* sh.md (movdi_i): Name. Remove inappropriate comment.
[official-gcc.git] / gcc / unroll.c
bloba357ea209cf67bd19cec27745b578f1d74fa1e61
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 #include "config.h"
135 #include "system.h"
136 #include "rtl.h"
137 #include "tm_p.h"
138 #include "insn-config.h"
139 #include "integrate.h"
140 #include "regs.h"
141 #include "recog.h"
142 #include "flags.h"
143 #include "function.h"
144 #include "expr.h"
145 #include "loop.h"
146 #include "toplev.h"
147 #include "hard-reg-set.h"
148 #include "basic-block.h"
149 #include "predict.h"
150 #include "params.h"
152 /* The prime factors looked for when trying to unroll a loop by some
153 number which is modulo the total number of iterations. Just checking
154 for these 4 prime factors will find at least one factor for 75% of
155 all numbers theoretically. Practically speaking, this will succeed
156 almost all of the time since loops are generally a multiple of 2
157 and/or 5. */
159 #define NUM_FACTORS 4
161 static struct _factor { const int factor; int count; }
162 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
164 /* Describes the different types of loop unrolling performed. */
166 enum unroll_types
168 UNROLL_COMPLETELY,
169 UNROLL_MODULO,
170 UNROLL_NAIVE
173 /* Indexed by register number, if nonzero, then it contains a pointer
174 to a struct induction for a DEST_REG giv which has been combined with
175 one of more address givs. This is needed because whenever such a DEST_REG
176 giv is modified, we must modify the value of all split address givs
177 that were combined with this DEST_REG giv. */
179 static struct induction **addr_combined_regs;
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the current value of the register, which depends on the
183 iteration number. */
185 static rtx *splittable_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the number of instructions in the loop that modify
189 the induction variable. Used to ensure that only the last insn modifying
190 a split iv will update the original iv of the dest. */
192 static int *splittable_regs_updates;
194 /* Forward declarations. */
196 static rtx simplify_cmp_and_jump_insns PARAMS ((enum rtx_code,
197 enum machine_mode,
198 rtx, rtx, rtx));
199 static void init_reg_map PARAMS ((struct inline_remap *, int));
200 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
201 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
202 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
203 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
204 struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 static int find_splittable_regs PARAMS ((const struct loop *,
207 enum unroll_types, int));
208 static int find_splittable_givs PARAMS ((const struct loop *,
209 struct iv_class *, enum unroll_types,
210 rtx, int));
211 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
212 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
214 static rtx find_common_reg_term PARAMS ((rtx, rtx));
215 static rtx subtract_reg_term PARAMS ((rtx, rtx));
216 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
217 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
219 /* Try to unroll one loop and split induction variables in the loop.
221 The loop is described by the arguments LOOP and INSN_COUNT.
222 STRENGTH_REDUCTION_P indicates whether information generated in the
223 strength reduction pass is available.
225 This function is intended to be called from within `strength_reduce'
226 in loop.c. */
228 void
229 unroll_loop (loop, insn_count, strength_reduce_p)
230 struct loop *loop;
231 int insn_count;
232 int strength_reduce_p;
234 struct loop_info *loop_info = LOOP_INFO (loop);
235 struct loop_ivs *ivs = LOOP_IVS (loop);
236 int i, j;
237 unsigned int r;
238 unsigned HOST_WIDE_INT temp;
239 int unroll_number = 1;
240 rtx copy_start, copy_end;
241 rtx insn, sequence, pattern, tem;
242 int max_labelno, max_insnno;
243 rtx insert_before;
244 struct inline_remap *map;
245 char *local_label = NULL;
246 char *local_regno;
247 unsigned int max_local_regnum;
248 unsigned int maxregnum;
249 rtx exit_label = 0;
250 rtx start_label;
251 struct iv_class *bl;
252 int splitting_not_safe = 0;
253 enum unroll_types unroll_type = UNROLL_NAIVE;
254 int loop_preconditioned = 0;
255 rtx safety_label;
256 /* This points to the last real insn in the loop, which should be either
257 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
258 jumps). */
259 rtx last_loop_insn;
260 rtx loop_start = loop->start;
261 rtx loop_end = loop->end;
263 /* Don't bother unrolling huge loops. Since the minimum factor is
264 two, loops greater than one half of MAX_UNROLLED_INSNS will never
265 be unrolled. */
266 if (insn_count > MAX_UNROLLED_INSNS / 2)
268 if (loop_dump_stream)
269 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
270 return;
273 /* Determine type of unroll to perform. Depends on the number of iterations
274 and the size of the loop. */
276 /* If there is no strength reduce info, then set
277 loop_info->n_iterations to zero. This can happen if
278 strength_reduce can't find any bivs in the loop. A value of zero
279 indicates that the number of iterations could not be calculated. */
281 if (! strength_reduce_p)
282 loop_info->n_iterations = 0;
284 if (loop_dump_stream && loop_info->n_iterations > 0)
286 fputs ("Loop unrolling: ", loop_dump_stream);
287 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
288 loop_info->n_iterations);
289 fputs (" iterations.\n", loop_dump_stream);
292 /* Find and save a pointer to the last nonnote insn in the loop. */
294 last_loop_insn = prev_nonnote_insn (loop_end);
296 /* Calculate how many times to unroll the loop. Indicate whether or
297 not the loop is being completely unrolled. */
299 if (loop_info->n_iterations == 1)
301 /* Handle the case where the loop begins with an unconditional
302 jump to the loop condition. Make sure to delete the jump
303 insn, otherwise the loop body will never execute. */
305 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
306 if (ujump)
307 delete_related_insns (ujump);
309 /* If number of iterations is exactly 1, then eliminate the compare and
310 branch at the end of the loop since they will never be taken.
311 Then return, since no other action is needed here. */
313 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
314 don't do anything. */
316 if (GET_CODE (last_loop_insn) == BARRIER)
318 /* Delete the jump insn. This will delete the barrier also. */
319 delete_related_insns (PREV_INSN (last_loop_insn));
321 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
323 #ifdef HAVE_cc0
324 rtx prev = PREV_INSN (last_loop_insn);
325 #endif
326 delete_related_insns (last_loop_insn);
327 #ifdef HAVE_cc0
328 /* The immediately preceding insn may be a compare which must be
329 deleted. */
330 if (only_sets_cc0_p (prev))
331 delete_related_insns (prev);
332 #endif
335 /* Remove the loop notes since this is no longer a loop. */
336 if (loop->vtop)
337 delete_related_insns (loop->vtop);
338 if (loop->cont)
339 delete_related_insns (loop->cont);
340 if (loop_start)
341 delete_related_insns (loop_start);
342 if (loop_end)
343 delete_related_insns (loop_end);
345 return;
347 else if (loop_info->n_iterations > 0
348 /* Avoid overflow in the next expression. */
349 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
350 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
352 unroll_number = loop_info->n_iterations;
353 unroll_type = UNROLL_COMPLETELY;
355 else if (loop_info->n_iterations > 0)
357 /* Try to factor the number of iterations. Don't bother with the
358 general case, only using 2, 3, 5, and 7 will get 75% of all
359 numbers theoretically, and almost all in practice. */
361 for (i = 0; i < NUM_FACTORS; i++)
362 factors[i].count = 0;
364 temp = loop_info->n_iterations;
365 for (i = NUM_FACTORS - 1; i >= 0; i--)
366 while (temp % factors[i].factor == 0)
368 factors[i].count++;
369 temp = temp / factors[i].factor;
372 /* Start with the larger factors first so that we generally
373 get lots of unrolling. */
375 unroll_number = 1;
376 temp = insn_count;
377 for (i = 3; i >= 0; i--)
378 while (factors[i].count--)
380 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
382 unroll_number *= factors[i].factor;
383 temp *= factors[i].factor;
385 else
386 break;
389 /* If we couldn't find any factors, then unroll as in the normal
390 case. */
391 if (unroll_number == 1)
393 if (loop_dump_stream)
394 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
396 else
397 unroll_type = UNROLL_MODULO;
400 /* Default case, calculate number of times to unroll loop based on its
401 size. */
402 if (unroll_type == UNROLL_NAIVE)
404 if (8 * insn_count < MAX_UNROLLED_INSNS)
405 unroll_number = 8;
406 else if (4 * insn_count < MAX_UNROLLED_INSNS)
407 unroll_number = 4;
408 else
409 unroll_number = 2;
412 /* Now we know how many times to unroll the loop. */
414 if (loop_dump_stream)
415 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
417 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
419 /* Loops of these types can start with jump down to the exit condition
420 in rare circumstances.
422 Consider a pair of nested loops where the inner loop is part
423 of the exit code for the outer loop.
425 In this case jump.c will not duplicate the exit test for the outer
426 loop, so it will start with a jump to the exit code.
428 Then consider if the inner loop turns out to iterate once and
429 only once. We will end up deleting the jumps associated with
430 the inner loop. However, the loop notes are not removed from
431 the instruction stream.
433 And finally assume that we can compute the number of iterations
434 for the outer loop.
436 In this case unroll may want to unroll the outer loop even though
437 it starts with a jump to the outer loop's exit code.
439 We could try to optimize this case, but it hardly seems worth it.
440 Just return without unrolling the loop in such cases. */
442 insn = loop_start;
443 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
444 insn = NEXT_INSN (insn);
445 if (GET_CODE (insn) == JUMP_INSN)
446 return;
449 if (unroll_type == UNROLL_COMPLETELY)
451 /* Completely unrolling the loop: Delete the compare and branch at
452 the end (the last two instructions). This delete must done at the
453 very end of loop unrolling, to avoid problems with calls to
454 back_branch_in_range_p, which is called by find_splittable_regs.
455 All increments of splittable bivs/givs are changed to load constant
456 instructions. */
458 copy_start = loop_start;
460 /* Set insert_before to the instruction immediately after the JUMP_INSN
461 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
462 the loop will be correctly handled by copy_loop_body. */
463 insert_before = NEXT_INSN (last_loop_insn);
465 /* Set copy_end to the insn before the jump at the end of the loop. */
466 if (GET_CODE (last_loop_insn) == BARRIER)
467 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
468 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
470 copy_end = PREV_INSN (last_loop_insn);
471 #ifdef HAVE_cc0
472 /* The instruction immediately before the JUMP_INSN may be a compare
473 instruction which we do not want to copy. */
474 if (sets_cc0_p (PREV_INSN (copy_end)))
475 copy_end = PREV_INSN (copy_end);
476 #endif
478 else
480 /* We currently can't unroll a loop if it doesn't end with a
481 JUMP_INSN. There would need to be a mechanism that recognizes
482 this case, and then inserts a jump after each loop body, which
483 jumps to after the last loop body. */
484 if (loop_dump_stream)
485 fprintf (loop_dump_stream,
486 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
487 return;
490 else if (unroll_type == UNROLL_MODULO)
492 /* Partially unrolling the loop: The compare and branch at the end
493 (the last two instructions) must remain. Don't copy the compare
494 and branch instructions at the end of the loop. Insert the unrolled
495 code immediately before the compare/branch at the end so that the
496 code will fall through to them as before. */
498 copy_start = loop_start;
500 /* Set insert_before to the jump insn at the end of the loop.
501 Set copy_end to before the jump insn at the end of the loop. */
502 if (GET_CODE (last_loop_insn) == BARRIER)
504 insert_before = PREV_INSN (last_loop_insn);
505 copy_end = PREV_INSN (insert_before);
507 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
509 insert_before = last_loop_insn;
510 #ifdef HAVE_cc0
511 /* The instruction immediately before the JUMP_INSN may be a compare
512 instruction which we do not want to copy or delete. */
513 if (sets_cc0_p (PREV_INSN (insert_before)))
514 insert_before = PREV_INSN (insert_before);
515 #endif
516 copy_end = PREV_INSN (insert_before);
518 else
520 /* We currently can't unroll a loop if it doesn't end with a
521 JUMP_INSN. There would need to be a mechanism that recognizes
522 this case, and then inserts a jump after each loop body, which
523 jumps to after the last loop body. */
524 if (loop_dump_stream)
525 fprintf (loop_dump_stream,
526 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
527 return;
530 else
532 /* Normal case: Must copy the compare and branch instructions at the
533 end of the loop. */
535 if (GET_CODE (last_loop_insn) == BARRIER)
537 /* Loop ends with an unconditional jump and a barrier.
538 Handle this like above, don't copy jump and barrier.
539 This is not strictly necessary, but doing so prevents generating
540 unconditional jumps to an immediately following label.
542 This will be corrected below if the target of this jump is
543 not the start_label. */
545 insert_before = PREV_INSN (last_loop_insn);
546 copy_end = PREV_INSN (insert_before);
548 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
550 /* Set insert_before to immediately after the JUMP_INSN, so that
551 NOTEs at the end of the loop will be correctly handled by
552 copy_loop_body. */
553 insert_before = NEXT_INSN (last_loop_insn);
554 copy_end = last_loop_insn;
556 else
558 /* We currently can't unroll a loop if it doesn't end with a
559 JUMP_INSN. There would need to be a mechanism that recognizes
560 this case, and then inserts a jump after each loop body, which
561 jumps to after the last loop body. */
562 if (loop_dump_stream)
563 fprintf (loop_dump_stream,
564 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
565 return;
568 /* If copying exit test branches because they can not be eliminated,
569 then must convert the fall through case of the branch to a jump past
570 the end of the loop. Create a label to emit after the loop and save
571 it for later use. Do not use the label after the loop, if any, since
572 it might be used by insns outside the loop, or there might be insns
573 added before it later by final_[bg]iv_value which must be after
574 the real exit label. */
575 exit_label = gen_label_rtx ();
577 insn = loop_start;
578 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
579 insn = NEXT_INSN (insn);
581 if (GET_CODE (insn) == JUMP_INSN)
583 /* The loop starts with a jump down to the exit condition test.
584 Start copying the loop after the barrier following this
585 jump insn. */
586 copy_start = NEXT_INSN (insn);
588 /* Splitting induction variables doesn't work when the loop is
589 entered via a jump to the bottom, because then we end up doing
590 a comparison against a new register for a split variable, but
591 we did not execute the set insn for the new register because
592 it was skipped over. */
593 splitting_not_safe = 1;
594 if (loop_dump_stream)
595 fprintf (loop_dump_stream,
596 "Splitting not safe, because loop not entered at top.\n");
598 else
599 copy_start = loop_start;
602 /* This should always be the first label in the loop. */
603 start_label = NEXT_INSN (copy_start);
604 /* There may be a line number note and/or a loop continue note here. */
605 while (GET_CODE (start_label) == NOTE)
606 start_label = NEXT_INSN (start_label);
607 if (GET_CODE (start_label) != CODE_LABEL)
609 /* This can happen as a result of jump threading. If the first insns in
610 the loop test the same condition as the loop's backward jump, or the
611 opposite condition, then the backward jump will be modified to point
612 to elsewhere, and the loop's start label is deleted.
614 This case currently can not be handled by the loop unrolling code. */
616 if (loop_dump_stream)
617 fprintf (loop_dump_stream,
618 "Unrolling failure: unknown insns between BEG note and loop label.\n");
619 return;
621 if (LABEL_NAME (start_label))
623 /* The jump optimization pass must have combined the original start label
624 with a named label for a goto. We can't unroll this case because
625 jumps which go to the named label must be handled differently than
626 jumps to the loop start, and it is impossible to differentiate them
627 in this case. */
628 if (loop_dump_stream)
629 fprintf (loop_dump_stream,
630 "Unrolling failure: loop start label is gone\n");
631 return;
634 if (unroll_type == UNROLL_NAIVE
635 && GET_CODE (last_loop_insn) == BARRIER
636 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
637 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
639 /* In this case, we must copy the jump and barrier, because they will
640 not be converted to jumps to an immediately following label. */
642 insert_before = NEXT_INSN (last_loop_insn);
643 copy_end = last_loop_insn;
646 if (unroll_type == UNROLL_NAIVE
647 && GET_CODE (last_loop_insn) == JUMP_INSN
648 && start_label != JUMP_LABEL (last_loop_insn))
650 /* ??? The loop ends with a conditional branch that does not branch back
651 to the loop start label. In this case, we must emit an unconditional
652 branch to the loop exit after emitting the final branch.
653 copy_loop_body does not have support for this currently, so we
654 give up. It doesn't seem worthwhile to unroll anyways since
655 unrolling would increase the number of branch instructions
656 executed. */
657 if (loop_dump_stream)
658 fprintf (loop_dump_stream,
659 "Unrolling failure: final conditional branch not to loop start\n");
660 return;
663 /* Allocate a translation table for the labels and insn numbers.
664 They will be filled in as we copy the insns in the loop. */
666 max_labelno = max_label_num ();
667 max_insnno = get_max_uid ();
669 /* Various paths through the unroll code may reach the "egress" label
670 without initializing fields within the map structure.
672 To be safe, we use xcalloc to zero the memory. */
673 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
675 /* Allocate the label map. */
677 if (max_labelno > 0)
679 map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
680 local_label = (char *) xcalloc (max_labelno, sizeof (char));
683 /* Search the loop and mark all local labels, i.e. the ones which have to
684 be distinct labels when copied. For all labels which might be
685 non-local, set their label_map entries to point to themselves.
686 If they happen to be local their label_map entries will be overwritten
687 before the loop body is copied. The label_map entries for local labels
688 will be set to a different value each time the loop body is copied. */
690 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
692 rtx note;
694 if (GET_CODE (insn) == CODE_LABEL)
695 local_label[CODE_LABEL_NUMBER (insn)] = 1;
696 else if (GET_CODE (insn) == JUMP_INSN)
698 if (JUMP_LABEL (insn))
699 set_label_in_map (map,
700 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
701 JUMP_LABEL (insn));
702 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
703 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
705 rtx pat = PATTERN (insn);
706 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
707 int len = XVECLEN (pat, diff_vec_p);
708 rtx label;
710 for (i = 0; i < len; i++)
712 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
713 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
717 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
718 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
719 XEXP (note, 0));
722 /* Allocate space for the insn map. */
724 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
726 /* Set this to zero, to indicate that we are doing loop unrolling,
727 not function inlining. */
728 map->inline_target = 0;
730 /* The register and constant maps depend on the number of registers
731 present, so the final maps can't be created until after
732 find_splittable_regs is called. However, they are needed for
733 preconditioning, so we create temporary maps when preconditioning
734 is performed. */
736 /* The preconditioning code may allocate two new pseudo registers. */
737 maxregnum = max_reg_num ();
739 /* local_regno is only valid for regnos < max_local_regnum. */
740 max_local_regnum = maxregnum;
742 /* Allocate and zero out the splittable_regs and addr_combined_regs
743 arrays. These must be zeroed here because they will be used if
744 loop preconditioning is performed, and must be zero for that case.
746 It is safe to do this here, since the extra registers created by the
747 preconditioning code and find_splittable_regs will never be used
748 to access the splittable_regs[] and addr_combined_regs[] arrays. */
750 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
751 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
752 addr_combined_regs
753 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
754 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
756 /* Mark all local registers, i.e. the ones which are referenced only
757 inside the loop. */
758 if (INSN_UID (copy_end) < max_uid_for_loop)
760 int copy_start_luid = INSN_LUID (copy_start);
761 int copy_end_luid = INSN_LUID (copy_end);
763 /* If a register is used in the jump insn, we must not duplicate it
764 since it will also be used outside the loop. */
765 if (GET_CODE (copy_end) == JUMP_INSN)
766 copy_end_luid--;
768 /* If we have a target that uses cc0, then we also must not duplicate
769 the insn that sets cc0 before the jump insn, if one is present. */
770 #ifdef HAVE_cc0
771 if (GET_CODE (copy_end) == JUMP_INSN
772 && sets_cc0_p (PREV_INSN (copy_end)))
773 copy_end_luid--;
774 #endif
776 /* If copy_start points to the NOTE that starts the loop, then we must
777 use the next luid, because invariant pseudo-regs moved out of the loop
778 have their lifetimes modified to start here, but they are not safe
779 to duplicate. */
780 if (copy_start == loop_start)
781 copy_start_luid++;
783 /* If a pseudo's lifetime is entirely contained within this loop, then we
784 can use a different pseudo in each unrolled copy of the loop. This
785 results in better code. */
786 /* We must limit the generic test to max_reg_before_loop, because only
787 these pseudo registers have valid regno_first_uid info. */
788 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
789 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
790 && REGNO_FIRST_LUID (r) >= copy_start_luid
791 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
792 && REGNO_LAST_LUID (r) <= copy_end_luid)
794 /* However, we must also check for loop-carried dependencies.
795 If the value the pseudo has at the end of iteration X is
796 used by iteration X+1, then we can not use a different pseudo
797 for each unrolled copy of the loop. */
798 /* A pseudo is safe if regno_first_uid is a set, and this
799 set dominates all instructions from regno_first_uid to
800 regno_last_uid. */
801 /* ??? This check is simplistic. We would get better code if
802 this check was more sophisticated. */
803 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
804 copy_start, copy_end))
805 local_regno[r] = 1;
807 if (loop_dump_stream)
809 if (local_regno[r])
810 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
811 else
812 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
818 /* If this loop requires exit tests when unrolled, check to see if we
819 can precondition the loop so as to make the exit tests unnecessary.
820 Just like variable splitting, this is not safe if the loop is entered
821 via a jump to the bottom. Also, can not do this if no strength
822 reduce info, because precondition_loop_p uses this info. */
824 /* Must copy the loop body for preconditioning before the following
825 find_splittable_regs call since that will emit insns which need to
826 be after the preconditioned loop copies, but immediately before the
827 unrolled loop copies. */
829 /* Also, it is not safe to split induction variables for the preconditioned
830 copies of the loop body. If we split induction variables, then the code
831 assumes that each induction variable can be represented as a function
832 of its initial value and the loop iteration number. This is not true
833 in this case, because the last preconditioned copy of the loop body
834 could be any iteration from the first up to the `unroll_number-1'th,
835 depending on the initial value of the iteration variable. Therefore
836 we can not split induction variables here, because we can not calculate
837 their value. Hence, this code must occur before find_splittable_regs
838 is called. */
840 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
842 rtx initial_value, final_value, increment;
843 enum machine_mode mode;
845 if (precondition_loop_p (loop,
846 &initial_value, &final_value, &increment,
847 &mode))
849 rtx diff, insn;
850 rtx *labels;
851 int abs_inc, neg_inc;
852 enum rtx_code cc = loop_info->comparison_code;
853 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
854 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
856 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
858 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
859 "unroll_loop_precondition");
860 global_const_equiv_varray = map->const_equiv_varray;
862 init_reg_map (map, maxregnum);
864 /* Limit loop unrolling to 4, since this will make 7 copies of
865 the loop body. */
866 if (unroll_number > 4)
867 unroll_number = 4;
869 /* Save the absolute value of the increment, and also whether or
870 not it is negative. */
871 neg_inc = 0;
872 abs_inc = INTVAL (increment);
873 if (abs_inc < 0)
875 abs_inc = -abs_inc;
876 neg_inc = 1;
879 start_sequence ();
881 /* We must copy the final and initial values here to avoid
882 improperly shared rtl. */
883 final_value = copy_rtx (final_value);
884 initial_value = copy_rtx (initial_value);
886 /* Final value may have form of (PLUS val1 const1_rtx). We need
887 to convert it into general operand, so compute the real value. */
889 final_value = force_operand (final_value, NULL_RTX);
890 if (!nonmemory_operand (final_value, VOIDmode))
891 final_value = force_reg (mode, final_value);
893 /* Calculate the difference between the final and initial values.
894 Final value may be a (plus (reg x) (const_int 1)) rtx.
896 We have to deal with for (i = 0; --i < 6;) type loops.
897 For such loops the real final value is the first time the
898 loop variable overflows, so the diff we calculate is the
899 distance from the overflow value. This is 0 or ~0 for
900 unsigned loops depending on the direction, or INT_MAX,
901 INT_MAX+1 for signed loops. We really do not need the
902 exact value, since we are only interested in the diff
903 modulo the increment, and the increment is a power of 2,
904 so we can pretend that the overflow value is 0/~0. */
906 if (cc == NE || less_p != neg_inc)
907 diff = simplify_gen_binary (MINUS, mode, final_value,
908 initial_value);
909 else
910 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
911 initial_value, mode);
912 diff = force_operand (diff, NULL_RTX);
914 /* Now calculate (diff % (unroll * abs (increment))) by using an
915 and instruction. */
916 diff = simplify_gen_binary (AND, mode, diff,
917 GEN_INT (unroll_number*abs_inc - 1));
918 diff = force_operand (diff, NULL_RTX);
920 /* Now emit a sequence of branches to jump to the proper precond
921 loop entry point. */
923 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
924 for (i = 0; i < unroll_number; i++)
925 labels[i] = gen_label_rtx ();
927 /* Check for the case where the initial value is greater than or
928 equal to the final value. In that case, we want to execute
929 exactly one loop iteration. The code below will fail for this
930 case. This check does not apply if the loop has a NE
931 comparison at the end. */
933 if (cc != NE)
935 rtx incremented_initval;
936 enum rtx_code cmp_code;
938 incremented_initval
939 = simplify_gen_binary (PLUS, mode, initial_value, increment);
940 incremented_initval
941 = force_operand (incremented_initval, NULL_RTX);
943 cmp_code = (less_p
944 ? (unsigned_p ? GEU : GE)
945 : (unsigned_p ? LEU : LE));
947 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
948 incremented_initval,
949 final_value, labels[1]);
950 if (insn)
951 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
954 /* Assuming the unroll_number is 4, and the increment is 2, then
955 for a negative increment: for a positive increment:
956 diff = 0,1 precond 0 diff = 0,7 precond 0
957 diff = 2,3 precond 3 diff = 1,2 precond 1
958 diff = 4,5 precond 2 diff = 3,4 precond 2
959 diff = 6,7 precond 1 diff = 5,6 precond 3 */
961 /* We only need to emit (unroll_number - 1) branches here, the
962 last case just falls through to the following code. */
964 /* ??? This would give better code if we emitted a tree of branches
965 instead of the current linear list of branches. */
967 for (i = 0; i < unroll_number - 1; i++)
969 int cmp_const;
970 enum rtx_code cmp_code;
972 /* For negative increments, must invert the constant compared
973 against, except when comparing against zero. */
974 if (i == 0)
976 cmp_const = 0;
977 cmp_code = EQ;
979 else if (neg_inc)
981 cmp_const = unroll_number - i;
982 cmp_code = GE;
984 else
986 cmp_const = i;
987 cmp_code = LE;
990 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
991 GEN_INT (abs_inc*cmp_const),
992 labels[i]);
993 if (insn)
994 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
995 REG_BR_PROB_BASE / (unroll_number - i));
998 /* If the increment is greater than one, then we need another branch,
999 to handle other cases equivalent to 0. */
1001 /* ??? This should be merged into the code above somehow to help
1002 simplify the code here, and reduce the number of branches emitted.
1003 For the negative increment case, the branch here could easily
1004 be merged with the `0' case branch above. For the positive
1005 increment case, it is not clear how this can be simplified. */
1007 if (abs_inc != 1)
1009 int cmp_const;
1010 enum rtx_code cmp_code;
1012 if (neg_inc)
1014 cmp_const = abs_inc - 1;
1015 cmp_code = LE;
1017 else
1019 cmp_const = abs_inc * (unroll_number - 1) + 1;
1020 cmp_code = GE;
1023 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1024 GEN_INT (cmp_const), labels[0]);
1027 sequence = get_insns ();
1028 end_sequence ();
1029 loop_insn_hoist (loop, sequence);
1031 /* Only the last copy of the loop body here needs the exit
1032 test, so set copy_end to exclude the compare/branch here,
1033 and then reset it inside the loop when get to the last
1034 copy. */
1036 if (GET_CODE (last_loop_insn) == BARRIER)
1037 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1038 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1040 copy_end = PREV_INSN (last_loop_insn);
1041 #ifdef HAVE_cc0
1042 /* The immediately preceding insn may be a compare which
1043 we do not want to copy. */
1044 if (sets_cc0_p (PREV_INSN (copy_end)))
1045 copy_end = PREV_INSN (copy_end);
1046 #endif
1048 else
1049 abort ();
1051 for (i = 1; i < unroll_number; i++)
1053 emit_label_after (labels[unroll_number - i],
1054 PREV_INSN (loop_start));
1056 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1057 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1058 0, (VARRAY_SIZE (map->const_equiv_varray)
1059 * sizeof (struct const_equiv_data)));
1060 map->const_age = 0;
1062 for (j = 0; j < max_labelno; j++)
1063 if (local_label[j])
1064 set_label_in_map (map, j, gen_label_rtx ());
1066 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1067 if (local_regno[r])
1069 map->reg_map[r]
1070 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1071 record_base_value (REGNO (map->reg_map[r]),
1072 regno_reg_rtx[r], 0);
1074 /* The last copy needs the compare/branch insns at the end,
1075 so reset copy_end here if the loop ends with a conditional
1076 branch. */
1078 if (i == unroll_number - 1)
1080 if (GET_CODE (last_loop_insn) == BARRIER)
1081 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1082 else
1083 copy_end = last_loop_insn;
1086 /* None of the copies are the `last_iteration', so just
1087 pass zero for that parameter. */
1088 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1089 unroll_type, start_label, loop_end,
1090 loop_start, copy_end);
1092 emit_label_after (labels[0], PREV_INSN (loop_start));
1094 if (GET_CODE (last_loop_insn) == BARRIER)
1096 insert_before = PREV_INSN (last_loop_insn);
1097 copy_end = PREV_INSN (insert_before);
1099 else
1101 insert_before = last_loop_insn;
1102 #ifdef HAVE_cc0
1103 /* The instruction immediately before the JUMP_INSN may
1104 be a compare instruction which we do not want to copy
1105 or delete. */
1106 if (sets_cc0_p (PREV_INSN (insert_before)))
1107 insert_before = PREV_INSN (insert_before);
1108 #endif
1109 copy_end = PREV_INSN (insert_before);
1112 /* Set unroll type to MODULO now. */
1113 unroll_type = UNROLL_MODULO;
1114 loop_preconditioned = 1;
1116 /* Clean up. */
1117 free (labels);
1121 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1122 the loop unless all loops are being unrolled. */
1123 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1125 if (loop_dump_stream)
1126 fprintf (loop_dump_stream,
1127 "Unrolling failure: Naive unrolling not being done.\n");
1128 goto egress;
1131 /* At this point, we are guaranteed to unroll the loop. */
1133 /* Keep track of the unroll factor for the loop. */
1134 loop_info->unroll_number = unroll_number;
1136 /* And whether the loop has been preconditioned. */
1137 loop_info->preconditioned = loop_preconditioned;
1139 /* Remember whether it was preconditioned for the second loop pass. */
1140 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1142 /* For each biv and giv, determine whether it can be safely split into
1143 a different variable for each unrolled copy of the loop body.
1144 We precalculate and save this info here, since computing it is
1145 expensive.
1147 Do this before deleting any instructions from the loop, so that
1148 back_branch_in_range_p will work correctly. */
1150 if (splitting_not_safe)
1151 temp = 0;
1152 else
1153 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1155 /* find_splittable_regs may have created some new registers, so must
1156 reallocate the reg_map with the new larger size, and must realloc
1157 the constant maps also. */
1159 maxregnum = max_reg_num ();
1160 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1162 init_reg_map (map, maxregnum);
1164 if (map->const_equiv_varray == 0)
1165 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1166 maxregnum + temp * unroll_number * 2,
1167 "unroll_loop");
1168 global_const_equiv_varray = map->const_equiv_varray;
1170 /* Search the list of bivs and givs to find ones which need to be remapped
1171 when split, and set their reg_map entry appropriately. */
1173 for (bl = ivs->list; bl; bl = bl->next)
1175 if (REGNO (bl->biv->src_reg) != bl->regno)
1176 map->reg_map[bl->regno] = bl->biv->src_reg;
1177 #if 0
1178 /* Currently, non-reduced/final-value givs are never split. */
1179 for (v = bl->giv; v; v = v->next_iv)
1180 if (REGNO (v->src_reg) != bl->regno)
1181 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1182 #endif
1185 /* Use our current register alignment and pointer flags. */
1186 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1187 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1189 /* If the loop is being partially unrolled, and the iteration variables
1190 are being split, and are being renamed for the split, then must fix up
1191 the compare/jump instruction at the end of the loop to refer to the new
1192 registers. This compare isn't copied, so the registers used in it
1193 will never be replaced if it isn't done here. */
1195 if (unroll_type == UNROLL_MODULO)
1197 insn = NEXT_INSN (copy_end);
1198 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1199 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1202 /* For unroll_number times, make a copy of each instruction
1203 between copy_start and copy_end, and insert these new instructions
1204 before the end of the loop. */
1206 for (i = 0; i < unroll_number; i++)
1208 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1209 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1210 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1211 map->const_age = 0;
1213 for (j = 0; j < max_labelno; j++)
1214 if (local_label[j])
1215 set_label_in_map (map, j, gen_label_rtx ());
1217 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1218 if (local_regno[r])
1220 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1221 record_base_value (REGNO (map->reg_map[r]),
1222 regno_reg_rtx[r], 0);
1225 /* If loop starts with a branch to the test, then fix it so that
1226 it points to the test of the first unrolled copy of the loop. */
1227 if (i == 0 && loop_start != copy_start)
1229 insn = PREV_INSN (copy_start);
1230 pattern = PATTERN (insn);
1232 tem = get_label_from_map (map,
1233 CODE_LABEL_NUMBER
1234 (XEXP (SET_SRC (pattern), 0)));
1235 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1237 /* Set the jump label so that it can be used by later loop unrolling
1238 passes. */
1239 JUMP_LABEL (insn) = tem;
1240 LABEL_NUSES (tem)++;
1243 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1244 i == unroll_number - 1, unroll_type, start_label,
1245 loop_end, insert_before, insert_before);
1248 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1249 insn to be deleted. This prevents any runaway delete_insn call from
1250 more insns that it should, as it always stops at a CODE_LABEL. */
1252 /* Delete the compare and branch at the end of the loop if completely
1253 unrolling the loop. Deleting the backward branch at the end also
1254 deletes the code label at the start of the loop. This is done at
1255 the very end to avoid problems with back_branch_in_range_p. */
1257 if (unroll_type == UNROLL_COMPLETELY)
1258 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1259 else
1260 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1262 /* Delete all of the original loop instructions. Don't delete the
1263 LOOP_BEG note, or the first code label in the loop. */
1265 insn = NEXT_INSN (copy_start);
1266 while (insn != safety_label)
1268 /* ??? Don't delete named code labels. They will be deleted when the
1269 jump that references them is deleted. Otherwise, we end up deleting
1270 them twice, which causes them to completely disappear instead of turn
1271 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1272 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1273 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1274 associated LABEL_DECL to point to one of the new label instances. */
1275 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1276 if (insn != start_label
1277 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1278 && ! (GET_CODE (insn) == NOTE
1279 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1280 insn = delete_related_insns (insn);
1281 else
1282 insn = NEXT_INSN (insn);
1285 /* Can now delete the 'safety' label emitted to protect us from runaway
1286 delete_related_insns calls. */
1287 if (INSN_DELETED_P (safety_label))
1288 abort ();
1289 delete_related_insns (safety_label);
1291 /* If exit_label exists, emit it after the loop. Doing the emit here
1292 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1293 This is needed so that mostly_true_jump in reorg.c will treat jumps
1294 to this loop end label correctly, i.e. predict that they are usually
1295 not taken. */
1296 if (exit_label)
1297 emit_label_after (exit_label, loop_end);
1299 egress:
1300 if (unroll_type == UNROLL_COMPLETELY)
1302 /* Remove the loop notes since this is no longer a loop. */
1303 if (loop->vtop)
1304 delete_related_insns (loop->vtop);
1305 if (loop->cont)
1306 delete_related_insns (loop->cont);
1307 if (loop_start)
1308 delete_related_insns (loop_start);
1309 if (loop_end)
1310 delete_related_insns (loop_end);
1313 if (map->const_equiv_varray)
1314 VARRAY_FREE (map->const_equiv_varray);
1315 if (map->label_map)
1317 free (map->label_map);
1318 free (local_label);
1320 free (map->insn_map);
1321 free (splittable_regs);
1322 free (splittable_regs_updates);
1323 free (addr_combined_regs);
1324 free (local_regno);
1325 if (map->reg_map)
1326 free (map->reg_map);
1327 free (map);
1330 /* A helper function for unroll_loop. Emit a compare and branch to
1331 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1332 If the branch turned out to be conditional, return it, otherwise
1333 return NULL. */
1335 static rtx
1336 simplify_cmp_and_jump_insns (code, mode, op0, op1, label)
1337 enum rtx_code code;
1338 enum machine_mode mode;
1339 rtx op0, op1, label;
1341 rtx t, insn;
1343 t = simplify_relational_operation (code, mode, op0, op1);
1344 if (!t)
1346 enum rtx_code scode = signed_condition (code);
1347 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1348 code != scode, label);
1349 insn = get_last_insn ();
1351 JUMP_LABEL (insn) = label;
1352 LABEL_NUSES (label) += 1;
1354 return insn;
1356 else if (t == const_true_rtx)
1358 insn = emit_jump_insn (gen_jump (label));
1359 emit_barrier ();
1360 JUMP_LABEL (insn) = label;
1361 LABEL_NUSES (label) += 1;
1364 return NULL_RTX;
1367 /* Return true if the loop can be safely, and profitably, preconditioned
1368 so that the unrolled copies of the loop body don't need exit tests.
1370 This only works if final_value, initial_value and increment can be
1371 determined, and if increment is a constant power of 2.
1372 If increment is not a power of 2, then the preconditioning modulo
1373 operation would require a real modulo instead of a boolean AND, and this
1374 is not considered `profitable'. */
1376 /* ??? If the loop is known to be executed very many times, or the machine
1377 has a very cheap divide instruction, then preconditioning is a win even
1378 when the increment is not a power of 2. Use RTX_COST to compute
1379 whether divide is cheap.
1380 ??? A divide by constant doesn't actually need a divide, look at
1381 expand_divmod. The reduced cost of this optimized modulo is not
1382 reflected in RTX_COST. */
1385 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1386 const struct loop *loop;
1387 rtx *initial_value, *final_value, *increment;
1388 enum machine_mode *mode;
1390 rtx loop_start = loop->start;
1391 struct loop_info *loop_info = LOOP_INFO (loop);
1393 if (loop_info->n_iterations > 0)
1395 if (INTVAL (loop_info->increment) > 0)
1397 *initial_value = const0_rtx;
1398 *increment = const1_rtx;
1399 *final_value = GEN_INT (loop_info->n_iterations);
1401 else
1403 *initial_value = GEN_INT (loop_info->n_iterations);
1404 *increment = constm1_rtx;
1405 *final_value = const0_rtx;
1407 *mode = word_mode;
1409 if (loop_dump_stream)
1411 fputs ("Preconditioning: Success, number of iterations known, ",
1412 loop_dump_stream);
1413 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1414 loop_info->n_iterations);
1415 fputs (".\n", loop_dump_stream);
1417 return 1;
1420 if (loop_info->iteration_var == 0)
1422 if (loop_dump_stream)
1423 fprintf (loop_dump_stream,
1424 "Preconditioning: Could not find iteration variable.\n");
1425 return 0;
1427 else if (loop_info->initial_value == 0)
1429 if (loop_dump_stream)
1430 fprintf (loop_dump_stream,
1431 "Preconditioning: Could not find initial value.\n");
1432 return 0;
1434 else if (loop_info->increment == 0)
1436 if (loop_dump_stream)
1437 fprintf (loop_dump_stream,
1438 "Preconditioning: Could not find increment value.\n");
1439 return 0;
1441 else if (GET_CODE (loop_info->increment) != CONST_INT)
1443 if (loop_dump_stream)
1444 fprintf (loop_dump_stream,
1445 "Preconditioning: Increment not a constant.\n");
1446 return 0;
1448 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1449 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1451 if (loop_dump_stream)
1452 fprintf (loop_dump_stream,
1453 "Preconditioning: Increment not a constant power of 2.\n");
1454 return 0;
1457 /* Unsigned_compare and compare_dir can be ignored here, since they do
1458 not matter for preconditioning. */
1460 if (loop_info->final_value == 0)
1462 if (loop_dump_stream)
1463 fprintf (loop_dump_stream,
1464 "Preconditioning: EQ comparison loop.\n");
1465 return 0;
1468 /* Must ensure that final_value is invariant, so call
1469 loop_invariant_p to check. Before doing so, must check regno
1470 against max_reg_before_loop to make sure that the register is in
1471 the range covered by loop_invariant_p. If it isn't, then it is
1472 most likely a biv/giv which by definition are not invariant. */
1473 if ((GET_CODE (loop_info->final_value) == REG
1474 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1475 || (GET_CODE (loop_info->final_value) == PLUS
1476 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1477 || ! loop_invariant_p (loop, loop_info->final_value))
1479 if (loop_dump_stream)
1480 fprintf (loop_dump_stream,
1481 "Preconditioning: Final value not invariant.\n");
1482 return 0;
1485 /* Fail for floating point values, since the caller of this function
1486 does not have code to deal with them. */
1487 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1488 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1490 if (loop_dump_stream)
1491 fprintf (loop_dump_stream,
1492 "Preconditioning: Floating point final or initial value.\n");
1493 return 0;
1496 /* Fail if loop_info->iteration_var is not live before loop_start,
1497 since we need to test its value in the preconditioning code. */
1499 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1500 > INSN_LUID (loop_start))
1502 if (loop_dump_stream)
1503 fprintf (loop_dump_stream,
1504 "Preconditioning: Iteration var not live before loop start.\n");
1505 return 0;
1508 /* Note that loop_iterations biases the initial value for GIV iterators
1509 such as "while (i-- > 0)" so that we can calculate the number of
1510 iterations just like for BIV iterators.
1512 Also note that the absolute values of initial_value and
1513 final_value are unimportant as only their difference is used for
1514 calculating the number of loop iterations. */
1515 *initial_value = loop_info->initial_value;
1516 *increment = loop_info->increment;
1517 *final_value = loop_info->final_value;
1519 /* Decide what mode to do these calculations in. Choose the larger
1520 of final_value's mode and initial_value's mode, or a full-word if
1521 both are constants. */
1522 *mode = GET_MODE (*final_value);
1523 if (*mode == VOIDmode)
1525 *mode = GET_MODE (*initial_value);
1526 if (*mode == VOIDmode)
1527 *mode = word_mode;
1529 else if (*mode != GET_MODE (*initial_value)
1530 && (GET_MODE_SIZE (*mode)
1531 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1532 *mode = GET_MODE (*initial_value);
1534 /* Success! */
1535 if (loop_dump_stream)
1536 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1537 return 1;
1540 /* All pseudo-registers must be mapped to themselves. Two hard registers
1541 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1542 REGNUM, to avoid function-inlining specific conversions of these
1543 registers. All other hard regs can not be mapped because they may be
1544 used with different
1545 modes. */
1547 static void
1548 init_reg_map (map, maxregnum)
1549 struct inline_remap *map;
1550 int maxregnum;
1552 int i;
1554 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1555 map->reg_map[i] = regno_reg_rtx[i];
1556 /* Just clear the rest of the entries. */
1557 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1558 map->reg_map[i] = 0;
1560 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1561 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1562 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1563 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1566 /* Strength-reduction will often emit code for optimized biv/givs which
1567 calculates their value in a temporary register, and then copies the result
1568 to the iv. This procedure reconstructs the pattern computing the iv;
1569 verifying that all operands are of the proper form.
1571 PATTERN must be the result of single_set.
1572 The return value is the amount that the giv is incremented by. */
1574 static rtx
1575 calculate_giv_inc (pattern, src_insn, regno)
1576 rtx pattern, src_insn;
1577 unsigned int regno;
1579 rtx increment;
1580 rtx increment_total = 0;
1581 int tries = 0;
1583 retry:
1584 /* Verify that we have an increment insn here. First check for a plus
1585 as the set source. */
1586 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1588 /* SR sometimes computes the new giv value in a temp, then copies it
1589 to the new_reg. */
1590 src_insn = PREV_INSN (src_insn);
1591 pattern = single_set (src_insn);
1592 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1593 abort ();
1595 /* The last insn emitted is not needed, so delete it to avoid confusing
1596 the second cse pass. This insn sets the giv unnecessarily. */
1597 delete_related_insns (get_last_insn ());
1600 /* Verify that we have a constant as the second operand of the plus. */
1601 increment = XEXP (SET_SRC (pattern), 1);
1602 if (GET_CODE (increment) != CONST_INT)
1604 /* SR sometimes puts the constant in a register, especially if it is
1605 too big to be an add immed operand. */
1606 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1608 /* SR may have used LO_SUM to compute the constant if it is too large
1609 for a load immed operand. In this case, the constant is in operand
1610 one of the LO_SUM rtx. */
1611 if (GET_CODE (increment) == LO_SUM)
1612 increment = XEXP (increment, 1);
1614 /* Some ports store large constants in memory and add a REG_EQUAL
1615 note to the store insn. */
1616 else if (GET_CODE (increment) == MEM)
1618 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1619 if (note)
1620 increment = XEXP (note, 0);
1623 else if (GET_CODE (increment) == IOR
1624 || GET_CODE (increment) == ASHIFT
1625 || GET_CODE (increment) == PLUS)
1627 /* The rs6000 port loads some constants with IOR.
1628 The alpha port loads some constants with ASHIFT and PLUS. */
1629 rtx second_part = XEXP (increment, 1);
1630 enum rtx_code code = GET_CODE (increment);
1632 increment = find_last_value (XEXP (increment, 0),
1633 &src_insn, NULL_RTX, 0);
1634 /* Don't need the last insn anymore. */
1635 delete_related_insns (get_last_insn ());
1637 if (GET_CODE (second_part) != CONST_INT
1638 || GET_CODE (increment) != CONST_INT)
1639 abort ();
1641 if (code == IOR)
1642 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1643 else if (code == PLUS)
1644 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1645 else
1646 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1649 if (GET_CODE (increment) != CONST_INT)
1650 abort ();
1652 /* The insn loading the constant into a register is no longer needed,
1653 so delete it. */
1654 delete_related_insns (get_last_insn ());
1657 if (increment_total)
1658 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1659 else
1660 increment_total = increment;
1662 /* Check that the source register is the same as the register we expected
1663 to see as the source. If not, something is seriously wrong. */
1664 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1665 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1667 /* Some machines (e.g. the romp), may emit two add instructions for
1668 certain constants, so lets try looking for another add immediately
1669 before this one if we have only seen one add insn so far. */
1671 if (tries == 0)
1673 tries++;
1675 src_insn = PREV_INSN (src_insn);
1676 pattern = single_set (src_insn);
1678 delete_related_insns (get_last_insn ());
1680 goto retry;
1683 abort ();
1686 return increment_total;
1689 /* Copy REG_NOTES, except for insn references, because not all insn_map
1690 entries are valid yet. We do need to copy registers now though, because
1691 the reg_map entries can change during copying. */
1693 static rtx
1694 initial_reg_note_copy (notes, map)
1695 rtx notes;
1696 struct inline_remap *map;
1698 rtx copy;
1700 if (notes == 0)
1701 return 0;
1703 copy = rtx_alloc (GET_CODE (notes));
1704 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1706 if (GET_CODE (notes) == EXPR_LIST)
1707 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1708 else if (GET_CODE (notes) == INSN_LIST)
1709 /* Don't substitute for these yet. */
1710 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1711 else
1712 abort ();
1714 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1716 return copy;
1719 /* Fixup insn references in copied REG_NOTES. */
1721 static void
1722 final_reg_note_copy (notesp, map)
1723 rtx *notesp;
1724 struct inline_remap *map;
1726 while (*notesp)
1728 rtx note = *notesp;
1730 if (GET_CODE (note) == INSN_LIST)
1732 /* Sometimes, we have a REG_WAS_0 note that points to a
1733 deleted instruction. In that case, we can just delete the
1734 note. */
1735 if (REG_NOTE_KIND (note) == REG_WAS_0)
1737 *notesp = XEXP (note, 1);
1738 continue;
1740 else
1742 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1744 /* If we failed to remap the note, something is awry.
1745 Allow REG_LABEL as it may reference label outside
1746 the unrolled loop. */
1747 if (!insn)
1749 if (REG_NOTE_KIND (note) != REG_LABEL)
1750 abort ();
1752 else
1753 XEXP (note, 0) = insn;
1757 notesp = &XEXP (note, 1);
1761 /* Copy each instruction in the loop, substituting from map as appropriate.
1762 This is very similar to a loop in expand_inline_function. */
1764 static void
1765 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1766 unroll_type, start_label, loop_end, insert_before,
1767 copy_notes_from)
1768 struct loop *loop;
1769 rtx copy_start, copy_end;
1770 struct inline_remap *map;
1771 rtx exit_label;
1772 int last_iteration;
1773 enum unroll_types unroll_type;
1774 rtx start_label, loop_end, insert_before, copy_notes_from;
1776 struct loop_ivs *ivs = LOOP_IVS (loop);
1777 rtx insn, pattern;
1778 rtx set, tem, copy = NULL_RTX;
1779 int dest_reg_was_split, i;
1780 #ifdef HAVE_cc0
1781 rtx cc0_insn = 0;
1782 #endif
1783 rtx final_label = 0;
1784 rtx giv_inc, giv_dest_reg, giv_src_reg;
1786 /* If this isn't the last iteration, then map any references to the
1787 start_label to final_label. Final label will then be emitted immediately
1788 after the end of this loop body if it was ever used.
1790 If this is the last iteration, then map references to the start_label
1791 to itself. */
1792 if (! last_iteration)
1794 final_label = gen_label_rtx ();
1795 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1797 else
1798 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1800 start_sequence ();
1802 insn = copy_start;
1805 insn = NEXT_INSN (insn);
1807 map->orig_asm_operands_vector = 0;
1809 switch (GET_CODE (insn))
1811 case INSN:
1812 pattern = PATTERN (insn);
1813 copy = 0;
1814 giv_inc = 0;
1816 /* Check to see if this is a giv that has been combined with
1817 some split address givs. (Combined in the sense that
1818 `combine_givs' in loop.c has put two givs in the same register.)
1819 In this case, we must search all givs based on the same biv to
1820 find the address givs. Then split the address givs.
1821 Do this before splitting the giv, since that may map the
1822 SET_DEST to a new register. */
1824 if ((set = single_set (insn))
1825 && GET_CODE (SET_DEST (set)) == REG
1826 && addr_combined_regs[REGNO (SET_DEST (set))])
1828 struct iv_class *bl;
1829 struct induction *v, *tv;
1830 unsigned int regno = REGNO (SET_DEST (set));
1832 v = addr_combined_regs[REGNO (SET_DEST (set))];
1833 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1835 /* Although the giv_inc amount is not needed here, we must call
1836 calculate_giv_inc here since it might try to delete the
1837 last insn emitted. If we wait until later to call it,
1838 we might accidentally delete insns generated immediately
1839 below by emit_unrolled_add. */
1841 giv_inc = calculate_giv_inc (set, insn, regno);
1843 /* Now find all address giv's that were combined with this
1844 giv 'v'. */
1845 for (tv = bl->giv; tv; tv = tv->next_iv)
1846 if (tv->giv_type == DEST_ADDR && tv->same == v)
1848 int this_giv_inc;
1850 /* If this DEST_ADDR giv was not split, then ignore it. */
1851 if (*tv->location != tv->dest_reg)
1852 continue;
1854 /* Scale this_giv_inc if the multiplicative factors of
1855 the two givs are different. */
1856 this_giv_inc = INTVAL (giv_inc);
1857 if (tv->mult_val != v->mult_val)
1858 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1859 * INTVAL (tv->mult_val));
1861 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1862 *tv->location = tv->dest_reg;
1864 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1866 /* Must emit an insn to increment the split address
1867 giv. Add in the const_adjust field in case there
1868 was a constant eliminated from the address. */
1869 rtx value, dest_reg;
1871 /* tv->dest_reg will be either a bare register,
1872 or else a register plus a constant. */
1873 if (GET_CODE (tv->dest_reg) == REG)
1874 dest_reg = tv->dest_reg;
1875 else
1876 dest_reg = XEXP (tv->dest_reg, 0);
1878 /* Check for shared address givs, and avoid
1879 incrementing the shared pseudo reg more than
1880 once. */
1881 if (! tv->same_insn && ! tv->shared)
1883 /* tv->dest_reg may actually be a (PLUS (REG)
1884 (CONST)) here, so we must call plus_constant
1885 to add the const_adjust amount before calling
1886 emit_unrolled_add below. */
1887 value = plus_constant (tv->dest_reg,
1888 tv->const_adjust);
1890 if (GET_CODE (value) == PLUS)
1892 /* The constant could be too large for an add
1893 immediate, so can't directly emit an insn
1894 here. */
1895 emit_unrolled_add (dest_reg, XEXP (value, 0),
1896 XEXP (value, 1));
1900 /* Reset the giv to be just the register again, in case
1901 it is used after the set we have just emitted.
1902 We must subtract the const_adjust factor added in
1903 above. */
1904 tv->dest_reg = plus_constant (dest_reg,
1905 -tv->const_adjust);
1906 *tv->location = tv->dest_reg;
1911 /* If this is a setting of a splittable variable, then determine
1912 how to split the variable, create a new set based on this split,
1913 and set up the reg_map so that later uses of the variable will
1914 use the new split variable. */
1916 dest_reg_was_split = 0;
1918 if ((set = single_set (insn))
1919 && GET_CODE (SET_DEST (set)) == REG
1920 && splittable_regs[REGNO (SET_DEST (set))])
1922 unsigned int regno = REGNO (SET_DEST (set));
1923 unsigned int src_regno;
1925 dest_reg_was_split = 1;
1927 giv_dest_reg = SET_DEST (set);
1928 giv_src_reg = giv_dest_reg;
1929 /* Compute the increment value for the giv, if it wasn't
1930 already computed above. */
1931 if (giv_inc == 0)
1932 giv_inc = calculate_giv_inc (set, insn, regno);
1934 src_regno = REGNO (giv_src_reg);
1936 if (unroll_type == UNROLL_COMPLETELY)
1938 /* Completely unrolling the loop. Set the induction
1939 variable to a known constant value. */
1941 /* The value in splittable_regs may be an invariant
1942 value, so we must use plus_constant here. */
1943 splittable_regs[regno]
1944 = plus_constant (splittable_regs[src_regno],
1945 INTVAL (giv_inc));
1947 if (GET_CODE (splittable_regs[regno]) == PLUS)
1949 giv_src_reg = XEXP (splittable_regs[regno], 0);
1950 giv_inc = XEXP (splittable_regs[regno], 1);
1952 else
1954 /* The splittable_regs value must be a REG or a
1955 CONST_INT, so put the entire value in the giv_src_reg
1956 variable. */
1957 giv_src_reg = splittable_regs[regno];
1958 giv_inc = const0_rtx;
1961 else
1963 /* Partially unrolling loop. Create a new pseudo
1964 register for the iteration variable, and set it to
1965 be a constant plus the original register. Except
1966 on the last iteration, when the result has to
1967 go back into the original iteration var register. */
1969 /* Handle bivs which must be mapped to a new register
1970 when split. This happens for bivs which need their
1971 final value set before loop entry. The new register
1972 for the biv was stored in the biv's first struct
1973 induction entry by find_splittable_regs. */
1975 if (regno < ivs->n_regs
1976 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1978 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1979 giv_dest_reg = giv_src_reg;
1982 #if 0
1983 /* If non-reduced/final-value givs were split, then
1984 this would have to remap those givs also. See
1985 find_splittable_regs. */
1986 #endif
1988 splittable_regs[regno]
1989 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1990 giv_inc,
1991 splittable_regs[src_regno]);
1992 giv_inc = splittable_regs[regno];
1994 /* Now split the induction variable by changing the dest
1995 of this insn to a new register, and setting its
1996 reg_map entry to point to this new register.
1998 If this is the last iteration, and this is the last insn
1999 that will update the iv, then reuse the original dest,
2000 to ensure that the iv will have the proper value when
2001 the loop exits or repeats.
2003 Using splittable_regs_updates here like this is safe,
2004 because it can only be greater than one if all
2005 instructions modifying the iv are always executed in
2006 order. */
2008 if (! last_iteration
2009 || (splittable_regs_updates[regno]-- != 1))
2011 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2012 giv_dest_reg = tem;
2013 map->reg_map[regno] = tem;
2014 record_base_value (REGNO (tem),
2015 giv_inc == const0_rtx
2016 ? giv_src_reg
2017 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2018 giv_src_reg, giv_inc),
2021 else
2022 map->reg_map[regno] = giv_src_reg;
2025 /* The constant being added could be too large for an add
2026 immediate, so can't directly emit an insn here. */
2027 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2028 copy = get_last_insn ();
2029 pattern = PATTERN (copy);
2031 else
2033 pattern = copy_rtx_and_substitute (pattern, map, 0);
2034 copy = emit_insn (pattern);
2036 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2037 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2039 /* If there is a REG_EQUAL note present whose value
2040 is not loop invariant, then delete it, since it
2041 may cause problems with later optimization passes. */
2042 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2043 && !loop_invariant_p (loop, XEXP (tem, 0)))
2044 remove_note (copy, tem);
2046 #ifdef HAVE_cc0
2047 /* If this insn is setting CC0, it may need to look at
2048 the insn that uses CC0 to see what type of insn it is.
2049 In that case, the call to recog via validate_change will
2050 fail. So don't substitute constants here. Instead,
2051 do it when we emit the following insn.
2053 For example, see the pyr.md file. That machine has signed and
2054 unsigned compares. The compare patterns must check the
2055 following branch insn to see which what kind of compare to
2056 emit.
2058 If the previous insn set CC0, substitute constants on it as
2059 well. */
2060 if (sets_cc0_p (PATTERN (copy)) != 0)
2061 cc0_insn = copy;
2062 else
2064 if (cc0_insn)
2065 try_constants (cc0_insn, map);
2066 cc0_insn = 0;
2067 try_constants (copy, map);
2069 #else
2070 try_constants (copy, map);
2071 #endif
2073 /* Make split induction variable constants `permanent' since we
2074 know there are no backward branches across iteration variable
2075 settings which would invalidate this. */
2076 if (dest_reg_was_split)
2078 int regno = REGNO (SET_DEST (set));
2080 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2081 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2082 == map->const_age))
2083 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2085 break;
2087 case JUMP_INSN:
2088 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2089 copy = emit_jump_insn (pattern);
2090 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2091 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2093 if (JUMP_LABEL (insn))
2095 JUMP_LABEL (copy) = get_label_from_map (map,
2096 CODE_LABEL_NUMBER
2097 (JUMP_LABEL (insn)));
2098 LABEL_NUSES (JUMP_LABEL (copy))++;
2100 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2101 && ! last_iteration)
2104 /* This is a branch to the beginning of the loop; this is the
2105 last insn being copied; and this is not the last iteration.
2106 In this case, we want to change the original fall through
2107 case to be a branch past the end of the loop, and the
2108 original jump label case to fall_through. */
2110 if (!invert_jump (copy, exit_label, 0))
2112 rtx jmp;
2113 rtx lab = gen_label_rtx ();
2114 /* Can't do it by reversing the jump (probably because we
2115 couldn't reverse the conditions), so emit a new
2116 jump_insn after COPY, and redirect the jump around
2117 that. */
2118 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2119 JUMP_LABEL (jmp) = exit_label;
2120 LABEL_NUSES (exit_label)++;
2121 jmp = emit_barrier_after (jmp);
2122 emit_label_after (lab, jmp);
2123 LABEL_NUSES (lab) = 0;
2124 if (!redirect_jump (copy, lab, 0))
2125 abort ();
2129 #ifdef HAVE_cc0
2130 if (cc0_insn)
2131 try_constants (cc0_insn, map);
2132 cc0_insn = 0;
2133 #endif
2134 try_constants (copy, map);
2136 /* Set the jump label of COPY correctly to avoid problems with
2137 later passes of unroll_loop, if INSN had jump label set. */
2138 if (JUMP_LABEL (insn))
2140 rtx label = 0;
2142 /* Can't use the label_map for every insn, since this may be
2143 the backward branch, and hence the label was not mapped. */
2144 if ((set = single_set (copy)))
2146 tem = SET_SRC (set);
2147 if (GET_CODE (tem) == LABEL_REF)
2148 label = XEXP (tem, 0);
2149 else if (GET_CODE (tem) == IF_THEN_ELSE)
2151 if (XEXP (tem, 1) != pc_rtx)
2152 label = XEXP (XEXP (tem, 1), 0);
2153 else
2154 label = XEXP (XEXP (tem, 2), 0);
2158 if (label && GET_CODE (label) == CODE_LABEL)
2159 JUMP_LABEL (copy) = label;
2160 else
2162 /* An unrecognizable jump insn, probably the entry jump
2163 for a switch statement. This label must have been mapped,
2164 so just use the label_map to get the new jump label. */
2165 JUMP_LABEL (copy)
2166 = get_label_from_map (map,
2167 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2170 /* If this is a non-local jump, then must increase the label
2171 use count so that the label will not be deleted when the
2172 original jump is deleted. */
2173 LABEL_NUSES (JUMP_LABEL (copy))++;
2175 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2176 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2178 rtx pat = PATTERN (copy);
2179 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2180 int len = XVECLEN (pat, diff_vec_p);
2181 int i;
2183 for (i = 0; i < len; i++)
2184 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2187 /* If this used to be a conditional jump insn but whose branch
2188 direction is now known, we must do something special. */
2189 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2191 #ifdef HAVE_cc0
2192 /* If the previous insn set cc0 for us, delete it. */
2193 if (only_sets_cc0_p (PREV_INSN (copy)))
2194 delete_related_insns (PREV_INSN (copy));
2195 #endif
2197 /* If this is now a no-op, delete it. */
2198 if (map->last_pc_value == pc_rtx)
2200 delete_insn (copy);
2201 copy = 0;
2203 else
2204 /* Otherwise, this is unconditional jump so we must put a
2205 BARRIER after it. We could do some dead code elimination
2206 here, but jump.c will do it just as well. */
2207 emit_barrier ();
2209 break;
2211 case CALL_INSN:
2212 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2213 copy = emit_call_insn (pattern);
2214 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2215 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2216 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2217 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
2219 /* Because the USAGE information potentially contains objects other
2220 than hard registers, we need to copy it. */
2221 CALL_INSN_FUNCTION_USAGE (copy)
2222 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2223 map, 0);
2225 #ifdef HAVE_cc0
2226 if (cc0_insn)
2227 try_constants (cc0_insn, map);
2228 cc0_insn = 0;
2229 #endif
2230 try_constants (copy, map);
2232 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2234 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2235 break;
2237 case CODE_LABEL:
2238 /* If this is the loop start label, then we don't need to emit a
2239 copy of this label since no one will use it. */
2241 if (insn != start_label)
2243 copy = emit_label (get_label_from_map (map,
2244 CODE_LABEL_NUMBER (insn)));
2245 map->const_age++;
2247 break;
2249 case BARRIER:
2250 copy = emit_barrier ();
2251 break;
2253 case NOTE:
2254 /* VTOP and CONT notes are valid only before the loop exit test.
2255 If placed anywhere else, loop may generate bad code. */
2256 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2257 the associated rtl. We do not want to share the structure in
2258 this new block. */
2260 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2261 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2262 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2263 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2264 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2265 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2266 copy = emit_note (NOTE_SOURCE_FILE (insn),
2267 NOTE_LINE_NUMBER (insn));
2268 else
2269 copy = 0;
2270 break;
2272 default:
2273 abort ();
2276 map->insn_map[INSN_UID (insn)] = copy;
2278 while (insn != copy_end);
2280 /* Now finish coping the REG_NOTES. */
2281 insn = copy_start;
2284 insn = NEXT_INSN (insn);
2285 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2286 || GET_CODE (insn) == CALL_INSN)
2287 && map->insn_map[INSN_UID (insn)])
2288 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2290 while (insn != copy_end);
2292 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2293 each of these notes here, since there may be some important ones, such as
2294 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2295 iteration, because the original notes won't be deleted.
2297 We can't use insert_before here, because when from preconditioning,
2298 insert_before points before the loop. We can't use copy_end, because
2299 there may be insns already inserted after it (which we don't want to
2300 copy) when not from preconditioning code. */
2302 if (! last_iteration)
2304 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2306 /* VTOP notes are valid only before the loop exit test.
2307 If placed anywhere else, loop may generate bad code.
2308 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2309 instructions before the last insn in the loop, COPY_NOTES_FROM
2310 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2311 as in a do .. while loop. */
2312 if (GET_CODE (insn) == NOTE
2313 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2314 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2315 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2316 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2317 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2321 if (final_label && LABEL_NUSES (final_label) > 0)
2322 emit_label (final_label);
2324 tem = get_insns ();
2325 end_sequence ();
2326 loop_insn_emit_before (loop, 0, insert_before, tem);
2329 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2330 emitted. This will correctly handle the case where the increment value
2331 won't fit in the immediate field of a PLUS insns. */
2333 void
2334 emit_unrolled_add (dest_reg, src_reg, increment)
2335 rtx dest_reg, src_reg, increment;
2337 rtx result;
2339 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2340 dest_reg, 0, OPTAB_LIB_WIDEN);
2342 if (dest_reg != result)
2343 emit_move_insn (dest_reg, result);
2346 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2347 is a backward branch in that range that branches to somewhere between
2348 LOOP->START and INSN. Returns 0 otherwise. */
2350 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2351 In practice, this is not a problem, because this function is seldom called,
2352 and uses a negligible amount of CPU time on average. */
2355 back_branch_in_range_p (loop, insn)
2356 const struct loop *loop;
2357 rtx insn;
2359 rtx p, q, target_insn;
2360 rtx loop_start = loop->start;
2361 rtx loop_end = loop->end;
2362 rtx orig_loop_end = loop->end;
2364 /* Stop before we get to the backward branch at the end of the loop. */
2365 loop_end = prev_nonnote_insn (loop_end);
2366 if (GET_CODE (loop_end) == BARRIER)
2367 loop_end = PREV_INSN (loop_end);
2369 /* Check in case insn has been deleted, search forward for first non
2370 deleted insn following it. */
2371 while (INSN_DELETED_P (insn))
2372 insn = NEXT_INSN (insn);
2374 /* Check for the case where insn is the last insn in the loop. Deal
2375 with the case where INSN was a deleted loop test insn, in which case
2376 it will now be the NOTE_LOOP_END. */
2377 if (insn == loop_end || insn == orig_loop_end)
2378 return 0;
2380 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2382 if (GET_CODE (p) == JUMP_INSN)
2384 target_insn = JUMP_LABEL (p);
2386 /* Search from loop_start to insn, to see if one of them is
2387 the target_insn. We can't use INSN_LUID comparisons here,
2388 since insn may not have an LUID entry. */
2389 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2390 if (q == target_insn)
2391 return 1;
2395 return 0;
2398 /* Try to generate the simplest rtx for the expression
2399 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2400 value of giv's. */
2402 static rtx
2403 fold_rtx_mult_add (mult1, mult2, add1, mode)
2404 rtx mult1, mult2, add1;
2405 enum machine_mode mode;
2407 rtx temp, mult_res;
2408 rtx result;
2410 /* The modes must all be the same. This should always be true. For now,
2411 check to make sure. */
2412 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2413 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2414 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2415 abort ();
2417 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2418 will be a constant. */
2419 if (GET_CODE (mult1) == CONST_INT)
2421 temp = mult2;
2422 mult2 = mult1;
2423 mult1 = temp;
2426 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2427 if (! mult_res)
2428 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2430 /* Again, put the constant second. */
2431 if (GET_CODE (add1) == CONST_INT)
2433 temp = add1;
2434 add1 = mult_res;
2435 mult_res = temp;
2438 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2439 if (! result)
2440 result = gen_rtx_PLUS (mode, add1, mult_res);
2442 return result;
2445 /* Searches the list of induction struct's for the biv BL, to try to calculate
2446 the total increment value for one iteration of the loop as a constant.
2448 Returns the increment value as an rtx, simplified as much as possible,
2449 if it can be calculated. Otherwise, returns 0. */
2452 biv_total_increment (bl)
2453 const struct iv_class *bl;
2455 struct induction *v;
2456 rtx result;
2458 /* For increment, must check every instruction that sets it. Each
2459 instruction must be executed only once each time through the loop.
2460 To verify this, we check that the insn is always executed, and that
2461 there are no backward branches after the insn that branch to before it.
2462 Also, the insn must have a mult_val of one (to make sure it really is
2463 an increment). */
2465 result = const0_rtx;
2466 for (v = bl->biv; v; v = v->next_iv)
2468 if (v->always_computable && v->mult_val == const1_rtx
2469 && ! v->maybe_multiple
2470 && SCALAR_INT_MODE_P (v->mode))
2471 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2472 else
2473 return 0;
2476 return result;
2479 /* For each biv and giv, determine whether it can be safely split into
2480 a different variable for each unrolled copy of the loop body. If it
2481 is safe to split, then indicate that by saving some useful info
2482 in the splittable_regs array.
2484 If the loop is being completely unrolled, then splittable_regs will hold
2485 the current value of the induction variable while the loop is unrolled.
2486 It must be set to the initial value of the induction variable here.
2487 Otherwise, splittable_regs will hold the difference between the current
2488 value of the induction variable and the value the induction variable had
2489 at the top of the loop. It must be set to the value 0 here.
2491 Returns the total number of instructions that set registers that are
2492 splittable. */
2494 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2495 constant values are unnecessary, since we can easily calculate increment
2496 values in this case even if nothing is constant. The increment value
2497 should not involve a multiply however. */
2499 /* ?? Even if the biv/giv increment values aren't constant, it may still
2500 be beneficial to split the variable if the loop is only unrolled a few
2501 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2503 static int
2504 find_splittable_regs (loop, unroll_type, unroll_number)
2505 const struct loop *loop;
2506 enum unroll_types unroll_type;
2507 int unroll_number;
2509 struct loop_ivs *ivs = LOOP_IVS (loop);
2510 struct iv_class *bl;
2511 struct induction *v;
2512 rtx increment, tem;
2513 rtx biv_final_value;
2514 int biv_splittable;
2515 int result = 0;
2517 for (bl = ivs->list; bl; bl = bl->next)
2519 /* Biv_total_increment must return a constant value,
2520 otherwise we can not calculate the split values. */
2522 increment = biv_total_increment (bl);
2523 if (! increment || GET_CODE (increment) != CONST_INT)
2524 continue;
2526 /* The loop must be unrolled completely, or else have a known number
2527 of iterations and only one exit, or else the biv must be dead
2528 outside the loop, or else the final value must be known. Otherwise,
2529 it is unsafe to split the biv since it may not have the proper
2530 value on loop exit. */
2532 /* loop_number_exit_count is nonzero if the loop has an exit other than
2533 a fall through at the end. */
2535 biv_splittable = 1;
2536 biv_final_value = 0;
2537 if (unroll_type != UNROLL_COMPLETELY
2538 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2539 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2540 || ! bl->init_insn
2541 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2542 || (REGNO_FIRST_LUID (bl->regno)
2543 < INSN_LUID (bl->init_insn))
2544 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2545 && ! (biv_final_value = final_biv_value (loop, bl)))
2546 biv_splittable = 0;
2548 /* If any of the insns setting the BIV don't do so with a simple
2549 PLUS, we don't know how to split it. */
2550 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2551 if ((tem = single_set (v->insn)) == 0
2552 || GET_CODE (SET_DEST (tem)) != REG
2553 || REGNO (SET_DEST (tem)) != bl->regno
2554 || GET_CODE (SET_SRC (tem)) != PLUS)
2555 biv_splittable = 0;
2557 /* If final value is nonzero, then must emit an instruction which sets
2558 the value of the biv to the proper value. This is done after
2559 handling all of the givs, since some of them may need to use the
2560 biv's value in their initialization code. */
2562 /* This biv is splittable. If completely unrolling the loop, save
2563 the biv's initial value. Otherwise, save the constant zero. */
2565 if (biv_splittable == 1)
2567 if (unroll_type == UNROLL_COMPLETELY)
2569 /* If the initial value of the biv is itself (i.e. it is too
2570 complicated for strength_reduce to compute), or is a hard
2571 register, or it isn't invariant, then we must create a new
2572 pseudo reg to hold the initial value of the biv. */
2574 if (GET_CODE (bl->initial_value) == REG
2575 && (REGNO (bl->initial_value) == bl->regno
2576 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2577 || ! loop_invariant_p (loop, bl->initial_value)))
2579 rtx tem = gen_reg_rtx (bl->biv->mode);
2581 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2582 loop_insn_hoist (loop,
2583 gen_move_insn (tem, bl->biv->src_reg));
2585 if (loop_dump_stream)
2586 fprintf (loop_dump_stream,
2587 "Biv %d initial value remapped to %d.\n",
2588 bl->regno, REGNO (tem));
2590 splittable_regs[bl->regno] = tem;
2592 else
2593 splittable_regs[bl->regno] = bl->initial_value;
2595 else
2596 splittable_regs[bl->regno] = const0_rtx;
2598 /* Save the number of instructions that modify the biv, so that
2599 we can treat the last one specially. */
2601 splittable_regs_updates[bl->regno] = bl->biv_count;
2602 result += bl->biv_count;
2604 if (loop_dump_stream)
2605 fprintf (loop_dump_stream,
2606 "Biv %d safe to split.\n", bl->regno);
2609 /* Check every giv that depends on this biv to see whether it is
2610 splittable also. Even if the biv isn't splittable, givs which
2611 depend on it may be splittable if the biv is live outside the
2612 loop, and the givs aren't. */
2614 result += find_splittable_givs (loop, bl, unroll_type, increment,
2615 unroll_number);
2617 /* If final value is nonzero, then must emit an instruction which sets
2618 the value of the biv to the proper value. This is done after
2619 handling all of the givs, since some of them may need to use the
2620 biv's value in their initialization code. */
2621 if (biv_final_value)
2623 /* If the loop has multiple exits, emit the insns before the
2624 loop to ensure that it will always be executed no matter
2625 how the loop exits. Otherwise emit the insn after the loop,
2626 since this is slightly more efficient. */
2627 if (! loop->exit_count)
2628 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2629 biv_final_value));
2630 else
2632 /* Create a new register to hold the value of the biv, and then
2633 set the biv to its final value before the loop start. The biv
2634 is set to its final value before loop start to ensure that
2635 this insn will always be executed, no matter how the loop
2636 exits. */
2637 rtx tem = gen_reg_rtx (bl->biv->mode);
2638 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2640 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2641 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2642 biv_final_value));
2644 if (loop_dump_stream)
2645 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2646 REGNO (bl->biv->src_reg), REGNO (tem));
2648 /* Set up the mapping from the original biv register to the new
2649 register. */
2650 bl->biv->src_reg = tem;
2654 return result;
2657 /* For every giv based on the biv BL, check to determine whether it is
2658 splittable. This is a subroutine to find_splittable_regs ().
2660 Return the number of instructions that set splittable registers. */
2662 static int
2663 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2664 const struct loop *loop;
2665 struct iv_class *bl;
2666 enum unroll_types unroll_type;
2667 rtx increment;
2668 int unroll_number ATTRIBUTE_UNUSED;
2670 struct loop_ivs *ivs = LOOP_IVS (loop);
2671 struct induction *v, *v2;
2672 rtx final_value;
2673 rtx tem;
2674 int result = 0;
2676 /* Scan the list of givs, and set the same_insn field when there are
2677 multiple identical givs in the same insn. */
2678 for (v = bl->giv; v; v = v->next_iv)
2679 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2680 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2681 && ! v2->same_insn)
2682 v2->same_insn = v;
2684 for (v = bl->giv; v; v = v->next_iv)
2686 rtx giv_inc, value;
2688 /* Only split the giv if it has already been reduced, or if the loop is
2689 being completely unrolled. */
2690 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2691 continue;
2693 /* The giv can be split if the insn that sets the giv is executed once
2694 and only once on every iteration of the loop. */
2695 /* An address giv can always be split. v->insn is just a use not a set,
2696 and hence it does not matter whether it is always executed. All that
2697 matters is that all the biv increments are always executed, and we
2698 won't reach here if they aren't. */
2699 if (v->giv_type != DEST_ADDR
2700 && (! v->always_computable
2701 || back_branch_in_range_p (loop, v->insn)))
2702 continue;
2704 /* The giv increment value must be a constant. */
2705 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2706 v->mode);
2707 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2708 continue;
2710 /* The loop must be unrolled completely, or else have a known number of
2711 iterations and only one exit, or else the giv must be dead outside
2712 the loop, or else the final value of the giv must be known.
2713 Otherwise, it is not safe to split the giv since it may not have the
2714 proper value on loop exit. */
2716 /* The used outside loop test will fail for DEST_ADDR givs. They are
2717 never used outside the loop anyways, so it is always safe to split a
2718 DEST_ADDR giv. */
2720 final_value = 0;
2721 if (unroll_type != UNROLL_COMPLETELY
2722 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2723 && v->giv_type != DEST_ADDR
2724 /* The next part is true if the pseudo is used outside the loop.
2725 We assume that this is true for any pseudo created after loop
2726 starts, because we don't have a reg_n_info entry for them. */
2727 && (REGNO (v->dest_reg) >= max_reg_before_loop
2728 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2729 /* Check for the case where the pseudo is set by a shift/add
2730 sequence, in which case the first insn setting the pseudo
2731 is the first insn of the shift/add sequence. */
2732 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2733 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2734 != INSN_UID (XEXP (tem, 0)))))
2735 /* Line above always fails if INSN was moved by loop opt. */
2736 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2737 >= INSN_LUID (loop->end)))
2738 && ! (final_value = v->final_value))
2739 continue;
2741 #if 0
2742 /* Currently, non-reduced/final-value givs are never split. */
2743 /* Should emit insns after the loop if possible, as the biv final value
2744 code below does. */
2746 /* If the final value is nonzero, and the giv has not been reduced,
2747 then must emit an instruction to set the final value. */
2748 if (final_value && !v->new_reg)
2750 /* Create a new register to hold the value of the giv, and then set
2751 the giv to its final value before the loop start. The giv is set
2752 to its final value before loop start to ensure that this insn
2753 will always be executed, no matter how we exit. */
2754 tem = gen_reg_rtx (v->mode);
2755 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2756 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2758 if (loop_dump_stream)
2759 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2760 REGNO (v->dest_reg), REGNO (tem));
2762 v->src_reg = tem;
2764 #endif
2766 /* This giv is splittable. If completely unrolling the loop, save the
2767 giv's initial value. Otherwise, save the constant zero for it. */
2769 if (unroll_type == UNROLL_COMPLETELY)
2771 /* It is not safe to use bl->initial_value here, because it may not
2772 be invariant. It is safe to use the initial value stored in
2773 the splittable_regs array if it is set. In rare cases, it won't
2774 be set, so then we do exactly the same thing as
2775 find_splittable_regs does to get a safe value. */
2776 rtx biv_initial_value;
2778 if (splittable_regs[bl->regno])
2779 biv_initial_value = splittable_regs[bl->regno];
2780 else if (GET_CODE (bl->initial_value) != REG
2781 || (REGNO (bl->initial_value) != bl->regno
2782 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2783 biv_initial_value = bl->initial_value;
2784 else
2786 rtx tem = gen_reg_rtx (bl->biv->mode);
2788 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2789 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2790 biv_initial_value = tem;
2792 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2793 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2794 v->add_val, v->mode);
2796 else
2797 value = const0_rtx;
2799 if (v->new_reg)
2801 /* If a giv was combined with another giv, then we can only split
2802 this giv if the giv it was combined with was reduced. This
2803 is because the value of v->new_reg is meaningless in this
2804 case. */
2805 if (v->same && ! v->same->new_reg)
2807 if (loop_dump_stream)
2808 fprintf (loop_dump_stream,
2809 "giv combined with unreduced giv not split.\n");
2810 continue;
2812 /* If the giv is an address destination, it could be something other
2813 than a simple register, these have to be treated differently. */
2814 else if (v->giv_type == DEST_REG)
2816 /* If value is not a constant, register, or register plus
2817 constant, then compute its value into a register before
2818 loop start. This prevents invalid rtx sharing, and should
2819 generate better code. We can use bl->initial_value here
2820 instead of splittable_regs[bl->regno] because this code
2821 is going before the loop start. */
2822 if (unroll_type == UNROLL_COMPLETELY
2823 && GET_CODE (value) != CONST_INT
2824 && GET_CODE (value) != REG
2825 && (GET_CODE (value) != PLUS
2826 || GET_CODE (XEXP (value, 0)) != REG
2827 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2829 rtx tem = gen_reg_rtx (v->mode);
2830 record_base_value (REGNO (tem), v->add_val, 0);
2831 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2832 v->add_val, tem);
2833 value = tem;
2836 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2838 else
2839 continue;
2841 else
2843 #if 0
2844 /* Currently, unreduced giv's can't be split. This is not too much
2845 of a problem since unreduced giv's are not live across loop
2846 iterations anyways. When unrolling a loop completely though,
2847 it makes sense to reduce&split givs when possible, as this will
2848 result in simpler instructions, and will not require that a reg
2849 be live across loop iterations. */
2851 splittable_regs[REGNO (v->dest_reg)] = value;
2852 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2853 REGNO (v->dest_reg), INSN_UID (v->insn));
2854 #else
2855 continue;
2856 #endif
2859 /* Unreduced givs are only updated once by definition. Reduced givs
2860 are updated as many times as their biv is. Mark it so if this is
2861 a splittable register. Don't need to do anything for address givs
2862 where this may not be a register. */
2864 if (GET_CODE (v->new_reg) == REG)
2866 int count = 1;
2867 if (! v->ignore)
2868 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2870 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
2873 result++;
2875 if (loop_dump_stream)
2877 int regnum;
2879 if (GET_CODE (v->dest_reg) == CONST_INT)
2880 regnum = -1;
2881 else if (GET_CODE (v->dest_reg) != REG)
2882 regnum = REGNO (XEXP (v->dest_reg, 0));
2883 else
2884 regnum = REGNO (v->dest_reg);
2885 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2886 regnum, INSN_UID (v->insn));
2890 return result;
2893 /* Try to prove that the register is dead after the loop exits. Trace every
2894 loop exit looking for an insn that will always be executed, which sets
2895 the register to some value, and appears before the first use of the register
2896 is found. If successful, then return 1, otherwise return 0. */
2898 /* ?? Could be made more intelligent in the handling of jumps, so that
2899 it can search past if statements and other similar structures. */
2901 static int
2902 reg_dead_after_loop (loop, reg)
2903 const struct loop *loop;
2904 rtx reg;
2906 rtx insn, label;
2907 enum rtx_code code;
2908 int jump_count = 0;
2909 int label_count = 0;
2911 /* In addition to checking all exits of this loop, we must also check
2912 all exits of inner nested loops that would exit this loop. We don't
2913 have any way to identify those, so we just give up if there are any
2914 such inner loop exits. */
2916 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2917 label_count++;
2919 if (label_count != loop->exit_count)
2920 return 0;
2922 /* HACK: Must also search the loop fall through exit, create a label_ref
2923 here which points to the loop->end, and append the loop_number_exit_labels
2924 list to it. */
2925 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2926 LABEL_NEXTREF (label) = loop->exit_labels;
2928 for (; label; label = LABEL_NEXTREF (label))
2930 /* Succeed if find an insn which sets the biv or if reach end of
2931 function. Fail if find an insn that uses the biv, or if come to
2932 a conditional jump. */
2934 insn = NEXT_INSN (XEXP (label, 0));
2935 while (insn)
2937 code = GET_CODE (insn);
2938 if (GET_RTX_CLASS (code) == 'i')
2940 rtx set;
2942 if (reg_referenced_p (reg, PATTERN (insn)))
2943 return 0;
2945 set = single_set (insn);
2946 if (set && rtx_equal_p (SET_DEST (set), reg))
2947 break;
2950 if (code == JUMP_INSN)
2952 if (GET_CODE (PATTERN (insn)) == RETURN)
2953 break;
2954 else if (!any_uncondjump_p (insn)
2955 /* Prevent infinite loop following infinite loops. */
2956 || jump_count++ > 20)
2957 return 0;
2958 else
2959 insn = JUMP_LABEL (insn);
2962 insn = NEXT_INSN (insn);
2966 /* Success, the register is dead on all loop exits. */
2967 return 1;
2970 /* Try to calculate the final value of the biv, the value it will have at
2971 the end of the loop. If we can do it, return that value. */
2974 final_biv_value (loop, bl)
2975 const struct loop *loop;
2976 struct iv_class *bl;
2978 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2979 rtx increment, tem;
2981 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2983 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2984 return 0;
2986 /* The final value for reversed bivs must be calculated differently than
2987 for ordinary bivs. In this case, there is already an insn after the
2988 loop which sets this biv's final value (if necessary), and there are
2989 no other loop exits, so we can return any value. */
2990 if (bl->reversed)
2992 if (loop_dump_stream)
2993 fprintf (loop_dump_stream,
2994 "Final biv value for %d, reversed biv.\n", bl->regno);
2996 return const0_rtx;
2999 /* Try to calculate the final value as initial value + (number of iterations
3000 * increment). For this to work, increment must be invariant, the only
3001 exit from the loop must be the fall through at the bottom (otherwise
3002 it may not have its final value when the loop exits), and the initial
3003 value of the biv must be invariant. */
3005 if (n_iterations != 0
3006 && ! loop->exit_count
3007 && loop_invariant_p (loop, bl->initial_value))
3009 increment = biv_total_increment (bl);
3011 if (increment && loop_invariant_p (loop, increment))
3013 /* Can calculate the loop exit value, emit insns after loop
3014 end to calculate this value into a temporary register in
3015 case it is needed later. */
3017 tem = gen_reg_rtx (bl->biv->mode);
3018 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3019 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3020 bl->initial_value, tem);
3022 if (loop_dump_stream)
3023 fprintf (loop_dump_stream,
3024 "Final biv value for %d, calculated.\n", bl->regno);
3026 return tem;
3030 /* Check to see if the biv is dead at all loop exits. */
3031 if (reg_dead_after_loop (loop, bl->biv->src_reg))
3033 if (loop_dump_stream)
3034 fprintf (loop_dump_stream,
3035 "Final biv value for %d, biv dead after loop exit.\n",
3036 bl->regno);
3038 return const0_rtx;
3041 return 0;
3044 /* Try to calculate the final value of the giv, the value it will have at
3045 the end of the loop. If we can do it, return that value. */
3048 final_giv_value (loop, v)
3049 const struct loop *loop;
3050 struct induction *v;
3052 struct loop_ivs *ivs = LOOP_IVS (loop);
3053 struct iv_class *bl;
3054 rtx insn;
3055 rtx increment, tem;
3056 rtx seq;
3057 rtx loop_end = loop->end;
3058 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3060 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3062 /* The final value for givs which depend on reversed bivs must be calculated
3063 differently than for ordinary givs. In this case, there is already an
3064 insn after the loop which sets this giv's final value (if necessary),
3065 and there are no other loop exits, so we can return any value. */
3066 if (bl->reversed)
3068 if (loop_dump_stream)
3069 fprintf (loop_dump_stream,
3070 "Final giv value for %d, depends on reversed biv\n",
3071 REGNO (v->dest_reg));
3072 return const0_rtx;
3075 /* Try to calculate the final value as a function of the biv it depends
3076 upon. The only exit from the loop must be the fall through at the bottom
3077 and the insn that sets the giv must be executed on every iteration
3078 (otherwise the giv may not have its final value when the loop exits). */
3080 /* ??? Can calculate the final giv value by subtracting off the
3081 extra biv increments times the giv's mult_val. The loop must have
3082 only one exit for this to work, but the loop iterations does not need
3083 to be known. */
3085 if (n_iterations != 0
3086 && ! loop->exit_count
3087 && v->always_executed)
3089 /* ?? It is tempting to use the biv's value here since these insns will
3090 be put after the loop, and hence the biv will have its final value
3091 then. However, this fails if the biv is subsequently eliminated.
3092 Perhaps determine whether biv's are eliminable before trying to
3093 determine whether giv's are replaceable so that we can use the
3094 biv value here if it is not eliminable. */
3096 /* We are emitting code after the end of the loop, so we must make
3097 sure that bl->initial_value is still valid then. It will still
3098 be valid if it is invariant. */
3100 increment = biv_total_increment (bl);
3102 if (increment && loop_invariant_p (loop, increment)
3103 && loop_invariant_p (loop, bl->initial_value))
3105 /* Can calculate the loop exit value of its biv as
3106 (n_iterations * increment) + initial_value */
3108 /* The loop exit value of the giv is then
3109 (final_biv_value - extra increments) * mult_val + add_val.
3110 The extra increments are any increments to the biv which
3111 occur in the loop after the giv's value is calculated.
3112 We must search from the insn that sets the giv to the end
3113 of the loop to calculate this value. */
3115 /* Put the final biv value in tem. */
3116 tem = gen_reg_rtx (v->mode);
3117 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3118 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3119 GEN_INT (n_iterations),
3120 extend_value_for_giv (v, bl->initial_value),
3121 tem);
3123 /* Subtract off extra increments as we find them. */
3124 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3125 insn = NEXT_INSN (insn))
3127 struct induction *biv;
3129 for (biv = bl->biv; biv; biv = biv->next_iv)
3130 if (biv->insn == insn)
3132 start_sequence ();
3133 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3134 biv->add_val, NULL_RTX, 0,
3135 OPTAB_LIB_WIDEN);
3136 seq = get_insns ();
3137 end_sequence ();
3138 loop_insn_sink (loop, seq);
3142 /* Now calculate the giv's final value. */
3143 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3145 if (loop_dump_stream)
3146 fprintf (loop_dump_stream,
3147 "Final giv value for %d, calc from biv's value.\n",
3148 REGNO (v->dest_reg));
3150 return tem;
3154 /* Replaceable giv's should never reach here. */
3155 if (v->replaceable)
3156 abort ();
3158 /* Check to see if the biv is dead at all loop exits. */
3159 if (reg_dead_after_loop (loop, v->dest_reg))
3161 if (loop_dump_stream)
3162 fprintf (loop_dump_stream,
3163 "Final giv value for %d, giv dead after loop exit.\n",
3164 REGNO (v->dest_reg));
3166 return const0_rtx;
3169 return 0;
3172 /* Look back before LOOP->START for the insn that sets REG and return
3173 the equivalent constant if there is a REG_EQUAL note otherwise just
3174 the SET_SRC of REG. */
3176 static rtx
3177 loop_find_equiv_value (loop, reg)
3178 const struct loop *loop;
3179 rtx reg;
3181 rtx loop_start = loop->start;
3182 rtx insn, set;
3183 rtx ret;
3185 ret = reg;
3186 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3188 if (GET_CODE (insn) == CODE_LABEL)
3189 break;
3191 else if (INSN_P (insn) && reg_set_p (reg, insn))
3193 /* We found the last insn before the loop that sets the register.
3194 If it sets the entire register, and has a REG_EQUAL note,
3195 then use the value of the REG_EQUAL note. */
3196 if ((set = single_set (insn))
3197 && (SET_DEST (set) == reg))
3199 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3201 /* Only use the REG_EQUAL note if it is a constant.
3202 Other things, divide in particular, will cause
3203 problems later if we use them. */
3204 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3205 && CONSTANT_P (XEXP (note, 0)))
3206 ret = XEXP (note, 0);
3207 else
3208 ret = SET_SRC (set);
3210 /* We cannot do this if it changes between the
3211 assignment and loop start though. */
3212 if (modified_between_p (ret, insn, loop_start))
3213 ret = reg;
3215 break;
3218 return ret;
3221 /* Return a simplified rtx for the expression OP - REG.
3223 REG must appear in OP, and OP must be a register or the sum of a register
3224 and a second term.
3226 Thus, the return value must be const0_rtx or the second term.
3228 The caller is responsible for verifying that REG appears in OP and OP has
3229 the proper form. */
3231 static rtx
3232 subtract_reg_term (op, reg)
3233 rtx op, reg;
3235 if (op == reg)
3236 return const0_rtx;
3237 if (GET_CODE (op) == PLUS)
3239 if (XEXP (op, 0) == reg)
3240 return XEXP (op, 1);
3241 else if (XEXP (op, 1) == reg)
3242 return XEXP (op, 0);
3244 /* OP does not contain REG as a term. */
3245 abort ();
3248 /* Find and return register term common to both expressions OP0 and
3249 OP1 or NULL_RTX if no such term exists. Each expression must be a
3250 REG or a PLUS of a REG. */
3252 static rtx
3253 find_common_reg_term (op0, op1)
3254 rtx op0, op1;
3256 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3257 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3259 rtx op00;
3260 rtx op01;
3261 rtx op10;
3262 rtx op11;
3264 if (GET_CODE (op0) == PLUS)
3265 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3266 else
3267 op01 = const0_rtx, op00 = op0;
3269 if (GET_CODE (op1) == PLUS)
3270 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3271 else
3272 op11 = const0_rtx, op10 = op1;
3274 /* Find and return common register term if present. */
3275 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3276 return op00;
3277 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3278 return op01;
3281 /* No common register term found. */
3282 return NULL_RTX;
3285 /* Determine the loop iterator and calculate the number of loop
3286 iterations. Returns the exact number of loop iterations if it can
3287 be calculated, otherwise returns zero. */
3289 unsigned HOST_WIDE_INT
3290 loop_iterations (loop)
3291 struct loop *loop;
3293 struct loop_info *loop_info = LOOP_INFO (loop);
3294 struct loop_ivs *ivs = LOOP_IVS (loop);
3295 rtx comparison, comparison_value;
3296 rtx iteration_var, initial_value, increment, final_value;
3297 enum rtx_code comparison_code;
3298 HOST_WIDE_INT inc;
3299 unsigned HOST_WIDE_INT abs_inc;
3300 unsigned HOST_WIDE_INT abs_diff;
3301 int off_by_one;
3302 int increment_dir;
3303 int unsigned_p, compare_dir, final_larger;
3304 rtx last_loop_insn;
3305 rtx reg_term;
3306 struct iv_class *bl;
3308 loop_info->n_iterations = 0;
3309 loop_info->initial_value = 0;
3310 loop_info->initial_equiv_value = 0;
3311 loop_info->comparison_value = 0;
3312 loop_info->final_value = 0;
3313 loop_info->final_equiv_value = 0;
3314 loop_info->increment = 0;
3315 loop_info->iteration_var = 0;
3316 loop_info->unroll_number = 1;
3317 loop_info->iv = 0;
3319 /* We used to use prev_nonnote_insn here, but that fails because it might
3320 accidentally get the branch for a contained loop if the branch for this
3321 loop was deleted. We can only trust branches immediately before the
3322 loop_end. */
3323 last_loop_insn = PREV_INSN (loop->end);
3325 /* ??? We should probably try harder to find the jump insn
3326 at the end of the loop. The following code assumes that
3327 the last loop insn is a jump to the top of the loop. */
3328 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3330 if (loop_dump_stream)
3331 fprintf (loop_dump_stream,
3332 "Loop iterations: No final conditional branch found.\n");
3333 return 0;
3336 /* If there is a more than a single jump to the top of the loop
3337 we cannot (easily) determine the iteration count. */
3338 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3340 if (loop_dump_stream)
3341 fprintf (loop_dump_stream,
3342 "Loop iterations: Loop has multiple back edges.\n");
3343 return 0;
3346 /* If there are multiple conditionalized loop exit tests, they may jump
3347 back to differing CODE_LABELs. */
3348 if (loop->top && loop->cont)
3350 rtx temp = PREV_INSN (last_loop_insn);
3354 if (GET_CODE (temp) == JUMP_INSN)
3356 /* There are some kinds of jumps we can't deal with easily. */
3357 if (JUMP_LABEL (temp) == 0)
3359 if (loop_dump_stream)
3360 fprintf
3361 (loop_dump_stream,
3362 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3363 return 0;
3366 if (/* Previous unrolling may have generated new insns not
3367 covered by the uid_luid array. */
3368 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3369 /* Check if we jump back into the loop body. */
3370 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3371 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3373 if (loop_dump_stream)
3374 fprintf
3375 (loop_dump_stream,
3376 "Loop iterations: Loop has multiple back edges.\n");
3377 return 0;
3381 while ((temp = PREV_INSN (temp)) != loop->cont);
3384 /* Find the iteration variable. If the last insn is a conditional
3385 branch, and the insn before tests a register value, make that the
3386 iteration variable. */
3388 comparison = get_condition_for_loop (loop, last_loop_insn);
3389 if (comparison == 0)
3391 if (loop_dump_stream)
3392 fprintf (loop_dump_stream,
3393 "Loop iterations: No final comparison found.\n");
3394 return 0;
3397 /* ??? Get_condition may switch position of induction variable and
3398 invariant register when it canonicalizes the comparison. */
3400 comparison_code = GET_CODE (comparison);
3401 iteration_var = XEXP (comparison, 0);
3402 comparison_value = XEXP (comparison, 1);
3404 if (GET_CODE (iteration_var) != REG)
3406 if (loop_dump_stream)
3407 fprintf (loop_dump_stream,
3408 "Loop iterations: Comparison not against register.\n");
3409 return 0;
3412 /* The only new registers that are created before loop iterations
3413 are givs made from biv increments or registers created by
3414 load_mems. In the latter case, it is possible that try_copy_prop
3415 will propagate a new pseudo into the old iteration register but
3416 this will be marked by having the REG_USERVAR_P bit set. */
3418 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3419 && ! REG_USERVAR_P (iteration_var))
3420 abort ();
3422 /* Determine the initial value of the iteration variable, and the amount
3423 that it is incremented each loop. Use the tables constructed by
3424 the strength reduction pass to calculate these values. */
3426 /* Clear the result values, in case no answer can be found. */
3427 initial_value = 0;
3428 increment = 0;
3430 /* The iteration variable can be either a giv or a biv. Check to see
3431 which it is, and compute the variable's initial value, and increment
3432 value if possible. */
3434 /* If this is a new register, can't handle it since we don't have any
3435 reg_iv_type entry for it. */
3436 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3438 if (loop_dump_stream)
3439 fprintf (loop_dump_stream,
3440 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3441 return 0;
3444 /* Reject iteration variables larger than the host wide int size, since they
3445 could result in a number of iterations greater than the range of our
3446 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3447 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3448 > HOST_BITS_PER_WIDE_INT))
3450 if (loop_dump_stream)
3451 fprintf (loop_dump_stream,
3452 "Loop iterations: Iteration var rejected because mode too large.\n");
3453 return 0;
3455 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3457 if (loop_dump_stream)
3458 fprintf (loop_dump_stream,
3459 "Loop iterations: Iteration var not an integer.\n");
3460 return 0;
3462 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3464 if (REGNO (iteration_var) >= ivs->n_regs)
3465 abort ();
3467 /* Grab initial value, only useful if it is a constant. */
3468 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3469 initial_value = bl->initial_value;
3470 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3472 if (loop_dump_stream)
3473 fprintf (loop_dump_stream,
3474 "Loop iterations: Basic induction var not set once in each iteration.\n");
3475 return 0;
3478 increment = biv_total_increment (bl);
3480 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3482 HOST_WIDE_INT offset = 0;
3483 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3484 rtx biv_initial_value;
3486 if (REGNO (v->src_reg) >= ivs->n_regs)
3487 abort ();
3489 if (!v->always_executed || v->maybe_multiple)
3491 if (loop_dump_stream)
3492 fprintf (loop_dump_stream,
3493 "Loop iterations: General induction var not set once in each iteration.\n");
3494 return 0;
3497 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3499 /* Increment value is mult_val times the increment value of the biv. */
3501 increment = biv_total_increment (bl);
3502 if (increment)
3504 struct induction *biv_inc;
3506 increment = fold_rtx_mult_add (v->mult_val,
3507 extend_value_for_giv (v, increment),
3508 const0_rtx, v->mode);
3509 /* The caller assumes that one full increment has occurred at the
3510 first loop test. But that's not true when the biv is incremented
3511 after the giv is set (which is the usual case), e.g.:
3512 i = 6; do {;} while (i++ < 9) .
3513 Therefore, we bias the initial value by subtracting the amount of
3514 the increment that occurs between the giv set and the giv test. */
3515 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3517 if (loop_insn_first_p (v->insn, biv_inc->insn))
3519 if (REG_P (biv_inc->add_val))
3521 if (loop_dump_stream)
3522 fprintf (loop_dump_stream,
3523 "Loop iterations: Basic induction var add_val is REG %d.\n",
3524 REGNO (biv_inc->add_val));
3525 return 0;
3528 offset -= INTVAL (biv_inc->add_val);
3532 if (loop_dump_stream)
3533 fprintf (loop_dump_stream,
3534 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3535 (long) offset);
3537 /* Initial value is mult_val times the biv's initial value plus
3538 add_val. Only useful if it is a constant. */
3539 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3540 initial_value
3541 = fold_rtx_mult_add (v->mult_val,
3542 plus_constant (biv_initial_value, offset),
3543 v->add_val, v->mode);
3545 else
3547 if (loop_dump_stream)
3548 fprintf (loop_dump_stream,
3549 "Loop iterations: Not basic or general induction var.\n");
3550 return 0;
3553 if (initial_value == 0)
3554 return 0;
3556 unsigned_p = 0;
3557 off_by_one = 0;
3558 switch (comparison_code)
3560 case LEU:
3561 unsigned_p = 1;
3562 case LE:
3563 compare_dir = 1;
3564 off_by_one = 1;
3565 break;
3566 case GEU:
3567 unsigned_p = 1;
3568 case GE:
3569 compare_dir = -1;
3570 off_by_one = -1;
3571 break;
3572 case EQ:
3573 /* Cannot determine loop iterations with this case. */
3574 compare_dir = 0;
3575 break;
3576 case LTU:
3577 unsigned_p = 1;
3578 case LT:
3579 compare_dir = 1;
3580 break;
3581 case GTU:
3582 unsigned_p = 1;
3583 case GT:
3584 compare_dir = -1;
3585 case NE:
3586 compare_dir = 0;
3587 break;
3588 default:
3589 abort ();
3592 /* If the comparison value is an invariant register, then try to find
3593 its value from the insns before the start of the loop. */
3595 final_value = comparison_value;
3596 if (GET_CODE (comparison_value) == REG
3597 && loop_invariant_p (loop, comparison_value))
3599 final_value = loop_find_equiv_value (loop, comparison_value);
3601 /* If we don't get an invariant final value, we are better
3602 off with the original register. */
3603 if (! loop_invariant_p (loop, final_value))
3604 final_value = comparison_value;
3607 /* Calculate the approximate final value of the induction variable
3608 (on the last successful iteration). The exact final value
3609 depends on the branch operator, and increment sign. It will be
3610 wrong if the iteration variable is not incremented by one each
3611 time through the loop and (comparison_value + off_by_one -
3612 initial_value) % increment != 0.
3613 ??? Note that the final_value may overflow and thus final_larger
3614 will be bogus. A potentially infinite loop will be classified
3615 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3616 if (off_by_one)
3617 final_value = plus_constant (final_value, off_by_one);
3619 /* Save the calculated values describing this loop's bounds, in case
3620 precondition_loop_p will need them later. These values can not be
3621 recalculated inside precondition_loop_p because strength reduction
3622 optimizations may obscure the loop's structure.
3624 These values are only required by precondition_loop_p and insert_bct
3625 whenever the number of iterations cannot be computed at compile time.
3626 Only the difference between final_value and initial_value is
3627 important. Note that final_value is only approximate. */
3628 loop_info->initial_value = initial_value;
3629 loop_info->comparison_value = comparison_value;
3630 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3631 loop_info->increment = increment;
3632 loop_info->iteration_var = iteration_var;
3633 loop_info->comparison_code = comparison_code;
3634 loop_info->iv = bl;
3636 /* Try to determine the iteration count for loops such
3637 as (for i = init; i < init + const; i++). When running the
3638 loop optimization twice, the first pass often converts simple
3639 loops into this form. */
3641 if (REG_P (initial_value))
3643 rtx reg1;
3644 rtx reg2;
3645 rtx const2;
3647 reg1 = initial_value;
3648 if (GET_CODE (final_value) == PLUS)
3649 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3650 else
3651 reg2 = final_value, const2 = const0_rtx;
3653 /* Check for initial_value = reg1, final_value = reg2 + const2,
3654 where reg1 != reg2. */
3655 if (REG_P (reg2) && reg2 != reg1)
3657 rtx temp;
3659 /* Find what reg1 is equivalent to. Hopefully it will
3660 either be reg2 or reg2 plus a constant. */
3661 temp = loop_find_equiv_value (loop, reg1);
3663 if (find_common_reg_term (temp, reg2))
3664 initial_value = temp;
3665 else
3667 /* Find what reg2 is equivalent to. Hopefully it will
3668 either be reg1 or reg1 plus a constant. Let's ignore
3669 the latter case for now since it is not so common. */
3670 temp = loop_find_equiv_value (loop, reg2);
3672 if (temp == loop_info->iteration_var)
3673 temp = initial_value;
3674 if (temp == reg1)
3675 final_value = (const2 == const0_rtx)
3676 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3679 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3681 rtx temp;
3683 /* When running the loop optimizer twice, check_dbra_loop
3684 further obfuscates reversible loops of the form:
3685 for (i = init; i < init + const; i++). We often end up with
3686 final_value = 0, initial_value = temp, temp = temp2 - init,
3687 where temp2 = init + const. If the loop has a vtop we
3688 can replace initial_value with const. */
3690 temp = loop_find_equiv_value (loop, reg1);
3692 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3694 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3696 if (GET_CODE (temp2) == PLUS
3697 && XEXP (temp2, 0) == XEXP (temp, 1))
3698 initial_value = XEXP (temp2, 1);
3703 /* If have initial_value = reg + const1 and final_value = reg +
3704 const2, then replace initial_value with const1 and final_value
3705 with const2. This should be safe since we are protected by the
3706 initial comparison before entering the loop if we have a vtop.
3707 For example, a + b < a + c is not equivalent to b < c for all a
3708 when using modulo arithmetic.
3710 ??? Without a vtop we could still perform the optimization if we check
3711 the initial and final values carefully. */
3712 if (loop->vtop
3713 && (reg_term = find_common_reg_term (initial_value, final_value)))
3715 initial_value = subtract_reg_term (initial_value, reg_term);
3716 final_value = subtract_reg_term (final_value, reg_term);
3719 loop_info->initial_equiv_value = initial_value;
3720 loop_info->final_equiv_value = final_value;
3722 /* For EQ comparison loops, we don't have a valid final value.
3723 Check this now so that we won't leave an invalid value if we
3724 return early for any other reason. */
3725 if (comparison_code == EQ)
3726 loop_info->final_equiv_value = loop_info->final_value = 0;
3728 if (increment == 0)
3730 if (loop_dump_stream)
3731 fprintf (loop_dump_stream,
3732 "Loop iterations: Increment value can't be calculated.\n");
3733 return 0;
3736 if (GET_CODE (increment) != CONST_INT)
3738 /* If we have a REG, check to see if REG holds a constant value. */
3739 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3740 clear if it is worthwhile to try to handle such RTL. */
3741 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3742 increment = loop_find_equiv_value (loop, increment);
3744 if (GET_CODE (increment) != CONST_INT)
3746 if (loop_dump_stream)
3748 fprintf (loop_dump_stream,
3749 "Loop iterations: Increment value not constant ");
3750 print_simple_rtl (loop_dump_stream, increment);
3751 fprintf (loop_dump_stream, ".\n");
3753 return 0;
3755 loop_info->increment = increment;
3758 if (GET_CODE (initial_value) != CONST_INT)
3760 if (loop_dump_stream)
3762 fprintf (loop_dump_stream,
3763 "Loop iterations: Initial value not constant ");
3764 print_simple_rtl (loop_dump_stream, initial_value);
3765 fprintf (loop_dump_stream, ".\n");
3767 return 0;
3769 else if (GET_CODE (final_value) != CONST_INT)
3771 if (loop_dump_stream)
3773 fprintf (loop_dump_stream,
3774 "Loop iterations: Final value not constant ");
3775 print_simple_rtl (loop_dump_stream, final_value);
3776 fprintf (loop_dump_stream, ".\n");
3778 return 0;
3780 else if (comparison_code == EQ)
3782 rtx inc_once;
3784 if (loop_dump_stream)
3785 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3787 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3788 GET_MODE (iteration_var));
3790 if (inc_once == final_value)
3792 /* The iterator value once through the loop is equal to the
3793 comparision value. Either we have an infinite loop, or
3794 we'll loop twice. */
3795 if (increment == const0_rtx)
3796 return 0;
3797 loop_info->n_iterations = 2;
3799 else
3800 loop_info->n_iterations = 1;
3802 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3803 loop_info->final_value
3804 = gen_int_mode ((INTVAL (loop_info->initial_value)
3805 + loop_info->n_iterations * INTVAL (increment)),
3806 GET_MODE (iteration_var));
3807 else
3808 loop_info->final_value
3809 = plus_constant (loop_info->initial_value,
3810 loop_info->n_iterations * INTVAL (increment));
3811 loop_info->final_equiv_value
3812 = gen_int_mode ((INTVAL (initial_value)
3813 + loop_info->n_iterations * INTVAL (increment)),
3814 GET_MODE (iteration_var));
3815 return loop_info->n_iterations;
3818 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3819 if (unsigned_p)
3820 final_larger
3821 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3822 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3823 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3824 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3825 else
3826 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3827 - (INTVAL (final_value) < INTVAL (initial_value));
3829 if (INTVAL (increment) > 0)
3830 increment_dir = 1;
3831 else if (INTVAL (increment) == 0)
3832 increment_dir = 0;
3833 else
3834 increment_dir = -1;
3836 /* There are 27 different cases: compare_dir = -1, 0, 1;
3837 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3838 There are 4 normal cases, 4 reverse cases (where the iteration variable
3839 will overflow before the loop exits), 4 infinite loop cases, and 15
3840 immediate exit (0 or 1 iteration depending on loop type) cases.
3841 Only try to optimize the normal cases. */
3843 /* (compare_dir/final_larger/increment_dir)
3844 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3845 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3846 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3847 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3849 /* ?? If the meaning of reverse loops (where the iteration variable
3850 will overflow before the loop exits) is undefined, then could
3851 eliminate all of these special checks, and just always assume
3852 the loops are normal/immediate/infinite. Note that this means
3853 the sign of increment_dir does not have to be known. Also,
3854 since it does not really hurt if immediate exit loops or infinite loops
3855 are optimized, then that case could be ignored also, and hence all
3856 loops can be optimized.
3858 According to ANSI Spec, the reverse loop case result is undefined,
3859 because the action on overflow is undefined.
3861 See also the special test for NE loops below. */
3863 if (final_larger == increment_dir && final_larger != 0
3864 && (final_larger == compare_dir || compare_dir == 0))
3865 /* Normal case. */
3867 else
3869 if (loop_dump_stream)
3870 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3871 return 0;
3874 /* Calculate the number of iterations, final_value is only an approximation,
3875 so correct for that. Note that abs_diff and n_iterations are
3876 unsigned, because they can be as large as 2^n - 1. */
3878 inc = INTVAL (increment);
3879 if (inc > 0)
3881 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3882 abs_inc = inc;
3884 else if (inc < 0)
3886 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3887 abs_inc = -inc;
3889 else
3890 abort ();
3892 /* Given that iteration_var is going to iterate over its own mode,
3893 not HOST_WIDE_INT, disregard higher bits that might have come
3894 into the picture due to sign extension of initial and final
3895 values. */
3896 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3897 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3898 << 1) - 1;
3900 /* For NE tests, make sure that the iteration variable won't miss
3901 the final value. If abs_diff mod abs_incr is not zero, then the
3902 iteration variable will overflow before the loop exits, and we
3903 can not calculate the number of iterations. */
3904 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3905 return 0;
3907 /* Note that the number of iterations could be calculated using
3908 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3909 handle potential overflow of the summation. */
3910 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3911 return loop_info->n_iterations;
3914 /* Replace uses of split bivs with their split pseudo register. This is
3915 for original instructions which remain after loop unrolling without
3916 copying. */
3918 static rtx
3919 remap_split_bivs (loop, x)
3920 struct loop *loop;
3921 rtx x;
3923 struct loop_ivs *ivs = LOOP_IVS (loop);
3924 enum rtx_code code;
3925 int i;
3926 const char *fmt;
3928 if (x == 0)
3929 return x;
3931 code = GET_CODE (x);
3932 switch (code)
3934 case SCRATCH:
3935 case PC:
3936 case CC0:
3937 case CONST_INT:
3938 case CONST_DOUBLE:
3939 case CONST:
3940 case SYMBOL_REF:
3941 case LABEL_REF:
3942 return x;
3944 case REG:
3945 #if 0
3946 /* If non-reduced/final-value givs were split, then this would also
3947 have to remap those givs also. */
3948 #endif
3949 if (REGNO (x) < ivs->n_regs
3950 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3951 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3952 break;
3954 default:
3955 break;
3958 fmt = GET_RTX_FORMAT (code);
3959 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3961 if (fmt[i] == 'e')
3962 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3963 else if (fmt[i] == 'E')
3965 int j;
3966 for (j = 0; j < XVECLEN (x, i); j++)
3967 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3970 return x;
3973 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3974 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3975 return 0. COPY_START is where we can start looking for the insns
3976 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3977 insns.
3979 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3980 must dominate LAST_UID.
3982 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3983 may not dominate LAST_UID.
3985 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3986 must dominate LAST_UID. */
3989 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3990 int regno;
3991 int first_uid;
3992 int last_uid;
3993 rtx copy_start;
3994 rtx copy_end;
3996 int passed_jump = 0;
3997 rtx p = NEXT_INSN (copy_start);
3999 while (INSN_UID (p) != first_uid)
4001 if (GET_CODE (p) == JUMP_INSN)
4002 passed_jump = 1;
4003 /* Could not find FIRST_UID. */
4004 if (p == copy_end)
4005 return 0;
4006 p = NEXT_INSN (p);
4009 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
4010 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
4011 return 0;
4013 /* FIRST_UID is always executed. */
4014 if (passed_jump == 0)
4015 return 1;
4017 while (INSN_UID (p) != last_uid)
4019 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4020 can not be sure that FIRST_UID dominates LAST_UID. */
4021 if (GET_CODE (p) == CODE_LABEL)
4022 return 0;
4023 /* Could not find LAST_UID, but we reached the end of the loop, so
4024 it must be safe. */
4025 else if (p == copy_end)
4026 return 1;
4027 p = NEXT_INSN (p);
4030 /* FIRST_UID is always executed if LAST_UID is executed. */
4031 return 1;
4034 /* This routine is called when the number of iterations for the unrolled
4035 loop is one. The goal is to identify a loop that begins with an
4036 unconditional branch to the loop continuation note (or a label just after).
4037 In this case, the unconditional branch that starts the loop needs to be
4038 deleted so that we execute the single iteration. */
4040 static rtx
4041 ujump_to_loop_cont (loop_start, loop_cont)
4042 rtx loop_start;
4043 rtx loop_cont;
4045 rtx x, label, label_ref;
4047 /* See if loop start, or the next insn is an unconditional jump. */
4048 loop_start = next_nonnote_insn (loop_start);
4050 x = pc_set (loop_start);
4051 if (!x)
4052 return NULL_RTX;
4054 label_ref = SET_SRC (x);
4055 if (!label_ref)
4056 return NULL_RTX;
4058 /* Examine insn after loop continuation note. Return if not a label. */
4059 label = next_nonnote_insn (loop_cont);
4060 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4061 return NULL_RTX;
4063 /* Return the loop start if the branch label matches the code label. */
4064 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4065 return loop_start;
4066 else
4067 return NULL_RTX;