1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Freeze
; use Freeze
;
38 with Ghost
; use Ghost
;
40 with Lib
.Xref
; use Lib
.Xref
;
41 with Namet
; use Namet
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Par_SCO
; use Par_SCO
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Case
; use Sem_Case
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Dim
; use Sem_Dim
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Prag
; use Sem_Prag
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Type
; use Sem_Type
;
62 with Sem_Util
; use Sem_Util
;
63 with Sem_Warn
; use Sem_Warn
;
64 with Sinfo
; use Sinfo
;
65 with Sinput
; use Sinput
;
66 with Snames
; use Snames
;
67 with Stand
; use Stand
;
68 with Targparm
; use Targparm
;
69 with Ttypes
; use Ttypes
;
70 with Tbuild
; use Tbuild
;
71 with Urealp
; use Urealp
;
72 with Warnsw
; use Warnsw
;
74 with GNAT
.Heap_Sort_G
;
76 package body Sem_Ch13
is
78 SSU
: constant Pos
:= System_Storage_Unit
;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
112 Id
: Entity_Id
) return Node_Id
;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ
: Entity_Id
) return Node_Id
;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks
(N
: Node_Id
);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
158 function Is_Predicate_Static
160 Nam
: Name_Id
) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
190 Nam
: TSS_Name_Type
);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
206 procedure Register_Address_Clause_Check
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
227 Biased
: Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry
is record
251 -- Source location used in warnings and error messages
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
257 -- The scope which encloses the pragma
260 package Compile_Time_Warnings_Errors
is new Table
.Table
(
261 Table_Component_Type
=> CTWE_Entry
,
262 Table_Index_Type
=> Int
,
263 Table_Low_Bound
=> 1,
265 Table_Increment
=> 200,
266 Table_Name
=> "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry
is record
284 Eloc
: Source_Ptr
; -- node used for posting warnings
285 Source
: Entity_Id
; -- source type for unchecked conversion
286 Target
: Entity_Id
; -- target type for unchecked conversion
287 Act_Unit
: Entity_Id
; -- actual function instantiated
290 package Unchecked_Conversions
is new Table
.Table
(
291 Table_Component_Type
=> UC_Entry
,
292 Table_Index_Type
=> Int
,
293 Table_Low_Bound
=> 1,
295 Table_Increment
=> 200,
296 Table_Name
=> "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record
is record
317 -- The address clause
320 -- The entity of the object subject to the address clause
323 -- The value of the address in the first case
326 -- The entity of the object being overlaid in the second case
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed
: Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
337 package Address_Clause_Checks
is new Table
.Table
(
338 Table_Component_Type
=> Address_Clause_Check_Record
,
339 Table_Index_Type
=> Int
,
340 Table_Low_Bound
=> 1,
342 Table_Increment
=> 200,
343 Table_Name
=> "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR
: Address_Clause_Check_Record
) return Boolean;
347 -- Return whether the alignment check generated for the address clause
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR
: Address_Clause_Check_Record
) return Boolean
358 if Checks_May_Be_Suppressed
(ACCR
.X
) then
359 return Is_Check_Suppressed
(ACCR
.X
, Alignment_Check
);
361 return ACCR
.Alignment_Checks_Suppressed
;
363 end Alignment_Checks_Suppressed
;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
370 Max_Machine_Scalar_Size
: constant Uint
:=
372 (Standard_Long_Long_Integer_Size
);
373 -- We use this as the maximum machine scalar size
375 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version
< Ada_2005
and then Debug_Flag_Dot_P
then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
);
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
406 Comp
:= First_Component_Or_Discriminant
(R
);
407 while Present
(Comp
) loop
408 CC
:= Component_Clause
(Comp
);
412 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
413 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
416 -- Case of component with last bit >= max machine scalar
418 if Lbit
>= Max_Machine_Scalar_Size
then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order
then
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC
);
432 if Bytes_Big_Endian
then
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC
);
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC
);
443 -- Give error message for RM 13.5.1(10) violation
447 ("machine scalar rules not followed for&",
448 First_Bit
(CC
), Comp
);
450 Error_Msg_Uint_1
:= Lbit
+ 1;
451 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit
(CC
));
456 if (Lbit
+ 1) mod SSU
/= 0 then
457 Error_Msg_Uint_1
:= SSU
;
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit
(CC
));
463 Error_Msg_Uint_1
:= Fbit
;
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit
(CC
));
470 -- OK case of machine scalar related component clause. For now,
474 Num_CC
:= Num_CC
+ 1;
479 Next_Component_Or_Discriminant
(Comp
);
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
487 Comps
: array (0 .. Num_CC
) of Entity_Id
;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move
(From
: Natural; To
: Natural);
495 -- Move routine for Sort
497 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
500 -- Maximum last bit value of any component in this set
503 -- Corresponding machine scalar size
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
515 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
518 Position
(Component_Clause
(Comps
(Op1
))) <
519 Position
(Component_Clause
(Comps
(Op2
)));
526 procedure CP_Move
(From
: Natural; To
: Natural) is
528 Comps
(To
) := Comps
(From
);
531 -- Start of processing for Sort_CC
534 -- Collect the machine scalar relevant component clauses
537 Comp
:= First_Component_Or_Discriminant
(R
);
538 while Present
(Comp
) loop
540 CC
: constant Node_Id
:= Component_Clause
(Comp
);
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
551 and then not Error_Posted
(Last_Bit
(CC
))
552 and then Static_Integer
(Last_Bit
(CC
)) <
553 Max_Machine_Scalar_Size
555 Num_CC
:= Num_CC
+ 1;
556 Comps
(Num_CC
) := Comp
;
560 Next_Component_Or_Discriminant
(Comp
);
563 -- Sort by ascending position number
565 Sorting
.Sort
(Num_CC
);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
573 while Stop
< Num_CC
loop
578 (Last_Bit
(Component_Clause
(Comps
(Start
))));
579 while Stop
< Num_CC
loop
581 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
583 (Position
(Component_Clause
(Comps
(Stop
))))
591 (Component_Clause
(Comps
(Stop
)))));
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
606 MSS
:= Max_Machine_Scalar_Size
;
608 and then (MSS
/ 2) >= SSU
609 and then (MSS
/ 2) > MaxL
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C
in Start
.. Stop
loop
635 Comp
: constant Entity_Id
:= Comps
(C
);
636 CC
: constant Node_Id
:= Component_Clause
(Comp
);
638 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
639 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
640 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
641 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
644 if Warn_On_Reverse_Bit_Order
then
645 Error_Msg_Uint_1
:= MSS
;
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit
(CC
));
649 Error_Msg_Uint_1
:= NFB
;
650 Error_Msg_Uint_2
:= NLB
;
652 if Bytes_Big_Endian
then
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit
(CC
), Comp
);
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit
(CC
), Comp
);
663 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
664 Set_Normalized_Position
(Comp
, Pos
+ NFB
/ SSU
);
665 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
670 end Adjust_Record_For_Reverse_Bit_Order
;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
) is
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp
:= First_Component_Or_Discriminant
(R
);
686 while Present
(Comp
) loop
687 CC
:= Component_Clause
(Comp
);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
698 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
699 CSZ
: constant Uint
:= Esize
(Comp
);
700 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
701 Pos
: constant Node_Id
:= Position
(CLC
);
702 FB
: constant Node_Id
:= First_Bit
(CLC
);
704 Storage_Unit_Offset
: constant Uint
:=
705 CFB
/ System_Storage_Unit
;
707 Start_Bit
: constant Uint
:=
708 CFB
mod System_Storage_Unit
;
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit
+ CSZ
> System_Storage_Unit
then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit
mod System_Storage_Unit
= 0
718 and then CSZ
mod System_Storage_Unit
= 0
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC
);
724 if Bytes_Big_Endian
then
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC
);
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC
);
734 -- Do not allow non-contiguous field
738 ("attempt to specify non-contiguous field not "
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC
);
745 -- Case where field fits in one storage unit
748 -- Give warning if suspicious component clause
750 if Intval
(FB
) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos
);
757 Intval
(Pos
) + Intval
(FB
) /
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos
);
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset
(Comp
,
784 (Storage_Unit_Offset
* System_Storage_Unit
) +
785 (System_Storage_Unit
- 1) -
786 (Start_Bit
+ CSZ
- 1));
788 Set_Normalized_Position
(Comp
,
789 Component_Bit_Offset
(Comp
) / System_Storage_Unit
);
791 Set_Normalized_First_Bit
(Comp
,
792 Component_Bit_Offset
(Comp
) mod System_Storage_Unit
);
797 Next_Component_Or_Discriminant
(Comp
);
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95
;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment
(Typ
)
813 and then not Has_Alignment_Clause
(Typ
)
814 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
816 Init_Alignment
(Typ
);
818 end Alignment_Check_For_Size_Change
;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
825 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
862 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
863 Ent
: constant Entity_Id
:= Entity
(ASN
);
864 Expr
: constant Node_Id
:= Expression
(ASN
);
865 Id
: constant Node_Id
:= Identifier
(ASN
);
868 Error_Msg_Name_1
:= Chars
(Id
);
870 if not Is_Type
(Ent
) then
871 Error_Msg_N
("aspect% can only apply to a type", Id
);
874 elsif not Is_First_Subtype
(Ent
) then
875 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
878 elsif A_Id
= Aspect_Default_Value
879 and then not Is_Scalar_Type
(Ent
)
881 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
884 elsif A_Id
= Aspect_Default_Component_Value
then
885 if not Is_Array_Type
(Ent
) then
886 Error_Msg_N
("aspect% can only be applied to array type", Id
);
889 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
890 Error_Msg_N
("aspect% requires scalar components", Id
);
895 Set_Has_Default_Aspect
(Base_Type
(Ent
));
897 if Is_Scalar_Type
(Ent
) then
898 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
900 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
902 end Analyze_Aspect_Default_Value
;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
909 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
910 P
: constant Entity_Id
:= Entity
(ASN
);
911 -- Entithy for parent type
914 -- Item from Rep_Item chain
919 -- Loop through delayed aspects for the parent type
922 while Present
(N
) loop
923 if Nkind
(N
) = N_Aspect_Specification
then
924 exit when Entity
(N
) /= P
;
926 if Is_Delayed_Aspect
(N
) then
927 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
940 when Aspect_Alignment
=>
941 if not Has_Alignment_Clause
(E
) then
942 Set_Alignment
(E
, Alignment
(P
));
947 when Aspect_Atomic
=>
948 if Is_Atomic
(P
) then
954 when Aspect_Atomic_Components
=>
955 if Has_Atomic_Components
(P
) then
956 Set_Has_Atomic_Components
(Base_Type
(E
));
961 when Aspect_Bit_Order
=>
962 if Is_Record_Type
(E
)
963 and then No
(Get_Attribute_Definition_Clause
964 (E
, Attribute_Bit_Order
))
965 and then Reverse_Bit_Order
(P
)
967 Set_Reverse_Bit_Order
(Base_Type
(E
));
972 when Aspect_Component_Size
=>
974 and then not Has_Component_Size_Clause
(E
)
977 (Base_Type
(E
), Component_Size
(P
));
982 when Aspect_Machine_Radix
=>
983 if Is_Decimal_Fixed_Point_Type
(E
)
984 and then not Has_Machine_Radix_Clause
(E
)
986 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
994 if not Has_Size_Clause
(E
)
996 No
(Get_Attribute_Definition_Clause
997 (E
, Attribute_Object_Size
))
999 Set_Esize
(E
, Esize
(P
));
1005 if not Is_Packed
(E
) then
1006 Set_Is_Packed
(Base_Type
(E
));
1008 if Is_Bit_Packed_Array
(P
) then
1009 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
1010 Set_Packed_Array_Impl_Type
1011 (E
, Packed_Array_Impl_Type
(P
));
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order
=>
1018 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
1019 and then No
(Get_Attribute_Definition_Clause
1020 (E
, Attribute_Scalar_Storage_Order
))
1021 and then Reverse_Storage_Order
(P
)
1023 Set_Reverse_Storage_Order
(Base_Type
(E
));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
1029 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
1034 when Aspect_Small
=>
1035 if Is_Fixed_Point_Type
(E
)
1036 and then not Has_Small_Clause
(E
)
1038 Set_Small_Value
(E
, Small_Value
(P
));
1043 when Aspect_Storage_Size
=>
1044 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
1045 and then not Has_Storage_Size_Clause
(E
)
1047 Set_Storage_Size_Variable
1048 (Base_Type
(E
), Storage_Size_Variable
(P
));
1053 when Aspect_Value_Size
=>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1063 when Aspect_Volatile
=>
1064 if Is_Volatile
(P
) then
1065 Set_Is_Volatile
(E
);
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access
=>
1071 if Is_Volatile_Full_Access
(P
) then
1072 Set_Is_Volatile_Full_Access
(E
);
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components
=>
1078 if Has_Volatile_Components
(P
) then
1079 Set_Has_Volatile_Components
(Base_Type
(E
));
1082 -- That should be all the Rep Aspects
1085 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
1091 N
:= Next_Rep_Item
(N
);
1093 end Inherit_Delayed_Rep_Aspects
;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
1100 Ident
: constant Node_Id
:= Identifier
(ASN
);
1101 A_Name
: constant Name_Id
:= Chars
(Ident
);
1102 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
1103 Ent
: constant Entity_Id
:= Entity
(ASN
);
1104 Expr
: constant Node_Id
:= Expression
(ASN
);
1105 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1107 procedure Check_False_Aspect_For_Derived_Type
;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type
is
1120 -- We are only checking derived types
1122 if not Is_Derived_Type
(E
) then
1126 Par
:= Nearest_Ancestor
(E
);
1132 if not Is_Atomic
(Par
) then
1136 when Aspect_Atomic_Components
=>
1137 if not Has_Atomic_Components
(Par
) then
1141 when Aspect_Discard_Names
=>
1142 if not Discard_Names
(Par
) then
1147 if not Is_Packed
(Par
) then
1151 when Aspect_Unchecked_Union
=>
1152 if not Is_Unchecked_Union
(Par
) then
1156 when Aspect_Volatile
=>
1157 if not Is_Volatile
(Par
) then
1161 when Aspect_Volatile_Components
=>
1162 if not Has_Volatile_Components
(Par
) then
1166 when Aspect_Volatile_Full_Access
=>
1167 if not Is_Volatile_Full_Access
(Par
) then
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1
:= A_Name
;
1179 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1180 end Check_False_Aspect_For_Derived_Type
;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False
(Static_Boolean
(Expr
)) then
1194 Check_False_Aspect_For_Derived_Type
;
1199 Pragma_Identifier
=>
1200 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)),
1201 Pragma_Argument_Associations
=> New_List
(
1202 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1203 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))));
1205 Set_From_Aspect_Specification
(Prag
, True);
1206 Set_Corresponding_Aspect
(Prag
, ASN
);
1207 Set_Aspect_Rep_Item
(ASN
, Prag
);
1208 Set_Is_Delayed_Aspect
(Prag
);
1209 Set_Parent
(Prag
, ASN
);
1211 end Make_Pragma_From_Boolean_Aspect
;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1229 if Is_Type
(E
) and then From_Nested_Package
(E
) then
1231 Pack
: constant Entity_Id
:= Scope
(E
);
1235 Install_Visible_Declarations
(Pack
);
1236 Install_Private_Declarations
(Pack
);
1237 Analyze_Aspects_At_Freeze_Point
(E
);
1239 if Is_Private_Type
(E
)
1240 and then Present
(Full_View
(E
))
1242 Analyze_Aspects_At_Freeze_Point
(Full_View
(E
));
1245 End_Package_Scope
(Pack
);
1249 -- Aspects from other entities in different contexts are analyzed
1257 -- Look for aspect specification entries for this entity
1259 ASN
:= First_Rep_Item
(E
);
1260 while Present
(ASN
) loop
1261 if Nkind
(ASN
) = N_Aspect_Specification
then
1262 exit when Entity
(ASN
) /= E
;
1264 if Is_Delayed_Aspect
(ASN
) then
1265 A_Id
:= Get_Aspect_Id
(ASN
);
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
1288 -- Otherwise create a corresponding pragma
1291 Make_Pragma_From_Boolean_Aspect
(ASN
);
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type
(E
)
1306 and then not Comes_From_Source
(E
)
1307 and then E
/= First_Subtype
(E
)
1311 Analyze_Aspect_Default_Value
(ASN
);
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze
(Expression
(ASN
));
1324 if Etype
(Expression
(ASN
)) = Any_Type
then
1326 ("\aspect must be fully defined before & is frozen",
1330 when Aspect_Iterable
=>
1331 Validate_Iterable_Aspect
(E
, ASN
);
1337 Ritem
:= Aspect_Rep_Item
(ASN
);
1339 if Present
(Ritem
) then
1345 Next_Rep_Item
(ASN
);
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1354 Inherit_Delayed_Rep_Aspects
(ASN
);
1356 end Analyze_Aspects_At_Freeze_Point
;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1363 pragma Assert
(Present
(E
));
1365 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1370 Is_Instance
: Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1378 -- Initial_Condition
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1395 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1397 Set_Aspect_Rep_Item
(Asp
, Prag
);
1398 Set_Corresponding_Aspect
(Prag
, Asp
);
1399 Set_From_Aspect_Specification
(Prag
);
1400 Set_Parent
(Prag
, Asp
);
1407 procedure Insert_Pragma
1409 Is_Instance
: Boolean := False)
1415 Inserted
: Boolean := False;
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1428 if Nkind_In
(N
, N_Entry_Body
,
1434 Decls
:= Declarations
(N
);
1438 Set_Declarations
(N
, Decls
);
1441 Prepend_To
(Decls
, Prag
);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1452 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
1453 N_Package_Declaration
)
1455 Decls
:= Visible_Declarations
(Specification
(N
));
1459 Set_Visible_Declarations
(Specification
(N
), Decls
);
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1474 Decl
:= First
(Decls
);
1475 while Present
(Decl
) loop
1476 if Comes_From_Source
(Decl
) then
1477 Insert_Before
(Decl
, Prag
);
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted
then
1488 Append_To
(Decls
, Prag
);
1491 -- Otherwise this is not a generic instance
1494 Prepend_To
(Decls
, Prag
);
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1506 elsif Nkind
(N
) = N_Protected_Type_Declaration
then
1507 Def
:= Protected_Definition
(N
);
1511 Make_Protected_Definition
(Sloc
(N
),
1512 Visible_Declarations
=> New_List
,
1513 End_Label
=> Empty
);
1515 Set_Protected_Definition
(N
, Def
);
1518 Decls
:= Visible_Declarations
(Def
);
1522 Set_Visible_Declarations
(Def
, Decls
);
1525 Prepend_To
(Decls
, Prag
);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1536 elsif Nkind
(N
) = N_Task_Type_Declaration
then
1537 Def
:= Task_Definition
(N
);
1541 Make_Task_Definition
(Sloc
(N
),
1542 Visible_Declarations
=> New_List
,
1543 End_Label
=> Empty
);
1545 Set_Task_Definition
(N
, Def
);
1548 Decls
:= Visible_Declarations
(Def
);
1552 Set_Visible_Declarations
(Def
, Decls
);
1555 Prepend_To
(Decls
, Prag
);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1561 Aux
:= Aux_Decls_Node
(Parent
(N
));
1563 if No
(Pragmas_After
(Aux
)) then
1564 Set_Pragmas_After
(Aux
, New_List
);
1567 Prepend
(Prag
, Pragmas_After
(Aux
));
1569 -- Default, the pragma is inserted after the context
1572 Insert_After
(N
, Prag
);
1582 L
: constant List_Id
:= Aspect_Specifications
(N
);
1583 pragma Assert
(Present
(L
));
1585 Ins_Node
: Node_Id
:= N
;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect
:= First
(L
);
1614 Aspect_Loop
: while Present
(Aspect
) loop
1615 Analyze_One_Aspect
: declare
1616 Expr
: constant Node_Id
:= Expression
(Aspect
);
1617 Id
: constant Node_Id
:= Identifier
(Aspect
);
1618 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1619 Nam
: constant Name_Id
:= Chars
(Id
);
1620 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1623 Delay_Required
: Boolean;
1624 -- Set False if delay is not required
1626 Eloc
: Source_Ptr
:= No_Location
;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention
;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled
;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import
;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name
;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference
;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations
: List_Id
;
1647 Pragma_Name
: Name_Id
);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention
is
1670 -- Obtain all interfacing aspects that apply to the related
1673 Get_Interfacing_Aspects
1674 (Iface_Asp
=> Aspect
,
1675 Conv_Asp
=> Dummy_1
,
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present
(Expo
) or else Present
(Imp
) then
1689 -- Otherwise Convention appears by itself
1692 -- The aspect specifies a particular convention
1694 if Present
(Expr
) then
1695 Conv
:= New_Copy_Tree
(Expr
);
1697 -- Otherwise assume convention Ada
1700 Conv
:= Make_Identifier
(Loc
, Name_Ada
);
1704 -- pragma Convention (<Conv>, <E>);
1707 (Pragma_Name
=> Name_Convention
,
1708 Pragma_Argument_Associations
=> New_List
(
1709 Make_Pragma_Argument_Association
(Loc
,
1710 Expression
=> Conv
),
1711 Make_Pragma_Argument_Association
(Loc
,
1712 Expression
=> New_Occurrence_Of
(E
, Loc
))));
1714 Decorate
(Aspect
, Aitem
);
1715 Insert_Pragma
(Aitem
);
1717 end Analyze_Aspect_Convention
;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled
is
1725 -- The aspect applies only to controlled records
1727 if not (Ekind
(E
) = E_Record_Type
1728 and then Is_Controlled_Active
(E
))
1731 ("aspect % requires controlled record type", Aspect
);
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic
then
1739 if Present
(Expr
) then
1740 Preanalyze_And_Resolve
(Expr
, Any_Boolean
);
1743 -- Otherwise the aspect resides in a nongeneric context
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present
(Expr
) then
1750 Analyze_And_Resolve
(Expr
, Any_Boolean
);
1752 if Is_OK_Static_Expression
(Expr
) then
1753 if Is_True
(Static_Boolean
(Expr
)) then
1754 Set_Disable_Controlled
(E
);
1757 -- Otherwise the expression is not static
1761 ("expression of aspect % must be static", Aspect
);
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1768 Set_Disable_Controlled
(E
);
1771 end Analyze_Aspect_Disable_Controlled
;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import
is
1785 -- Obtain all interfacing aspects that apply to the related
1788 Get_Interfacing_Aspects
1789 (Iface_Asp
=> Aspect
,
1790 Conv_Asp
=> Dummy_1
,
1797 -- The related entity cannot be subject to both aspects Export
1800 if Present
(Expo
) and then Present
(Imp
) then
1802 ("incompatible interfacing aspects given for &", E
);
1803 Error_Msg_Sloc
:= Sloc
(Expo
);
1804 Error_Msg_N
("\aspect `Export` #", E
);
1805 Error_Msg_Sloc
:= Sloc
(Imp
);
1806 Error_Msg_N
("\aspect `Import` #", E
);
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind
(E
) = E_Variable
then
1813 Set_Never_Set_In_Source
(E
, False);
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present
(Expr
)
1824 or else Is_True
(Static_Boolean
(Expr
))
1826 if A_Id
= Aspect_Import
then
1827 Set_Has_Completion
(E
);
1828 Set_Is_Imported
(E
);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind
(N
) = N_Object_Declaration
1833 and then Present
(Expression
(N
))
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression
(N
));
1841 pragma Assert
(A_Id
= Aspect_Export
);
1842 Set_Is_Exported
(E
);
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem
:= Build_Export_Import_Pragma
(Aspect
, E
);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1856 end Analyze_Aspect_Export_Import
;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name
is
1870 -- Obtain all interfacing aspects that apply to the related
1873 Get_Interfacing_Aspects
1874 (Iface_Asp
=> Aspect
,
1875 Conv_Asp
=> Dummy_1
,
1882 -- Ensure that aspect External_Name applies to aspect Export or
1885 if A_Id
= Aspect_External_Name
then
1886 if No
(Expo
) and then No
(Imp
) then
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect
);
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1896 pragma Assert
(A_Id
= Aspect_Link_Name
);
1897 if No
(Expo
) and then No
(Imp
) then
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect
);
1903 end Analyze_Aspect_External_Link_Name
;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference
is
1911 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1913 ("aspect must apply to a type with discriminants", Expr
);
1915 elsif not Is_Entity_Name
(Expr
) then
1917 ("aspect must name a discriminant of current type", Expr
);
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1926 Disc
: Entity_Id
:= First_Discriminant
(E
);
1928 while Present
(Disc
) loop
1929 if Chars
(Expr
) = Chars
(Disc
)
1932 E_Anonymous_Access_Subprogram_Type
,
1933 E_Anonymous_Access_Type
)
1935 Set_Has_Implicit_Dereference
(E
);
1936 Set_Has_Implicit_Dereference
(Disc
);
1940 Next_Discriminant
(Disc
);
1943 -- Error if no proper access discriminant
1945 if Present
(Disc
) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1950 if Is_Derived_Type
(E
)
1951 and then Has_Discriminants
(Etype
(E
))
1954 Parent_Disc
: constant Entity_Id
:=
1955 Get_Reference_Discriminant
(Etype
(E
));
1957 if Present
(Parent_Disc
)
1958 and then Corresponding_Discriminant
(Disc
) /=
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr
);
1970 ("not an access discriminant of&", Expr
, E
);
1975 end Analyze_Aspect_Implicit_Dereference
;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations
: List_Id
;
1983 Pragma_Name
: Name_Id
)
1985 Args
: List_Id
:= Pragma_Argument_Associations
;
1988 -- We should never get here if aspect was disabled
1990 pragma Assert
(not Is_Disabled
(Aspect
));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No
(Args
) or else No
(Expression
(First
(Args
))) then
2003 Pragma_Argument_Associations
=> Args
,
2004 Pragma_Identifier
=>
2005 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
2006 Class_Present
=> Class_Present
(Aspect
),
2007 Split_PPC
=> Split_PPC
(Aspect
));
2009 -- Set additional semantic fields
2011 if Is_Ignored
(Aspect
) then
2012 Set_Is_Ignored
(Aitem
);
2013 elsif Is_Checked
(Aspect
) then
2014 Set_Is_Checked
(Aitem
);
2017 Set_Corresponding_Aspect
(Aitem
, Aspect
);
2018 Set_From_Aspect_Specification
(Aitem
);
2019 end Make_Aitem_Pragma
;
2021 -- Start of processing for Analyze_One_Aspect
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed
(Aspect
) then
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy
(Aspect
);
2036 if Is_Disabled
(Aspect
) then
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present
(Expr
) then
2049 Eloc
:= Sloc
(First_Node
(Expr
));
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect
(A_Id
) then
2056 (No_Implementation_Aspect_Specifications
, Aspect
);
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed
(Aspect
);
2066 Set_Entity
(Aspect
, E
);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
2072 if A_Id
= Aspect_Attach_Handler
2073 or else A_Id
= Aspect_Interrupt_Handler
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference
(E
, Id
);
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed
(A_Id
) then
2089 while Anod
/= Aspect
loop
2090 if Comes_From_Source
(Aspect
)
2091 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
2093 Error_Msg_Name_1
:= Nam
;
2094 Error_Msg_Sloc
:= Sloc
(Anod
);
2096 -- Case of same aspect specified twice
2098 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
2099 if not Class_Present
(Anod
) then
2101 ("aspect% for & previously given#",
2105 ("aspect `%''Class` for & previously given#",
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect
(A_Id
) then
2118 Error_Msg_Name_1
:= Nam
;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2124 if Nkind
(Original_Node
(N
)) in N_Renaming_Declaration
then
2126 ("aspect % not allowed for renaming declaration",
2130 -- Not allowed for formal type declarations
2132 if Nkind
(N
) = N_Formal_Type_Declaration
then
2134 ("aspect % not allowed for formal type declaration",
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay
(A_Id
) is
2147 when Always_Delay
=>
2148 Delay_Required
:= True;
2151 Delay_Required
:= False;
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id
in Boolean_Aspects
and then No
(Expr
) then
2162 Delay_Required
:= False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id
not in Boolean_Aspects
2169 and then A_Id
/= Aspect_Alignment
2170 and then Present
(Expr
)
2171 and then Nkind
(Expr
) = N_Integer_Literal
2173 Delay_Required
:= False;
2175 -- All other cases are delayed
2178 Delay_Required
:= True;
2179 Set_Has_Delayed_Rep_Aspects
(E
);
2183 -- Processing based on specific aspect
2186 when Aspect_Unimplemented
=>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2192 raise Program_Error
;
2194 -- Case 1: Aspects corresponding to attribute definition
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Simple_Storage_Pool
2216 | Aspect_Storage_Pool
2217 | Aspect_Stream_Size
2219 | Aspect_Variable_Indexing
2222 -- Indexing aspects apply only to tagged type
2224 if (A_Id
= Aspect_Constant_Indexing
2226 A_Id
= Aspect_Variable_Indexing
)
2227 and then not (Is_Type
(E
)
2228 and then Is_Tagged_Type
(E
))
2231 ("indexing aspect can only apply to a tagged type",
2236 -- For the case of aspect Address, we don't consider that we
2237 -- know the entity is never set in the source, since it is
2238 -- is likely aliasing is occurring.
2240 -- Note: one might think that the analysis of the resulting
2241 -- attribute definition clause would take care of that, but
2242 -- that's not the case since it won't be from source.
2244 if A_Id
= Aspect_Address
then
2245 Set_Never_Set_In_Source
(E
, False);
2248 -- Correctness of the profile of a stream operation is
2249 -- verified at the freeze point, but we must detect the
2250 -- illegal specification of this aspect for a subtype now,
2251 -- to prevent malformed rep_item chains.
2253 if A_Id
= Aspect_Input
or else
2254 A_Id
= Aspect_Output
or else
2255 A_Id
= Aspect_Read
or else
2258 if not Is_First_Subtype
(E
) then
2260 ("local name must be a first subtype", Aspect
);
2263 -- If stream aspect applies to the class-wide type,
2264 -- the generated attribute definition applies to the
2265 -- class-wide type as well.
2267 elsif Class_Present
(Aspect
) then
2269 Make_Attribute_Reference
(Loc
,
2271 Attribute_Name
=> Name_Class
);
2275 -- Construct the attribute_definition_clause. The expression
2276 -- in the aspect specification is simply shared with the
2277 -- constructed attribute, because it will be fully analyzed
2278 -- when the attribute is processed. However, in ASIS mode
2279 -- the aspect expression itself is preanalyzed and resolved
2280 -- to catch visibility errors that are otherwise caught
2281 -- later, and we create a separate copy of the expression
2282 -- to prevent analysis of a malformed tree (e.g. a function
2283 -- call with parameter associations).
2287 Make_Attribute_Definition_Clause
(Loc
,
2289 Chars
=> Chars
(Id
),
2290 Expression
=> New_Copy_Tree
(Expr
));
2293 Make_Attribute_Definition_Clause
(Loc
,
2295 Chars
=> Chars
(Id
),
2296 Expression
=> Relocate_Node
(Expr
));
2299 -- If the address is specified, then we treat the entity as
2300 -- referenced, to avoid spurious warnings. This is analogous
2301 -- to what is done with an attribute definition clause, but
2302 -- here we don't want to generate a reference because this
2303 -- is the point of definition of the entity.
2305 if A_Id
= Aspect_Address
then
2309 -- Case 2: Aspects corresponding to pragmas
2311 -- Case 2a: Aspects corresponding to pragmas with two
2312 -- arguments, where the first argument is a local name
2313 -- referring to the entity, and the second argument is the
2314 -- aspect definition expression.
2316 -- Linker_Section/Suppress/Unsuppress
2318 when Aspect_Linker_Section
2323 (Pragma_Argument_Associations
=> New_List
(
2324 Make_Pragma_Argument_Association
(Loc
,
2325 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2326 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2327 Expression
=> Relocate_Node
(Expr
))),
2328 Pragma_Name
=> Chars
(Id
));
2330 -- Linker_Section does not need delaying, as its argument
2331 -- must be a static string. Furthermore, if applied to
2332 -- an object with an explicit initialization, the object
2333 -- must be frozen in order to elaborate the initialization
2334 -- code. (This is already done for types with implicit
2335 -- initialization, such as protected types.)
2337 if A_Id
= Aspect_Linker_Section
2338 and then Nkind
(N
) = N_Object_Declaration
2339 and then Has_Init_Expression
(N
)
2341 Delay_Required
:= False;
2346 -- Corresponds to pragma Implemented, construct the pragma
2348 when Aspect_Synchronization
=>
2350 (Pragma_Argument_Associations
=> New_List
(
2351 Make_Pragma_Argument_Association
(Loc
,
2352 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2353 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2354 Expression
=> Relocate_Node
(Expr
))),
2355 Pragma_Name
=> Name_Implemented
);
2359 when Aspect_Attach_Handler
=>
2361 (Pragma_Argument_Associations
=> New_List
(
2362 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2364 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2365 Expression
=> Relocate_Node
(Expr
))),
2366 Pragma_Name
=> Name_Attach_Handler
);
2368 -- We need to insert this pragma into the tree to get proper
2369 -- processing and to look valid from a placement viewpoint.
2371 Insert_Pragma
(Aitem
);
2374 -- Dynamic_Predicate, Predicate, Static_Predicate
2376 when Aspect_Dynamic_Predicate
2378 | Aspect_Static_Predicate
2380 -- These aspects apply only to subtypes
2382 if not Is_Type
(E
) then
2384 ("predicate can only be specified for a subtype",
2388 elsif Is_Incomplete_Type
(E
) then
2390 ("predicate cannot apply to incomplete view", Aspect
);
2392 elsif Is_Generic_Type
(E
) then
2394 ("predicate cannot apply to formal type", Aspect
);
2398 -- Construct the pragma (always a pragma Predicate, with
2399 -- flags recording whether it is static/dynamic). We also
2400 -- set flags recording this in the type itself.
2403 (Pragma_Argument_Associations
=> New_List
(
2404 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2406 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2407 Expression
=> Relocate_Node
(Expr
))),
2408 Pragma_Name
=> Name_Predicate
);
2410 -- Mark type has predicates, and remember what kind of
2411 -- aspect lead to this predicate (we need this to access
2412 -- the right set of check policies later on).
2414 Set_Has_Predicates
(E
);
2416 if A_Id
= Aspect_Dynamic_Predicate
then
2417 Set_Has_Dynamic_Predicate_Aspect
(E
);
2419 -- If the entity has a dynamic predicate, any inherited
2420 -- static predicate becomes dynamic as well, and the
2421 -- predicate function includes the conjunction of both.
2423 Set_Has_Static_Predicate_Aspect
(E
, False);
2425 elsif A_Id
= Aspect_Static_Predicate
then
2426 Set_Has_Static_Predicate_Aspect
(E
);
2429 -- If the type is private, indicate that its completion
2430 -- has a freeze node, because that is the one that will
2431 -- be visible at freeze time.
2433 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2434 Set_Has_Predicates
(Full_View
(E
));
2436 if A_Id
= Aspect_Dynamic_Predicate
then
2437 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
2438 elsif A_Id
= Aspect_Static_Predicate
then
2439 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
2442 Set_Has_Delayed_Aspects
(Full_View
(E
));
2443 Ensure_Freeze_Node
(Full_View
(E
));
2446 -- Predicate_Failure
2448 when Aspect_Predicate_Failure
=>
2450 -- This aspect applies only to subtypes
2452 if not Is_Type
(E
) then
2454 ("predicate can only be specified for a subtype",
2458 elsif Is_Incomplete_Type
(E
) then
2460 ("predicate cannot apply to incomplete view", Aspect
);
2464 -- Construct the pragma
2467 (Pragma_Argument_Associations
=> New_List
(
2468 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2470 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2471 Expression
=> Relocate_Node
(Expr
))),
2472 Pragma_Name
=> Name_Predicate_Failure
);
2474 Set_Has_Predicates
(E
);
2476 -- If the type is private, indicate that its completion
2477 -- has a freeze node, because that is the one that will
2478 -- be visible at freeze time.
2480 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2481 Set_Has_Predicates
(Full_View
(E
));
2482 Set_Has_Delayed_Aspects
(Full_View
(E
));
2483 Ensure_Freeze_Node
(Full_View
(E
));
2486 -- Case 2b: Aspects corresponding to pragmas with two
2487 -- arguments, where the second argument is a local name
2488 -- referring to the entity, and the first argument is the
2489 -- aspect definition expression.
2493 when Aspect_Convention
=>
2494 Analyze_Aspect_Convention
;
2497 -- External_Name, Link_Name
2499 when Aspect_External_Name
2502 Analyze_Aspect_External_Link_Name
;
2505 -- CPU, Interrupt_Priority, Priority
2507 -- These three aspects can be specified for a subprogram spec
2508 -- or body, in which case we analyze the expression and export
2509 -- the value of the aspect.
2511 -- Previously, we generated an equivalent pragma for bodies
2512 -- (note that the specs cannot contain these pragmas). The
2513 -- pragma was inserted ahead of local declarations, rather than
2514 -- after the body. This leads to a certain duplication between
2515 -- the processing performed for the aspect and the pragma, but
2516 -- given the straightforward handling required it is simpler
2517 -- to duplicate than to translate the aspect in the spec into
2518 -- a pragma in the declarative part of the body.
2521 | Aspect_Interrupt_Priority
2524 if Nkind_In
(N
, N_Subprogram_Body
,
2525 N_Subprogram_Declaration
)
2527 -- Analyze the aspect expression
2529 Analyze_And_Resolve
(Expr
, Standard_Integer
);
2531 -- Interrupt_Priority aspect not allowed for main
2532 -- subprograms. RM D.1 does not forbid this explicitly,
2533 -- but RM J.15.11(6/3) does not permit pragma
2534 -- Interrupt_Priority for subprograms.
2536 if A_Id
= Aspect_Interrupt_Priority
then
2538 ("Interrupt_Priority aspect cannot apply to "
2539 & "subprogram", Expr
);
2541 -- The expression must be static
2543 elsif not Is_OK_Static_Expression
(Expr
) then
2544 Flag_Non_Static_Expr
2545 ("aspect requires static expression!", Expr
);
2547 -- Check whether this is the main subprogram. Issue a
2548 -- warning only if it is obviously not a main program
2549 -- (when it has parameters or when the subprogram is
2550 -- within a package).
2552 elsif Present
(Parameter_Specifications
2553 (Specification
(N
)))
2554 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
2556 -- See RM D.1(14/3) and D.16(12/3)
2559 ("aspect applied to subprogram other than the "
2560 & "main subprogram has no effect??", Expr
);
2562 -- Otherwise check in range and export the value
2564 -- For the CPU aspect
2566 elsif A_Id
= Aspect_CPU
then
2567 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2569 -- Value is correct so we export the value to make
2570 -- it available at execution time.
2573 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2577 ("main subprogram CPU is out of range", Expr
);
2580 -- For the Priority aspect
2582 elsif A_Id
= Aspect_Priority
then
2583 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2585 -- Value is correct so we export the value to make
2586 -- it available at execution time.
2589 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2591 -- Ignore pragma if Relaxed_RM_Semantics to support
2592 -- other targets/non GNAT compilers.
2594 elsif not Relaxed_RM_Semantics
then
2596 ("main subprogram priority is out of range",
2601 -- Load an arbitrary entity from System.Tasking.Stages
2602 -- or System.Tasking.Restricted.Stages (depending on
2603 -- the supported profile) to make sure that one of these
2604 -- packages is implicitly with'ed, since we need to have
2605 -- the tasking run time active for the pragma Priority to
2606 -- have any effect. Previously we with'ed the package
2607 -- System.Tasking, but this package does not trigger the
2608 -- required initialization of the run-time library.
2611 Discard
: Entity_Id
;
2613 if Restricted_Profile
then
2614 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2616 Discard
:= RTE
(RE_Activate_Tasks
);
2620 -- Handling for these aspects in subprograms is complete
2624 -- For task and protected types pass the aspect as an
2629 Make_Attribute_Definition_Clause
(Loc
,
2631 Chars
=> Chars
(Id
),
2632 Expression
=> Relocate_Node
(Expr
));
2637 when Aspect_Warnings
=>
2639 (Pragma_Argument_Associations
=> New_List
(
2640 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2641 Expression
=> Relocate_Node
(Expr
)),
2642 Make_Pragma_Argument_Association
(Loc
,
2643 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2644 Pragma_Name
=> Chars
(Id
));
2646 Decorate
(Aspect
, Aitem
);
2647 Insert_Pragma
(Aitem
);
2650 -- Case 2c: Aspects corresponding to pragmas with three
2653 -- Invariant aspects have a first argument that references the
2654 -- entity, a second argument that is the expression and a third
2655 -- argument that is an appropriate message.
2657 -- Invariant, Type_Invariant
2659 when Aspect_Invariant
2660 | Aspect_Type_Invariant
2662 -- Analysis of the pragma will verify placement legality:
2663 -- an invariant must apply to a private type, or appear in
2664 -- the private part of a spec and apply to a completion.
2667 (Pragma_Argument_Associations
=> New_List
(
2668 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2670 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2671 Expression
=> Relocate_Node
(Expr
))),
2672 Pragma_Name
=> Name_Invariant
);
2674 -- Add message unless exception messages are suppressed
2676 if not Opt
.Exception_Locations_Suppressed
then
2677 Append_To
(Pragma_Argument_Associations
(Aitem
),
2678 Make_Pragma_Argument_Association
(Eloc
,
2679 Chars
=> Name_Message
,
2681 Make_String_Literal
(Eloc
,
2682 Strval
=> "failed invariant from "
2683 & Build_Location_String
(Eloc
))));
2686 -- For Invariant case, insert immediately after the entity
2687 -- declaration. We do not have to worry about delay issues
2688 -- since the pragma processing takes care of this.
2690 Delay_Required
:= False;
2692 -- Case 2d : Aspects that correspond to a pragma with one
2697 -- Aspect Abstract_State introduces implicit declarations for
2698 -- all state abstraction entities it defines. To emulate this
2699 -- behavior, insert the pragma at the beginning of the visible
2700 -- declarations of the related package so that it is analyzed
2703 when Aspect_Abstract_State
=> Abstract_State
: declare
2704 Context
: Node_Id
:= N
;
2707 -- When aspect Abstract_State appears on a generic package,
2708 -- it is propageted to the package instance. The context in
2709 -- this case is the instance spec.
2711 if Nkind
(Context
) = N_Package_Instantiation
then
2712 Context
:= Instance_Spec
(Context
);
2715 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2716 N_Package_Declaration
)
2719 (Pragma_Argument_Associations
=> New_List
(
2720 Make_Pragma_Argument_Association
(Loc
,
2721 Expression
=> Relocate_Node
(Expr
))),
2722 Pragma_Name
=> Name_Abstract_State
);
2724 Decorate
(Aspect
, Aitem
);
2728 Is_Generic_Instance
(Defining_Entity
(Context
)));
2732 ("aspect & must apply to a package declaration",
2739 -- Aspect Async_Readers is never delayed because it is
2740 -- equivalent to a source pragma which appears after the
2741 -- related object declaration.
2743 when Aspect_Async_Readers
=>
2745 (Pragma_Argument_Associations
=> New_List
(
2746 Make_Pragma_Argument_Association
(Loc
,
2747 Expression
=> Relocate_Node
(Expr
))),
2748 Pragma_Name
=> Name_Async_Readers
);
2750 Decorate
(Aspect
, Aitem
);
2751 Insert_Pragma
(Aitem
);
2754 -- Aspect Async_Writers is never delayed because it is
2755 -- equivalent to a source pragma which appears after the
2756 -- related object declaration.
2758 when Aspect_Async_Writers
=>
2760 (Pragma_Argument_Associations
=> New_List
(
2761 Make_Pragma_Argument_Association
(Loc
,
2762 Expression
=> Relocate_Node
(Expr
))),
2763 Pragma_Name
=> Name_Async_Writers
);
2765 Decorate
(Aspect
, Aitem
);
2766 Insert_Pragma
(Aitem
);
2769 -- Aspect Constant_After_Elaboration is never delayed because
2770 -- it is equivalent to a source pragma which appears after the
2771 -- related object declaration.
2773 when Aspect_Constant_After_Elaboration
=>
2775 (Pragma_Argument_Associations
=> New_List
(
2776 Make_Pragma_Argument_Association
(Loc
,
2777 Expression
=> Relocate_Node
(Expr
))),
2779 Name_Constant_After_Elaboration
);
2781 Decorate
(Aspect
, Aitem
);
2782 Insert_Pragma
(Aitem
);
2785 -- Aspect Default_Internal_Condition is never delayed because
2786 -- it is equivalent to a source pragma which appears after the
2787 -- related private type. To deal with forward references, the
2788 -- generated pragma is stored in the rep chain of the related
2789 -- private type as types do not carry contracts. The pragma is
2790 -- wrapped inside of a procedure at the freeze point of the
2791 -- private type's full view.
2793 when Aspect_Default_Initial_Condition
=>
2795 (Pragma_Argument_Associations
=> New_List
(
2796 Make_Pragma_Argument_Association
(Loc
,
2797 Expression
=> Relocate_Node
(Expr
))),
2799 Name_Default_Initial_Condition
);
2801 Decorate
(Aspect
, Aitem
);
2802 Insert_Pragma
(Aitem
);
2805 -- Default_Storage_Pool
2807 when Aspect_Default_Storage_Pool
=>
2809 (Pragma_Argument_Associations
=> New_List
(
2810 Make_Pragma_Argument_Association
(Loc
,
2811 Expression
=> Relocate_Node
(Expr
))),
2813 Name_Default_Storage_Pool
);
2815 Decorate
(Aspect
, Aitem
);
2816 Insert_Pragma
(Aitem
);
2821 -- Aspect Depends is never delayed because it is equivalent to
2822 -- a source pragma which appears after the related subprogram.
2823 -- To deal with forward references, the generated pragma is
2824 -- stored in the contract of the related subprogram and later
2825 -- analyzed at the end of the declarative region. See routine
2826 -- Analyze_Depends_In_Decl_Part for details.
2828 when Aspect_Depends
=>
2830 (Pragma_Argument_Associations
=> New_List
(
2831 Make_Pragma_Argument_Association
(Loc
,
2832 Expression
=> Relocate_Node
(Expr
))),
2833 Pragma_Name
=> Name_Depends
);
2835 Decorate
(Aspect
, Aitem
);
2836 Insert_Pragma
(Aitem
);
2839 -- Aspect Effecitve_Reads is never delayed because it is
2840 -- equivalent to a source pragma which appears after the
2841 -- related object declaration.
2843 when Aspect_Effective_Reads
=>
2845 (Pragma_Argument_Associations
=> New_List
(
2846 Make_Pragma_Argument_Association
(Loc
,
2847 Expression
=> Relocate_Node
(Expr
))),
2848 Pragma_Name
=> Name_Effective_Reads
);
2850 Decorate
(Aspect
, Aitem
);
2851 Insert_Pragma
(Aitem
);
2854 -- Aspect Effective_Writes is never delayed because it is
2855 -- equivalent to a source pragma which appears after the
2856 -- related object declaration.
2858 when Aspect_Effective_Writes
=>
2860 (Pragma_Argument_Associations
=> New_List
(
2861 Make_Pragma_Argument_Association
(Loc
,
2862 Expression
=> Relocate_Node
(Expr
))),
2863 Pragma_Name
=> Name_Effective_Writes
);
2865 Decorate
(Aspect
, Aitem
);
2866 Insert_Pragma
(Aitem
);
2869 -- Aspect Extensions_Visible is never delayed because it is
2870 -- equivalent to a source pragma which appears after the
2871 -- related subprogram.
2873 when Aspect_Extensions_Visible
=>
2875 (Pragma_Argument_Associations
=> New_List
(
2876 Make_Pragma_Argument_Association
(Loc
,
2877 Expression
=> Relocate_Node
(Expr
))),
2878 Pragma_Name
=> Name_Extensions_Visible
);
2880 Decorate
(Aspect
, Aitem
);
2881 Insert_Pragma
(Aitem
);
2884 -- Aspect Ghost is never delayed because it is equivalent to a
2885 -- source pragma which appears at the top of [generic] package
2886 -- declarations or after an object, a [generic] subprogram, or
2887 -- a type declaration.
2889 when Aspect_Ghost
=>
2891 (Pragma_Argument_Associations
=> New_List
(
2892 Make_Pragma_Argument_Association
(Loc
,
2893 Expression
=> Relocate_Node
(Expr
))),
2894 Pragma_Name
=> Name_Ghost
);
2896 Decorate
(Aspect
, Aitem
);
2897 Insert_Pragma
(Aitem
);
2902 -- Aspect Global is never delayed because it is equivalent to
2903 -- a source pragma which appears after the related subprogram.
2904 -- To deal with forward references, the generated pragma is
2905 -- stored in the contract of the related subprogram and later
2906 -- analyzed at the end of the declarative region. See routine
2907 -- Analyze_Global_In_Decl_Part for details.
2909 when Aspect_Global
=>
2911 (Pragma_Argument_Associations
=> New_List
(
2912 Make_Pragma_Argument_Association
(Loc
,
2913 Expression
=> Relocate_Node
(Expr
))),
2914 Pragma_Name
=> Name_Global
);
2916 Decorate
(Aspect
, Aitem
);
2917 Insert_Pragma
(Aitem
);
2920 -- Initial_Condition
2922 -- Aspect Initial_Condition is never delayed because it is
2923 -- equivalent to a source pragma which appears after the
2924 -- related package. To deal with forward references, the
2925 -- generated pragma is stored in the contract of the related
2926 -- package and later analyzed at the end of the declarative
2927 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2930 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2931 Context
: Node_Id
:= N
;
2934 -- When aspect Initial_Condition appears on a generic
2935 -- package, it is propageted to the package instance. The
2936 -- context in this case is the instance spec.
2938 if Nkind
(Context
) = N_Package_Instantiation
then
2939 Context
:= Instance_Spec
(Context
);
2942 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2943 N_Package_Declaration
)
2946 (Pragma_Argument_Associations
=> New_List
(
2947 Make_Pragma_Argument_Association
(Loc
,
2948 Expression
=> Relocate_Node
(Expr
))),
2950 Name_Initial_Condition
);
2952 Decorate
(Aspect
, Aitem
);
2956 Is_Generic_Instance
(Defining_Entity
(Context
)));
2958 -- Otherwise the context is illegal
2962 ("aspect & must apply to a package declaration",
2967 end Initial_Condition
;
2971 -- Aspect Initializes is never delayed because it is equivalent
2972 -- to a source pragma appearing after the related package. To
2973 -- deal with forward references, the generated pragma is stored
2974 -- in the contract of the related package and later analyzed at
2975 -- the end of the declarative region. For details, see routine
2976 -- Analyze_Initializes_In_Decl_Part.
2978 when Aspect_Initializes
=> Initializes
: declare
2979 Context
: Node_Id
:= N
;
2982 -- When aspect Initializes appears on a generic package,
2983 -- it is propageted to the package instance. The context
2984 -- in this case is the instance spec.
2986 if Nkind
(Context
) = N_Package_Instantiation
then
2987 Context
:= Instance_Spec
(Context
);
2990 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2991 N_Package_Declaration
)
2994 (Pragma_Argument_Associations
=> New_List
(
2995 Make_Pragma_Argument_Association
(Loc
,
2996 Expression
=> Relocate_Node
(Expr
))),
2997 Pragma_Name
=> Name_Initializes
);
2999 Decorate
(Aspect
, Aitem
);
3003 Is_Generic_Instance
(Defining_Entity
(Context
)));
3005 -- Otherwise the context is illegal
3009 ("aspect & must apply to a package declaration",
3018 when Aspect_Max_Queue_Length
=>
3020 (Pragma_Argument_Associations
=> New_List
(
3021 Make_Pragma_Argument_Association
(Loc
,
3022 Expression
=> Relocate_Node
(Expr
))),
3023 Pragma_Name
=> Name_Max_Queue_Length
);
3025 Decorate
(Aspect
, Aitem
);
3026 Insert_Pragma
(Aitem
);
3031 when Aspect_Obsolescent
=> declare
3039 Make_Pragma_Argument_Association
(Sloc
(Expr
),
3040 Expression
=> Relocate_Node
(Expr
)));
3044 (Pragma_Argument_Associations
=> Args
,
3045 Pragma_Name
=> Chars
(Id
));
3050 when Aspect_Part_Of
=>
3051 if Nkind_In
(N
, N_Object_Declaration
,
3052 N_Package_Instantiation
)
3053 or else Is_Single_Concurrent_Type_Declaration
(N
)
3056 (Pragma_Argument_Associations
=> New_List
(
3057 Make_Pragma_Argument_Association
(Loc
,
3058 Expression
=> Relocate_Node
(Expr
))),
3059 Pragma_Name
=> Name_Part_Of
);
3061 Decorate
(Aspect
, Aitem
);
3062 Insert_Pragma
(Aitem
);
3066 ("aspect & must apply to package instantiation, "
3067 & "object, single protected type or single task type",
3075 when Aspect_SPARK_Mode
=>
3077 (Pragma_Argument_Associations
=> New_List
(
3078 Make_Pragma_Argument_Association
(Loc
,
3079 Expression
=> Relocate_Node
(Expr
))),
3080 Pragma_Name
=> Name_SPARK_Mode
);
3082 Decorate
(Aspect
, Aitem
);
3083 Insert_Pragma
(Aitem
);
3088 -- Aspect Refined_Depends is never delayed because it is
3089 -- equivalent to a source pragma which appears in the
3090 -- declarations of the related subprogram body. To deal with
3091 -- forward references, the generated pragma is stored in the
3092 -- contract of the related subprogram body and later analyzed
3093 -- at the end of the declarative region. For details, see
3094 -- routine Analyze_Refined_Depends_In_Decl_Part.
3096 when Aspect_Refined_Depends
=>
3098 (Pragma_Argument_Associations
=> New_List
(
3099 Make_Pragma_Argument_Association
(Loc
,
3100 Expression
=> Relocate_Node
(Expr
))),
3101 Pragma_Name
=> Name_Refined_Depends
);
3103 Decorate
(Aspect
, Aitem
);
3104 Insert_Pragma
(Aitem
);
3109 -- Aspect Refined_Global is never delayed because it is
3110 -- equivalent to a source pragma which appears in the
3111 -- declarations of the related subprogram body. To deal with
3112 -- forward references, the generated pragma is stored in the
3113 -- contract of the related subprogram body and later analyzed
3114 -- at the end of the declarative region. For details, see
3115 -- routine Analyze_Refined_Global_In_Decl_Part.
3117 when Aspect_Refined_Global
=>
3119 (Pragma_Argument_Associations
=> New_List
(
3120 Make_Pragma_Argument_Association
(Loc
,
3121 Expression
=> Relocate_Node
(Expr
))),
3122 Pragma_Name
=> Name_Refined_Global
);
3124 Decorate
(Aspect
, Aitem
);
3125 Insert_Pragma
(Aitem
);
3130 when Aspect_Refined_Post
=>
3132 (Pragma_Argument_Associations
=> New_List
(
3133 Make_Pragma_Argument_Association
(Loc
,
3134 Expression
=> Relocate_Node
(Expr
))),
3135 Pragma_Name
=> Name_Refined_Post
);
3137 Decorate
(Aspect
, Aitem
);
3138 Insert_Pragma
(Aitem
);
3143 when Aspect_Refined_State
=>
3145 -- The corresponding pragma for Refined_State is inserted in
3146 -- the declarations of the related package body. This action
3147 -- synchronizes both the source and from-aspect versions of
3150 if Nkind
(N
) = N_Package_Body
then
3152 (Pragma_Argument_Associations
=> New_List
(
3153 Make_Pragma_Argument_Association
(Loc
,
3154 Expression
=> Relocate_Node
(Expr
))),
3155 Pragma_Name
=> Name_Refined_State
);
3157 Decorate
(Aspect
, Aitem
);
3158 Insert_Pragma
(Aitem
);
3160 -- Otherwise the context is illegal
3164 ("aspect & must apply to a package body", Aspect
, Id
);
3169 -- Relative_Deadline
3171 when Aspect_Relative_Deadline
=>
3173 (Pragma_Argument_Associations
=> New_List
(
3174 Make_Pragma_Argument_Association
(Loc
,
3175 Expression
=> Relocate_Node
(Expr
))),
3176 Pragma_Name
=> Name_Relative_Deadline
);
3178 -- If the aspect applies to a task, the corresponding pragma
3179 -- must appear within its declarations, not after.
3181 if Nkind
(N
) = N_Task_Type_Declaration
then
3187 if No
(Task_Definition
(N
)) then
3188 Set_Task_Definition
(N
,
3189 Make_Task_Definition
(Loc
,
3190 Visible_Declarations
=> New_List
,
3191 End_Label
=> Empty
));
3194 Def
:= Task_Definition
(N
);
3195 V
:= Visible_Declarations
(Def
);
3196 if not Is_Empty_List
(V
) then
3197 Insert_Before
(First
(V
), Aitem
);
3200 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
3207 -- Secondary_Stack_Size
3209 -- Aspect Secondary_Stack_Size needs to be converted into a
3210 -- pragma for two reasons: the attribute is not analyzed until
3211 -- after the expansion of the task type declaration and the
3212 -- attribute does not have visibility on the discriminant.
3214 when Aspect_Secondary_Stack_Size
=>
3216 (Pragma_Argument_Associations
=> New_List
(
3217 Make_Pragma_Argument_Association
(Loc
,
3218 Expression
=> Relocate_Node
(Expr
))),
3220 Name_Secondary_Stack_Size
);
3222 Decorate
(Aspect
, Aitem
);
3223 Insert_Pragma
(Aitem
);
3226 -- Volatile_Function
3228 -- Aspect Volatile_Function is never delayed because it is
3229 -- equivalent to a source pragma which appears after the
3230 -- related subprogram.
3232 when Aspect_Volatile_Function
=>
3234 (Pragma_Argument_Associations
=> New_List
(
3235 Make_Pragma_Argument_Association
(Loc
,
3236 Expression
=> Relocate_Node
(Expr
))),
3237 Pragma_Name
=> Name_Volatile_Function
);
3239 Decorate
(Aspect
, Aitem
);
3240 Insert_Pragma
(Aitem
);
3243 -- Case 2e: Annotate aspect
3245 when Aspect_Annotate
=>
3252 -- The argument can be a single identifier
3254 if Nkind
(Expr
) = N_Identifier
then
3256 -- One level of parens is allowed
3258 if Paren_Count
(Expr
) > 1 then
3259 Error_Msg_F
("extra parentheses ignored", Expr
);
3262 Set_Paren_Count
(Expr
, 0);
3264 -- Add the single item to the list
3266 Args
:= New_List
(Expr
);
3268 -- Otherwise we must have an aggregate
3270 elsif Nkind
(Expr
) = N_Aggregate
then
3272 -- Must be positional
3274 if Present
(Component_Associations
(Expr
)) then
3276 ("purely positional aggregate required", Expr
);
3280 -- Must not be parenthesized
3282 if Paren_Count
(Expr
) /= 0 then
3283 Error_Msg_F
("extra parentheses ignored", Expr
);
3286 -- List of arguments is list of aggregate expressions
3288 Args
:= Expressions
(Expr
);
3290 -- Anything else is illegal
3293 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
3297 -- Prepare pragma arguments
3300 Arg
:= First
(Args
);
3301 while Present
(Arg
) loop
3303 Make_Pragma_Argument_Association
(Sloc
(Arg
),
3304 Expression
=> Relocate_Node
(Arg
)));
3309 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3310 Chars
=> Name_Entity
,
3311 Expression
=> Ent
));
3314 (Pragma_Argument_Associations
=> Pargs
,
3315 Pragma_Name
=> Name_Annotate
);
3318 -- Case 3 : Aspects that don't correspond to pragma/attribute
3319 -- definition clause.
3321 -- Case 3a: The aspects listed below don't correspond to
3322 -- pragmas/attributes but do require delayed analysis.
3324 -- Default_Value can only apply to a scalar type
3326 when Aspect_Default_Value
=>
3327 if not Is_Scalar_Type
(E
) then
3329 ("aspect Default_Value must apply to a scalar type", N
);
3334 -- Default_Component_Value can only apply to an array type
3335 -- with scalar components.
3337 when Aspect_Default_Component_Value
=>
3338 if not (Is_Array_Type
(E
)
3339 and then Is_Scalar_Type
(Component_Type
(E
)))
3342 ("aspect Default_Component_Value can only apply to an "
3343 & "array of scalar components", N
);
3348 -- Case 3b: The aspects listed below don't correspond to
3349 -- pragmas/attributes and don't need delayed analysis.
3351 -- Implicit_Dereference
3353 -- For Implicit_Dereference, External_Name and Link_Name, only
3354 -- the legality checks are done during the analysis, thus no
3355 -- delay is required.
3357 when Aspect_Implicit_Dereference
=>
3358 Analyze_Aspect_Implicit_Dereference
;
3363 when Aspect_Dimension
=>
3364 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
3369 when Aspect_Dimension_System
=>
3370 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
3373 -- Case 4: Aspects requiring special handling
3375 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3376 -- pragmas take care of the delay.
3380 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3381 -- with a first argument that is the expression, and a second
3382 -- argument that is an informative message if the test fails.
3383 -- This is inserted right after the declaration, to get the
3384 -- required pragma placement. The processing for the pragmas
3385 -- takes care of the required delay.
3387 when Pre_Post_Aspects
=> Pre_Post
: declare
3391 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
3392 Pname
:= Name_Precondition
;
3394 Pname
:= Name_Postcondition
;
3397 -- Check that the class-wide predicate cannot be applied to
3398 -- an operation of a synchronized type. AI12-0182 forbids
3399 -- these altogether, while earlier language semantics made
3400 -- them legal on tagged synchronized types.
3402 -- Other legality checks are performed when analyzing the
3403 -- contract of the operation.
3405 if Class_Present
(Aspect
)
3406 and then Is_Concurrent_Type
(Current_Scope
)
3407 and then Ekind_In
(E
, E_Entry
, E_Function
, E_Procedure
)
3409 Error_Msg_Name_1
:= Original_Aspect_Pragma_Name
(Aspect
);
3411 ("aspect % can only be specified for a primitive "
3412 & "operation of a tagged type", Aspect
);
3417 -- If the expressions is of the form A and then B, then
3418 -- we generate separate Pre/Post aspects for the separate
3419 -- clauses. Since we allow multiple pragmas, there is no
3420 -- problem in allowing multiple Pre/Post aspects internally.
3421 -- These should be treated in reverse order (B first and
3422 -- A second) since they are later inserted just after N in
3423 -- the order they are treated. This way, the pragma for A
3424 -- ends up preceding the pragma for B, which may have an
3425 -- importance for the error raised (either constraint error
3426 -- or precondition error).
3428 -- We do not do this for Pre'Class, since we have to put
3429 -- these conditions together in a complex OR expression.
3431 -- We do not do this in ASIS mode, as ASIS relies on the
3432 -- original node representing the complete expression, when
3433 -- retrieving it through the source aspect table.
3436 and then (Pname
= Name_Postcondition
3437 or else not Class_Present
(Aspect
))
3439 while Nkind
(Expr
) = N_And_Then
loop
3440 Insert_After
(Aspect
,
3441 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
3442 Identifier
=> Identifier
(Aspect
),
3443 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
3444 Class_Present
=> Class_Present
(Aspect
),
3445 Split_PPC
=> True));
3446 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
3447 Eloc
:= Sloc
(Expr
);
3451 -- Build the precondition/postcondition pragma
3453 -- Add note about why we do NOT need Copy_Tree here???
3456 (Pragma_Argument_Associations
=> New_List
(
3457 Make_Pragma_Argument_Association
(Eloc
,
3458 Chars
=> Name_Check
,
3459 Expression
=> Relocate_Node
(Expr
))),
3460 Pragma_Name
=> Pname
);
3462 -- Add message unless exception messages are suppressed
3464 if not Opt
.Exception_Locations_Suppressed
then
3465 Append_To
(Pragma_Argument_Associations
(Aitem
),
3466 Make_Pragma_Argument_Association
(Eloc
,
3467 Chars
=> Name_Message
,
3469 Make_String_Literal
(Eloc
,
3471 & Get_Name_String
(Pname
)
3473 & Build_Location_String
(Eloc
))));
3476 Set_Is_Delayed_Aspect
(Aspect
);
3478 -- For Pre/Post cases, insert immediately after the entity
3479 -- declaration, since that is the required pragma placement.
3480 -- Note that for these aspects, we do not have to worry
3481 -- about delay issues, since the pragmas themselves deal
3482 -- with delay of visibility for the expression analysis.
3484 Insert_Pragma
(Aitem
);
3491 when Aspect_Test_Case
=> Test_Case
: declare
3493 Comp_Expr
: Node_Id
;
3494 Comp_Assn
: Node_Id
;
3500 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3501 Error_Msg_Name_1
:= Nam
;
3502 Error_Msg_N
("incorrect placement of aspect `%`", E
);
3506 if Nkind
(Expr
) /= N_Aggregate
then
3507 Error_Msg_Name_1
:= Nam
;
3509 ("wrong syntax for aspect `%` for &", Id
, E
);
3513 -- Make pragma expressions refer to the original aspect
3514 -- expressions through the Original_Node link. This is used
3515 -- in semantic analysis for ASIS mode, so that the original
3516 -- expression also gets analyzed.
3518 Comp_Expr
:= First
(Expressions
(Expr
));
3519 while Present
(Comp_Expr
) loop
3520 New_Expr
:= Relocate_Node
(Comp_Expr
);
3522 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
3523 Expression
=> New_Expr
));
3527 Comp_Assn
:= First
(Component_Associations
(Expr
));
3528 while Present
(Comp_Assn
) loop
3529 if List_Length
(Choices
(Comp_Assn
)) /= 1
3531 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
3533 Error_Msg_Name_1
:= Nam
;
3535 ("wrong syntax for aspect `%` for &", Id
, E
);
3540 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
3541 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
3543 Relocate_Node
(Expression
(Comp_Assn
))));
3547 -- Build the test-case pragma
3550 (Pragma_Argument_Associations
=> Args
,
3551 Pragma_Name
=> Nam
);
3556 when Aspect_Contract_Cases
=>
3558 (Pragma_Argument_Associations
=> New_List
(
3559 Make_Pragma_Argument_Association
(Loc
,
3560 Expression
=> Relocate_Node
(Expr
))),
3561 Pragma_Name
=> Nam
);
3563 Decorate
(Aspect
, Aitem
);
3564 Insert_Pragma
(Aitem
);
3567 -- Case 5: Special handling for aspects with an optional
3568 -- boolean argument.
3570 -- In the delayed case, the corresponding pragma cannot be
3571 -- generated yet because the evaluation of the boolean needs
3572 -- to be delayed till the freeze point.
3574 when Boolean_Aspects
3575 | Library_Unit_Aspects
3577 Set_Is_Boolean_Aspect
(Aspect
);
3579 -- Lock_Free aspect only apply to protected objects
3581 if A_Id
= Aspect_Lock_Free
then
3582 if Ekind
(E
) /= E_Protected_Type
then
3583 Error_Msg_Name_1
:= Nam
;
3585 ("aspect % only applies to a protected object",
3589 -- Set the Uses_Lock_Free flag to True if there is no
3590 -- expression or if the expression is True. The
3591 -- evaluation of this aspect should be delayed to the
3592 -- freeze point (why???)
3595 or else Is_True
(Static_Boolean
(Expr
))
3597 Set_Uses_Lock_Free
(E
);
3600 Record_Rep_Item
(E
, Aspect
);
3605 elsif A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
3606 Analyze_Aspect_Export_Import
;
3608 -- Disable_Controlled
3610 elsif A_Id
= Aspect_Disable_Controlled
then
3611 Analyze_Aspect_Disable_Controlled
;
3615 -- Library unit aspects require special handling in the case
3616 -- of a package declaration, the pragma needs to be inserted
3617 -- in the list of declarations for the associated package.
3618 -- There is no issue of visibility delay for these aspects.
3620 if A_Id
in Library_Unit_Aspects
3622 Nkind_In
(N
, N_Package_Declaration
,
3623 N_Generic_Package_Declaration
)
3624 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3626 -- Aspect is legal on a local instantiation of a library-
3627 -- level generic unit.
3629 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3632 ("incorrect context for library unit aspect&", Id
);
3636 -- Cases where we do not delay, includes all cases where the
3637 -- expression is missing other than the above cases.
3639 if not Delay_Required
or else No
(Expr
) then
3641 -- Exclude aspects Export and Import because their pragma
3642 -- syntax does not map directly to a Boolean aspect.
3644 if A_Id
/= Aspect_Export
3645 and then A_Id
/= Aspect_Import
3648 (Pragma_Argument_Associations
=> New_List
(
3649 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3650 Expression
=> Ent
)),
3651 Pragma_Name
=> Chars
(Id
));
3654 Delay_Required
:= False;
3656 -- In general cases, the corresponding pragma/attribute
3657 -- definition clause will be inserted later at the freezing
3658 -- point, and we do not need to build it now.
3666 -- This is special because for access types we need to generate
3667 -- an attribute definition clause. This also works for single
3668 -- task declarations, but it does not work for task type
3669 -- declarations, because we have the case where the expression
3670 -- references a discriminant of the task type. That can't use
3671 -- an attribute definition clause because we would not have
3672 -- visibility on the discriminant. For that case we must
3673 -- generate a pragma in the task definition.
3675 when Aspect_Storage_Size
=>
3679 if Ekind
(E
) = E_Task_Type
then
3681 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3684 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3686 -- If no task definition, create one
3688 if No
(Task_Definition
(Decl
)) then
3689 Set_Task_Definition
(Decl
,
3690 Make_Task_Definition
(Loc
,
3691 Visible_Declarations
=> Empty_List
,
3692 End_Label
=> Empty
));
3695 -- Create a pragma and put it at the start of the task
3696 -- definition for the task type declaration.
3699 (Pragma_Argument_Associations
=> New_List
(
3700 Make_Pragma_Argument_Association
(Loc
,
3701 Expression
=> Relocate_Node
(Expr
))),
3702 Pragma_Name
=> Name_Storage_Size
);
3706 Visible_Declarations
(Task_Definition
(Decl
)));
3710 -- All other cases, generate attribute definition
3714 Make_Attribute_Definition_Clause
(Loc
,
3716 Chars
=> Chars
(Id
),
3717 Expression
=> Relocate_Node
(Expr
));
3721 -- Attach the corresponding pragma/attribute definition clause to
3722 -- the aspect specification node.
3724 if Present
(Aitem
) then
3725 Set_From_Aspect_Specification
(Aitem
);
3728 -- In the context of a compilation unit, we directly put the
3729 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3730 -- node (no delay is required here) except for aspects on a
3731 -- subprogram body (see below) and a generic package, for which we
3732 -- need to introduce the pragma before building the generic copy
3733 -- (see sem_ch12), and for package instantiations, where the
3734 -- library unit pragmas are better handled early.
3736 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3737 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3740 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3743 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3745 -- For a Boolean aspect, create the corresponding pragma if
3746 -- no expression or if the value is True.
3748 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3749 if Is_True
(Static_Boolean
(Expr
)) then
3751 (Pragma_Argument_Associations
=> New_List
(
3752 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3753 Expression
=> Ent
)),
3754 Pragma_Name
=> Chars
(Id
));
3756 Set_From_Aspect_Specification
(Aitem
, True);
3757 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3764 -- If the aspect is on a subprogram body (relevant aspect
3765 -- is Inline), add the pragma in front of the declarations.
3767 if Nkind
(N
) = N_Subprogram_Body
then
3768 if No
(Declarations
(N
)) then
3769 Set_Declarations
(N
, New_List
);
3772 Prepend
(Aitem
, Declarations
(N
));
3774 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3775 if No
(Visible_Declarations
(Specification
(N
))) then
3776 Set_Visible_Declarations
(Specification
(N
), New_List
);
3780 Visible_Declarations
(Specification
(N
)));
3782 elsif Nkind
(N
) = N_Package_Instantiation
then
3784 Spec
: constant Node_Id
:=
3785 Specification
(Instance_Spec
(N
));
3787 if No
(Visible_Declarations
(Spec
)) then
3788 Set_Visible_Declarations
(Spec
, New_List
);
3791 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3795 if No
(Pragmas_After
(Aux
)) then
3796 Set_Pragmas_After
(Aux
, New_List
);
3799 Append
(Aitem
, Pragmas_After
(Aux
));
3806 -- The evaluation of the aspect is delayed to the freezing point.
3807 -- The pragma or attribute clause if there is one is then attached
3808 -- to the aspect specification which is put in the rep item list.
3810 if Delay_Required
then
3811 if Present
(Aitem
) then
3812 Set_Is_Delayed_Aspect
(Aitem
);
3813 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3814 Set_Parent
(Aitem
, Aspect
);
3817 Set_Is_Delayed_Aspect
(Aspect
);
3819 -- In the case of Default_Value, link the aspect to base type
3820 -- as well, even though it appears on a first subtype. This is
3821 -- mandated by the semantics of the aspect. Do not establish
3822 -- the link when processing the base type itself as this leads
3823 -- to a rep item circularity. Verify that we are dealing with
3824 -- a scalar type to prevent cascaded errors.
3826 if A_Id
= Aspect_Default_Value
3827 and then Is_Scalar_Type
(E
)
3828 and then Base_Type
(E
) /= E
3830 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3831 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3834 Set_Has_Delayed_Aspects
(E
);
3835 Record_Rep_Item
(E
, Aspect
);
3837 -- When delay is not required and the context is a package or a
3838 -- subprogram body, insert the pragma in the body declarations.
3840 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3841 if No
(Declarations
(N
)) then
3842 Set_Declarations
(N
, New_List
);
3845 -- The pragma is added before source declarations
3847 Prepend_To
(Declarations
(N
), Aitem
);
3849 -- When delay is not required and the context is not a compilation
3850 -- unit, we simply insert the pragma/attribute definition clause
3853 elsif Present
(Aitem
) then
3854 Insert_After
(Ins_Node
, Aitem
);
3857 end Analyze_One_Aspect
;
3861 end loop Aspect_Loop
;
3863 if Has_Delayed_Aspects
(E
) then
3864 Ensure_Freeze_Node
(E
);
3866 end Analyze_Aspect_Specifications
;
3868 ---------------------------------------------------
3869 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3870 ---------------------------------------------------
3872 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub
(N
: Node_Id
) is
3873 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
3875 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
);
3876 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3877 -- error message depending on the aspects involved. Spec_Id denotes the
3878 -- entity of the corresponding spec.
3880 --------------------------------
3881 -- Diagnose_Misplaced_Aspects --
3882 --------------------------------
3884 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
) is
3885 procedure Misplaced_Aspect_Error
3888 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3889 -- the name of the refined version of the aspect.
3891 ----------------------------
3892 -- Misplaced_Aspect_Error --
3893 ----------------------------
3895 procedure Misplaced_Aspect_Error
3899 Asp_Nam
: constant Name_Id
:= Chars
(Identifier
(Asp
));
3900 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp_Nam
);
3903 -- The corresponding spec already contains the aspect in question
3904 -- and the one appearing on the body must be the refined form:
3906 -- procedure P with Global ...;
3907 -- procedure P with Global ... is ... end P;
3911 if Has_Aspect
(Spec_Id
, Asp_Id
) then
3912 Error_Msg_Name_1
:= Asp_Nam
;
3914 -- Subunits cannot carry aspects that apply to a subprogram
3917 if Nkind
(Parent
(N
)) = N_Subunit
then
3918 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
3920 -- Otherwise suggest the refined form
3923 Error_Msg_Name_2
:= Ref_Nam
;
3924 Error_Msg_N
("aspect % should be %", Asp
);
3927 -- Otherwise the aspect must appear on the spec, not on the body
3930 -- procedure P with Global ... is ... end P;
3934 ("aspect specification must appear on initial declaration",
3937 end Misplaced_Aspect_Error
;
3944 -- Start of processing for Diagnose_Misplaced_Aspects
3947 -- Iterate over the aspect specifications and emit specific errors
3948 -- where applicable.
3950 Asp
:= First
(Aspect_Specifications
(N
));
3951 while Present
(Asp
) loop
3952 Asp_Nam
:= Chars
(Identifier
(Asp
));
3954 -- Do not emit errors on aspects that can appear on a subprogram
3955 -- body. This scenario occurs when the aspect specification list
3956 -- contains both misplaced and properly placed aspects.
3958 if Aspect_On_Body_Or_Stub_OK
(Get_Aspect_Id
(Asp_Nam
)) then
3961 -- Special diagnostics for SPARK aspects
3963 elsif Asp_Nam
= Name_Depends
then
3964 Misplaced_Aspect_Error
(Asp
, Name_Refined_Depends
);
3966 elsif Asp_Nam
= Name_Global
then
3967 Misplaced_Aspect_Error
(Asp
, Name_Refined_Global
);
3969 elsif Asp_Nam
= Name_Post
then
3970 Misplaced_Aspect_Error
(Asp
, Name_Refined_Post
);
3972 -- Otherwise a language-defined aspect is misplaced
3976 ("aspect specification must appear on initial declaration",
3982 end Diagnose_Misplaced_Aspects
;
3986 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(N
);
3988 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3991 -- Language-defined aspects cannot be associated with a subprogram body
3992 -- [stub] if the subprogram has a spec. Certain implementation defined
3993 -- aspects are allowed to break this rule (for all applicable cases, see
3994 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3996 if Spec_Id
/= Body_Id
and then not Aspects_On_Body_Or_Stub_OK
(N
) then
3997 Diagnose_Misplaced_Aspects
(Spec_Id
);
3999 Analyze_Aspect_Specifications
(N
, Body_Id
);
4001 end Analyze_Aspect_Specifications_On_Body_Or_Stub
;
4003 -----------------------
4004 -- Analyze_At_Clause --
4005 -----------------------
4007 -- An at clause is replaced by the corresponding Address attribute
4008 -- definition clause that is the preferred approach in Ada 95.
4010 procedure Analyze_At_Clause
(N
: Node_Id
) is
4011 CS
: constant Boolean := Comes_From_Source
(N
);
4014 -- This is an obsolescent feature
4016 Check_Restriction
(No_Obsolescent_Features
, N
);
4018 if Warn_On_Obsolescent_Feature
then
4020 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
4022 ("\?j?use address attribute definition clause instead", N
);
4025 -- Rewrite as address clause
4028 Make_Attribute_Definition_Clause
(Sloc
(N
),
4029 Name
=> Identifier
(N
),
4030 Chars
=> Name_Address
,
4031 Expression
=> Expression
(N
)));
4033 -- We preserve Comes_From_Source, since logically the clause still comes
4034 -- from the source program even though it is changed in form.
4036 Set_Comes_From_Source
(N
, CS
);
4038 -- Analyze rewritten clause
4040 Analyze_Attribute_Definition_Clause
(N
);
4041 end Analyze_At_Clause
;
4043 -----------------------------------------
4044 -- Analyze_Attribute_Definition_Clause --
4045 -----------------------------------------
4047 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
4048 Loc
: constant Source_Ptr
:= Sloc
(N
);
4049 Nam
: constant Node_Id
:= Name
(N
);
4050 Attr
: constant Name_Id
:= Chars
(N
);
4051 Expr
: constant Node_Id
:= Expression
(N
);
4052 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
4055 -- The entity of Nam after it is analyzed. In the case of an incomplete
4056 -- type, this is the underlying type.
4059 -- The underlying entity to which the attribute applies. Generally this
4060 -- is the Underlying_Type of Ent, except in the case where the clause
4061 -- applies to the full view of an incomplete or private type, in which
4062 -- case U_Ent is just a copy of Ent.
4064 FOnly
: Boolean := False;
4065 -- Reset to True for subtype specific attribute (Alignment, Size)
4066 -- and for stream attributes, i.e. those cases where in the call to
4067 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4068 -- are checked. Note that the case of stream attributes is not clear
4069 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4070 -- Storage_Size for derived task types, but that is also clearly
4073 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
4074 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4075 -- definition clauses.
4077 function Duplicate_Clause
return Boolean;
4078 -- This routine checks if the aspect for U_Ent being given by attribute
4079 -- definition clause N is for an aspect that has already been specified,
4080 -- and if so gives an error message. If there is a duplicate, True is
4081 -- returned, otherwise if there is no error, False is returned.
4083 procedure Check_Indexing_Functions
;
4084 -- Check that the function in Constant_Indexing or Variable_Indexing
4085 -- attribute has the proper type structure. If the name is overloaded,
4086 -- check that some interpretation is legal.
4088 procedure Check_Iterator_Functions
;
4089 -- Check that there is a single function in Default_Iterator attribute
4090 -- that has the proper type structure.
4092 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
4093 -- Common legality check for the previous two
4095 -----------------------------------
4096 -- Analyze_Stream_TSS_Definition --
4097 -----------------------------------
4099 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
4100 Subp
: Entity_Id
:= Empty
;
4105 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
4106 -- True for Read attribute, False for other attributes
4108 function Has_Good_Profile
4110 Report
: Boolean := False) return Boolean;
4111 -- Return true if the entity is a subprogram with an appropriate
4112 -- profile for the attribute being defined. If result is False and
4113 -- Report is True, function emits appropriate error.
4115 ----------------------
4116 -- Has_Good_Profile --
4117 ----------------------
4119 function Has_Good_Profile
4121 Report
: Boolean := False) return Boolean
4123 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
4124 (False => E_Procedure
, True => E_Function
);
4125 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
4130 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
4134 F
:= First_Formal
(Subp
);
4137 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
4138 or else Designated_Type
(Etype
(F
)) /=
4139 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
4144 if not Is_Function
then
4148 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
4149 (False => E_In_Parameter
,
4150 True => E_Out_Parameter
);
4152 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
4159 -- If the attribute specification comes from an aspect
4160 -- specification for a class-wide stream, the parameter must be
4161 -- a class-wide type of the entity to which the aspect applies.
4163 if From_Aspect_Specification
(N
)
4164 and then Class_Present
(Parent
(N
))
4165 and then Is_Class_Wide_Type
(Typ
)
4171 Typ
:= Etype
(Subp
);
4174 -- Verify that the prefix of the attribute and the local name for
4175 -- the type of the formal match, or one is the class-wide of the
4176 -- other, in the case of a class-wide stream operation.
4178 if Base_Type
(Typ
) = Base_Type
(Ent
)
4179 or else (Is_Class_Wide_Type
(Typ
)
4180 and then Typ
= Class_Wide_Type
(Base_Type
(Ent
)))
4181 or else (Is_Class_Wide_Type
(Ent
)
4182 and then Ent
= Class_Wide_Type
(Base_Type
(Typ
)))
4189 if Present
(Next_Formal
(F
)) then
4192 elsif not Is_Scalar_Type
(Typ
)
4193 and then not Is_First_Subtype
(Typ
)
4194 and then not Is_Class_Wide_Type
(Typ
)
4196 if Report
and not Is_First_Subtype
(Typ
) then
4198 ("subtype of formal in stream operation must be a first "
4199 & "subtype", Parameter_Type
(Parent
(F
)));
4207 end Has_Good_Profile
;
4209 -- Start of processing for Analyze_Stream_TSS_Definition
4214 if not Is_Type
(U_Ent
) then
4215 Error_Msg_N
("local name must be a subtype", Nam
);
4218 elsif not Is_First_Subtype
(U_Ent
) then
4219 Error_Msg_N
("local name must be a first subtype", Nam
);
4223 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
4225 -- If Pnam is present, it can be either inherited from an ancestor
4226 -- type (in which case it is legal to redefine it for this type), or
4227 -- be a previous definition of the attribute for the same type (in
4228 -- which case it is illegal).
4230 -- In the first case, it will have been analyzed already, and we
4231 -- can check that its profile does not match the expected profile
4232 -- for a stream attribute of U_Ent. In the second case, either Pnam
4233 -- has been analyzed (and has the expected profile), or it has not
4234 -- been analyzed yet (case of a type that has not been frozen yet
4235 -- and for which the stream attribute has been set using Set_TSS).
4238 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
4240 Error_Msg_Sloc
:= Sloc
(Pnam
);
4241 Error_Msg_Name_1
:= Attr
;
4242 Error_Msg_N
("% attribute already defined #", Nam
);
4248 if Is_Entity_Name
(Expr
) then
4249 if not Is_Overloaded
(Expr
) then
4250 if Has_Good_Profile
(Entity
(Expr
), Report
=> True) then
4251 Subp
:= Entity
(Expr
);
4255 Get_First_Interp
(Expr
, I
, It
);
4256 while Present
(It
.Nam
) loop
4257 if Has_Good_Profile
(It
.Nam
) then
4262 Get_Next_Interp
(I
, It
);
4267 if Present
(Subp
) then
4268 if Is_Abstract_Subprogram
(Subp
) then
4269 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
4272 -- A stream subprogram for an interface type must be a null
4273 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4274 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4276 elsif Is_Interface
(U_Ent
)
4277 and then not Is_Class_Wide_Type
(U_Ent
)
4278 and then not Inside_A_Generic
4280 (Ekind
(Subp
) = E_Function
4284 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
)))))
4287 ("stream subprogram for interface type must be null "
4288 & "procedure", Expr
);
4291 Set_Entity
(Expr
, Subp
);
4292 Set_Etype
(Expr
, Etype
(Subp
));
4294 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
4297 Error_Msg_Name_1
:= Attr
;
4298 Error_Msg_N
("incorrect expression for% attribute", Expr
);
4300 end Analyze_Stream_TSS_Definition
;
4302 ------------------------------
4303 -- Check_Indexing_Functions --
4304 ------------------------------
4306 procedure Check_Indexing_Functions
is
4307 Indexing_Found
: Boolean := False;
4309 procedure Check_Inherited_Indexing
;
4310 -- For a derived type, check that no indexing aspect is specified
4311 -- for the type if it is also inherited
4313 procedure Check_One_Function
(Subp
: Entity_Id
);
4314 -- Check one possible interpretation. Sets Indexing_Found True if a
4315 -- legal indexing function is found.
4317 procedure Illegal_Indexing
(Msg
: String);
4318 -- Diagnose illegal indexing function if not overloaded. In the
4319 -- overloaded case indicate that no legal interpretation exists.
4321 ------------------------------
4322 -- Check_Inherited_Indexing --
4323 ------------------------------
4325 procedure Check_Inherited_Indexing
is
4326 Inherited
: Node_Id
;
4329 if Attr
= Name_Constant_Indexing
then
4331 Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
);
4332 else pragma Assert
(Attr
= Name_Variable_Indexing
);
4334 Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
);
4337 if Present
(Inherited
) then
4338 if Debug_Flag_Dot_XX
then
4341 -- OK if current attribute_definition_clause is expansion of
4342 -- inherited aspect.
4344 elsif Aspect_Rep_Item
(Inherited
) = N
then
4347 -- Indicate the operation that must be overridden, rather than
4348 -- redefining the indexing aspect.
4352 ("indexing function already inherited from parent type");
4354 ("!override & instead",
4355 N
, Entity
(Expression
(Inherited
)));
4358 end Check_Inherited_Indexing
;
4360 ------------------------
4361 -- Check_One_Function --
4362 ------------------------
4364 procedure Check_One_Function
(Subp
: Entity_Id
) is
4365 Default_Element
: Node_Id
;
4366 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
4369 if not Is_Overloadable
(Subp
) then
4370 Illegal_Indexing
("illegal indexing function for type&");
4373 elsif Scope
(Subp
) /= Scope
(Ent
) then
4374 if Nkind
(Expr
) = N_Expanded_Name
then
4376 -- Indexing function can't be declared elsewhere
4379 ("indexing function must be declared in scope of type&");
4384 elsif No
(First_Formal
(Subp
)) then
4386 ("Indexing requires a function that applies to type&");
4389 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
4391 ("indexing function must have at least two parameters");
4394 elsif Is_Derived_Type
(Ent
) then
4395 Check_Inherited_Indexing
;
4398 if not Check_Primitive_Function
(Subp
) then
4400 ("Indexing aspect requires a function that applies to type&");
4404 -- If partial declaration exists, verify that it is not tagged.
4406 if Ekind
(Current_Scope
) = E_Package
4407 and then Has_Private_Declaration
(Ent
)
4408 and then From_Aspect_Specification
(N
)
4410 List_Containing
(Parent
(Ent
)) =
4411 Private_Declarations
4412 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
4413 and then Nkind
(N
) = N_Attribute_Definition_Clause
4420 First
(Visible_Declarations
4422 (Unit_Declaration_Node
(Current_Scope
))));
4424 while Present
(Decl
) loop
4425 if Nkind
(Decl
) = N_Private_Type_Declaration
4426 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
4427 and then Tagged_Present
(Decl
)
4428 and then No
(Aspect_Specifications
(Decl
))
4431 ("Indexing aspect cannot be specified on full view "
4432 & "if partial view is tagged");
4441 -- An indexing function must return either the default element of
4442 -- the container, or a reference type. For variable indexing it
4443 -- must be the latter.
4446 Find_Value_Of_Aspect
4447 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
4449 if Present
(Default_Element
) then
4450 Analyze
(Default_Element
);
4453 -- For variable_indexing the return type must be a reference type
4455 if Attr
= Name_Variable_Indexing
then
4456 if not Has_Implicit_Dereference
(Ret_Type
) then
4458 ("variable indexing must return a reference type");
4461 elsif Is_Access_Constant
4462 (Etype
(First_Discriminant
(Ret_Type
)))
4465 ("variable indexing must return an access to variable");
4470 if Has_Implicit_Dereference
(Ret_Type
)
4472 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
4475 ("constant indexing must return an access to constant");
4478 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
4479 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
4482 ("constant indexing must apply to an access to constant");
4487 -- All checks succeeded.
4489 Indexing_Found
:= True;
4490 end Check_One_Function
;
4492 -----------------------
4493 -- Illegal_Indexing --
4494 -----------------------
4496 procedure Illegal_Indexing
(Msg
: String) is
4498 Error_Msg_NE
(Msg
, N
, Ent
);
4499 end Illegal_Indexing
;
4501 -- Start of processing for Check_Indexing_Functions
4505 Check_Inherited_Indexing
;
4510 if not Is_Overloaded
(Expr
) then
4511 Check_One_Function
(Entity
(Expr
));
4519 Indexing_Found
:= False;
4520 Get_First_Interp
(Expr
, I
, It
);
4521 while Present
(It
.Nam
) loop
4523 -- Note that analysis will have added the interpretation
4524 -- that corresponds to the dereference. We only check the
4525 -- subprogram itself. Ignore homonyms that may come from
4526 -- derived types in the context.
4528 if Is_Overloadable
(It
.Nam
)
4529 and then Comes_From_Source
(It
.Nam
)
4531 Check_One_Function
(It
.Nam
);
4534 Get_Next_Interp
(I
, It
);
4539 if not Indexing_Found
and then not Error_Posted
(N
) then
4541 ("aspect Indexing requires a local function that applies to "
4542 & "type&", Expr
, Ent
);
4544 end Check_Indexing_Functions
;
4546 ------------------------------
4547 -- Check_Iterator_Functions --
4548 ------------------------------
4550 procedure Check_Iterator_Functions
is
4551 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
4552 -- Check one possible interpretation for validity
4554 ----------------------------
4555 -- Valid_Default_Iterator --
4556 ----------------------------
4558 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
4559 Root_T
: constant Entity_Id
:= Root_Type
(Etype
(Etype
(Subp
)));
4563 if not Check_Primitive_Function
(Subp
) then
4566 -- The return type must be derived from a type in an instance
4567 -- of Iterator.Interfaces, and thus its root type must have a
4570 elsif Chars
(Root_T
) /= Name_Forward_Iterator
4571 and then Chars
(Root_T
) /= Name_Reversible_Iterator
4576 Formal
:= First_Formal
(Subp
);
4579 -- False if any subsequent formal has no default expression
4581 Formal
:= Next_Formal
(Formal
);
4582 while Present
(Formal
) loop
4583 if No
(Expression
(Parent
(Formal
))) then
4587 Next_Formal
(Formal
);
4590 -- True if all subsequent formals have default expressions
4593 end Valid_Default_Iterator
;
4595 -- Start of processing for Check_Iterator_Functions
4600 if not Is_Entity_Name
(Expr
) then
4601 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
4604 if not Is_Overloaded
(Expr
) then
4605 if not Check_Primitive_Function
(Entity
(Expr
)) then
4607 ("aspect Indexing requires a function that applies to type&",
4608 Entity
(Expr
), Ent
);
4611 -- Flag the default_iterator as well as the denoted function.
4613 if not Valid_Default_Iterator
(Entity
(Expr
)) then
4614 Error_Msg_N
("improper function for default iterator!", Expr
);
4619 Default
: Entity_Id
:= Empty
;
4624 Get_First_Interp
(Expr
, I
, It
);
4625 while Present
(It
.Nam
) loop
4626 if not Check_Primitive_Function
(It
.Nam
)
4627 or else not Valid_Default_Iterator
(It
.Nam
)
4631 elsif Present
(Default
) then
4633 -- An explicit one should override an implicit one
4635 if Comes_From_Source
(Default
) =
4636 Comes_From_Source
(It
.Nam
)
4638 Error_Msg_N
("default iterator must be unique", Expr
);
4639 Error_Msg_Sloc
:= Sloc
(Default
);
4640 Error_Msg_N
("\\possible interpretation#", Expr
);
4641 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
4642 Error_Msg_N
("\\possible interpretation#", Expr
);
4644 elsif Comes_From_Source
(It
.Nam
) then
4651 Get_Next_Interp
(I
, It
);
4654 if Present
(Default
) then
4655 Set_Entity
(Expr
, Default
);
4656 Set_Is_Overloaded
(Expr
, False);
4659 ("no interpretation is a valid default iterator!", Expr
);
4663 end Check_Iterator_Functions
;
4665 -------------------------------
4666 -- Check_Primitive_Function --
4667 -------------------------------
4669 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
4673 if Ekind
(Subp
) /= E_Function
then
4677 if No
(First_Formal
(Subp
)) then
4680 Ctrl
:= Etype
(First_Formal
(Subp
));
4683 -- To be a primitive operation subprogram has to be in same scope.
4685 if Scope
(Ctrl
) /= Scope
(Subp
) then
4689 -- Type of formal may be the class-wide type, an access to such,
4690 -- or an incomplete view.
4693 or else Ctrl
= Class_Wide_Type
(Ent
)
4695 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
4696 and then (Designated_Type
(Ctrl
) = Ent
4698 Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
4700 (Ekind
(Ctrl
) = E_Incomplete_Type
4701 and then Full_View
(Ctrl
) = Ent
)
4709 end Check_Primitive_Function
;
4711 ----------------------
4712 -- Duplicate_Clause --
4713 ----------------------
4715 function Duplicate_Clause
return Boolean is
4719 -- Nothing to do if this attribute definition clause comes from
4720 -- an aspect specification, since we could not be duplicating an
4721 -- explicit clause, and we dealt with the case of duplicated aspects
4722 -- in Analyze_Aspect_Specifications.
4724 if From_Aspect_Specification
(N
) then
4728 -- Otherwise current clause may duplicate previous clause, or a
4729 -- previously given pragma or aspect specification for the same
4732 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
4735 Error_Msg_Name_1
:= Chars
(N
);
4736 Error_Msg_Sloc
:= Sloc
(A
);
4738 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
4743 end Duplicate_Clause
;
4745 -- Start of processing for Analyze_Attribute_Definition_Clause
4748 -- The following code is a defense against recursion. Not clear that
4749 -- this can happen legitimately, but perhaps some error situations can
4750 -- cause it, and we did see this recursion during testing.
4752 if Analyzed
(N
) then
4755 Set_Analyzed
(N
, True);
4758 Check_Restriction_No_Use_Of_Attribute
(N
);
4760 -- Ignore some selected attributes in CodePeer mode since they are not
4761 -- relevant in this context.
4763 if CodePeer_Mode
then
4766 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4767 -- internal representation of types by implicitly packing them.
4769 when Attribute_Component_Size
=>
4770 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
4778 -- Process Ignore_Rep_Clauses option
4780 if Ignore_Rep_Clauses
then
4783 -- The following should be ignored. They do not affect legality
4784 -- and may be target dependent. The basic idea of -gnatI is to
4785 -- ignore any rep clauses that may be target dependent but do not
4786 -- affect legality (except possibly to be rejected because they
4787 -- are incompatible with the compilation target).
4789 when Attribute_Alignment
4790 | Attribute_Bit_Order
4791 | Attribute_Component_Size
4792 | Attribute_Default_Scalar_Storage_Order
4793 | Attribute_Machine_Radix
4794 | Attribute_Object_Size
4795 | Attribute_Scalar_Storage_Order
4798 | Attribute_Stream_Size
4799 | Attribute_Value_Size
4801 Kill_Rep_Clause
(N
);
4804 -- The following should not be ignored, because in the first place
4805 -- they are reasonably portable, and should not cause problems
4806 -- in compiling code from another target, and also they do affect
4807 -- legality, e.g. failing to provide a stream attribute for a type
4808 -- may make a program illegal.
4810 when Attribute_External_Tag
4814 | Attribute_Simple_Storage_Pool
4815 | Attribute_Storage_Pool
4816 | Attribute_Storage_Size
4821 -- We do not do anything here with address clauses, they will be
4822 -- removed by Freeze later on, but for now, it works better to
4823 -- keep them in the tree.
4825 when Attribute_Address
=>
4828 -- Other cases are errors ("attribute& cannot be set with
4829 -- definition clause"), which will be caught below.
4837 Ent
:= Entity
(Nam
);
4839 if Rep_Item_Too_Early
(Ent
, N
) then
4843 -- Rep clause applies to full view of incomplete type or private type if
4844 -- we have one (if not, this is a premature use of the type). However,
4845 -- certain semantic checks need to be done on the specified entity (i.e.
4846 -- the private view), so we save it in Ent.
4848 if Is_Private_Type
(Ent
)
4849 and then Is_Derived_Type
(Ent
)
4850 and then not Is_Tagged_Type
(Ent
)
4851 and then No
(Full_View
(Ent
))
4853 -- If this is a private type whose completion is a derivation from
4854 -- another private type, there is no full view, and the attribute
4855 -- belongs to the type itself, not its underlying parent.
4859 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4861 -- The attribute applies to the full view, set the entity of the
4862 -- attribute definition accordingly.
4864 Ent
:= Underlying_Type
(Ent
);
4866 Set_Entity
(Nam
, Ent
);
4869 U_Ent
:= Underlying_Type
(Ent
);
4872 -- Avoid cascaded error
4874 if Etype
(Nam
) = Any_Type
then
4877 -- Must be declared in current scope or in case of an aspect
4878 -- specification, must be visible in current scope.
4880 elsif Scope
(Ent
) /= Current_Scope
4882 not (From_Aspect_Specification
(N
)
4883 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4885 Error_Msg_N
("entity must be declared in this scope", Nam
);
4888 -- Must not be a source renaming (we do have some cases where the
4889 -- expander generates a renaming, and those cases are OK, in such
4890 -- cases any attribute applies to the renamed object as well).
4892 elsif Is_Object
(Ent
)
4893 and then Present
(Renamed_Object
(Ent
))
4895 -- Case of renamed object from source, this is an error
4897 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4898 Get_Name_String
(Chars
(N
));
4899 Error_Msg_Strlen
:= Name_Len
;
4900 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4902 ("~ clause not allowed for a renaming declaration "
4903 & "(RM 13.1(6))", Nam
);
4906 -- For the case of a compiler generated renaming, the attribute
4907 -- definition clause applies to the renamed object created by the
4908 -- expander. The easiest general way to handle this is to create a
4909 -- copy of the attribute definition clause for this object.
4911 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4913 Make_Attribute_Definition_Clause
(Loc
,
4915 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4917 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4919 -- If the renamed object is not an entity, it must be a dereference
4920 -- of an unconstrained function call, and we must introduce a new
4921 -- declaration to capture the expression. This is needed in the case
4922 -- of 'Alignment, where the original declaration must be rewritten.
4926 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4930 -- If no underlying entity, use entity itself, applies to some
4931 -- previously detected error cases ???
4933 elsif No
(U_Ent
) then
4936 -- Cannot specify for a subtype (exception Object/Value_Size)
4938 elsif Is_Type
(U_Ent
)
4939 and then not Is_First_Subtype
(U_Ent
)
4940 and then Id
/= Attribute_Object_Size
4941 and then Id
/= Attribute_Value_Size
4942 and then not From_At_Mod
(N
)
4944 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4948 Set_Entity
(N
, U_Ent
);
4950 -- Switch on particular attribute
4958 -- Address attribute definition clause
4960 when Attribute_Address
=> Address
: begin
4962 -- A little error check, catch for X'Address use X'Address;
4964 if Nkind
(Nam
) = N_Identifier
4965 and then Nkind
(Expr
) = N_Attribute_Reference
4966 and then Attribute_Name
(Expr
) = Name_Address
4967 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4968 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4971 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4975 -- Not that special case, carry on with analysis of expression
4977 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4979 -- Even when ignoring rep clauses we need to indicate that the
4980 -- entity has an address clause and thus it is legal to declare
4981 -- it imported. Freeze will get rid of the address clause later.
4982 -- Also call Set_Address_Taken to indicate that an address clause
4983 -- was present, even if we are about to remove it.
4985 if Ignore_Rep_Clauses
then
4986 Set_Address_Taken
(U_Ent
);
4988 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4989 Record_Rep_Item
(U_Ent
, N
);
4995 if Duplicate_Clause
then
4998 -- Case of address clause for subprogram
5000 elsif Is_Subprogram
(U_Ent
) then
5001 if Has_Homonym
(U_Ent
) then
5003 ("address clause cannot be given for overloaded "
5004 & "subprogram", Nam
);
5008 -- For subprograms, all address clauses are permitted, and we
5009 -- mark the subprogram as having a deferred freeze so that Gigi
5010 -- will not elaborate it too soon.
5012 -- Above needs more comments, what is too soon about???
5014 Set_Has_Delayed_Freeze
(U_Ent
);
5016 -- Case of address clause for entry
5018 elsif Ekind
(U_Ent
) = E_Entry
then
5019 if Nkind
(Parent
(N
)) = N_Task_Body
then
5021 ("entry address must be specified in task spec", Nam
);
5025 -- For entries, we require a constant address
5027 Check_Constant_Address_Clause
(Expr
, U_Ent
);
5029 -- Special checks for task types
5031 if Is_Task_Type
(Scope
(U_Ent
))
5032 and then Comes_From_Source
(Scope
(U_Ent
))
5035 ("??entry address declared for entry in task type", N
);
5037 ("\??only one task can be declared of this type", N
);
5040 -- Entry address clauses are obsolescent
5042 Check_Restriction
(No_Obsolescent_Features
, N
);
5044 if Warn_On_Obsolescent_Feature
then
5046 ("?j?attaching interrupt to task entry is an obsolescent "
5047 & "feature (RM J.7.1)", N
);
5049 ("\?j?use interrupt procedure instead", N
);
5052 -- Case of an address clause for a class-wide object, which is
5053 -- considered erroneous.
5055 elsif Is_Class_Wide_Type
(Etype
(U_Ent
)) then
5057 ("??class-wide object & must not be overlaid", Nam
, U_Ent
);
5059 ("\??Program_Error will be raised at run time", Nam
);
5060 Insert_Action
(Declaration_Node
(U_Ent
),
5061 Make_Raise_Program_Error
(Loc
,
5062 Reason
=> PE_Overlaid_Controlled_Object
));
5065 -- Case of address clause for an object
5067 elsif Ekind_In
(U_Ent
, E_Constant
, E_Variable
) then
5069 Expr
: constant Node_Id
:= Expression
(N
);
5074 -- Exported variables cannot have an address clause, because
5075 -- this cancels the effect of the pragma Export.
5077 if Is_Exported
(U_Ent
) then
5079 ("cannot export object with address clause", Nam
);
5083 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
5085 if Present
(O_Ent
) then
5087 -- If the object overlays a constant object, mark it so
5089 if Is_Constant_Object
(O_Ent
) then
5090 Set_Overlays_Constant
(U_Ent
);
5093 -- If the address clause is of the form:
5095 -- for X'Address use Y'Address;
5099 -- C : constant Address := Y'Address;
5101 -- for X'Address use C;
5103 -- then we make an entry in the table to check the size
5104 -- and alignment of the overlaying variable. But we defer
5105 -- this check till after code generation to take full
5106 -- advantage of the annotation done by the back end.
5108 -- If the entity has a generic type, the check will be
5109 -- performed in the instance if the actual type justifies
5110 -- it, and we do not insert the clause in the table to
5111 -- prevent spurious warnings.
5113 -- Note: we used to test Comes_From_Source and only give
5114 -- this warning for source entities, but we have removed
5115 -- this test. It really seems bogus to generate overlays
5116 -- that would trigger this warning in generated code.
5117 -- Furthermore, by removing the test, we handle the
5118 -- aspect case properly.
5120 if Is_Object
(O_Ent
)
5121 and then not Is_Generic_Type
(Etype
(U_Ent
))
5122 and then Address_Clause_Overlay_Warnings
5124 Register_Address_Clause_Check
5125 (N
, U_Ent
, No_Uint
, O_Ent
, Off
);
5128 -- If the overlay changes the storage order, mark the
5129 -- entity as being volatile to block any optimization
5130 -- for it since the construct is not really supported
5133 if (Is_Record_Type
(Etype
(U_Ent
))
5134 or else Is_Array_Type
(Etype
(U_Ent
)))
5135 and then (Is_Record_Type
(Etype
(O_Ent
))
5136 or else Is_Array_Type
(Etype
(O_Ent
)))
5137 and then Reverse_Storage_Order
(Etype
(U_Ent
)) /=
5138 Reverse_Storage_Order
(Etype
(O_Ent
))
5140 Set_Treat_As_Volatile
(U_Ent
);
5144 -- If this is not an overlay, mark a variable as being
5145 -- volatile to prevent unwanted optimizations. It's a
5146 -- conservative interpretation of RM 13.3(19) for the
5147 -- cases where the compiler cannot detect potential
5148 -- aliasing issues easily and it also covers the case
5149 -- of an absolute address where the volatile aspect is
5150 -- kind of implicit.
5152 if Ekind
(U_Ent
) = E_Variable
then
5153 Set_Treat_As_Volatile
(U_Ent
);
5156 -- Make an entry in the table for an absolute address as
5157 -- above to check that the value is compatible with the
5158 -- alignment of the object.
5161 Addr
: constant Node_Id
:= Address_Value
(Expr
);
5163 if Compile_Time_Known_Value
(Addr
)
5164 and then Address_Clause_Overlay_Warnings
5166 Register_Address_Clause_Check
5167 (N
, U_Ent
, Expr_Value
(Addr
), Empty
, False);
5172 -- Issue an unconditional warning for a constant overlaying
5173 -- a variable. For the reverse case, we will issue it only
5174 -- if the variable is modified.
5176 if Ekind
(U_Ent
) = E_Constant
5177 and then Present
(O_Ent
)
5178 and then not Overlays_Constant
(U_Ent
)
5179 and then Address_Clause_Overlay_Warnings
5181 Error_Msg_N
("??constant overlays a variable", Expr
);
5183 -- Imported variables can have an address clause, but then
5184 -- the import is pretty meaningless except to suppress
5185 -- initializations, so we do not need such variables to
5186 -- be statically allocated (and in fact it causes trouble
5187 -- if the address clause is a local value).
5189 elsif Is_Imported
(U_Ent
) then
5190 Set_Is_Statically_Allocated
(U_Ent
, False);
5193 -- We mark a possible modification of a variable with an
5194 -- address clause, since it is likely aliasing is occurring.
5196 Note_Possible_Modification
(Nam
, Sure
=> False);
5198 -- Legality checks on the address clause for initialized
5199 -- objects is deferred until the freeze point, because
5200 -- a subsequent pragma might indicate that the object
5201 -- is imported and thus not initialized. Also, the address
5202 -- clause might involve entities that have yet to be
5205 Set_Has_Delayed_Freeze
(U_Ent
);
5207 -- If an initialization call has been generated for this
5208 -- object, it needs to be deferred to after the freeze node
5209 -- we have just now added, otherwise GIGI will see a
5210 -- reference to the variable (as actual to the IP call)
5211 -- before its definition.
5214 Init_Call
: constant Node_Id
:=
5215 Remove_Init_Call
(U_Ent
, N
);
5218 if Present
(Init_Call
) then
5219 Append_Freeze_Action
(U_Ent
, Init_Call
);
5221 -- Reset Initialization_Statements pointer so that
5222 -- if there is a pragma Import further down, it can
5223 -- clear any default initialization.
5225 Set_Initialization_Statements
(U_Ent
, Init_Call
);
5229 -- Entity has delayed freeze, so we will generate an
5230 -- alignment check at the freeze point unless suppressed.
5232 if not Range_Checks_Suppressed
(U_Ent
)
5233 and then not Alignment_Checks_Suppressed
(U_Ent
)
5235 Set_Check_Address_Alignment
(N
);
5238 -- Kill the size check code, since we are not allocating
5239 -- the variable, it is somewhere else.
5241 Kill_Size_Check_Code
(U_Ent
);
5244 -- Not a valid entity for an address clause
5247 Error_Msg_N
("address cannot be given for &", Nam
);
5255 -- Alignment attribute definition clause
5257 when Attribute_Alignment
=> Alignment
: declare
5258 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
5259 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
5264 if not Is_Type
(U_Ent
)
5265 and then Ekind
(U_Ent
) /= E_Variable
5266 and then Ekind
(U_Ent
) /= E_Constant
5268 Error_Msg_N
("alignment cannot be given for &", Nam
);
5270 elsif Duplicate_Clause
then
5273 elsif Align
/= No_Uint
then
5274 Set_Has_Alignment_Clause
(U_Ent
);
5276 -- Tagged type case, check for attempt to set alignment to a
5277 -- value greater than Max_Align, and reset if so. This error
5278 -- is suppressed in ASIS mode to allow for different ASIS
5279 -- back ends or ASIS-based tools to query the illegal clause.
5281 if Is_Tagged_Type
(U_Ent
)
5282 and then Align
> Max_Align
5283 and then not ASIS_Mode
5286 ("alignment for & set to Maximum_Aligment??", Nam
);
5287 Set_Alignment
(U_Ent
, Max_Align
);
5292 Set_Alignment
(U_Ent
, Align
);
5295 -- For an array type, U_Ent is the first subtype. In that case,
5296 -- also set the alignment of the anonymous base type so that
5297 -- other subtypes (such as the itypes for aggregates of the
5298 -- type) also receive the expected alignment.
5300 if Is_Array_Type
(U_Ent
) then
5301 Set_Alignment
(Base_Type
(U_Ent
), Align
);
5310 -- Bit_Order attribute definition clause
5312 when Attribute_Bit_Order
=>
5313 if not Is_Record_Type
(U_Ent
) then
5315 ("Bit_Order can only be defined for record type", Nam
);
5317 elsif Duplicate_Clause
then
5321 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5323 if Etype
(Expr
) = Any_Type
then
5326 elsif not Is_OK_Static_Expression
(Expr
) then
5327 Flag_Non_Static_Expr
5328 ("Bit_Order requires static expression!", Expr
);
5331 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5332 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
5337 --------------------
5338 -- Component_Size --
5339 --------------------
5341 -- Component_Size attribute definition clause
5343 when Attribute_Component_Size
=> Component_Size_Case
: declare
5344 Csize
: constant Uint
:= Static_Integer
(Expr
);
5348 New_Ctyp
: Entity_Id
;
5352 if not Is_Array_Type
(U_Ent
) then
5353 Error_Msg_N
("component size requires array type", Nam
);
5357 Btype
:= Base_Type
(U_Ent
);
5358 Ctyp
:= Component_Type
(Btype
);
5360 if Duplicate_Clause
then
5363 elsif Rep_Item_Too_Early
(Btype
, N
) then
5366 elsif Csize
/= No_Uint
then
5367 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
5369 -- For the biased case, build a declaration for a subtype that
5370 -- will be used to represent the biased subtype that reflects
5371 -- the biased representation of components. We need the subtype
5372 -- to get proper conversions on referencing elements of the
5377 Make_Defining_Identifier
(Loc
,
5379 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
5382 Make_Subtype_Declaration
(Loc
,
5383 Defining_Identifier
=> New_Ctyp
,
5384 Subtype_Indication
=>
5385 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
5387 Set_Parent
(Decl
, N
);
5388 Analyze
(Decl
, Suppress
=> All_Checks
);
5390 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
5391 Set_Esize
(New_Ctyp
, Csize
);
5392 Set_RM_Size
(New_Ctyp
, Csize
);
5393 Init_Alignment
(New_Ctyp
);
5394 Set_Is_Itype
(New_Ctyp
, True);
5395 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
5397 Set_Component_Type
(Btype
, New_Ctyp
);
5398 Set_Biased
(New_Ctyp
, N
, "component size clause");
5401 Set_Component_Size
(Btype
, Csize
);
5403 -- Deal with warning on overridden size
5405 if Warn_On_Overridden_Size
5406 and then Has_Size_Clause
(Ctyp
)
5407 and then RM_Size
(Ctyp
) /= Csize
5410 ("component size overrides size clause for&?S?", N
, Ctyp
);
5413 Set_Has_Component_Size_Clause
(Btype
, True);
5414 Set_Has_Non_Standard_Rep
(Btype
, True);
5416 end Component_Size_Case
;
5418 -----------------------
5419 -- Constant_Indexing --
5420 -----------------------
5422 when Attribute_Constant_Indexing
=>
5423 Check_Indexing_Functions
;
5429 when Attribute_CPU
=>
5431 -- CPU attribute definition clause not allowed except from aspect
5434 if From_Aspect_Specification
(N
) then
5435 if not Is_Task_Type
(U_Ent
) then
5436 Error_Msg_N
("CPU can only be defined for task", Nam
);
5438 elsif Duplicate_Clause
then
5442 -- The expression must be analyzed in the special manner
5443 -- described in "Handling of Default and Per-Object
5444 -- Expressions" in sem.ads.
5446 -- The visibility to the discriminants must be restored
5448 Push_Scope_And_Install_Discriminants
(U_Ent
);
5449 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
5450 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5452 if not Is_OK_Static_Expression
(Expr
) then
5453 Check_Restriction
(Static_Priorities
, Expr
);
5459 ("attribute& cannot be set with definition clause", N
);
5462 ----------------------
5463 -- Default_Iterator --
5464 ----------------------
5466 when Attribute_Default_Iterator
=> Default_Iterator
: declare
5471 -- If target type is untagged, further checks are irrelevant
5473 if not Is_Tagged_Type
(U_Ent
) then
5475 ("aspect Default_Iterator applies to tagged type", Nam
);
5479 Check_Iterator_Functions
;
5483 if not Is_Entity_Name
(Expr
)
5484 or else Ekind
(Entity
(Expr
)) /= E_Function
5486 Error_Msg_N
("aspect Iterator must be a function", Expr
);
5489 Func
:= Entity
(Expr
);
5492 -- The type of the first parameter must be T, T'class, or a
5493 -- corresponding access type (5.5.1 (8/3). If function is
5494 -- parameterless label type accordingly.
5496 if No
(First_Formal
(Func
)) then
5499 Typ
:= Etype
(First_Formal
(Func
));
5503 or else Typ
= Class_Wide_Type
(U_Ent
)
5504 or else (Is_Access_Type
(Typ
)
5505 and then Designated_Type
(Typ
) = U_Ent
)
5506 or else (Is_Access_Type
(Typ
)
5507 and then Designated_Type
(Typ
) =
5508 Class_Wide_Type
(U_Ent
))
5514 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
5516 end Default_Iterator
;
5518 ------------------------
5519 -- Dispatching_Domain --
5520 ------------------------
5522 when Attribute_Dispatching_Domain
=>
5524 -- Dispatching_Domain attribute definition clause not allowed
5525 -- except from aspect specification.
5527 if From_Aspect_Specification
(N
) then
5528 if not Is_Task_Type
(U_Ent
) then
5530 ("Dispatching_Domain can only be defined for task", Nam
);
5532 elsif Duplicate_Clause
then
5536 -- The expression must be analyzed in the special manner
5537 -- described in "Handling of Default and Per-Object
5538 -- Expressions" in sem.ads.
5540 -- The visibility to the discriminants must be restored
5542 Push_Scope_And_Install_Discriminants
(U_Ent
);
5544 Preanalyze_Spec_Expression
5545 (Expr
, RTE
(RE_Dispatching_Domain
));
5547 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5552 ("attribute& cannot be set with definition clause", N
);
5559 when Attribute_External_Tag
=>
5560 if not Is_Tagged_Type
(U_Ent
) then
5561 Error_Msg_N
("should be a tagged type", Nam
);
5564 if Duplicate_Clause
then
5568 Analyze_And_Resolve
(Expr
, Standard_String
);
5570 if not Is_OK_Static_Expression
(Expr
) then
5571 Flag_Non_Static_Expr
5572 ("static string required for tag name!", Nam
);
5575 if not Is_Library_Level_Entity
(U_Ent
) then
5577 ("??non-unique external tag supplied for &", N
, U_Ent
);
5579 ("\??same external tag applies to all subprogram calls",
5582 ("\??corresponding internal tag cannot be obtained", N
);
5586 --------------------------
5587 -- Implicit_Dereference --
5588 --------------------------
5590 when Attribute_Implicit_Dereference
=>
5592 -- Legality checks already performed at the point of the type
5593 -- declaration, aspect is not delayed.
5601 when Attribute_Input
=>
5602 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
5603 Set_Has_Specified_Stream_Input
(Ent
);
5605 ------------------------
5606 -- Interrupt_Priority --
5607 ------------------------
5609 when Attribute_Interrupt_Priority
=>
5611 -- Interrupt_Priority attribute definition clause not allowed
5612 -- except from aspect specification.
5614 if From_Aspect_Specification
(N
) then
5615 if not Is_Concurrent_Type
(U_Ent
) then
5617 ("Interrupt_Priority can only be defined for task and "
5618 & "protected object", Nam
);
5620 elsif Duplicate_Clause
then
5624 -- The expression must be analyzed in the special manner
5625 -- described in "Handling of Default and Per-Object
5626 -- Expressions" in sem.ads.
5628 -- The visibility to the discriminants must be restored
5630 Push_Scope_And_Install_Discriminants
(U_Ent
);
5632 Preanalyze_Spec_Expression
5633 (Expr
, RTE
(RE_Interrupt_Priority
));
5635 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5637 -- Check the No_Task_At_Interrupt_Priority restriction
5639 if Is_Task_Type
(U_Ent
) then
5640 Check_Restriction
(No_Task_At_Interrupt_Priority
, N
);
5646 ("attribute& cannot be set with definition clause", N
);
5653 when Attribute_Iterable
=>
5656 if Nkind
(Expr
) /= N_Aggregate
then
5657 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
5664 Assoc
:= First
(Component_Associations
(Expr
));
5665 while Present
(Assoc
) loop
5666 if not Is_Entity_Name
(Expression
(Assoc
)) then
5667 Error_Msg_N
("value must be a function", Assoc
);
5674 ----------------------
5675 -- Iterator_Element --
5676 ----------------------
5678 when Attribute_Iterator_Element
=>
5681 if not Is_Entity_Name
(Expr
)
5682 or else not Is_Type
(Entity
(Expr
))
5684 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
5691 -- Machine radix attribute definition clause
5693 when Attribute_Machine_Radix
=> Machine_Radix
: declare
5694 Radix
: constant Uint
:= Static_Integer
(Expr
);
5697 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
5698 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
5700 elsif Duplicate_Clause
then
5703 elsif Radix
/= No_Uint
then
5704 Set_Has_Machine_Radix_Clause
(U_Ent
);
5705 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
5710 elsif Radix
= 10 then
5711 Set_Machine_Radix_10
(U_Ent
);
5713 -- The following error is suppressed in ASIS mode to allow for
5714 -- different ASIS back ends or ASIS-based tools to query the
5717 elsif not ASIS_Mode
then
5718 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
5727 -- Object_Size attribute definition clause
5729 when Attribute_Object_Size
=> Object_Size
: declare
5730 Size
: constant Uint
:= Static_Integer
(Expr
);
5733 pragma Warnings
(Off
, Biased
);
5736 if not Is_Type
(U_Ent
) then
5737 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
5739 elsif Duplicate_Clause
then
5743 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5745 -- The following errors are suppressed in ASIS mode to allow
5746 -- for different ASIS back ends or ASIS-based tools to query
5747 -- the illegal clause.
5752 elsif Is_Scalar_Type
(U_Ent
) then
5753 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
5754 and then UI_Mod
(Size
, 64) /= 0
5757 ("Object_Size must be 8, 16, 32, or multiple of 64",
5761 elsif Size
mod 8 /= 0 then
5762 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
5765 Set_Esize
(U_Ent
, Size
);
5766 Set_Has_Object_Size_Clause
(U_Ent
);
5767 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5775 when Attribute_Output
=>
5776 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
5777 Set_Has_Specified_Stream_Output
(Ent
);
5783 when Attribute_Priority
=>
5785 -- Priority attribute definition clause not allowed except from
5786 -- aspect specification.
5788 if From_Aspect_Specification
(N
) then
5789 if not (Is_Concurrent_Type
(U_Ent
)
5790 or else Ekind
(U_Ent
) = E_Procedure
)
5793 ("Priority can only be defined for task and protected "
5796 elsif Duplicate_Clause
then
5800 -- The expression must be analyzed in the special manner
5801 -- described in "Handling of Default and Per-Object
5802 -- Expressions" in sem.ads.
5804 -- The visibility to the discriminants must be restored
5806 Push_Scope_And_Install_Discriminants
(U_Ent
);
5807 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
5808 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5810 if not Is_OK_Static_Expression
(Expr
) then
5811 Check_Restriction
(Static_Priorities
, Expr
);
5817 ("attribute& cannot be set with definition clause", N
);
5824 when Attribute_Read
=>
5825 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5826 Set_Has_Specified_Stream_Read
(Ent
);
5828 --------------------------
5829 -- Scalar_Storage_Order --
5830 --------------------------
5832 -- Scalar_Storage_Order attribute definition clause
5834 when Attribute_Scalar_Storage_Order
=>
5835 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5837 ("Scalar_Storage_Order can only be defined for record or "
5838 & "array type", Nam
);
5840 elsif Duplicate_Clause
then
5844 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5846 if Etype
(Expr
) = Any_Type
then
5849 elsif not Is_OK_Static_Expression
(Expr
) then
5850 Flag_Non_Static_Expr
5851 ("Scalar_Storage_Order requires static expression!", Expr
);
5853 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5855 -- Here for the case of a non-default (i.e. non-confirming)
5856 -- Scalar_Storage_Order attribute definition.
5858 if Support_Nondefault_SSO_On_Target
then
5859 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5862 ("non-default Scalar_Storage_Order not supported on "
5867 -- Clear SSO default indications since explicit setting of the
5868 -- order overrides the defaults.
5870 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5871 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5878 -- Size attribute definition clause
5880 when Attribute_Size
=> Size
: declare
5881 Size
: constant Uint
:= Static_Integer
(Expr
);
5888 if Duplicate_Clause
then
5891 elsif not Is_Type
(U_Ent
)
5892 and then Ekind
(U_Ent
) /= E_Variable
5893 and then Ekind
(U_Ent
) /= E_Constant
5895 Error_Msg_N
("size cannot be given for &", Nam
);
5897 elsif Is_Array_Type
(U_Ent
)
5898 and then not Is_Constrained
(U_Ent
)
5901 ("size cannot be given for unconstrained array", Nam
);
5903 elsif Size
/= No_Uint
then
5904 if Is_Type
(U_Ent
) then
5907 Etyp
:= Etype
(U_Ent
);
5910 -- Check size, note that Gigi is in charge of checking that the
5911 -- size of an array or record type is OK. Also we do not check
5912 -- the size in the ordinary fixed-point case, since it is too
5913 -- early to do so (there may be subsequent small clause that
5914 -- affects the size). We can check the size if a small clause
5915 -- has already been given.
5917 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5918 or else Has_Small_Clause
(U_Ent
)
5920 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5921 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5924 -- For types set RM_Size and Esize if possible
5926 if Is_Type
(U_Ent
) then
5927 Set_RM_Size
(U_Ent
, Size
);
5929 -- For elementary types, increase Object_Size to power of 2,
5930 -- but not less than a storage unit in any case (normally
5931 -- this means it will be byte addressable).
5933 -- For all other types, nothing else to do, we leave Esize
5934 -- (object size) unset, the back end will set it from the
5935 -- size and alignment in an appropriate manner.
5937 -- In both cases, we check whether the alignment must be
5938 -- reset in the wake of the size change.
5940 if Is_Elementary_Type
(U_Ent
) then
5941 if Size
<= System_Storage_Unit
then
5942 Init_Esize
(U_Ent
, System_Storage_Unit
);
5943 elsif Size
<= 16 then
5944 Init_Esize
(U_Ent
, 16);
5945 elsif Size
<= 32 then
5946 Init_Esize
(U_Ent
, 32);
5948 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5951 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5953 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5956 -- For objects, set Esize only
5959 -- The following error is suppressed in ASIS mode to allow
5960 -- for different ASIS back ends or ASIS-based tools to query
5961 -- the illegal clause.
5963 if Is_Elementary_Type
(Etyp
)
5964 and then Size
/= System_Storage_Unit
5965 and then Size
/= System_Storage_Unit
* 2
5966 and then Size
/= System_Storage_Unit
* 4
5967 and then Size
/= System_Storage_Unit
* 8
5968 and then not ASIS_Mode
5970 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5971 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5973 ("size for primitive object must be a power of 2 in "
5974 & "the range ^-^", N
);
5977 Set_Esize
(U_Ent
, Size
);
5980 Set_Has_Size_Clause
(U_Ent
);
5988 -- Small attribute definition clause
5990 when Attribute_Small
=> Small
: declare
5991 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
5995 Analyze_And_Resolve
(Expr
, Any_Real
);
5997 if Etype
(Expr
) = Any_Type
then
6000 elsif not Is_OK_Static_Expression
(Expr
) then
6001 Flag_Non_Static_Expr
6002 ("small requires static expression!", Expr
);
6006 Small
:= Expr_Value_R
(Expr
);
6008 if Small
<= Ureal_0
then
6009 Error_Msg_N
("small value must be greater than zero", Expr
);
6015 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
6017 ("small requires an ordinary fixed point type", Nam
);
6019 elsif Has_Small_Clause
(U_Ent
) then
6020 Error_Msg_N
("small already given for &", Nam
);
6022 elsif Small
> Delta_Value
(U_Ent
) then
6024 ("small value must not be greater than delta value", Nam
);
6027 Set_Small_Value
(U_Ent
, Small
);
6028 Set_Small_Value
(Implicit_Base
, Small
);
6029 Set_Has_Small_Clause
(U_Ent
);
6030 Set_Has_Small_Clause
(Implicit_Base
);
6031 Set_Has_Non_Standard_Rep
(Implicit_Base
);
6039 -- Storage_Pool attribute definition clause
6041 when Attribute_Simple_Storage_Pool
6042 | Attribute_Storage_Pool
6044 Storage_Pool
: declare
6049 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
6051 ("storage pool cannot be given for access-to-subprogram type",
6055 elsif not Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
6058 ("storage pool can only be given for access types", Nam
);
6061 elsif Is_Derived_Type
(U_Ent
) then
6063 ("storage pool cannot be given for a derived access type",
6066 elsif Duplicate_Clause
then
6069 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
6070 Error_Msg_N
("storage pool already given for &", Nam
);
6074 -- Check for Storage_Size previously given
6077 SS
: constant Node_Id
:=
6078 Get_Attribute_Definition_Clause
6079 (U_Ent
, Attribute_Storage_Size
);
6081 if Present
(SS
) then
6082 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
6086 -- Storage_Pool case
6088 if Id
= Attribute_Storage_Pool
then
6090 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
6092 -- In the Simple_Storage_Pool case, we allow a variable of any
6093 -- simple storage pool type, so we Resolve without imposing an
6097 Analyze_And_Resolve
(Expr
);
6099 if not Present
(Get_Rep_Pragma
6100 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
6103 ("expression must be of a simple storage pool type", Expr
);
6107 if not Denotes_Variable
(Expr
) then
6108 Error_Msg_N
("storage pool must be a variable", Expr
);
6112 if Nkind
(Expr
) = N_Type_Conversion
then
6113 T
:= Etype
(Expression
(Expr
));
6118 -- The Stack_Bounded_Pool is used internally for implementing
6119 -- access types with a Storage_Size. Since it only work properly
6120 -- when used on one specific type, we need to check that it is not
6121 -- hijacked improperly:
6123 -- type T is access Integer;
6124 -- for T'Storage_Size use n;
6125 -- type Q is access Float;
6126 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6128 if RTE_Available
(RE_Stack_Bounded_Pool
)
6129 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
6131 Error_Msg_N
("non-shareable internal Pool", Expr
);
6135 -- If the argument is a name that is not an entity name, then
6136 -- we construct a renaming operation to define an entity of
6137 -- type storage pool.
6139 if not Is_Entity_Name
(Expr
)
6140 and then Is_Object_Reference
(Expr
)
6142 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
6145 Rnode
: constant Node_Id
:=
6146 Make_Object_Renaming_Declaration
(Loc
,
6147 Defining_Identifier
=> Pool
,
6149 New_Occurrence_Of
(Etype
(Expr
), Loc
),
6153 -- If the attribute definition clause comes from an aspect
6154 -- clause, then insert the renaming before the associated
6155 -- entity's declaration, since the attribute clause has
6156 -- not yet been appended to the declaration list.
6158 if From_Aspect_Specification
(N
) then
6159 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
6161 Insert_Before
(N
, Rnode
);
6165 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6168 elsif Is_Entity_Name
(Expr
) then
6169 Pool
:= Entity
(Expr
);
6171 -- If pool is a renamed object, get original one. This can
6172 -- happen with an explicit renaming, and within instances.
6174 while Present
(Renamed_Object
(Pool
))
6175 and then Is_Entity_Name
(Renamed_Object
(Pool
))
6177 Pool
:= Entity
(Renamed_Object
(Pool
));
6180 if Present
(Renamed_Object
(Pool
))
6181 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
6182 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
6184 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
6187 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6189 elsif Nkind
(Expr
) = N_Type_Conversion
6190 and then Is_Entity_Name
(Expression
(Expr
))
6191 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
6193 Pool
:= Entity
(Expression
(Expr
));
6194 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6197 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
6206 -- Storage_Size attribute definition clause
6208 when Attribute_Storage_Size
=> Storage_Size
: declare
6209 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
6212 if Is_Task_Type
(U_Ent
) then
6214 -- Check obsolescent (but never obsolescent if from aspect)
6216 if not From_Aspect_Specification
(N
) then
6217 Check_Restriction
(No_Obsolescent_Features
, N
);
6219 if Warn_On_Obsolescent_Feature
then
6221 ("?j?storage size clause for task is an obsolescent "
6222 & "feature (RM J.9)", N
);
6223 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
6230 if not Is_Access_Type
(U_Ent
)
6231 and then Ekind
(U_Ent
) /= E_Task_Type
6233 Error_Msg_N
("storage size cannot be given for &", Nam
);
6235 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
6237 ("storage size cannot be given for a derived access type",
6240 elsif Duplicate_Clause
then
6244 Analyze_And_Resolve
(Expr
, Any_Integer
);
6246 if Is_Access_Type
(U_Ent
) then
6248 -- Check for Storage_Pool previously given
6251 SP
: constant Node_Id
:=
6252 Get_Attribute_Definition_Clause
6253 (U_Ent
, Attribute_Storage_Pool
);
6256 if Present
(SP
) then
6257 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
6261 -- Special case of for x'Storage_Size use 0
6263 if Is_OK_Static_Expression
(Expr
)
6264 and then Expr_Value
(Expr
) = 0
6266 Set_No_Pool_Assigned
(Btype
);
6270 Set_Has_Storage_Size_Clause
(Btype
);
6278 when Attribute_Stream_Size
=> Stream_Size
: declare
6279 Size
: constant Uint
:= Static_Integer
(Expr
);
6282 if Ada_Version
<= Ada_95
then
6283 Check_Restriction
(No_Implementation_Attributes
, N
);
6286 if Duplicate_Clause
then
6289 elsif Is_Elementary_Type
(U_Ent
) then
6291 -- The following errors are suppressed in ASIS mode to allow
6292 -- for different ASIS back ends or ASIS-based tools to query
6293 -- the illegal clause.
6298 elsif Size
/= System_Storage_Unit
6299 and then Size
/= System_Storage_Unit
* 2
6300 and then Size
/= System_Storage_Unit
* 4
6301 and then Size
/= System_Storage_Unit
* 8
6303 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
6305 ("stream size for elementary type must be a power of 2 "
6306 & "and at least ^", N
);
6308 elsif RM_Size
(U_Ent
) > Size
then
6309 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
6311 ("stream size for elementary type must be a power of 2 "
6312 & "and at least ^", N
);
6315 Set_Has_Stream_Size_Clause
(U_Ent
);
6318 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
6326 -- Value_Size attribute definition clause
6328 when Attribute_Value_Size
=> Value_Size
: declare
6329 Size
: constant Uint
:= Static_Integer
(Expr
);
6333 if not Is_Type
(U_Ent
) then
6334 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
6336 elsif Duplicate_Clause
then
6339 elsif Is_Array_Type
(U_Ent
)
6340 and then not Is_Constrained
(U_Ent
)
6343 ("Value_Size cannot be given for unconstrained array", Nam
);
6346 if Is_Elementary_Type
(U_Ent
) then
6347 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
6348 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
6351 Set_RM_Size
(U_Ent
, Size
);
6355 -----------------------
6356 -- Variable_Indexing --
6357 -----------------------
6359 when Attribute_Variable_Indexing
=>
6360 Check_Indexing_Functions
;
6366 when Attribute_Write
=>
6367 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
6368 Set_Has_Specified_Stream_Write
(Ent
);
6370 -- All other attributes cannot be set
6374 ("attribute& cannot be set with definition clause", N
);
6377 -- The test for the type being frozen must be performed after any
6378 -- expression the clause has been analyzed since the expression itself
6379 -- might cause freezing that makes the clause illegal.
6381 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
6384 end Analyze_Attribute_Definition_Clause
;
6386 ----------------------------
6387 -- Analyze_Code_Statement --
6388 ----------------------------
6390 procedure Analyze_Code_Statement
(N
: Node_Id
) is
6391 HSS
: constant Node_Id
:= Parent
(N
);
6392 SBody
: constant Node_Id
:= Parent
(HSS
);
6393 Subp
: constant Entity_Id
:= Current_Scope
;
6400 -- Accept foreign code statements for CodePeer. The analysis is skipped
6401 -- to avoid rejecting unrecognized constructs.
6403 if CodePeer_Mode
then
6408 -- Analyze and check we get right type, note that this implements the
6409 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6410 -- the only way that Asm_Insn could possibly be visible.
6412 Analyze_And_Resolve
(Expression
(N
));
6414 if Etype
(Expression
(N
)) = Any_Type
then
6416 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
6417 Error_Msg_N
("incorrect type for code statement", N
);
6421 Check_Code_Statement
(N
);
6423 -- Make sure we appear in the handled statement sequence of a subprogram
6426 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
6427 or else Nkind
(SBody
) /= N_Subprogram_Body
6430 ("code statement can only appear in body of subprogram", N
);
6434 -- Do remaining checks (RM 13.8(3)) if not already done
6436 if not Is_Machine_Code_Subprogram
(Subp
) then
6437 Set_Is_Machine_Code_Subprogram
(Subp
);
6439 -- No exception handlers allowed
6441 if Present
(Exception_Handlers
(HSS
)) then
6443 ("exception handlers not permitted in machine code subprogram",
6444 First
(Exception_Handlers
(HSS
)));
6447 -- No declarations other than use clauses and pragmas (we allow
6448 -- certain internally generated declarations as well).
6450 Decl
:= First
(Declarations
(SBody
));
6451 while Present
(Decl
) loop
6452 DeclO
:= Original_Node
(Decl
);
6453 if Comes_From_Source
(DeclO
)
6454 and not Nkind_In
(DeclO
, N_Pragma
,
6455 N_Use_Package_Clause
,
6457 N_Implicit_Label_Declaration
)
6460 ("this declaration not allowed in machine code subprogram",
6467 -- No statements other than code statements, pragmas, and labels.
6468 -- Again we allow certain internally generated statements.
6470 -- In Ada 2012, qualified expressions are names, and the code
6471 -- statement is initially parsed as a procedure call.
6473 Stmt
:= First
(Statements
(HSS
));
6474 while Present
(Stmt
) loop
6475 StmtO
:= Original_Node
(Stmt
);
6477 -- A procedure call transformed into a code statement is OK
6479 if Ada_Version
>= Ada_2012
6480 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
6481 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
6485 elsif Comes_From_Source
(StmtO
)
6486 and then not Nkind_In
(StmtO
, N_Pragma
,
6491 ("this statement is not allowed in machine code subprogram",
6498 end Analyze_Code_Statement
;
6500 -----------------------------------------------
6501 -- Analyze_Enumeration_Representation_Clause --
6502 -----------------------------------------------
6504 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
6505 Ident
: constant Node_Id
:= Identifier
(N
);
6506 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
6507 Enumtype
: Entity_Id
;
6514 Err
: Boolean := False;
6515 -- Set True to avoid cascade errors and crashes on incorrect source code
6517 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
6518 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
6519 -- Allowed range of universal integer (= allowed range of enum lit vals)
6523 -- Minimum and maximum values of entries
6525 Max_Node
: Node_Id
:= Empty
; -- init to avoid warning
6526 -- Pointer to node for literal providing max value
6529 if Ignore_Rep_Clauses
then
6530 Kill_Rep_Clause
(N
);
6534 -- Ignore enumeration rep clauses by default in CodePeer mode,
6535 -- unless -gnatd.I is specified, as a work around for potential false
6536 -- positive messages.
6538 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
6542 -- First some basic error checks
6545 Enumtype
:= Entity
(Ident
);
6547 if Enumtype
= Any_Type
6548 or else Rep_Item_Too_Early
(Enumtype
, N
)
6552 Enumtype
:= Underlying_Type
(Enumtype
);
6555 if not Is_Enumeration_Type
(Enumtype
) then
6557 ("enumeration type required, found}",
6558 Ident
, First_Subtype
(Enumtype
));
6562 -- Ignore rep clause on generic actual type. This will already have
6563 -- been flagged on the template as an error, and this is the safest
6564 -- way to ensure we don't get a junk cascaded message in the instance.
6566 if Is_Generic_Actual_Type
(Enumtype
) then
6569 -- Type must be in current scope
6571 elsif Scope
(Enumtype
) /= Current_Scope
then
6572 Error_Msg_N
("type must be declared in this scope", Ident
);
6575 -- Type must be a first subtype
6577 elsif not Is_First_Subtype
(Enumtype
) then
6578 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
6581 -- Ignore duplicate rep clause
6583 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
6584 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
6587 -- Don't allow rep clause for standard [wide_[wide_]]character
6589 elsif Is_Standard_Character_Type
(Enumtype
) then
6590 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
6593 -- Check that the expression is a proper aggregate (no parentheses)
6595 elsif Paren_Count
(Aggr
) /= 0 then
6597 ("extra parentheses surrounding aggregate not allowed",
6601 -- All tests passed, so set rep clause in place
6604 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
6605 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
6608 -- Now we process the aggregate. Note that we don't use the normal
6609 -- aggregate code for this purpose, because we don't want any of the
6610 -- normal expansion activities, and a number of special semantic
6611 -- rules apply (including the component type being any integer type)
6613 Elit
:= First_Literal
(Enumtype
);
6615 -- First the positional entries if any
6617 if Present
(Expressions
(Aggr
)) then
6618 Expr
:= First
(Expressions
(Aggr
));
6619 while Present
(Expr
) loop
6621 Error_Msg_N
("too many entries in aggregate", Expr
);
6625 Val
:= Static_Integer
(Expr
);
6627 -- Err signals that we found some incorrect entries processing
6628 -- the list. The final checks for completeness and ordering are
6629 -- skipped in this case.
6631 if Val
= No_Uint
then
6634 elsif Val
< Lo
or else Hi
< Val
then
6635 Error_Msg_N
("value outside permitted range", Expr
);
6639 Set_Enumeration_Rep
(Elit
, Val
);
6640 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
6646 -- Now process the named entries if present
6648 if Present
(Component_Associations
(Aggr
)) then
6649 Assoc
:= First
(Component_Associations
(Aggr
));
6650 while Present
(Assoc
) loop
6651 Choice
:= First
(Choices
(Assoc
));
6653 if Present
(Next
(Choice
)) then
6655 ("multiple choice not allowed here", Next
(Choice
));
6659 if Nkind
(Choice
) = N_Others_Choice
then
6660 Error_Msg_N
("others choice not allowed here", Choice
);
6663 elsif Nkind
(Choice
) = N_Range
then
6665 -- ??? should allow zero/one element range here
6667 Error_Msg_N
("range not allowed here", Choice
);
6671 Analyze_And_Resolve
(Choice
, Enumtype
);
6673 if Error_Posted
(Choice
) then
6678 if Is_Entity_Name
(Choice
)
6679 and then Is_Type
(Entity
(Choice
))
6681 Error_Msg_N
("subtype name not allowed here", Choice
);
6684 -- ??? should allow static subtype with zero/one entry
6686 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
6687 if not Is_OK_Static_Expression
(Choice
) then
6688 Flag_Non_Static_Expr
6689 ("non-static expression used for choice!", Choice
);
6693 Elit
:= Expr_Value_E
(Choice
);
6695 if Present
(Enumeration_Rep_Expr
(Elit
)) then
6697 Sloc
(Enumeration_Rep_Expr
(Elit
));
6699 ("representation for& previously given#",
6704 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
6706 Expr
:= Expression
(Assoc
);
6707 Val
:= Static_Integer
(Expr
);
6709 if Val
= No_Uint
then
6712 elsif Val
< Lo
or else Hi
< Val
then
6713 Error_Msg_N
("value outside permitted range", Expr
);
6717 Set_Enumeration_Rep
(Elit
, Val
);
6727 -- Aggregate is fully processed. Now we check that a full set of
6728 -- representations was given, and that they are in range and in order.
6729 -- These checks are only done if no other errors occurred.
6735 Elit
:= First_Literal
(Enumtype
);
6736 while Present
(Elit
) loop
6737 if No
(Enumeration_Rep_Expr
(Elit
)) then
6738 Error_Msg_NE
("missing representation for&!", N
, Elit
);
6741 Val
:= Enumeration_Rep
(Elit
);
6743 if Min
= No_Uint
then
6747 if Val
/= No_Uint
then
6748 if Max
/= No_Uint
and then Val
<= Max
then
6750 ("enumeration value for& not ordered!",
6751 Enumeration_Rep_Expr
(Elit
), Elit
);
6754 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
6758 -- If there is at least one literal whose representation is not
6759 -- equal to the Pos value, then note that this enumeration type
6760 -- has a non-standard representation.
6762 if Val
/= Enumeration_Pos
(Elit
) then
6763 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
6770 -- Now set proper size information
6773 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
6776 if Has_Size_Clause
(Enumtype
) then
6778 -- All OK, if size is OK now
6780 if RM_Size
(Enumtype
) >= Minsize
then
6784 -- Try if we can get by with biasing
6787 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
6789 -- Error message if even biasing does not work
6791 if RM_Size
(Enumtype
) < Minsize
then
6792 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
6793 Error_Msg_Uint_2
:= Max
;
6795 ("previously given size (^) is too small "
6796 & "for this value (^)", Max_Node
);
6798 -- If biasing worked, indicate that we now have biased rep
6802 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
6807 Set_RM_Size
(Enumtype
, Minsize
);
6808 Set_Enum_Esize
(Enumtype
);
6811 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6812 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6813 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6817 -- We repeat the too late test in case it froze itself
6819 if Rep_Item_Too_Late
(Enumtype
, N
) then
6822 end Analyze_Enumeration_Representation_Clause
;
6824 ----------------------------
6825 -- Analyze_Free_Statement --
6826 ----------------------------
6828 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6830 Analyze
(Expression
(N
));
6831 end Analyze_Free_Statement
;
6833 ---------------------------
6834 -- Analyze_Freeze_Entity --
6835 ---------------------------
6837 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6839 Freeze_Entity_Checks
(N
);
6840 end Analyze_Freeze_Entity
;
6842 -----------------------------------
6843 -- Analyze_Freeze_Generic_Entity --
6844 -----------------------------------
6846 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6847 E
: constant Entity_Id
:= Entity
(N
);
6850 if not Is_Frozen
(E
) and then Has_Delayed_Aspects
(E
) then
6851 Analyze_Aspects_At_Freeze_Point
(E
);
6854 Freeze_Entity_Checks
(N
);
6855 end Analyze_Freeze_Generic_Entity
;
6857 ------------------------------------------
6858 -- Analyze_Record_Representation_Clause --
6859 ------------------------------------------
6861 -- Note: we check as much as we can here, but we can't do any checks
6862 -- based on the position values (e.g. overlap checks) until freeze time
6863 -- because especially in Ada 2005 (machine scalar mode), the processing
6864 -- for non-standard bit order can substantially change the positions.
6865 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6866 -- for the remainder of this processing.
6868 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6869 Ident
: constant Node_Id
:= Identifier
(N
);
6874 Hbit
: Uint
:= Uint_0
;
6878 Rectype
: Entity_Id
;
6881 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6882 -- True if Comp is an inherited component in a record extension
6888 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6889 Comp_Base
: Entity_Id
;
6892 if Ekind
(Rectype
) = E_Record_Subtype
then
6893 Comp_Base
:= Original_Record_Component
(Comp
);
6898 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6903 Is_Record_Extension
: Boolean;
6904 -- True if Rectype is a record extension
6906 CR_Pragma
: Node_Id
:= Empty
;
6907 -- Points to N_Pragma node if Complete_Representation pragma present
6909 -- Start of processing for Analyze_Record_Representation_Clause
6912 if Ignore_Rep_Clauses
then
6913 Kill_Rep_Clause
(N
);
6918 Rectype
:= Entity
(Ident
);
6920 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6923 Rectype
:= Underlying_Type
(Rectype
);
6926 -- First some basic error checks
6928 if not Is_Record_Type
(Rectype
) then
6930 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6933 elsif Scope
(Rectype
) /= Current_Scope
then
6934 Error_Msg_N
("type must be declared in this scope", N
);
6937 elsif not Is_First_Subtype
(Rectype
) then
6938 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6941 elsif Has_Record_Rep_Clause
(Rectype
) then
6942 Error_Msg_N
("duplicate record rep clause ignored", N
);
6945 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6949 -- We know we have a first subtype, now possibly go to the anonymous
6950 -- base type to determine whether Rectype is a record extension.
6952 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6953 Is_Record_Extension
:=
6954 Nkind
(Recdef
) = N_Derived_Type_Definition
6955 and then Present
(Record_Extension_Part
(Recdef
));
6957 if Present
(Mod_Clause
(N
)) then
6959 Loc
: constant Source_Ptr
:= Sloc
(N
);
6960 M
: constant Node_Id
:= Mod_Clause
(N
);
6961 P
: constant List_Id
:= Pragmas_Before
(M
);
6965 pragma Warnings
(Off
, Mod_Val
);
6968 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6970 if Warn_On_Obsolescent_Feature
then
6972 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6974 ("\?j?use alignment attribute definition clause instead", N
);
6981 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6982 -- the Mod clause into an alignment clause anyway, so that the
6983 -- back end can compute and back-annotate properly the size and
6984 -- alignment of types that may include this record.
6986 -- This seems dubious, this destroys the source tree in a manner
6987 -- not detectable by ASIS ???
6989 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
6991 Make_Attribute_Definition_Clause
(Loc
,
6992 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
6993 Chars
=> Name_Alignment
,
6994 Expression
=> Relocate_Node
(Expression
(M
)));
6996 Set_From_At_Mod
(AtM_Nod
);
6997 Insert_After
(N
, AtM_Nod
);
6998 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
6999 Set_Mod_Clause
(N
, Empty
);
7002 -- Get the alignment value to perform error checking
7004 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
7009 -- For untagged types, clear any existing component clauses for the
7010 -- type. If the type is derived, this is what allows us to override
7011 -- a rep clause for the parent. For type extensions, the representation
7012 -- of the inherited components is inherited, so we want to keep previous
7013 -- component clauses for completeness.
7015 if not Is_Tagged_Type
(Rectype
) then
7016 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7017 while Present
(Comp
) loop
7018 Set_Component_Clause
(Comp
, Empty
);
7019 Next_Component_Or_Discriminant
(Comp
);
7023 -- All done if no component clauses
7025 CC
:= First
(Component_Clauses
(N
));
7031 -- A representation like this applies to the base type
7033 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
7034 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
7035 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
7037 -- Process the component clauses
7039 while Present
(CC
) loop
7043 if Nkind
(CC
) = N_Pragma
then
7046 -- The only pragma of interest is Complete_Representation
7048 if Pragma_Name
(CC
) = Name_Complete_Representation
then
7052 -- Processing for real component clause
7055 Posit
:= Static_Integer
(Position
(CC
));
7056 Fbit
:= Static_Integer
(First_Bit
(CC
));
7057 Lbit
:= Static_Integer
(Last_Bit
(CC
));
7060 and then Fbit
/= No_Uint
7061 and then Lbit
/= No_Uint
7064 Error_Msg_N
("position cannot be negative", Position
(CC
));
7067 Error_Msg_N
("first bit cannot be negative", First_Bit
(CC
));
7069 -- The Last_Bit specified in a component clause must not be
7070 -- less than the First_Bit minus one (RM-13.5.1(10)).
7072 elsif Lbit
< Fbit
- 1 then
7074 ("last bit cannot be less than first bit minus one",
7077 -- Values look OK, so find the corresponding record component
7078 -- Even though the syntax allows an attribute reference for
7079 -- implementation-defined components, GNAT does not allow the
7080 -- tag to get an explicit position.
7082 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
7083 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
7084 Error_Msg_N
("position of tag cannot be specified", CC
);
7086 Error_Msg_N
("illegal component name", CC
);
7090 Comp
:= First_Entity
(Rectype
);
7091 while Present
(Comp
) loop
7092 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7098 -- Maybe component of base type that is absent from
7099 -- statically constrained first subtype.
7101 Comp
:= First_Entity
(Base_Type
(Rectype
));
7102 while Present
(Comp
) loop
7103 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7110 ("component clause is for non-existent field", CC
);
7112 -- Ada 2012 (AI05-0026): Any name that denotes a
7113 -- discriminant of an object of an unchecked union type
7114 -- shall not occur within a record_representation_clause.
7116 -- The general restriction of using record rep clauses on
7117 -- Unchecked_Union types has now been lifted. Since it is
7118 -- possible to introduce a record rep clause which mentions
7119 -- the discriminant of an Unchecked_Union in non-Ada 2012
7120 -- code, this check is applied to all versions of the
7123 elsif Ekind
(Comp
) = E_Discriminant
7124 and then Is_Unchecked_Union
(Rectype
)
7127 ("cannot reference discriminant of unchecked union",
7128 Component_Name
(CC
));
7130 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
7132 ("component clause not allowed for inherited "
7133 & "component&", CC
, Comp
);
7135 elsif Present
(Component_Clause
(Comp
)) then
7137 -- Diagnose duplicate rep clause, or check consistency
7138 -- if this is an inherited component. In a double fault,
7139 -- there may be a duplicate inconsistent clause for an
7140 -- inherited component.
7142 if Scope
(Original_Record_Component
(Comp
)) = Rectype
7143 or else Parent
(Component_Clause
(Comp
)) = N
7145 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
7146 Error_Msg_N
("component clause previously given#", CC
);
7150 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
7152 if Intval
(Position
(Rep1
)) /=
7153 Intval
(Position
(CC
))
7154 or else Intval
(First_Bit
(Rep1
)) /=
7155 Intval
(First_Bit
(CC
))
7156 or else Intval
(Last_Bit
(Rep1
)) /=
7157 Intval
(Last_Bit
(CC
))
7160 ("component clause inconsistent with "
7161 & "representation of ancestor", CC
);
7163 elsif Warn_On_Redundant_Constructs
then
7165 ("?r?redundant confirming component clause "
7166 & "for component!", CC
);
7171 -- Normal case where this is the first component clause we
7172 -- have seen for this entity, so set it up properly.
7175 -- Make reference for field in record rep clause and set
7176 -- appropriate entity field in the field identifier.
7179 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
7180 Set_Entity
(Component_Name
(CC
), Comp
);
7182 -- Update Fbit and Lbit to the actual bit number
7184 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
7185 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
7187 if Has_Size_Clause
(Rectype
)
7188 and then RM_Size
(Rectype
) <= Lbit
7191 ("bit number out of range of specified size",
7194 Set_Component_Clause
(Comp
, CC
);
7195 Set_Component_Bit_Offset
(Comp
, Fbit
);
7196 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
7197 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
7198 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
7200 if Warn_On_Overridden_Size
7201 and then Has_Size_Clause
(Etype
(Comp
))
7202 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
7205 ("?S?component size overrides size clause for&",
7206 Component_Name
(CC
), Etype
(Comp
));
7209 -- This information is also set in the corresponding
7210 -- component of the base type, found by accessing the
7211 -- Original_Record_Component link if it is present.
7213 Ocomp
:= Original_Record_Component
(Comp
);
7220 (Component_Name
(CC
),
7226 (Comp
, First_Node
(CC
), "component clause", Biased
);
7228 if Present
(Ocomp
) then
7229 Set_Component_Clause
(Ocomp
, CC
);
7230 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
7231 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
7232 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
7233 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
7235 Set_Normalized_Position_Max
7236 (Ocomp
, Normalized_Position
(Ocomp
));
7238 -- Note: we don't use Set_Biased here, because we
7239 -- already gave a warning above if needed, and we
7240 -- would get a duplicate for the same name here.
7242 Set_Has_Biased_Representation
7243 (Ocomp
, Has_Biased_Representation
(Comp
));
7246 if Esize
(Comp
) < 0 then
7247 Error_Msg_N
("component size is negative", CC
);
7258 -- Check missing components if Complete_Representation pragma appeared
7260 if Present
(CR_Pragma
) then
7261 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7262 while Present
(Comp
) loop
7263 if No
(Component_Clause
(Comp
)) then
7265 ("missing component clause for &", CR_Pragma
, Comp
);
7268 Next_Component_Or_Discriminant
(Comp
);
7271 -- Give missing components warning if required
7273 elsif Warn_On_Unrepped_Components
then
7275 Num_Repped_Components
: Nat
:= 0;
7276 Num_Unrepped_Components
: Nat
:= 0;
7279 -- First count number of repped and unrepped components
7281 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7282 while Present
(Comp
) loop
7283 if Present
(Component_Clause
(Comp
)) then
7284 Num_Repped_Components
:= Num_Repped_Components
+ 1;
7286 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
7289 Next_Component_Or_Discriminant
(Comp
);
7292 -- We are only interested in the case where there is at least one
7293 -- unrepped component, and at least half the components have rep
7294 -- clauses. We figure that if less than half have them, then the
7295 -- partial rep clause is really intentional. If the component
7296 -- type has no underlying type set at this point (as for a generic
7297 -- formal type), we don't know enough to give a warning on the
7300 if Num_Unrepped_Components
> 0
7301 and then Num_Unrepped_Components
< Num_Repped_Components
7303 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7304 while Present
(Comp
) loop
7305 if No
(Component_Clause
(Comp
))
7306 and then Comes_From_Source
(Comp
)
7307 and then Present
(Underlying_Type
(Etype
(Comp
)))
7308 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
7309 or else Size_Known_At_Compile_Time
7310 (Underlying_Type
(Etype
(Comp
))))
7311 and then not Has_Warnings_Off
(Rectype
)
7313 -- Ignore discriminant in unchecked union, since it is
7314 -- not there, and cannot have a component clause.
7316 and then (not Is_Unchecked_Union
(Rectype
)
7317 or else Ekind
(Comp
) /= E_Discriminant
)
7319 Error_Msg_Sloc
:= Sloc
(Comp
);
7321 ("?C?no component clause given for & declared #",
7325 Next_Component_Or_Discriminant
(Comp
);
7330 end Analyze_Record_Representation_Clause
;
7332 -------------------------------------
7333 -- Build_Discrete_Static_Predicate --
7334 -------------------------------------
7336 procedure Build_Discrete_Static_Predicate
7341 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7343 Non_Static
: exception;
7344 -- Raised if something non-static is found
7346 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7348 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
7349 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
7350 -- Low bound and high bound value of base type of Typ
7354 -- Bounds for constructing the static predicate. We use the bound of the
7355 -- subtype if it is static, otherwise the corresponding base type bound.
7356 -- Note: a non-static subtype can have a static predicate.
7361 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7362 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7365 type RList
is array (Nat
range <>) of REnt
;
7366 -- A list of ranges. The ranges are sorted in increasing order, and are
7367 -- disjoint (there is a gap of at least one value between each range in
7368 -- the table). A value is in the set of ranges in Rlist if it lies
7369 -- within one of these ranges.
7371 False_Range
: constant RList
:=
7372 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
7373 -- An empty set of ranges represents a range list that can never be
7374 -- satisfied, since there are no ranges in which the value could lie,
7375 -- so it does not lie in any of them. False_Range is a canonical value
7376 -- for this empty set, but general processing should test for an Rlist
7377 -- with length zero (see Is_False predicate), since other null ranges
7378 -- may appear which must be treated as False.
7380 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
7381 -- Range representing True, value must be in the base range
7383 function "and" (Left
: RList
; Right
: RList
) return RList
;
7384 -- And's together two range lists, returning a range list. This is a set
7385 -- intersection operation.
7387 function "or" (Left
: RList
; Right
: RList
) return RList
;
7388 -- Or's together two range lists, returning a range list. This is a set
7391 function "not" (Right
: RList
) return RList
;
7392 -- Returns complement of a given range list, i.e. a range list
7393 -- representing all the values in TLo .. THi that are not in the input
7396 function Build_Val
(V
: Uint
) return Node_Id
;
7397 -- Return an analyzed N_Identifier node referencing this value, suitable
7398 -- for use as an entry in the Static_Discrte_Predicate list. This node
7399 -- is typed with the base type.
7401 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
7402 -- Return an analyzed N_Range node referencing this range, suitable for
7403 -- use as an entry in the Static_Discrete_Predicate list. This node is
7404 -- typed with the base type.
7406 function Get_RList
(Exp
: Node_Id
) return RList
;
7407 -- This is a recursive routine that converts the given expression into a
7408 -- list of ranges, suitable for use in building the static predicate.
7410 function Is_False
(R
: RList
) return Boolean;
7411 pragma Inline
(Is_False
);
7412 -- Returns True if the given range list is empty, and thus represents a
7413 -- False list of ranges that can never be satisfied.
7415 function Is_True
(R
: RList
) return Boolean;
7416 -- Returns True if R trivially represents the True predicate by having a
7417 -- single range from BLo to BHi.
7419 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
7420 pragma Inline
(Is_Type_Ref
);
7421 -- Returns if True if N is a reference to the type for the predicate in
7422 -- the expression (i.e. if it is an identifier whose Chars field matches
7423 -- the Nam given in the call). N must not be parenthesized, if the type
7424 -- name appears in parens, this routine will return False.
7426 function Lo_Val
(N
: Node_Id
) return Uint
;
7427 -- Given an entry from a Static_Discrete_Predicate list that is either
7428 -- a static expression or static range, gets either the expression value
7429 -- or the low bound of the range.
7431 function Hi_Val
(N
: Node_Id
) return Uint
;
7432 -- Given an entry from a Static_Discrete_Predicate list that is either
7433 -- a static expression or static range, gets either the expression value
7434 -- or the high bound of the range.
7436 function Membership_Entry
(N
: Node_Id
) return RList
;
7437 -- Given a single membership entry (range, value, or subtype), returns
7438 -- the corresponding range list. Raises Static_Error if not static.
7440 function Membership_Entries
(N
: Node_Id
) return RList
;
7441 -- Given an element on an alternatives list of a membership operation,
7442 -- returns the range list corresponding to this entry and all following
7443 -- entries (i.e. returns the "or" of this list of values).
7445 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
7446 -- Given a type, if it has a static predicate, then return the predicate
7447 -- as a range list, otherwise raise Non_Static.
7453 function "and" (Left
: RList
; Right
: RList
) return RList
is
7455 -- First range of result
7457 SLeft
: Nat
:= Left
'First;
7458 -- Start of rest of left entries
7460 SRight
: Nat
:= Right
'First;
7461 -- Start of rest of right entries
7464 -- If either range is True, return the other
7466 if Is_True
(Left
) then
7468 elsif Is_True
(Right
) then
7472 -- If either range is False, return False
7474 if Is_False
(Left
) or else Is_False
(Right
) then
7478 -- Loop to remove entries at start that are disjoint, and thus just
7479 -- get discarded from the result entirely.
7482 -- If no operands left in either operand, result is false
7484 if SLeft
> Left
'Last or else SRight
> Right
'Last then
7487 -- Discard first left operand entry if disjoint with right
7489 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
7492 -- Discard first right operand entry if disjoint with left
7494 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
7495 SRight
:= SRight
+ 1;
7497 -- Otherwise we have an overlapping entry
7504 -- Now we have two non-null operands, and first entries overlap. The
7505 -- first entry in the result will be the overlapping part of these
7508 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7509 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7511 -- Now we can remove the entry that ended at a lower value, since its
7512 -- contribution is entirely contained in Fent.
7514 if Left (SLeft).Hi <= Right (SRight).Hi then
7517 SRight := SRight + 1;
7520 -- Compute result by concatenating this first entry with the "and" of
7521 -- the remaining parts of the left and right operands. Note that if
7522 -- either of these is empty, "and" will yield empty, so that we will
7523 -- end up with just Fent, which is what we want in that case.
7526 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7533 function "not" (Right : RList) return RList is
7535 -- Return True if False range
7537 if Is_False (Right) then
7541 -- Return False if True range
7543 if Is_True (Right) then
7547 -- Here if not trivial case
7550 Result : RList (1 .. Right'Length + 1);
7551 -- May need one more entry for gap at beginning and end
7554 -- Number of entries stored in Result
7559 if Right (Right'First).Lo > TLo then
7561 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
7564 -- Gaps between ranges
7566 for J
in Right
'First .. Right
'Last - 1 loop
7568 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7573 if Right (Right'Last).Hi < THi then
7575 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
7578 return Result
(1 .. Count
);
7586 function "or" (Left
: RList
; Right
: RList
) return RList
is
7588 -- First range of result
7590 SLeft
: Nat
:= Left
'First;
7591 -- Start of rest of left entries
7593 SRight
: Nat
:= Right
'First;
7594 -- Start of rest of right entries
7597 -- If either range is True, return True
7599 if Is_True
(Left
) or else Is_True
(Right
) then
7603 -- If either range is False (empty), return the other
7605 if Is_False
(Left
) then
7607 elsif Is_False
(Right
) then
7611 -- Initialize result first entry from left or right operand depending
7612 -- on which starts with the lower range.
7614 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
7615 FEnt
:= Left
(SLeft
);
7618 FEnt
:= Right
(SRight
);
7619 SRight
:= SRight
+ 1;
7622 -- This loop eats ranges from left and right operands that are
7623 -- contiguous with the first range we are gathering.
7626 -- Eat first entry in left operand if contiguous or overlapped by
7627 -- gathered first operand of result.
7629 if SLeft
<= Left
'Last
7630 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
7632 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
7635 -- Eat first entry in right operand if contiguous or overlapped by
7636 -- gathered right operand of result.
7638 elsif SRight
<= Right
'Last
7639 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
7641 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
7642 SRight
:= SRight
+ 1;
7644 -- All done if no more entries to eat
7651 -- Obtain result as the first entry we just computed, concatenated
7652 -- to the "or" of the remaining results (if one operand is empty,
7653 -- this will just concatenate with the other
7656 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
7663 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
7668 Low_Bound
=> Build_Val
(Lo
),
7669 High_Bound
=> Build_Val
(Hi
));
7670 Set_Etype
(Result
, Btyp
);
7671 Set_Analyzed
(Result
);
7679 function Build_Val
(V
: Uint
) return Node_Id
is
7683 if Is_Enumeration_Type
(Typ
) then
7684 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
7686 Result
:= Make_Integer_Literal
(Loc
, V
);
7689 Set_Etype
(Result
, Btyp
);
7690 Set_Is_Static_Expression
(Result
);
7691 Set_Analyzed
(Result
);
7699 function Get_RList
(Exp
: Node_Id
) return RList
is
7704 -- Static expression can only be true or false
7706 if Is_OK_Static_Expression
(Exp
) then
7707 if Expr_Value
(Exp
) = 0 then
7714 -- Otherwise test node type
7725 return Get_RList
(Left_Opnd
(Exp
))
7727 Get_RList
(Right_Opnd
(Exp
));
7734 return Get_RList
(Left_Opnd
(Exp
))
7736 Get_RList
(Right_Opnd
(Exp
));
7741 return not Get_RList
(Right_Opnd
(Exp
));
7743 -- Comparisons of type with static value
7745 when N_Op_Compare
=>
7747 -- Type is left operand
7749 if Is_Type_Ref
(Left_Opnd
(Exp
))
7750 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
7752 Val
:= Expr_Value
(Right_Opnd
(Exp
));
7754 -- Typ is right operand
7756 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
7757 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
7759 Val
:= Expr_Value
(Left_Opnd
(Exp
));
7761 -- Invert sense of comparison
7764 when N_Op_Gt
=> Op
:= N_Op_Lt
;
7765 when N_Op_Lt
=> Op
:= N_Op_Gt
;
7766 when N_Op_Ge
=> Op
:= N_Op_Le
;
7767 when N_Op_Le
=> Op
:= N_Op_Ge
;
7768 when others => null;
7771 -- Other cases are non-static
7777 -- Construct range according to comparison operation
7781 return RList
'(1 => REnt'(Val
, Val
));
7784 return RList
'(1 => REnt'(Val
, BHi
));
7787 return RList
'(1 => REnt'(Val
+ 1, BHi
));
7790 return RList
'(1 => REnt'(BLo
, Val
));
7793 return RList
'(1 => REnt'(BLo
, Val
- 1));
7796 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
7799 raise Program_Error;
7805 if not Is_Type_Ref (Left_Opnd (Exp)) then
7809 if Present (Right_Opnd (Exp)) then
7810 return Membership_Entry (Right_Opnd (Exp));
7812 return Membership_Entries (First (Alternatives (Exp)));
7815 -- Negative membership (NOT IN)
7818 if not Is_Type_Ref (Left_Opnd (Exp)) then
7822 if Present (Right_Opnd (Exp)) then
7823 return not Membership_Entry (Right_Opnd (Exp));
7825 return not Membership_Entries (First (Alternatives (Exp)));
7828 -- Function call, may be call to static predicate
7830 when N_Function_Call =>
7831 if Is_Entity_Name (Name (Exp)) then
7833 Ent : constant Entity_Id := Entity (Name (Exp));
7835 if Is_Predicate_Function (Ent)
7837 Is_Predicate_Function_M (Ent)
7839 return Stat_Pred (Etype (First_Formal (Ent)));
7844 -- Other function call cases are non-static
7848 -- Qualified expression, dig out the expression
7850 when N_Qualified_Expression =>
7851 return Get_RList (Expression (Exp));
7853 when N_Case_Expression =>
7860 if not Is_Entity_Name (Expression (Expr))
7861 or else Etype (Expression (Expr)) /= Typ
7864 ("expression must denaote subtype", Expression (Expr));
7868 -- Collect discrete choices in all True alternatives
7870 Choices := New_List;
7871 Alt := First (Alternatives (Exp));
7872 while Present (Alt) loop
7873 Dep := Expression (Alt);
7875 if not Is_OK_Static_Expression (Dep) then
7878 elsif Is_True (Expr_Value (Dep)) then
7879 Append_List_To (Choices,
7880 New_Copy_List (Discrete_Choices (Alt)));
7886 return Membership_Entries (First (Choices));
7889 -- Expression with actions: if no actions, dig out expression
7891 when N_Expression_With_Actions =>
7892 if Is_Empty_List (Actions (Exp)) then
7893 return Get_RList (Expression (Exp));
7901 return (Get_RList (Left_Opnd (Exp))
7902 and not Get_RList (Right_Opnd (Exp)))
7903 or (Get_RList (Right_Opnd (Exp))
7904 and not Get_RList (Left_Opnd (Exp)));
7906 -- Any other node type is non-static
7917 function Hi_Val (N : Node_Id) return Uint is
7919 if Is_OK_Static_Expression (N) then
7920 return Expr_Value (N);
7922 pragma Assert (Nkind (N) = N_Range);
7923 return Expr_Value (High_Bound (N));
7931 function Is_False (R : RList) return Boolean is
7933 return R'Length = 0;
7940 function Is_True (R : RList) return Boolean is
7943 and then R (R'First).Lo = BLo
7944 and then R (R'First).Hi = BHi;
7951 function Is_Type_Ref (N : Node_Id) return Boolean is
7953 return Nkind (N) = N_Identifier
7954 and then Chars (N) = Nam
7955 and then Paren_Count (N) = 0;
7962 function Lo_Val (N : Node_Id) return Uint is
7964 if Is_OK_Static_Expression (N) then
7965 return Expr_Value (N);
7967 pragma Assert (Nkind (N) = N_Range);
7968 return Expr_Value (Low_Bound (N));
7972 ------------------------
7973 -- Membership_Entries --
7974 ------------------------
7976 function Membership_Entries (N : Node_Id) return RList is
7978 if No (Next (N)) then
7979 return Membership_Entry (N);
7981 return Membership_Entry (N) or Membership_Entries (Next (N));
7983 end Membership_Entries;
7985 ----------------------
7986 -- Membership_Entry --
7987 ----------------------
7989 function Membership_Entry (N : Node_Id) return RList is
7997 if Nkind (N) = N_Range then
7998 if not Is_OK_Static_Expression (Low_Bound (N))
8000 not Is_OK_Static_Expression (High_Bound (N))
8004 SLo := Expr_Value (Low_Bound (N));
8005 SHi := Expr_Value (High_Bound (N));
8006 return RList'(1 => REnt
'(SLo, SHi));
8009 -- Static expression case
8011 elsif Is_OK_Static_Expression (N) then
8012 Val := Expr_Value (N);
8013 return RList'(1 => REnt
'(Val, Val));
8015 -- Identifier (other than static expression) case
8017 else pragma Assert (Nkind (N) = N_Identifier);
8021 if Is_Type (Entity (N)) then
8023 -- If type has predicates, process them
8025 if Has_Predicates (Entity (N)) then
8026 return Stat_Pred (Entity (N));
8028 -- For static subtype without predicates, get range
8030 elsif Is_OK_Static_Subtype (Entity (N)) then
8031 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8032 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8033 return RList'(1 => REnt
'(SLo, SHi));
8035 -- Any other type makes us non-static
8041 -- Any other kind of identifier in predicate (e.g. a non-static
8042 -- expression value) means this is not a static predicate.
8048 end Membership_Entry;
8054 function Stat_Pred (Typ : Entity_Id) return RList is
8056 -- Not static if type does not have static predicates
8058 if not Has_Static_Predicate (Typ) then
8062 -- Otherwise we convert the predicate list to a range list
8065 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8066 Result : RList (1 .. List_Length (Spred));
8070 P := First (Static_Discrete_Predicate (Typ));
8071 for J in Result'Range loop
8072 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
8080 -- Start of processing for Build_Discrete_Static_Predicate
8083 -- Establish bounds for the predicate
8085 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
8086 TLo
:= Expr_Value
(Type_Low_Bound
(Typ
));
8091 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
8092 THi
:= Expr_Value
(Type_High_Bound
(Typ
));
8097 -- Analyze the expression to see if it is a static predicate
8100 Ranges
: constant RList
:= Get_RList
(Expr
);
8101 -- Range list from expression if it is static
8106 -- Convert range list into a form for the static predicate. In the
8107 -- Ranges array, we just have raw ranges, these must be converted
8108 -- to properly typed and analyzed static expressions or range nodes.
8110 -- Note: here we limit ranges to the ranges of the subtype, so that
8111 -- a predicate is always false for values outside the subtype. That
8112 -- seems fine, such values are invalid anyway, and considering them
8113 -- to fail the predicate seems allowed and friendly, and furthermore
8114 -- simplifies processing for case statements and loops.
8118 for J
in Ranges
'Range loop
8120 Lo
: Uint
:= Ranges
(J
).Lo
;
8121 Hi
: Uint
:= Ranges
(J
).Hi
;
8124 -- Ignore completely out of range entry
8126 if Hi
< TLo
or else Lo
> THi
then
8129 -- Otherwise process entry
8132 -- Adjust out of range value to subtype range
8142 -- Convert range into required form
8144 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
8149 -- Processing was successful and all entries were static, so now we
8150 -- can store the result as the predicate list.
8152 Set_Static_Discrete_Predicate
(Typ
, Plist
);
8154 -- The processing for static predicates put the expression into
8155 -- canonical form as a series of ranges. It also eliminated
8156 -- duplicates and collapsed and combined ranges. We might as well
8157 -- replace the alternatives list of the right operand of the
8158 -- membership test with the static predicate list, which will
8159 -- usually be more efficient.
8162 New_Alts
: constant List_Id
:= New_List
;
8167 Old_Node
:= First
(Plist
);
8168 while Present
(Old_Node
) loop
8169 New_Node
:= New_Copy
(Old_Node
);
8171 if Nkind
(New_Node
) = N_Range
then
8172 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
8173 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
8176 Append_To
(New_Alts
, New_Node
);
8180 -- If empty list, replace by False
8182 if Is_Empty_List
(New_Alts
) then
8183 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
8185 -- Else replace by set membership test
8190 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
8191 Right_Opnd
=> Empty
,
8192 Alternatives
=> New_Alts
));
8194 -- Resolve new expression in function context
8196 Install_Formals
(Predicate_Function
(Typ
));
8197 Push_Scope
(Predicate_Function
(Typ
));
8198 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
8204 -- If non-static, return doing nothing
8209 end Build_Discrete_Static_Predicate
;
8211 --------------------------------
8212 -- Build_Export_Import_Pragma --
8213 --------------------------------
8215 function Build_Export_Import_Pragma
8217 Id
: Entity_Id
) return Node_Id
8219 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
8220 Expr
: constant Node_Id
:= Expression
(Asp
);
8221 Loc
: constant Source_Ptr
:= Sloc
(Asp
);
8232 Create_Pragma
: Boolean := False;
8233 -- This flag is set when the aspect form is such that it warrants the
8234 -- creation of a corresponding pragma.
8237 if Present
(Expr
) then
8238 if Error_Posted
(Expr
) then
8241 elsif Is_True
(Expr_Value
(Expr
)) then
8242 Create_Pragma
:= True;
8245 -- Otherwise the aspect defaults to True
8248 Create_Pragma
:= True;
8251 -- Nothing to do when the expression is False or is erroneous
8253 if not Create_Pragma
then
8257 -- Obtain all interfacing aspects that apply to the related entity
8259 Get_Interfacing_Aspects
8263 Expo_Asp
=> Dummy_1
,
8269 -- Handle the convention argument
8271 if Present
(Conv
) then
8272 Conv_Arg
:= New_Copy_Tree
(Expression
(Conv
));
8274 -- Assume convention "Ada' when aspect Convention is missing
8277 Conv_Arg
:= Make_Identifier
(Loc
, Name_Ada
);
8281 Make_Pragma_Argument_Association
(Loc
,
8282 Chars
=> Name_Convention
,
8283 Expression
=> Conv_Arg
));
8285 -- Handle the entity argument
8288 Make_Pragma_Argument_Association
(Loc
,
8289 Chars
=> Name_Entity
,
8290 Expression
=> New_Occurrence_Of
(Id
, Loc
)));
8292 -- Handle the External_Name argument
8294 if Present
(EN
) then
8296 Make_Pragma_Argument_Association
(Loc
,
8297 Chars
=> Name_External_Name
,
8298 Expression
=> New_Copy_Tree
(Expression
(EN
))));
8301 -- Handle the Link_Name argument
8303 if Present
(LN
) then
8305 Make_Pragma_Argument_Association
(Loc
,
8306 Chars
=> Name_Link_Name
,
8307 Expression
=> New_Copy_Tree
(Expression
(LN
))));
8311 -- pragma Export/Import
8312 -- (Convention => <Conv>/Ada,
8314 -- [External_Name => <EN>,]
8315 -- [Link_Name => <LN>]);
8319 Pragma_Identifier
=>
8320 Make_Identifier
(Loc
, Chars
(Identifier
(Asp
))),
8321 Pragma_Argument_Associations
=> Args
);
8323 -- Decorate the relevant aspect and the pragma
8325 Set_Aspect_Rep_Item
(Asp
, Prag
);
8327 Set_Corresponding_Aspect
(Prag
, Asp
);
8328 Set_From_Aspect_Specification
(Prag
);
8329 Set_Parent
(Prag
, Asp
);
8331 if Asp_Id
= Aspect_Import
and then Is_Subprogram
(Id
) then
8332 Set_Import_Pragma
(Id
, Prag
);
8336 end Build_Export_Import_Pragma
;
8338 -------------------------------
8339 -- Build_Predicate_Functions --
8340 -------------------------------
8342 -- The functions that are constructed here have the form:
8344 -- function typPredicate (Ixxx : typ) return Boolean is
8347 -- typ1Predicate (typ1 (Ixxx))
8348 -- and then typ2Predicate (typ2 (Ixxx))
8350 -- and then exp1 and then exp2 and then ...;
8351 -- end typPredicate;
8353 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8354 -- this is the point at which these expressions get analyzed, providing the
8355 -- required delay, and typ1, typ2, are entities from which predicates are
8356 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8357 -- use this function even if checks are off, e.g. for membership tests.
8359 -- Note that the inherited predicates are evaluated first, as required by
8362 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8363 -- the form of this return expression.
8365 -- If the expression has at least one Raise_Expression, then we also build
8366 -- the typPredicateM version of the function, in which any occurrence of a
8367 -- Raise_Expression is converted to "return False".
8369 -- WARNING: This routine manages Ghost regions. Return statements must be
8370 -- replaced by gotos which jump to the end of the routine and restore the
8373 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
8374 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8377 -- This is the expression for the result of the function. It is
8378 -- is build by connecting the component predicates with AND THEN.
8380 Expr_M
: Node_Id
:= Empty
; -- init to avoid warning
8381 -- This is the corresponding return expression for the Predicate_M
8382 -- function. It differs in that raise expressions are marked for
8383 -- special expansion (see Process_REs).
8385 Object_Name
: Name_Id
;
8386 -- Name for argument of Predicate procedure. Note that we use the same
8387 -- name for both predicate functions. That way the reference within the
8388 -- predicate expression is the same in both functions.
8390 Object_Entity
: Entity_Id
;
8391 -- Entity for argument of Predicate procedure
8393 Object_Entity_M
: Entity_Id
;
8394 -- Entity for argument of separate Predicate procedure when exceptions
8395 -- are present in expression.
8398 -- The function declaration
8403 Raise_Expression_Present
: Boolean := False;
8404 -- Set True if Expr has at least one Raise_Expression
8406 procedure Add_Condition
(Cond
: Node_Id
);
8407 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8410 procedure Add_Predicates
;
8411 -- Appends expressions for any Predicate pragmas in the rep item chain
8412 -- Typ to Expr. Note that we look only at items for this exact entity.
8413 -- Inheritance of predicates for the parent type is done by calling the
8414 -- Predicate_Function of the parent type, using Add_Call above.
8416 procedure Add_Call
(T
: Entity_Id
);
8417 -- Includes a call to the predicate function for type T in Expr if T
8418 -- has predicates and Predicate_Function (T) is non-empty.
8420 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
8421 -- Used in Process REs, tests if node N is a raise expression, and if
8422 -- so, marks it to be converted to return False.
8424 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
8425 -- Marks any raise expressions in Expr_M to return False
8427 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
8428 -- Used in Test_REs, tests one node for being a raise expression, and if
8429 -- so sets Raise_Expression_Present True.
8431 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
8432 -- Tests to see if Expr contains any raise expressions
8438 procedure Add_Call
(T
: Entity_Id
) is
8442 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
8443 Set_Has_Predicates
(Typ
);
8445 -- Build the call to the predicate function of T. The type may be
8446 -- derived, so use an unchecked conversion for the actual.
8452 Unchecked_Convert_To
(T
,
8453 Make_Identifier
(Loc
, Object_Name
)));
8455 -- "and"-in the call to evolving expression
8457 Add_Condition
(Exp
);
8459 -- Output info message on inheritance if required. Note we do not
8460 -- give this information for generic actual types, since it is
8461 -- unwelcome noise in that case in instantiations. We also
8462 -- generally suppress the message in instantiations, and also
8463 -- if it involves internal names.
8465 if Opt
.List_Inherited_Aspects
8466 and then not Is_Generic_Actual_Type
(Typ
)
8467 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
8468 and then not Is_Internal_Name
(Chars
(T
))
8469 and then not Is_Internal_Name
(Chars
(Typ
))
8471 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
8472 Error_Msg_Node_2
:= T
;
8473 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
8482 procedure Add_Condition
(Cond
: Node_Id
) is
8484 -- This is the first predicate expression
8489 -- Otherwise concatenate to the existing predicate expressions by
8490 -- using "and then".
8495 Left_Opnd
=> Relocate_Node
(Expr
),
8496 Right_Opnd
=> Cond
);
8500 --------------------
8501 -- Add_Predicates --
8502 --------------------
8504 procedure Add_Predicates
is
8505 procedure Add_Predicate
(Prag
: Node_Id
);
8506 -- Concatenate the expression of predicate pragma Prag to Expr by
8507 -- using a short circuit "and then" operator.
8513 procedure Add_Predicate
(Prag
: Node_Id
) is
8514 procedure Replace_Type_Reference
(N
: Node_Id
);
8515 -- Replace a single occurrence N of the subtype name with a
8516 -- reference to the formal of the predicate function. N can be an
8517 -- identifier referencing the subtype, or a selected component,
8518 -- representing an appropriately qualified occurrence of the
8521 procedure Replace_Type_References
is
8522 new Replace_Type_References_Generic
(Replace_Type_Reference
);
8523 -- Traverse an expression changing every occurrence of an
8524 -- identifier whose name matches the name of the subtype with a
8525 -- reference to the formal parameter of the predicate function.
8527 ----------------------------
8528 -- Replace_Type_Reference --
8529 ----------------------------
8531 procedure Replace_Type_Reference
(N
: Node_Id
) is
8533 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8534 -- Use the Sloc of the usage name, not the defining name
8537 Set_Entity
(N
, Object_Entity
);
8539 -- We want to treat the node as if it comes from source, so
8540 -- that ASIS will not ignore it.
8542 Set_Comes_From_Source
(N
, True);
8543 end Replace_Type_Reference
;
8547 Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
8551 -- Start of processing for Add_Predicate
8554 -- Mark corresponding SCO as enabled
8556 Set_SCO_Pragma_Enabled
(Sloc
(Prag
));
8558 -- Extract the arguments of the pragma. The expression itself
8559 -- is copied for use in the predicate function, to preserve the
8560 -- original version for ASIS use.
8562 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
8563 Arg2
:= Next
(Arg1
);
8565 Arg1
:= Get_Pragma_Arg
(Arg1
);
8566 Arg2
:= New_Copy_Tree
(Get_Pragma_Arg
(Arg2
));
8568 -- When the predicate pragma applies to the current type or its
8569 -- full view, replace all occurrences of the subtype name with
8570 -- references to the formal parameter of the predicate function.
8572 if Entity
(Arg1
) = Typ
8573 or else Full_View
(Entity
(Arg1
)) = Typ
8575 Replace_Type_References
(Arg2
, Typ
);
8577 -- If the predicate pragma comes from an aspect, replace the
8578 -- saved expression because we need the subtype references
8579 -- replaced for the calls to Preanalyze_Spec_Expression in
8580 -- Check_Aspect_At_xxx routines.
8582 if Present
(Asp
) then
8583 Set_Entity
(Identifier
(Asp
), New_Copy_Tree
(Arg2
));
8586 -- "and"-in the Arg2 condition to evolving expression
8588 Add_Condition
(Relocate_Node
(Arg2
));
8596 -- Start of processing for Add_Predicates
8599 Ritem
:= First_Rep_Item
(Typ
);
8601 -- If the type is private, check whether full view has inherited
8604 if Is_Private_Type
(Typ
) and then No
(Ritem
) then
8605 Ritem
:= First_Rep_Item
(Full_View
(Typ
));
8608 while Present
(Ritem
) loop
8609 if Nkind
(Ritem
) = N_Pragma
8610 and then Pragma_Name
(Ritem
) = Name_Predicate
8612 Add_Predicate
(Ritem
);
8614 -- If the type is declared in an inner package it may be frozen
8615 -- outside of the package, and the generated pragma has not been
8616 -- analyzed yet, so capture the expression for the predicate
8617 -- function at this point.
8619 elsif Nkind
(Ritem
) = N_Aspect_Specification
8620 and then Present
(Aspect_Rep_Item
(Ritem
))
8621 and then Scope
(Typ
) /= Current_Scope
8624 Prag
: constant Node_Id
:= Aspect_Rep_Item
(Ritem
);
8627 if Nkind
(Prag
) = N_Pragma
8628 and then Pragma_Name
(Prag
) = Name_Predicate
8630 Add_Predicate
(Prag
);
8635 Next_Rep_Item
(Ritem
);
8643 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8645 if Nkind
(N
) = N_Raise_Expression
then
8646 Set_Convert_To_Return_False
(N
);
8657 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8659 if Nkind
(N
) = N_Raise_Expression
then
8660 Raise_Expression_Present
:= True;
8669 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
8670 -- Save the Ghost mode to restore on exit
8672 -- Start of processing for Build_Predicate_Functions
8675 -- Return if already built or if type does not have predicates
8677 SId
:= Predicate_Function
(Typ
);
8678 if not Has_Predicates
(Typ
)
8679 or else (Present
(SId
) and then Has_Completion
(SId
))
8684 -- The related type may be subject to pragma Ghost. Set the mode now to
8685 -- ensure that the predicate functions are properly marked as Ghost.
8687 Set_Ghost_Mode
(Typ
);
8689 -- Prepare to construct predicate expression
8693 if Present
(SId
) then
8694 FDecl
:= Unit_Declaration_Node
(SId
);
8697 FDecl
:= Build_Predicate_Function_Declaration
(Typ
);
8698 SId
:= Defining_Entity
(FDecl
);
8701 -- Recover name of formal parameter of function that replaces references
8702 -- to the type in predicate expressions.
8706 (First
(Parameter_Specifications
(Specification
(FDecl
))));
8708 Object_Name
:= Chars
(Object_Entity
);
8709 Object_Entity_M
:= Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8711 -- Add predicates for ancestor if present. These must come before the
8712 -- ones for the current type, as required by AI12-0071-1.
8717 Atyp
:= Nearest_Ancestor
(Typ
);
8719 -- The type may be private but the full view may inherit predicates
8721 if No
(Atyp
) and then Is_Private_Type
(Typ
) then
8722 Atyp
:= Nearest_Ancestor
(Full_View
(Typ
));
8725 if Present
(Atyp
) then
8730 -- Add Predicates for the current type
8734 -- Case where predicates are present
8736 if Present
(Expr
) then
8738 -- Test for raise expression present
8742 -- If raise expression is present, capture a copy of Expr for use
8743 -- in building the predicateM function version later on. For this
8744 -- copy we replace references to Object_Entity by Object_Entity_M.
8746 if Raise_Expression_Present
then
8748 Map
: constant Elist_Id
:= New_Elmt_List
;
8749 New_V
: Entity_Id
:= Empty
;
8751 -- The unanalyzed expression will be copied and appear in
8752 -- both functions. Normally expressions do not declare new
8753 -- entities, but quantified expressions do, so we need to
8754 -- create new entities for their bound variables, to prevent
8755 -- multiple definitions in gigi.
8757 function Reset_Loop_Variable
(N
: Node_Id
)
8758 return Traverse_Result
;
8760 procedure Collect_Loop_Variables
is
8761 new Traverse_Proc
(Reset_Loop_Variable
);
8763 ------------------------
8764 -- Reset_Loop_Variable --
8765 ------------------------
8767 function Reset_Loop_Variable
(N
: Node_Id
)
8768 return Traverse_Result
8771 if Nkind
(N
) = N_Iterator_Specification
then
8772 New_V
:= Make_Defining_Identifier
8773 (Sloc
(N
), Chars
(Defining_Identifier
(N
)));
8775 Set_Defining_Identifier
(N
, New_V
);
8779 end Reset_Loop_Variable
;
8782 Append_Elmt
(Object_Entity
, Map
);
8783 Append_Elmt
(Object_Entity_M
, Map
);
8784 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8785 Collect_Loop_Variables
(Expr_M
);
8789 -- Build the main predicate function
8792 SIdB
: constant Entity_Id
:=
8793 Make_Defining_Identifier
(Loc
,
8794 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8795 -- The entity for the function body
8801 Set_Ekind
(SIdB
, E_Function
);
8802 Set_Is_Predicate_Function
(SIdB
);
8804 -- The predicate function is shared between views of a type
8806 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8807 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8810 -- Build function body
8813 Make_Function_Specification
(Loc
,
8814 Defining_Unit_Name
=> SIdB
,
8815 Parameter_Specifications
=> New_List
(
8816 Make_Parameter_Specification
(Loc
,
8817 Defining_Identifier
=>
8818 Make_Defining_Identifier
(Loc
, Object_Name
),
8820 New_Occurrence_Of
(Typ
, Loc
))),
8821 Result_Definition
=>
8822 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8825 Make_Subprogram_Body
(Loc
,
8826 Specification
=> Spec
,
8827 Declarations
=> Empty_List
,
8828 Handled_Statement_Sequence
=>
8829 Make_Handled_Sequence_Of_Statements
(Loc
,
8830 Statements
=> New_List
(
8831 Make_Simple_Return_Statement
(Loc
,
8832 Expression
=> Expr
))));
8834 -- If declaration has not been analyzed yet, Insert declaration
8835 -- before freeze node. Insert body itself after freeze node.
8837 if not Analyzed
(FDecl
) then
8838 Insert_Before_And_Analyze
(N
, FDecl
);
8841 Insert_After_And_Analyze
(N
, FBody
);
8843 -- Static predicate functions are always side-effect free, and
8844 -- in most cases dynamic predicate functions are as well. Mark
8845 -- them as such whenever possible, so redundant predicate checks
8846 -- can be optimized. If there is a variable reference within the
8847 -- expression, the function is not pure.
8849 if Expander_Active
then
8851 Side_Effect_Free
(Expr
, Variable_Ref
=> True));
8852 Set_Is_Inlined
(SId
);
8856 -- Test for raise expressions present and if so build M version
8858 if Raise_Expression_Present
then
8860 SId
: constant Entity_Id
:=
8861 Make_Defining_Identifier
(Loc
,
8862 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8863 -- The entity for the function spec
8865 SIdB
: constant Entity_Id
:=
8866 Make_Defining_Identifier
(Loc
,
8867 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8868 -- The entity for the function body
8876 -- Mark any raise expressions for special expansion
8878 Process_REs
(Expr_M
);
8880 -- Build function declaration
8882 Set_Ekind
(SId
, E_Function
);
8883 Set_Is_Predicate_Function_M
(SId
);
8884 Set_Predicate_Function_M
(Typ
, SId
);
8886 -- The predicate function is shared between views of a type
8888 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8889 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8893 Make_Function_Specification
(Loc
,
8894 Defining_Unit_Name
=> SId
,
8895 Parameter_Specifications
=> New_List
(
8896 Make_Parameter_Specification
(Loc
,
8897 Defining_Identifier
=> Object_Entity_M
,
8898 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8899 Result_Definition
=>
8900 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8903 Make_Subprogram_Declaration
(Loc
,
8904 Specification
=> Spec
);
8906 -- Build function body
8909 Make_Function_Specification
(Loc
,
8910 Defining_Unit_Name
=> SIdB
,
8911 Parameter_Specifications
=> New_List
(
8912 Make_Parameter_Specification
(Loc
,
8913 Defining_Identifier
=>
8914 Make_Defining_Identifier
(Loc
, Object_Name
),
8916 New_Occurrence_Of
(Typ
, Loc
))),
8917 Result_Definition
=>
8918 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8920 -- Build the body, we declare the boolean expression before
8921 -- doing the return, because we are not really confident of
8922 -- what happens if a return appears within a return.
8925 Make_Defining_Identifier
(Loc
,
8926 Chars
=> New_Internal_Name
('B'));
8929 Make_Subprogram_Body
(Loc
,
8930 Specification
=> Spec
,
8932 Declarations
=> New_List
(
8933 Make_Object_Declaration
(Loc
,
8934 Defining_Identifier
=> BTemp
,
8935 Constant_Present
=> True,
8936 Object_Definition
=>
8937 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8938 Expression
=> Expr_M
)),
8940 Handled_Statement_Sequence
=>
8941 Make_Handled_Sequence_Of_Statements
(Loc
,
8942 Statements
=> New_List
(
8943 Make_Simple_Return_Statement
(Loc
,
8944 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8946 -- Insert declaration before freeze node and body after
8948 Insert_Before_And_Analyze
(N
, FDecl
);
8949 Insert_After_And_Analyze
(N
, FBody
);
8953 -- See if we have a static predicate. Note that the answer may be
8954 -- yes even if we have an explicit Dynamic_Predicate present.
8961 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8964 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8967 -- Case where we have a predicate-static aspect
8971 -- We don't set Has_Static_Predicate_Aspect, since we can have
8972 -- any of the three cases (Predicate, Dynamic_Predicate, or
8973 -- Static_Predicate) generating a predicate with an expression
8974 -- that is predicate-static. We just indicate that we have a
8975 -- predicate that can be treated as static.
8977 Set_Has_Static_Predicate
(Typ
);
8979 -- For discrete subtype, build the static predicate list
8981 if Is_Discrete_Type
(Typ
) then
8982 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
8984 -- If we don't get a static predicate list, it means that we
8985 -- have a case where this is not possible, most typically in
8986 -- the case where we inherit a dynamic predicate. We do not
8987 -- consider this an error, we just leave the predicate as
8988 -- dynamic. But if we do succeed in building the list, then
8989 -- we mark the predicate as static.
8991 if No
(Static_Discrete_Predicate
(Typ
)) then
8992 Set_Has_Static_Predicate
(Typ
, False);
8995 -- For real or string subtype, save predicate expression
8997 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
8998 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
9001 -- Case of dynamic predicate (expression is not predicate-static)
9004 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9005 -- is only set if we have an explicit Dynamic_Predicate aspect
9006 -- given. Here we may simply have a Predicate aspect where the
9007 -- expression happens not to be predicate-static.
9009 -- Emit an error when the predicate is categorized as static
9010 -- but its expression is not predicate-static.
9012 -- First a little fiddling to get a nice location for the
9013 -- message. If the expression is of the form (A and then B),
9014 -- where A is an inherited predicate, then use the right
9015 -- operand for the Sloc. This avoids getting confused by a call
9016 -- to an inherited predicate with a less convenient source
9020 while Nkind
(EN
) = N_And_Then
9021 and then Nkind
(Left_Opnd
(EN
)) = N_Function_Call
9022 and then Is_Predicate_Function
9023 (Entity
(Name
(Left_Opnd
(EN
))))
9025 EN
:= Right_Opnd
(EN
);
9028 -- Now post appropriate message
9030 if Has_Static_Predicate_Aspect
(Typ
) then
9031 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
9033 ("expression is not predicate-static (RM 3.2.4(16-22))",
9037 ("static predicate requires scalar or string type", EN
);
9044 Restore_Ghost_Mode
(Saved_GM
);
9045 end Build_Predicate_Functions
;
9047 ------------------------------------------
9048 -- Build_Predicate_Function_Declaration --
9049 ------------------------------------------
9051 -- WARNING: This routine manages Ghost regions. Return statements must be
9052 -- replaced by gotos which jump to the end of the routine and restore the
9055 function Build_Predicate_Function_Declaration
9056 (Typ
: Entity_Id
) return Node_Id
9058 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
9060 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
9061 -- Save the Ghost mode to restore on exit
9063 Func_Decl
: Node_Id
;
9064 Func_Id
: Entity_Id
;
9068 -- The related type may be subject to pragma Ghost. Set the mode now to
9069 -- ensure that the predicate functions are properly marked as Ghost.
9071 Set_Ghost_Mode
(Typ
);
9074 Make_Defining_Identifier
(Loc
,
9075 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
9077 -- The predicate function requires debug info when the predicates are
9078 -- subject to Source Coverage Obligations.
9080 if Opt
.Generate_SCO
then
9081 Set_Debug_Info_Needed
(Func_Id
);
9085 Make_Function_Specification
(Loc
,
9086 Defining_Unit_Name
=> Func_Id
,
9087 Parameter_Specifications
=> New_List
(
9088 Make_Parameter_Specification
(Loc
,
9089 Defining_Identifier
=> Make_Temporary
(Loc
, 'I'),
9090 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
9091 Result_Definition
=>
9092 New_Occurrence_Of
(Standard_Boolean
, Loc
));
9094 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
9096 Set_Ekind
(Func_Id
, E_Function
);
9097 Set_Etype
(Func_Id
, Standard_Boolean
);
9098 Set_Is_Internal
(Func_Id
);
9099 Set_Is_Predicate_Function
(Func_Id
);
9100 Set_Predicate_Function
(Typ
, Func_Id
);
9102 Insert_After
(Parent
(Typ
), Func_Decl
);
9103 Analyze
(Func_Decl
);
9105 Restore_Ghost_Mode
(Saved_GM
);
9108 end Build_Predicate_Function_Declaration
;
9110 -----------------------------------------
9111 -- Check_Aspect_At_End_Of_Declarations --
9112 -----------------------------------------
9114 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
9115 Ent
: constant Entity_Id
:= Entity
(ASN
);
9116 Ident
: constant Node_Id
:= Identifier
(ASN
);
9117 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9119 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
9120 -- Expression to be analyzed at end of declarations
9122 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
9123 -- Expression from call to Check_Aspect_At_Freeze_Point.
9125 T
: constant Entity_Id
:= Etype
(Original_Node
(Freeze_Expr
));
9126 -- Type required for preanalyze call. We use the original expression to
9127 -- get the proper type, to prevent cascaded errors when the expression
9128 -- is constant-folded.
9131 -- Set False if error
9133 -- On entry to this procedure, Entity (Ident) contains a copy of the
9134 -- original expression from the aspect, saved for this purpose, and
9135 -- but Expression (Ident) is a preanalyzed copy of the expression,
9136 -- preanalyzed just after the freeze point.
9138 procedure Check_Overloaded_Name
;
9139 -- For aspects whose expression is simply a name, this routine checks if
9140 -- the name is overloaded or not. If so, it verifies there is an
9141 -- interpretation that matches the entity obtained at the freeze point,
9142 -- otherwise the compiler complains.
9144 ---------------------------
9145 -- Check_Overloaded_Name --
9146 ---------------------------
9148 procedure Check_Overloaded_Name
is
9150 if not Is_Overloaded
(End_Decl_Expr
) then
9151 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
9152 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
9158 Index
: Interp_Index
;
9162 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
9163 while Present
(It
.Typ
) loop
9164 if It
.Nam
= Entity
(Freeze_Expr
) then
9169 Get_Next_Interp
(Index
, It
);
9173 end Check_Overloaded_Name
;
9175 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9178 -- In an instance we do not perform the consistency check between freeze
9179 -- point and end of declarations, because it was done already in the
9180 -- analysis of the generic. Furthermore, the delayed analysis of an
9181 -- aspect of the instance may produce spurious errors when the generic
9182 -- is a child unit that references entities in the parent (which might
9183 -- not be in scope at the freeze point of the instance).
9188 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9189 -- task body is rewritten as a procedure) after this conformance check
9190 -- has been performed, so do not perform it again (it may not easily be
9191 -- done if full visibility of local entities is not available).
9193 elsif not Comes_From_Source
(Current_Scope
) then
9196 -- Case of aspects Dimension, Dimension_System and Synchronization
9198 elsif A_Id
= Aspect_Synchronization
then
9201 -- Case of stream attributes, just have to compare entities. However,
9202 -- the expression is just a name (possibly overloaded), and there may
9203 -- be stream operations declared for unrelated types, so we just need
9204 -- to verify that one of these interpretations is the one available at
9205 -- at the freeze point.
9207 elsif A_Id
= Aspect_Input
or else
9208 A_Id
= Aspect_Output
or else
9209 A_Id
= Aspect_Read
or else
9212 Analyze
(End_Decl_Expr
);
9213 Check_Overloaded_Name
;
9215 elsif A_Id
= Aspect_Variable_Indexing
or else
9216 A_Id
= Aspect_Constant_Indexing
or else
9217 A_Id
= Aspect_Default_Iterator
or else
9218 A_Id
= Aspect_Iterator_Element
9220 -- Make type unfrozen before analysis, to prevent spurious errors
9221 -- about late attributes.
9223 Set_Is_Frozen
(Ent
, False);
9224 Analyze
(End_Decl_Expr
);
9225 Set_Is_Frozen
(Ent
, True);
9227 -- If the end of declarations comes before any other freeze
9228 -- point, the Freeze_Expr is not analyzed: no check needed.
9230 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
9231 Check_Overloaded_Name
;
9239 -- Indicate that the expression comes from an aspect specification,
9240 -- which is used in subsequent analysis even if expansion is off.
9242 Set_Parent
(End_Decl_Expr
, ASN
);
9244 -- In a generic context the aspect expressions have not been
9245 -- preanalyzed, so do it now. There are no conformance checks
9246 -- to perform in this case.
9249 Check_Aspect_At_Freeze_Point
(ASN
);
9252 -- The default values attributes may be defined in the private part,
9253 -- and the analysis of the expression may take place when only the
9254 -- partial view is visible. The expression must be scalar, so use
9255 -- the full view to resolve.
9257 elsif (A_Id
= Aspect_Default_Value
9259 A_Id
= Aspect_Default_Component_Value
)
9260 and then Is_Private_Type
(T
)
9262 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
9265 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
9268 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
9271 -- Output error message if error. Force error on aspect specification
9272 -- even if there is an error on the expression itself.
9276 ("!visibility of aspect for& changes after freeze point",
9279 ("info: & is frozen here, aspects evaluated at this point??",
9280 Freeze_Node
(Ent
), Ent
);
9282 end Check_Aspect_At_End_Of_Declarations
;
9284 ----------------------------------
9285 -- Check_Aspect_At_Freeze_Point --
9286 ----------------------------------
9288 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
9289 Ident
: constant Node_Id
:= Identifier
(ASN
);
9290 -- Identifier (use Entity field to save expression)
9292 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9294 T
: Entity_Id
:= Empty
;
9295 -- Type required for preanalyze call
9298 -- On entry to this procedure, Entity (Ident) contains a copy of the
9299 -- original expression from the aspect, saved for this purpose.
9301 -- On exit from this procedure Entity (Ident) is unchanged, still
9302 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9303 -- of the expression, preanalyzed just after the freeze point.
9305 -- Make a copy of the expression to be preanalyzed
9307 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
9309 -- Find type for preanalyze call
9313 -- No_Aspect should be impossible
9316 raise Program_Error
;
9318 -- Aspects taking an optional boolean argument
9320 when Boolean_Aspects
9321 | Library_Unit_Aspects
9323 T
:= Standard_Boolean
;
9325 -- Aspects corresponding to attribute definition clauses
9327 when Aspect_Address
=>
9328 T
:= RTE
(RE_Address
);
9330 when Aspect_Attach_Handler
=>
9331 T
:= RTE
(RE_Interrupt_ID
);
9333 when Aspect_Bit_Order
9334 | Aspect_Scalar_Storage_Order
9336 T
:= RTE
(RE_Bit_Order
);
9338 when Aspect_Convention
=>
9342 T
:= RTE
(RE_CPU_Range
);
9344 -- Default_Component_Value is resolved with the component type
9346 when Aspect_Default_Component_Value
=>
9347 T
:= Component_Type
(Entity
(ASN
));
9349 when Aspect_Default_Storage_Pool
=>
9350 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9352 -- Default_Value is resolved with the type entity in question
9354 when Aspect_Default_Value
=>
9357 when Aspect_Dispatching_Domain
=>
9358 T
:= RTE
(RE_Dispatching_Domain
);
9360 when Aspect_External_Tag
=>
9361 T
:= Standard_String
;
9363 when Aspect_External_Name
=>
9364 T
:= Standard_String
;
9366 when Aspect_Link_Name
=>
9367 T
:= Standard_String
;
9369 when Aspect_Interrupt_Priority
9372 T
:= Standard_Integer
;
9374 when Aspect_Relative_Deadline
=>
9375 T
:= RTE
(RE_Time_Span
);
9377 when Aspect_Secondary_Stack_Size
=>
9378 T
:= Standard_Integer
;
9380 when Aspect_Small
=>
9382 -- Note that the expression can be of any real type (not just a
9383 -- real universal literal) as long as it is a static constant.
9387 -- For a simple storage pool, we have to retrieve the type of the
9388 -- pool object associated with the aspect's corresponding attribute
9389 -- definition clause.
9391 when Aspect_Simple_Storage_Pool
=>
9392 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
9394 when Aspect_Storage_Pool
=>
9395 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9397 when Aspect_Alignment
9398 | Aspect_Component_Size
9399 | Aspect_Machine_Radix
9400 | Aspect_Object_Size
9402 | Aspect_Storage_Size
9403 | Aspect_Stream_Size
9408 when Aspect_Linker_Section
=>
9409 T
:= Standard_String
;
9411 when Aspect_Synchronization
=>
9414 -- Special case, the expression of these aspects is just an entity
9415 -- that does not need any resolution, so just analyze.
9425 Analyze
(Expression
(ASN
));
9428 -- Same for Iterator aspects, where the expression is a function
9429 -- name. Legality rules are checked separately.
9431 when Aspect_Constant_Indexing
9432 | Aspect_Default_Iterator
9433 | Aspect_Iterator_Element
9434 | Aspect_Variable_Indexing
9436 Analyze
(Expression
(ASN
));
9439 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9441 when Aspect_Iterable
=>
9445 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
9450 if Cursor
= Any_Type
then
9454 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
9455 while Present
(Assoc
) loop
9456 Expr
:= Expression
(Assoc
);
9459 if not Error_Posted
(Expr
) then
9460 Resolve_Iterable_Operation
9461 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
9470 -- Invariant/Predicate take boolean expressions
9472 when Aspect_Dynamic_Predicate
9475 | Aspect_Static_Predicate
9476 | Aspect_Type_Invariant
9478 T
:= Standard_Boolean
;
9480 when Aspect_Predicate_Failure
=>
9481 T
:= Standard_String
;
9483 -- Here is the list of aspects that don't require delay analysis
9485 when Aspect_Abstract_State
9487 | Aspect_Async_Readers
9488 | Aspect_Async_Writers
9489 | Aspect_Constant_After_Elaboration
9490 | Aspect_Contract_Cases
9491 | Aspect_Default_Initial_Condition
9494 | Aspect_Dimension_System
9495 | Aspect_Effective_Reads
9496 | Aspect_Effective_Writes
9497 | Aspect_Extensions_Visible
9500 | Aspect_Implicit_Dereference
9501 | Aspect_Initial_Condition
9502 | Aspect_Initializes
9503 | Aspect_Max_Queue_Length
9504 | Aspect_Obsolescent
9507 | Aspect_Postcondition
9509 | Aspect_Precondition
9510 | Aspect_Refined_Depends
9511 | Aspect_Refined_Global
9512 | Aspect_Refined_Post
9513 | Aspect_Refined_State
9516 | Aspect_Unimplemented
9517 | Aspect_Volatile_Function
9519 raise Program_Error
;
9523 -- Do the preanalyze call
9525 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
9526 end Check_Aspect_At_Freeze_Point
;
9528 -----------------------------------
9529 -- Check_Constant_Address_Clause --
9530 -----------------------------------
9532 procedure Check_Constant_Address_Clause
9536 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
9537 -- Checks that the given node N represents a name whose 'Address is
9538 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9539 -- address value is the same at the point of declaration of U_Ent and at
9540 -- the time of elaboration of the address clause.
9542 procedure Check_Expr_Constants
(Nod
: Node_Id
);
9543 -- Checks that Nod meets the requirements for a constant address clause
9544 -- in the sense of the enclosing procedure.
9546 procedure Check_List_Constants
(Lst
: List_Id
);
9547 -- Check that all elements of list Lst meet the requirements for a
9548 -- constant address clause in the sense of the enclosing procedure.
9550 -------------------------------
9551 -- Check_At_Constant_Address --
9552 -------------------------------
9554 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
9556 if Is_Entity_Name
(Nod
) then
9557 if Present
(Address_Clause
(Entity
((Nod
)))) then
9559 ("invalid address clause for initialized object &!",
9562 ("address for& cannot depend on another address clause! "
9563 & "(RM 13.1(22))!", Nod
, U_Ent
);
9565 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
9566 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
9569 ("invalid address clause for initialized object &!",
9571 Error_Msg_Node_2
:= U_Ent
;
9573 ("\& must be defined before & (RM 13.1(22))!",
9577 elsif Nkind
(Nod
) = N_Selected_Component
then
9579 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
9582 if (Is_Record_Type
(T
)
9583 and then Has_Discriminants
(T
))
9586 and then Is_Record_Type
(Designated_Type
(T
))
9587 and then Has_Discriminants
(Designated_Type
(T
)))
9590 ("invalid address clause for initialized object &!",
9593 ("\address cannot depend on component of discriminated "
9594 & "record (RM 13.1(22))!", Nod
);
9596 Check_At_Constant_Address
(Prefix
(Nod
));
9600 elsif Nkind
(Nod
) = N_Indexed_Component
then
9601 Check_At_Constant_Address
(Prefix
(Nod
));
9602 Check_List_Constants
(Expressions
(Nod
));
9605 Check_Expr_Constants
(Nod
);
9607 end Check_At_Constant_Address
;
9609 --------------------------
9610 -- Check_Expr_Constants --
9611 --------------------------
9613 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
9614 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
9615 Ent
: Entity_Id
:= Empty
;
9618 if Nkind
(Nod
) in N_Has_Etype
9619 and then Etype
(Nod
) = Any_Type
9630 when N_Expanded_Name
9633 Ent
:= Entity
(Nod
);
9635 -- We need to look at the original node if it is different
9636 -- from the node, since we may have rewritten things and
9637 -- substituted an identifier representing the rewrite.
9639 if Original_Node
(Nod
) /= Nod
then
9640 Check_Expr_Constants
(Original_Node
(Nod
));
9642 -- If the node is an object declaration without initial
9643 -- value, some code has been expanded, and the expression
9644 -- is not constant, even if the constituents might be
9645 -- acceptable, as in A'Address + offset.
9647 if Ekind
(Ent
) = E_Variable
9649 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
9651 No
(Expression
(Declaration_Node
(Ent
)))
9654 ("invalid address clause for initialized object &!",
9657 -- If entity is constant, it may be the result of expanding
9658 -- a check. We must verify that its declaration appears
9659 -- before the object in question, else we also reject the
9662 elsif Ekind
(Ent
) = E_Constant
9663 and then In_Same_Source_Unit
(Ent
, U_Ent
)
9664 and then Sloc
(Ent
) > Loc_U_Ent
9667 ("invalid address clause for initialized object &!",
9674 -- Otherwise look at the identifier and see if it is OK
9676 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
9677 or else Is_Type
(Ent
)
9681 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
9683 -- This is the case where we must have Ent defined before
9684 -- U_Ent. Clearly if they are in different units this
9685 -- requirement is met since the unit containing Ent is
9686 -- already processed.
9688 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
9691 -- Otherwise location of Ent must be before the location
9692 -- of U_Ent, that's what prior defined means.
9694 elsif Sloc
(Ent
) < Loc_U_Ent
then
9699 ("invalid address clause for initialized object &!",
9701 Error_Msg_Node_2
:= U_Ent
;
9703 ("\& must be defined before & (RM 13.1(22))!",
9707 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9708 Check_Expr_Constants
(Original_Node
(Nod
));
9712 ("invalid address clause for initialized object &!",
9715 if Comes_From_Source
(Ent
) then
9717 ("\reference to variable& not allowed"
9718 & " (RM 13.1(22))!", Nod
, Ent
);
9721 ("non-static expression not allowed"
9722 & " (RM 13.1(22))!", Nod
);
9726 when N_Integer_Literal
=>
9728 -- If this is a rewritten unchecked conversion, in a system
9729 -- where Address is an integer type, always use the base type
9730 -- for a literal value. This is user-friendly and prevents
9731 -- order-of-elaboration issues with instances of unchecked
9734 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9735 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9738 when N_Character_Literal
9745 Check_Expr_Constants
(Low_Bound
(Nod
));
9746 Check_Expr_Constants
(High_Bound
(Nod
));
9748 when N_Explicit_Dereference
=>
9749 Check_Expr_Constants
(Prefix
(Nod
));
9751 when N_Indexed_Component
=>
9752 Check_Expr_Constants
(Prefix
(Nod
));
9753 Check_List_Constants
(Expressions
(Nod
));
9756 Check_Expr_Constants
(Prefix
(Nod
));
9757 Check_Expr_Constants
(Discrete_Range
(Nod
));
9759 when N_Selected_Component
=>
9760 Check_Expr_Constants
(Prefix
(Nod
));
9762 when N_Attribute_Reference
=>
9763 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9765 Name_Unchecked_Access
,
9766 Name_Unrestricted_Access
)
9768 Check_At_Constant_Address
(Prefix
(Nod
));
9770 -- Normally, System'To_Address will have been transformed into
9771 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9772 -- and we don't want to give an error, because the whole point
9773 -- of 'To_Address is that it is static.
9775 elsif Attribute_Name
(Nod
) = Name_To_Address
then
9776 pragma Assert
(Operating_Mode
= Check_Semantics
);
9780 Check_Expr_Constants
(Prefix
(Nod
));
9781 Check_List_Constants
(Expressions
(Nod
));
9785 Check_List_Constants
(Component_Associations
(Nod
));
9786 Check_List_Constants
(Expressions
(Nod
));
9788 when N_Component_Association
=>
9789 Check_Expr_Constants
(Expression
(Nod
));
9791 when N_Extension_Aggregate
=>
9792 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9793 Check_List_Constants
(Component_Associations
(Nod
));
9794 Check_List_Constants
(Expressions
(Nod
));
9803 Check_Expr_Constants
(Left_Opnd
(Nod
));
9804 Check_Expr_Constants
(Right_Opnd
(Nod
));
9807 Check_Expr_Constants
(Right_Opnd
(Nod
));
9810 | N_Qualified_Expression
9812 | N_Unchecked_Type_Conversion
9814 Check_Expr_Constants
(Expression
(Nod
));
9816 when N_Function_Call
=>
9817 if not Is_Pure
(Entity
(Name
(Nod
))) then
9819 ("invalid address clause for initialized object &!",
9823 ("\function & is not pure (RM 13.1(22))!",
9824 Nod
, Entity
(Name
(Nod
)));
9827 Check_List_Constants
(Parameter_Associations
(Nod
));
9830 when N_Parameter_Association
=>
9831 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9835 ("invalid address clause for initialized object &!",
9838 ("\must be constant defined before& (RM 13.1(22))!",
9841 end Check_Expr_Constants
;
9843 --------------------------
9844 -- Check_List_Constants --
9845 --------------------------
9847 procedure Check_List_Constants
(Lst
: List_Id
) is
9851 if Present
(Lst
) then
9852 Nod1
:= First
(Lst
);
9853 while Present
(Nod1
) loop
9854 Check_Expr_Constants
(Nod1
);
9858 end Check_List_Constants
;
9860 -- Start of processing for Check_Constant_Address_Clause
9863 -- If rep_clauses are to be ignored, no need for legality checks. In
9864 -- particular, no need to pester user about rep clauses that violate the
9865 -- rule on constant addresses, given that these clauses will be removed
9866 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9867 -- we want to relax these checks.
9869 if not Ignore_Rep_Clauses
and not CodePeer_Mode
then
9870 Check_Expr_Constants
(Expr
);
9872 end Check_Constant_Address_Clause
;
9874 ---------------------------
9875 -- Check_Pool_Size_Clash --
9876 ---------------------------
9878 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9882 -- We need to find out which one came first. Note that in the case of
9883 -- aspects mixed with pragmas there are cases where the processing order
9884 -- is reversed, which is why we do the check here.
9886 if Sloc
(SP
) < Sloc
(SS
) then
9887 Error_Msg_Sloc
:= Sloc
(SP
);
9889 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9892 Error_Msg_Sloc
:= Sloc
(SS
);
9894 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9898 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9899 end Check_Pool_Size_Clash
;
9901 ----------------------------------------
9902 -- Check_Record_Representation_Clause --
9903 ----------------------------------------
9905 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9906 Loc
: constant Source_Ptr
:= Sloc
(N
);
9907 Ident
: constant Node_Id
:= Identifier
(N
);
9908 Rectype
: Entity_Id
;
9913 Hbit
: Uint
:= Uint_0
;
9917 Max_Bit_So_Far
: Uint
;
9918 -- Records the maximum bit position so far. If all field positions
9919 -- are monotonically increasing, then we can skip the circuit for
9920 -- checking for overlap, since no overlap is possible.
9922 Tagged_Parent
: Entity_Id
:= Empty
;
9923 -- This is set in the case of an extension for which we have either a
9924 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9925 -- components are positioned by record representation clauses) on the
9926 -- parent type. In this case we check for overlap between components of
9927 -- this tagged type and the parent component. Tagged_Parent will point
9928 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9930 Parent_Last_Bit
: Uint
:= No_Uint
; -- init to avoid warning
9931 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9932 -- last bit position for any field in the parent type. We only need to
9933 -- check overlap for fields starting below this point.
9935 Overlap_Check_Required
: Boolean;
9936 -- Used to keep track of whether or not an overlap check is required
9938 Overlap_Detected
: Boolean := False;
9939 -- Set True if an overlap is detected
9941 Ccount
: Natural := 0;
9942 -- Number of component clauses in record rep clause
9944 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9945 -- Given two entities for record components or discriminants, checks
9946 -- if they have overlapping component clauses and issues errors if so.
9948 procedure Find_Component
;
9949 -- Finds component entity corresponding to current component clause (in
9950 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9951 -- start/stop bits for the field. If there is no matching component or
9952 -- if the matching component does not have a component clause, then
9953 -- that's an error and Comp is set to Empty, but no error message is
9954 -- issued, since the message was already given. Comp is also set to
9955 -- Empty if the current "component clause" is in fact a pragma.
9957 -----------------------------
9958 -- Check_Component_Overlap --
9959 -----------------------------
9961 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9962 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9963 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9966 if Present
(CC1
) and then Present
(CC2
) then
9968 -- Exclude odd case where we have two tag components in the same
9969 -- record, both at location zero. This seems a bit strange, but
9970 -- it seems to happen in some circumstances, perhaps on an error.
9972 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
9976 -- Here we check if the two fields overlap
9979 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
9980 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
9981 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
9982 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
9985 if E2
<= S1
or else E1
<= S2
then
9988 Error_Msg_Node_2
:= Component_Name
(CC2
);
9989 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
9990 Error_Msg_Node_1
:= Component_Name
(CC1
);
9992 ("component& overlaps & #", Component_Name
(CC1
));
9993 Overlap_Detected
:= True;
9997 end Check_Component_Overlap
;
9999 --------------------
10000 -- Find_Component --
10001 --------------------
10003 procedure Find_Component
is
10005 procedure Search_Component
(R
: Entity_Id
);
10006 -- Search components of R for a match. If found, Comp is set
10008 ----------------------
10009 -- Search_Component --
10010 ----------------------
10012 procedure Search_Component
(R
: Entity_Id
) is
10014 Comp
:= First_Component_Or_Discriminant
(R
);
10015 while Present
(Comp
) loop
10017 -- Ignore error of attribute name for component name (we
10018 -- already gave an error message for this, so no need to
10021 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
10024 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
10027 Next_Component_Or_Discriminant
(Comp
);
10029 end Search_Component
;
10031 -- Start of processing for Find_Component
10034 -- Return with Comp set to Empty if we have a pragma
10036 if Nkind
(CC
) = N_Pragma
then
10041 -- Search current record for matching component
10043 Search_Component
(Rectype
);
10045 -- If not found, maybe component of base type discriminant that is
10046 -- absent from statically constrained first subtype.
10049 Search_Component
(Base_Type
(Rectype
));
10052 -- If no component, or the component does not reference the component
10053 -- clause in question, then there was some previous error for which
10054 -- we already gave a message, so just return with Comp Empty.
10056 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
10057 Check_Error_Detected
;
10060 -- Normal case where we have a component clause
10063 Fbit
:= Component_Bit_Offset
(Comp
);
10064 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
10066 end Find_Component
;
10068 -- Start of processing for Check_Record_Representation_Clause
10072 Rectype
:= Entity
(Ident
);
10074 if Rectype
= Any_Type
then
10078 Rectype
:= Underlying_Type
(Rectype
);
10080 -- See if we have a fully repped derived tagged type
10083 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
10086 if Present
(PS
) and then Known_Static_RM_Size
(PS
) then
10087 Tagged_Parent
:= PS
;
10088 Parent_Last_Bit
:= RM_Size
(PS
) - 1;
10090 elsif Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
10091 Tagged_Parent
:= PS
;
10093 -- Find maximum bit of any component of the parent type
10095 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
10096 Pcomp
:= First_Entity
(Tagged_Parent
);
10097 while Present
(Pcomp
) loop
10098 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
10099 if Component_Bit_Offset
(Pcomp
) /= No_Uint
10100 and then Known_Static_Esize
(Pcomp
)
10105 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
10109 -- Skip anonymous types generated for constrained array
10110 -- or record components.
10115 Next_Entity
(Pcomp
);
10120 -- All done if no component clauses
10122 CC
:= First
(Component_Clauses
(N
));
10128 -- If a tag is present, then create a component clause that places it
10129 -- at the start of the record (otherwise gigi may place it after other
10130 -- fields that have rep clauses).
10132 Fent
:= First_Entity
(Rectype
);
10134 if Nkind
(Fent
) = N_Defining_Identifier
10135 and then Chars
(Fent
) = Name_uTag
10137 Set_Component_Bit_Offset
(Fent
, Uint_0
);
10138 Set_Normalized_Position
(Fent
, Uint_0
);
10139 Set_Normalized_First_Bit
(Fent
, Uint_0
);
10140 Set_Normalized_Position_Max
(Fent
, Uint_0
);
10141 Init_Esize
(Fent
, System_Address_Size
);
10143 Set_Component_Clause
(Fent
,
10144 Make_Component_Clause
(Loc
,
10145 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
10147 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
10148 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
10150 Make_Integer_Literal
(Loc
,
10151 UI_From_Int
(System_Address_Size
))));
10153 Ccount
:= Ccount
+ 1;
10156 Max_Bit_So_Far
:= Uint_Minus_1
;
10157 Overlap_Check_Required
:= False;
10159 -- Process the component clauses
10161 while Present
(CC
) loop
10164 if Present
(Comp
) then
10165 Ccount
:= Ccount
+ 1;
10167 -- We need a full overlap check if record positions non-monotonic
10169 if Fbit
<= Max_Bit_So_Far
then
10170 Overlap_Check_Required
:= True;
10173 Max_Bit_So_Far
:= Lbit
;
10175 -- Check bit position out of range of specified size
10177 if Has_Size_Clause
(Rectype
)
10178 and then RM_Size
(Rectype
) <= Lbit
10181 ("bit number out of range of specified size",
10184 -- Check for overlap with tag or parent component
10187 if Is_Tagged_Type
(Rectype
)
10188 and then Fbit
< System_Address_Size
10191 ("component overlaps tag field of&",
10192 Component_Name
(CC
), Rectype
);
10193 Overlap_Detected
:= True;
10195 elsif Present
(Tagged_Parent
)
10196 and then Fbit
<= Parent_Last_Bit
10199 ("component overlaps parent field of&",
10200 Component_Name
(CC
), Rectype
);
10201 Overlap_Detected
:= True;
10204 if Hbit
< Lbit
then
10213 -- Now that we have processed all the component clauses, check for
10214 -- overlap. We have to leave this till last, since the components can
10215 -- appear in any arbitrary order in the representation clause.
10217 -- We do not need this check if all specified ranges were monotonic,
10218 -- as recorded by Overlap_Check_Required being False at this stage.
10220 -- This first section checks if there are any overlapping entries at
10221 -- all. It does this by sorting all entries and then seeing if there are
10222 -- any overlaps. If there are none, then that is decisive, but if there
10223 -- are overlaps, they may still be OK (they may result from fields in
10224 -- different variants).
10226 if Overlap_Check_Required
then
10227 Overlap_Check1
: declare
10229 OC_Fbit
: array (0 .. Ccount
) of Uint
;
10230 -- First-bit values for component clauses, the value is the offset
10231 -- of the first bit of the field from start of record. The zero
10232 -- entry is for use in sorting.
10234 OC_Lbit
: array (0 .. Ccount
) of Uint
;
10235 -- Last-bit values for component clauses, the value is the offset
10236 -- of the last bit of the field from start of record. The zero
10237 -- entry is for use in sorting.
10239 OC_Count
: Natural := 0;
10240 -- Count of entries in OC_Fbit and OC_Lbit
10242 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
10243 -- Compare routine for Sort
10245 procedure OC_Move
(From
: Natural; To
: Natural);
10246 -- Move routine for Sort
10248 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
10254 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
10256 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
10263 procedure OC_Move
(From
: Natural; To
: Natural) is
10265 OC_Fbit
(To
) := OC_Fbit
(From
);
10266 OC_Lbit
(To
) := OC_Lbit
(From
);
10269 -- Start of processing for Overlap_Check
10272 CC
:= First
(Component_Clauses
(N
));
10273 while Present
(CC
) loop
10275 -- Exclude component clause already marked in error
10277 if not Error_Posted
(CC
) then
10280 if Present
(Comp
) then
10281 OC_Count
:= OC_Count
+ 1;
10282 OC_Fbit
(OC_Count
) := Fbit
;
10283 OC_Lbit
(OC_Count
) := Lbit
;
10290 Sorting
.Sort
(OC_Count
);
10292 Overlap_Check_Required
:= False;
10293 for J
in 1 .. OC_Count
- 1 loop
10294 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
10295 Overlap_Check_Required
:= True;
10299 end Overlap_Check1
;
10302 -- If Overlap_Check_Required is still True, then we have to do the full
10303 -- scale overlap check, since we have at least two fields that do
10304 -- overlap, and we need to know if that is OK since they are in
10305 -- different variant, or whether we have a definite problem.
10307 if Overlap_Check_Required
then
10308 Overlap_Check2
: declare
10309 C1_Ent
, C2_Ent
: Entity_Id
;
10310 -- Entities of components being checked for overlap
10313 -- Component_List node whose Component_Items are being checked
10316 -- Component declaration for component being checked
10319 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
10321 -- Loop through all components in record. For each component check
10322 -- for overlap with any of the preceding elements on the component
10323 -- list containing the component and also, if the component is in
10324 -- a variant, check against components outside the case structure.
10325 -- This latter test is repeated recursively up the variant tree.
10327 Main_Component_Loop
: while Present
(C1_Ent
) loop
10328 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
10329 goto Continue_Main_Component_Loop
;
10332 -- Skip overlap check if entity has no declaration node. This
10333 -- happens with discriminants in constrained derived types.
10334 -- Possibly we are missing some checks as a result, but that
10335 -- does not seem terribly serious.
10337 if No
(Declaration_Node
(C1_Ent
)) then
10338 goto Continue_Main_Component_Loop
;
10341 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
10343 -- Loop through component lists that need checking. Check the
10344 -- current component list and all lists in variants above us.
10346 Component_List_Loop
: loop
10348 -- If derived type definition, go to full declaration
10349 -- If at outer level, check discriminants if there are any.
10351 if Nkind
(Clist
) = N_Derived_Type_Definition
then
10352 Clist
:= Parent
(Clist
);
10355 -- Outer level of record definition, check discriminants
10357 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
10358 N_Private_Type_Declaration
)
10360 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
10362 First_Discriminant
(Defining_Identifier
(Clist
));
10363 while Present
(C2_Ent
) loop
10364 exit when C1_Ent
= C2_Ent
;
10365 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10366 Next_Discriminant
(C2_Ent
);
10370 -- Record extension case
10372 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
10375 -- Otherwise check one component list
10378 Citem
:= First
(Component_Items
(Clist
));
10379 while Present
(Citem
) loop
10380 if Nkind
(Citem
) = N_Component_Declaration
then
10381 C2_Ent
:= Defining_Identifier
(Citem
);
10382 exit when C1_Ent
= C2_Ent
;
10383 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10390 -- Check for variants above us (the parent of the Clist can
10391 -- be a variant, in which case its parent is a variant part,
10392 -- and the parent of the variant part is a component list
10393 -- whose components must all be checked against the current
10394 -- component for overlap).
10396 if Nkind
(Parent
(Clist
)) = N_Variant
then
10397 Clist
:= Parent
(Parent
(Parent
(Clist
)));
10399 -- Check for possible discriminant part in record, this
10400 -- is treated essentially as another level in the
10401 -- recursion. For this case the parent of the component
10402 -- list is the record definition, and its parent is the
10403 -- full type declaration containing the discriminant
10406 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
10407 Clist
:= Parent
(Parent
((Clist
)));
10409 -- If neither of these two cases, we are at the top of
10413 exit Component_List_Loop
;
10415 end loop Component_List_Loop
;
10417 <<Continue_Main_Component_Loop
>>
10418 Next_Entity
(C1_Ent
);
10420 end loop Main_Component_Loop
;
10421 end Overlap_Check2
;
10424 -- The following circuit deals with warning on record holes (gaps). We
10425 -- skip this check if overlap was detected, since it makes sense for the
10426 -- programmer to fix this illegality before worrying about warnings.
10428 if not Overlap_Detected
and Warn_On_Record_Holes
then
10429 Record_Hole_Check
: declare
10430 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
10431 -- Full declaration of record type
10433 procedure Check_Component_List
10437 -- Check component list CL for holes. The starting bit should be
10438 -- Sbit. which is zero for the main record component list and set
10439 -- appropriately for recursive calls for variants. DS is set to
10440 -- a list of discriminant specifications to be included in the
10441 -- consideration of components. It is No_List if none to consider.
10443 --------------------------
10444 -- Check_Component_List --
10445 --------------------------
10447 procedure Check_Component_List
10455 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
10457 if DS
/= No_List
then
10458 Compl
:= Compl
+ Integer (List_Length
(DS
));
10462 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
10463 -- Gather components (zero entry is for sort routine)
10465 Ncomps
: Natural := 0;
10466 -- Number of entries stored in Comps (starting at Comps (1))
10469 -- One component item or discriminant specification
10472 -- Starting bit for next component
10475 -- Component entity
10480 function Lt
(Op1
, Op2
: Natural) return Boolean;
10481 -- Compare routine for Sort
10483 procedure Move
(From
: Natural; To
: Natural);
10484 -- Move routine for Sort
10486 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
10492 function Lt
(Op1
, Op2
: Natural) return Boolean is
10494 return Component_Bit_Offset
(Comps
(Op1
))
10496 Component_Bit_Offset
(Comps
(Op2
));
10503 procedure Move
(From
: Natural; To
: Natural) is
10505 Comps
(To
) := Comps
(From
);
10509 -- Gather discriminants into Comp
10511 if DS
/= No_List
then
10512 Citem
:= First
(DS
);
10513 while Present
(Citem
) loop
10514 if Nkind
(Citem
) = N_Discriminant_Specification
then
10516 Ent
: constant Entity_Id
:=
10517 Defining_Identifier
(Citem
);
10519 if Ekind
(Ent
) = E_Discriminant
then
10520 Ncomps
:= Ncomps
+ 1;
10521 Comps
(Ncomps
) := Ent
;
10530 -- Gather component entities into Comp
10532 Citem
:= First
(Component_Items
(CL
));
10533 while Present
(Citem
) loop
10534 if Nkind
(Citem
) = N_Component_Declaration
then
10535 Ncomps
:= Ncomps
+ 1;
10536 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
10542 -- Now sort the component entities based on the first bit.
10543 -- Note we already know there are no overlapping components.
10545 Sorting
.Sort
(Ncomps
);
10547 -- Loop through entries checking for holes
10550 for J
in 1 .. Ncomps
loop
10554 CBO
: constant Uint
:= Component_Bit_Offset
(CEnt
);
10557 -- Skip components with unknown offsets
10559 if CBO
/= No_Uint
and then CBO
>= 0 then
10560 Error_Msg_Uint_1
:= CBO
- Nbit
;
10562 if Error_Msg_Uint_1
> 0 then
10564 ("?H?^-bit gap before component&",
10565 Component_Name
(Component_Clause
(CEnt
)),
10569 Nbit
:= CBO
+ Esize
(CEnt
);
10574 -- Process variant parts recursively if present
10576 if Present
(Variant_Part
(CL
)) then
10577 Variant
:= First
(Variants
(Variant_Part
(CL
)));
10578 while Present
(Variant
) loop
10579 Check_Component_List
10580 (Component_List
(Variant
), Nbit
, No_List
);
10585 end Check_Component_List
;
10587 -- Start of processing for Record_Hole_Check
10594 if Is_Tagged_Type
(Rectype
) then
10595 Sbit
:= UI_From_Int
(System_Address_Size
);
10600 if Nkind
(Decl
) = N_Full_Type_Declaration
10601 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
10603 Check_Component_List
10604 (Component_List
(Type_Definition
(Decl
)),
10606 Discriminant_Specifications
(Decl
));
10609 end Record_Hole_Check
;
10612 -- For records that have component clauses for all components, and whose
10613 -- size is less than or equal to 32, we need to know the size in the
10614 -- front end to activate possible packed array processing where the
10615 -- component type is a record.
10617 -- At this stage Hbit + 1 represents the first unused bit from all the
10618 -- component clauses processed, so if the component clauses are
10619 -- complete, then this is the length of the record.
10621 -- For records longer than System.Storage_Unit, and for those where not
10622 -- all components have component clauses, the back end determines the
10623 -- length (it may for example be appropriate to round up the size
10624 -- to some convenient boundary, based on alignment considerations, etc).
10626 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
10628 -- Nothing to do if at least one component has no component clause
10630 Comp
:= First_Component_Or_Discriminant
(Rectype
);
10631 while Present
(Comp
) loop
10632 exit when No
(Component_Clause
(Comp
));
10633 Next_Component_Or_Discriminant
(Comp
);
10636 -- If we fall out of loop, all components have component clauses
10637 -- and so we can set the size to the maximum value.
10640 Set_RM_Size
(Rectype
, Hbit
+ 1);
10643 end Check_Record_Representation_Clause
;
10649 procedure Check_Size
10653 Biased
: out Boolean)
10655 procedure Size_Too_Small_Error
(Min_Siz
: Uint
);
10656 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10659 --------------------------
10660 -- Size_Too_Small_Error --
10661 --------------------------
10663 procedure Size_Too_Small_Error
(Min_Siz
: Uint
) is
10665 -- This error is suppressed in ASIS mode to allow for different ASIS
10666 -- back ends or ASIS-based tools to query the illegal clause.
10668 if not ASIS_Mode
then
10669 Error_Msg_Uint_1
:= Min_Siz
;
10670 Error_Msg_NE
("size for& too small, minimum allowed is ^", N
, T
);
10672 end Size_Too_Small_Error
;
10676 UT
: constant Entity_Id
:= Underlying_Type
(T
);
10679 -- Start of processing for Check_Size
10684 -- Reject patently improper size values
10686 if Is_Elementary_Type
(T
)
10687 and then Siz
> UI_From_Int
(Int
'Last)
10689 Error_Msg_N
("Size value too large for elementary type", N
);
10691 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
10693 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
10697 -- Dismiss generic types
10699 if Is_Generic_Type
(T
)
10701 Is_Generic_Type
(UT
)
10703 Is_Generic_Type
(Root_Type
(UT
))
10707 -- Guard against previous errors
10709 elsif No
(UT
) or else UT
= Any_Type
then
10710 Check_Error_Detected
;
10713 -- Check case of bit packed array
10715 elsif Is_Array_Type
(UT
)
10716 and then Known_Static_Component_Size
(UT
)
10717 and then Is_Bit_Packed_Array
(UT
)
10725 Asiz
:= Component_Size
(UT
);
10726 Indx
:= First_Index
(UT
);
10728 Ityp
:= Etype
(Indx
);
10730 -- If non-static bound, then we are not in the business of
10731 -- trying to check the length, and indeed an error will be
10732 -- issued elsewhere, since sizes of non-static array types
10733 -- cannot be set implicitly or explicitly.
10735 if not Is_OK_Static_Subtype
(Ityp
) then
10739 -- Otherwise accumulate next dimension
10741 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
10742 Expr_Value
(Type_Low_Bound
(Ityp
)) +
10746 exit when No
(Indx
);
10749 if Asiz
<= Siz
then
10753 Size_Too_Small_Error
(Asiz
);
10754 Set_Esize
(T
, Asiz
);
10755 Set_RM_Size
(T
, Asiz
);
10759 -- All other composite types are ignored
10761 elsif Is_Composite_Type
(UT
) then
10764 -- For fixed-point types, don't check minimum if type is not frozen,
10765 -- since we don't know all the characteristics of the type that can
10766 -- affect the size (e.g. a specified small) till freeze time.
10768 elsif Is_Fixed_Point_Type
(UT
) and then not Is_Frozen
(UT
) then
10771 -- Cases for which a minimum check is required
10774 -- Ignore if specified size is correct for the type
10776 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10780 -- Otherwise get minimum size
10782 M
:= UI_From_Int
(Minimum_Size
(UT
));
10786 -- Size is less than minimum size, but one possibility remains
10787 -- that we can manage with the new size if we bias the type.
10789 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10792 Size_Too_Small_Error
(M
);
10794 Set_RM_Size
(T
, M
);
10802 --------------------------
10803 -- Freeze_Entity_Checks --
10804 --------------------------
10806 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10807 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10808 -- Inspect the primitive operations of type Typ and hide all pairs of
10809 -- implicitly declared non-overridden non-fully conformant homographs
10810 -- (Ada RM 8.3 12.3/2).
10812 -------------------------------------
10813 -- Hide_Non_Overridden_Subprograms --
10814 -------------------------------------
10816 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10817 procedure Hide_Matching_Homographs
10818 (Subp_Id
: Entity_Id
;
10819 Start_Elmt
: Elmt_Id
);
10820 -- Inspect a list of primitive operations starting with Start_Elmt
10821 -- and find matching implicitly declared non-overridden non-fully
10822 -- conformant homographs of Subp_Id. If found, all matches along
10823 -- with Subp_Id are hidden from all visibility.
10825 function Is_Non_Overridden_Or_Null_Procedure
10826 (Subp_Id
: Entity_Id
) return Boolean;
10827 -- Determine whether subprogram Subp_Id is implicitly declared non-
10828 -- overridden subprogram or an implicitly declared null procedure.
10830 ------------------------------
10831 -- Hide_Matching_Homographs --
10832 ------------------------------
10834 procedure Hide_Matching_Homographs
10835 (Subp_Id
: Entity_Id
;
10836 Start_Elmt
: Elmt_Id
)
10839 Prim_Elmt
: Elmt_Id
;
10842 Prim_Elmt
:= Start_Elmt
;
10843 while Present
(Prim_Elmt
) loop
10844 Prim
:= Node
(Prim_Elmt
);
10846 -- The current primitive is implicitly declared non-overridden
10847 -- non-fully conformant homograph of Subp_Id. Both subprograms
10848 -- must be hidden from visibility.
10850 if Chars
(Prim
) = Chars
(Subp_Id
)
10851 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10852 and then not Fully_Conformant
(Prim
, Subp_Id
)
10854 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10855 Set_Is_Immediately_Visible
(Prim
, False);
10856 Set_Is_Potentially_Use_Visible
(Prim
, False);
10858 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10859 Set_Is_Immediately_Visible
(Subp_Id
, False);
10860 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10863 Next_Elmt
(Prim_Elmt
);
10865 end Hide_Matching_Homographs
;
10867 -----------------------------------------
10868 -- Is_Non_Overridden_Or_Null_Procedure --
10869 -----------------------------------------
10871 function Is_Non_Overridden_Or_Null_Procedure
10872 (Subp_Id
: Entity_Id
) return Boolean
10874 Alias_Id
: Entity_Id
;
10877 -- The subprogram is inherited (implicitly declared), it does not
10878 -- override and does not cover a primitive of an interface.
10880 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10881 and then Present
(Alias
(Subp_Id
))
10882 and then No
(Interface_Alias
(Subp_Id
))
10883 and then No
(Overridden_Operation
(Subp_Id
))
10885 Alias_Id
:= Alias
(Subp_Id
);
10887 if Requires_Overriding
(Alias_Id
) then
10890 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10891 and then Null_Present
(Parent
(Alias_Id
))
10898 end Is_Non_Overridden_Or_Null_Procedure
;
10902 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10904 Prim_Elmt
: Elmt_Id
;
10906 -- Start of processing for Hide_Non_Overridden_Subprograms
10909 -- Inspect the list of primitives looking for non-overridden
10912 if Present
(Prim_Ops
) then
10913 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10914 while Present
(Prim_Elmt
) loop
10915 Prim
:= Node
(Prim_Elmt
);
10916 Next_Elmt
(Prim_Elmt
);
10918 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10919 Hide_Matching_Homographs
10921 Start_Elmt
=> Prim_Elmt
);
10925 end Hide_Non_Overridden_Subprograms
;
10929 E
: constant Entity_Id
:= Entity
(N
);
10931 Nongeneric_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10932 -- True in nongeneric case. Some of the processing here is skipped
10933 -- for the generic case since it is not needed. Basically in the
10934 -- generic case, we only need to do stuff that might generate error
10935 -- messages or warnings.
10937 -- Start of processing for Freeze_Entity_Checks
10940 -- Remember that we are processing a freezing entity. Required to
10941 -- ensure correct decoration of internal entities associated with
10942 -- interfaces (see New_Overloaded_Entity).
10944 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10946 -- For tagged types covering interfaces add internal entities that link
10947 -- the primitives of the interfaces with the primitives that cover them.
10948 -- Note: These entities were originally generated only when generating
10949 -- code because their main purpose was to provide support to initialize
10950 -- the secondary dispatch tables. They are now generated also when
10951 -- compiling with no code generation to provide ASIS the relationship
10952 -- between interface primitives and tagged type primitives. They are
10953 -- also used to locate primitives covering interfaces when processing
10954 -- generics (see Derive_Subprograms).
10956 -- This is not needed in the generic case
10958 if Ada_Version
>= Ada_2005
10959 and then Nongeneric_Case
10960 and then Ekind
(E
) = E_Record_Type
10961 and then Is_Tagged_Type
(E
)
10962 and then not Is_Interface
(E
)
10963 and then Has_Interfaces
(E
)
10965 -- This would be a good common place to call the routine that checks
10966 -- overriding of interface primitives (and thus factorize calls to
10967 -- Check_Abstract_Overriding located at different contexts in the
10968 -- compiler). However, this is not possible because it causes
10969 -- spurious errors in case of late overriding.
10971 Add_Internal_Interface_Entities
(E
);
10974 -- After all forms of overriding have been resolved, a tagged type may
10975 -- be left with a set of implicitly declared and possibly erroneous
10976 -- abstract subprograms, null procedures and subprograms that require
10977 -- overriding. If this set contains fully conformant homographs, then
10978 -- one is chosen arbitrarily (already done during resolution), otherwise
10979 -- all remaining non-fully conformant homographs are hidden from
10980 -- visibility (Ada RM 8.3 12.3/2).
10982 if Is_Tagged_Type
(E
) then
10983 Hide_Non_Overridden_Subprograms
(E
);
10988 if Ekind
(E
) = E_Record_Type
10989 and then Is_CPP_Class
(E
)
10990 and then Is_Tagged_Type
(E
)
10991 and then Tagged_Type_Expansion
10993 if CPP_Num_Prims
(E
) = 0 then
10995 -- If the CPP type has user defined components then it must import
10996 -- primitives from C++. This is required because if the C++ class
10997 -- has no primitives then the C++ compiler does not added the _tag
10998 -- component to the type.
11000 if First_Entity
(E
) /= Last_Entity
(E
) then
11002 ("'C'P'P type must import at least one primitive from C++??",
11007 -- Check that all its primitives are abstract or imported from C++.
11008 -- Check also availability of the C++ constructor.
11011 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
11013 Error_Reported
: Boolean := False;
11017 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
11018 while Present
(Elmt
) loop
11019 Prim
:= Node
(Elmt
);
11021 if Comes_From_Source
(Prim
) then
11022 if Is_Abstract_Subprogram
(Prim
) then
11025 elsif not Is_Imported
(Prim
)
11026 or else Convention
(Prim
) /= Convention_CPP
11029 ("primitives of 'C'P'P types must be imported from C++ "
11030 & "or abstract??", Prim
);
11032 elsif not Has_Constructors
11033 and then not Error_Reported
11035 Error_Msg_Name_1
:= Chars
(E
);
11037 ("??'C'P'P constructor required for type %", Prim
);
11038 Error_Reported
:= True;
11047 -- Check Ada derivation of CPP type
11049 if Expander_Active
-- why? losing errors in -gnatc mode???
11050 and then Present
(Etype
(E
)) -- defend against errors
11051 and then Tagged_Type_Expansion
11052 and then Ekind
(E
) = E_Record_Type
11053 and then Etype
(E
) /= E
11054 and then Is_CPP_Class
(Etype
(E
))
11055 and then CPP_Num_Prims
(Etype
(E
)) > 0
11056 and then not Is_CPP_Class
(E
)
11057 and then not Has_CPP_Constructors
(Etype
(E
))
11059 -- If the parent has C++ primitives but it has no constructor then
11060 -- check that all the primitives are overridden in this derivation;
11061 -- otherwise the constructor of the parent is needed to build the
11069 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
11070 while Present
(Elmt
) loop
11071 Prim
:= Node
(Elmt
);
11073 if not Is_Abstract_Subprogram
(Prim
)
11074 and then No
(Interface_Alias
(Prim
))
11075 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
11077 Error_Msg_Name_1
:= Chars
(Etype
(E
));
11079 ("'C'P'P constructor required for parent type %", E
);
11088 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
11090 -- If we have a type with predicates, build predicate function. This is
11091 -- not needed in the generic case, nor within TSS subprograms and other
11092 -- predefined primitives.
11095 and then Nongeneric_Case
11096 and then not Within_Internal_Subprogram
11097 and then Has_Predicates
(E
)
11099 Build_Predicate_Functions
(E
, N
);
11102 -- If type has delayed aspects, this is where we do the preanalysis at
11103 -- the freeze point, as part of the consistent visibility check. Note
11104 -- that this must be done after calling Build_Predicate_Functions or
11105 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11106 -- the subtype name in the saved expression so that they will not cause
11107 -- trouble in the preanalysis.
11109 -- This is also not needed in the generic case
11112 and then Has_Delayed_Aspects
(E
)
11113 and then Scope
(E
) = Current_Scope
11115 -- Retrieve the visibility to the discriminants in order to properly
11116 -- analyze the aspects.
11118 Push_Scope_And_Install_Discriminants
(E
);
11124 -- Look for aspect specification entries for this entity
11126 Ritem
:= First_Rep_Item
(E
);
11127 while Present
(Ritem
) loop
11128 if Nkind
(Ritem
) = N_Aspect_Specification
11129 and then Entity
(Ritem
) = E
11130 and then Is_Delayed_Aspect
(Ritem
)
11132 Check_Aspect_At_Freeze_Point
(Ritem
);
11135 Next_Rep_Item
(Ritem
);
11139 Uninstall_Discriminants_And_Pop_Scope
(E
);
11142 -- For a record type, deal with variant parts. This has to be delayed
11143 -- to this point, because of the issue of statically predicated
11144 -- subtypes, which we have to ensure are frozen before checking
11145 -- choices, since we need to have the static choice list set.
11147 if Is_Record_Type
(E
) then
11148 Check_Variant_Part
: declare
11149 D
: constant Node_Id
:= Declaration_Node
(E
);
11154 Others_Present
: Boolean;
11155 pragma Warnings
(Off
, Others_Present
);
11156 -- Indicates others present, not used in this case
11158 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
11159 -- Error routine invoked by the generic instantiation below when
11160 -- the variant part has a non static choice.
11162 procedure Process_Declarations
(Variant
: Node_Id
);
11163 -- Processes declarations associated with a variant. We analyzed
11164 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11165 -- but we still need the recursive call to Check_Choices for any
11166 -- nested variant to get its choices properly processed. This is
11167 -- also where we expand out the choices if expansion is active.
11169 package Variant_Choices_Processing
is new
11170 Generic_Check_Choices
11171 (Process_Empty_Choice
=> No_OP
,
11172 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
11173 Process_Associated_Node
=> Process_Declarations
);
11174 use Variant_Choices_Processing
;
11176 -----------------------------
11177 -- Non_Static_Choice_Error --
11178 -----------------------------
11180 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
11182 Flag_Non_Static_Expr
11183 ("choice given in variant part is not static!", Choice
);
11184 end Non_Static_Choice_Error
;
11186 --------------------------
11187 -- Process_Declarations --
11188 --------------------------
11190 procedure Process_Declarations
(Variant
: Node_Id
) is
11191 CL
: constant Node_Id
:= Component_List
(Variant
);
11195 -- Check for static predicate present in this variant
11197 if Has_SP_Choice
(Variant
) then
11199 -- Here we expand. You might expect to find this call in
11200 -- Expand_N_Variant_Part, but that is called when we first
11201 -- see the variant part, and we cannot do this expansion
11202 -- earlier than the freeze point, since for statically
11203 -- predicated subtypes, the predicate is not known till
11204 -- the freeze point.
11206 -- Furthermore, we do this expansion even if the expander
11207 -- is not active, because other semantic processing, e.g.
11208 -- for aggregates, requires the expanded list of choices.
11210 -- If the expander is not active, then we can't just clobber
11211 -- the list since it would invalidate the ASIS -gnatct tree.
11212 -- So we have to rewrite the variant part with a Rewrite
11213 -- call that replaces it with a copy and clobber the copy.
11215 if not Expander_Active
then
11217 NewV
: constant Node_Id
:= New_Copy
(Variant
);
11219 Set_Discrete_Choices
11220 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
11221 Rewrite
(Variant
, NewV
);
11225 Expand_Static_Predicates_In_Choices
(Variant
);
11228 -- We don't need to worry about the declarations in the variant
11229 -- (since they were analyzed by Analyze_Choices when we first
11230 -- encountered the variant), but we do need to take care of
11231 -- expansion of any nested variants.
11233 if not Null_Present
(CL
) then
11234 VP
:= Variant_Part
(CL
);
11236 if Present
(VP
) then
11238 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11241 end Process_Declarations
;
11243 -- Start of processing for Check_Variant_Part
11246 -- Find component list
11250 if Nkind
(D
) = N_Full_Type_Declaration
then
11251 T
:= Type_Definition
(D
);
11253 if Nkind
(T
) = N_Record_Definition
then
11254 C
:= Component_List
(T
);
11256 elsif Nkind
(T
) = N_Derived_Type_Definition
11257 and then Present
(Record_Extension_Part
(T
))
11259 C
:= Component_List
(Record_Extension_Part
(T
));
11263 -- Case of variant part present
11265 if Present
(C
) and then Present
(Variant_Part
(C
)) then
11266 VP
:= Variant_Part
(C
);
11271 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11273 -- If the last variant does not contain the Others choice,
11274 -- replace it with an N_Others_Choice node since Gigi always
11275 -- wants an Others. Note that we do not bother to call Analyze
11276 -- on the modified variant part, since its only effect would be
11277 -- to compute the Others_Discrete_Choices node laboriously, and
11278 -- of course we already know the list of choices corresponding
11279 -- to the others choice (it's the list we're replacing).
11281 -- We only want to do this if the expander is active, since
11282 -- we do not want to clobber the ASIS tree.
11284 if Expander_Active
then
11286 Last_Var
: constant Node_Id
:=
11287 Last_Non_Pragma
(Variants
(VP
));
11289 Others_Node
: Node_Id
;
11292 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
11295 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
11296 Set_Others_Discrete_Choices
11297 (Others_Node
, Discrete_Choices
(Last_Var
));
11298 Set_Discrete_Choices
11299 (Last_Var
, New_List
(Others_Node
));
11304 end Check_Variant_Part
;
11306 end Freeze_Entity_Checks
;
11308 -------------------------
11309 -- Get_Alignment_Value --
11310 -------------------------
11312 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
11313 Align
: constant Uint
:= Static_Integer
(Expr
);
11316 if Align
= No_Uint
then
11319 elsif Align
<= 0 then
11321 -- This error is suppressed in ASIS mode to allow for different ASIS
11322 -- back ends or ASIS-based tools to query the illegal clause.
11324 if not ASIS_Mode
then
11325 Error_Msg_N
("alignment value must be positive", Expr
);
11331 for J
in Int
range 0 .. 64 loop
11333 M
: constant Uint
:= Uint_2
** J
;
11336 exit when M
= Align
;
11340 -- This error is suppressed in ASIS mode to allow for
11341 -- different ASIS back ends or ASIS-based tools to query the
11344 if not ASIS_Mode
then
11345 Error_Msg_N
("alignment value must be power of 2", Expr
);
11355 end Get_Alignment_Value
;
11357 -------------------------------------
11358 -- Inherit_Aspects_At_Freeze_Point --
11359 -------------------------------------
11361 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
11362 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11363 (Rep_Item
: Node_Id
) return Boolean;
11364 -- This routine checks if Rep_Item is either a pragma or an aspect
11365 -- specification node whose correponding pragma (if any) is present in
11366 -- the Rep Item chain of the entity it has been specified to.
11368 --------------------------------------------------
11369 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11370 --------------------------------------------------
11372 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11373 (Rep_Item
: Node_Id
) return Boolean
11377 Nkind
(Rep_Item
) = N_Pragma
11378 or else Present_In_Rep_Item
11379 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
11380 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
11382 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11385 -- A representation item is either subtype-specific (Size and Alignment
11386 -- clauses) or type-related (all others). Subtype-specific aspects may
11387 -- differ for different subtypes of the same type (RM 13.1.8).
11389 -- A derived type inherits each type-related representation aspect of
11390 -- its parent type that was directly specified before the declaration of
11391 -- the derived type (RM 13.1.15).
11393 -- A derived subtype inherits each subtype-specific representation
11394 -- aspect of its parent subtype that was directly specified before the
11395 -- declaration of the derived type (RM 13.1.15).
11397 -- The general processing involves inheriting a representation aspect
11398 -- from a parent type whenever the first rep item (aspect specification,
11399 -- attribute definition clause, pragma) corresponding to the given
11400 -- representation aspect in the rep item chain of Typ, if any, isn't
11401 -- directly specified to Typ but to one of its parents.
11403 -- ??? Note that, for now, just a limited number of representation
11404 -- aspects have been inherited here so far. Many of them are
11405 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11406 -- a non- exhaustive list of aspects that likely also need to
11407 -- be moved to this routine: Alignment, Component_Alignment,
11408 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11409 -- Preelaborable_Initialization, RM_Size and Small.
11411 -- In addition, Convention must be propagated from base type to subtype,
11412 -- because the subtype may have been declared on an incomplete view.
11414 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
11420 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
11421 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
11422 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11423 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
11425 Set_Is_Ada_2005_Only
(Typ
);
11430 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
11431 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
11432 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11433 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
11435 Set_Is_Ada_2012_Only
(Typ
);
11440 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
11441 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
11442 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11443 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
11445 Set_Is_Atomic
(Typ
);
11446 Set_Is_Volatile
(Typ
);
11447 Set_Treat_As_Volatile
(Typ
);
11452 if Is_Record_Type
(Typ
)
11453 and then Typ
/= Base_Type
(Typ
) and then Is_Frozen
(Base_Type
(Typ
))
11455 Set_Convention
(Typ
, Convention
(Base_Type
(Typ
)));
11458 -- Default_Component_Value
11460 -- Verify that there is no rep_item declared for the type, and there
11461 -- is one coming from an ancestor.
11463 if Is_Array_Type
(Typ
)
11464 and then Is_Base_Type
(Typ
)
11465 and then not Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
11466 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
11468 Set_Default_Aspect_Component_Value
(Typ
,
11469 Default_Aspect_Component_Value
11470 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
11475 if Is_Scalar_Type
(Typ
)
11476 and then Is_Base_Type
(Typ
)
11477 and then not Has_Rep_Item
(Typ
, Name_Default_Value
, False)
11478 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
11480 Set_Has_Default_Aspect
(Typ
);
11481 Set_Default_Aspect_Value
(Typ
,
11482 Default_Aspect_Value
11483 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
11488 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
11489 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
11490 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11491 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
11493 Set_Discard_Names
(Typ
);
11498 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
11499 and then Has_Rep_Item
(Typ
, Name_Volatile
)
11500 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11501 (Get_Rep_Item
(Typ
, Name_Volatile
))
11503 Set_Is_Volatile
(Typ
);
11504 Set_Treat_As_Volatile
(Typ
);
11507 -- Volatile_Full_Access
11509 if not Has_Rep_Item
(Typ
, Name_Volatile_Full_Access
, False)
11510 and then Has_Rep_Pragma
(Typ
, Name_Volatile_Full_Access
)
11511 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11512 (Get_Rep_Item
(Typ
, Name_Volatile_Full_Access
))
11514 Set_Is_Volatile_Full_Access
(Typ
);
11515 Set_Is_Volatile
(Typ
);
11516 Set_Treat_As_Volatile
(Typ
);
11519 -- Inheritance for derived types only
11521 if Is_Derived_Type
(Typ
) then
11523 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11524 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
11527 -- Atomic_Components
11529 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
11530 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
11531 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11532 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
11534 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
11537 -- Volatile_Components
11539 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
11540 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
11541 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11542 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
11544 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
11547 -- Finalize_Storage_Only
11549 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
11550 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
11552 Set_Finalize_Storage_Only
(Bas_Typ
);
11555 -- Universal_Aliasing
11557 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
11558 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
11559 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11560 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
11562 Set_Universal_Aliasing
(Imp_Bas_Typ
);
11567 if Is_Record_Type
(Typ
) then
11568 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
11569 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
11571 Set_Reverse_Bit_Order
(Bas_Typ
,
11572 Reverse_Bit_Order
(Entity
(Name
11573 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
11577 -- Scalar_Storage_Order
11579 -- Note: the aspect is specified on a first subtype, but recorded
11580 -- in a flag of the base type!
11582 if (Is_Record_Type
(Typ
) or else Is_Array_Type
(Typ
))
11583 and then Typ
= Bas_Typ
11585 -- For a type extension, always inherit from parent; otherwise
11586 -- inherit if no default applies. Note: we do not check for
11587 -- an explicit rep item on the parent type when inheriting,
11588 -- because the parent SSO may itself have been set by default.
11590 if not Has_Rep_Item
(First_Subtype
(Typ
),
11591 Name_Scalar_Storage_Order
, False)
11592 and then (Is_Tagged_Type
(Bas_Typ
)
11593 or else not (SSO_Set_Low_By_Default
(Bas_Typ
)
11595 SSO_Set_High_By_Default
(Bas_Typ
)))
11597 Set_Reverse_Storage_Order
(Bas_Typ
,
11598 Reverse_Storage_Order
11599 (Implementation_Base_Type
(Etype
(Bas_Typ
))));
11601 -- Clear default SSO indications, since the inherited aspect
11602 -- which was set explicitly overrides the default.
11604 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
11605 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
11610 end Inherit_Aspects_At_Freeze_Point
;
11616 procedure Initialize
is
11618 Address_Clause_Checks
.Init
;
11619 Compile_Time_Warnings_Errors
.Init
;
11620 Unchecked_Conversions
.Init
;
11622 -- ??? Might be needed in the future for some non GCC back-ends
11623 -- if AAMP_On_Target then
11624 -- Independence_Checks.Init;
11628 ---------------------------
11629 -- Install_Discriminants --
11630 ---------------------------
11632 procedure Install_Discriminants
(E
: Entity_Id
) is
11636 Disc
:= First_Discriminant
(E
);
11637 while Present
(Disc
) loop
11638 Prev
:= Current_Entity
(Disc
);
11639 Set_Current_Entity
(Disc
);
11640 Set_Is_Immediately_Visible
(Disc
);
11641 Set_Homonym
(Disc
, Prev
);
11642 Next_Discriminant
(Disc
);
11644 end Install_Discriminants
;
11646 -------------------------
11647 -- Is_Operational_Item --
11648 -------------------------
11650 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
11652 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
11657 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
11660 -- List of operational items is given in AARM 13.1(8.mm/1).
11661 -- It is clearly incomplete, as it does not include iterator
11662 -- aspects, among others.
11664 return Id
= Attribute_Constant_Indexing
11665 or else Id
= Attribute_Default_Iterator
11666 or else Id
= Attribute_Implicit_Dereference
11667 or else Id
= Attribute_Input
11668 or else Id
= Attribute_Iterator_Element
11669 or else Id
= Attribute_Iterable
11670 or else Id
= Attribute_Output
11671 or else Id
= Attribute_Read
11672 or else Id
= Attribute_Variable_Indexing
11673 or else Id
= Attribute_Write
11674 or else Id
= Attribute_External_Tag
;
11677 end Is_Operational_Item
;
11679 -------------------------
11680 -- Is_Predicate_Static --
11681 -------------------------
11683 -- Note: the basic legality of the expression has already been checked, so
11684 -- we don't need to worry about cases or ranges on strings for example.
11686 function Is_Predicate_Static
11688 Nam
: Name_Id
) return Boolean
11690 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
11691 -- Given a list of case expression alternatives, returns True if all
11692 -- the alternatives are static (have all static choices, and a static
11695 function All_Static_Choices
(L
: List_Id
) return Boolean;
11696 -- Returns true if all elements of the list are OK static choices
11697 -- as defined below for Is_Static_Choice. Used for case expression
11698 -- alternatives and for the right operand of a membership test. An
11699 -- others_choice is static if the corresponding expression is static.
11700 -- The staticness of the bounds is checked separately.
11702 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
11703 -- Returns True if N represents a static choice (static subtype, or
11704 -- static subtype indication, or static expression, or static range).
11706 -- Note that this is a bit more inclusive than we actually need
11707 -- (in particular membership tests do not allow the use of subtype
11708 -- indications). But that doesn't matter, we have already checked
11709 -- that the construct is legal to get this far.
11711 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
11712 pragma Inline
(Is_Type_Ref
);
11713 -- Returns True if N is a reference to the type for the predicate in the
11714 -- expression (i.e. if it is an identifier whose Chars field matches the
11715 -- Nam given in the call). N must not be parenthesized, if the type name
11716 -- appears in parens, this routine will return False.
11718 -- The routine also returns True for function calls generated during the
11719 -- expansion of comparison operators on strings, which are intended to
11720 -- be legal in static predicates, and are converted into calls to array
11721 -- comparison routines in the body of the corresponding predicate
11724 ----------------------------------
11725 -- All_Static_Case_Alternatives --
11726 ----------------------------------
11728 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
11733 while Present
(N
) loop
11734 if not (All_Static_Choices
(Discrete_Choices
(N
))
11735 and then Is_OK_Static_Expression
(Expression
(N
)))
11744 end All_Static_Case_Alternatives
;
11746 ------------------------
11747 -- All_Static_Choices --
11748 ------------------------
11750 function All_Static_Choices
(L
: List_Id
) return Boolean is
11755 while Present
(N
) loop
11756 if not Is_Static_Choice
(N
) then
11764 end All_Static_Choices
;
11766 ----------------------
11767 -- Is_Static_Choice --
11768 ----------------------
11770 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
11772 return Nkind
(N
) = N_Others_Choice
11773 or else Is_OK_Static_Expression
(N
)
11774 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
11775 and then Is_OK_Static_Subtype
(Entity
(N
)))
11776 or else (Nkind
(N
) = N_Subtype_Indication
11777 and then Is_OK_Static_Subtype
(Entity
(N
)))
11778 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
11779 end Is_Static_Choice
;
11785 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
11787 return (Nkind
(N
) = N_Identifier
11788 and then Chars
(N
) = Nam
11789 and then Paren_Count
(N
) = 0)
11790 or else Nkind
(N
) = N_Function_Call
;
11793 -- Start of processing for Is_Predicate_Static
11796 -- Predicate_Static means one of the following holds. Numbers are the
11797 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11799 -- 16: A static expression
11801 if Is_OK_Static_Expression
(Expr
) then
11804 -- 17: A membership test whose simple_expression is the current
11805 -- instance, and whose membership_choice_list meets the requirements
11806 -- for a static membership test.
11808 elsif Nkind
(Expr
) in N_Membership_Test
11809 and then ((Present
(Right_Opnd
(Expr
))
11810 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11812 (Present
(Alternatives
(Expr
))
11813 and then All_Static_Choices
(Alternatives
(Expr
))))
11817 -- 18. A case_expression whose selecting_expression is the current
11818 -- instance, and whose dependent expressions are static expressions.
11820 elsif Nkind
(Expr
) = N_Case_Expression
11821 and then Is_Type_Ref
(Expression
(Expr
))
11822 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11826 -- 19. A call to a predefined equality or ordering operator, where one
11827 -- operand is the current instance, and the other is a static
11830 -- Note: the RM is clearly wrong here in not excluding string types.
11831 -- Without this exclusion, we would allow expressions like X > "ABC"
11832 -- to be considered as predicate-static, which is clearly not intended,
11833 -- since the idea is for predicate-static to be a subset of normal
11834 -- static expressions (and "DEF" > "ABC" is not a static expression).
11836 -- However, we do allow internally generated (not from source) equality
11837 -- and inequality operations to be valid on strings (this helps deal
11838 -- with cases where we transform A in "ABC" to A = "ABC).
11840 -- In fact, it appears that the intent of the ARG is to extend static
11841 -- predicates to strings, and that the extension should probably apply
11842 -- to static expressions themselves. The code below accepts comparison
11843 -- operators that apply to static strings.
11845 elsif Nkind
(Expr
) in N_Op_Compare
11846 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11847 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11849 (Is_Type_Ref
(Right_Opnd
(Expr
))
11850 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11854 -- 20. A call to a predefined boolean logical operator, where each
11855 -- operand is predicate-static.
11857 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11858 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11859 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11861 (Nkind
(Expr
) = N_Op_Not
11862 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11866 -- 21. A short-circuit control form where both operands are
11867 -- predicate-static.
11869 elsif Nkind
(Expr
) in N_Short_Circuit
11870 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11871 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11875 -- 22. A parenthesized predicate-static expression. This does not
11876 -- require any special test, since we just ignore paren levels in
11877 -- all the cases above.
11879 -- One more test that is an implementation artifact caused by the fact
11880 -- that we are analyzing not the original expression, but the generated
11881 -- expression in the body of the predicate function. This can include
11882 -- references to inherited predicates, so that the expression we are
11883 -- processing looks like:
11885 -- xxPredicate (typ (Inns)) and then expression
11887 -- Where the call is to a Predicate function for an inherited predicate.
11888 -- We simply ignore such a call, which could be to either a dynamic or
11889 -- a static predicate. Note that if the parent predicate is dynamic then
11890 -- eventually this type will be marked as dynamic, but you are allowed
11891 -- to specify a static predicate for a subtype which is inheriting a
11892 -- dynamic predicate, so the static predicate validation here ignores
11893 -- the inherited predicate even if it is dynamic.
11894 -- In all cases, a static predicate can only apply to a scalar type.
11896 elsif Nkind
(Expr
) = N_Function_Call
11897 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11898 and then Is_Scalar_Type
(Etype
(First_Entity
(Entity
(Name
(Expr
)))))
11902 elsif Is_Entity_Name
(Expr
)
11903 and then Entity
(Expr
) = Standard_True
11905 Error_Msg_N
("predicate is redundant (always True)?", Expr
);
11908 -- That's an exhaustive list of tests, all other cases are not
11909 -- predicate-static, so we return False.
11914 end Is_Predicate_Static
;
11916 ---------------------
11917 -- Kill_Rep_Clause --
11918 ---------------------
11920 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11922 pragma Assert
(Ignore_Rep_Clauses
);
11924 -- Note: we use Replace rather than Rewrite, because we don't want
11925 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11926 -- rep clause that is being replaced.
11928 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11930 -- The null statement must be marked as not coming from source. This is
11931 -- so that ASIS ignores it, and also the back end does not expect bogus
11932 -- "from source" null statements in weird places (e.g. in declarative
11933 -- regions where such null statements are not allowed).
11935 Set_Comes_From_Source
(N
, False);
11936 end Kill_Rep_Clause
;
11942 function Minimum_Size
11944 Biased
: Boolean := False) return Nat
11946 Lo
: Uint
:= No_Uint
;
11947 Hi
: Uint
:= No_Uint
;
11948 LoR
: Ureal
:= No_Ureal
;
11949 HiR
: Ureal
:= No_Ureal
;
11950 LoSet
: Boolean := False;
11951 HiSet
: Boolean := False;
11954 Ancest
: Entity_Id
;
11955 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11958 -- If bad type, return 0
11960 if T
= Any_Type
then
11963 -- For generic types, just return zero. There cannot be any legitimate
11964 -- need to know such a size, but this routine may be called with a
11965 -- generic type as part of normal processing.
11967 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
11970 -- Access types (cannot have size smaller than System.Address)
11972 elsif Is_Access_Type
(T
) then
11973 return System_Address_Size
;
11975 -- Floating-point types
11977 elsif Is_Floating_Point_Type
(T
) then
11978 return UI_To_Int
(Esize
(R_Typ
));
11982 elsif Is_Discrete_Type
(T
) then
11984 -- The following loop is looking for the nearest compile time known
11985 -- bounds following the ancestor subtype chain. The idea is to find
11986 -- the most restrictive known bounds information.
11990 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
11995 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
11996 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
12003 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
12004 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
12010 Ancest
:= Ancestor_Subtype
(Ancest
);
12012 if No
(Ancest
) then
12013 Ancest
:= Base_Type
(T
);
12015 if Is_Generic_Type
(Ancest
) then
12021 -- Fixed-point types. We can't simply use Expr_Value to get the
12022 -- Corresponding_Integer_Value values of the bounds, since these do not
12023 -- get set till the type is frozen, and this routine can be called
12024 -- before the type is frozen. Similarly the test for bounds being static
12025 -- needs to include the case where we have unanalyzed real literals for
12026 -- the same reason.
12028 elsif Is_Fixed_Point_Type
(T
) then
12030 -- The following loop is looking for the nearest compile time known
12031 -- bounds following the ancestor subtype chain. The idea is to find
12032 -- the most restrictive known bounds information.
12036 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
12040 -- Note: In the following two tests for LoSet and HiSet, it may
12041 -- seem redundant to test for N_Real_Literal here since normally
12042 -- one would assume that the test for the value being known at
12043 -- compile time includes this case. However, there is a glitch.
12044 -- If the real literal comes from folding a non-static expression,
12045 -- then we don't consider any non- static expression to be known
12046 -- at compile time if we are in configurable run time mode (needed
12047 -- in some cases to give a clearer definition of what is and what
12048 -- is not accepted). So the test is indeed needed. Without it, we
12049 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12052 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
12053 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
12055 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
12062 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
12063 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
12065 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
12071 Ancest
:= Ancestor_Subtype
(Ancest
);
12073 if No
(Ancest
) then
12074 Ancest
:= Base_Type
(T
);
12076 if Is_Generic_Type
(Ancest
) then
12082 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
12083 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
12085 -- No other types allowed
12088 raise Program_Error
;
12091 -- Fall through with Hi and Lo set. Deal with biased case
12094 and then not Is_Fixed_Point_Type
(T
)
12095 and then not (Is_Enumeration_Type
(T
)
12096 and then Has_Non_Standard_Rep
(T
)))
12097 or else Has_Biased_Representation
(T
)
12103 -- Null range case, size is always zero. We only do this in the discrete
12104 -- type case, since that's the odd case that came up. Probably we should
12105 -- also do this in the fixed-point case, but doing so causes peculiar
12106 -- gigi failures, and it is not worth worrying about this incredibly
12107 -- marginal case (explicit null-range fixed-point type declarations)???
12109 if Lo
> Hi
and then Is_Discrete_Type
(T
) then
12112 -- Signed case. Note that we consider types like range 1 .. -1 to be
12113 -- signed for the purpose of computing the size, since the bounds have
12114 -- to be accommodated in the base type.
12116 elsif Lo
< 0 or else Hi
< 0 then
12120 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12121 -- Note that we accommodate the case where the bounds cross. This
12122 -- can happen either because of the way the bounds are declared
12123 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12137 -- If both bounds are positive, make sure that both are represen-
12138 -- table in the case where the bounds are crossed. This can happen
12139 -- either because of the way the bounds are declared, or because of
12140 -- the algorithm in Freeze_Fixed_Point_Type.
12146 -- S = size, (can accommodate 0 .. (2**size - 1))
12149 while Hi
>= Uint_2
** S
loop
12157 ---------------------------
12158 -- New_Stream_Subprogram --
12159 ---------------------------
12161 procedure New_Stream_Subprogram
12165 Nam
: TSS_Name_Type
)
12167 Loc
: constant Source_Ptr
:= Sloc
(N
);
12168 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
12169 Subp_Id
: Entity_Id
;
12170 Subp_Decl
: Node_Id
;
12174 Defer_Declaration
: constant Boolean :=
12175 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
12176 -- For a tagged type, there is a declaration for each stream attribute
12177 -- at the freeze point, and we must generate only a completion of this
12178 -- declaration. We do the same for private types, because the full view
12179 -- might be tagged. Otherwise we generate a declaration at the point of
12180 -- the attribute definition clause. If the attribute definition comes
12181 -- from an aspect specification the declaration is part of the freeze
12182 -- actions of the type.
12184 function Build_Spec
return Node_Id
;
12185 -- Used for declaration and renaming declaration, so that this is
12186 -- treated as a renaming_as_body.
12192 function Build_Spec
return Node_Id
is
12193 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
12196 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
12199 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
12201 -- S : access Root_Stream_Type'Class
12203 Formals
:= New_List
(
12204 Make_Parameter_Specification
(Loc
,
12205 Defining_Identifier
=>
12206 Make_Defining_Identifier
(Loc
, Name_S
),
12208 Make_Access_Definition
(Loc
,
12210 New_Occurrence_Of
(
12211 Designated_Type
(Etype
(F
)), Loc
))));
12213 if Nam
= TSS_Stream_Input
then
12215 Make_Function_Specification
(Loc
,
12216 Defining_Unit_Name
=> Subp_Id
,
12217 Parameter_Specifications
=> Formals
,
12218 Result_Definition
=> T_Ref
);
12222 Append_To
(Formals
,
12223 Make_Parameter_Specification
(Loc
,
12224 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
12225 Out_Present
=> Out_P
,
12226 Parameter_Type
=> T_Ref
));
12229 Make_Procedure_Specification
(Loc
,
12230 Defining_Unit_Name
=> Subp_Id
,
12231 Parameter_Specifications
=> Formals
);
12237 -- Start of processing for New_Stream_Subprogram
12240 F
:= First_Formal
(Subp
);
12242 if Ekind
(Subp
) = E_Procedure
then
12243 Etyp
:= Etype
(Next_Formal
(F
));
12245 Etyp
:= Etype
(Subp
);
12248 -- Prepare subprogram declaration and insert it as an action on the
12249 -- clause node. The visibility for this entity is used to test for
12250 -- visibility of the attribute definition clause (in the sense of
12251 -- 8.3(23) as amended by AI-195).
12253 if not Defer_Declaration
then
12255 Make_Subprogram_Declaration
(Loc
,
12256 Specification
=> Build_Spec
);
12258 -- For a tagged type, there is always a visible declaration for each
12259 -- stream TSS (it is a predefined primitive operation), and the
12260 -- completion of this declaration occurs at the freeze point, which is
12261 -- not always visible at places where the attribute definition clause is
12262 -- visible. So, we create a dummy entity here for the purpose of
12263 -- tracking the visibility of the attribute definition clause itself.
12267 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
12269 Make_Object_Declaration
(Loc
,
12270 Defining_Identifier
=> Subp_Id
,
12271 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
12274 if not Defer_Declaration
12275 and then From_Aspect_Specification
(N
)
12276 and then Has_Delayed_Freeze
(Ent
)
12278 Append_Freeze_Action
(Ent
, Subp_Decl
);
12281 Insert_Action
(N
, Subp_Decl
);
12282 Set_Entity
(N
, Subp_Id
);
12286 Make_Subprogram_Renaming_Declaration
(Loc
,
12287 Specification
=> Build_Spec
,
12288 Name
=> New_Occurrence_Of
(Subp
, Loc
));
12290 if Defer_Declaration
then
12291 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
12294 if From_Aspect_Specification
(N
) then
12295 Append_Freeze_Action
(Ent
, Subp_Decl
);
12297 Insert_Action
(N
, Subp_Decl
);
12300 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
12302 end New_Stream_Subprogram
;
12304 ------------------------------------------
12305 -- Push_Scope_And_Install_Discriminants --
12306 ------------------------------------------
12308 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
12310 if Has_Discriminants
(E
) then
12313 -- Make the discriminants visible for type declarations and protected
12314 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12316 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12317 Install_Discriminants
(E
);
12320 end Push_Scope_And_Install_Discriminants
;
12322 -----------------------------------
12323 -- Register_Address_Clause_Check --
12324 -----------------------------------
12326 procedure Register_Address_Clause_Check
12333 ACS
: constant Boolean := Scope_Suppress
.Suppress
(Alignment_Check
);
12335 Address_Clause_Checks
.Append
((N
, X
, A
, Y
, Off
, ACS
));
12336 end Register_Address_Clause_Check
;
12338 ------------------------
12339 -- Rep_Item_Too_Early --
12340 ------------------------
12342 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
12344 -- Cannot apply non-operational rep items to generic types
12346 if Is_Operational_Item
(N
) then
12350 and then Is_Generic_Type
(Root_Type
(T
))
12351 and then (Nkind
(N
) /= N_Pragma
12352 or else Get_Pragma_Id
(N
) /= Pragma_Convention
)
12354 Error_Msg_N
("representation item not allowed for generic type", N
);
12358 -- Otherwise check for incomplete type
12360 if Is_Incomplete_Or_Private_Type
(T
)
12361 and then No
(Underlying_Type
(T
))
12363 (Nkind
(N
) /= N_Pragma
12364 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
12367 ("representation item must be after full type declaration", N
);
12370 -- If the type has incomplete components, a representation clause is
12371 -- illegal but stream attributes and Convention pragmas are correct.
12373 elsif Has_Private_Component
(T
) then
12374 if Nkind
(N
) = N_Pragma
then
12379 ("representation item must appear after type is fully defined",
12386 end Rep_Item_Too_Early
;
12388 -----------------------
12389 -- Rep_Item_Too_Late --
12390 -----------------------
12392 function Rep_Item_Too_Late
12395 FOnly
: Boolean := False) return Boolean
12398 Parent_Type
: Entity_Id
;
12400 procedure No_Type_Rep_Item
;
12401 -- Output message indicating that no type-related aspects can be
12402 -- specified due to some property of the parent type.
12404 procedure Too_Late
;
12405 -- Output message for an aspect being specified too late
12407 -- Note that neither of the above errors is considered a serious one,
12408 -- since the effect is simply that we ignore the representation clause
12410 -- Is this really true? In any case if we make this change we must
12411 -- document the requirement in the spec of Rep_Item_Too_Late that
12412 -- if True is returned, then the rep item must be completely ignored???
12414 ----------------------
12415 -- No_Type_Rep_Item --
12416 ----------------------
12418 procedure No_Type_Rep_Item
is
12420 Error_Msg_N
("|type-related representation item not permitted!", N
);
12421 end No_Type_Rep_Item
;
12427 procedure Too_Late
is
12429 -- Other compilers seem more relaxed about rep items appearing too
12430 -- late. Since analysis tools typically don't care about rep items
12431 -- anyway, no reason to be too strict about this.
12433 if not Relaxed_RM_Semantics
then
12434 Error_Msg_N
("|representation item appears too late!", N
);
12438 -- Start of processing for Rep_Item_Too_Late
12441 -- First make sure entity is not frozen (RM 13.1(9))
12445 -- Exclude imported types, which may be frozen if they appear in a
12446 -- representation clause for a local type.
12448 and then not From_Limited_With
(T
)
12450 -- Exclude generated entities (not coming from source). The common
12451 -- case is when we generate a renaming which prematurely freezes the
12452 -- renamed internal entity, but we still want to be able to set copies
12453 -- of attribute values such as Size/Alignment.
12455 and then Comes_From_Source
(T
)
12457 -- A self-referential aspect is illegal if it forces freezing the
12458 -- entity before the corresponding pragma has been analyzed.
12460 if Nkind_In
(N
, N_Attribute_Definition_Clause
, N_Pragma
)
12461 and then From_Aspect_Specification
(N
)
12464 ("aspect specification causes premature freezing of&", N
, T
);
12465 Set_Has_Delayed_Freeze
(T
, False);
12470 S
:= First_Subtype
(T
);
12472 if Present
(Freeze_Node
(S
)) then
12473 if not Relaxed_RM_Semantics
then
12475 ("??no more representation items for }", Freeze_Node
(S
), S
);
12481 -- Check for case of untagged derived type whose parent either has
12482 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12483 -- this case we do not output a Too_Late message, since there is no
12484 -- earlier point where the rep item could be placed to make it legal.
12488 and then Is_Derived_Type
(T
)
12489 and then not Is_Tagged_Type
(T
)
12491 Parent_Type
:= Etype
(Base_Type
(T
));
12493 if Has_Primitive_Operations
(Parent_Type
) then
12496 if not Relaxed_RM_Semantics
then
12498 ("\parent type & has primitive operations!", N
, Parent_Type
);
12503 elsif Is_By_Reference_Type
(Parent_Type
) then
12506 if not Relaxed_RM_Semantics
then
12508 ("\parent type & is a by reference type!", N
, Parent_Type
);
12515 -- No error, but one more warning to consider. The RM (surprisingly)
12516 -- allows this pattern:
12519 -- primitive operations for S
12520 -- type R is new S;
12521 -- rep clause for S
12523 -- Meaning that calls on the primitive operations of S for values of
12524 -- type R may require possibly expensive implicit conversion operations.
12525 -- This is not an error, but is worth a warning.
12527 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
12529 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
12533 and then Has_Primitive_Operations
(Base_Type
(T
))
12535 -- For now, do not generate this warning for the case of aspect
12536 -- specification using Ada 2012 syntax, since we get wrong
12537 -- messages we do not understand. The whole business of derived
12538 -- types and rep items seems a bit confused when aspects are
12539 -- used, since the aspects are not evaluated till freeze time.
12541 and then not From_Aspect_Specification
(N
)
12543 Error_Msg_Sloc
:= Sloc
(DTL
);
12545 ("representation item for& appears after derived type "
12546 & "declaration#??", N
);
12548 ("\may result in implicit conversions for primitive "
12549 & "operations of&??", N
, T
);
12551 ("\to change representations when called with arguments "
12552 & "of type&??", N
, DTL
);
12557 -- No error, link item into head of chain of rep items for the entity,
12558 -- but avoid chaining if we have an overloadable entity, and the pragma
12559 -- is one that can apply to multiple overloaded entities.
12561 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
12563 Pname
: constant Name_Id
:= Pragma_Name
(N
);
12565 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
12566 Name_External
, Name_Interface
)
12573 Record_Rep_Item
(T
, N
);
12575 end Rep_Item_Too_Late
;
12577 -------------------------------------
12578 -- Replace_Type_References_Generic --
12579 -------------------------------------
12581 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
12582 TName
: constant Name_Id
:= Chars
(T
);
12584 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
;
12585 -- Processes a single node in the traversal procedure below, checking
12586 -- if node N should be replaced, and if so, doing the replacement.
12588 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
;
12589 -- Given an identifier in the expression, check whether there is a
12590 -- discriminant or component of the type that is directy visible, and
12591 -- rewrite it as the corresponding selected component of the formal of
12592 -- the subprogram. The entity is located by a sequential search, which
12593 -- seems acceptable given the typical size of component lists and check
12594 -- expressions. Possible optimization ???
12596 ----------------------
12597 -- Replace_Type_Ref --
12598 ----------------------
12600 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
is
12601 Loc
: constant Source_Ptr
:= Sloc
(N
);
12603 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
);
12604 -- Add the proper prefix to a reference to a component of the type
12605 -- when it is not already a selected component.
12611 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
) is
12614 Make_Selected_Component
(Loc
,
12615 Prefix
=> New_Occurrence_Of
(T
, Loc
),
12616 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
)));
12617 Replace_Type_Reference
(Prefix
(Ref
));
12626 -- Start of processing for Replace_Type_Ref
12629 if Nkind
(N
) = N_Identifier
then
12631 -- If not the type name, check whether it is a reference to some
12632 -- other type, which must be frozen before the predicate function
12633 -- is analyzed, i.e. before the freeze node of the type to which
12634 -- the predicate applies.
12636 if Chars
(N
) /= TName
then
12637 if Present
(Current_Entity
(N
))
12638 and then Is_Type
(Current_Entity
(N
))
12640 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
12643 -- The components of the type are directly visible and can
12644 -- be referenced without a prefix.
12646 if Nkind
(Parent
(N
)) = N_Selected_Component
then
12649 -- In expression C (I), C may be a directly visible function
12650 -- or a visible component that has an array type. Disambiguate
12651 -- by examining the component type.
12653 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
12654 and then N
= Prefix
(Parent
(N
))
12656 Comp
:= Visible_Component
(Chars
(N
));
12658 if Present
(Comp
) and then Is_Array_Type
(Etype
(Comp
)) then
12659 Add_Prefix
(N
, Comp
);
12663 Comp
:= Visible_Component
(Chars
(N
));
12665 if Present
(Comp
) then
12666 Add_Prefix
(N
, Comp
);
12672 -- Otherwise do the replacement if this is not a qualified
12673 -- reference to a homograph of the type itself. Note that the
12674 -- current instance could not appear in such a context, e.g.
12675 -- the prefix of a type conversion.
12678 if Nkind
(Parent
(N
)) /= N_Selected_Component
12679 or else N
/= Selector_Name
(Parent
(N
))
12681 Replace_Type_Reference
(N
);
12687 -- Case of selected component, which may be a subcomponent of the
12688 -- current instance, or an expanded name which is still unanalyzed.
12690 elsif Nkind
(N
) = N_Selected_Component
then
12692 -- If selector name is not our type, keep going (we might still
12693 -- have an occurrence of the type in the prefix). If it is a
12694 -- subcomponent of the current entity, add prefix.
12696 if Nkind
(Selector_Name
(N
)) /= N_Identifier
12697 or else Chars
(Selector_Name
(N
)) /= TName
12699 if Nkind
(Prefix
(N
)) = N_Identifier
then
12700 Comp
:= Visible_Component
(Chars
(Prefix
(N
)));
12702 if Present
(Comp
) then
12703 Add_Prefix
(Prefix
(N
), Comp
);
12709 -- Selector name is our type, check qualification
12712 -- Loop through scopes and prefixes, doing comparison
12714 Scop
:= Current_Scope
;
12715 Pref
:= Prefix
(N
);
12717 -- Continue if no more scopes or scope with no name
12719 if No
(Scop
) or else Nkind
(Scop
) not in N_Has_Chars
then
12723 -- Do replace if prefix is an identifier matching the scope
12724 -- that we are currently looking at.
12726 if Nkind
(Pref
) = N_Identifier
12727 and then Chars
(Pref
) = Chars
(Scop
)
12729 Replace_Type_Reference
(N
);
12733 -- Go check scope above us if prefix is itself of the form
12734 -- of a selected component, whose selector matches the scope
12735 -- we are currently looking at.
12737 if Nkind
(Pref
) = N_Selected_Component
12738 and then Nkind
(Selector_Name
(Pref
)) = N_Identifier
12739 and then Chars
(Selector_Name
(Pref
)) = Chars
(Scop
)
12741 Scop
:= Scope
(Scop
);
12742 Pref
:= Prefix
(Pref
);
12744 -- For anything else, we don't have a match, so keep on
12745 -- going, there are still some weird cases where we may
12746 -- still have a replacement within the prefix.
12754 -- Continue for any other node kind
12759 end Replace_Type_Ref
;
12761 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Type_Ref
);
12763 -----------------------
12764 -- Visible_Component --
12765 -----------------------
12767 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
is
12771 -- Types with nameable components are records and discriminated
12774 if Ekind
(T
) = E_Record_Type
12775 or else (Is_Private_Type
(T
) and then Has_Discriminants
(T
))
12777 E
:= First_Entity
(T
);
12778 while Present
(E
) loop
12779 if Comes_From_Source
(E
) and then Chars
(E
) = Comp
then
12787 -- Nothing by that name, or the type has no components
12790 end Visible_Component
;
12792 -- Start of processing for Replace_Type_References_Generic
12795 Replace_Type_Refs
(N
);
12796 end Replace_Type_References_Generic
;
12798 --------------------------------
12799 -- Resolve_Aspect_Expressions --
12800 --------------------------------
12802 procedure Resolve_Aspect_Expressions
(E
: Entity_Id
) is
12803 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
;
12804 -- Verify that all identifiers in the expression, with the exception
12805 -- of references to the current entity, denote visible entities. This
12806 -- is done only to detect visibility errors, as the expression will be
12807 -- properly analyzed/expanded during analysis of the predicate function
12808 -- body. We omit quantified expressions from this test, given that they
12809 -- introduce a local identifier that would require proper expansion to
12810 -- handle properly.
12812 -- In ASIS_Mode we preserve the entity in the source because there is
12813 -- no subsequent expansion to decorate the tree.
12819 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
is
12820 Dummy
: Traverse_Result
;
12823 if Nkind
(N
) = N_Selected_Component
then
12824 if Nkind
(Prefix
(N
)) = N_Identifier
12825 and then Chars
(Prefix
(N
)) /= Chars
(E
)
12827 Find_Selected_Component
(N
);
12832 -- Resolve identifiers that are not selectors in parameter
12833 -- associations (these are never resolved by visibility).
12835 elsif Nkind
(N
) = N_Identifier
12836 and then Chars
(N
) /= Chars
(E
)
12837 and then (Nkind
(Parent
(N
)) /= N_Parameter_Association
12838 or else N
/= Selector_Name
(Parent
(N
)))
12840 Find_Direct_Name
(N
);
12842 -- In ASIS mode we must analyze overloaded identifiers to ensure
12843 -- their correct decoration because expansion is disabled (and
12844 -- the expansion of freeze nodes takes care of resolving aspect
12848 if Is_Overloaded
(N
) then
12849 Analyze
(Parent
(N
));
12852 Set_Entity
(N
, Empty
);
12855 -- The name is component association needs no resolution.
12857 elsif Nkind
(N
) = N_Component_Association
then
12858 Dummy
:= Resolve_Name
(Expression
(N
));
12861 elsif Nkind
(N
) = N_Quantified_Expression
then
12868 procedure Resolve_Aspect_Expression
is new Traverse_Proc
(Resolve_Name
);
12872 ASN
: Node_Id
:= First_Rep_Item
(E
);
12874 -- Start of processing for Resolve_Aspect_Expressions
12877 -- Need to make sure discriminants, if any, are directly visible
12879 Push_Scope_And_Install_Discriminants
(E
);
12881 while Present
(ASN
) loop
12882 if Nkind
(ASN
) = N_Aspect_Specification
and then Entity
(ASN
) = E
then
12884 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
12885 Expr
: constant Node_Id
:= Expression
(ASN
);
12890 -- For now we only deal with aspects that do not generate
12891 -- subprograms, or that may mention current instances of
12892 -- types. These will require special handling (???TBD).
12894 when Aspect_Invariant
12896 | Aspect_Predicate_Failure
12900 when Aspect_Dynamic_Predicate
12901 | Aspect_Static_Predicate
12903 -- Build predicate function specification and preanalyze
12904 -- expression after type replacement. The function
12905 -- declaration must be analyzed in the scope of the
12906 -- type, but the expression must see components.
12908 if No
(Predicate_Function
(E
)) then
12909 Uninstall_Discriminants_And_Pop_Scope
(E
);
12911 FDecl
: constant Node_Id
:=
12912 Build_Predicate_Function_Declaration
(E
);
12913 pragma Unreferenced
(FDecl
);
12916 Push_Scope_And_Install_Discriminants
(E
);
12917 Resolve_Aspect_Expression
(Expr
);
12921 when Pre_Post_Aspects
=>
12924 when Aspect_Iterable
=>
12925 if Nkind
(Expr
) = N_Aggregate
then
12930 Assoc
:= First
(Component_Associations
(Expr
));
12931 while Present
(Assoc
) loop
12932 Find_Direct_Name
(Expression
(Assoc
));
12938 -- The expression for Default_Value is a static expression
12939 -- of the type, but this expression does not freeze the
12940 -- type, so it can still appear in a representation clause
12941 -- before the actual freeze point.
12943 when Aspect_Default_Value
=>
12944 Set_Must_Not_Freeze
(Expr
);
12945 Preanalyze_Spec_Expression
(Expr
, E
);
12947 -- Ditto for Storage_Size. Any other aspects that carry
12948 -- expressions that should not freeze ??? This is only
12949 -- relevant to the misuse of deferred constants.
12951 when Aspect_Storage_Size
=>
12952 Set_Must_Not_Freeze
(Expr
);
12953 Preanalyze_Spec_Expression
(Expr
, Any_Integer
);
12956 if Present
(Expr
) then
12957 case Aspect_Argument
(A_Id
) is
12959 | Optional_Expression
12961 Analyze_And_Resolve
(Expr
);
12966 if Nkind
(Expr
) = N_Identifier
then
12967 Find_Direct_Name
(Expr
);
12969 elsif Nkind
(Expr
) = N_Selected_Component
then
12970 Find_Selected_Component
(Expr
);
12978 ASN
:= Next_Rep_Item
(ASN
);
12981 Uninstall_Discriminants_And_Pop_Scope
(E
);
12982 end Resolve_Aspect_Expressions
;
12984 -------------------------
12985 -- Same_Representation --
12986 -------------------------
12988 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
12989 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
12990 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
12993 -- A quick check, if base types are the same, then we definitely have
12994 -- the same representation, because the subtype specific representation
12995 -- attributes (Size and Alignment) do not affect representation from
12996 -- the point of view of this test.
12998 if Base_Type
(T1
) = Base_Type
(T2
) then
13001 elsif Is_Private_Type
(Base_Type
(T2
))
13002 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
13007 -- Tagged types always have the same representation, because it is not
13008 -- possible to specify different representations for common fields.
13010 if Is_Tagged_Type
(T1
) then
13014 -- Representations are definitely different if conventions differ
13016 if Convention
(T1
) /= Convention
(T2
) then
13020 -- Representations are different if component alignments or scalar
13021 -- storage orders differ.
13023 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
13025 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
13027 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
13028 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
13033 -- For arrays, the only real issue is component size. If we know the
13034 -- component size for both arrays, and it is the same, then that's
13035 -- good enough to know we don't have a change of representation.
13037 if Is_Array_Type
(T1
) then
13038 if Known_Component_Size
(T1
)
13039 and then Known_Component_Size
(T2
)
13040 and then Component_Size
(T1
) = Component_Size
(T2
)
13046 -- For records, representations are different if reorderings differ
13048 if Is_Record_Type
(T1
)
13049 and then Is_Record_Type
(T2
)
13050 and then No_Reordering
(T1
) /= No_Reordering
(T2
)
13055 -- Types definitely have same representation if neither has non-standard
13056 -- representation since default representations are always consistent.
13057 -- If only one has non-standard representation, and the other does not,
13058 -- then we consider that they do not have the same representation. They
13059 -- might, but there is no way of telling early enough.
13061 if Has_Non_Standard_Rep
(T1
) then
13062 if not Has_Non_Standard_Rep
(T2
) then
13066 return not Has_Non_Standard_Rep
(T2
);
13069 -- Here the two types both have non-standard representation, and we need
13070 -- to determine if they have the same non-standard representation.
13072 -- For arrays, we simply need to test if the component sizes are the
13073 -- same. Pragma Pack is reflected in modified component sizes, so this
13074 -- check also deals with pragma Pack.
13076 if Is_Array_Type
(T1
) then
13077 return Component_Size
(T1
) = Component_Size
(T2
);
13079 -- Case of record types
13081 elsif Is_Record_Type
(T1
) then
13083 -- Packed status must conform
13085 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
13088 -- Otherwise we must check components. Typ2 maybe a constrained
13089 -- subtype with fewer components, so we compare the components
13090 -- of the base types.
13093 Record_Case
: declare
13094 CD1
, CD2
: Entity_Id
;
13096 function Same_Rep
return Boolean;
13097 -- CD1 and CD2 are either components or discriminants. This
13098 -- function tests whether they have the same representation.
13104 function Same_Rep
return Boolean is
13106 if No
(Component_Clause
(CD1
)) then
13107 return No
(Component_Clause
(CD2
));
13109 -- Note: at this point, component clauses have been
13110 -- normalized to the default bit order, so that the
13111 -- comparison of Component_Bit_Offsets is meaningful.
13114 Present
(Component_Clause
(CD2
))
13116 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
13118 Esize
(CD1
) = Esize
(CD2
);
13122 -- Start of processing for Record_Case
13125 if Has_Discriminants
(T1
) then
13127 -- The number of discriminants may be different if the
13128 -- derived type has fewer (constrained by values). The
13129 -- invisible discriminants retain the representation of
13130 -- the original, so the discrepancy does not per se
13131 -- indicate a different representation.
13133 CD1
:= First_Discriminant
(T1
);
13134 CD2
:= First_Discriminant
(T2
);
13135 while Present
(CD1
) and then Present
(CD2
) loop
13136 if not Same_Rep
then
13139 Next_Discriminant
(CD1
);
13140 Next_Discriminant
(CD2
);
13145 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
13146 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
13147 while Present
(CD1
) loop
13148 if not Same_Rep
then
13151 Next_Component
(CD1
);
13152 Next_Component
(CD2
);
13160 -- For enumeration types, we must check each literal to see if the
13161 -- representation is the same. Note that we do not permit enumeration
13162 -- representation clauses for Character and Wide_Character, so these
13163 -- cases were already dealt with.
13165 elsif Is_Enumeration_Type
(T1
) then
13166 Enumeration_Case
: declare
13167 L1
, L2
: Entity_Id
;
13170 L1
:= First_Literal
(T1
);
13171 L2
:= First_Literal
(T2
);
13172 while Present
(L1
) loop
13173 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
13182 end Enumeration_Case
;
13184 -- Any other types have the same representation for these purposes
13189 end Same_Representation
;
13191 --------------------------------
13192 -- Resolve_Iterable_Operation --
13193 --------------------------------
13195 procedure Resolve_Iterable_Operation
13197 Cursor
: Entity_Id
;
13206 if not Is_Overloaded
(N
) then
13207 if not Is_Entity_Name
(N
)
13208 or else Ekind
(Entity
(N
)) /= E_Function
13209 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
13210 or else No
(First_Formal
(Entity
(N
)))
13211 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
13214 ("iterable primitive must be local function name whose first "
13215 & "formal is an iterable type", N
);
13220 F1
:= First_Formal
(Ent
);
13222 if Nam
= Name_First
or else Nam
= Name_Last
then
13224 -- First or Last (Container) => Cursor
13226 if Etype
(Ent
) /= Cursor
then
13227 Error_Msg_N
("primitive for First must yield a curosr", N
);
13230 elsif Nam
= Name_Next
then
13232 -- Next (Container, Cursor) => Cursor
13234 F2
:= Next_Formal
(F1
);
13236 if Etype
(F2
) /= Cursor
13237 or else Etype
(Ent
) /= Cursor
13238 or else Present
(Next_Formal
(F2
))
13240 Error_Msg_N
("no match for Next iterable primitive", N
);
13243 elsif Nam
= Name_Previous
then
13245 -- Previous (Container, Cursor) => Cursor
13247 F2
:= Next_Formal
(F1
);
13249 if Etype
(F2
) /= Cursor
13250 or else Etype
(Ent
) /= Cursor
13251 or else Present
(Next_Formal
(F2
))
13253 Error_Msg_N
("no match for Previous iterable primitive", N
);
13256 elsif Nam
= Name_Has_Element
then
13258 -- Has_Element (Container, Cursor) => Boolean
13260 F2
:= Next_Formal
(F1
);
13262 if Etype
(F2
) /= Cursor
13263 or else Etype
(Ent
) /= Standard_Boolean
13264 or else Present
(Next_Formal
(F2
))
13266 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
13269 elsif Nam
= Name_Element
then
13270 F2
:= Next_Formal
(F1
);
13273 or else Etype
(F2
) /= Cursor
13274 or else Present
(Next_Formal
(F2
))
13276 Error_Msg_N
("no match for Element iterable primitive", N
);
13280 raise Program_Error
;
13284 -- Overloaded case: find subprogram with proper signature. Caller
13285 -- will report error if no match is found.
13292 Get_First_Interp
(N
, I
, It
);
13293 while Present
(It
.Typ
) loop
13294 if Ekind
(It
.Nam
) = E_Function
13295 and then Scope
(It
.Nam
) = Scope
(Typ
)
13296 and then Etype
(First_Formal
(It
.Nam
)) = Typ
13298 F1
:= First_Formal
(It
.Nam
);
13300 if Nam
= Name_First
then
13301 if Etype
(It
.Nam
) = Cursor
13302 and then No
(Next_Formal
(F1
))
13304 Set_Entity
(N
, It
.Nam
);
13308 elsif Nam
= Name_Next
then
13309 F2
:= Next_Formal
(F1
);
13312 and then No
(Next_Formal
(F2
))
13313 and then Etype
(F2
) = Cursor
13314 and then Etype
(It
.Nam
) = Cursor
13316 Set_Entity
(N
, It
.Nam
);
13320 elsif Nam
= Name_Has_Element
then
13321 F2
:= Next_Formal
(F1
);
13324 and then No
(Next_Formal
(F2
))
13325 and then Etype
(F2
) = Cursor
13326 and then Etype
(It
.Nam
) = Standard_Boolean
13328 Set_Entity
(N
, It
.Nam
);
13329 F2
:= Next_Formal
(F1
);
13333 elsif Nam
= Name_Element
then
13334 F2
:= Next_Formal
(F1
);
13337 and then No
(Next_Formal
(F2
))
13338 and then Etype
(F2
) = Cursor
13340 Set_Entity
(N
, It
.Nam
);
13346 Get_Next_Interp
(I
, It
);
13350 end Resolve_Iterable_Operation
;
13356 procedure Set_Biased
13360 Biased
: Boolean := True)
13364 Set_Has_Biased_Representation
(E
);
13366 if Warn_On_Biased_Representation
then
13368 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
13373 --------------------
13374 -- Set_Enum_Esize --
13375 --------------------
13377 procedure Set_Enum_Esize
(T
: Entity_Id
) is
13383 Init_Alignment
(T
);
13385 -- Find the minimum standard size (8,16,32,64) that fits
13387 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
13388 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
13391 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
13392 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13394 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
13397 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
13400 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
13405 if Hi
< Uint_2
**08 then
13406 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13408 elsif Hi
< Uint_2
**16 then
13411 elsif Hi
< Uint_2
**32 then
13414 else pragma Assert
(Hi
< Uint_2
**63);
13419 -- That minimum is the proper size unless we have a foreign convention
13420 -- and the size required is 32 or less, in which case we bump the size
13421 -- up to 32. This is required for C and C++ and seems reasonable for
13422 -- all other foreign conventions.
13424 if Has_Foreign_Convention
(T
)
13425 and then Esize
(T
) < Standard_Integer_Size
13427 -- Don't do this if Short_Enums on target
13429 and then not Target_Short_Enums
13431 Init_Esize
(T
, Standard_Integer_Size
);
13433 Init_Esize
(T
, Sz
);
13435 end Set_Enum_Esize
;
13437 -----------------------------
13438 -- Uninstall_Discriminants --
13439 -----------------------------
13441 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
13447 -- Discriminants have been made visible for type declarations and
13448 -- protected type declarations, not for subtype declarations.
13450 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
13451 Disc
:= First_Discriminant
(E
);
13452 while Present
(Disc
) loop
13453 if Disc
/= Current_Entity
(Disc
) then
13454 Prev
:= Current_Entity
(Disc
);
13455 while Present
(Prev
)
13456 and then Present
(Homonym
(Prev
))
13457 and then Homonym
(Prev
) /= Disc
13459 Prev
:= Homonym
(Prev
);
13465 Set_Is_Immediately_Visible
(Disc
, False);
13467 Outer
:= Homonym
(Disc
);
13468 while Present
(Outer
) and then Scope
(Outer
) = E
loop
13469 Outer
:= Homonym
(Outer
);
13472 -- Reset homonym link of other entities, but do not modify link
13473 -- between entities in current scope, so that the back end can
13474 -- have a proper count of local overloadings.
13477 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
13479 elsif Scope
(Prev
) /= Scope
(Disc
) then
13480 Set_Homonym
(Prev
, Outer
);
13483 Next_Discriminant
(Disc
);
13486 end Uninstall_Discriminants
;
13488 -------------------------------------------
13489 -- Uninstall_Discriminants_And_Pop_Scope --
13490 -------------------------------------------
13492 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
13494 if Has_Discriminants
(E
) then
13495 Uninstall_Discriminants
(E
);
13498 end Uninstall_Discriminants_And_Pop_Scope
;
13500 ------------------------------
13501 -- Validate_Address_Clauses --
13502 ------------------------------
13504 procedure Validate_Address_Clauses
is
13505 function Offset_Value
(Expr
: Node_Id
) return Uint
;
13506 -- Given an Address attribute reference, return the value in bits of its
13507 -- offset from the first bit of the underlying entity, or 0 if it is not
13508 -- known at compile time.
13514 function Offset_Value
(Expr
: Node_Id
) return Uint
is
13515 N
: Node_Id
:= Prefix
(Expr
);
13517 Val
: Uint
:= Uint_0
;
13520 -- Climb the prefix chain and compute the cumulative offset
13523 if Is_Entity_Name
(N
) then
13526 elsif Nkind
(N
) = N_Selected_Component
then
13527 Off
:= Component_Bit_Offset
(Entity
(Selector_Name
(N
)));
13528 if Off
/= No_Uint
and then Off
>= Uint_0
then
13535 elsif Nkind
(N
) = N_Indexed_Component
then
13536 Off
:= Indexed_Component_Bit_Offset
(N
);
13537 if Off
/= No_Uint
then
13550 -- Start of processing for Validate_Address_Clauses
13553 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
13555 ACCR
: Address_Clause_Check_Record
13556 renames Address_Clause_Checks
.Table
(J
);
13560 X_Alignment
: Uint
;
13561 Y_Alignment
: Uint
:= Uint_0
;
13564 Y_Size
: Uint
:= Uint_0
;
13569 -- Skip processing of this entry if warning already posted
13571 if not Address_Warning_Posted
(ACCR
.N
) then
13572 Expr
:= Original_Node
(Expression
(ACCR
.N
));
13574 -- Get alignments, sizes and offset, if any
13576 X_Alignment
:= Alignment
(ACCR
.X
);
13577 X_Size
:= Esize
(ACCR
.X
);
13579 if Present
(ACCR
.Y
) then
13580 Y_Alignment
:= Alignment
(ACCR
.Y
);
13581 Y_Size
:= Esize
(ACCR
.Y
);
13585 and then Nkind
(Expr
) = N_Attribute_Reference
13586 and then Attribute_Name
(Expr
) = Name_Address
13588 X_Offs
:= Offset_Value
(Expr
);
13593 -- Check for known value not multiple of alignment
13595 if No
(ACCR
.Y
) then
13596 if not Alignment_Checks_Suppressed
(ACCR
)
13597 and then X_Alignment
/= 0
13598 and then ACCR
.A
mod X_Alignment
/= 0
13601 ("??specified address for& is inconsistent with "
13602 & "alignment", ACCR
.N
, ACCR
.X
);
13604 ("\??program execution may be erroneous (RM 13.3(27))",
13607 Error_Msg_Uint_1
:= X_Alignment
;
13608 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13611 -- Check for large object overlaying smaller one
13613 elsif Y_Size
> Uint_0
13614 and then X_Size
> Uint_0
13615 and then X_Offs
+ X_Size
> Y_Size
13617 Error_Msg_NE
("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
13619 ("\??program execution may be erroneous", ACCR
.N
);
13621 Error_Msg_Uint_1
:= X_Size
;
13622 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.X
);
13624 Error_Msg_Uint_1
:= Y_Size
;
13625 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
13627 if Y_Size
>= X_Size
then
13628 Error_Msg_Uint_1
:= X_Offs
;
13629 Error_Msg_NE
("\??but offset of & is ^", ACCR
.N
, ACCR
.X
);
13632 -- Check for inadequate alignment, both of the base object
13633 -- and of the offset, if any. We only do this check if the
13634 -- run-time Alignment_Check is active. No point in warning
13635 -- if this check has been suppressed (or is suppressed by
13636 -- default in the non-strict alignment machine case).
13638 -- Note: we do not check the alignment if we gave a size
13639 -- warning, since it would likely be redundant.
13641 elsif not Alignment_Checks_Suppressed
(ACCR
)
13642 and then Y_Alignment
/= Uint_0
13644 (Y_Alignment
< X_Alignment
13647 and then Nkind
(Expr
) = N_Attribute_Reference
13648 and then Attribute_Name
(Expr
) = Name_Address
13649 and then Has_Compatible_Alignment
13650 (ACCR
.X
, Prefix
(Expr
), True) /=
13654 ("??specified address for& may be inconsistent with "
13655 & "alignment", ACCR
.N
, ACCR
.X
);
13657 ("\??program execution may be erroneous (RM 13.3(27))",
13660 Error_Msg_Uint_1
:= X_Alignment
;
13661 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13663 Error_Msg_Uint_1
:= Y_Alignment
;
13664 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
13666 if Y_Alignment
>= X_Alignment
then
13668 ("\??but offset is not multiple of alignment", ACCR
.N
);
13674 end Validate_Address_Clauses
;
13676 -----------------------------------------
13677 -- Validate_Compile_Time_Warning_Error --
13678 -----------------------------------------
13680 procedure Validate_Compile_Time_Warning_Error
(N
: Node_Id
) is
13682 Compile_Time_Warnings_Errors
.Append
13683 (New_Val
=> CTWE_Entry
'(Eloc => Sloc (N),
13684 Scope => Current_Scope,
13686 end Validate_Compile_Time_Warning_Error;
13688 ------------------------------------------
13689 -- Validate_Compile_Time_Warning_Errors --
13690 ------------------------------------------
13692 procedure Validate_Compile_Time_Warning_Errors is
13693 procedure Set_Scope (S : Entity_Id);
13694 -- Install all enclosing scopes of S along with S itself
13696 procedure Unset_Scope (S : Entity_Id);
13697 -- Uninstall all enclosing scopes of S along with S itself
13703 procedure Set_Scope (S : Entity_Id) is
13705 if S /= Standard_Standard then
13706 Set_Scope (Scope (S));
13716 procedure Unset_Scope (S : Entity_Id) is
13718 if S /= Standard_Standard then
13719 Unset_Scope (Scope (S));
13725 -- Start of processing for Validate_Compile_Time_Warning_Errors
13728 Expander_Mode_Save_And_Set (False);
13729 In_Compile_Time_Warning_Or_Error := True;
13731 for N in Compile_Time_Warnings_Errors.First ..
13732 Compile_Time_Warnings_Errors.Last
13735 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13738 Set_Scope (T.Scope);
13739 Reset_Analyzed_Flags (T.Prag);
13740 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13741 Unset_Scope (T.Scope);
13745 In_Compile_Time_Warning_Or_Error := False;
13746 Expander_Mode_Restore;
13747 end Validate_Compile_Time_Warning_Errors;
13749 ---------------------------
13750 -- Validate_Independence --
13751 ---------------------------
13753 procedure Validate_Independence is
13754 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13762 procedure Check_Array_Type (Atyp : Entity_Id);
13763 -- Checks if the array type Atyp has independent components, and
13764 -- if not, outputs an appropriate set of error messages.
13766 procedure No_Independence;
13767 -- Output message that independence cannot be guaranteed
13769 function OK_Component (C : Entity_Id) return Boolean;
13770 -- Checks one component to see if it is independently accessible, and
13771 -- if so yields True, otherwise yields False if independent access
13772 -- cannot be guaranteed. This is a conservative routine, it only
13773 -- returns True if it knows for sure, it returns False if it knows
13774 -- there is a problem, or it cannot be sure there is no problem.
13776 procedure Reason_Bad_Component (C : Entity_Id);
13777 -- Outputs continuation message if a reason can be determined for
13778 -- the component C being bad.
13780 ----------------------
13781 -- Check_Array_Type --
13782 ----------------------
13784 procedure Check_Array_Type (Atyp : Entity_Id) is
13785 Ctyp : constant Entity_Id := Component_Type (Atyp);
13788 -- OK if no alignment clause, no pack, and no component size
13790 if not Has_Component_Size_Clause (Atyp)
13791 and then not Has_Alignment_Clause (Atyp)
13792 and then not Is_Packed (Atyp)
13797 -- Case of component size is greater than or equal to 64 and the
13798 -- alignment of the array is at least as large as the alignment
13799 -- of the component. We are definitely OK in this situation.
13801 if Known_Component_Size (Atyp)
13802 and then Component_Size (Atyp) >= 64
13803 and then Known_Alignment (Atyp)
13804 and then Known_Alignment (Ctyp)
13805 and then Alignment (Atyp) >= Alignment (Ctyp)
13810 -- Check actual component size
13812 if not Known_Component_Size (Atyp)
13813 or else not (Addressable (Component_Size (Atyp))
13814 and then Component_Size (Atyp) < 64)
13815 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13819 -- Bad component size, check reason
13821 if Has_Component_Size_Clause (Atyp) then
13822 P := Get_Attribute_Definition_Clause
13823 (Atyp, Attribute_Component_Size);
13825 if Present (P) then
13826 Error_Msg_Sloc := Sloc (P);
13827 Error_Msg_N ("\because of Component_Size clause#", N);
13832 if Is_Packed (Atyp) then
13833 P := Get_Rep_Pragma (Atyp, Name_Pack);
13835 if Present (P) then
13836 Error_Msg_Sloc := Sloc (P);
13837 Error_Msg_N ("\because of pragma Pack#", N);
13842 -- No reason found, just return
13847 -- Array type is OK independence-wise
13850 end Check_Array_Type;
13852 ---------------------
13853 -- No_Independence --
13854 ---------------------
13856 procedure No_Independence is
13858 if Pragma_Name (N) = Name_Independent then
13859 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13862 ("independent components cannot be guaranteed for&", N, E);
13864 end No_Independence;
13870 function OK_Component (C : Entity_Id) return Boolean is
13871 Rec : constant Entity_Id := Scope (C);
13872 Ctyp : constant Entity_Id := Etype (C);
13875 -- OK if no component clause, no Pack, and no alignment clause
13877 if No (Component_Clause (C))
13878 and then not Is_Packed (Rec)
13879 and then not Has_Alignment_Clause (Rec)
13884 -- Here we look at the actual component layout. A component is
13885 -- addressable if its size is a multiple of the Esize of the
13886 -- component type, and its starting position in the record has
13887 -- appropriate alignment, and the record itself has appropriate
13888 -- alignment to guarantee the component alignment.
13890 -- Make sure sizes are static, always assume the worst for any
13891 -- cases where we cannot check static values.
13893 if not (Known_Static_Esize (C)
13895 Known_Static_Esize (Ctyp))
13900 -- Size of component must be addressable or greater than 64 bits
13901 -- and a multiple of bytes.
13903 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13907 -- Check size is proper multiple
13909 if Esize (C) mod Esize (Ctyp) /= 0 then
13913 -- Check alignment of component is OK
13915 if not Known_Component_Bit_Offset (C)
13916 or else Component_Bit_Offset (C) < Uint_0
13917 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13922 -- Check alignment of record type is OK
13924 if not Known_Alignment (Rec)
13925 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13930 -- All tests passed, component is addressable
13935 --------------------------
13936 -- Reason_Bad_Component --
13937 --------------------------
13939 procedure Reason_Bad_Component (C : Entity_Id) is
13940 Rec : constant Entity_Id := Scope (C);
13941 Ctyp : constant Entity_Id := Etype (C);
13944 -- If component clause present assume that's the problem
13946 if Present (Component_Clause (C)) then
13947 Error_Msg_Sloc := Sloc (Component_Clause (C));
13948 Error_Msg_N ("\because of Component_Clause#", N);
13952 -- If pragma Pack clause present, assume that's the problem
13954 if Is_Packed (Rec) then
13955 P := Get_Rep_Pragma (Rec, Name_Pack);
13957 if Present (P) then
13958 Error_Msg_Sloc := Sloc (P);
13959 Error_Msg_N ("\because of pragma Pack#", N);
13964 -- See if record has bad alignment clause
13966 if Has_Alignment_Clause (Rec)
13967 and then Known_Alignment (Rec)
13968 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13970 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13972 if Present (P) then
13973 Error_Msg_Sloc := Sloc (P);
13974 Error_Msg_N ("\because of Alignment clause#", N);
13978 -- Couldn't find a reason, so return without a message
13981 end Reason_Bad_Component;
13983 -- Start of processing for Validate_Independence
13986 for J in Independence_Checks.First .. Independence_Checks.Last loop
13987 N := Independence_Checks.Table (J).N;
13988 E := Independence_Checks.Table (J).E;
13989 IC := Pragma_Name (N) = Name_Independent_Components;
13991 -- Deal with component case
13993 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13994 if not OK_Component (E) then
13996 Reason_Bad_Component (E);
14001 -- Deal with record with Independent_Components
14003 if IC and then Is_Record_Type (E) then
14004 Comp := First_Component_Or_Discriminant (E);
14005 while Present (Comp) loop
14006 if not OK_Component (Comp) then
14008 Reason_Bad_Component (Comp);
14012 Next_Component_Or_Discriminant (Comp);
14016 -- Deal with address clause case
14018 if Is_Object (E) then
14019 Addr := Address_Clause (E);
14021 if Present (Addr) then
14023 Error_Msg_Sloc := Sloc (Addr);
14024 Error_Msg_N ("\because of Address clause#", N);
14029 -- Deal with independent components for array type
14031 if IC and then Is_Array_Type (E) then
14032 Check_Array_Type (E);
14035 -- Deal with independent components for array object
14037 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14038 Check_Array_Type (Etype (E));
14043 end Validate_Independence;
14045 ------------------------------
14046 -- Validate_Iterable_Aspect --
14047 ------------------------------
14049 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14054 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14056 First_Id : Entity_Id;
14057 Last_Id : Entity_Id;
14058 Next_Id : Entity_Id;
14059 Has_Element_Id : Entity_Id;
14060 Element_Id : Entity_Id;
14063 -- If previous error aspect is unusable
14065 if Cursor = Any_Type then
14072 Has_Element_Id := Empty;
14073 Element_Id := Empty;
14075 -- Each expression must resolve to a function with the proper signature
14077 Assoc := First (Component_Associations (Expression (ASN)));
14078 while Present (Assoc) loop
14079 Expr := Expression (Assoc);
14082 Prim := First (Choices (Assoc));
14084 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14085 Error_Msg_N ("illegal name in association", Prim);
14087 elsif Chars (Prim) = Name_First then
14088 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14089 First_Id := Entity (Expr);
14091 elsif Chars (Prim) = Name_Last then
14092 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14093 Last_Id := Entity (Expr);
14095 elsif Chars (Prim) = Name_Previous then
14096 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14097 Last_Id := Entity (Expr);
14099 elsif Chars (Prim) = Name_Next then
14100 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14101 Next_Id := Entity (Expr);
14103 elsif Chars (Prim) = Name_Has_Element then
14104 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14105 Has_Element_Id := Entity (Expr);
14107 elsif Chars (Prim) = Name_Element then
14108 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14109 Element_Id := Entity (Expr);
14112 Error_Msg_N ("invalid name for iterable function", Prim);
14118 if No (First_Id) then
14119 Error_Msg_N ("match for First primitive not found", ASN);
14121 elsif No (Next_Id) then
14122 Error_Msg_N ("match for Next primitive not found", ASN);
14124 elsif No (Has_Element_Id) then
14125 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14127 elsif No (Element_Id) or else No (Last_Id) then
14130 end Validate_Iterable_Aspect;
14132 -----------------------------------
14133 -- Validate_Unchecked_Conversion --
14134 -----------------------------------
14136 procedure Validate_Unchecked_Conversion
14138 Act_Unit : Entity_Id)
14140 Source : Entity_Id;
14141 Target : Entity_Id;
14145 -- Obtain source and target types. Note that we call Ancestor_Subtype
14146 -- here because the processing for generic instantiation always makes
14147 -- subtypes, and we want the original frozen actual types.
14149 -- If we are dealing with private types, then do the check on their
14150 -- fully declared counterparts if the full declarations have been
14151 -- encountered (they don't have to be visible, but they must exist).
14153 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14155 if Is_Private_Type (Source)
14156 and then Present (Underlying_Type (Source))
14158 Source := Underlying_Type (Source);
14161 Target := Ancestor_Subtype (Etype (Act_Unit));
14163 -- If either type is generic, the instantiation happens within a generic
14164 -- unit, and there is nothing to check. The proper check will happen
14165 -- when the enclosing generic is instantiated.
14167 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14171 if Is_Private_Type (Target)
14172 and then Present (Underlying_Type (Target))
14174 Target := Underlying_Type (Target);
14177 -- Source may be unconstrained array, but not target, except in relaxed
14180 if Is_Array_Type (Target)
14181 and then not Is_Constrained (Target)
14182 and then not Relaxed_RM_Semantics
14185 ("unchecked conversion to unconstrained array not allowed", N);
14189 -- Warn if conversion between two different convention pointers
14191 if Is_Access_Type (Target)
14192 and then Is_Access_Type (Source)
14193 and then Convention (Target) /= Convention (Source)
14194 and then Warn_On_Unchecked_Conversion
14196 -- Give warnings for subprogram pointers only on most targets
14198 if Is_Access_Subprogram_Type (Target)
14199 or else Is_Access_Subprogram_Type (Source)
14202 ("?z?conversion between pointers with different conventions!",
14207 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14208 -- warning when compiling GNAT-related sources.
14210 if Warn_On_Unchecked_Conversion
14211 and then not In_Predefined_Unit (N)
14212 and then RTU_Loaded (Ada_Calendar)
14213 and then (Chars (Source) = Name_Time
14215 Chars (Target) = Name_Time)
14217 -- If Ada.Calendar is loaded and the name of one of the operands is
14218 -- Time, there is a good chance that this is Ada.Calendar.Time.
14221 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14223 pragma Assert (Present (Calendar_Time));
14225 if Source = Calendar_Time or else Target = Calendar_Time then
14227 ("?z?representation of 'Time values may change between
"
14228 & "'G'N'A
'T versions
", N);
14233 -- Make entry in unchecked conversion table for later processing by
14234 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14235 -- (using values set by the back end where possible). This is only done
14236 -- if the appropriate warning is active.
14238 if Warn_On_Unchecked_Conversion then
14239 Unchecked_Conversions.Append
14240 (New_Val => UC_Entry'(Eloc => Sloc (N),
14243 Act_Unit => Act_Unit));
14245 -- If both sizes are known statically now, then back-end annotation
14246 -- is not required to do a proper check but if either size is not
14247 -- known statically, then we need the annotation.
14249 if Known_Static_RM_Size (Source)
14251 Known_Static_RM_Size (Target)
14255 Back_Annotate_Rep_Info := True;
14259 -- If unchecked conversion to access type, and access type is declared
14260 -- in the same unit as the unchecked conversion, then set the flag
14261 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14263 if Is_Access_Type (Target) and then
14264 In_Same_Source_Unit (Target, N)
14266 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14269 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14270 -- the back end needs to perform special validation checks.
14272 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14273 -- have full expansion and the back end is called ???
14276 Make_Validate_Unchecked_Conversion (Sloc (N));
14277 Set_Source_Type (Vnode, Source);
14278 Set_Target_Type (Vnode, Target);
14280 -- If the unchecked conversion node is in a list, just insert before it.
14281 -- If not we have some strange case, not worth bothering about.
14283 if Is_List_Member (N) then
14284 Insert_After (N, Vnode);
14286 end Validate_Unchecked_Conversion;
14288 ------------------------------------
14289 -- Validate_Unchecked_Conversions --
14290 ------------------------------------
14292 procedure Validate_Unchecked_Conversions is
14294 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14296 T : UC_Entry renames Unchecked_Conversions.Table (N);
14298 Act_Unit : constant Entity_Id := T.Act_Unit;
14299 Eloc : constant Source_Ptr := T.Eloc;
14300 Source : constant Entity_Id := T.Source;
14301 Target : constant Entity_Id := T.Target;
14307 -- Skip if function marked as warnings off
14309 if Warnings_Off (Act_Unit) then
14313 -- This validation check, which warns if we have unequal sizes for
14314 -- unchecked conversion, and thus potentially implementation
14315 -- dependent semantics, is one of the few occasions on which we
14316 -- use the official RM size instead of Esize. See description in
14317 -- Einfo "Handling
of Type'Size Values
" for details.
14319 if Serious_Errors_Detected = 0
14320 and then Known_Static_RM_Size (Source)
14321 and then Known_Static_RM_Size (Target)
14323 -- Don't do the check if warnings off for either type, note the
14324 -- deliberate use of OR here instead of OR ELSE to get the flag
14325 -- Warnings_Off_Used set for both types if appropriate.
14327 and then not (Has_Warnings_Off (Source)
14329 Has_Warnings_Off (Target))
14331 Source_Siz := RM_Size (Source);
14332 Target_Siz := RM_Size (Target);
14334 if Source_Siz /= Target_Siz then
14336 ("?z?types
for unchecked conversion have different sizes
!",
14339 if All_Errors_Mode then
14340 Error_Msg_Name_1 := Chars (Source);
14341 Error_Msg_Uint_1 := Source_Siz;
14342 Error_Msg_Name_2 := Chars (Target);
14343 Error_Msg_Uint_2 := Target_Siz;
14344 Error_Msg ("\size
of % is ^
, size
of % is ^?z?
", Eloc);
14346 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14348 if Is_Discrete_Type (Source)
14350 Is_Discrete_Type (Target)
14352 if Source_Siz > Target_Siz then
14354 ("\?z?^ high order bits
of source will
"
14355 & "be ignored
!", Eloc);
14357 elsif Is_Unsigned_Type (Source) then
14359 ("\?z?source will be extended
with ^ high order
"
14360 & "zero bits
!", Eloc);
14364 ("\?z?source will be extended
with ^ high order
"
14365 & "sign bits
!", Eloc);
14368 elsif Source_Siz < Target_Siz then
14369 if Is_Discrete_Type (Target) then
14370 if Bytes_Big_Endian then
14372 ("\?z?target value will include ^ undefined
"
14373 & "low order bits
!", Eloc, Act_Unit);
14376 ("\?z?target value will include ^ undefined
"
14377 & "high order bits
!", Eloc, Act_Unit);
14382 ("\?z?^ trailing bits
of target value will be
"
14383 & "undefined
!", Eloc, Act_Unit);
14386 else pragma Assert (Source_Siz > Target_Siz);
14387 if Is_Discrete_Type (Source) then
14388 if Bytes_Big_Endian then
14390 ("\?z?^ low order bits
of source will be
"
14391 & "ignored
!", Eloc, Act_Unit);
14394 ("\?z?^ high order bits
of source will be
"
14395 & "ignored
!", Eloc, Act_Unit);
14400 ("\?z?^ trailing bits
of source will be
"
14401 & "ignored
!", Eloc, Act_Unit);
14408 -- If both types are access types, we need to check the alignment.
14409 -- If the alignment of both is specified, we can do it here.
14411 if Serious_Errors_Detected = 0
14412 and then Is_Access_Type (Source)
14413 and then Is_Access_Type (Target)
14414 and then Target_Strict_Alignment
14415 and then Present (Designated_Type (Source))
14416 and then Present (Designated_Type (Target))
14419 D_Source : constant Entity_Id := Designated_Type (Source);
14420 D_Target : constant Entity_Id := Designated_Type (Target);
14423 if Known_Alignment (D_Source)
14425 Known_Alignment (D_Target)
14428 Source_Align : constant Uint := Alignment (D_Source);
14429 Target_Align : constant Uint := Alignment (D_Target);
14432 if Source_Align < Target_Align
14433 and then not Is_Tagged_Type (D_Source)
14435 -- Suppress warning if warnings suppressed on either
14436 -- type or either designated type. Note the use of
14437 -- OR here instead of OR ELSE. That is intentional,
14438 -- we would like to set flag Warnings_Off_Used in
14439 -- all types for which warnings are suppressed.
14441 and then not (Has_Warnings_Off (D_Source)
14443 Has_Warnings_Off (D_Target)
14445 Has_Warnings_Off (Source)
14447 Has_Warnings_Off (Target))
14449 Error_Msg_Uint_1 := Target_Align;
14450 Error_Msg_Uint_2 := Source_Align;
14451 Error_Msg_Node_1 := D_Target;
14452 Error_Msg_Node_2 := D_Source;
14454 ("?z?alignment
of & (^
) is stricter than
"
14455 & "alignment
of & (^
)!", Eloc, Act_Unit);
14457 ("\?z?resulting
access value may have invalid
"
14458 & "alignment
!", Eloc, Act_Unit);
14469 end Validate_Unchecked_Conversions;