invert sense of comparison
7763 case Op is
7764 when N_Op_Gt => Op := N_Op_Lt;
7765 when N_Op_Lt => Op := N_Op_Gt;
7766 when N_Op_Ge => Op := N_Op_Le;
7767 when N_Op_Le => Op := N_Op_Ge;
7768 when others => null;
7769 end case;
7771 -- Other cases are non-static
7773 else
7774 raise Non_Static;
7775 end if;
7777 -- Construct range according to comparison operation
7779 case Op is
7780 when N_Op_Eq =>
7781 return RList'(1 => REnt'(Val, Val));
7783 when N_Op_Ge =>
7784 return RList'(1 => REnt'(Val, BHi));
7786 when N_Op_Gt =>
7787 return RList'(1 => REnt'(Val + 1, BHi));
7789 when N_Op_Le =>
7790 return RList'(1 => REnt'(BLo, Val));
7792 when N_Op_Lt =>
7793 return RList'(1 => REnt'(BLo, Val - 1));
7795 when N_Op_Ne =>
7796 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7798 when others =>
7799 raise Program_Error;
7800 end case;
7802 -- Membership (IN)
7804 when N_In =>
7805 if not Is_Type_Ref (Left_Opnd (Exp)) then
7806 raise Non_Static;
7807 end if;
7809 if Present (Right_Opnd (Exp)) then
7810 return Membership_Entry (Right_Opnd (Exp));
7811 else
7812 return Membership_Entries (First (Alternatives (Exp)));
7813 end if;
7815 -- Negative membership (NOT IN)
7817 when N_Not_In =>
7818 if not Is_Type_Ref (Left_Opnd (Exp)) then
7819 raise Non_Static;
7820 end if;
7822 if Present (Right_Opnd (Exp)) then
7823 return not Membership_Entry (Right_Opnd (Exp));
7824 else
7825 return not Membership_Entries (First (Alternatives (Exp)));
7826 end if;
7828 -- Function call, may be call to static predicate
7830 when N_Function_Call =>
7831 if Is_Entity_Name (Name (Exp)) then
7832 declare
7833 Ent : constant Entity_Id := Entity (Name (Exp));
7834 begin
7835 if Is_Predicate_Function (Ent)
7836 or else
7837 Is_Predicate_Function_M (Ent)
7838 then
7839 return Stat_Pred (Etype (First_Formal (Ent)));
7840 end if;
7841 end;
7842 end if;
7844 -- Other function call cases are non-static
7846 raise Non_Static;
7848 -- Qualified expression, dig out the expression
7850 when N_Qualified_Expression =>
7851 return Get_RList (Expression (Exp));
7853 when N_Case_Expression =>
7854 declare
7855 Alt : Node_Id;
7856 Choices : List_Id;
7857 Dep : Node_Id;
7859 begin
7860 if not Is_Entity_Name (Expression (Expr))
7861 or else Etype (Expression (Expr)) /= Typ
7862 then
7863 Error_Msg_N
7864 ("expression must denaote subtype", Expression (Expr));
7865 return False_Range;
7866 end if;
7868 -- Collect discrete choices in all True alternatives
7870 Choices := New_List;
7871 Alt := First (Alternatives (Exp));
7872 while Present (Alt) loop
7873 Dep := Expression (Alt);
7875 if not Is_OK_Static_Expression (Dep) then
7876 raise Non_Static;
7878 elsif Is_True (Expr_Value (Dep)) then
7879 Append_List_To (Choices,
7880 New_Copy_List (Discrete_Choices (Alt)));
7881 end if;
7883 Next (Alt);
7884 end loop;
7886 return Membership_Entries (First (Choices));
7887 end;
7889 -- Expression with actions: if no actions, dig out expression
7891 when N_Expression_With_Actions =>
7892 if Is_Empty_List (Actions (Exp)) then
7893 return Get_RList (Expression (Exp));
7894 else
7895 raise Non_Static;
7896 end if;
7898 -- Xor operator
7900 when N_Op_Xor =>
7901 return (Get_RList (Left_Opnd (Exp))
7902 and not Get_RList (Right_Opnd (Exp)))
7903 or (Get_RList (Right_Opnd (Exp))
7904 and not Get_RList (Left_Opnd (Exp)));
7906 -- Any other node type is non-static
7908 when others =>
7909 raise Non_Static;
7910 end case;
7911 end Get_RList;
7913 ------------
7914 -- Hi_Val --
7915 ------------
7917 function Hi_Val (N : Node_Id) return Uint is
7918 begin
7919 if Is_OK_Static_Expression (N) then
7920 return Expr_Value (N);
7921 else
7922 pragma Assert (Nkind (N) = N_Range);
7923 return Expr_Value (High_Bound (N));
7924 end if;
7925 end Hi_Val;
7927 --------------
7928 -- Is_False --
7929 --------------
7931 function Is_False (R : RList) return Boolean is
7932 begin
7933 return R'Length = 0;
7934 end Is_False;
7936 -------------
7937 -- Is_True --
7938 -------------
7940 function Is_True (R : RList) return Boolean is
7941 begin
7942 return R'Length = 1
7943 and then R (R'First).Lo = BLo
7944 and then R (R'First).Hi = BHi;
7945 end Is_True;
7947 -----------------
7948 -- Is_Type_Ref --
7949 -----------------
7951 function Is_Type_Ref (N : Node_Id) return Boolean is
7952 begin
7953 return Nkind (N) = N_Identifier
7954 and then Chars (N) = Nam
7955 and then Paren_Count (N) = 0;
7956 end Is_Type_Ref;
7958 ------------
7959 -- Lo_Val --
7960 ------------
7962 function Lo_Val (N : Node_Id) return Uint is
7963 begin
7964 if Is_OK_Static_Expression (N) then
7965 return Expr_Value (N);
7966 else
7967 pragma Assert (Nkind (N) = N_Range);
7968 return Expr_Value (Low_Bound (N));
7969 end if;
7970 end Lo_Val;
7972 ------------------------
7973 -- Membership_Entries --
7974 ------------------------
7976 function Membership_Entries (N : Node_Id) return RList is
7977 begin
7978 if No (Next (N)) then
7979 return Membership_Entry (N);
7980 else
7981 return Membership_Entry (N) or Membership_Entries (Next (N));
7982 end if;
7983 end Membership_Entries;
7985 ----------------------
7986 -- Membership_Entry --
7987 ----------------------
7989 function Membership_Entry (N : Node_Id) return RList is
7990 Val : Uint;
7991 SLo : Uint;
7992 SHi : Uint;
7994 begin
7995 -- Range case
7997 if Nkind (N) = N_Range then
7998 if not Is_OK_Static_Expression (Low_Bound (N))
7999 or else
8000 not Is_OK_Static_Expression (High_Bound (N))
8001 then
8002 raise Non_Static;
8003 else
8004 SLo := Expr_Value (Low_Bound (N));
8005 SHi := Expr_Value (High_Bound (N));
8006 return RList'(1 => REnt'(SLo, SHi));
8007 end if;
8009 -- Static expression case
8011 elsif Is_OK_Static_Expression (N) then
8012 Val := Expr_Value (N);
8013 return RList'(1 => REnt'(Val, Val));
8015 -- Identifier (other than static expression) case
8017 else pragma Assert (Nkind (N) = N_Identifier);
8019 -- Type case
8021 if Is_Type (Entity (N)) then
8023 -- If type has predicates, process them
8025 if Has_Predicates (Entity (N)) then
8026 return Stat_Pred (Entity (N));
8028 -- For static subtype without predicates, get range
8030 elsif Is_OK_Static_Subtype (Entity (N)) then
8031 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8032 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8033 return RList'(1 => REnt'(SLo, SHi));
8035 -- Any other type makes us non-static
8037 else
8038 raise Non_Static;
8039 end if;
8041 -- Any other kind of identifier in predicate (e.g. a non-static
8042 -- expression value) means this is not a static predicate.
8044 else
8045 raise Non_Static;
8046 end if;
8047 end if;
8048 end Membership_Entry;
8050 ---------------
8051 -- Stat_Pred --
8052 ---------------
8054 function Stat_Pred (Typ : Entity_Id) return RList is
8055 begin
8056 -- Not static if type does not have static predicates
8058 if not Has_Static_Predicate (Typ) then
8059 raise Non_Static;
8060 end if;
8062 -- Otherwise we convert the predicate list to a range list
8064 declare
8065 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8066 Result : RList (1 .. List_Length (Spred));
8067 P : Node_Id;
8069 begin
8070 P := First (Static_Discrete_Predicate (Typ));
8071 for J in Result'Range loop
8072 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8073 Next (P);
8074 end loop;
8076 return Result;
8077 end;
8078 end Stat_Pred;
8080 -- Start of processing for Build_Discrete_Static_Predicate
8082 begin
8083 -- Establish bounds for the predicate
8085 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8086 TLo := Expr_Value (Type_Low_Bound (Typ));
8087 else
8088 TLo := BLo;
8089 end if;
8091 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8092 THi := Expr_Value (Type_High_Bound (Typ));
8093 else
8094 THi := BHi;
8095 end if;
8097 -- Analyze the expression to see if it is a static predicate
8099 declare
8100 Ranges : constant RList := Get_RList (Expr);
8101 -- Range list from expression if it is static
8103 Plist : List_Id;
8105 begin
8106 -- Convert range list into a form for the static predicate. In the
8107 -- Ranges array, we just have raw ranges, these must be converted
8108 -- to properly typed and analyzed static expressions or range nodes.
8110 -- Note: here we limit ranges to the ranges of the subtype, so that
8111 -- a predicate is always false for values outside the subtype. That
8112 -- seems fine, such values are invalid anyway, and considering them
8113 -- to fail the predicate seems allowed and friendly, and furthermore
8114 -- simplifies processing for case statements and loops.
8116 Plist := New_List;
8118 for J in Ranges'Range loop
8119 declare
8120 Lo : Uint := Ranges (J).Lo;
8121 Hi : Uint := Ranges (J).Hi;
8123 begin
8124 -- Ignore completely out of range entry
8126 if Hi < TLo or else Lo > THi then
8127 null;
8129 -- Otherwise process entry
8131 else
8132 -- Adjust out of range value to subtype range
8134 if Lo < TLo then
8135 Lo := TLo;
8136 end if;
8138 if Hi > THi then
8139 Hi := THi;
8140 end if;
8142 -- Convert range into required form
8144 Append_To (Plist, Build_Range (Lo, Hi));
8145 end if;
8146 end;
8147 end loop;
8149 -- Processing was successful and all entries were static, so now we
8150 -- can store the result as the predicate list.
8152 Set_Static_Discrete_Predicate (Typ, Plist);
8154 -- The processing for static predicates put the expression into
8155 -- canonical form as a series of ranges. It also eliminated
8156 -- duplicates and collapsed and combined ranges. We might as well
8157 -- replace the alternatives list of the right operand of the
8158 -- membership test with the static predicate list, which will
8159 -- usually be more efficient.
8161 declare
8162 New_Alts : constant List_Id := New_List;
8163 Old_Node : Node_Id;
8164 New_Node : Node_Id;
8166 begin
8167 Old_Node := First (Plist);
8168 while Present (Old_Node) loop
8169 New_Node := New_Copy (Old_Node);
8171 if Nkind (New_Node) = N_Range then
8172 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8173 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8174 end if;
8176 Append_To (New_Alts, New_Node);
8177 Next (Old_Node);
8178 end loop;
8180 -- If empty list, replace by False
8182 if Is_Empty_List (New_Alts) then
8183 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8185 -- Else replace by set membership test
8187 else
8188 Rewrite (Expr,
8189 Make_In (Loc,
8190 Left_Opnd => Make_Identifier (Loc, Nam),
8191 Right_Opnd => Empty,
8192 Alternatives => New_Alts));
8194 -- Resolve new expression in function context
8196 Install_Formals (Predicate_Function (Typ));
8197 Push_Scope (Predicate_Function (Typ));
8198 Analyze_And_Resolve (Expr, Standard_Boolean);
8199 Pop_Scope;
8200 end if;
8201 end;
8202 end;
8204 -- If non-static, return doing nothing
8206 exception
8207 when Non_Static =>
8208 return;
8209 end Build_Discrete_Static_Predicate;
8211 --------------------------------
8212 -- Build_Export_Import_Pragma --
8213 --------------------------------
8215 function Build_Export_Import_Pragma
8216 (Asp : Node_Id;
8217 Id : Entity_Id) return Node_Id
8219 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8220 Expr : constant Node_Id := Expression (Asp);
8221 Loc : constant Source_Ptr := Sloc (Asp);
8223 Args : List_Id;
8224 Conv : Node_Id;
8225 Conv_Arg : Node_Id;
8226 Dummy_1 : Node_Id;
8227 Dummy_2 : Node_Id;
8228 EN : Node_Id;
8229 LN : Node_Id;
8230 Prag : Node_Id;
8232 Create_Pragma : Boolean := False;
8233 -- This flag is set when the aspect form is such that it warrants the
8234 -- creation of a corresponding pragma.
8236 begin
8237 if Present (Expr) then
8238 if Error_Posted (Expr) then
8239 null;
8241 elsif Is_True (Expr_Value (Expr)) then
8242 Create_Pragma := True;
8243 end if;
8245 -- Otherwise the aspect defaults to True
8247 else
8248 Create_Pragma := True;
8249 end if;
8251 -- Nothing to do when the expression is False or is erroneous
8253 if not Create_Pragma then
8254 return Empty;
8255 end if;
8257 -- Obtain all interfacing aspects that apply to the related entity
8259 Get_Interfacing_Aspects
8260 (Iface_Asp => Asp,
8261 Conv_Asp => Conv,
8262 EN_Asp => EN,
8263 Expo_Asp => Dummy_1,
8264 Imp_Asp => Dummy_2,
8265 LN_Asp => LN);
8267 Args := New_List;
8269 -- Handle the convention argument
8271 if Present (Conv) then
8272 Conv_Arg := New_Copy_Tree (Expression (Conv));
8274 -- Assume convention "Ada' when aspect Convention is missing
8276 else
8277 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8278 end if;
8280 Append_To (Args,
8281 Make_Pragma_Argument_Association (Loc,
8282 Chars => Name_Convention,
8283 Expression => Conv_Arg));
8285 -- Handle the entity argument
8287 Append_To (Args,
8288 Make_Pragma_Argument_Association (Loc,
8289 Chars => Name_Entity,
8290 Expression => New_Occurrence_Of (Id, Loc)));
8292 -- Handle the External_Name argument
8294 if Present (EN) then
8295 Append_To (Args,
8296 Make_Pragma_Argument_Association (Loc,
8297 Chars => Name_External_Name,
8298 Expression => New_Copy_Tree (Expression (EN))));
8299 end if;
8301 -- Handle the Link_Name argument
8303 if Present (LN) then
8304 Append_To (Args,
8305 Make_Pragma_Argument_Association (Loc,
8306 Chars => Name_Link_Name,
8307 Expression => New_Copy_Tree (Expression (LN))));
8308 end if;
8310 -- Generate:
8311 -- pragma Export/Import
8312 -- (Convention => <Conv>/Ada,
8313 -- Entity => <Id>,
8314 -- [External_Name => <EN>,]
8315 -- [Link_Name => <LN>]);
8317 Prag :=
8318 Make_Pragma (Loc,
8319 Pragma_Identifier =>
8320 Make_Identifier (Loc, Chars (Identifier (Asp))),
8321 Pragma_Argument_Associations => Args);
8323 -- Decorate the relevant aspect and the pragma
8325 Set_Aspect_Rep_Item (Asp, Prag);
8327 Set_Corresponding_Aspect (Prag, Asp);
8328 Set_From_Aspect_Specification (Prag);
8329 Set_Parent (Prag, Asp);
8331 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8332 Set_Import_Pragma (Id, Prag);
8333 end if;
8335 return Prag;
8336 end Build_Export_Import_Pragma;
8338 -------------------------------
8339 -- Build_Predicate_Functions --
8340 -------------------------------
8342 -- The functions that are constructed here have the form:
8344 -- function typPredicate (Ixxx : typ) return Boolean is
8345 -- begin
8346 -- return
8347 -- typ1Predicate (typ1 (Ixxx))
8348 -- and then typ2Predicate (typ2 (Ixxx))
8349 -- and then ...
8350 -- and then exp1 and then exp2 and then ...;
8351 -- end typPredicate;
8353 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8354 -- this is the point at which these expressions get analyzed, providing the
8355 -- required delay, and typ1, typ2, are entities from which predicates are
8356 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8357 -- use this function even if checks are off, e.g. for membership tests.
8359 -- Note that the inherited predicates are evaluated first, as required by
8360 -- AI12-0071-1.
8362 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8363 -- the form of this return expression.
8365 -- If the expression has at least one Raise_Expression, then we also build
8366 -- the typPredicateM version of the function, in which any occurrence of a
8367 -- Raise_Expression is converted to "return False".
8369 -- WARNING: This routine manages Ghost regions. Return statements must be
8370 -- replaced by gotos which jump to the end of the routine and restore the
8371 -- Ghost mode.
8373 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8374 Loc : constant Source_Ptr := Sloc (Typ);
8376 Expr : Node_Id;
8377 -- This is the expression for the result of the function. It is
8378 -- is build by connecting the component predicates with AND THEN.
8380 Expr_M : Node_Id := Empty; -- init to avoid warning
8381 -- This is the corresponding return expression for the Predicate_M
8382 -- function. It differs in that raise expressions are marked for
8383 -- special expansion (see Process_REs).
8385 Object_Name : Name_Id;
8386 -- Name for argument of Predicate procedure. Note that we use the same
8387 -- name for both predicate functions. That way the reference within the
8388 -- predicate expression is the same in both functions.
8390 Object_Entity : Entity_Id;
8391 -- Entity for argument of Predicate procedure
8393 Object_Entity_M : Entity_Id;
8394 -- Entity for argument of separate Predicate procedure when exceptions
8395 -- are present in expression.
8397 FDecl : Node_Id;
8398 -- The function declaration
8400 SId : Entity_Id;
8401 -- Its entity
8403 Raise_Expression_Present : Boolean := False;
8404 -- Set True if Expr has at least one Raise_Expression
8406 procedure Add_Condition (Cond : Node_Id);
8407 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8408 -- Expr is empty).
8410 procedure Add_Predicates;
8411 -- Appends expressions for any Predicate pragmas in the rep item chain
8412 -- Typ to Expr. Note that we look only at items for this exact entity.
8413 -- Inheritance of predicates for the parent type is done by calling the
8414 -- Predicate_Function of the parent type, using Add_Call above.
8416 procedure Add_Call (T : Entity_Id);
8417 -- Includes a call to the predicate function for type T in Expr if T
8418 -- has predicates and Predicate_Function (T) is non-empty.
8420 function Process_RE (N : Node_Id) return Traverse_Result;
8421 -- Used in Process REs, tests if node N is a raise expression, and if
8422 -- so, marks it to be converted to return False.
8424 procedure Process_REs is new Traverse_Proc (Process_RE);
8425 -- Marks any raise expressions in Expr_M to return False
8427 function Test_RE (N : Node_Id) return Traverse_Result;
8428 -- Used in Test_REs, tests one node for being a raise expression, and if
8429 -- so sets Raise_Expression_Present True.
8431 procedure Test_REs is new Traverse_Proc (Test_RE);
8432 -- Tests to see if Expr contains any raise expressions
8434 --------------
8435 -- Add_Call --
8436 --------------
8438 procedure Add_Call (T : Entity_Id) is
8439 Exp : Node_Id;
8441 begin
8442 if Present (T) and then Present (Predicate_Function (T)) then
8443 Set_Has_Predicates (Typ);
8445 -- Build the call to the predicate function of T. The type may be
8446 -- derived, so use an unchecked conversion for the actual.
8448 Exp :=
8449 Make_Predicate_Call
8450 (Typ => T,
8451 Expr =>
8452 Unchecked_Convert_To (T,
8453 Make_Identifier (Loc, Object_Name)));
8455 -- "and"-in the call to evolving expression
8457 Add_Condition (Exp);
8459 -- Output info message on inheritance if required. Note we do not
8460 -- give this information for generic actual types, since it is
8461 -- unwelcome noise in that case in instantiations. We also
8462 -- generally suppress the message in instantiations, and also
8463 -- if it involves internal names.
8465 if Opt.List_Inherited_Aspects
8466 and then not Is_Generic_Actual_Type (Typ)
8467 and then Instantiation_Depth (Sloc (Typ)) = 0
8468 and then not Is_Internal_Name (Chars (T))
8469 and then not Is_Internal_Name (Chars (Typ))
8470 then
8471 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8472 Error_Msg_Node_2 := T;
8473 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8474 end if;
8475 end if;
8476 end Add_Call;
8478 -------------------
8479 -- Add_Condition --
8480 -------------------
8482 procedure Add_Condition (Cond : Node_Id) is
8483 begin
8484 -- This is the first predicate expression
8486 if No (Expr) then
8487 Expr := Cond;
8489 -- Otherwise concatenate to the existing predicate expressions by
8490 -- using "and then".
8492 else
8493 Expr :=
8494 Make_And_Then (Loc,
8495 Left_Opnd => Relocate_Node (Expr),
8496 Right_Opnd => Cond);
8497 end if;
8498 end Add_Condition;
8500 --------------------
8501 -- Add_Predicates --
8502 --------------------
8504 procedure Add_Predicates is
8505 procedure Add_Predicate (Prag : Node_Id);
8506 -- Concatenate the expression of predicate pragma Prag to Expr by
8507 -- using a short circuit "and then" operator.
8509 -------------------
8510 -- Add_Predicate --
8511 -------------------
8513 procedure Add_Predicate (Prag : Node_Id) is
8514 procedure Replace_Type_Reference (N : Node_Id);
8515 -- Replace a single occurrence N of the subtype name with a
8516 -- reference to the formal of the predicate function. N can be an
8517 -- identifier referencing the subtype, or a selected component,
8518 -- representing an appropriately qualified occurrence of the
8519 -- subtype name.
8521 procedure Replace_Type_References is
8522 new Replace_Type_References_Generic (Replace_Type_Reference);
8523 -- Traverse an expression changing every occurrence of an
8524 -- identifier whose name matches the name of the subtype with a
8525 -- reference to the formal parameter of the predicate function.
8527 ----------------------------
8528 -- Replace_Type_Reference --
8529 ----------------------------
8531 procedure Replace_Type_Reference (N : Node_Id) is
8532 begin
8533 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8534 -- Use the Sloc of the usage name, not the defining name
8536 Set_Etype (N, Typ);
8537 Set_Entity (N, Object_Entity);
8539 -- We want to treat the node as if it comes from source, so
8540 -- that ASIS will not ignore it.
8542 Set_Comes_From_Source (N, True);
8543 end Replace_Type_Reference;
8545 -- Local variables
8547 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8548 Arg1 : Node_Id;
8549 Arg2 : Node_Id;
8551 -- Start of processing for Add_Predicate
8553 begin
8554 -- Mark corresponding SCO as enabled
8556 Set_SCO_Pragma_Enabled (Sloc (Prag));
8558 -- Extract the arguments of the pragma. The expression itself
8559 -- is copied for use in the predicate function, to preserve the
8560 -- original version for ASIS use.
8562 Arg1 := First (Pragma_Argument_Associations (Prag));
8563 Arg2 := Next (Arg1);
8565 Arg1 := Get_Pragma_Arg (Arg1);
8566 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8568 -- When the predicate pragma applies to the current type or its
8569 -- full view, replace all occurrences of the subtype name with
8570 -- references to the formal parameter of the predicate function.
8572 if Entity (Arg1) = Typ
8573 or else Full_View (Entity (Arg1)) = Typ
8574 then
8575 Replace_Type_References (Arg2, Typ);
8577 -- If the predicate pragma comes from an aspect, replace the
8578 -- saved expression because we need the subtype references
8579 -- replaced for the calls to Preanalyze_Spec_Expression in
8580 -- Check_Aspect_At_xxx routines.
8582 if Present (Asp) then
8583 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8584 end if;
8586 -- "and"-in the Arg2 condition to evolving expression
8588 Add_Condition (Relocate_Node (Arg2));
8589 end if;
8590 end Add_Predicate;
8592 -- Local variables
8594 Ritem : Node_Id;
8596 -- Start of processing for Add_Predicates
8598 begin
8599 Ritem := First_Rep_Item (Typ);
8601 -- If the type is private, check whether full view has inherited
8602 -- predicates.
8604 if Is_Private_Type (Typ) and then No (Ritem) then
8605 Ritem := First_Rep_Item (Full_View (Typ));
8606 end if;
8608 while Present (Ritem) loop
8609 if Nkind (Ritem) = N_Pragma
8610 and then Pragma_Name (Ritem) = Name_Predicate
8611 then
8612 Add_Predicate (Ritem);
8614 -- If the type is declared in an inner package it may be frozen
8615 -- outside of the package, and the generated pragma has not been
8616 -- analyzed yet, so capture the expression for the predicate
8617 -- function at this point.
8619 elsif Nkind (Ritem) = N_Aspect_Specification
8620 and then Present (Aspect_Rep_Item (Ritem))
8621 and then Scope (Typ) /= Current_Scope
8622 then
8623 declare
8624 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8626 begin
8627 if Nkind (Prag) = N_Pragma
8628 and then Pragma_Name (Prag) = Name_Predicate
8629 then
8630 Add_Predicate (Prag);
8631 end if;
8632 end;
8633 end if;
8635 Next_Rep_Item (Ritem);
8636 end loop;
8637 end Add_Predicates;
8639 ----------------
8640 -- Process_RE --
8641 ----------------
8643 function Process_RE (N : Node_Id) return Traverse_Result is
8644 begin
8645 if Nkind (N) = N_Raise_Expression then
8646 Set_Convert_To_Return_False (N);
8647 return Skip;
8648 else
8649 return OK;
8650 end if;
8651 end Process_RE;
8653 -------------
8654 -- Test_RE --
8655 -------------
8657 function Test_RE (N : Node_Id) return Traverse_Result is
8658 begin
8659 if Nkind (N) = N_Raise_Expression then
8660 Raise_Expression_Present := True;
8661 return Abandon;
8662 else
8663 return OK;
8664 end if;
8665 end Test_RE;
8667 -- Local variables
8669 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8670 -- Save the Ghost mode to restore on exit
8672 -- Start of processing for Build_Predicate_Functions
8674 begin
8675 -- Return if already built or if type does not have predicates
8677 SId := Predicate_Function (Typ);
8678 if not Has_Predicates (Typ)
8679 or else (Present (SId) and then Has_Completion (SId))
8680 then
8681 return;
8682 end if;
8684 -- The related type may be subject to pragma Ghost. Set the mode now to
8685 -- ensure that the predicate functions are properly marked as Ghost.
8687 Set_Ghost_Mode (Typ);
8689 -- Prepare to construct predicate expression
8691 Expr := Empty;
8693 if Present (SId) then
8694 FDecl := Unit_Declaration_Node (SId);
8696 else
8697 FDecl := Build_Predicate_Function_Declaration (Typ);
8698 SId := Defining_Entity (FDecl);
8699 end if;
8701 -- Recover name of formal parameter of function that replaces references
8702 -- to the type in predicate expressions.
8704 Object_Entity :=
8705 Defining_Identifier
8706 (First (Parameter_Specifications (Specification (FDecl))));
8708 Object_Name := Chars (Object_Entity);
8709 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8711 -- Add predicates for ancestor if present. These must come before the
8712 -- ones for the current type, as required by AI12-0071-1.
8714 declare
8715 Atyp : Entity_Id;
8716 begin
8717 Atyp := Nearest_Ancestor (Typ);
8719 -- The type may be private but the full view may inherit predicates
8721 if No (Atyp) and then Is_Private_Type (Typ) then
8722 Atyp := Nearest_Ancestor (Full_View (Typ));
8723 end if;
8725 if Present (Atyp) then
8726 Add_Call (Atyp);
8727 end if;
8728 end;
8730 -- Add Predicates for the current type
8732 Add_Predicates;
8734 -- Case where predicates are present
8736 if Present (Expr) then
8738 -- Test for raise expression present
8740 Test_REs (Expr);
8742 -- If raise expression is present, capture a copy of Expr for use
8743 -- in building the predicateM function version later on. For this
8744 -- copy we replace references to Object_Entity by Object_Entity_M.
8746 if Raise_Expression_Present then
8747 declare
8748 Map : constant Elist_Id := New_Elmt_List;
8749 New_V : Entity_Id := Empty;
8751 -- The unanalyzed expression will be copied and appear in
8752 -- both functions. Normally expressions do not declare new
8753 -- entities, but quantified expressions do, so we need to
8754 -- create new entities for their bound variables, to prevent
8755 -- multiple definitions in gigi.
8757 function Reset_Loop_Variable (N : Node_Id)
8758 return Traverse_Result;
8760 procedure Collect_Loop_Variables is
8761 new Traverse_Proc (Reset_Loop_Variable);
8763 ------------------------
8764 -- Reset_Loop_Variable --
8765 ------------------------
8767 function Reset_Loop_Variable (N : Node_Id)
8768 return Traverse_Result
8770 begin
8771 if Nkind (N) = N_Iterator_Specification then
8772 New_V := Make_Defining_Identifier
8773 (Sloc (N), Chars (Defining_Identifier (N)));
8775 Set_Defining_Identifier (N, New_V);
8776 end if;
8778 return OK;
8779 end Reset_Loop_Variable;
8781 begin
8782 Append_Elmt (Object_Entity, Map);
8783 Append_Elmt (Object_Entity_M, Map);
8784 Expr_M := New_Copy_Tree (Expr, Map => Map);
8785 Collect_Loop_Variables (Expr_M);
8786 end;
8787 end if;
8789 -- Build the main predicate function
8791 declare
8792 SIdB : constant Entity_Id :=
8793 Make_Defining_Identifier (Loc,
8794 Chars => New_External_Name (Chars (Typ), "Predicate"));
8795 -- The entity for the function body
8797 Spec : Node_Id;
8798 FBody : Node_Id;
8800 begin
8801 Set_Ekind (SIdB, E_Function);
8802 Set_Is_Predicate_Function (SIdB);
8804 -- The predicate function is shared between views of a type
8806 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8807 Set_Predicate_Function (Full_View (Typ), SId);
8808 end if;
8810 -- Build function body
8812 Spec :=
8813 Make_Function_Specification (Loc,
8814 Defining_Unit_Name => SIdB,
8815 Parameter_Specifications => New_List (
8816 Make_Parameter_Specification (Loc,
8817 Defining_Identifier =>
8818 Make_Defining_Identifier (Loc, Object_Name),
8819 Parameter_Type =>
8820 New_Occurrence_Of (Typ, Loc))),
8821 Result_Definition =>
8822 New_Occurrence_Of (Standard_Boolean, Loc));
8824 FBody :=
8825 Make_Subprogram_Body (Loc,
8826 Specification => Spec,
8827 Declarations => Empty_List,
8828 Handled_Statement_Sequence =>
8829 Make_Handled_Sequence_Of_Statements (Loc,
8830 Statements => New_List (
8831 Make_Simple_Return_Statement (Loc,
8832 Expression => Expr))));
8834 -- If declaration has not been analyzed yet, Insert declaration
8835 -- before freeze node. Insert body itself after freeze node.
8837 if not Analyzed (FDecl) then
8838 Insert_Before_And_Analyze (N, FDecl);
8839 end if;
8841 Insert_After_And_Analyze (N, FBody);
8843 -- Static predicate functions are always side-effect free, and
8844 -- in most cases dynamic predicate functions are as well. Mark
8845 -- them as such whenever possible, so redundant predicate checks
8846 -- can be optimized. If there is a variable reference within the
8847 -- expression, the function is not pure.
8849 if Expander_Active then
8850 Set_Is_Pure (SId,
8851 Side_Effect_Free (Expr, Variable_Ref => True));
8852 Set_Is_Inlined (SId);
8853 end if;
8854 end;
8856 -- Test for raise expressions present and if so build M version
8858 if Raise_Expression_Present then
8859 declare
8860 SId : constant Entity_Id :=
8861 Make_Defining_Identifier (Loc,
8862 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8863 -- The entity for the function spec
8865 SIdB : constant Entity_Id :=
8866 Make_Defining_Identifier (Loc,
8867 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8868 -- The entity for the function body
8870 Spec : Node_Id;
8871 FBody : Node_Id;
8872 FDecl : Node_Id;
8873 BTemp : Entity_Id;
8875 begin
8876 -- Mark any raise expressions for special expansion
8878 Process_REs (Expr_M);
8880 -- Build function declaration
8882 Set_Ekind (SId, E_Function);
8883 Set_Is_Predicate_Function_M (SId);
8884 Set_Predicate_Function_M (Typ, SId);
8886 -- The predicate function is shared between views of a type
8888 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8889 Set_Predicate_Function_M (Full_View (Typ), SId);
8890 end if;
8892 Spec :=
8893 Make_Function_Specification (Loc,
8894 Defining_Unit_Name => SId,
8895 Parameter_Specifications => New_List (
8896 Make_Parameter_Specification (Loc,
8897 Defining_Identifier => Object_Entity_M,
8898 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8899 Result_Definition =>
8900 New_Occurrence_Of (Standard_Boolean, Loc));
8902 FDecl :=
8903 Make_Subprogram_Declaration (Loc,
8904 Specification => Spec);
8906 -- Build function body
8908 Spec :=
8909 Make_Function_Specification (Loc,
8910 Defining_Unit_Name => SIdB,
8911 Parameter_Specifications => New_List (
8912 Make_Parameter_Specification (Loc,
8913 Defining_Identifier =>
8914 Make_Defining_Identifier (Loc, Object_Name),
8915 Parameter_Type =>
8916 New_Occurrence_Of (Typ, Loc))),
8917 Result_Definition =>
8918 New_Occurrence_Of (Standard_Boolean, Loc));
8920 -- Build the body, we declare the boolean expression before
8921 -- doing the return, because we are not really confident of
8922 -- what happens if a return appears within a return.
8924 BTemp :=
8925 Make_Defining_Identifier (Loc,
8926 Chars => New_Internal_Name ('B'));
8928 FBody :=
8929 Make_Subprogram_Body (Loc,
8930 Specification => Spec,
8932 Declarations => New_List (
8933 Make_Object_Declaration (Loc,
8934 Defining_Identifier => BTemp,
8935 Constant_Present => True,
8936 Object_Definition =>
8937 New_Occurrence_Of (Standard_Boolean, Loc),
8938 Expression => Expr_M)),
8940 Handled_Statement_Sequence =>
8941 Make_Handled_Sequence_Of_Statements (Loc,
8942 Statements => New_List (
8943 Make_Simple_Return_Statement (Loc,
8944 Expression => New_Occurrence_Of (BTemp, Loc)))));
8946 -- Insert declaration before freeze node and body after
8948 Insert_Before_And_Analyze (N, FDecl);
8949 Insert_After_And_Analyze (N, FBody);
8950 end;
8951 end if;
8953 -- See if we have a static predicate. Note that the answer may be
8954 -- yes even if we have an explicit Dynamic_Predicate present.
8956 declare
8957 PS : Boolean;
8958 EN : Node_Id;
8960 begin
8961 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8962 PS := False;
8963 else
8964 PS := Is_Predicate_Static (Expr, Object_Name);
8965 end if;
8967 -- Case where we have a predicate-static aspect
8969 if PS then
8971 -- We don't set Has_Static_Predicate_Aspect, since we can have
8972 -- any of the three cases (Predicate, Dynamic_Predicate, or
8973 -- Static_Predicate) generating a predicate with an expression
8974 -- that is predicate-static. We just indicate that we have a
8975 -- predicate that can be treated as static.
8977 Set_Has_Static_Predicate (Typ);
8979 -- For discrete subtype, build the static predicate list
8981 if Is_Discrete_Type (Typ) then
8982 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8984 -- If we don't get a static predicate list, it means that we
8985 -- have a case where this is not possible, most typically in
8986 -- the case where we inherit a dynamic predicate. We do not
8987 -- consider this an error, we just leave the predicate as
8988 -- dynamic. But if we do succeed in building the list, then
8989 -- we mark the predicate as static.
8991 if No (Static_Discrete_Predicate (Typ)) then
8992 Set_Has_Static_Predicate (Typ, False);
8993 end if;
8995 -- For real or string subtype, save predicate expression
8997 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8998 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8999 end if;
9001 -- Case of dynamic predicate (expression is not predicate-static)
9003 else
9004 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9005 -- is only set if we have an explicit Dynamic_Predicate aspect
9006 -- given. Here we may simply have a Predicate aspect where the
9007 -- expression happens not to be predicate-static.
9009 -- Emit an error when the predicate is categorized as static
9010 -- but its expression is not predicate-static.
9012 -- First a little fiddling to get a nice location for the
9013 -- message. If the expression is of the form (A and then B),
9014 -- where A is an inherited predicate, then use the right
9015 -- operand for the Sloc. This avoids getting confused by a call
9016 -- to an inherited predicate with a less convenient source
9017 -- location.
9019 EN := Expr;
9020 while Nkind (EN) = N_And_Then
9021 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9022 and then Is_Predicate_Function
9023 (Entity (Name (Left_Opnd (EN))))
9024 loop
9025 EN := Right_Opnd (EN);
9026 end loop;
9028 -- Now post appropriate message
9030 if Has_Static_Predicate_Aspect (Typ) then
9031 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9032 Error_Msg_F
9033 ("expression is not predicate-static (RM 3.2.4(16-22))",
9034 EN);
9035 else
9036 Error_Msg_F
9037 ("static predicate requires scalar or string type", EN);
9038 end if;
9039 end if;
9040 end if;
9041 end;
9042 end if;
9044 Restore_Ghost_Mode (Saved_GM);
9045 end Build_Predicate_Functions;
9047 ------------------------------------------
9048 -- Build_Predicate_Function_Declaration --
9049 ------------------------------------------
9051 -- WARNING: This routine manages Ghost regions. Return statements must be
9052 -- replaced by gotos which jump to the end of the routine and restore the
9053 -- Ghost mode.
9055 function Build_Predicate_Function_Declaration
9056 (Typ : Entity_Id) return Node_Id
9058 Loc : constant Source_Ptr := Sloc (Typ);
9060 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9061 -- Save the Ghost mode to restore on exit
9063 Func_Decl : Node_Id;
9064 Func_Id : Entity_Id;
9065 Spec : Node_Id;
9067 begin
9068 -- The related type may be subject to pragma Ghost. Set the mode now to
9069 -- ensure that the predicate functions are properly marked as Ghost.
9071 Set_Ghost_Mode (Typ);
9073 Func_Id :=
9074 Make_Defining_Identifier (Loc,
9075 Chars => New_External_Name (Chars (Typ), "Predicate"));
9077 -- The predicate function requires debug info when the predicates are
9078 -- subject to Source Coverage Obligations.
9080 if Opt.Generate_SCO then
9081 Set_Debug_Info_Needed (Func_Id);
9082 end if;
9084 Spec :=
9085 Make_Function_Specification (Loc,
9086 Defining_Unit_Name => Func_Id,
9087 Parameter_Specifications => New_List (
9088 Make_Parameter_Specification (Loc,
9089 Defining_Identifier => Make_Temporary (Loc, 'I'),
9090 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9091 Result_Definition =>
9092 New_Occurrence_Of (Standard_Boolean, Loc));
9094 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9096 Set_Ekind (Func_Id, E_Function);
9097 Set_Etype (Func_Id, Standard_Boolean);
9098 Set_Is_Internal (Func_Id);
9099 Set_Is_Predicate_Function (Func_Id);
9100 Set_Predicate_Function (Typ, Func_Id);
9102 Insert_After (Parent (Typ), Func_Decl);
9103 Analyze (Func_Decl);
9105 Restore_Ghost_Mode (Saved_GM);
9107 return Func_Decl;
9108 end Build_Predicate_Function_Declaration;
9110 -----------------------------------------
9111 -- Check_Aspect_At_End_Of_Declarations --
9112 -----------------------------------------
9114 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9115 Ent : constant Entity_Id := Entity (ASN);
9116 Ident : constant Node_Id := Identifier (ASN);
9117 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9119 End_Decl_Expr : constant Node_Id := Entity (Ident);
9120 -- Expression to be analyzed at end of declarations
9122 Freeze_Expr : constant Node_Id := Expression (ASN);
9123 -- Expression from call to Check_Aspect_At_Freeze_Point.
9125 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9126 -- Type required for preanalyze call. We use the original expression to
9127 -- get the proper type, to prevent cascaded errors when the expression
9128 -- is constant-folded.
9130 Err : Boolean;
9131 -- Set False if error
9133 -- On entry to this procedure, Entity (Ident) contains a copy of the
9134 -- original expression from the aspect, saved for this purpose, and
9135 -- but Expression (Ident) is a preanalyzed copy of the expression,
9136 -- preanalyzed just after the freeze point.
9138 procedure Check_Overloaded_Name;
9139 -- For aspects whose expression is simply a name, this routine checks if
9140 -- the name is overloaded or not. If so, it verifies there is an
9141 -- interpretation that matches the entity obtained at the freeze point,
9142 -- otherwise the compiler complains.
9144 ---------------------------
9145 -- Check_Overloaded_Name --
9146 ---------------------------
9148 procedure Check_Overloaded_Name is
9149 begin
9150 if not Is_Overloaded (End_Decl_Expr) then
9151 Err := not Is_Entity_Name (End_Decl_Expr)
9152 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9154 else
9155 Err := True;
9157 declare
9158 Index : Interp_Index;
9159 It : Interp;
9161 begin
9162 Get_First_Interp (End_Decl_Expr, Index, It);
9163 while Present (It.Typ) loop
9164 if It.Nam = Entity (Freeze_Expr) then
9165 Err := False;
9166 exit;
9167 end if;
9169 Get_Next_Interp (Index, It);
9170 end loop;
9171 end;
9172 end if;
9173 end Check_Overloaded_Name;
9175 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9177 begin
9178 -- In an instance we do not perform the consistency check between freeze
9179 -- point and end of declarations, because it was done already in the
9180 -- analysis of the generic. Furthermore, the delayed analysis of an
9181 -- aspect of the instance may produce spurious errors when the generic
9182 -- is a child unit that references entities in the parent (which might
9183 -- not be in scope at the freeze point of the instance).
9185 if In_Instance then
9186 return;
9188 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9189 -- task body is rewritten as a procedure) after this conformance check
9190 -- has been performed, so do not perform it again (it may not easily be
9191 -- done if full visibility of local entities is not available).
9193 elsif not Comes_From_Source (Current_Scope) then
9194 return;
9196 -- Case of aspects Dimension, Dimension_System and Synchronization
9198 elsif A_Id = Aspect_Synchronization then
9199 return;
9201 -- Case of stream attributes, just have to compare entities. However,
9202 -- the expression is just a name (possibly overloaded), and there may
9203 -- be stream operations declared for unrelated types, so we just need
9204 -- to verify that one of these interpretations is the one available at
9205 -- at the freeze point.
9207 elsif A_Id = Aspect_Input or else
9208 A_Id = Aspect_Output or else
9209 A_Id = Aspect_Read or else
9210 A_Id = Aspect_Write
9211 then
9212 Analyze (End_Decl_Expr);
9213 Check_Overloaded_Name;
9215 elsif A_Id = Aspect_Variable_Indexing or else
9216 A_Id = Aspect_Constant_Indexing or else
9217 A_Id = Aspect_Default_Iterator or else
9218 A_Id = Aspect_Iterator_Element
9219 then
9220 -- Make type unfrozen before analysis, to prevent spurious errors
9221 -- about late attributes.
9223 Set_Is_Frozen (Ent, False);
9224 Analyze (End_Decl_Expr);
9225 Set_Is_Frozen (Ent, True);
9227 -- If the end of declarations comes before any other freeze
9228 -- point, the Freeze_Expr is not analyzed: no check needed.
9230 if Analyzed (Freeze_Expr) and then not In_Instance then
9231 Check_Overloaded_Name;
9232 else
9233 Err := False;
9234 end if;
9236 -- All other cases
9238 else
9239 -- Indicate that the expression comes from an aspect specification,
9240 -- which is used in subsequent analysis even if expansion is off.
9242 Set_Parent (End_Decl_Expr, ASN);
9244 -- In a generic context the aspect expressions have not been
9245 -- preanalyzed, so do it now. There are no conformance checks
9246 -- to perform in this case.
9248 if No (T) then
9249 Check_Aspect_At_Freeze_Point (ASN);
9250 return;
9252 -- The default values attributes may be defined in the private part,
9253 -- and the analysis of the expression may take place when only the
9254 -- partial view is visible. The expression must be scalar, so use
9255 -- the full view to resolve.
9257 elsif (A_Id = Aspect_Default_Value
9258 or else
9259 A_Id = Aspect_Default_Component_Value)
9260 and then Is_Private_Type (T)
9261 then
9262 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9264 else
9265 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9266 end if;
9268 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9269 end if;
9271 -- Output error message if error. Force error on aspect specification
9272 -- even if there is an error on the expression itself.
9274 if Err then
9275 Error_Msg_NE
9276 ("!visibility of aspect for& changes after freeze point",
9277 ASN, Ent);
9278 Error_Msg_NE
9279 ("info: & is frozen here, aspects evaluated at this point??",
9280 Freeze_Node (Ent), Ent);
9281 end if;
9282 end Check_Aspect_At_End_Of_Declarations;
9284 ----------------------------------
9285 -- Check_Aspect_At_Freeze_Point --
9286 ----------------------------------
9288 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9289 Ident : constant Node_Id := Identifier (ASN);
9290 -- Identifier (use Entity field to save expression)
9292 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9294 T : Entity_Id := Empty;
9295 -- Type required for preanalyze call
9297 begin
9298 -- On entry to this procedure, Entity (Ident) contains a copy of the
9299 -- original expression from the aspect, saved for this purpose.
9301 -- On exit from this procedure Entity (Ident) is unchanged, still
9302 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9303 -- of the expression, preanalyzed just after the freeze point.
9305 -- Make a copy of the expression to be preanalyzed
9307 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9309 -- Find type for preanalyze call
9311 case A_Id is
9313 -- No_Aspect should be impossible
9315 when No_Aspect =>
9316 raise Program_Error;
9318 -- Aspects taking an optional boolean argument
9320 when Boolean_Aspects
9321 | Library_Unit_Aspects
9323 T := Standard_Boolean;
9325 -- Aspects corresponding to attribute definition clauses
9327 when Aspect_Address =>
9328 T := RTE (RE_Address);
9330 when Aspect_Attach_Handler =>
9331 T := RTE (RE_Interrupt_ID);
9333 when Aspect_Bit_Order
9334 | Aspect_Scalar_Storage_Order
9336 T := RTE (RE_Bit_Order);
9338 when Aspect_Convention =>
9339 return;
9341 when Aspect_CPU =>
9342 T := RTE (RE_CPU_Range);
9344 -- Default_Component_Value is resolved with the component type
9346 when Aspect_Default_Component_Value =>
9347 T := Component_Type (Entity (ASN));
9349 when Aspect_Default_Storage_Pool =>
9350 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9352 -- Default_Value is resolved with the type entity in question
9354 when Aspect_Default_Value =>
9355 T := Entity (ASN);
9357 when Aspect_Dispatching_Domain =>
9358 T := RTE (RE_Dispatching_Domain);
9360 when Aspect_External_Tag =>
9361 T := Standard_String;
9363 when Aspect_External_Name =>
9364 T := Standard_String;
9366 when Aspect_Link_Name =>
9367 T := Standard_String;
9369 when Aspect_Interrupt_Priority
9370 | Aspect_Priority
9372 T := Standard_Integer;
9374 when Aspect_Relative_Deadline =>
9375 T := RTE (RE_Time_Span);
9377 when Aspect_Secondary_Stack_Size =>
9378 T := Standard_Integer;
9380 when Aspect_Small =>
9382 -- Note that the expression can be of any real type (not just a
9383 -- real universal literal) as long as it is a static constant.
9385 T := Any_Real;
9387 -- For a simple storage pool, we have to retrieve the type of the
9388 -- pool object associated with the aspect's corresponding attribute
9389 -- definition clause.
9391 when Aspect_Simple_Storage_Pool =>
9392 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9394 when Aspect_Storage_Pool =>
9395 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9397 when Aspect_Alignment
9398 | Aspect_Component_Size
9399 | Aspect_Machine_Radix
9400 | Aspect_Object_Size
9401 | Aspect_Size
9402 | Aspect_Storage_Size
9403 | Aspect_Stream_Size
9404 | Aspect_Value_Size
9406 T := Any_Integer;
9408 when Aspect_Linker_Section =>
9409 T := Standard_String;
9411 when Aspect_Synchronization =>
9412 return;
9414 -- Special case, the expression of these aspects is just an entity
9415 -- that does not need any resolution, so just analyze.
9417 when Aspect_Input
9418 | Aspect_Output
9419 | Aspect_Read
9420 | Aspect_Suppress
9421 | Aspect_Unsuppress
9422 | Aspect_Warnings
9423 | Aspect_Write
9425 Analyze (Expression (ASN));
9426 return;
9428 -- Same for Iterator aspects, where the expression is a function
9429 -- name. Legality rules are checked separately.
9431 when Aspect_Constant_Indexing
9432 | Aspect_Default_Iterator
9433 | Aspect_Iterator_Element
9434 | Aspect_Variable_Indexing
9436 Analyze (Expression (ASN));
9437 return;
9439 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9441 when Aspect_Iterable =>
9442 T := Entity (ASN);
9444 declare
9445 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9446 Assoc : Node_Id;
9447 Expr : Node_Id;
9449 begin
9450 if Cursor = Any_Type then
9451 return;
9452 end if;
9454 Assoc := First (Component_Associations (Expression (ASN)));
9455 while Present (Assoc) loop
9456 Expr := Expression (Assoc);
9457 Analyze (Expr);
9459 if not Error_Posted (Expr) then
9460 Resolve_Iterable_Operation
9461 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9462 end if;
9464 Next (Assoc);
9465 end loop;
9466 end;
9468 return;
9470 -- Invariant/Predicate take boolean expressions
9472 when Aspect_Dynamic_Predicate
9473 | Aspect_Invariant
9474 | Aspect_Predicate
9475 | Aspect_Static_Predicate
9476 | Aspect_Type_Invariant
9478 T := Standard_Boolean;
9480 when Aspect_Predicate_Failure =>
9481 T := Standard_String;
9483 -- Here is the list of aspects that don't require delay analysis
9485 when Aspect_Abstract_State
9486 | Aspect_Annotate
9487 | Aspect_Async_Readers
9488 | Aspect_Async_Writers
9489 | Aspect_Constant_After_Elaboration
9490 | Aspect_Contract_Cases
9491 | Aspect_Default_Initial_Condition
9492 | Aspect_Depends
9493 | Aspect_Dimension
9494 | Aspect_Dimension_System
9495 | Aspect_Effective_Reads
9496 | Aspect_Effective_Writes
9497 | Aspect_Extensions_Visible
9498 | Aspect_Ghost
9499 | Aspect_Global
9500 | Aspect_Implicit_Dereference
9501 | Aspect_Initial_Condition
9502 | Aspect_Initializes
9503 | Aspect_Max_Queue_Length
9504 | Aspect_Obsolescent
9505 | Aspect_Part_Of
9506 | Aspect_Post
9507 | Aspect_Postcondition
9508 | Aspect_Pre
9509 | Aspect_Precondition
9510 | Aspect_Refined_Depends
9511 | Aspect_Refined_Global
9512 | Aspect_Refined_Post
9513 | Aspect_Refined_State
9514 | Aspect_SPARK_Mode
9515 | Aspect_Test_Case
9516 | Aspect_Unimplemented
9517 | Aspect_Volatile_Function
9519 raise Program_Error;
9521 end case;
9523 -- Do the preanalyze call
9525 Preanalyze_Spec_Expression (Expression (ASN), T);
9526 end Check_Aspect_At_Freeze_Point;
9528 -----------------------------------
9529 -- Check_Constant_Address_Clause --
9530 -----------------------------------
9532 procedure Check_Constant_Address_Clause
9533 (Expr : Node_Id;
9534 U_Ent : Entity_Id)
9536 procedure Check_At_Constant_Address (Nod : Node_Id);
9537 -- Checks that the given node N represents a name whose 'Address is
9538 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9539 -- address value is the same at the point of declaration of U_Ent and at
9540 -- the time of elaboration of the address clause.
9542 procedure Check_Expr_Constants (Nod : Node_Id);
9543 -- Checks that Nod meets the requirements for a constant address clause
9544 -- in the sense of the enclosing procedure.
9546 procedure Check_List_Constants (Lst : List_Id);
9547 -- Check that all elements of list Lst meet the requirements for a
9548 -- constant address clause in the sense of the enclosing procedure.
9550 -------------------------------
9551 -- Check_At_Constant_Address --
9552 -------------------------------
9554 procedure Check_At_Constant_Address (Nod : Node_Id) is
9555 begin
9556 if Is_Entity_Name (Nod) then
9557 if Present (Address_Clause (Entity ((Nod)))) then
9558 Error_Msg_NE
9559 ("invalid address clause for initialized object &!",
9560 Nod, U_Ent);
9561 Error_Msg_NE
9562 ("address for& cannot depend on another address clause! "
9563 & "(RM 13.1(22))!", Nod, U_Ent);
9565 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9566 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9567 then
9568 Error_Msg_NE
9569 ("invalid address clause for initialized object &!",
9570 Nod, U_Ent);
9571 Error_Msg_Node_2 := U_Ent;
9572 Error_Msg_NE
9573 ("\& must be defined before & (RM 13.1(22))!",
9574 Nod, Entity (Nod));
9575 end if;
9577 elsif Nkind (Nod) = N_Selected_Component then
9578 declare
9579 T : constant Entity_Id := Etype (Prefix (Nod));
9581 begin
9582 if (Is_Record_Type (T)
9583 and then Has_Discriminants (T))
9584 or else
9585 (Is_Access_Type (T)
9586 and then Is_Record_Type (Designated_Type (T))
9587 and then Has_Discriminants (Designated_Type (T)))
9588 then
9589 Error_Msg_NE
9590 ("invalid address clause for initialized object &!",
9591 Nod, U_Ent);
9592 Error_Msg_N
9593 ("\address cannot depend on component of discriminated "
9594 & "record (RM 13.1(22))!", Nod);
9595 else
9596 Check_At_Constant_Address (Prefix (Nod));
9597 end if;
9598 end;
9600 elsif Nkind (Nod) = N_Indexed_Component then
9601 Check_At_Constant_Address (Prefix (Nod));
9602 Check_List_Constants (Expressions (Nod));
9604 else
9605 Check_Expr_Constants (Nod);
9606 end if;
9607 end Check_At_Constant_Address;
9609 --------------------------
9610 -- Check_Expr_Constants --
9611 --------------------------
9613 procedure Check_Expr_Constants (Nod : Node_Id) is
9614 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9615 Ent : Entity_Id := Empty;
9617 begin
9618 if Nkind (Nod) in N_Has_Etype
9619 and then Etype (Nod) = Any_Type
9620 then
9621 return;
9622 end if;
9624 case Nkind (Nod) is
9625 when N_Empty
9626 | N_Error
9628 return;
9630 when N_Expanded_Name
9631 | N_Identifier
9633 Ent := Entity (Nod);
9635 -- We need to look at the original node if it is different
9636 -- from the node, since we may have rewritten things and
9637 -- substituted an identifier representing the rewrite.
9639 if Original_Node (Nod) /= Nod then
9640 Check_Expr_Constants (Original_Node (Nod));
9642 -- If the node is an object declaration without initial
9643 -- value, some code has been expanded, and the expression
9644 -- is not constant, even if the constituents might be
9645 -- acceptable, as in A'Address + offset.
9647 if Ekind (Ent) = E_Variable
9648 and then
9649 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9650 and then
9651 No (Expression (Declaration_Node (Ent)))
9652 then
9653 Error_Msg_NE
9654 ("invalid address clause for initialized object &!",
9655 Nod, U_Ent);
9657 -- If entity is constant, it may be the result of expanding
9658 -- a check. We must verify that its declaration appears
9659 -- before the object in question, else we also reject the
9660 -- address clause.
9662 elsif Ekind (Ent) = E_Constant
9663 and then In_Same_Source_Unit (Ent, U_Ent)
9664 and then Sloc (Ent) > Loc_U_Ent
9665 then
9666 Error_Msg_NE
9667 ("invalid address clause for initialized object &!",
9668 Nod, U_Ent);
9669 end if;
9671 return;
9672 end if;
9674 -- Otherwise look at the identifier and see if it is OK
9676 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9677 or else Is_Type (Ent)
9678 then
9679 return;
9681 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9683 -- This is the case where we must have Ent defined before
9684 -- U_Ent. Clearly if they are in different units this
9685 -- requirement is met since the unit containing Ent is
9686 -- already processed.
9688 if not In_Same_Source_Unit (Ent, U_Ent) then
9689 return;
9691 -- Otherwise location of Ent must be before the location
9692 -- of U_Ent, that's what prior defined means.
9694 elsif Sloc (Ent) < Loc_U_Ent then
9695 return;
9697 else
9698 Error_Msg_NE
9699 ("invalid address clause for initialized object &!",
9700 Nod, U_Ent);
9701 Error_Msg_Node_2 := U_Ent;
9702 Error_Msg_NE
9703 ("\& must be defined before & (RM 13.1(22))!",
9704 Nod, Ent);
9705 end if;
9707 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9708 Check_Expr_Constants (Original_Node (Nod));
9710 else
9711 Error_Msg_NE
9712 ("invalid address clause for initialized object &!",
9713 Nod, U_Ent);
9715 if Comes_From_Source (Ent) then
9716 Error_Msg_NE
9717 ("\reference to variable& not allowed"
9718 & " (RM 13.1(22))!", Nod, Ent);
9719 else
9720 Error_Msg_N
9721 ("non-static expression not allowed"
9722 & " (RM 13.1(22))!", Nod);
9723 end if;
9724 end if;
9726 when N_Integer_Literal =>
9728 -- If this is a rewritten unchecked conversion, in a system
9729 -- where Address is an integer type, always use the base type
9730 -- for a literal value. This is user-friendly and prevents
9731 -- order-of-elaboration issues with instances of unchecked
9732 -- conversion.
9734 if Nkind (Original_Node (Nod)) = N_Function_Call then
9735 Set_Etype (Nod, Base_Type (Etype (Nod)));
9736 end if;
9738 when N_Character_Literal
9739 | N_Real_Literal
9740 | N_String_Literal
9742 return;
9744 when N_Range =>
9745 Check_Expr_Constants (Low_Bound (Nod));
9746 Check_Expr_Constants (High_Bound (Nod));
9748 when N_Explicit_Dereference =>
9749 Check_Expr_Constants (Prefix (Nod));
9751 when N_Indexed_Component =>
9752 Check_Expr_Constants (Prefix (Nod));
9753 Check_List_Constants (Expressions (Nod));
9755 when N_Slice =>
9756 Check_Expr_Constants (Prefix (Nod));
9757 Check_Expr_Constants (Discrete_Range (Nod));
9759 when N_Selected_Component =>
9760 Check_Expr_Constants (Prefix (Nod));
9762 when N_Attribute_Reference =>
9763 if Nam_In (Attribute_Name (Nod), Name_Address,
9764 Name_Access,
9765 Name_Unchecked_Access,
9766 Name_Unrestricted_Access)
9767 then
9768 Check_At_Constant_Address (Prefix (Nod));
9770 -- Normally, System'To_Address will have been transformed into
9771 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9772 -- and we don't want to give an error, because the whole point
9773 -- of 'To_Address is that it is static.
9775 elsif Attribute_Name (Nod) = Name_To_Address then
9776 pragma Assert (Operating_Mode = Check_Semantics);
9777 null;
9779 else
9780 Check_Expr_Constants (Prefix (Nod));
9781 Check_List_Constants (Expressions (Nod));
9782 end if;
9784 when N_Aggregate =>
9785 Check_List_Constants (Component_Associations (Nod));
9786 Check_List_Constants (Expressions (Nod));
9788 when N_Component_Association =>
9789 Check_Expr_Constants (Expression (Nod));
9791 when N_Extension_Aggregate =>
9792 Check_Expr_Constants (Ancestor_Part (Nod));
9793 Check_List_Constants (Component_Associations (Nod));
9794 Check_List_Constants (Expressions (Nod));
9796 when N_Null =>
9797 return;
9799 when N_Binary_Op
9800 | N_Membership_Test
9801 | N_Short_Circuit
9803 Check_Expr_Constants (Left_Opnd (Nod));
9804 Check_Expr_Constants (Right_Opnd (Nod));
9806 when N_Unary_Op =>
9807 Check_Expr_Constants (Right_Opnd (Nod));
9809 when N_Allocator
9810 | N_Qualified_Expression
9811 | N_Type_Conversion
9812 | N_Unchecked_Type_Conversion
9814 Check_Expr_Constants (Expression (Nod));
9816 when N_Function_Call =>
9817 if not Is_Pure (Entity (Name (Nod))) then
9818 Error_Msg_NE
9819 ("invalid address clause for initialized object &!",
9820 Nod, U_Ent);
9822 Error_Msg_NE
9823 ("\function & is not pure (RM 13.1(22))!",
9824 Nod, Entity (Name (Nod)));
9826 else
9827 Check_List_Constants (Parameter_Associations (Nod));
9828 end if;
9830 when N_Parameter_Association =>
9831 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9833 when others =>
9834 Error_Msg_NE
9835 ("invalid address clause for initialized object &!",
9836 Nod, U_Ent);
9837 Error_Msg_NE
9838 ("\must be constant defined before& (RM 13.1(22))!",
9839 Nod, U_Ent);
9840 end case;
9841 end Check_Expr_Constants;
9843 --------------------------
9844 -- Check_List_Constants --
9845 --------------------------
9847 procedure Check_List_Constants (Lst : List_Id) is
9848 Nod1 : Node_Id;
9850 begin
9851 if Present (Lst) then
9852 Nod1 := First (Lst);
9853 while Present (Nod1) loop
9854 Check_Expr_Constants (Nod1);
9855 Next (Nod1);
9856 end loop;
9857 end if;
9858 end Check_List_Constants;
9860 -- Start of processing for Check_Constant_Address_Clause
9862 begin
9863 -- If rep_clauses are to be ignored, no need for legality checks. In
9864 -- particular, no need to pester user about rep clauses that violate the
9865 -- rule on constant addresses, given that these clauses will be removed
9866 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9867 -- we want to relax these checks.
9869 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9870 Check_Expr_Constants (Expr);
9871 end if;
9872 end Check_Constant_Address_Clause;
9874 ---------------------------
9875 -- Check_Pool_Size_Clash --
9876 ---------------------------
9878 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9879 Post : Node_Id;
9881 begin
9882 -- We need to find out which one came first. Note that in the case of
9883 -- aspects mixed with pragmas there are cases where the processing order
9884 -- is reversed, which is why we do the check here.
9886 if Sloc (SP) < Sloc (SS) then
9887 Error_Msg_Sloc := Sloc (SP);
9888 Post := SS;
9889 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9891 else
9892 Error_Msg_Sloc := Sloc (SS);
9893 Post := SP;
9894 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9895 end if;
9897 Error_Msg_N
9898 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9899 end Check_Pool_Size_Clash;
9901 ----------------------------------------
9902 -- Check_Record_Representation_Clause --
9903 ----------------------------------------
9905 procedure Check_Record_Representation_Clause (N : Node_Id) is
9906 Loc : constant Source_Ptr := Sloc (N);
9907 Ident : constant Node_Id := Identifier (N);
9908 Rectype : Entity_Id;
9909 Fent : Entity_Id;
9910 CC : Node_Id;
9911 Fbit : Uint;
9912 Lbit : Uint;
9913 Hbit : Uint := Uint_0;
9914 Comp : Entity_Id;
9915 Pcomp : Entity_Id;
9917 Max_Bit_So_Far : Uint;
9918 -- Records the maximum bit position so far. If all field positions
9919 -- are monotonically increasing, then we can skip the circuit for
9920 -- checking for overlap, since no overlap is possible.
9922 Tagged_Parent : Entity_Id := Empty;
9923 -- This is set in the case of an extension for which we have either a
9924 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9925 -- components are positioned by record representation clauses) on the
9926 -- parent type. In this case we check for overlap between components of
9927 -- this tagged type and the parent component. Tagged_Parent will point
9928 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9930 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
9931 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9932 -- last bit position for any field in the parent type. We only need to
9933 -- check overlap for fields starting below this point.
9935 Overlap_Check_Required : Boolean;
9936 -- Used to keep track of whether or not an overlap check is required
9938 Overlap_Detected : Boolean := False;
9939 -- Set True if an overlap is detected
9941 Ccount : Natural := 0;
9942 -- Number of component clauses in record rep clause
9944 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9945 -- Given two entities for record components or discriminants, checks
9946 -- if they have overlapping component clauses and issues errors if so.
9948 procedure Find_Component;
9949 -- Finds component entity corresponding to current component clause (in
9950 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9951 -- start/stop bits for the field. If there is no matching component or
9952 -- if the matching component does not have a component clause, then
9953 -- that's an error and Comp is set to Empty, but no error message is
9954 -- issued, since the message was already given. Comp is also set to
9955 -- Empty if the current "component clause" is in fact a pragma.
9957 -----------------------------
9958 -- Check_Component_Overlap --
9959 -----------------------------
9961 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9962 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9963 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9965 begin
9966 if Present (CC1) and then Present (CC2) then
9968 -- Exclude odd case where we have two tag components in the same
9969 -- record, both at location zero. This seems a bit strange, but
9970 -- it seems to happen in some circumstances, perhaps on an error.
9972 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9973 return;
9974 end if;
9976 -- Here we check if the two fields overlap
9978 declare
9979 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9980 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9981 E1 : constant Uint := S1 + Esize (C1_Ent);
9982 E2 : constant Uint := S2 + Esize (C2_Ent);
9984 begin
9985 if E2 <= S1 or else E1 <= S2 then
9986 null;
9987 else
9988 Error_Msg_Node_2 := Component_Name (CC2);
9989 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9990 Error_Msg_Node_1 := Component_Name (CC1);
9991 Error_Msg_N
9992 ("component& overlaps & #", Component_Name (CC1));
9993 Overlap_Detected := True;
9994 end if;
9995 end;
9996 end if;
9997 end Check_Component_Overlap;
9999 --------------------
10000 -- Find_Component --
10001 --------------------
10003 procedure Find_Component is
10005 procedure Search_Component (R : Entity_Id);
10006 -- Search components of R for a match. If found, Comp is set
10008 ----------------------
10009 -- Search_Component --
10010 ----------------------
10012 procedure Search_Component (R : Entity_Id) is
10013 begin
10014 Comp := First_Component_Or_Discriminant (R);
10015 while Present (Comp) loop
10017 -- Ignore error of attribute name for component name (we
10018 -- already gave an error message for this, so no need to
10019 -- complain here)
10021 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10022 null;
10023 else
10024 exit when Chars (Comp) = Chars (Component_Name (CC));
10025 end if;
10027 Next_Component_Or_Discriminant (Comp);
10028 end loop;
10029 end Search_Component;
10031 -- Start of processing for Find_Component
10033 begin
10034 -- Return with Comp set to Empty if we have a pragma
10036 if Nkind (CC) = N_Pragma then
10037 Comp := Empty;
10038 return;
10039 end if;
10041 -- Search current record for matching component
10043 Search_Component (Rectype);
10045 -- If not found, maybe component of base type discriminant that is
10046 -- absent from statically constrained first subtype.
10048 if No (Comp) then
10049 Search_Component (Base_Type (Rectype));
10050 end if;
10052 -- If no component, or the component does not reference the component
10053 -- clause in question, then there was some previous error for which
10054 -- we already gave a message, so just return with Comp Empty.
10056 if No (Comp) or else Component_Clause (Comp) /= CC then
10057 Check_Error_Detected;
10058 Comp := Empty;
10060 -- Normal case where we have a component clause
10062 else
10063 Fbit := Component_Bit_Offset (Comp);
10064 Lbit := Fbit + Esize (Comp) - 1;
10065 end if;
10066 end Find_Component;
10068 -- Start of processing for Check_Record_Representation_Clause
10070 begin
10071 Find_Type (Ident);
10072 Rectype := Entity (Ident);
10074 if Rectype = Any_Type then
10075 return;
10076 end if;
10078 Rectype := Underlying_Type (Rectype);
10080 -- See if we have a fully repped derived tagged type
10082 declare
10083 PS : constant Entity_Id := Parent_Subtype (Rectype);
10085 begin
10086 if Present (PS) and then Known_Static_RM_Size (PS) then
10087 Tagged_Parent := PS;
10088 Parent_Last_Bit := RM_Size (PS) - 1;
10090 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10091 Tagged_Parent := PS;
10093 -- Find maximum bit of any component of the parent type
10095 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10096 Pcomp := First_Entity (Tagged_Parent);
10097 while Present (Pcomp) loop
10098 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10099 if Component_Bit_Offset (Pcomp) /= No_Uint
10100 and then Known_Static_Esize (Pcomp)
10101 then
10102 Parent_Last_Bit :=
10103 UI_Max
10104 (Parent_Last_Bit,
10105 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10106 end if;
10107 else
10109 -- Skip anonymous types generated for constrained array
10110 -- or record components.
10112 null;
10113 end if;
10115 Next_Entity (Pcomp);
10116 end loop;
10117 end if;
10118 end;
10120 -- All done if no component clauses
10122 CC := First (Component_Clauses (N));
10124 if No (CC) then
10125 return;
10126 end if;
10128 -- If a tag is present, then create a component clause that places it
10129 -- at the start of the record (otherwise gigi may place it after other
10130 -- fields that have rep clauses).
10132 Fent := First_Entity (Rectype);
10134 if Nkind (Fent) = N_Defining_Identifier
10135 and then Chars (Fent) = Name_uTag
10136 then
10137 Set_Component_Bit_Offset (Fent, Uint_0);
10138 Set_Normalized_Position (Fent, Uint_0);
10139 Set_Normalized_First_Bit (Fent, Uint_0);
10140 Set_Normalized_Position_Max (Fent, Uint_0);
10141 Init_Esize (Fent, System_Address_Size);
10143 Set_Component_Clause (Fent,
10144 Make_Component_Clause (Loc,
10145 Component_Name => Make_Identifier (Loc, Name_uTag),
10147 Position => Make_Integer_Literal (Loc, Uint_0),
10148 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10149 Last_Bit =>
10150 Make_Integer_Literal (Loc,
10151 UI_From_Int (System_Address_Size))));
10153 Ccount := Ccount + 1;
10154 end if;
10156 Max_Bit_So_Far := Uint_Minus_1;
10157 Overlap_Check_Required := False;
10159 -- Process the component clauses
10161 while Present (CC) loop
10162 Find_Component;
10164 if Present (Comp) then
10165 Ccount := Ccount + 1;
10167 -- We need a full overlap check if record positions non-monotonic
10169 if Fbit <= Max_Bit_So_Far then
10170 Overlap_Check_Required := True;
10171 end if;
10173 Max_Bit_So_Far := Lbit;
10175 -- Check bit position out of range of specified size
10177 if Has_Size_Clause (Rectype)
10178 and then RM_Size (Rectype) <= Lbit
10179 then
10180 Error_Msg_N
10181 ("bit number out of range of specified size",
10182 Last_Bit (CC));
10184 -- Check for overlap with tag or parent component
10186 else
10187 if Is_Tagged_Type (Rectype)
10188 and then Fbit < System_Address_Size
10189 then
10190 Error_Msg_NE
10191 ("component overlaps tag field of&",
10192 Component_Name (CC), Rectype);
10193 Overlap_Detected := True;
10195 elsif Present (Tagged_Parent)
10196 and then Fbit <= Parent_Last_Bit
10197 then
10198 Error_Msg_NE
10199 ("component overlaps parent field of&",
10200 Component_Name (CC), Rectype);
10201 Overlap_Detected := True;
10202 end if;
10204 if Hbit < Lbit then
10205 Hbit := Lbit;
10206 end if;
10207 end if;
10208 end if;
10210 Next (CC);
10211 end loop;
10213 -- Now that we have processed all the component clauses, check for
10214 -- overlap. We have to leave this till last, since the components can
10215 -- appear in any arbitrary order in the representation clause.
10217 -- We do not need this check if all specified ranges were monotonic,
10218 -- as recorded by Overlap_Check_Required being False at this stage.
10220 -- This first section checks if there are any overlapping entries at
10221 -- all. It does this by sorting all entries and then seeing if there are
10222 -- any overlaps. If there are none, then that is decisive, but if there
10223 -- are overlaps, they may still be OK (they may result from fields in
10224 -- different variants).
10226 if Overlap_Check_Required then
10227 Overlap_Check1 : declare
10229 OC_Fbit : array (0 .. Ccount) of Uint;
10230 -- First-bit values for component clauses, the value is the offset
10231 -- of the first bit of the field from start of record. The zero
10232 -- entry is for use in sorting.
10234 OC_Lbit : array (0 .. Ccount) of Uint;
10235 -- Last-bit values for component clauses, the value is the offset
10236 -- of the last bit of the field from start of record. The zero
10237 -- entry is for use in sorting.
10239 OC_Count : Natural := 0;
10240 -- Count of entries in OC_Fbit and OC_Lbit
10242 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10243 -- Compare routine for Sort
10245 procedure OC_Move (From : Natural; To : Natural);
10246 -- Move routine for Sort
10248 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10250 -----------
10251 -- OC_Lt --
10252 -----------
10254 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10255 begin
10256 return OC_Fbit (Op1) < OC_Fbit (Op2);
10257 end OC_Lt;
10259 -------------
10260 -- OC_Move --
10261 -------------
10263 procedure OC_Move (From : Natural; To : Natural) is
10264 begin
10265 OC_Fbit (To) := OC_Fbit (From);
10266 OC_Lbit (To) := OC_Lbit (From);
10267 end OC_Move;
10269 -- Start of processing for Overlap_Check
10271 begin
10272 CC := First (Component_Clauses (N));
10273 while Present (CC) loop
10275 -- Exclude component clause already marked in error
10277 if not Error_Posted (CC) then
10278 Find_Component;
10280 if Present (Comp) then
10281 OC_Count := OC_Count + 1;
10282 OC_Fbit (OC_Count) := Fbit;
10283 OC_Lbit (OC_Count) := Lbit;
10284 end if;
10285 end if;
10287 Next (CC);
10288 end loop;
10290 Sorting.Sort (OC_Count);
10292 Overlap_Check_Required := False;
10293 for J in 1 .. OC_Count - 1 loop
10294 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10295 Overlap_Check_Required := True;
10296 exit;
10297 end if;
10298 end loop;
10299 end Overlap_Check1;
10300 end if;
10302 -- If Overlap_Check_Required is still True, then we have to do the full
10303 -- scale overlap check, since we have at least two fields that do
10304 -- overlap, and we need to know if that is OK since they are in
10305 -- different variant, or whether we have a definite problem.
10307 if Overlap_Check_Required then
10308 Overlap_Check2 : declare
10309 C1_Ent, C2_Ent : Entity_Id;
10310 -- Entities of components being checked for overlap
10312 Clist : Node_Id;
10313 -- Component_List node whose Component_Items are being checked
10315 Citem : Node_Id;
10316 -- Component declaration for component being checked
10318 begin
10319 C1_Ent := First_Entity (Base_Type (Rectype));
10321 -- Loop through all components in record. For each component check
10322 -- for overlap with any of the preceding elements on the component
10323 -- list containing the component and also, if the component is in
10324 -- a variant, check against components outside the case structure.
10325 -- This latter test is repeated recursively up the variant tree.
10327 Main_Component_Loop : while Present (C1_Ent) loop
10328 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10329 goto Continue_Main_Component_Loop;
10330 end if;
10332 -- Skip overlap check if entity has no declaration node. This
10333 -- happens with discriminants in constrained derived types.
10334 -- Possibly we are missing some checks as a result, but that
10335 -- does not seem terribly serious.
10337 if No (Declaration_Node (C1_Ent)) then
10338 goto Continue_Main_Component_Loop;
10339 end if;
10341 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10343 -- Loop through component lists that need checking. Check the
10344 -- current component list and all lists in variants above us.
10346 Component_List_Loop : loop
10348 -- If derived type definition, go to full declaration
10349 -- If at outer level, check discriminants if there are any.
10351 if Nkind (Clist) = N_Derived_Type_Definition then
10352 Clist := Parent (Clist);
10353 end if;
10355 -- Outer level of record definition, check discriminants
10357 if Nkind_In (Clist, N_Full_Type_Declaration,
10358 N_Private_Type_Declaration)
10359 then
10360 if Has_Discriminants (Defining_Identifier (Clist)) then
10361 C2_Ent :=
10362 First_Discriminant (Defining_Identifier (Clist));
10363 while Present (C2_Ent) loop
10364 exit when C1_Ent = C2_Ent;
10365 Check_Component_Overlap (C1_Ent, C2_Ent);
10366 Next_Discriminant (C2_Ent);
10367 end loop;
10368 end if;
10370 -- Record extension case
10372 elsif Nkind (Clist) = N_Derived_Type_Definition then
10373 Clist := Empty;
10375 -- Otherwise check one component list
10377 else
10378 Citem := First (Component_Items (Clist));
10379 while Present (Citem) loop
10380 if Nkind (Citem) = N_Component_Declaration then
10381 C2_Ent := Defining_Identifier (Citem);
10382 exit when C1_Ent = C2_Ent;
10383 Check_Component_Overlap (C1_Ent, C2_Ent);
10384 end if;
10386 Next (Citem);
10387 end loop;
10388 end if;
10390 -- Check for variants above us (the parent of the Clist can
10391 -- be a variant, in which case its parent is a variant part,
10392 -- and the parent of the variant part is a component list
10393 -- whose components must all be checked against the current
10394 -- component for overlap).
10396 if Nkind (Parent (Clist)) = N_Variant then
10397 Clist := Parent (Parent (Parent (Clist)));
10399 -- Check for possible discriminant part in record, this
10400 -- is treated essentially as another level in the
10401 -- recursion. For this case the parent of the component
10402 -- list is the record definition, and its parent is the
10403 -- full type declaration containing the discriminant
10404 -- specifications.
10406 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10407 Clist := Parent (Parent ((Clist)));
10409 -- If neither of these two cases, we are at the top of
10410 -- the tree.
10412 else
10413 exit Component_List_Loop;
10414 end if;
10415 end loop Component_List_Loop;
10417 <<Continue_Main_Component_Loop>>
10418 Next_Entity (C1_Ent);
10420 end loop Main_Component_Loop;
10421 end Overlap_Check2;
10422 end if;
10424 -- The following circuit deals with warning on record holes (gaps). We
10425 -- skip this check if overlap was detected, since it makes sense for the
10426 -- programmer to fix this illegality before worrying about warnings.
10428 if not Overlap_Detected and Warn_On_Record_Holes then
10429 Record_Hole_Check : declare
10430 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10431 -- Full declaration of record type
10433 procedure Check_Component_List
10434 (CL : Node_Id;
10435 Sbit : Uint;
10436 DS : List_Id);
10437 -- Check component list CL for holes. The starting bit should be
10438 -- Sbit. which is zero for the main record component list and set
10439 -- appropriately for recursive calls for variants. DS is set to
10440 -- a list of discriminant specifications to be included in the
10441 -- consideration of components. It is No_List if none to consider.
10443 --------------------------
10444 -- Check_Component_List --
10445 --------------------------
10447 procedure Check_Component_List
10448 (CL : Node_Id;
10449 Sbit : Uint;
10450 DS : List_Id)
10452 Compl : Integer;
10454 begin
10455 Compl := Integer (List_Length (Component_Items (CL)));
10457 if DS /= No_List then
10458 Compl := Compl + Integer (List_Length (DS));
10459 end if;
10461 declare
10462 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10463 -- Gather components (zero entry is for sort routine)
10465 Ncomps : Natural := 0;
10466 -- Number of entries stored in Comps (starting at Comps (1))
10468 Citem : Node_Id;
10469 -- One component item or discriminant specification
10471 Nbit : Uint;
10472 -- Starting bit for next component
10474 CEnt : Entity_Id;
10475 -- Component entity
10477 Variant : Node_Id;
10478 -- One variant
10480 function Lt (Op1, Op2 : Natural) return Boolean;
10481 -- Compare routine for Sort
10483 procedure Move (From : Natural; To : Natural);
10484 -- Move routine for Sort
10486 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10488 --------
10489 -- Lt --
10490 --------
10492 function Lt (Op1, Op2 : Natural) return Boolean is
10493 begin
10494 return Component_Bit_Offset (Comps (Op1))
10496 Component_Bit_Offset (Comps (Op2));
10497 end Lt;
10499 ----------
10500 -- Move --
10501 ----------
10503 procedure Move (From : Natural; To : Natural) is
10504 begin
10505 Comps (To) := Comps (From);
10506 end Move;
10508 begin
10509 -- Gather discriminants into Comp
10511 if DS /= No_List then
10512 Citem := First (DS);
10513 while Present (Citem) loop
10514 if Nkind (Citem) = N_Discriminant_Specification then
10515 declare
10516 Ent : constant Entity_Id :=
10517 Defining_Identifier (Citem);
10518 begin
10519 if Ekind (Ent) = E_Discriminant then
10520 Ncomps := Ncomps + 1;
10521 Comps (Ncomps) := Ent;
10522 end if;
10523 end;
10524 end if;
10526 Next (Citem);
10527 end loop;
10528 end if;
10530 -- Gather component entities into Comp
10532 Citem := First (Component_Items (CL));
10533 while Present (Citem) loop
10534 if Nkind (Citem) = N_Component_Declaration then
10535 Ncomps := Ncomps + 1;
10536 Comps (Ncomps) := Defining_Identifier (Citem);
10537 end if;
10539 Next (Citem);
10540 end loop;
10542 -- Now sort the component entities based on the first bit.
10543 -- Note we already know there are no overlapping components.
10545 Sorting.Sort (Ncomps);
10547 -- Loop through entries checking for holes
10549 Nbit := Sbit;
10550 for J in 1 .. Ncomps loop
10551 CEnt := Comps (J);
10553 declare
10554 CBO : constant Uint := Component_Bit_Offset (CEnt);
10556 begin
10557 -- Skip components with unknown offsets
10559 if CBO /= No_Uint and then CBO >= 0 then
10560 Error_Msg_Uint_1 := CBO - Nbit;
10562 if Error_Msg_Uint_1 > 0 then
10563 Error_Msg_NE
10564 ("?H?^-bit gap before component&",
10565 Component_Name (Component_Clause (CEnt)),
10566 CEnt);
10567 end if;
10569 Nbit := CBO + Esize (CEnt);
10570 end if;
10571 end;
10572 end loop;
10574 -- Process variant parts recursively if present
10576 if Present (Variant_Part (CL)) then
10577 Variant := First (Variants (Variant_Part (CL)));
10578 while Present (Variant) loop
10579 Check_Component_List
10580 (Component_List (Variant), Nbit, No_List);
10581 Next (Variant);
10582 end loop;
10583 end if;
10584 end;
10585 end Check_Component_List;
10587 -- Start of processing for Record_Hole_Check
10589 begin
10590 declare
10591 Sbit : Uint;
10593 begin
10594 if Is_Tagged_Type (Rectype) then
10595 Sbit := UI_From_Int (System_Address_Size);
10596 else
10597 Sbit := Uint_0;
10598 end if;
10600 if Nkind (Decl) = N_Full_Type_Declaration
10601 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10602 then
10603 Check_Component_List
10604 (Component_List (Type_Definition (Decl)),
10605 Sbit,
10606 Discriminant_Specifications (Decl));
10607 end if;
10608 end;
10609 end Record_Hole_Check;
10610 end if;
10612 -- For records that have component clauses for all components, and whose
10613 -- size is less than or equal to 32, we need to know the size in the
10614 -- front end to activate possible packed array processing where the
10615 -- component type is a record.
10617 -- At this stage Hbit + 1 represents the first unused bit from all the
10618 -- component clauses processed, so if the component clauses are
10619 -- complete, then this is the length of the record.
10621 -- For records longer than System.Storage_Unit, and for those where not
10622 -- all components have component clauses, the back end determines the
10623 -- length (it may for example be appropriate to round up the size
10624 -- to some convenient boundary, based on alignment considerations, etc).
10626 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10628 -- Nothing to do if at least one component has no component clause
10630 Comp := First_Component_Or_Discriminant (Rectype);
10631 while Present (Comp) loop
10632 exit when No (Component_Clause (Comp));
10633 Next_Component_Or_Discriminant (Comp);
10634 end loop;
10636 -- If we fall out of loop, all components have component clauses
10637 -- and so we can set the size to the maximum value.
10639 if No (Comp) then
10640 Set_RM_Size (Rectype, Hbit + 1);
10641 end if;
10642 end if;
10643 end Check_Record_Representation_Clause;
10645 ----------------
10646 -- Check_Size --
10647 ----------------
10649 procedure Check_Size
10650 (N : Node_Id;
10651 T : Entity_Id;
10652 Siz : Uint;
10653 Biased : out Boolean)
10655 procedure Size_Too_Small_Error (Min_Siz : Uint);
10656 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10657 -- minimum size.
10659 --------------------------
10660 -- Size_Too_Small_Error --
10661 --------------------------
10663 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10664 begin
10665 -- This error is suppressed in ASIS mode to allow for different ASIS
10666 -- back ends or ASIS-based tools to query the illegal clause.
10668 if not ASIS_Mode then
10669 Error_Msg_Uint_1 := Min_Siz;
10670 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10671 end if;
10672 end Size_Too_Small_Error;
10674 -- Local variables
10676 UT : constant Entity_Id := Underlying_Type (T);
10677 M : Uint;
10679 -- Start of processing for Check_Size
10681 begin
10682 Biased := False;
10684 -- Reject patently improper size values
10686 if Is_Elementary_Type (T)
10687 and then Siz > UI_From_Int (Int'Last)
10688 then
10689 Error_Msg_N ("Size value too large for elementary type", N);
10691 if Nkind (Original_Node (N)) = N_Op_Expon then
10692 Error_Msg_N
10693 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10694 end if;
10695 end if;
10697 -- Dismiss generic types
10699 if Is_Generic_Type (T)
10700 or else
10701 Is_Generic_Type (UT)
10702 or else
10703 Is_Generic_Type (Root_Type (UT))
10704 then
10705 return;
10707 -- Guard against previous errors
10709 elsif No (UT) or else UT = Any_Type then
10710 Check_Error_Detected;
10711 return;
10713 -- Check case of bit packed array
10715 elsif Is_Array_Type (UT)
10716 and then Known_Static_Component_Size (UT)
10717 and then Is_Bit_Packed_Array (UT)
10718 then
10719 declare
10720 Asiz : Uint;
10721 Indx : Node_Id;
10722 Ityp : Entity_Id;
10724 begin
10725 Asiz := Component_Size (UT);
10726 Indx := First_Index (UT);
10727 loop
10728 Ityp := Etype (Indx);
10730 -- If non-static bound, then we are not in the business of
10731 -- trying to check the length, and indeed an error will be
10732 -- issued elsewhere, since sizes of non-static array types
10733 -- cannot be set implicitly or explicitly.
10735 if not Is_OK_Static_Subtype (Ityp) then
10736 return;
10737 end if;
10739 -- Otherwise accumulate next dimension
10741 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10742 Expr_Value (Type_Low_Bound (Ityp)) +
10743 Uint_1);
10745 Next_Index (Indx);
10746 exit when No (Indx);
10747 end loop;
10749 if Asiz <= Siz then
10750 return;
10752 else
10753 Size_Too_Small_Error (Asiz);
10754 Set_Esize (T, Asiz);
10755 Set_RM_Size (T, Asiz);
10756 end if;
10757 end;
10759 -- All other composite types are ignored
10761 elsif Is_Composite_Type (UT) then
10762 return;
10764 -- For fixed-point types, don't check minimum if type is not frozen,
10765 -- since we don't know all the characteristics of the type that can
10766 -- affect the size (e.g. a specified small) till freeze time.
10768 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10769 null;
10771 -- Cases for which a minimum check is required
10773 else
10774 -- Ignore if specified size is correct for the type
10776 if Known_Esize (UT) and then Siz = Esize (UT) then
10777 return;
10778 end if;
10780 -- Otherwise get minimum size
10782 M := UI_From_Int (Minimum_Size (UT));
10784 if Siz < M then
10786 -- Size is less than minimum size, but one possibility remains
10787 -- that we can manage with the new size if we bias the type.
10789 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10791 if Siz < M then
10792 Size_Too_Small_Error (M);
10793 Set_Esize (T, M);
10794 Set_RM_Size (T, M);
10795 else
10796 Biased := True;
10797 end if;
10798 end if;
10799 end if;
10800 end Check_Size;
10802 --------------------------
10803 -- Freeze_Entity_Checks --
10804 --------------------------
10806 procedure Freeze_Entity_Checks (N : Node_Id) is
10807 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10808 -- Inspect the primitive operations of type Typ and hide all pairs of
10809 -- implicitly declared non-overridden non-fully conformant homographs
10810 -- (Ada RM 8.3 12.3/2).
10812 -------------------------------------
10813 -- Hide_Non_Overridden_Subprograms --
10814 -------------------------------------
10816 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10817 procedure Hide_Matching_Homographs
10818 (Subp_Id : Entity_Id;
10819 Start_Elmt : Elmt_Id);
10820 -- Inspect a list of primitive operations starting with Start_Elmt
10821 -- and find matching implicitly declared non-overridden non-fully
10822 -- conformant homographs of Subp_Id. If found, all matches along
10823 -- with Subp_Id are hidden from all visibility.
10825 function Is_Non_Overridden_Or_Null_Procedure
10826 (Subp_Id : Entity_Id) return Boolean;
10827 -- Determine whether subprogram Subp_Id is implicitly declared non-
10828 -- overridden subprogram or an implicitly declared null procedure.
10830 ------------------------------
10831 -- Hide_Matching_Homographs --
10832 ------------------------------
10834 procedure Hide_Matching_Homographs
10835 (Subp_Id : Entity_Id;
10836 Start_Elmt : Elmt_Id)
10838 Prim : Entity_Id;
10839 Prim_Elmt : Elmt_Id;
10841 begin
10842 Prim_Elmt := Start_Elmt;
10843 while Present (Prim_Elmt) loop
10844 Prim := Node (Prim_Elmt);
10846 -- The current primitive is implicitly declared non-overridden
10847 -- non-fully conformant homograph of Subp_Id. Both subprograms
10848 -- must be hidden from visibility.
10850 if Chars (Prim) = Chars (Subp_Id)
10851 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10852 and then not Fully_Conformant (Prim, Subp_Id)
10853 then
10854 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10855 Set_Is_Immediately_Visible (Prim, False);
10856 Set_Is_Potentially_Use_Visible (Prim, False);
10858 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10859 Set_Is_Immediately_Visible (Subp_Id, False);
10860 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10861 end if;
10863 Next_Elmt (Prim_Elmt);
10864 end loop;
10865 end Hide_Matching_Homographs;
10867 -----------------------------------------
10868 -- Is_Non_Overridden_Or_Null_Procedure --
10869 -----------------------------------------
10871 function Is_Non_Overridden_Or_Null_Procedure
10872 (Subp_Id : Entity_Id) return Boolean
10874 Alias_Id : Entity_Id;
10876 begin
10877 -- The subprogram is inherited (implicitly declared), it does not
10878 -- override and does not cover a primitive of an interface.
10880 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10881 and then Present (Alias (Subp_Id))
10882 and then No (Interface_Alias (Subp_Id))
10883 and then No (Overridden_Operation (Subp_Id))
10884 then
10885 Alias_Id := Alias (Subp_Id);
10887 if Requires_Overriding (Alias_Id) then
10888 return True;
10890 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10891 and then Null_Present (Parent (Alias_Id))
10892 then
10893 return True;
10894 end if;
10895 end if;
10897 return False;
10898 end Is_Non_Overridden_Or_Null_Procedure;
10900 -- Local variables
10902 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10903 Prim : Entity_Id;
10904 Prim_Elmt : Elmt_Id;
10906 -- Start of processing for Hide_Non_Overridden_Subprograms
10908 begin
10909 -- Inspect the list of primitives looking for non-overridden
10910 -- subprograms.
10912 if Present (Prim_Ops) then
10913 Prim_Elmt := First_Elmt (Prim_Ops);
10914 while Present (Prim_Elmt) loop
10915 Prim := Node (Prim_Elmt);
10916 Next_Elmt (Prim_Elmt);
10918 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10919 Hide_Matching_Homographs
10920 (Subp_Id => Prim,
10921 Start_Elmt => Prim_Elmt);
10922 end if;
10923 end loop;
10924 end if;
10925 end Hide_Non_Overridden_Subprograms;
10927 -- Local variables
10929 E : constant Entity_Id := Entity (N);
10931 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10932 -- True in nongeneric case. Some of the processing here is skipped
10933 -- for the generic case since it is not needed. Basically in the
10934 -- generic case, we only need to do stuff that might generate error
10935 -- messages or warnings.
10937 -- Start of processing for Freeze_Entity_Checks
10939 begin
10940 -- Remember that we are processing a freezing entity. Required to
10941 -- ensure correct decoration of internal entities associated with
10942 -- interfaces (see New_Overloaded_Entity).
10944 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10946 -- For tagged types covering interfaces add internal entities that link
10947 -- the primitives of the interfaces with the primitives that cover them.
10948 -- Note: These entities were originally generated only when generating
10949 -- code because their main purpose was to provide support to initialize
10950 -- the secondary dispatch tables. They are now generated also when
10951 -- compiling with no code generation to provide ASIS the relationship
10952 -- between interface primitives and tagged type primitives. They are
10953 -- also used to locate primitives covering interfaces when processing
10954 -- generics (see Derive_Subprograms).
10956 -- This is not needed in the generic case
10958 if Ada_Version >= Ada_2005
10959 and then Nongeneric_Case
10960 and then Ekind (E) = E_Record_Type
10961 and then Is_Tagged_Type (E)
10962 and then not Is_Interface (E)
10963 and then Has_Interfaces (E)
10964 then
10965 -- This would be a good common place to call the routine that checks
10966 -- overriding of interface primitives (and thus factorize calls to
10967 -- Check_Abstract_Overriding located at different contexts in the
10968 -- compiler). However, this is not possible because it causes
10969 -- spurious errors in case of late overriding.
10971 Add_Internal_Interface_Entities (E);
10972 end if;
10974 -- After all forms of overriding have been resolved, a tagged type may
10975 -- be left with a set of implicitly declared and possibly erroneous
10976 -- abstract subprograms, null procedures and subprograms that require
10977 -- overriding. If this set contains fully conformant homographs, then
10978 -- one is chosen arbitrarily (already done during resolution), otherwise
10979 -- all remaining non-fully conformant homographs are hidden from
10980 -- visibility (Ada RM 8.3 12.3/2).
10982 if Is_Tagged_Type (E) then
10983 Hide_Non_Overridden_Subprograms (E);
10984 end if;
10986 -- Check CPP types
10988 if Ekind (E) = E_Record_Type
10989 and then Is_CPP_Class (E)
10990 and then Is_Tagged_Type (E)
10991 and then Tagged_Type_Expansion
10992 then
10993 if CPP_Num_Prims (E) = 0 then
10995 -- If the CPP type has user defined components then it must import
10996 -- primitives from C++. This is required because if the C++ class
10997 -- has no primitives then the C++ compiler does not added the _tag
10998 -- component to the type.
11000 if First_Entity (E) /= Last_Entity (E) then
11001 Error_Msg_N
11002 ("'C'P'P type must import at least one primitive from C++??",
11004 end if;
11005 end if;
11007 -- Check that all its primitives are abstract or imported from C++.
11008 -- Check also availability of the C++ constructor.
11010 declare
11011 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11012 Elmt : Elmt_Id;
11013 Error_Reported : Boolean := False;
11014 Prim : Node_Id;
11016 begin
11017 Elmt := First_Elmt (Primitive_Operations (E));
11018 while Present (Elmt) loop
11019 Prim := Node (Elmt);
11021 if Comes_From_Source (Prim) then
11022 if Is_Abstract_Subprogram (Prim) then
11023 null;
11025 elsif not Is_Imported (Prim)
11026 or else Convention (Prim) /= Convention_CPP
11027 then
11028 Error_Msg_N
11029 ("primitives of 'C'P'P types must be imported from C++ "
11030 & "or abstract??", Prim);
11032 elsif not Has_Constructors
11033 and then not Error_Reported
11034 then
11035 Error_Msg_Name_1 := Chars (E);
11036 Error_Msg_N
11037 ("??'C'P'P constructor required for type %", Prim);
11038 Error_Reported := True;
11039 end if;
11040 end if;
11042 Next_Elmt (Elmt);
11043 end loop;
11044 end;
11045 end if;
11047 -- Check Ada derivation of CPP type
11049 if Expander_Active -- why? losing errors in -gnatc mode???
11050 and then Present (Etype (E)) -- defend against errors
11051 and then Tagged_Type_Expansion
11052 and then Ekind (E) = E_Record_Type
11053 and then Etype (E) /= E
11054 and then Is_CPP_Class (Etype (E))
11055 and then CPP_Num_Prims (Etype (E)) > 0
11056 and then not Is_CPP_Class (E)
11057 and then not Has_CPP_Constructors (Etype (E))
11058 then
11059 -- If the parent has C++ primitives but it has no constructor then
11060 -- check that all the primitives are overridden in this derivation;
11061 -- otherwise the constructor of the parent is needed to build the
11062 -- dispatch table.
11064 declare
11065 Elmt : Elmt_Id;
11066 Prim : Node_Id;
11068 begin
11069 Elmt := First_Elmt (Primitive_Operations (E));
11070 while Present (Elmt) loop
11071 Prim := Node (Elmt);
11073 if not Is_Abstract_Subprogram (Prim)
11074 and then No (Interface_Alias (Prim))
11075 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11076 then
11077 Error_Msg_Name_1 := Chars (Etype (E));
11078 Error_Msg_N
11079 ("'C'P'P constructor required for parent type %", E);
11080 exit;
11081 end if;
11083 Next_Elmt (Elmt);
11084 end loop;
11085 end;
11086 end if;
11088 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11090 -- If we have a type with predicates, build predicate function. This is
11091 -- not needed in the generic case, nor within TSS subprograms and other
11092 -- predefined primitives.
11094 if Is_Type (E)
11095 and then Nongeneric_Case
11096 and then not Within_Internal_Subprogram
11097 and then Has_Predicates (E)
11098 then
11099 Build_Predicate_Functions (E, N);
11100 end if;
11102 -- If type has delayed aspects, this is where we do the preanalysis at
11103 -- the freeze point, as part of the consistent visibility check. Note
11104 -- that this must be done after calling Build_Predicate_Functions or
11105 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11106 -- the subtype name in the saved expression so that they will not cause
11107 -- trouble in the preanalysis.
11109 -- This is also not needed in the generic case
11111 if Nongeneric_Case
11112 and then Has_Delayed_Aspects (E)
11113 and then Scope (E) = Current_Scope
11114 then
11115 -- Retrieve the visibility to the discriminants in order to properly
11116 -- analyze the aspects.
11118 Push_Scope_And_Install_Discriminants (E);
11120 declare
11121 Ritem : Node_Id;
11123 begin
11124 -- Look for aspect specification entries for this entity
11126 Ritem := First_Rep_Item (E);
11127 while Present (Ritem) loop
11128 if Nkind (Ritem) = N_Aspect_Specification
11129 and then Entity (Ritem) = E
11130 and then Is_Delayed_Aspect (Ritem)
11131 then
11132 Check_Aspect_At_Freeze_Point (Ritem);
11133 end if;
11135 Next_Rep_Item (Ritem);
11136 end loop;
11137 end;
11139 Uninstall_Discriminants_And_Pop_Scope (E);
11140 end if;
11142 -- For a record type, deal with variant parts. This has to be delayed
11143 -- to this point, because of the issue of statically predicated
11144 -- subtypes, which we have to ensure are frozen before checking
11145 -- choices, since we need to have the static choice list set.
11147 if Is_Record_Type (E) then
11148 Check_Variant_Part : declare
11149 D : constant Node_Id := Declaration_Node (E);
11150 T : Node_Id;
11151 C : Node_Id;
11152 VP : Node_Id;
11154 Others_Present : Boolean;
11155 pragma Warnings (Off, Others_Present);
11156 -- Indicates others present, not used in this case
11158 procedure Non_Static_Choice_Error (Choice : Node_Id);
11159 -- Error routine invoked by the generic instantiation below when
11160 -- the variant part has a non static choice.
11162 procedure Process_Declarations (Variant : Node_Id);
11163 -- Processes declarations associated with a variant. We analyzed
11164 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11165 -- but we still need the recursive call to Check_Choices for any
11166 -- nested variant to get its choices properly processed. This is
11167 -- also where we expand out the choices if expansion is active.
11169 package Variant_Choices_Processing is new
11170 Generic_Check_Choices
11171 (Process_Empty_Choice => No_OP,
11172 Process_Non_Static_Choice => Non_Static_Choice_Error,
11173 Process_Associated_Node => Process_Declarations);
11174 use Variant_Choices_Processing;
11176 -----------------------------
11177 -- Non_Static_Choice_Error --
11178 -----------------------------
11180 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11181 begin
11182 Flag_Non_Static_Expr
11183 ("choice given in variant part is not static!", Choice);
11184 end Non_Static_Choice_Error;
11186 --------------------------
11187 -- Process_Declarations --
11188 --------------------------
11190 procedure Process_Declarations (Variant : Node_Id) is
11191 CL : constant Node_Id := Component_List (Variant);
11192 VP : Node_Id;
11194 begin
11195 -- Check for static predicate present in this variant
11197 if Has_SP_Choice (Variant) then
11199 -- Here we expand. You might expect to find this call in
11200 -- Expand_N_Variant_Part, but that is called when we first
11201 -- see the variant part, and we cannot do this expansion
11202 -- earlier than the freeze point, since for statically
11203 -- predicated subtypes, the predicate is not known till
11204 -- the freeze point.
11206 -- Furthermore, we do this expansion even if the expander
11207 -- is not active, because other semantic processing, e.g.
11208 -- for aggregates, requires the expanded list of choices.
11210 -- If the expander is not active, then we can't just clobber
11211 -- the list since it would invalidate the ASIS -gnatct tree.
11212 -- So we have to rewrite the variant part with a Rewrite
11213 -- call that replaces it with a copy and clobber the copy.
11215 if not Expander_Active then
11216 declare
11217 NewV : constant Node_Id := New_Copy (Variant);
11218 begin
11219 Set_Discrete_Choices
11220 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11221 Rewrite (Variant, NewV);
11222 end;
11223 end if;
11225 Expand_Static_Predicates_In_Choices (Variant);
11226 end if;
11228 -- We don't need to worry about the declarations in the variant
11229 -- (since they were analyzed by Analyze_Choices when we first
11230 -- encountered the variant), but we do need to take care of
11231 -- expansion of any nested variants.
11233 if not Null_Present (CL) then
11234 VP := Variant_Part (CL);
11236 if Present (VP) then
11237 Check_Choices
11238 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11239 end if;
11240 end if;
11241 end Process_Declarations;
11243 -- Start of processing for Check_Variant_Part
11245 begin
11246 -- Find component list
11248 C := Empty;
11250 if Nkind (D) = N_Full_Type_Declaration then
11251 T := Type_Definition (D);
11253 if Nkind (T) = N_Record_Definition then
11254 C := Component_List (T);
11256 elsif Nkind (T) = N_Derived_Type_Definition
11257 and then Present (Record_Extension_Part (T))
11258 then
11259 C := Component_List (Record_Extension_Part (T));
11260 end if;
11261 end if;
11263 -- Case of variant part present
11265 if Present (C) and then Present (Variant_Part (C)) then
11266 VP := Variant_Part (C);
11268 -- Check choices
11270 Check_Choices
11271 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11273 -- If the last variant does not contain the Others choice,
11274 -- replace it with an N_Others_Choice node since Gigi always
11275 -- wants an Others. Note that we do not bother to call Analyze
11276 -- on the modified variant part, since its only effect would be
11277 -- to compute the Others_Discrete_Choices node laboriously, and
11278 -- of course we already know the list of choices corresponding
11279 -- to the others choice (it's the list we're replacing).
11281 -- We only want to do this if the expander is active, since
11282 -- we do not want to clobber the ASIS tree.
11284 if Expander_Active then
11285 declare
11286 Last_Var : constant Node_Id :=
11287 Last_Non_Pragma (Variants (VP));
11289 Others_Node : Node_Id;
11291 begin
11292 if Nkind (First (Discrete_Choices (Last_Var))) /=
11293 N_Others_Choice
11294 then
11295 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11296 Set_Others_Discrete_Choices
11297 (Others_Node, Discrete_Choices (Last_Var));
11298 Set_Discrete_Choices
11299 (Last_Var, New_List (Others_Node));
11300 end if;
11301 end;
11302 end if;
11303 end if;
11304 end Check_Variant_Part;
11305 end if;
11306 end Freeze_Entity_Checks;
11308 -------------------------
11309 -- Get_Alignment_Value --
11310 -------------------------
11312 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11313 Align : constant Uint := Static_Integer (Expr);
11315 begin
11316 if Align = No_Uint then
11317 return No_Uint;
11319 elsif Align <= 0 then
11321 -- This error is suppressed in ASIS mode to allow for different ASIS
11322 -- back ends or ASIS-based tools to query the illegal clause.
11324 if not ASIS_Mode then
11325 Error_Msg_N ("alignment value must be positive", Expr);
11326 end if;
11328 return No_Uint;
11330 else
11331 for J in Int range 0 .. 64 loop
11332 declare
11333 M : constant Uint := Uint_2 ** J;
11335 begin
11336 exit when M = Align;
11338 if M > Align then
11340 -- This error is suppressed in ASIS mode to allow for
11341 -- different ASIS back ends or ASIS-based tools to query the
11342 -- illegal clause.
11344 if not ASIS_Mode then
11345 Error_Msg_N ("alignment value must be power of 2", Expr);
11346 end if;
11348 return No_Uint;
11349 end if;
11350 end;
11351 end loop;
11353 return Align;
11354 end if;
11355 end Get_Alignment_Value;
11357 -------------------------------------
11358 -- Inherit_Aspects_At_Freeze_Point --
11359 -------------------------------------
11361 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11362 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11363 (Rep_Item : Node_Id) return Boolean;
11364 -- This routine checks if Rep_Item is either a pragma or an aspect
11365 -- specification node whose correponding pragma (if any) is present in
11366 -- the Rep Item chain of the entity it has been specified to.
11368 --------------------------------------------------
11369 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11370 --------------------------------------------------
11372 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11373 (Rep_Item : Node_Id) return Boolean
11375 begin
11376 return
11377 Nkind (Rep_Item) = N_Pragma
11378 or else Present_In_Rep_Item
11379 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11380 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11382 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11384 begin
11385 -- A representation item is either subtype-specific (Size and Alignment
11386 -- clauses) or type-related (all others). Subtype-specific aspects may
11387 -- differ for different subtypes of the same type (RM 13.1.8).
11389 -- A derived type inherits each type-related representation aspect of
11390 -- its parent type that was directly specified before the declaration of
11391 -- the derived type (RM 13.1.15).
11393 -- A derived subtype inherits each subtype-specific representation
11394 -- aspect of its parent subtype that was directly specified before the
11395 -- declaration of the derived type (RM 13.1.15).
11397 -- The general processing involves inheriting a representation aspect
11398 -- from a parent type whenever the first rep item (aspect specification,
11399 -- attribute definition clause, pragma) corresponding to the given
11400 -- representation aspect in the rep item chain of Typ, if any, isn't
11401 -- directly specified to Typ but to one of its parents.
11403 -- ??? Note that, for now, just a limited number of representation
11404 -- aspects have been inherited here so far. Many of them are
11405 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11406 -- a non- exhaustive list of aspects that likely also need to
11407 -- be moved to this routine: Alignment, Component_Alignment,
11408 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11409 -- Preelaborable_Initialization, RM_Size and Small.
11411 -- In addition, Convention must be propagated from base type to subtype,
11412 -- because the subtype may have been declared on an incomplete view.
11414 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11415 return;
11416 end if;
11418 -- Ada_05/Ada_2005
11420 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11421 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11422 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11423 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11424 then
11425 Set_Is_Ada_2005_Only (Typ);
11426 end if;
11428 -- Ada_12/Ada_2012
11430 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11431 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11432 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11433 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11434 then
11435 Set_Is_Ada_2012_Only (Typ);
11436 end if;
11438 -- Atomic/Shared
11440 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11441 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11442 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11443 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11444 then
11445 Set_Is_Atomic (Typ);
11446 Set_Is_Volatile (Typ);
11447 Set_Treat_As_Volatile (Typ);
11448 end if;
11450 -- Convention
11452 if Is_Record_Type (Typ)
11453 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11454 then
11455 Set_Convention (Typ, Convention (Base_Type (Typ)));
11456 end if;
11458 -- Default_Component_Value
11460 -- Verify that there is no rep_item declared for the type, and there
11461 -- is one coming from an ancestor.
11463 if Is_Array_Type (Typ)
11464 and then Is_Base_Type (Typ)
11465 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11466 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11467 then
11468 Set_Default_Aspect_Component_Value (Typ,
11469 Default_Aspect_Component_Value
11470 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11471 end if;
11473 -- Default_Value
11475 if Is_Scalar_Type (Typ)
11476 and then Is_Base_Type (Typ)
11477 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11478 and then Has_Rep_Item (Typ, Name_Default_Value)
11479 then
11480 Set_Has_Default_Aspect (Typ);
11481 Set_Default_Aspect_Value (Typ,
11482 Default_Aspect_Value
11483 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11484 end if;
11486 -- Discard_Names
11488 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11489 and then Has_Rep_Item (Typ, Name_Discard_Names)
11490 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11491 (Get_Rep_Item (Typ, Name_Discard_Names))
11492 then
11493 Set_Discard_Names (Typ);
11494 end if;
11496 -- Volatile
11498 if not Has_Rep_Item (Typ, Name_Volatile, False)
11499 and then Has_Rep_Item (Typ, Name_Volatile)
11500 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11501 (Get_Rep_Item (Typ, Name_Volatile))
11502 then
11503 Set_Is_Volatile (Typ);
11504 Set_Treat_As_Volatile (Typ);
11505 end if;
11507 -- Volatile_Full_Access
11509 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11510 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11511 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11512 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11513 then
11514 Set_Is_Volatile_Full_Access (Typ);
11515 Set_Is_Volatile (Typ);
11516 Set_Treat_As_Volatile (Typ);
11517 end if;
11519 -- Inheritance for derived types only
11521 if Is_Derived_Type (Typ) then
11522 declare
11523 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11524 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11526 begin
11527 -- Atomic_Components
11529 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11530 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11531 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11532 (Get_Rep_Item (Typ, Name_Atomic_Components))
11533 then
11534 Set_Has_Atomic_Components (Imp_Bas_Typ);
11535 end if;
11537 -- Volatile_Components
11539 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11540 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11541 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11542 (Get_Rep_Item (Typ, Name_Volatile_Components))
11543 then
11544 Set_Has_Volatile_Components (Imp_Bas_Typ);
11545 end if;
11547 -- Finalize_Storage_Only
11549 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11550 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11551 then
11552 Set_Finalize_Storage_Only (Bas_Typ);
11553 end if;
11555 -- Universal_Aliasing
11557 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11558 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11559 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11560 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11561 then
11562 Set_Universal_Aliasing (Imp_Bas_Typ);
11563 end if;
11565 -- Bit_Order
11567 if Is_Record_Type (Typ) then
11568 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11569 and then Has_Rep_Item (Typ, Name_Bit_Order)
11570 then
11571 Set_Reverse_Bit_Order (Bas_Typ,
11572 Reverse_Bit_Order (Entity (Name
11573 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11574 end if;
11575 end if;
11577 -- Scalar_Storage_Order
11579 -- Note: the aspect is specified on a first subtype, but recorded
11580 -- in a flag of the base type!
11582 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11583 and then Typ = Bas_Typ
11584 then
11585 -- For a type extension, always inherit from parent; otherwise
11586 -- inherit if no default applies. Note: we do not check for
11587 -- an explicit rep item on the parent type when inheriting,
11588 -- because the parent SSO may itself have been set by default.
11590 if not Has_Rep_Item (First_Subtype (Typ),
11591 Name_Scalar_Storage_Order, False)
11592 and then (Is_Tagged_Type (Bas_Typ)
11593 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11594 or else
11595 SSO_Set_High_By_Default (Bas_Typ)))
11596 then
11597 Set_Reverse_Storage_Order (Bas_Typ,
11598 Reverse_Storage_Order
11599 (Implementation_Base_Type (Etype (Bas_Typ))));
11601 -- Clear default SSO indications, since the inherited aspect
11602 -- which was set explicitly overrides the default.
11604 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11605 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11606 end if;
11607 end if;
11608 end;
11609 end if;
11610 end Inherit_Aspects_At_Freeze_Point;
11612 ----------------
11613 -- Initialize --
11614 ----------------
11616 procedure Initialize is
11617 begin
11618 Address_Clause_Checks.Init;
11619 Compile_Time_Warnings_Errors.Init;
11620 Unchecked_Conversions.Init;
11622 -- ??? Might be needed in the future for some non GCC back-ends
11623 -- if AAMP_On_Target then
11624 -- Independence_Checks.Init;
11625 -- end if;
11626 end Initialize;
11628 ---------------------------
11629 -- Install_Discriminants --
11630 ---------------------------
11632 procedure Install_Discriminants (E : Entity_Id) is
11633 Disc : Entity_Id;
11634 Prev : Entity_Id;
11635 begin
11636 Disc := First_Discriminant (E);
11637 while Present (Disc) loop
11638 Prev := Current_Entity (Disc);
11639 Set_Current_Entity (Disc);
11640 Set_Is_Immediately_Visible (Disc);
11641 Set_Homonym (Disc, Prev);
11642 Next_Discriminant (Disc);
11643 end loop;
11644 end Install_Discriminants;
11646 -------------------------
11647 -- Is_Operational_Item --
11648 -------------------------
11650 function Is_Operational_Item (N : Node_Id) return Boolean is
11651 begin
11652 if Nkind (N) /= N_Attribute_Definition_Clause then
11653 return False;
11655 else
11656 declare
11657 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11658 begin
11660 -- List of operational items is given in AARM 13.1(8.mm/1).
11661 -- It is clearly incomplete, as it does not include iterator
11662 -- aspects, among others.
11664 return Id = Attribute_Constant_Indexing
11665 or else Id = Attribute_Default_Iterator
11666 or else Id = Attribute_Implicit_Dereference
11667 or else Id = Attribute_Input
11668 or else Id = Attribute_Iterator_Element
11669 or else Id = Attribute_Iterable
11670 or else Id = Attribute_Output
11671 or else Id = Attribute_Read
11672 or else Id = Attribute_Variable_Indexing
11673 or else Id = Attribute_Write
11674 or else Id = Attribute_External_Tag;
11675 end;
11676 end if;
11677 end Is_Operational_Item;
11679 -------------------------
11680 -- Is_Predicate_Static --
11681 -------------------------
11683 -- Note: the basic legality of the expression has already been checked, so
11684 -- we don't need to worry about cases or ranges on strings for example.
11686 function Is_Predicate_Static
11687 (Expr : Node_Id;
11688 Nam : Name_Id) return Boolean
11690 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11691 -- Given a list of case expression alternatives, returns True if all
11692 -- the alternatives are static (have all static choices, and a static
11693 -- expression).
11695 function All_Static_Choices (L : List_Id) return Boolean;
11696 -- Returns true if all elements of the list are OK static choices
11697 -- as defined below for Is_Static_Choice. Used for case expression
11698 -- alternatives and for the right operand of a membership test. An
11699 -- others_choice is static if the corresponding expression is static.
11700 -- The staticness of the bounds is checked separately.
11702 function Is_Static_Choice (N : Node_Id) return Boolean;
11703 -- Returns True if N represents a static choice (static subtype, or
11704 -- static subtype indication, or static expression, or static range).
11706 -- Note that this is a bit more inclusive than we actually need
11707 -- (in particular membership tests do not allow the use of subtype
11708 -- indications). But that doesn't matter, we have already checked
11709 -- that the construct is legal to get this far.
11711 function Is_Type_Ref (N : Node_Id) return Boolean;
11712 pragma Inline (Is_Type_Ref);
11713 -- Returns True if N is a reference to the type for the predicate in the
11714 -- expression (i.e. if it is an identifier whose Chars field matches the
11715 -- Nam given in the call). N must not be parenthesized, if the type name
11716 -- appears in parens, this routine will return False.
11718 -- The routine also returns True for function calls generated during the
11719 -- expansion of comparison operators on strings, which are intended to
11720 -- be legal in static predicates, and are converted into calls to array
11721 -- comparison routines in the body of the corresponding predicate
11722 -- function.
11724 ----------------------------------
11725 -- All_Static_Case_Alternatives --
11726 ----------------------------------
11728 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11729 N : Node_Id;
11731 begin
11732 N := First (L);
11733 while Present (N) loop
11734 if not (All_Static_Choices (Discrete_Choices (N))
11735 and then Is_OK_Static_Expression (Expression (N)))
11736 then
11737 return False;
11738 end if;
11740 Next (N);
11741 end loop;
11743 return True;
11744 end All_Static_Case_Alternatives;
11746 ------------------------
11747 -- All_Static_Choices --
11748 ------------------------
11750 function All_Static_Choices (L : List_Id) return Boolean is
11751 N : Node_Id;
11753 begin
11754 N := First (L);
11755 while Present (N) loop
11756 if not Is_Static_Choice (N) then
11757 return False;
11758 end if;
11760 Next (N);
11761 end loop;
11763 return True;
11764 end All_Static_Choices;
11766 ----------------------
11767 -- Is_Static_Choice --
11768 ----------------------
11770 function Is_Static_Choice (N : Node_Id) return Boolean is
11771 begin
11772 return Nkind (N) = N_Others_Choice
11773 or else Is_OK_Static_Expression (N)
11774 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11775 and then Is_OK_Static_Subtype (Entity (N)))
11776 or else (Nkind (N) = N_Subtype_Indication
11777 and then Is_OK_Static_Subtype (Entity (N)))
11778 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11779 end Is_Static_Choice;
11781 -----------------
11782 -- Is_Type_Ref --
11783 -----------------
11785 function Is_Type_Ref (N : Node_Id) return Boolean is
11786 begin
11787 return (Nkind (N) = N_Identifier
11788 and then Chars (N) = Nam
11789 and then Paren_Count (N) = 0)
11790 or else Nkind (N) = N_Function_Call;
11791 end Is_Type_Ref;
11793 -- Start of processing for Is_Predicate_Static
11795 begin
11796 -- Predicate_Static means one of the following holds. Numbers are the
11797 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11799 -- 16: A static expression
11801 if Is_OK_Static_Expression (Expr) then
11802 return True;
11804 -- 17: A membership test whose simple_expression is the current
11805 -- instance, and whose membership_choice_list meets the requirements
11806 -- for a static membership test.
11808 elsif Nkind (Expr) in N_Membership_Test
11809 and then ((Present (Right_Opnd (Expr))
11810 and then Is_Static_Choice (Right_Opnd (Expr)))
11811 or else
11812 (Present (Alternatives (Expr))
11813 and then All_Static_Choices (Alternatives (Expr))))
11814 then
11815 return True;
11817 -- 18. A case_expression whose selecting_expression is the current
11818 -- instance, and whose dependent expressions are static expressions.
11820 elsif Nkind (Expr) = N_Case_Expression
11821 and then Is_Type_Ref (Expression (Expr))
11822 and then All_Static_Case_Alternatives (Alternatives (Expr))
11823 then
11824 return True;
11826 -- 19. A call to a predefined equality or ordering operator, where one
11827 -- operand is the current instance, and the other is a static
11828 -- expression.
11830 -- Note: the RM is clearly wrong here in not excluding string types.
11831 -- Without this exclusion, we would allow expressions like X > "ABC"
11832 -- to be considered as predicate-static, which is clearly not intended,
11833 -- since the idea is for predicate-static to be a subset of normal
11834 -- static expressions (and "DEF" > "ABC" is not a static expression).
11836 -- However, we do allow internally generated (not from source) equality
11837 -- and inequality operations to be valid on strings (this helps deal
11838 -- with cases where we transform A in "ABC" to A = "ABC).
11840 -- In fact, it appears that the intent of the ARG is to extend static
11841 -- predicates to strings, and that the extension should probably apply
11842 -- to static expressions themselves. The code below accepts comparison
11843 -- operators that apply to static strings.
11845 elsif Nkind (Expr) in N_Op_Compare
11846 and then ((Is_Type_Ref (Left_Opnd (Expr))
11847 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11848 or else
11849 (Is_Type_Ref (Right_Opnd (Expr))
11850 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11851 then
11852 return True;
11854 -- 20. A call to a predefined boolean logical operator, where each
11855 -- operand is predicate-static.
11857 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11858 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11859 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11860 or else
11861 (Nkind (Expr) = N_Op_Not
11862 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11863 then
11864 return True;
11866 -- 21. A short-circuit control form where both operands are
11867 -- predicate-static.
11869 elsif Nkind (Expr) in N_Short_Circuit
11870 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11871 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11872 then
11873 return True;
11875 -- 22. A parenthesized predicate-static expression. This does not
11876 -- require any special test, since we just ignore paren levels in
11877 -- all the cases above.
11879 -- One more test that is an implementation artifact caused by the fact
11880 -- that we are analyzing not the original expression, but the generated
11881 -- expression in the body of the predicate function. This can include
11882 -- references to inherited predicates, so that the expression we are
11883 -- processing looks like:
11885 -- xxPredicate (typ (Inns)) and then expression
11887 -- Where the call is to a Predicate function for an inherited predicate.
11888 -- We simply ignore such a call, which could be to either a dynamic or
11889 -- a static predicate. Note that if the parent predicate is dynamic then
11890 -- eventually this type will be marked as dynamic, but you are allowed
11891 -- to specify a static predicate for a subtype which is inheriting a
11892 -- dynamic predicate, so the static predicate validation here ignores
11893 -- the inherited predicate even if it is dynamic.
11894 -- In all cases, a static predicate can only apply to a scalar type.
11896 elsif Nkind (Expr) = N_Function_Call
11897 and then Is_Predicate_Function (Entity (Name (Expr)))
11898 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11899 then
11900 return True;
11902 elsif Is_Entity_Name (Expr)
11903 and then Entity (Expr) = Standard_True
11904 then
11905 Error_Msg_N ("predicate is redundant (always True)?", Expr);
11906 return True;
11908 -- That's an exhaustive list of tests, all other cases are not
11909 -- predicate-static, so we return False.
11911 else
11912 return False;
11913 end if;
11914 end Is_Predicate_Static;
11916 ---------------------
11917 -- Kill_Rep_Clause --
11918 ---------------------
11920 procedure Kill_Rep_Clause (N : Node_Id) is
11921 begin
11922 pragma Assert (Ignore_Rep_Clauses);
11924 -- Note: we use Replace rather than Rewrite, because we don't want
11925 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11926 -- rep clause that is being replaced.
11928 Replace (N, Make_Null_Statement (Sloc (N)));
11930 -- The null statement must be marked as not coming from source. This is
11931 -- so that ASIS ignores it, and also the back end does not expect bogus
11932 -- "from source" null statements in weird places (e.g. in declarative
11933 -- regions where such null statements are not allowed).
11935 Set_Comes_From_Source (N, False);
11936 end Kill_Rep_Clause;
11938 ------------------
11939 -- Minimum_Size --
11940 ------------------
11942 function Minimum_Size
11943 (T : Entity_Id;
11944 Biased : Boolean := False) return Nat
11946 Lo : Uint := No_Uint;
11947 Hi : Uint := No_Uint;
11948 LoR : Ureal := No_Ureal;
11949 HiR : Ureal := No_Ureal;
11950 LoSet : Boolean := False;
11951 HiSet : Boolean := False;
11952 B : Uint;
11953 S : Nat;
11954 Ancest : Entity_Id;
11955 R_Typ : constant Entity_Id := Root_Type (T);
11957 begin
11958 -- If bad type, return 0
11960 if T = Any_Type then
11961 return 0;
11963 -- For generic types, just return zero. There cannot be any legitimate
11964 -- need to know such a size, but this routine may be called with a
11965 -- generic type as part of normal processing.
11967 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11968 return 0;
11970 -- Access types (cannot have size smaller than System.Address)
11972 elsif Is_Access_Type (T) then
11973 return System_Address_Size;
11975 -- Floating-point types
11977 elsif Is_Floating_Point_Type (T) then
11978 return UI_To_Int (Esize (R_Typ));
11980 -- Discrete types
11982 elsif Is_Discrete_Type (T) then
11984 -- The following loop is looking for the nearest compile time known
11985 -- bounds following the ancestor subtype chain. The idea is to find
11986 -- the most restrictive known bounds information.
11988 Ancest := T;
11989 loop
11990 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11991 return 0;
11992 end if;
11994 if not LoSet then
11995 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11996 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11997 LoSet := True;
11998 exit when HiSet;
11999 end if;
12000 end if;
12002 if not HiSet then
12003 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12004 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12005 HiSet := True;
12006 exit when LoSet;
12007 end if;
12008 end if;
12010 Ancest := Ancestor_Subtype (Ancest);
12012 if No (Ancest) then
12013 Ancest := Base_Type (T);
12015 if Is_Generic_Type (Ancest) then
12016 return 0;
12017 end if;
12018 end if;
12019 end loop;
12021 -- Fixed-point types. We can't simply use Expr_Value to get the
12022 -- Corresponding_Integer_Value values of the bounds, since these do not
12023 -- get set till the type is frozen, and this routine can be called
12024 -- before the type is frozen. Similarly the test for bounds being static
12025 -- needs to include the case where we have unanalyzed real literals for
12026 -- the same reason.
12028 elsif Is_Fixed_Point_Type (T) then
12030 -- The following loop is looking for the nearest compile time known
12031 -- bounds following the ancestor subtype chain. The idea is to find
12032 -- the most restrictive known bounds information.
12034 Ancest := T;
12035 loop
12036 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12037 return 0;
12038 end if;
12040 -- Note: In the following two tests for LoSet and HiSet, it may
12041 -- seem redundant to test for N_Real_Literal here since normally
12042 -- one would assume that the test for the value being known at
12043 -- compile time includes this case. However, there is a glitch.
12044 -- If the real literal comes from folding a non-static expression,
12045 -- then we don't consider any non- static expression to be known
12046 -- at compile time if we are in configurable run time mode (needed
12047 -- in some cases to give a clearer definition of what is and what
12048 -- is not accepted). So the test is indeed needed. Without it, we
12049 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12051 if not LoSet then
12052 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12053 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12054 then
12055 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12056 LoSet := True;
12057 exit when HiSet;
12058 end if;
12059 end if;
12061 if not HiSet then
12062 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12063 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12064 then
12065 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12066 HiSet := True;
12067 exit when LoSet;
12068 end if;
12069 end if;
12071 Ancest := Ancestor_Subtype (Ancest);
12073 if No (Ancest) then
12074 Ancest := Base_Type (T);
12076 if Is_Generic_Type (Ancest) then
12077 return 0;
12078 end if;
12079 end if;
12080 end loop;
12082 Lo := UR_To_Uint (LoR / Small_Value (T));
12083 Hi := UR_To_Uint (HiR / Small_Value (T));
12085 -- No other types allowed
12087 else
12088 raise Program_Error;
12089 end if;
12091 -- Fall through with Hi and Lo set. Deal with biased case
12093 if (Biased
12094 and then not Is_Fixed_Point_Type (T)
12095 and then not (Is_Enumeration_Type (T)
12096 and then Has_Non_Standard_Rep (T)))
12097 or else Has_Biased_Representation (T)
12098 then
12099 Hi := Hi - Lo;
12100 Lo := Uint_0;
12101 end if;
12103 -- Null range case, size is always zero. We only do this in the discrete
12104 -- type case, since that's the odd case that came up. Probably we should
12105 -- also do this in the fixed-point case, but doing so causes peculiar
12106 -- gigi failures, and it is not worth worrying about this incredibly
12107 -- marginal case (explicit null-range fixed-point type declarations)???
12109 if Lo > Hi and then Is_Discrete_Type (T) then
12110 S := 0;
12112 -- Signed case. Note that we consider types like range 1 .. -1 to be
12113 -- signed for the purpose of computing the size, since the bounds have
12114 -- to be accommodated in the base type.
12116 elsif Lo < 0 or else Hi < 0 then
12117 S := 1;
12118 B := Uint_1;
12120 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12121 -- Note that we accommodate the case where the bounds cross. This
12122 -- can happen either because of the way the bounds are declared
12123 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12125 while Lo < -B
12126 or else Hi < -B
12127 or else Lo >= B
12128 or else Hi >= B
12129 loop
12130 B := Uint_2 ** S;
12131 S := S + 1;
12132 end loop;
12134 -- Unsigned case
12136 else
12137 -- If both bounds are positive, make sure that both are represen-
12138 -- table in the case where the bounds are crossed. This can happen
12139 -- either because of the way the bounds are declared, or because of
12140 -- the algorithm in Freeze_Fixed_Point_Type.
12142 if Lo > Hi then
12143 Hi := Lo;
12144 end if;
12146 -- S = size, (can accommodate 0 .. (2**size - 1))
12148 S := 0;
12149 while Hi >= Uint_2 ** S loop
12150 S := S + 1;
12151 end loop;
12152 end if;
12154 return S;
12155 end Minimum_Size;
12157 ---------------------------
12158 -- New_Stream_Subprogram --
12159 ---------------------------
12161 procedure New_Stream_Subprogram
12162 (N : Node_Id;
12163 Ent : Entity_Id;
12164 Subp : Entity_Id;
12165 Nam : TSS_Name_Type)
12167 Loc : constant Source_Ptr := Sloc (N);
12168 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12169 Subp_Id : Entity_Id;
12170 Subp_Decl : Node_Id;
12171 F : Entity_Id;
12172 Etyp : Entity_Id;
12174 Defer_Declaration : constant Boolean :=
12175 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12176 -- For a tagged type, there is a declaration for each stream attribute
12177 -- at the freeze point, and we must generate only a completion of this
12178 -- declaration. We do the same for private types, because the full view
12179 -- might be tagged. Otherwise we generate a declaration at the point of
12180 -- the attribute definition clause. If the attribute definition comes
12181 -- from an aspect specification the declaration is part of the freeze
12182 -- actions of the type.
12184 function Build_Spec return Node_Id;
12185 -- Used for declaration and renaming declaration, so that this is
12186 -- treated as a renaming_as_body.
12188 ----------------
12189 -- Build_Spec --
12190 ----------------
12192 function Build_Spec return Node_Id is
12193 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12194 Formals : List_Id;
12195 Spec : Node_Id;
12196 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12198 begin
12199 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12201 -- S : access Root_Stream_Type'Class
12203 Formals := New_List (
12204 Make_Parameter_Specification (Loc,
12205 Defining_Identifier =>
12206 Make_Defining_Identifier (Loc, Name_S),
12207 Parameter_Type =>
12208 Make_Access_Definition (Loc,
12209 Subtype_Mark =>
12210 New_Occurrence_Of (
12211 Designated_Type (Etype (F)), Loc))));
12213 if Nam = TSS_Stream_Input then
12214 Spec :=
12215 Make_Function_Specification (Loc,
12216 Defining_Unit_Name => Subp_Id,
12217 Parameter_Specifications => Formals,
12218 Result_Definition => T_Ref);
12219 else
12220 -- V : [out] T
12222 Append_To (Formals,
12223 Make_Parameter_Specification (Loc,
12224 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12225 Out_Present => Out_P,
12226 Parameter_Type => T_Ref));
12228 Spec :=
12229 Make_Procedure_Specification (Loc,
12230 Defining_Unit_Name => Subp_Id,
12231 Parameter_Specifications => Formals);
12232 end if;
12234 return Spec;
12235 end Build_Spec;
12237 -- Start of processing for New_Stream_Subprogram
12239 begin
12240 F := First_Formal (Subp);
12242 if Ekind (Subp) = E_Procedure then
12243 Etyp := Etype (Next_Formal (F));
12244 else
12245 Etyp := Etype (Subp);
12246 end if;
12248 -- Prepare subprogram declaration and insert it as an action on the
12249 -- clause node. The visibility for this entity is used to test for
12250 -- visibility of the attribute definition clause (in the sense of
12251 -- 8.3(23) as amended by AI-195).
12253 if not Defer_Declaration then
12254 Subp_Decl :=
12255 Make_Subprogram_Declaration (Loc,
12256 Specification => Build_Spec);
12258 -- For a tagged type, there is always a visible declaration for each
12259 -- stream TSS (it is a predefined primitive operation), and the
12260 -- completion of this declaration occurs at the freeze point, which is
12261 -- not always visible at places where the attribute definition clause is
12262 -- visible. So, we create a dummy entity here for the purpose of
12263 -- tracking the visibility of the attribute definition clause itself.
12265 else
12266 Subp_Id :=
12267 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12268 Subp_Decl :=
12269 Make_Object_Declaration (Loc,
12270 Defining_Identifier => Subp_Id,
12271 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12272 end if;
12274 if not Defer_Declaration
12275 and then From_Aspect_Specification (N)
12276 and then Has_Delayed_Freeze (Ent)
12277 then
12278 Append_Freeze_Action (Ent, Subp_Decl);
12280 else
12281 Insert_Action (N, Subp_Decl);
12282 Set_Entity (N, Subp_Id);
12283 end if;
12285 Subp_Decl :=
12286 Make_Subprogram_Renaming_Declaration (Loc,
12287 Specification => Build_Spec,
12288 Name => New_Occurrence_Of (Subp, Loc));
12290 if Defer_Declaration then
12291 Set_TSS (Base_Type (Ent), Subp_Id);
12293 else
12294 if From_Aspect_Specification (N) then
12295 Append_Freeze_Action (Ent, Subp_Decl);
12296 else
12297 Insert_Action (N, Subp_Decl);
12298 end if;
12300 Copy_TSS (Subp_Id, Base_Type (Ent));
12301 end if;
12302 end New_Stream_Subprogram;
12304 ------------------------------------------
12305 -- Push_Scope_And_Install_Discriminants --
12306 ------------------------------------------
12308 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12309 begin
12310 if Has_Discriminants (E) then
12311 Push_Scope (E);
12313 -- Make the discriminants visible for type declarations and protected
12314 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12316 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12317 Install_Discriminants (E);
12318 end if;
12319 end if;
12320 end Push_Scope_And_Install_Discriminants;
12322 -----------------------------------
12323 -- Register_Address_Clause_Check --
12324 -----------------------------------
12326 procedure Register_Address_Clause_Check
12327 (N : Node_Id;
12328 X : Entity_Id;
12329 A : Uint;
12330 Y : Entity_Id;
12331 Off : Boolean)
12333 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12334 begin
12335 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12336 end Register_Address_Clause_Check;
12338 ------------------------
12339 -- Rep_Item_Too_Early --
12340 ------------------------
12342 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12343 begin
12344 -- Cannot apply non-operational rep items to generic types
12346 if Is_Operational_Item (N) then
12347 return False;
12349 elsif Is_Type (T)
12350 and then Is_Generic_Type (Root_Type (T))
12351 and then (Nkind (N) /= N_Pragma
12352 or else Get_Pragma_Id (N) /= Pragma_Convention)
12353 then
12354 Error_Msg_N ("representation item not allowed for generic type", N);
12355 return True;
12356 end if;
12358 -- Otherwise check for incomplete type
12360 if Is_Incomplete_Or_Private_Type (T)
12361 and then No (Underlying_Type (T))
12362 and then
12363 (Nkind (N) /= N_Pragma
12364 or else Get_Pragma_Id (N) /= Pragma_Import)
12365 then
12366 Error_Msg_N
12367 ("representation item must be after full type declaration", N);
12368 return True;
12370 -- If the type has incomplete components, a representation clause is
12371 -- illegal but stream attributes and Convention pragmas are correct.
12373 elsif Has_Private_Component (T) then
12374 if Nkind (N) = N_Pragma then
12375 return False;
12377 else
12378 Error_Msg_N
12379 ("representation item must appear after type is fully defined",
12381 return True;
12382 end if;
12383 else
12384 return False;
12385 end if;
12386 end Rep_Item_Too_Early;
12388 -----------------------
12389 -- Rep_Item_Too_Late --
12390 -----------------------
12392 function Rep_Item_Too_Late
12393 (T : Entity_Id;
12394 N : Node_Id;
12395 FOnly : Boolean := False) return Boolean
12397 S : Entity_Id;
12398 Parent_Type : Entity_Id;
12400 procedure No_Type_Rep_Item;
12401 -- Output message indicating that no type-related aspects can be
12402 -- specified due to some property of the parent type.
12404 procedure Too_Late;
12405 -- Output message for an aspect being specified too late
12407 -- Note that neither of the above errors is considered a serious one,
12408 -- since the effect is simply that we ignore the representation clause
12409 -- in these cases.
12410 -- Is this really true? In any case if we make this change we must
12411 -- document the requirement in the spec of Rep_Item_Too_Late that
12412 -- if True is returned, then the rep item must be completely ignored???
12414 ----------------------
12415 -- No_Type_Rep_Item --
12416 ----------------------
12418 procedure No_Type_Rep_Item is
12419 begin
12420 Error_Msg_N ("|type-related representation item not permitted!", N);
12421 end No_Type_Rep_Item;
12423 --------------
12424 -- Too_Late --
12425 --------------
12427 procedure Too_Late is
12428 begin
12429 -- Other compilers seem more relaxed about rep items appearing too
12430 -- late. Since analysis tools typically don't care about rep items
12431 -- anyway, no reason to be too strict about this.
12433 if not Relaxed_RM_Semantics then
12434 Error_Msg_N ("|representation item appears too late!", N);
12435 end if;
12436 end Too_Late;
12438 -- Start of processing for Rep_Item_Too_Late
12440 begin
12441 -- First make sure entity is not frozen (RM 13.1(9))
12443 if Is_Frozen (T)
12445 -- Exclude imported types, which may be frozen if they appear in a
12446 -- representation clause for a local type.
12448 and then not From_Limited_With (T)
12450 -- Exclude generated entities (not coming from source). The common
12451 -- case is when we generate a renaming which prematurely freezes the
12452 -- renamed internal entity, but we still want to be able to set copies
12453 -- of attribute values such as Size/Alignment.
12455 and then Comes_From_Source (T)
12456 then
12457 -- A self-referential aspect is illegal if it forces freezing the
12458 -- entity before the corresponding pragma has been analyzed.
12460 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12461 and then From_Aspect_Specification (N)
12462 then
12463 Error_Msg_NE
12464 ("aspect specification causes premature freezing of&", N, T);
12465 Set_Has_Delayed_Freeze (T, False);
12466 return True;
12467 end if;
12469 Too_Late;
12470 S := First_Subtype (T);
12472 if Present (Freeze_Node (S)) then
12473 if not Relaxed_RM_Semantics then
12474 Error_Msg_NE
12475 ("??no more representation items for }", Freeze_Node (S), S);
12476 end if;
12477 end if;
12479 return True;
12481 -- Check for case of untagged derived type whose parent either has
12482 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12483 -- this case we do not output a Too_Late message, since there is no
12484 -- earlier point where the rep item could be placed to make it legal.
12486 elsif Is_Type (T)
12487 and then not FOnly
12488 and then Is_Derived_Type (T)
12489 and then not Is_Tagged_Type (T)
12490 then
12491 Parent_Type := Etype (Base_Type (T));
12493 if Has_Primitive_Operations (Parent_Type) then
12494 No_Type_Rep_Item;
12496 if not Relaxed_RM_Semantics then
12497 Error_Msg_NE
12498 ("\parent type & has primitive operations!", N, Parent_Type);
12499 end if;
12501 return True;
12503 elsif Is_By_Reference_Type (Parent_Type) then
12504 No_Type_Rep_Item;
12506 if not Relaxed_RM_Semantics then
12507 Error_Msg_NE
12508 ("\parent type & is a by reference type!", N, Parent_Type);
12509 end if;
12511 return True;
12512 end if;
12513 end if;
12515 -- No error, but one more warning to consider. The RM (surprisingly)
12516 -- allows this pattern:
12518 -- type S is ...
12519 -- primitive operations for S
12520 -- type R is new S;
12521 -- rep clause for S
12523 -- Meaning that calls on the primitive operations of S for values of
12524 -- type R may require possibly expensive implicit conversion operations.
12525 -- This is not an error, but is worth a warning.
12527 if not Relaxed_RM_Semantics and then Is_Type (T) then
12528 declare
12529 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12531 begin
12532 if Present (DTL)
12533 and then Has_Primitive_Operations (Base_Type (T))
12535 -- For now, do not generate this warning for the case of aspect
12536 -- specification using Ada 2012 syntax, since we get wrong
12537 -- messages we do not understand. The whole business of derived
12538 -- types and rep items seems a bit confused when aspects are
12539 -- used, since the aspects are not evaluated till freeze time.
12541 and then not From_Aspect_Specification (N)
12542 then
12543 Error_Msg_Sloc := Sloc (DTL);
12544 Error_Msg_N
12545 ("representation item for& appears after derived type "
12546 & "declaration#??", N);
12547 Error_Msg_NE
12548 ("\may result in implicit conversions for primitive "
12549 & "operations of&??", N, T);
12550 Error_Msg_NE
12551 ("\to change representations when called with arguments "
12552 & "of type&??", N, DTL);
12553 end if;
12554 end;
12555 end if;
12557 -- No error, link item into head of chain of rep items for the entity,
12558 -- but avoid chaining if we have an overloadable entity, and the pragma
12559 -- is one that can apply to multiple overloaded entities.
12561 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12562 declare
12563 Pname : constant Name_Id := Pragma_Name (N);
12564 begin
12565 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12566 Name_External, Name_Interface)
12567 then
12568 return False;
12569 end if;
12570 end;
12571 end if;
12573 Record_Rep_Item (T, N);
12574 return False;
12575 end Rep_Item_Too_Late;
12577 -------------------------------------
12578 -- Replace_Type_References_Generic --
12579 -------------------------------------
12581 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12582 TName : constant Name_Id := Chars (T);
12584 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12585 -- Processes a single node in the traversal procedure below, checking
12586 -- if node N should be replaced, and if so, doing the replacement.
12588 function Visible_Component (Comp : Name_Id) return Entity_Id;
12589 -- Given an identifier in the expression, check whether there is a
12590 -- discriminant or component of the type that is directy visible, and
12591 -- rewrite it as the corresponding selected component of the formal of
12592 -- the subprogram. The entity is located by a sequential search, which
12593 -- seems acceptable given the typical size of component lists and check
12594 -- expressions. Possible optimization ???
12596 ----------------------
12597 -- Replace_Type_Ref --
12598 ----------------------
12600 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12601 Loc : constant Source_Ptr := Sloc (N);
12603 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12604 -- Add the proper prefix to a reference to a component of the type
12605 -- when it is not already a selected component.
12607 ----------------
12608 -- Add_Prefix --
12609 ----------------
12611 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12612 begin
12613 Rewrite (Ref,
12614 Make_Selected_Component (Loc,
12615 Prefix => New_Occurrence_Of (T, Loc),
12616 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12617 Replace_Type_Reference (Prefix (Ref));
12618 end Add_Prefix;
12620 -- Local variables
12622 Comp : Entity_Id;
12623 Pref : Node_Id;
12624 Scop : Entity_Id;
12626 -- Start of processing for Replace_Type_Ref
12628 begin
12629 if Nkind (N) = N_Identifier then
12631 -- If not the type name, check whether it is a reference to some
12632 -- other type, which must be frozen before the predicate function
12633 -- is analyzed, i.e. before the freeze node of the type to which
12634 -- the predicate applies.
12636 if Chars (N) /= TName then
12637 if Present (Current_Entity (N))
12638 and then Is_Type (Current_Entity (N))
12639 then
12640 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12641 end if;
12643 -- The components of the type are directly visible and can
12644 -- be referenced without a prefix.
12646 if Nkind (Parent (N)) = N_Selected_Component then
12647 null;
12649 -- In expression C (I), C may be a directly visible function
12650 -- or a visible component that has an array type. Disambiguate
12651 -- by examining the component type.
12653 elsif Nkind (Parent (N)) = N_Indexed_Component
12654 and then N = Prefix (Parent (N))
12655 then
12656 Comp := Visible_Component (Chars (N));
12658 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12659 Add_Prefix (N, Comp);
12660 end if;
12662 else
12663 Comp := Visible_Component (Chars (N));
12665 if Present (Comp) then
12666 Add_Prefix (N, Comp);
12667 end if;
12668 end if;
12670 return Skip;
12672 -- Otherwise do the replacement if this is not a qualified
12673 -- reference to a homograph of the type itself. Note that the
12674 -- current instance could not appear in such a context, e.g.
12675 -- the prefix of a type conversion.
12677 else
12678 if Nkind (Parent (N)) /= N_Selected_Component
12679 or else N /= Selector_Name (Parent (N))
12680 then
12681 Replace_Type_Reference (N);
12682 end if;
12684 return Skip;
12685 end if;
12687 -- Case of selected component, which may be a subcomponent of the
12688 -- current instance, or an expanded name which is still unanalyzed.
12690 elsif Nkind (N) = N_Selected_Component then
12692 -- If selector name is not our type, keep going (we might still
12693 -- have an occurrence of the type in the prefix). If it is a
12694 -- subcomponent of the current entity, add prefix.
12696 if Nkind (Selector_Name (N)) /= N_Identifier
12697 or else Chars (Selector_Name (N)) /= TName
12698 then
12699 if Nkind (Prefix (N)) = N_Identifier then
12700 Comp := Visible_Component (Chars (Prefix (N)));
12702 if Present (Comp) then
12703 Add_Prefix (Prefix (N), Comp);
12704 end if;
12705 end if;
12707 return OK;
12709 -- Selector name is our type, check qualification
12711 else
12712 -- Loop through scopes and prefixes, doing comparison
12714 Scop := Current_Scope;
12715 Pref := Prefix (N);
12716 loop
12717 -- Continue if no more scopes or scope with no name
12719 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12720 return OK;
12721 end if;
12723 -- Do replace if prefix is an identifier matching the scope
12724 -- that we are currently looking at.
12726 if Nkind (Pref) = N_Identifier
12727 and then Chars (Pref) = Chars (Scop)
12728 then
12729 Replace_Type_Reference (N);
12730 return Skip;
12731 end if;
12733 -- Go check scope above us if prefix is itself of the form
12734 -- of a selected component, whose selector matches the scope
12735 -- we are currently looking at.
12737 if Nkind (Pref) = N_Selected_Component
12738 and then Nkind (Selector_Name (Pref)) = N_Identifier
12739 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12740 then
12741 Scop := Scope (Scop);
12742 Pref := Prefix (Pref);
12744 -- For anything else, we don't have a match, so keep on
12745 -- going, there are still some weird cases where we may
12746 -- still have a replacement within the prefix.
12748 else
12749 return OK;
12750 end if;
12751 end loop;
12752 end if;
12754 -- Continue for any other node kind
12756 else
12757 return OK;
12758 end if;
12759 end Replace_Type_Ref;
12761 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12763 -----------------------
12764 -- Visible_Component --
12765 -----------------------
12767 function Visible_Component (Comp : Name_Id) return Entity_Id is
12768 E : Entity_Id;
12770 begin
12771 -- Types with nameable components are records and discriminated
12772 -- private types.
12774 if Ekind (T) = E_Record_Type
12775 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12776 then
12777 E := First_Entity (T);
12778 while Present (E) loop
12779 if Comes_From_Source (E) and then Chars (E) = Comp then
12780 return E;
12781 end if;
12783 Next_Entity (E);
12784 end loop;
12785 end if;
12787 -- Nothing by that name, or the type has no components
12789 return Empty;
12790 end Visible_Component;
12792 -- Start of processing for Replace_Type_References_Generic
12794 begin
12795 Replace_Type_Refs (N);
12796 end Replace_Type_References_Generic;
12798 --------------------------------
12799 -- Resolve_Aspect_Expressions --
12800 --------------------------------
12802 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12803 function Resolve_Name (N : Node_Id) return Traverse_Result;
12804 -- Verify that all identifiers in the expression, with the exception
12805 -- of references to the current entity, denote visible entities. This
12806 -- is done only to detect visibility errors, as the expression will be
12807 -- properly analyzed/expanded during analysis of the predicate function
12808 -- body. We omit quantified expressions from this test, given that they
12809 -- introduce a local identifier that would require proper expansion to
12810 -- handle properly.
12812 -- In ASIS_Mode we preserve the entity in the source because there is
12813 -- no subsequent expansion to decorate the tree.
12815 ------------------
12816 -- Resolve_Name --
12817 ------------------
12819 function Resolve_Name (N : Node_Id) return Traverse_Result is
12820 Dummy : Traverse_Result;
12822 begin
12823 if Nkind (N) = N_Selected_Component then
12824 if Nkind (Prefix (N)) = N_Identifier
12825 and then Chars (Prefix (N)) /= Chars (E)
12826 then
12827 Find_Selected_Component (N);
12828 end if;
12830 return Skip;
12832 -- Resolve identifiers that are not selectors in parameter
12833 -- associations (these are never resolved by visibility).
12835 elsif Nkind (N) = N_Identifier
12836 and then Chars (N) /= Chars (E)
12837 and then (Nkind (Parent (N)) /= N_Parameter_Association
12838 or else N /= Selector_Name (Parent (N)))
12839 then
12840 Find_Direct_Name (N);
12842 -- In ASIS mode we must analyze overloaded identifiers to ensure
12843 -- their correct decoration because expansion is disabled (and
12844 -- the expansion of freeze nodes takes care of resolving aspect
12845 -- expressions).
12847 if ASIS_Mode then
12848 if Is_Overloaded (N) then
12849 Analyze (Parent (N));
12850 end if;
12851 else
12852 Set_Entity (N, Empty);
12853 end if;
12855 -- The name is component association needs no resolution.
12857 elsif Nkind (N) = N_Component_Association then
12858 Dummy := Resolve_Name (Expression (N));
12859 return Skip;
12861 elsif Nkind (N) = N_Quantified_Expression then
12862 return Skip;
12863 end if;
12865 return OK;
12866 end Resolve_Name;
12868 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12870 -- Local variables
12872 ASN : Node_Id := First_Rep_Item (E);
12874 -- Start of processing for Resolve_Aspect_Expressions
12876 begin
12877 -- Need to make sure discriminants, if any, are directly visible
12879 Push_Scope_And_Install_Discriminants (E);
12881 while Present (ASN) loop
12882 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12883 declare
12884 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
12885 Expr : constant Node_Id := Expression (ASN);
12887 begin
12888 case A_Id is
12890 -- For now we only deal with aspects that do not generate
12891 -- subprograms, or that may mention current instances of
12892 -- types. These will require special handling (???TBD).
12894 when Aspect_Invariant
12895 | Aspect_Predicate
12896 | Aspect_Predicate_Failure
12898 null;
12900 when Aspect_Dynamic_Predicate
12901 | Aspect_Static_Predicate
12903 -- Build predicate function specification and preanalyze
12904 -- expression after type replacement. The function
12905 -- declaration must be analyzed in the scope of the
12906 -- type, but the expression must see components.
12908 if No (Predicate_Function (E)) then
12909 Uninstall_Discriminants_And_Pop_Scope (E);
12910 declare
12911 FDecl : constant Node_Id :=
12912 Build_Predicate_Function_Declaration (E);
12913 pragma Unreferenced (FDecl);
12915 begin
12916 Push_Scope_And_Install_Discriminants (E);
12917 Resolve_Aspect_Expression (Expr);
12918 end;
12919 end if;
12921 when Pre_Post_Aspects =>
12922 null;
12924 when Aspect_Iterable =>
12925 if Nkind (Expr) = N_Aggregate then
12926 declare
12927 Assoc : Node_Id;
12929 begin
12930 Assoc := First (Component_Associations (Expr));
12931 while Present (Assoc) loop
12932 Find_Direct_Name (Expression (Assoc));
12933 Next (Assoc);
12934 end loop;
12935 end;
12936 end if;
12938 -- The expression for Default_Value is a static expression
12939 -- of the type, but this expression does not freeze the
12940 -- type, so it can still appear in a representation clause
12941 -- before the actual freeze point.
12943 when Aspect_Default_Value =>
12944 Set_Must_Not_Freeze (Expr);
12945 Preanalyze_Spec_Expression (Expr, E);
12947 -- Ditto for Storage_Size. Any other aspects that carry
12948 -- expressions that should not freeze ??? This is only
12949 -- relevant to the misuse of deferred constants.
12951 when Aspect_Storage_Size =>
12952 Set_Must_Not_Freeze (Expr);
12953 Preanalyze_Spec_Expression (Expr, Any_Integer);
12955 when others =>
12956 if Present (Expr) then
12957 case Aspect_Argument (A_Id) is
12958 when Expression
12959 | Optional_Expression
12961 Analyze_And_Resolve (Expr);
12963 when Name
12964 | Optional_Name
12966 if Nkind (Expr) = N_Identifier then
12967 Find_Direct_Name (Expr);
12969 elsif Nkind (Expr) = N_Selected_Component then
12970 Find_Selected_Component (Expr);
12971 end if;
12972 end case;
12973 end if;
12974 end case;
12975 end;
12976 end if;
12978 ASN := Next_Rep_Item (ASN);
12979 end loop;
12981 Uninstall_Discriminants_And_Pop_Scope (E);
12982 end Resolve_Aspect_Expressions;
12984 -------------------------
12985 -- Same_Representation --
12986 -------------------------
12988 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12989 T1 : constant Entity_Id := Underlying_Type (Typ1);
12990 T2 : constant Entity_Id := Underlying_Type (Typ2);
12992 begin
12993 -- A quick check, if base types are the same, then we definitely have
12994 -- the same representation, because the subtype specific representation
12995 -- attributes (Size and Alignment) do not affect representation from
12996 -- the point of view of this test.
12998 if Base_Type (T1) = Base_Type (T2) then
12999 return True;
13001 elsif Is_Private_Type (Base_Type (T2))
13002 and then Base_Type (T1) = Full_View (Base_Type (T2))
13003 then
13004 return True;
13005 end if;
13007 -- Tagged types always have the same representation, because it is not
13008 -- possible to specify different representations for common fields.
13010 if Is_Tagged_Type (T1) then
13011 return True;
13012 end if;
13014 -- Representations are definitely different if conventions differ
13016 if Convention (T1) /= Convention (T2) then
13017 return False;
13018 end if;
13020 -- Representations are different if component alignments or scalar
13021 -- storage orders differ.
13023 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
13024 and then
13025 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13026 and then
13027 (Component_Alignment (T1) /= Component_Alignment (T2)
13028 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13029 then
13030 return False;
13031 end if;
13033 -- For arrays, the only real issue is component size. If we know the
13034 -- component size for both arrays, and it is the same, then that's
13035 -- good enough to know we don't have a change of representation.
13037 if Is_Array_Type (T1) then
13038 if Known_Component_Size (T1)
13039 and then Known_Component_Size (T2)
13040 and then Component_Size (T1) = Component_Size (T2)
13041 then
13042 return True;
13043 end if;
13044 end if;
13046 -- For records, representations are different if reorderings differ
13048 if Is_Record_Type (T1)
13049 and then Is_Record_Type (T2)
13050 and then No_Reordering (T1) /= No_Reordering (T2)
13051 then
13052 return False;
13053 end if;
13055 -- Types definitely have same representation if neither has non-standard
13056 -- representation since default representations are always consistent.
13057 -- If only one has non-standard representation, and the other does not,
13058 -- then we consider that they do not have the same representation. They
13059 -- might, but there is no way of telling early enough.
13061 if Has_Non_Standard_Rep (T1) then
13062 if not Has_Non_Standard_Rep (T2) then
13063 return False;
13064 end if;
13065 else
13066 return not Has_Non_Standard_Rep (T2);
13067 end if;
13069 -- Here the two types both have non-standard representation, and we need
13070 -- to determine if they have the same non-standard representation.
13072 -- For arrays, we simply need to test if the component sizes are the
13073 -- same. Pragma Pack is reflected in modified component sizes, so this
13074 -- check also deals with pragma Pack.
13076 if Is_Array_Type (T1) then
13077 return Component_Size (T1) = Component_Size (T2);
13079 -- Case of record types
13081 elsif Is_Record_Type (T1) then
13083 -- Packed status must conform
13085 if Is_Packed (T1) /= Is_Packed (T2) then
13086 return False;
13088 -- Otherwise we must check components. Typ2 maybe a constrained
13089 -- subtype with fewer components, so we compare the components
13090 -- of the base types.
13092 else
13093 Record_Case : declare
13094 CD1, CD2 : Entity_Id;
13096 function Same_Rep return Boolean;
13097 -- CD1 and CD2 are either components or discriminants. This
13098 -- function tests whether they have the same representation.
13100 --------------
13101 -- Same_Rep --
13102 --------------
13104 function Same_Rep return Boolean is
13105 begin
13106 if No (Component_Clause (CD1)) then
13107 return No (Component_Clause (CD2));
13108 else
13109 -- Note: at this point, component clauses have been
13110 -- normalized to the default bit order, so that the
13111 -- comparison of Component_Bit_Offsets is meaningful.
13113 return
13114 Present (Component_Clause (CD2))
13115 and then
13116 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13117 and then
13118 Esize (CD1) = Esize (CD2);
13119 end if;
13120 end Same_Rep;
13122 -- Start of processing for Record_Case
13124 begin
13125 if Has_Discriminants (T1) then
13127 -- The number of discriminants may be different if the
13128 -- derived type has fewer (constrained by values). The
13129 -- invisible discriminants retain the representation of
13130 -- the original, so the discrepancy does not per se
13131 -- indicate a different representation.
13133 CD1 := First_Discriminant (T1);
13134 CD2 := First_Discriminant (T2);
13135 while Present (CD1) and then Present (CD2) loop
13136 if not Same_Rep then
13137 return False;
13138 else
13139 Next_Discriminant (CD1);
13140 Next_Discriminant (CD2);
13141 end if;
13142 end loop;
13143 end if;
13145 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13146 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13147 while Present (CD1) loop
13148 if not Same_Rep then
13149 return False;
13150 else
13151 Next_Component (CD1);
13152 Next_Component (CD2);
13153 end if;
13154 end loop;
13156 return True;
13157 end Record_Case;
13158 end if;
13160 -- For enumeration types, we must check each literal to see if the
13161 -- representation is the same. Note that we do not permit enumeration
13162 -- representation clauses for Character and Wide_Character, so these
13163 -- cases were already dealt with.
13165 elsif Is_Enumeration_Type (T1) then
13166 Enumeration_Case : declare
13167 L1, L2 : Entity_Id;
13169 begin
13170 L1 := First_Literal (T1);
13171 L2 := First_Literal (T2);
13172 while Present (L1) loop
13173 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13174 return False;
13175 else
13176 Next_Literal (L1);
13177 Next_Literal (L2);
13178 end if;
13179 end loop;
13181 return True;
13182 end Enumeration_Case;
13184 -- Any other types have the same representation for these purposes
13186 else
13187 return True;
13188 end if;
13189 end Same_Representation;
13191 --------------------------------
13192 -- Resolve_Iterable_Operation --
13193 --------------------------------
13195 procedure Resolve_Iterable_Operation
13196 (N : Node_Id;
13197 Cursor : Entity_Id;
13198 Typ : Entity_Id;
13199 Nam : Name_Id)
13201 Ent : Entity_Id;
13202 F1 : Entity_Id;
13203 F2 : Entity_Id;
13205 begin
13206 if not Is_Overloaded (N) then
13207 if not Is_Entity_Name (N)
13208 or else Ekind (Entity (N)) /= E_Function
13209 or else Scope (Entity (N)) /= Scope (Typ)
13210 or else No (First_Formal (Entity (N)))
13211 or else Etype (First_Formal (Entity (N))) /= Typ
13212 then
13213 Error_Msg_N
13214 ("iterable primitive must be local function name whose first "
13215 & "formal is an iterable type", N);
13216 return;
13217 end if;
13219 Ent := Entity (N);
13220 F1 := First_Formal (Ent);
13222 if Nam = Name_First or else Nam = Name_Last then
13224 -- First or Last (Container) => Cursor
13226 if Etype (Ent) /= Cursor then
13227 Error_Msg_N ("primitive for First must yield a curosr", N);
13228 end if;
13230 elsif Nam = Name_Next then
13232 -- Next (Container, Cursor) => Cursor
13234 F2 := Next_Formal (F1);
13236 if Etype (F2) /= Cursor
13237 or else Etype (Ent) /= Cursor
13238 or else Present (Next_Formal (F2))
13239 then
13240 Error_Msg_N ("no match for Next iterable primitive", N);
13241 end if;
13243 elsif Nam = Name_Previous then
13245 -- Previous (Container, Cursor) => Cursor
13247 F2 := Next_Formal (F1);
13249 if Etype (F2) /= Cursor
13250 or else Etype (Ent) /= Cursor
13251 or else Present (Next_Formal (F2))
13252 then
13253 Error_Msg_N ("no match for Previous iterable primitive", N);
13254 end if;
13256 elsif Nam = Name_Has_Element then
13258 -- Has_Element (Container, Cursor) => Boolean
13260 F2 := Next_Formal (F1);
13262 if Etype (F2) /= Cursor
13263 or else Etype (Ent) /= Standard_Boolean
13264 or else Present (Next_Formal (F2))
13265 then
13266 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13267 end if;
13269 elsif Nam = Name_Element then
13270 F2 := Next_Formal (F1);
13272 if No (F2)
13273 or else Etype (F2) /= Cursor
13274 or else Present (Next_Formal (F2))
13275 then
13276 Error_Msg_N ("no match for Element iterable primitive", N);
13277 end if;
13279 else
13280 raise Program_Error;
13281 end if;
13283 else
13284 -- Overloaded case: find subprogram with proper signature. Caller
13285 -- will report error if no match is found.
13287 declare
13288 I : Interp_Index;
13289 It : Interp;
13291 begin
13292 Get_First_Interp (N, I, It);
13293 while Present (It.Typ) loop
13294 if Ekind (It.Nam) = E_Function
13295 and then Scope (It.Nam) = Scope (Typ)
13296 and then Etype (First_Formal (It.Nam)) = Typ
13297 then
13298 F1 := First_Formal (It.Nam);
13300 if Nam = Name_First then
13301 if Etype (It.Nam) = Cursor
13302 and then No (Next_Formal (F1))
13303 then
13304 Set_Entity (N, It.Nam);
13305 exit;
13306 end if;
13308 elsif Nam = Name_Next then
13309 F2 := Next_Formal (F1);
13311 if Present (F2)
13312 and then No (Next_Formal (F2))
13313 and then Etype (F2) = Cursor
13314 and then Etype (It.Nam) = Cursor
13315 then
13316 Set_Entity (N, It.Nam);
13317 exit;
13318 end if;
13320 elsif Nam = Name_Has_Element then
13321 F2 := Next_Formal (F1);
13323 if Present (F2)
13324 and then No (Next_Formal (F2))
13325 and then Etype (F2) = Cursor
13326 and then Etype (It.Nam) = Standard_Boolean
13327 then
13328 Set_Entity (N, It.Nam);
13329 F2 := Next_Formal (F1);
13330 exit;
13331 end if;
13333 elsif Nam = Name_Element then
13334 F2 := Next_Formal (F1);
13336 if Present (F2)
13337 and then No (Next_Formal (F2))
13338 and then Etype (F2) = Cursor
13339 then
13340 Set_Entity (N, It.Nam);
13341 exit;
13342 end if;
13343 end if;
13344 end if;
13346 Get_Next_Interp (I, It);
13347 end loop;
13348 end;
13349 end if;
13350 end Resolve_Iterable_Operation;
13352 ----------------
13353 -- Set_Biased --
13354 ----------------
13356 procedure Set_Biased
13357 (E : Entity_Id;
13358 N : Node_Id;
13359 Msg : String;
13360 Biased : Boolean := True)
13362 begin
13363 if Biased then
13364 Set_Has_Biased_Representation (E);
13366 if Warn_On_Biased_Representation then
13367 Error_Msg_NE
13368 ("?B?" & Msg & " forces biased representation for&", N, E);
13369 end if;
13370 end if;
13371 end Set_Biased;
13373 --------------------
13374 -- Set_Enum_Esize --
13375 --------------------
13377 procedure Set_Enum_Esize (T : Entity_Id) is
13378 Lo : Uint;
13379 Hi : Uint;
13380 Sz : Nat;
13382 begin
13383 Init_Alignment (T);
13385 -- Find the minimum standard size (8,16,32,64) that fits
13387 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13388 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13390 if Lo < 0 then
13391 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13392 Sz := Standard_Character_Size; -- May be > 8 on some targets
13394 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13395 Sz := 16;
13397 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13398 Sz := 32;
13400 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13401 Sz := 64;
13402 end if;
13404 else
13405 if Hi < Uint_2**08 then
13406 Sz := Standard_Character_Size; -- May be > 8 on some targets
13408 elsif Hi < Uint_2**16 then
13409 Sz := 16;
13411 elsif Hi < Uint_2**32 then
13412 Sz := 32;
13414 else pragma Assert (Hi < Uint_2**63);
13415 Sz := 64;
13416 end if;
13417 end if;
13419 -- That minimum is the proper size unless we have a foreign convention
13420 -- and the size required is 32 or less, in which case we bump the size
13421 -- up to 32. This is required for C and C++ and seems reasonable for
13422 -- all other foreign conventions.
13424 if Has_Foreign_Convention (T)
13425 and then Esize (T) < Standard_Integer_Size
13427 -- Don't do this if Short_Enums on target
13429 and then not Target_Short_Enums
13430 then
13431 Init_Esize (T, Standard_Integer_Size);
13432 else
13433 Init_Esize (T, Sz);
13434 end if;
13435 end Set_Enum_Esize;
13437 -----------------------------
13438 -- Uninstall_Discriminants --
13439 -----------------------------
13441 procedure Uninstall_Discriminants (E : Entity_Id) is
13442 Disc : Entity_Id;
13443 Prev : Entity_Id;
13444 Outer : Entity_Id;
13446 begin
13447 -- Discriminants have been made visible for type declarations and
13448 -- protected type declarations, not for subtype declarations.
13450 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13451 Disc := First_Discriminant (E);
13452 while Present (Disc) loop
13453 if Disc /= Current_Entity (Disc) then
13454 Prev := Current_Entity (Disc);
13455 while Present (Prev)
13456 and then Present (Homonym (Prev))
13457 and then Homonym (Prev) /= Disc
13458 loop
13459 Prev := Homonym (Prev);
13460 end loop;
13461 else
13462 Prev := Empty;
13463 end if;
13465 Set_Is_Immediately_Visible (Disc, False);
13467 Outer := Homonym (Disc);
13468 while Present (Outer) and then Scope (Outer) = E loop
13469 Outer := Homonym (Outer);
13470 end loop;
13472 -- Reset homonym link of other entities, but do not modify link
13473 -- between entities in current scope, so that the back end can
13474 -- have a proper count of local overloadings.
13476 if No (Prev) then
13477 Set_Name_Entity_Id (Chars (Disc), Outer);
13479 elsif Scope (Prev) /= Scope (Disc) then
13480 Set_Homonym (Prev, Outer);
13481 end if;
13483 Next_Discriminant (Disc);
13484 end loop;
13485 end if;
13486 end Uninstall_Discriminants;
13488 -------------------------------------------
13489 -- Uninstall_Discriminants_And_Pop_Scope --
13490 -------------------------------------------
13492 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13493 begin
13494 if Has_Discriminants (E) then
13495 Uninstall_Discriminants (E);
13496 Pop_Scope;
13497 end if;
13498 end Uninstall_Discriminants_And_Pop_Scope;
13500 ------------------------------
13501 -- Validate_Address_Clauses --
13502 ------------------------------
13504 procedure Validate_Address_Clauses is
13505 function Offset_Value (Expr : Node_Id) return Uint;
13506 -- Given an Address attribute reference, return the value in bits of its
13507 -- offset from the first bit of the underlying entity, or 0 if it is not
13508 -- known at compile time.
13510 ------------------
13511 -- Offset_Value --
13512 ------------------
13514 function Offset_Value (Expr : Node_Id) return Uint is
13515 N : Node_Id := Prefix (Expr);
13516 Off : Uint;
13517 Val : Uint := Uint_0;
13519 begin
13520 -- Climb the prefix chain and compute the cumulative offset
13522 loop
13523 if Is_Entity_Name (N) then
13524 return Val;
13526 elsif Nkind (N) = N_Selected_Component then
13527 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13528 if Off /= No_Uint and then Off >= Uint_0 then
13529 Val := Val + Off;
13530 N := Prefix (N);
13531 else
13532 return Uint_0;
13533 end if;
13535 elsif Nkind (N) = N_Indexed_Component then
13536 Off := Indexed_Component_Bit_Offset (N);
13537 if Off /= No_Uint then
13538 Val := Val + Off;
13539 N := Prefix (N);
13540 else
13541 return Uint_0;
13542 end if;
13544 else
13545 return Uint_0;
13546 end if;
13547 end loop;
13548 end Offset_Value;
13550 -- Start of processing for Validate_Address_Clauses
13552 begin
13553 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13554 declare
13555 ACCR : Address_Clause_Check_Record
13556 renames Address_Clause_Checks.Table (J);
13558 Expr : Node_Id;
13560 X_Alignment : Uint;
13561 Y_Alignment : Uint := Uint_0;
13563 X_Size : Uint;
13564 Y_Size : Uint := Uint_0;
13566 X_Offs : Uint;
13568 begin
13569 -- Skip processing of this entry if warning already posted
13571 if not Address_Warning_Posted (ACCR.N) then
13572 Expr := Original_Node (Expression (ACCR.N));
13574 -- Get alignments, sizes and offset, if any
13576 X_Alignment := Alignment (ACCR.X);
13577 X_Size := Esize (ACCR.X);
13579 if Present (ACCR.Y) then
13580 Y_Alignment := Alignment (ACCR.Y);
13581 Y_Size := Esize (ACCR.Y);
13582 end if;
13584 if ACCR.Off
13585 and then Nkind (Expr) = N_Attribute_Reference
13586 and then Attribute_Name (Expr) = Name_Address
13587 then
13588 X_Offs := Offset_Value (Expr);
13589 else
13590 X_Offs := Uint_0;
13591 end if;
13593 -- Check for known value not multiple of alignment
13595 if No (ACCR.Y) then
13596 if not Alignment_Checks_Suppressed (ACCR)
13597 and then X_Alignment /= 0
13598 and then ACCR.A mod X_Alignment /= 0
13599 then
13600 Error_Msg_NE
13601 ("??specified address for& is inconsistent with "
13602 & "alignment", ACCR.N, ACCR.X);
13603 Error_Msg_N
13604 ("\??program execution may be erroneous (RM 13.3(27))",
13605 ACCR.N);
13607 Error_Msg_Uint_1 := X_Alignment;
13608 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13609 end if;
13611 -- Check for large object overlaying smaller one
13613 elsif Y_Size > Uint_0
13614 and then X_Size > Uint_0
13615 and then X_Offs + X_Size > Y_Size
13616 then
13617 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13618 Error_Msg_N
13619 ("\??program execution may be erroneous", ACCR.N);
13621 Error_Msg_Uint_1 := X_Size;
13622 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13624 Error_Msg_Uint_1 := Y_Size;
13625 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13627 if Y_Size >= X_Size then
13628 Error_Msg_Uint_1 := X_Offs;
13629 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13630 end if;
13632 -- Check for inadequate alignment, both of the base object
13633 -- and of the offset, if any. We only do this check if the
13634 -- run-time Alignment_Check is active. No point in warning
13635 -- if this check has been suppressed (or is suppressed by
13636 -- default in the non-strict alignment machine case).
13638 -- Note: we do not check the alignment if we gave a size
13639 -- warning, since it would likely be redundant.
13641 elsif not Alignment_Checks_Suppressed (ACCR)
13642 and then Y_Alignment /= Uint_0
13643 and then
13644 (Y_Alignment < X_Alignment
13645 or else
13646 (ACCR.Off
13647 and then Nkind (Expr) = N_Attribute_Reference
13648 and then Attribute_Name (Expr) = Name_Address
13649 and then Has_Compatible_Alignment
13650 (ACCR.X, Prefix (Expr), True) /=
13651 Known_Compatible))
13652 then
13653 Error_Msg_NE
13654 ("??specified address for& may be inconsistent with "
13655 & "alignment", ACCR.N, ACCR.X);
13656 Error_Msg_N
13657 ("\??program execution may be erroneous (RM 13.3(27))",
13658 ACCR.N);
13660 Error_Msg_Uint_1 := X_Alignment;
13661 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13663 Error_Msg_Uint_1 := Y_Alignment;
13664 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13666 if Y_Alignment >= X_Alignment then
13667 Error_Msg_N
13668 ("\??but offset is not multiple of alignment", ACCR.N);
13669 end if;
13670 end if;
13671 end if;
13672 end;
13673 end loop;
13674 end Validate_Address_Clauses;
13676 -----------------------------------------
13677 -- Validate_Compile_Time_Warning_Error --
13678 -----------------------------------------
13680 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13681 begin
13682 Compile_Time_Warnings_Errors.Append
13683 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13684 Scope => Current_Scope,
13685 Prag => N));
13686 end Validate_Compile_Time_Warning_Error;
13688 ------------------------------------------
13689 -- Validate_Compile_Time_Warning_Errors --
13690 ------------------------------------------
13692 procedure Validate_Compile_Time_Warning_Errors is
13693 procedure Set_Scope (S : Entity_Id);
13694 -- Install all enclosing scopes of S along with S itself
13696 procedure Unset_Scope (S : Entity_Id);
13697 -- Uninstall all enclosing scopes of S along with S itself
13699 ---------------
13700 -- Set_Scope --
13701 ---------------
13703 procedure Set_Scope (S : Entity_Id) is
13704 begin
13705 if S /= Standard_Standard then
13706 Set_Scope (Scope (S));
13707 end if;
13709 Push_Scope (S);
13710 end Set_Scope;
13712 -----------------
13713 -- Unset_Scope --
13714 -----------------
13716 procedure Unset_Scope (S : Entity_Id) is
13717 begin
13718 if S /= Standard_Standard then
13719 Unset_Scope (Scope (S));
13720 end if;
13722 Pop_Scope;
13723 end Unset_Scope;
13725 -- Start of processing for Validate_Compile_Time_Warning_Errors
13727 begin
13728 Expander_Mode_Save_And_Set (False);
13729 In_Compile_Time_Warning_Or_Error := True;
13731 for N in Compile_Time_Warnings_Errors.First ..
13732 Compile_Time_Warnings_Errors.Last
13733 loop
13734 declare
13735 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13737 begin
13738 Set_Scope (T.Scope);
13739 Reset_Analyzed_Flags (T.Prag);
13740 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13741 Unset_Scope (T.Scope);
13742 end;
13743 end loop;
13745 In_Compile_Time_Warning_Or_Error := False;
13746 Expander_Mode_Restore;
13747 end Validate_Compile_Time_Warning_Errors;
13749 ---------------------------
13750 -- Validate_Independence --
13751 ---------------------------
13753 procedure Validate_Independence is
13754 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13755 N : Node_Id;
13756 E : Entity_Id;
13757 IC : Boolean;
13758 Comp : Entity_Id;
13759 Addr : Node_Id;
13760 P : Node_Id;
13762 procedure Check_Array_Type (Atyp : Entity_Id);
13763 -- Checks if the array type Atyp has independent components, and
13764 -- if not, outputs an appropriate set of error messages.
13766 procedure No_Independence;
13767 -- Output message that independence cannot be guaranteed
13769 function OK_Component (C : Entity_Id) return Boolean;
13770 -- Checks one component to see if it is independently accessible, and
13771 -- if so yields True, otherwise yields False if independent access
13772 -- cannot be guaranteed. This is a conservative routine, it only
13773 -- returns True if it knows for sure, it returns False if it knows
13774 -- there is a problem, or it cannot be sure there is no problem.
13776 procedure Reason_Bad_Component (C : Entity_Id);
13777 -- Outputs continuation message if a reason can be determined for
13778 -- the component C being bad.
13780 ----------------------
13781 -- Check_Array_Type --
13782 ----------------------
13784 procedure Check_Array_Type (Atyp : Entity_Id) is
13785 Ctyp : constant Entity_Id := Component_Type (Atyp);
13787 begin
13788 -- OK if no alignment clause, no pack, and no component size
13790 if not Has_Component_Size_Clause (Atyp)
13791 and then not Has_Alignment_Clause (Atyp)
13792 and then not Is_Packed (Atyp)
13793 then
13794 return;
13795 end if;
13797 -- Case of component size is greater than or equal to 64 and the
13798 -- alignment of the array is at least as large as the alignment
13799 -- of the component. We are definitely OK in this situation.
13801 if Known_Component_Size (Atyp)
13802 and then Component_Size (Atyp) >= 64
13803 and then Known_Alignment (Atyp)
13804 and then Known_Alignment (Ctyp)
13805 and then Alignment (Atyp) >= Alignment (Ctyp)
13806 then
13807 return;
13808 end if;
13810 -- Check actual component size
13812 if not Known_Component_Size (Atyp)
13813 or else not (Addressable (Component_Size (Atyp))
13814 and then Component_Size (Atyp) < 64)
13815 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13816 then
13817 No_Independence;
13819 -- Bad component size, check reason
13821 if Has_Component_Size_Clause (Atyp) then
13822 P := Get_Attribute_Definition_Clause
13823 (Atyp, Attribute_Component_Size);
13825 if Present (P) then
13826 Error_Msg_Sloc := Sloc (P);
13827 Error_Msg_N ("\because of Component_Size clause#", N);
13828 return;
13829 end if;
13830 end if;
13832 if Is_Packed (Atyp) then
13833 P := Get_Rep_Pragma (Atyp, Name_Pack);
13835 if Present (P) then
13836 Error_Msg_Sloc := Sloc (P);
13837 Error_Msg_N ("\because of pragma Pack#", N);
13838 return;
13839 end if;
13840 end if;
13842 -- No reason found, just return
13844 return;
13845 end if;
13847 -- Array type is OK independence-wise
13849 return;
13850 end Check_Array_Type;
13852 ---------------------
13853 -- No_Independence --
13854 ---------------------
13856 procedure No_Independence is
13857 begin
13858 if Pragma_Name (N) = Name_Independent then
13859 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13860 else
13861 Error_Msg_NE
13862 ("independent components cannot be guaranteed for&", N, E);
13863 end if;
13864 end No_Independence;
13866 ------------------
13867 -- OK_Component --
13868 ------------------
13870 function OK_Component (C : Entity_Id) return Boolean is
13871 Rec : constant Entity_Id := Scope (C);
13872 Ctyp : constant Entity_Id := Etype (C);
13874 begin
13875 -- OK if no component clause, no Pack, and no alignment clause
13877 if No (Component_Clause (C))
13878 and then not Is_Packed (Rec)
13879 and then not Has_Alignment_Clause (Rec)
13880 then
13881 return True;
13882 end if;
13884 -- Here we look at the actual component layout. A component is
13885 -- addressable if its size is a multiple of the Esize of the
13886 -- component type, and its starting position in the record has
13887 -- appropriate alignment, and the record itself has appropriate
13888 -- alignment to guarantee the component alignment.
13890 -- Make sure sizes are static, always assume the worst for any
13891 -- cases where we cannot check static values.
13893 if not (Known_Static_Esize (C)
13894 and then
13895 Known_Static_Esize (Ctyp))
13896 then
13897 return False;
13898 end if;
13900 -- Size of component must be addressable or greater than 64 bits
13901 -- and a multiple of bytes.
13903 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13904 return False;
13905 end if;
13907 -- Check size is proper multiple
13909 if Esize (C) mod Esize (Ctyp) /= 0 then
13910 return False;
13911 end if;
13913 -- Check alignment of component is OK
13915 if not Known_Component_Bit_Offset (C)
13916 or else Component_Bit_Offset (C) < Uint_0
13917 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13918 then
13919 return False;
13920 end if;
13922 -- Check alignment of record type is OK
13924 if not Known_Alignment (Rec)
13925 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13926 then
13927 return False;
13928 end if;
13930 -- All tests passed, component is addressable
13932 return True;
13933 end OK_Component;
13935 --------------------------
13936 -- Reason_Bad_Component --
13937 --------------------------
13939 procedure Reason_Bad_Component (C : Entity_Id) is
13940 Rec : constant Entity_Id := Scope (C);
13941 Ctyp : constant Entity_Id := Etype (C);
13943 begin
13944 -- If component clause present assume that's the problem
13946 if Present (Component_Clause (C)) then
13947 Error_Msg_Sloc := Sloc (Component_Clause (C));
13948 Error_Msg_N ("\because of Component_Clause#", N);
13949 return;
13950 end if;
13952 -- If pragma Pack clause present, assume that's the problem
13954 if Is_Packed (Rec) then
13955 P := Get_Rep_Pragma (Rec, Name_Pack);
13957 if Present (P) then
13958 Error_Msg_Sloc := Sloc (P);
13959 Error_Msg_N ("\because of pragma Pack#", N);
13960 return;
13961 end if;
13962 end if;
13964 -- See if record has bad alignment clause
13966 if Has_Alignment_Clause (Rec)
13967 and then Known_Alignment (Rec)
13968 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13969 then
13970 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13972 if Present (P) then
13973 Error_Msg_Sloc := Sloc (P);
13974 Error_Msg_N ("\because of Alignment clause#", N);
13975 end if;
13976 end if;
13978 -- Couldn't find a reason, so return without a message
13980 return;
13981 end Reason_Bad_Component;
13983 -- Start of processing for Validate_Independence
13985 begin
13986 for J in Independence_Checks.First .. Independence_Checks.Last loop
13987 N := Independence_Checks.Table (J).N;
13988 E := Independence_Checks.Table (J).E;
13989 IC := Pragma_Name (N) = Name_Independent_Components;
13991 -- Deal with component case
13993 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13994 if not OK_Component (E) then
13995 No_Independence;
13996 Reason_Bad_Component (E);
13997 goto Continue;
13998 end if;
13999 end if;
14001 -- Deal with record with Independent_Components
14003 if IC and then Is_Record_Type (E) then
14004 Comp := First_Component_Or_Discriminant (E);
14005 while Present (Comp) loop
14006 if not OK_Component (Comp) then
14007 No_Independence;
14008 Reason_Bad_Component (Comp);
14009 goto Continue;
14010 end if;
14012 Next_Component_Or_Discriminant (Comp);
14013 end loop;
14014 end if;
14016 -- Deal with address clause case
14018 if Is_Object (E) then
14019 Addr := Address_Clause (E);
14021 if Present (Addr) then
14022 No_Independence;
14023 Error_Msg_Sloc := Sloc (Addr);
14024 Error_Msg_N ("\because of Address clause#", N);
14025 goto Continue;
14026 end if;
14027 end if;
14029 -- Deal with independent components for array type
14031 if IC and then Is_Array_Type (E) then
14032 Check_Array_Type (E);
14033 end if;
14035 -- Deal with independent components for array object
14037 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14038 Check_Array_Type (Etype (E));
14039 end if;
14041 <<Continue>> null;
14042 end loop;
14043 end Validate_Independence;
14045 ------------------------------
14046 -- Validate_Iterable_Aspect --
14047 ------------------------------
14049 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14050 Assoc : Node_Id;
14051 Expr : Node_Id;
14053 Prim : Node_Id;
14054 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14056 First_Id : Entity_Id;
14057 Last_Id : Entity_Id;
14058 Next_Id : Entity_Id;
14059 Has_Element_Id : Entity_Id;
14060 Element_Id : Entity_Id;
14062 begin
14063 -- If previous error aspect is unusable
14065 if Cursor = Any_Type then
14066 return;
14067 end if;
14069 First_Id := Empty;
14070 Last_Id := Empty;
14071 Next_Id := Empty;
14072 Has_Element_Id := Empty;
14073 Element_Id := Empty;
14075 -- Each expression must resolve to a function with the proper signature
14077 Assoc := First (Component_Associations (Expression (ASN)));
14078 while Present (Assoc) loop
14079 Expr := Expression (Assoc);
14080 Analyze (Expr);
14082 Prim := First (Choices (Assoc));
14084 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14085 Error_Msg_N ("illegal name in association", Prim);
14087 elsif Chars (Prim) = Name_First then
14088 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14089 First_Id := Entity (Expr);
14091 elsif Chars (Prim) = Name_Last then
14092 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14093 Last_Id := Entity (Expr);
14095 elsif Chars (Prim) = Name_Previous then
14096 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14097 Last_Id := Entity (Expr);
14099 elsif Chars (Prim) = Name_Next then
14100 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14101 Next_Id := Entity (Expr);
14103 elsif Chars (Prim) = Name_Has_Element then
14104 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14105 Has_Element_Id := Entity (Expr);
14107 elsif Chars (Prim) = Name_Element then
14108 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14109 Element_Id := Entity (Expr);
14111 else
14112 Error_Msg_N ("invalid name for iterable function", Prim);
14113 end if;
14115 Next (Assoc);
14116 end loop;
14118 if No (First_Id) then
14119 Error_Msg_N ("match for First primitive not found", ASN);
14121 elsif No (Next_Id) then
14122 Error_Msg_N ("match for Next primitive not found", ASN);
14124 elsif No (Has_Element_Id) then
14125 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14127 elsif No (Element_Id) or else No (Last_Id) then
14128 null; -- optional
14129 end if;
14130 end Validate_Iterable_Aspect;
14132 -----------------------------------
14133 -- Validate_Unchecked_Conversion --
14134 -----------------------------------
14136 procedure Validate_Unchecked_Conversion
14137 (N : Node_Id;
14138 Act_Unit : Entity_Id)
14140 Source : Entity_Id;
14141 Target : Entity_Id;
14142 Vnode : Node_Id;
14144 begin
14145 -- Obtain source and target types. Note that we call Ancestor_Subtype
14146 -- here because the processing for generic instantiation always makes
14147 -- subtypes, and we want the original frozen actual types.
14149 -- If we are dealing with private types, then do the check on their
14150 -- fully declared counterparts if the full declarations have been
14151 -- encountered (they don't have to be visible, but they must exist).
14153 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14155 if Is_Private_Type (Source)
14156 and then Present (Underlying_Type (Source))
14157 then
14158 Source := Underlying_Type (Source);
14159 end if;
14161 Target := Ancestor_Subtype (Etype (Act_Unit));
14163 -- If either type is generic, the instantiation happens within a generic
14164 -- unit, and there is nothing to check. The proper check will happen
14165 -- when the enclosing generic is instantiated.
14167 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14168 return;
14169 end if;
14171 if Is_Private_Type (Target)
14172 and then Present (Underlying_Type (Target))
14173 then
14174 Target := Underlying_Type (Target);
14175 end if;
14177 -- Source may be unconstrained array, but not target, except in relaxed
14178 -- semantics mode.
14180 if Is_Array_Type (Target)
14181 and then not Is_Constrained (Target)
14182 and then not Relaxed_RM_Semantics
14183 then
14184 Error_Msg_N
14185 ("unchecked conversion to unconstrained array not allowed", N);
14186 return;
14187 end if;
14189 -- Warn if conversion between two different convention pointers
14191 if Is_Access_Type (Target)
14192 and then Is_Access_Type (Source)
14193 and then Convention (Target) /= Convention (Source)
14194 and then Warn_On_Unchecked_Conversion
14195 then
14196 -- Give warnings for subprogram pointers only on most targets
14198 if Is_Access_Subprogram_Type (Target)
14199 or else Is_Access_Subprogram_Type (Source)
14200 then
14201 Error_Msg_N
14202 ("?z?conversion between pointers with different conventions!",
14204 end if;
14205 end if;
14207 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14208 -- warning when compiling GNAT-related sources.
14210 if Warn_On_Unchecked_Conversion
14211 and then not In_Predefined_Unit (N)
14212 and then RTU_Loaded (Ada_Calendar)
14213 and then (Chars (Source) = Name_Time
14214 or else
14215 Chars (Target) = Name_Time)
14216 then
14217 -- If Ada.Calendar is loaded and the name of one of the operands is
14218 -- Time, there is a good chance that this is Ada.Calendar.Time.
14220 declare
14221 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14222 begin
14223 pragma Assert (Present (Calendar_Time));
14225 if Source = Calendar_Time or else Target = Calendar_Time then
14226 Error_Msg_N
14227 ("?z?representation of 'Time values may change between "
14228 & "'G'N'A'T versions", N);
14229 end if;
14230 end;
14231 end if;
14233 -- Make entry in unchecked conversion table for later processing by
14234 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14235 -- (using values set by the back end where possible). This is only done
14236 -- if the appropriate warning is active.
14238 if Warn_On_Unchecked_Conversion then
14239 Unchecked_Conversions.Append
14240 (New_Val => UC_Entry'(Eloc => Sloc (N),
14241 Source => Source,
14242 Target => Target,
14243 Act_Unit => Act_Unit));
14245 -- If both sizes are known statically now, then back-end annotation
14246 -- is not required to do a proper check but if either size is not
14247 -- known statically, then we need the annotation.
14249 if Known_Static_RM_Size (Source)
14250 and then
14251 Known_Static_RM_Size (Target)
14252 then
14253 null;
14254 else
14255 Back_Annotate_Rep_Info := True;
14256 end if;
14257 end if;
14259 -- If unchecked conversion to access type, and access type is declared
14260 -- in the same unit as the unchecked conversion, then set the flag
14261 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14263 if Is_Access_Type (Target) and then
14264 In_Same_Source_Unit (Target, N)
14265 then
14266 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14267 end if;
14269 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14270 -- the back end needs to perform special validation checks.
14272 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14273 -- have full expansion and the back end is called ???
14275 Vnode :=
14276 Make_Validate_Unchecked_Conversion (Sloc (N));
14277 Set_Source_Type (Vnode, Source);
14278 Set_Target_Type (Vnode, Target);
14280 -- If the unchecked conversion node is in a list, just insert before it.
14281 -- If not we have some strange case, not worth bothering about.
14283 if Is_List_Member (N) then
14284 Insert_After (N, Vnode);
14285 end if;
14286 end Validate_Unchecked_Conversion;
14288 ------------------------------------
14289 -- Validate_Unchecked_Conversions --
14290 ------------------------------------
14292 procedure Validate_Unchecked_Conversions is
14293 begin
14294 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14295 declare
14296 T : UC_Entry renames Unchecked_Conversions.Table (N);
14298 Act_Unit : constant Entity_Id := T.Act_Unit;
14299 Eloc : constant Source_Ptr := T.Eloc;
14300 Source : constant Entity_Id := T.Source;
14301 Target : constant Entity_Id := T.Target;
14303 Source_Siz : Uint;
14304 Target_Siz : Uint;
14306 begin
14307 -- Skip if function marked as warnings off
14309 if Warnings_Off (Act_Unit) then
14310 goto Continue;
14311 end if;
14313 -- This validation check, which warns if we have unequal sizes for
14314 -- unchecked conversion, and thus potentially implementation
14315 -- dependent semantics, is one of the few occasions on which we
14316 -- use the official RM size instead of Esize. See description in
14317 -- Einfo "Handling of Type'Size Values" for details.
14319 if Serious_Errors_Detected = 0
14320 and then Known_Static_RM_Size (Source)
14321 and then Known_Static_RM_Size (Target)
14323 -- Don't do the check if warnings off for either type, note the
14324 -- deliberate use of OR here instead of OR ELSE to get the flag
14325 -- Warnings_Off_Used set for both types if appropriate.
14327 and then not (Has_Warnings_Off (Source)
14329 Has_Warnings_Off (Target))
14330 then
14331 Source_Siz := RM_Size (Source);
14332 Target_Siz := RM_Size (Target);
14334 if Source_Siz /= Target_Siz then
14335 Error_Msg
14336 ("?z?types for unchecked conversion have different sizes!",
14337 Eloc, Act_Unit);
14339 if All_Errors_Mode then
14340 Error_Msg_Name_1 := Chars (Source);
14341 Error_Msg_Uint_1 := Source_Siz;
14342 Error_Msg_Name_2 := Chars (Target);
14343 Error_Msg_Uint_2 := Target_Siz;
14344 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14346 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14348 if Is_Discrete_Type (Source)
14349 and then
14350 Is_Discrete_Type (Target)
14351 then
14352 if Source_Siz > Target_Siz then
14353 Error_Msg
14354 ("\?z?^ high order bits of source will "
14355 & "be ignored!", Eloc);
14357 elsif Is_Unsigned_Type (Source) then
14358 Error_Msg
14359 ("\?z?source will be extended with ^ high order "
14360 & "zero bits!", Eloc);
14362 else
14363 Error_Msg
14364 ("\?z?source will be extended with ^ high order "
14365 & "sign bits!", Eloc);
14366 end if;
14368 elsif Source_Siz < Target_Siz then
14369 if Is_Discrete_Type (Target) then
14370 if Bytes_Big_Endian then
14371 Error_Msg
14372 ("\?z?target value will include ^ undefined "
14373 & "low order bits!", Eloc, Act_Unit);
14374 else
14375 Error_Msg
14376 ("\?z?target value will include ^ undefined "
14377 & "high order bits!", Eloc, Act_Unit);
14378 end if;
14380 else
14381 Error_Msg
14382 ("\?z?^ trailing bits of target value will be "
14383 & "undefined!", Eloc, Act_Unit);
14384 end if;
14386 else pragma Assert (Source_Siz > Target_Siz);
14387 if Is_Discrete_Type (Source) then
14388 if Bytes_Big_Endian then
14389 Error_Msg
14390 ("\?z?^ low order bits of source will be "
14391 & "ignored!", Eloc, Act_Unit);
14392 else
14393 Error_Msg
14394 ("\?z?^ high order bits of source will be "
14395 & "ignored!", Eloc, Act_Unit);
14396 end if;
14398 else
14399 Error_Msg
14400 ("\?z?^ trailing bits of source will be "
14401 & "ignored!", Eloc, Act_Unit);
14402 end if;
14403 end if;
14404 end if;
14405 end if;
14406 end if;
14408 -- If both types are access types, we need to check the alignment.
14409 -- If the alignment of both is specified, we can do it here.
14411 if Serious_Errors_Detected = 0
14412 and then Is_Access_Type (Source)
14413 and then Is_Access_Type (Target)
14414 and then Target_Strict_Alignment
14415 and then Present (Designated_Type (Source))
14416 and then Present (Designated_Type (Target))
14417 then
14418 declare
14419 D_Source : constant Entity_Id := Designated_Type (Source);
14420 D_Target : constant Entity_Id := Designated_Type (Target);
14422 begin
14423 if Known_Alignment (D_Source)
14424 and then
14425 Known_Alignment (D_Target)
14426 then
14427 declare
14428 Source_Align : constant Uint := Alignment (D_Source);
14429 Target_Align : constant Uint := Alignment (D_Target);
14431 begin
14432 if Source_Align < Target_Align
14433 and then not Is_Tagged_Type (D_Source)
14435 -- Suppress warning if warnings suppressed on either
14436 -- type or either designated type. Note the use of
14437 -- OR here instead of OR ELSE. That is intentional,
14438 -- we would like to set flag Warnings_Off_Used in
14439 -- all types for which warnings are suppressed.
14441 and then not (Has_Warnings_Off (D_Source)
14443 Has_Warnings_Off (D_Target)
14445 Has_Warnings_Off (Source)
14447 Has_Warnings_Off (Target))
14448 then
14449 Error_Msg_Uint_1 := Target_Align;
14450 Error_Msg_Uint_2 := Source_Align;
14451 Error_Msg_Node_1 := D_Target;
14452 Error_Msg_Node_2 := D_Source;
14453 Error_Msg
14454 ("?z?alignment of & (^) is stricter than "
14455 & "alignment of & (^)!", Eloc, Act_Unit);
14456 Error_Msg
14457 ("\?z?resulting access value may have invalid "
14458 & "alignment!", Eloc, Act_Unit);
14459 end if;
14460 end;
14461 end if;
14462 end;
14463 end if;
14464 end;
14466 <<Continue>>
14467 null;
14468 end loop;
14469 end Validate_Unchecked_Conversions;
14471 end Sem_Ch13;