* sh.md (movdi_i): Name. Remove inappropriate comment.
[official-gcc.git] / gcc / optabs.c
blob9da95e1de72116343c1a5be33a9bcf6740039726
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "ggc.h"
42 #include "real.h"
44 /* Each optab contains info on how this target machine
45 can perform a particular operation
46 for all sizes and kinds of operands.
48 The operation to be performed is often specified
49 by passing one of these optabs as an argument.
51 See expr.h for documentation of these optabs. */
53 optab optab_table[OTI_MAX];
55 rtx libfunc_table[LTI_MAX];
57 /* Tables of patterns for extending one integer mode to another. */
58 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
60 /* Tables of patterns for converting between fixed and floating point. */
61 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
62 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65 /* Contains the optab used for each rtx code. */
66 optab code_to_optab[NUM_RTX_CODE + 1];
68 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
69 gives the gen_function to make a branch to test that condition. */
71 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
73 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
74 gives the insn code to make a store-condition insn
75 to test that condition. */
77 enum insn_code setcc_gen_code[NUM_RTX_CODE];
79 #ifdef HAVE_conditional_move
80 /* Indexed by the machine mode, gives the insn code to make a conditional
81 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
82 setcc_gen_code to cut down on the number of named patterns. Consider a day
83 when a lot more rtx codes are conditional (eg: for the ARM). */
85 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
86 #endif
88 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
89 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
90 enum machine_mode, int, int));
91 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
92 rtx, rtx, enum machine_mode,
93 int, enum optab_methods,
94 enum mode_class, optab));
95 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
96 rtx, rtx, enum machine_mode,
97 int, enum optab_methods,
98 enum mode_class, optab));
99 static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
100 enum machine_mode *, int *,
101 enum can_compare_purpose));
102 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
103 int, int *));
104 static enum insn_code can_float_p PARAMS ((enum machine_mode,
105 enum machine_mode,
106 int));
107 static rtx ftruncify PARAMS ((rtx));
108 static optab new_optab PARAMS ((void));
109 static inline optab init_optab PARAMS ((enum rtx_code));
110 static inline optab init_optabv PARAMS ((enum rtx_code));
111 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
112 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
113 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
114 #ifdef HAVE_conditional_trap
115 static void init_traps PARAMS ((void));
116 #endif
117 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
118 enum rtx_code, int, rtx));
119 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
120 enum machine_mode *, int *));
121 static rtx expand_vector_binop PARAMS ((enum machine_mode, optab,
122 rtx, rtx, rtx, int,
123 enum optab_methods));
124 static rtx expand_vector_unop PARAMS ((enum machine_mode, optab, rtx, rtx,
125 int));
127 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
128 the result of operation CODE applied to OP0 (and OP1 if it is a binary
129 operation).
131 If the last insn does not set TARGET, don't do anything, but return 1.
133 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
134 don't add the REG_EQUAL note but return 0. Our caller can then try
135 again, ensuring that TARGET is not one of the operands. */
137 static int
138 add_equal_note (insns, target, code, op0, op1)
139 rtx insns;
140 rtx target;
141 enum rtx_code code;
142 rtx op0, op1;
144 rtx last_insn, insn, set;
145 rtx note;
147 if (! insns
148 || ! INSN_P (insns)
149 || NEXT_INSN (insns) == NULL_RTX)
150 abort ();
152 if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
153 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
154 return 1;
156 if (GET_CODE (target) == ZERO_EXTRACT)
157 return 1;
159 for (last_insn = insns;
160 NEXT_INSN (last_insn) != NULL_RTX;
161 last_insn = NEXT_INSN (last_insn))
164 set = single_set (last_insn);
165 if (set == NULL_RTX)
166 return 1;
168 if (! rtx_equal_p (SET_DEST (set), target)
169 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
170 SUBREG. */
171 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
172 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
173 target)))
174 return 1;
176 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
177 besides the last insn. */
178 if (reg_overlap_mentioned_p (target, op0)
179 || (op1 && reg_overlap_mentioned_p (target, op1)))
181 insn = PREV_INSN (last_insn);
182 while (insn != NULL_RTX)
184 if (reg_set_p (target, insn))
185 return 0;
187 insn = PREV_INSN (insn);
191 if (GET_RTX_CLASS (code) == '1')
192 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
193 else
194 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
196 set_unique_reg_note (last_insn, REG_EQUAL, note);
198 return 1;
201 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
202 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
203 not actually do a sign-extend or zero-extend, but can leave the
204 higher-order bits of the result rtx undefined, for example, in the case
205 of logical operations, but not right shifts. */
207 static rtx
208 widen_operand (op, mode, oldmode, unsignedp, no_extend)
209 rtx op;
210 enum machine_mode mode, oldmode;
211 int unsignedp;
212 int no_extend;
214 rtx result;
216 /* If we don't have to extend and this is a constant, return it. */
217 if (no_extend && GET_MODE (op) == VOIDmode)
218 return op;
220 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
221 extend since it will be more efficient to do so unless the signedness of
222 a promoted object differs from our extension. */
223 if (! no_extend
224 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
225 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
226 return convert_modes (mode, oldmode, op, unsignedp);
228 /* If MODE is no wider than a single word, we return a paradoxical
229 SUBREG. */
230 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
231 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
233 /* Otherwise, get an object of MODE, clobber it, and set the low-order
234 part to OP. */
236 result = gen_reg_rtx (mode);
237 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
238 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
239 return result;
242 /* Generate code to perform a straightforward complex divide. */
244 static int
245 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
246 unsignedp, methods, class, binoptab)
247 rtx real0, real1, imag0, imag1, realr, imagr;
248 enum machine_mode submode;
249 int unsignedp;
250 enum optab_methods methods;
251 enum mode_class class;
252 optab binoptab;
254 rtx divisor;
255 rtx real_t, imag_t;
256 rtx temp1, temp2;
257 rtx res;
258 optab this_add_optab = add_optab;
259 optab this_sub_optab = sub_optab;
260 optab this_neg_optab = neg_optab;
261 optab this_mul_optab = smul_optab;
263 if (binoptab == sdivv_optab)
265 this_add_optab = addv_optab;
266 this_sub_optab = subv_optab;
267 this_neg_optab = negv_optab;
268 this_mul_optab = smulv_optab;
271 /* Don't fetch these from memory more than once. */
272 real0 = force_reg (submode, real0);
273 real1 = force_reg (submode, real1);
275 if (imag0 != 0)
276 imag0 = force_reg (submode, imag0);
278 imag1 = force_reg (submode, imag1);
280 /* Divisor: c*c + d*d. */
281 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
282 NULL_RTX, unsignedp, methods);
284 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
285 NULL_RTX, unsignedp, methods);
287 if (temp1 == 0 || temp2 == 0)
288 return 0;
290 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
291 NULL_RTX, unsignedp, methods);
292 if (divisor == 0)
293 return 0;
295 if (imag0 == 0)
297 /* Mathematically, ((a)(c-id))/divisor. */
298 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
300 /* Calculate the dividend. */
301 real_t = expand_binop (submode, this_mul_optab, real0, real1,
302 NULL_RTX, unsignedp, methods);
304 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
305 NULL_RTX, unsignedp, methods);
307 if (real_t == 0 || imag_t == 0)
308 return 0;
310 imag_t = expand_unop (submode, this_neg_optab, imag_t,
311 NULL_RTX, unsignedp);
313 else
315 /* Mathematically, ((a+ib)(c-id))/divider. */
316 /* Calculate the dividend. */
317 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
318 NULL_RTX, unsignedp, methods);
320 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
321 NULL_RTX, unsignedp, methods);
323 if (temp1 == 0 || temp2 == 0)
324 return 0;
326 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
327 NULL_RTX, unsignedp, methods);
329 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
330 NULL_RTX, unsignedp, methods);
332 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
333 NULL_RTX, unsignedp, methods);
335 if (temp1 == 0 || temp2 == 0)
336 return 0;
338 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
339 NULL_RTX, unsignedp, methods);
341 if (real_t == 0 || imag_t == 0)
342 return 0;
345 if (class == MODE_COMPLEX_FLOAT)
346 res = expand_binop (submode, binoptab, real_t, divisor,
347 realr, unsignedp, methods);
348 else
349 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
350 real_t, divisor, realr, unsignedp);
352 if (res == 0)
353 return 0;
355 if (res != realr)
356 emit_move_insn (realr, res);
358 if (class == MODE_COMPLEX_FLOAT)
359 res = expand_binop (submode, binoptab, imag_t, divisor,
360 imagr, unsignedp, methods);
361 else
362 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
363 imag_t, divisor, imagr, unsignedp);
365 if (res == 0)
366 return 0;
368 if (res != imagr)
369 emit_move_insn (imagr, res);
371 return 1;
374 /* Generate code to perform a wide-input-range-acceptable complex divide. */
376 static int
377 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
378 unsignedp, methods, class, binoptab)
379 rtx real0, real1, imag0, imag1, realr, imagr;
380 enum machine_mode submode;
381 int unsignedp;
382 enum optab_methods methods;
383 enum mode_class class;
384 optab binoptab;
386 rtx ratio, divisor;
387 rtx real_t, imag_t;
388 rtx temp1, temp2, lab1, lab2;
389 enum machine_mode mode;
390 rtx res;
391 optab this_add_optab = add_optab;
392 optab this_sub_optab = sub_optab;
393 optab this_neg_optab = neg_optab;
394 optab this_mul_optab = smul_optab;
396 if (binoptab == sdivv_optab)
398 this_add_optab = addv_optab;
399 this_sub_optab = subv_optab;
400 this_neg_optab = negv_optab;
401 this_mul_optab = smulv_optab;
404 /* Don't fetch these from memory more than once. */
405 real0 = force_reg (submode, real0);
406 real1 = force_reg (submode, real1);
408 if (imag0 != 0)
409 imag0 = force_reg (submode, imag0);
411 imag1 = force_reg (submode, imag1);
413 /* XXX What's an "unsigned" complex number? */
414 if (unsignedp)
416 temp1 = real1;
417 temp2 = imag1;
419 else
421 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
422 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
425 if (temp1 == 0 || temp2 == 0)
426 return 0;
428 mode = GET_MODE (temp1);
429 lab1 = gen_label_rtx ();
430 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
431 mode, unsignedp, lab1);
433 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
435 if (class == MODE_COMPLEX_FLOAT)
436 ratio = expand_binop (submode, binoptab, imag1, real1,
437 NULL_RTX, unsignedp, methods);
438 else
439 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
440 imag1, real1, NULL_RTX, unsignedp);
442 if (ratio == 0)
443 return 0;
445 /* Calculate divisor. */
447 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
448 NULL_RTX, unsignedp, methods);
450 if (temp1 == 0)
451 return 0;
453 divisor = expand_binop (submode, this_add_optab, temp1, real1,
454 NULL_RTX, unsignedp, methods);
456 if (divisor == 0)
457 return 0;
459 /* Calculate dividend. */
461 if (imag0 == 0)
463 real_t = real0;
465 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
467 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
468 NULL_RTX, unsignedp, methods);
470 if (imag_t == 0)
471 return 0;
473 imag_t = expand_unop (submode, this_neg_optab, imag_t,
474 NULL_RTX, unsignedp);
476 if (real_t == 0 || imag_t == 0)
477 return 0;
479 else
481 /* Compute (a+ib)/(c+id) as
482 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
484 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
485 NULL_RTX, unsignedp, methods);
487 if (temp1 == 0)
488 return 0;
490 real_t = expand_binop (submode, this_add_optab, temp1, real0,
491 NULL_RTX, unsignedp, methods);
493 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
494 NULL_RTX, unsignedp, methods);
496 if (temp1 == 0)
497 return 0;
499 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
500 NULL_RTX, unsignedp, methods);
502 if (real_t == 0 || imag_t == 0)
503 return 0;
506 if (class == MODE_COMPLEX_FLOAT)
507 res = expand_binop (submode, binoptab, real_t, divisor,
508 realr, unsignedp, methods);
509 else
510 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
511 real_t, divisor, realr, unsignedp);
513 if (res == 0)
514 return 0;
516 if (res != realr)
517 emit_move_insn (realr, res);
519 if (class == MODE_COMPLEX_FLOAT)
520 res = expand_binop (submode, binoptab, imag_t, divisor,
521 imagr, unsignedp, methods);
522 else
523 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
524 imag_t, divisor, imagr, unsignedp);
526 if (res == 0)
527 return 0;
529 if (res != imagr)
530 emit_move_insn (imagr, res);
532 lab2 = gen_label_rtx ();
533 emit_jump_insn (gen_jump (lab2));
534 emit_barrier ();
536 emit_label (lab1);
538 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
540 if (class == MODE_COMPLEX_FLOAT)
541 ratio = expand_binop (submode, binoptab, real1, imag1,
542 NULL_RTX, unsignedp, methods);
543 else
544 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
545 real1, imag1, NULL_RTX, unsignedp);
547 if (ratio == 0)
548 return 0;
550 /* Calculate divisor. */
552 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
553 NULL_RTX, unsignedp, methods);
555 if (temp1 == 0)
556 return 0;
558 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
559 NULL_RTX, unsignedp, methods);
561 if (divisor == 0)
562 return 0;
564 /* Calculate dividend. */
566 if (imag0 == 0)
568 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
570 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
571 NULL_RTX, unsignedp, methods);
573 imag_t = expand_unop (submode, this_neg_optab, real0,
574 NULL_RTX, unsignedp);
576 if (real_t == 0 || imag_t == 0)
577 return 0;
579 else
581 /* Compute (a+ib)/(c+id) as
582 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
584 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
585 NULL_RTX, unsignedp, methods);
587 if (temp1 == 0)
588 return 0;
590 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
591 NULL_RTX, unsignedp, methods);
593 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
594 NULL_RTX, unsignedp, methods);
596 if (temp1 == 0)
597 return 0;
599 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
600 NULL_RTX, unsignedp, methods);
602 if (real_t == 0 || imag_t == 0)
603 return 0;
606 if (class == MODE_COMPLEX_FLOAT)
607 res = expand_binop (submode, binoptab, real_t, divisor,
608 realr, unsignedp, methods);
609 else
610 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
611 real_t, divisor, realr, unsignedp);
613 if (res == 0)
614 return 0;
616 if (res != realr)
617 emit_move_insn (realr, res);
619 if (class == MODE_COMPLEX_FLOAT)
620 res = expand_binop (submode, binoptab, imag_t, divisor,
621 imagr, unsignedp, methods);
622 else
623 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
624 imag_t, divisor, imagr, unsignedp);
626 if (res == 0)
627 return 0;
629 if (res != imagr)
630 emit_move_insn (imagr, res);
632 emit_label (lab2);
634 return 1;
637 /* Wrapper around expand_binop which takes an rtx code to specify
638 the operation to perform, not an optab pointer. All other
639 arguments are the same. */
641 expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
642 enum machine_mode mode;
643 enum rtx_code code;
644 rtx op0, op1;
645 rtx target;
646 int unsignedp;
647 enum optab_methods methods;
649 optab binop = code_to_optab[(int) code];
650 if (binop == 0)
651 abort ();
653 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
656 /* Generate code to perform an operation specified by BINOPTAB
657 on operands OP0 and OP1, with result having machine-mode MODE.
659 UNSIGNEDP is for the case where we have to widen the operands
660 to perform the operation. It says to use zero-extension.
662 If TARGET is nonzero, the value
663 is generated there, if it is convenient to do so.
664 In all cases an rtx is returned for the locus of the value;
665 this may or may not be TARGET. */
668 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
669 enum machine_mode mode;
670 optab binoptab;
671 rtx op0, op1;
672 rtx target;
673 int unsignedp;
674 enum optab_methods methods;
676 enum optab_methods next_methods
677 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
678 ? OPTAB_WIDEN : methods);
679 enum mode_class class;
680 enum machine_mode wider_mode;
681 rtx temp;
682 int commutative_op = 0;
683 int shift_op = (binoptab->code == ASHIFT
684 || binoptab->code == ASHIFTRT
685 || binoptab->code == LSHIFTRT
686 || binoptab->code == ROTATE
687 || binoptab->code == ROTATERT);
688 rtx entry_last = get_last_insn ();
689 rtx last;
691 class = GET_MODE_CLASS (mode);
693 op0 = protect_from_queue (op0, 0);
694 op1 = protect_from_queue (op1, 0);
695 if (target)
696 target = protect_from_queue (target, 1);
698 if (flag_force_mem)
700 op0 = force_not_mem (op0);
701 op1 = force_not_mem (op1);
704 /* If subtracting an integer constant, convert this into an addition of
705 the negated constant. */
707 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
709 op1 = negate_rtx (mode, op1);
710 binoptab = add_optab;
713 /* If we are inside an appropriately-short loop and one operand is an
714 expensive constant, force it into a register. */
715 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
716 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
717 op0 = force_reg (mode, op0);
719 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
720 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
721 op1 = force_reg (mode, op1);
723 /* Record where to delete back to if we backtrack. */
724 last = get_last_insn ();
726 /* If operation is commutative,
727 try to make the first operand a register.
728 Even better, try to make it the same as the target.
729 Also try to make the last operand a constant. */
730 if (GET_RTX_CLASS (binoptab->code) == 'c'
731 || binoptab == smul_widen_optab
732 || binoptab == umul_widen_optab
733 || binoptab == smul_highpart_optab
734 || binoptab == umul_highpart_optab)
736 commutative_op = 1;
738 if (((target == 0 || GET_CODE (target) == REG)
739 ? ((GET_CODE (op1) == REG
740 && GET_CODE (op0) != REG)
741 || target == op1)
742 : rtx_equal_p (op1, target))
743 || GET_CODE (op0) == CONST_INT)
745 temp = op1;
746 op1 = op0;
747 op0 = temp;
751 /* If we can do it with a three-operand insn, do so. */
753 if (methods != OPTAB_MUST_WIDEN
754 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
756 int icode = (int) binoptab->handlers[(int) mode].insn_code;
757 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
758 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
759 rtx pat;
760 rtx xop0 = op0, xop1 = op1;
762 if (target)
763 temp = target;
764 else
765 temp = gen_reg_rtx (mode);
767 /* If it is a commutative operator and the modes would match
768 if we would swap the operands, we can save the conversions. */
769 if (commutative_op)
771 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
772 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
774 rtx tmp;
776 tmp = op0; op0 = op1; op1 = tmp;
777 tmp = xop0; xop0 = xop1; xop1 = tmp;
781 /* In case the insn wants input operands in modes different from
782 those of the actual operands, convert the operands. It would
783 seem that we don't need to convert CONST_INTs, but we do, so
784 that they're properly zero-extended, sign-extended or truncated
785 for their mode. */
787 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
788 xop0 = convert_modes (mode0,
789 GET_MODE (op0) != VOIDmode
790 ? GET_MODE (op0)
791 : mode,
792 xop0, unsignedp);
794 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
795 xop1 = convert_modes (mode1,
796 GET_MODE (op1) != VOIDmode
797 ? GET_MODE (op1)
798 : mode,
799 xop1, unsignedp);
801 /* Now, if insn's predicates don't allow our operands, put them into
802 pseudo regs. */
804 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
805 && mode0 != VOIDmode)
806 xop0 = copy_to_mode_reg (mode0, xop0);
808 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
809 && mode1 != VOIDmode)
810 xop1 = copy_to_mode_reg (mode1, xop1);
812 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
813 temp = gen_reg_rtx (mode);
815 pat = GEN_FCN (icode) (temp, xop0, xop1);
816 if (pat)
818 /* If PAT is composed of more than one insn, try to add an appropriate
819 REG_EQUAL note to it. If we can't because TEMP conflicts with an
820 operand, call ourselves again, this time without a target. */
821 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
822 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
824 delete_insns_since (last);
825 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
826 unsignedp, methods);
829 emit_insn (pat);
830 return temp;
832 else
833 delete_insns_since (last);
836 /* If this is a multiply, see if we can do a widening operation that
837 takes operands of this mode and makes a wider mode. */
839 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
840 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
841 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
842 != CODE_FOR_nothing))
844 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
845 unsignedp ? umul_widen_optab : smul_widen_optab,
846 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
848 if (temp != 0)
850 if (GET_MODE_CLASS (mode) == MODE_INT)
851 return gen_lowpart (mode, temp);
852 else
853 return convert_to_mode (mode, temp, unsignedp);
857 /* Look for a wider mode of the same class for which we think we
858 can open-code the operation. Check for a widening multiply at the
859 wider mode as well. */
861 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
862 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
863 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
864 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
866 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
867 || (binoptab == smul_optab
868 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
869 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
870 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
871 != CODE_FOR_nothing)))
873 rtx xop0 = op0, xop1 = op1;
874 int no_extend = 0;
876 /* For certain integer operations, we need not actually extend
877 the narrow operands, as long as we will truncate
878 the results to the same narrowness. */
880 if ((binoptab == ior_optab || binoptab == and_optab
881 || binoptab == xor_optab
882 || binoptab == add_optab || binoptab == sub_optab
883 || binoptab == smul_optab || binoptab == ashl_optab)
884 && class == MODE_INT)
885 no_extend = 1;
887 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
889 /* The second operand of a shift must always be extended. */
890 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
891 no_extend && binoptab != ashl_optab);
893 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
894 unsignedp, OPTAB_DIRECT);
895 if (temp)
897 if (class != MODE_INT)
899 if (target == 0)
900 target = gen_reg_rtx (mode);
901 convert_move (target, temp, 0);
902 return target;
904 else
905 return gen_lowpart (mode, temp);
907 else
908 delete_insns_since (last);
912 /* These can be done a word at a time. */
913 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
914 && class == MODE_INT
915 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
916 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
918 int i;
919 rtx insns;
920 rtx equiv_value;
922 /* If TARGET is the same as one of the operands, the REG_EQUAL note
923 won't be accurate, so use a new target. */
924 if (target == 0 || target == op0 || target == op1)
925 target = gen_reg_rtx (mode);
927 start_sequence ();
929 /* Do the actual arithmetic. */
930 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
932 rtx target_piece = operand_subword (target, i, 1, mode);
933 rtx x = expand_binop (word_mode, binoptab,
934 operand_subword_force (op0, i, mode),
935 operand_subword_force (op1, i, mode),
936 target_piece, unsignedp, next_methods);
938 if (x == 0)
939 break;
941 if (target_piece != x)
942 emit_move_insn (target_piece, x);
945 insns = get_insns ();
946 end_sequence ();
948 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
950 if (binoptab->code != UNKNOWN)
951 equiv_value
952 = gen_rtx_fmt_ee (binoptab->code, mode,
953 copy_rtx (op0), copy_rtx (op1));
954 else
955 equiv_value = 0;
957 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
958 return target;
962 /* Synthesize double word shifts from single word shifts. */
963 if ((binoptab == lshr_optab || binoptab == ashl_optab
964 || binoptab == ashr_optab)
965 && class == MODE_INT
966 && GET_CODE (op1) == CONST_INT
967 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
968 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
969 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
970 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
972 rtx insns, inter, equiv_value;
973 rtx into_target, outof_target;
974 rtx into_input, outof_input;
975 int shift_count, left_shift, outof_word;
977 /* If TARGET is the same as one of the operands, the REG_EQUAL note
978 won't be accurate, so use a new target. */
979 if (target == 0 || target == op0 || target == op1)
980 target = gen_reg_rtx (mode);
982 start_sequence ();
984 shift_count = INTVAL (op1);
986 /* OUTOF_* is the word we are shifting bits away from, and
987 INTO_* is the word that we are shifting bits towards, thus
988 they differ depending on the direction of the shift and
989 WORDS_BIG_ENDIAN. */
991 left_shift = binoptab == ashl_optab;
992 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
994 outof_target = operand_subword (target, outof_word, 1, mode);
995 into_target = operand_subword (target, 1 - outof_word, 1, mode);
997 outof_input = operand_subword_force (op0, outof_word, mode);
998 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1000 if (shift_count >= BITS_PER_WORD)
1002 inter = expand_binop (word_mode, binoptab,
1003 outof_input,
1004 GEN_INT (shift_count - BITS_PER_WORD),
1005 into_target, unsignedp, next_methods);
1007 if (inter != 0 && inter != into_target)
1008 emit_move_insn (into_target, inter);
1010 /* For a signed right shift, we must fill the word we are shifting
1011 out of with copies of the sign bit. Otherwise it is zeroed. */
1012 if (inter != 0 && binoptab != ashr_optab)
1013 inter = CONST0_RTX (word_mode);
1014 else if (inter != 0)
1015 inter = expand_binop (word_mode, binoptab,
1016 outof_input,
1017 GEN_INT (BITS_PER_WORD - 1),
1018 outof_target, unsignedp, next_methods);
1020 if (inter != 0 && inter != outof_target)
1021 emit_move_insn (outof_target, inter);
1023 else
1025 rtx carries;
1026 optab reverse_unsigned_shift, unsigned_shift;
1028 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1029 we must do a logical shift in the opposite direction of the
1030 desired shift. */
1032 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1034 /* For a shift of less than BITS_PER_WORD, to compute the word
1035 shifted towards, we need to unsigned shift the orig value of
1036 that word. */
1038 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1040 carries = expand_binop (word_mode, reverse_unsigned_shift,
1041 outof_input,
1042 GEN_INT (BITS_PER_WORD - shift_count),
1043 0, unsignedp, next_methods);
1045 if (carries == 0)
1046 inter = 0;
1047 else
1048 inter = expand_binop (word_mode, unsigned_shift, into_input,
1049 op1, 0, unsignedp, next_methods);
1051 if (inter != 0)
1052 inter = expand_binop (word_mode, ior_optab, carries, inter,
1053 into_target, unsignedp, next_methods);
1055 if (inter != 0 && inter != into_target)
1056 emit_move_insn (into_target, inter);
1058 if (inter != 0)
1059 inter = expand_binop (word_mode, binoptab, outof_input,
1060 op1, outof_target, unsignedp, next_methods);
1062 if (inter != 0 && inter != outof_target)
1063 emit_move_insn (outof_target, inter);
1066 insns = get_insns ();
1067 end_sequence ();
1069 if (inter != 0)
1071 if (binoptab->code != UNKNOWN)
1072 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1073 else
1074 equiv_value = 0;
1076 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1077 return target;
1081 /* Synthesize double word rotates from single word shifts. */
1082 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1083 && class == MODE_INT
1084 && GET_CODE (op1) == CONST_INT
1085 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1086 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1087 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1089 rtx insns, equiv_value;
1090 rtx into_target, outof_target;
1091 rtx into_input, outof_input;
1092 rtx inter;
1093 int shift_count, left_shift, outof_word;
1095 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1096 won't be accurate, so use a new target. */
1097 if (target == 0 || target == op0 || target == op1)
1098 target = gen_reg_rtx (mode);
1100 start_sequence ();
1102 shift_count = INTVAL (op1);
1104 /* OUTOF_* is the word we are shifting bits away from, and
1105 INTO_* is the word that we are shifting bits towards, thus
1106 they differ depending on the direction of the shift and
1107 WORDS_BIG_ENDIAN. */
1109 left_shift = (binoptab == rotl_optab);
1110 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1112 outof_target = operand_subword (target, outof_word, 1, mode);
1113 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1115 outof_input = operand_subword_force (op0, outof_word, mode);
1116 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1118 if (shift_count == BITS_PER_WORD)
1120 /* This is just a word swap. */
1121 emit_move_insn (outof_target, into_input);
1122 emit_move_insn (into_target, outof_input);
1123 inter = const0_rtx;
1125 else
1127 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1128 rtx first_shift_count, second_shift_count;
1129 optab reverse_unsigned_shift, unsigned_shift;
1131 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1132 ? lshr_optab : ashl_optab);
1134 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1135 ? ashl_optab : lshr_optab);
1137 if (shift_count > BITS_PER_WORD)
1139 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1140 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1142 else
1144 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1145 second_shift_count = GEN_INT (shift_count);
1148 into_temp1 = expand_binop (word_mode, unsigned_shift,
1149 outof_input, first_shift_count,
1150 NULL_RTX, unsignedp, next_methods);
1151 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1152 into_input, second_shift_count,
1153 NULL_RTX, unsignedp, next_methods);
1155 if (into_temp1 != 0 && into_temp2 != 0)
1156 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1157 into_target, unsignedp, next_methods);
1158 else
1159 inter = 0;
1161 if (inter != 0 && inter != into_target)
1162 emit_move_insn (into_target, inter);
1164 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1165 into_input, first_shift_count,
1166 NULL_RTX, unsignedp, next_methods);
1167 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1168 outof_input, second_shift_count,
1169 NULL_RTX, unsignedp, next_methods);
1171 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1172 inter = expand_binop (word_mode, ior_optab,
1173 outof_temp1, outof_temp2,
1174 outof_target, unsignedp, next_methods);
1176 if (inter != 0 && inter != outof_target)
1177 emit_move_insn (outof_target, inter);
1180 insns = get_insns ();
1181 end_sequence ();
1183 if (inter != 0)
1185 if (binoptab->code != UNKNOWN)
1186 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1187 else
1188 equiv_value = 0;
1190 /* We can't make this a no conflict block if this is a word swap,
1191 because the word swap case fails if the input and output values
1192 are in the same register. */
1193 if (shift_count != BITS_PER_WORD)
1194 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1195 else
1196 emit_insn (insns);
1199 return target;
1203 /* These can be done a word at a time by propagating carries. */
1204 if ((binoptab == add_optab || binoptab == sub_optab)
1205 && class == MODE_INT
1206 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1207 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1209 unsigned int i;
1210 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1211 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1212 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1213 rtx xop0, xop1, xtarget;
1215 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1216 value is one of those, use it. Otherwise, use 1 since it is the
1217 one easiest to get. */
1218 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1219 int normalizep = STORE_FLAG_VALUE;
1220 #else
1221 int normalizep = 1;
1222 #endif
1224 /* Prepare the operands. */
1225 xop0 = force_reg (mode, op0);
1226 xop1 = force_reg (mode, op1);
1228 xtarget = gen_reg_rtx (mode);
1230 if (target == 0 || GET_CODE (target) != REG)
1231 target = xtarget;
1233 /* Indicate for flow that the entire target reg is being set. */
1234 if (GET_CODE (target) == REG)
1235 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1237 /* Do the actual arithmetic. */
1238 for (i = 0; i < nwords; i++)
1240 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1241 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1242 rtx op0_piece = operand_subword_force (xop0, index, mode);
1243 rtx op1_piece = operand_subword_force (xop1, index, mode);
1244 rtx x;
1246 /* Main add/subtract of the input operands. */
1247 x = expand_binop (word_mode, binoptab,
1248 op0_piece, op1_piece,
1249 target_piece, unsignedp, next_methods);
1250 if (x == 0)
1251 break;
1253 if (i + 1 < nwords)
1255 /* Store carry from main add/subtract. */
1256 carry_out = gen_reg_rtx (word_mode);
1257 carry_out = emit_store_flag_force (carry_out,
1258 (binoptab == add_optab
1259 ? LT : GT),
1260 x, op0_piece,
1261 word_mode, 1, normalizep);
1264 if (i > 0)
1266 rtx newx;
1268 /* Add/subtract previous carry to main result. */
1269 newx = expand_binop (word_mode,
1270 normalizep == 1 ? binoptab : otheroptab,
1271 x, carry_in,
1272 NULL_RTX, 1, next_methods);
1274 if (i + 1 < nwords)
1276 /* Get out carry from adding/subtracting carry in. */
1277 rtx carry_tmp = gen_reg_rtx (word_mode);
1278 carry_tmp = emit_store_flag_force (carry_tmp,
1279 (binoptab == add_optab
1280 ? LT : GT),
1281 newx, x,
1282 word_mode, 1, normalizep);
1284 /* Logical-ior the two poss. carry together. */
1285 carry_out = expand_binop (word_mode, ior_optab,
1286 carry_out, carry_tmp,
1287 carry_out, 0, next_methods);
1288 if (carry_out == 0)
1289 break;
1291 emit_move_insn (target_piece, newx);
1294 carry_in = carry_out;
1297 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1299 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1301 rtx temp = emit_move_insn (target, xtarget);
1303 set_unique_reg_note (temp,
1304 REG_EQUAL,
1305 gen_rtx_fmt_ee (binoptab->code, mode,
1306 copy_rtx (xop0),
1307 copy_rtx (xop1)));
1310 return target;
1313 else
1314 delete_insns_since (last);
1317 /* If we want to multiply two two-word values and have normal and widening
1318 multiplies of single-word values, we can do this with three smaller
1319 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1320 because we are not operating on one word at a time.
1322 The multiplication proceeds as follows:
1323 _______________________
1324 [__op0_high_|__op0_low__]
1325 _______________________
1326 * [__op1_high_|__op1_low__]
1327 _______________________________________________
1328 _______________________
1329 (1) [__op0_low__*__op1_low__]
1330 _______________________
1331 (2a) [__op0_low__*__op1_high_]
1332 _______________________
1333 (2b) [__op0_high_*__op1_low__]
1334 _______________________
1335 (3) [__op0_high_*__op1_high_]
1338 This gives a 4-word result. Since we are only interested in the
1339 lower 2 words, partial result (3) and the upper words of (2a) and
1340 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1341 calculated using non-widening multiplication.
1343 (1), however, needs to be calculated with an unsigned widening
1344 multiplication. If this operation is not directly supported we
1345 try using a signed widening multiplication and adjust the result.
1346 This adjustment works as follows:
1348 If both operands are positive then no adjustment is needed.
1350 If the operands have different signs, for example op0_low < 0 and
1351 op1_low >= 0, the instruction treats the most significant bit of
1352 op0_low as a sign bit instead of a bit with significance
1353 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1354 with 2**BITS_PER_WORD - op0_low, and two's complements the
1355 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1356 the result.
1358 Similarly, if both operands are negative, we need to add
1359 (op0_low + op1_low) * 2**BITS_PER_WORD.
1361 We use a trick to adjust quickly. We logically shift op0_low right
1362 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1363 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1364 logical shift exists, we do an arithmetic right shift and subtract
1365 the 0 or -1. */
1367 if (binoptab == smul_optab
1368 && class == MODE_INT
1369 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1370 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1371 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1372 && ((umul_widen_optab->handlers[(int) mode].insn_code
1373 != CODE_FOR_nothing)
1374 || (smul_widen_optab->handlers[(int) mode].insn_code
1375 != CODE_FOR_nothing)))
1377 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1378 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1379 rtx op0_high = operand_subword_force (op0, high, mode);
1380 rtx op0_low = operand_subword_force (op0, low, mode);
1381 rtx op1_high = operand_subword_force (op1, high, mode);
1382 rtx op1_low = operand_subword_force (op1, low, mode);
1383 rtx product = 0;
1384 rtx op0_xhigh = NULL_RTX;
1385 rtx op1_xhigh = NULL_RTX;
1387 /* If the target is the same as one of the inputs, don't use it. This
1388 prevents problems with the REG_EQUAL note. */
1389 if (target == op0 || target == op1
1390 || (target != 0 && GET_CODE (target) != REG))
1391 target = 0;
1393 /* Multiply the two lower words to get a double-word product.
1394 If unsigned widening multiplication is available, use that;
1395 otherwise use the signed form and compensate. */
1397 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1399 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1400 target, 1, OPTAB_DIRECT);
1402 /* If we didn't succeed, delete everything we did so far. */
1403 if (product == 0)
1404 delete_insns_since (last);
1405 else
1406 op0_xhigh = op0_high, op1_xhigh = op1_high;
1409 if (product == 0
1410 && smul_widen_optab->handlers[(int) mode].insn_code
1411 != CODE_FOR_nothing)
1413 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1414 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1415 target, 1, OPTAB_DIRECT);
1416 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1417 NULL_RTX, 1, next_methods);
1418 if (op0_xhigh)
1419 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1420 op0_xhigh, op0_xhigh, 0, next_methods);
1421 else
1423 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1424 NULL_RTX, 0, next_methods);
1425 if (op0_xhigh)
1426 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1427 op0_xhigh, op0_xhigh, 0,
1428 next_methods);
1431 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1432 NULL_RTX, 1, next_methods);
1433 if (op1_xhigh)
1434 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1435 op1_xhigh, op1_xhigh, 0, next_methods);
1436 else
1438 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1439 NULL_RTX, 0, next_methods);
1440 if (op1_xhigh)
1441 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1442 op1_xhigh, op1_xhigh, 0,
1443 next_methods);
1447 /* If we have been able to directly compute the product of the
1448 low-order words of the operands and perform any required adjustments
1449 of the operands, we proceed by trying two more multiplications
1450 and then computing the appropriate sum.
1452 We have checked above that the required addition is provided.
1453 Full-word addition will normally always succeed, especially if
1454 it is provided at all, so we don't worry about its failure. The
1455 multiplication may well fail, however, so we do handle that. */
1457 if (product && op0_xhigh && op1_xhigh)
1459 rtx product_high = operand_subword (product, high, 1, mode);
1460 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1461 NULL_RTX, 0, OPTAB_DIRECT);
1463 if (!REG_P (product_high))
1464 product_high = force_reg (word_mode, product_high);
1466 if (temp != 0)
1467 temp = expand_binop (word_mode, add_optab, temp, product_high,
1468 product_high, 0, next_methods);
1470 if (temp != 0 && temp != product_high)
1471 emit_move_insn (product_high, temp);
1473 if (temp != 0)
1474 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1475 NULL_RTX, 0, OPTAB_DIRECT);
1477 if (temp != 0)
1478 temp = expand_binop (word_mode, add_optab, temp,
1479 product_high, product_high,
1480 0, next_methods);
1482 if (temp != 0 && temp != product_high)
1483 emit_move_insn (product_high, temp);
1485 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1487 if (temp != 0)
1489 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1491 temp = emit_move_insn (product, product);
1492 set_unique_reg_note (temp,
1493 REG_EQUAL,
1494 gen_rtx_fmt_ee (MULT, mode,
1495 copy_rtx (op0),
1496 copy_rtx (op1)));
1499 return product;
1503 /* If we get here, we couldn't do it for some reason even though we
1504 originally thought we could. Delete anything we've emitted in
1505 trying to do it. */
1507 delete_insns_since (last);
1510 /* Open-code the vector operations if we have no hardware support
1511 for them. */
1512 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1513 return expand_vector_binop (mode, binoptab, op0, op1, target,
1514 unsignedp, methods);
1516 /* We need to open-code the complex type operations: '+, -, * and /' */
1518 /* At this point we allow operations between two similar complex
1519 numbers, and also if one of the operands is not a complex number
1520 but rather of MODE_FLOAT or MODE_INT. However, the caller
1521 must make sure that the MODE of the non-complex operand matches
1522 the SUBMODE of the complex operand. */
1524 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1526 rtx real0 = 0, imag0 = 0;
1527 rtx real1 = 0, imag1 = 0;
1528 rtx realr, imagr, res;
1529 rtx seq;
1530 rtx equiv_value;
1531 int ok = 0;
1533 /* Find the correct mode for the real and imaginary parts */
1534 enum machine_mode submode = GET_MODE_INNER(mode);
1536 if (submode == BLKmode)
1537 abort ();
1539 if (! target)
1540 target = gen_reg_rtx (mode);
1542 start_sequence ();
1544 realr = gen_realpart (submode, target);
1545 imagr = gen_imagpart (submode, target);
1547 if (GET_MODE (op0) == mode)
1549 real0 = gen_realpart (submode, op0);
1550 imag0 = gen_imagpart (submode, op0);
1552 else
1553 real0 = op0;
1555 if (GET_MODE (op1) == mode)
1557 real1 = gen_realpart (submode, op1);
1558 imag1 = gen_imagpart (submode, op1);
1560 else
1561 real1 = op1;
1563 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1564 abort ();
1566 switch (binoptab->code)
1568 case PLUS:
1569 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1570 case MINUS:
1571 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1572 res = expand_binop (submode, binoptab, real0, real1,
1573 realr, unsignedp, methods);
1575 if (res == 0)
1576 break;
1577 else if (res != realr)
1578 emit_move_insn (realr, res);
1580 if (imag0 != 0 && imag1 != 0)
1581 res = expand_binop (submode, binoptab, imag0, imag1,
1582 imagr, unsignedp, methods);
1583 else if (imag0 != 0)
1584 res = imag0;
1585 else if (binoptab->code == MINUS)
1586 res = expand_unop (submode,
1587 binoptab == subv_optab ? negv_optab : neg_optab,
1588 imag1, imagr, unsignedp);
1589 else
1590 res = imag1;
1592 if (res == 0)
1593 break;
1594 else if (res != imagr)
1595 emit_move_insn (imagr, res);
1597 ok = 1;
1598 break;
1600 case MULT:
1601 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1603 if (imag0 != 0 && imag1 != 0)
1605 rtx temp1, temp2;
1607 /* Don't fetch these from memory more than once. */
1608 real0 = force_reg (submode, real0);
1609 real1 = force_reg (submode, real1);
1610 imag0 = force_reg (submode, imag0);
1611 imag1 = force_reg (submode, imag1);
1613 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1614 unsignedp, methods);
1616 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1617 unsignedp, methods);
1619 if (temp1 == 0 || temp2 == 0)
1620 break;
1622 res = (expand_binop
1623 (submode,
1624 binoptab == smulv_optab ? subv_optab : sub_optab,
1625 temp1, temp2, realr, unsignedp, methods));
1627 if (res == 0)
1628 break;
1629 else if (res != realr)
1630 emit_move_insn (realr, res);
1632 temp1 = expand_binop (submode, binoptab, real0, imag1,
1633 NULL_RTX, unsignedp, methods);
1635 temp2 = expand_binop (submode, binoptab, real1, imag0,
1636 NULL_RTX, unsignedp, methods);
1638 if (temp1 == 0 || temp2 == 0)
1639 break;
1641 res = (expand_binop
1642 (submode,
1643 binoptab == smulv_optab ? addv_optab : add_optab,
1644 temp1, temp2, imagr, unsignedp, methods));
1646 if (res == 0)
1647 break;
1648 else if (res != imagr)
1649 emit_move_insn (imagr, res);
1651 ok = 1;
1653 else
1655 /* Don't fetch these from memory more than once. */
1656 real0 = force_reg (submode, real0);
1657 real1 = force_reg (submode, real1);
1659 res = expand_binop (submode, binoptab, real0, real1,
1660 realr, unsignedp, methods);
1661 if (res == 0)
1662 break;
1663 else if (res != realr)
1664 emit_move_insn (realr, res);
1666 if (imag0 != 0)
1667 res = expand_binop (submode, binoptab,
1668 real1, imag0, imagr, unsignedp, methods);
1669 else
1670 res = expand_binop (submode, binoptab,
1671 real0, imag1, imagr, unsignedp, methods);
1673 if (res == 0)
1674 break;
1675 else if (res != imagr)
1676 emit_move_insn (imagr, res);
1678 ok = 1;
1680 break;
1682 case DIV:
1683 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1685 if (imag1 == 0)
1687 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1689 /* Don't fetch these from memory more than once. */
1690 real1 = force_reg (submode, real1);
1692 /* Simply divide the real and imaginary parts by `c' */
1693 if (class == MODE_COMPLEX_FLOAT)
1694 res = expand_binop (submode, binoptab, real0, real1,
1695 realr, unsignedp, methods);
1696 else
1697 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1698 real0, real1, realr, unsignedp);
1700 if (res == 0)
1701 break;
1702 else if (res != realr)
1703 emit_move_insn (realr, res);
1705 if (class == MODE_COMPLEX_FLOAT)
1706 res = expand_binop (submode, binoptab, imag0, real1,
1707 imagr, unsignedp, methods);
1708 else
1709 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1710 imag0, real1, imagr, unsignedp);
1712 if (res == 0)
1713 break;
1714 else if (res != imagr)
1715 emit_move_insn (imagr, res);
1717 ok = 1;
1719 else
1721 switch (flag_complex_divide_method)
1723 case 0:
1724 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1725 realr, imagr, submode,
1726 unsignedp, methods,
1727 class, binoptab);
1728 break;
1730 case 1:
1731 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1732 realr, imagr, submode,
1733 unsignedp, methods,
1734 class, binoptab);
1735 break;
1737 default:
1738 abort ();
1741 break;
1743 default:
1744 abort ();
1747 seq = get_insns ();
1748 end_sequence ();
1750 if (ok)
1752 if (binoptab->code != UNKNOWN)
1753 equiv_value
1754 = gen_rtx_fmt_ee (binoptab->code, mode,
1755 copy_rtx (op0), copy_rtx (op1));
1756 else
1757 equiv_value = 0;
1759 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1761 return target;
1765 /* It can't be open-coded in this mode.
1766 Use a library call if one is available and caller says that's ok. */
1768 if (binoptab->handlers[(int) mode].libfunc
1769 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1771 rtx insns;
1772 rtx op1x = op1;
1773 enum machine_mode op1_mode = mode;
1774 rtx value;
1776 start_sequence ();
1778 if (shift_op)
1780 op1_mode = word_mode;
1781 /* Specify unsigned here,
1782 since negative shift counts are meaningless. */
1783 op1x = convert_to_mode (word_mode, op1, 1);
1786 if (GET_MODE (op0) != VOIDmode
1787 && GET_MODE (op0) != mode)
1788 op0 = convert_to_mode (mode, op0, unsignedp);
1790 /* Pass 1 for NO_QUEUE so we don't lose any increments
1791 if the libcall is cse'd or moved. */
1792 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1793 NULL_RTX, LCT_CONST, mode, 2,
1794 op0, mode, op1x, op1_mode);
1796 insns = get_insns ();
1797 end_sequence ();
1799 target = gen_reg_rtx (mode);
1800 emit_libcall_block (insns, target, value,
1801 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1803 return target;
1806 delete_insns_since (last);
1808 /* It can't be done in this mode. Can we do it in a wider mode? */
1810 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1811 || methods == OPTAB_MUST_WIDEN))
1813 /* Caller says, don't even try. */
1814 delete_insns_since (entry_last);
1815 return 0;
1818 /* Compute the value of METHODS to pass to recursive calls.
1819 Don't allow widening to be tried recursively. */
1821 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1823 /* Look for a wider mode of the same class for which it appears we can do
1824 the operation. */
1826 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1828 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1829 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1831 if ((binoptab->handlers[(int) wider_mode].insn_code
1832 != CODE_FOR_nothing)
1833 || (methods == OPTAB_LIB
1834 && binoptab->handlers[(int) wider_mode].libfunc))
1836 rtx xop0 = op0, xop1 = op1;
1837 int no_extend = 0;
1839 /* For certain integer operations, we need not actually extend
1840 the narrow operands, as long as we will truncate
1841 the results to the same narrowness. */
1843 if ((binoptab == ior_optab || binoptab == and_optab
1844 || binoptab == xor_optab
1845 || binoptab == add_optab || binoptab == sub_optab
1846 || binoptab == smul_optab || binoptab == ashl_optab)
1847 && class == MODE_INT)
1848 no_extend = 1;
1850 xop0 = widen_operand (xop0, wider_mode, mode,
1851 unsignedp, no_extend);
1853 /* The second operand of a shift must always be extended. */
1854 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1855 no_extend && binoptab != ashl_optab);
1857 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1858 unsignedp, methods);
1859 if (temp)
1861 if (class != MODE_INT)
1863 if (target == 0)
1864 target = gen_reg_rtx (mode);
1865 convert_move (target, temp, 0);
1866 return target;
1868 else
1869 return gen_lowpart (mode, temp);
1871 else
1872 delete_insns_since (last);
1877 delete_insns_since (entry_last);
1878 return 0;
1881 /* Like expand_binop, but for open-coding vectors binops. */
1883 static rtx
1884 expand_vector_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
1885 enum machine_mode mode;
1886 optab binoptab;
1887 rtx op0, op1;
1888 rtx target;
1889 int unsignedp;
1890 enum optab_methods methods;
1892 enum machine_mode submode, tmode;
1893 int size, elts, subsize, subbitsize, i;
1894 rtx t, a, b, res, seq;
1895 enum mode_class class;
1897 class = GET_MODE_CLASS (mode);
1899 size = GET_MODE_SIZE (mode);
1900 submode = GET_MODE_INNER (mode);
1902 /* Search for the widest vector mode with the same inner mode that is
1903 still narrower than MODE and that allows to open-code this operator.
1904 Note, if we find such a mode and the handler later decides it can't
1905 do the expansion, we'll be called recursively with the narrower mode. */
1906 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1907 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1908 tmode = GET_MODE_WIDER_MODE (tmode))
1910 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1911 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1912 submode = tmode;
1915 switch (binoptab->code)
1917 case AND:
1918 case IOR:
1919 case XOR:
1920 tmode = int_mode_for_mode (mode);
1921 if (tmode != BLKmode)
1922 submode = tmode;
1923 case PLUS:
1924 case MINUS:
1925 case MULT:
1926 case DIV:
1927 subsize = GET_MODE_SIZE (submode);
1928 subbitsize = GET_MODE_BITSIZE (submode);
1929 elts = size / subsize;
1931 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1932 but that we operate on more than one element at a time. */
1933 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1934 return 0;
1936 start_sequence ();
1938 /* Errors can leave us with a const0_rtx as operand. */
1939 if (GET_MODE (op0) != mode)
1940 op0 = copy_to_mode_reg (mode, op0);
1941 if (GET_MODE (op1) != mode)
1942 op1 = copy_to_mode_reg (mode, op1);
1944 if (!target)
1945 target = gen_reg_rtx (mode);
1947 for (i = 0; i < elts; ++i)
1949 /* If this is part of a register, and not the first item in the
1950 word, we can't store using a SUBREG - that would clobber
1951 previous results.
1952 And storing with a SUBREG is only possible for the least
1953 significant part, hence we can't do it for big endian
1954 (unless we want to permute the evaluation order. */
1955 if (GET_CODE (target) == REG
1956 && (BYTES_BIG_ENDIAN
1957 ? subsize < UNITS_PER_WORD
1958 : ((i * subsize) % UNITS_PER_WORD) != 0))
1959 t = NULL_RTX;
1960 else
1961 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1962 if (CONSTANT_P (op0))
1963 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1964 else
1965 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1966 NULL_RTX, submode, submode, size);
1967 if (CONSTANT_P (op1))
1968 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1969 else
1970 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1971 NULL_RTX, submode, submode, size);
1973 if (binoptab->code == DIV)
1975 if (class == MODE_VECTOR_FLOAT)
1976 res = expand_binop (submode, binoptab, a, b, t,
1977 unsignedp, methods);
1978 else
1979 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1980 a, b, t, unsignedp);
1982 else
1983 res = expand_binop (submode, binoptab, a, b, t,
1984 unsignedp, methods);
1986 if (res == 0)
1987 break;
1989 if (t)
1990 emit_move_insn (t, res);
1991 else
1992 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1993 size);
1995 break;
1997 default:
1998 abort ();
2001 seq = get_insns ();
2002 end_sequence ();
2003 emit_insn (seq);
2005 return target;
2008 /* Like expand_unop but for open-coding vector unops. */
2010 static rtx
2011 expand_vector_unop (mode, unoptab, op0, target, unsignedp)
2012 enum machine_mode mode;
2013 optab unoptab;
2014 rtx op0;
2015 rtx target;
2016 int unsignedp;
2018 enum machine_mode submode, tmode;
2019 int size, elts, subsize, subbitsize, i;
2020 rtx t, a, res, seq;
2022 size = GET_MODE_SIZE (mode);
2023 submode = GET_MODE_INNER (mode);
2025 /* Search for the widest vector mode with the same inner mode that is
2026 still narrower than MODE and that allows to open-code this operator.
2027 Note, if we find such a mode and the handler later decides it can't
2028 do the expansion, we'll be called recursively with the narrower mode. */
2029 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2030 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2031 tmode = GET_MODE_WIDER_MODE (tmode))
2033 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2034 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2035 submode = tmode;
2037 /* If there is no negate operation, try doing a subtract from zero. */
2038 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2039 /* Avoid infinite recursion when an
2040 error has left us with the wrong mode. */
2041 && GET_MODE (op0) == mode)
2043 rtx temp;
2044 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2045 target, unsignedp, OPTAB_DIRECT);
2046 if (temp)
2047 return temp;
2050 if (unoptab == one_cmpl_optab)
2052 tmode = int_mode_for_mode (mode);
2053 if (tmode != BLKmode)
2054 submode = tmode;
2057 subsize = GET_MODE_SIZE (submode);
2058 subbitsize = GET_MODE_BITSIZE (submode);
2059 elts = size / subsize;
2061 /* Errors can leave us with a const0_rtx as operand. */
2062 if (GET_MODE (op0) != mode)
2063 op0 = copy_to_mode_reg (mode, op0);
2065 if (!target)
2066 target = gen_reg_rtx (mode);
2068 start_sequence ();
2070 for (i = 0; i < elts; ++i)
2072 /* If this is part of a register, and not the first item in the
2073 word, we can't store using a SUBREG - that would clobber
2074 previous results.
2075 And storing with a SUBREG is only possible for the least
2076 significant part, hence we can't do it for big endian
2077 (unless we want to permute the evaluation order. */
2078 if (GET_CODE (target) == REG
2079 && (BYTES_BIG_ENDIAN
2080 ? subsize < UNITS_PER_WORD
2081 : ((i * subsize) % UNITS_PER_WORD) != 0))
2082 t = NULL_RTX;
2083 else
2084 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2085 if (CONSTANT_P (op0))
2086 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2087 else
2088 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2089 t, submode, submode, size);
2091 res = expand_unop (submode, unoptab, a, t, unsignedp);
2093 if (t)
2094 emit_move_insn (t, res);
2095 else
2096 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2097 size);
2100 seq = get_insns ();
2101 end_sequence ();
2102 emit_insn (seq);
2104 return target;
2107 /* Expand a binary operator which has both signed and unsigned forms.
2108 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2109 signed operations.
2111 If we widen unsigned operands, we may use a signed wider operation instead
2112 of an unsigned wider operation, since the result would be the same. */
2115 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
2116 enum machine_mode mode;
2117 optab uoptab, soptab;
2118 rtx op0, op1, target;
2119 int unsignedp;
2120 enum optab_methods methods;
2122 rtx temp;
2123 optab direct_optab = unsignedp ? uoptab : soptab;
2124 struct optab wide_soptab;
2126 /* Do it without widening, if possible. */
2127 temp = expand_binop (mode, direct_optab, op0, op1, target,
2128 unsignedp, OPTAB_DIRECT);
2129 if (temp || methods == OPTAB_DIRECT)
2130 return temp;
2132 /* Try widening to a signed int. Make a fake signed optab that
2133 hides any signed insn for direct use. */
2134 wide_soptab = *soptab;
2135 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2136 wide_soptab.handlers[(int) mode].libfunc = 0;
2138 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2139 unsignedp, OPTAB_WIDEN);
2141 /* For unsigned operands, try widening to an unsigned int. */
2142 if (temp == 0 && unsignedp)
2143 temp = expand_binop (mode, uoptab, op0, op1, target,
2144 unsignedp, OPTAB_WIDEN);
2145 if (temp || methods == OPTAB_WIDEN)
2146 return temp;
2148 /* Use the right width lib call if that exists. */
2149 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2150 if (temp || methods == OPTAB_LIB)
2151 return temp;
2153 /* Must widen and use a lib call, use either signed or unsigned. */
2154 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2155 unsignedp, methods);
2156 if (temp != 0)
2157 return temp;
2158 if (unsignedp)
2159 return expand_binop (mode, uoptab, op0, op1, target,
2160 unsignedp, methods);
2161 return 0;
2164 /* Generate code to perform an operation specified by BINOPTAB
2165 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2166 We assume that the order of the operands for the instruction
2167 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2168 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2170 Either TARG0 or TARG1 may be zero, but what that means is that
2171 the result is not actually wanted. We will generate it into
2172 a dummy pseudo-reg and discard it. They may not both be zero.
2174 Returns 1 if this operation can be performed; 0 if not. */
2177 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
2178 optab binoptab;
2179 rtx op0, op1;
2180 rtx targ0, targ1;
2181 int unsignedp;
2183 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2184 enum mode_class class;
2185 enum machine_mode wider_mode;
2186 rtx entry_last = get_last_insn ();
2187 rtx last;
2189 class = GET_MODE_CLASS (mode);
2191 op0 = protect_from_queue (op0, 0);
2192 op1 = protect_from_queue (op1, 0);
2194 if (flag_force_mem)
2196 op0 = force_not_mem (op0);
2197 op1 = force_not_mem (op1);
2200 /* If we are inside an appropriately-short loop and one operand is an
2201 expensive constant, force it into a register. */
2202 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2203 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2204 op0 = force_reg (mode, op0);
2206 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2207 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2208 op1 = force_reg (mode, op1);
2210 if (targ0)
2211 targ0 = protect_from_queue (targ0, 1);
2212 else
2213 targ0 = gen_reg_rtx (mode);
2214 if (targ1)
2215 targ1 = protect_from_queue (targ1, 1);
2216 else
2217 targ1 = gen_reg_rtx (mode);
2219 /* Record where to go back to if we fail. */
2220 last = get_last_insn ();
2222 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2224 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2225 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2226 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2227 rtx pat;
2228 rtx xop0 = op0, xop1 = op1;
2230 /* In case the insn wants input operands in modes different from
2231 those of the actual operands, convert the operands. It would
2232 seem that we don't need to convert CONST_INTs, but we do, so
2233 that they're properly zero-extended, sign-extended or truncated
2234 for their mode. */
2236 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2237 xop0 = convert_modes (mode0,
2238 GET_MODE (op0) != VOIDmode
2239 ? GET_MODE (op0)
2240 : mode,
2241 xop0, unsignedp);
2243 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2244 xop1 = convert_modes (mode1,
2245 GET_MODE (op1) != VOIDmode
2246 ? GET_MODE (op1)
2247 : mode,
2248 xop1, unsignedp);
2250 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2251 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2252 xop0 = copy_to_mode_reg (mode0, xop0);
2254 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2255 xop1 = copy_to_mode_reg (mode1, xop1);
2257 /* We could handle this, but we should always be called with a pseudo
2258 for our targets and all insns should take them as outputs. */
2259 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2260 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2261 abort ();
2263 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2264 if (pat)
2266 emit_insn (pat);
2267 return 1;
2269 else
2270 delete_insns_since (last);
2273 /* It can't be done in this mode. Can we do it in a wider mode? */
2275 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2277 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2278 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2280 if (binoptab->handlers[(int) wider_mode].insn_code
2281 != CODE_FOR_nothing)
2283 rtx t0 = gen_reg_rtx (wider_mode);
2284 rtx t1 = gen_reg_rtx (wider_mode);
2285 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2286 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2288 if (expand_twoval_binop (binoptab, cop0, cop1,
2289 t0, t1, unsignedp))
2291 convert_move (targ0, t0, unsignedp);
2292 convert_move (targ1, t1, unsignedp);
2293 return 1;
2295 else
2296 delete_insns_since (last);
2301 delete_insns_since (entry_last);
2302 return 0;
2305 /* Wrapper around expand_unop which takes an rtx code to specify
2306 the operation to perform, not an optab pointer. All other
2307 arguments are the same. */
2309 expand_simple_unop (mode, code, op0, target, unsignedp)
2310 enum machine_mode mode;
2311 enum rtx_code code;
2312 rtx op0;
2313 rtx target;
2314 int unsignedp;
2316 optab unop = code_to_optab[(int) code];
2317 if (unop == 0)
2318 abort ();
2320 return expand_unop (mode, unop, op0, target, unsignedp);
2323 /* Generate code to perform an operation specified by UNOPTAB
2324 on operand OP0, with result having machine-mode MODE.
2326 UNSIGNEDP is for the case where we have to widen the operands
2327 to perform the operation. It says to use zero-extension.
2329 If TARGET is nonzero, the value
2330 is generated there, if it is convenient to do so.
2331 In all cases an rtx is returned for the locus of the value;
2332 this may or may not be TARGET. */
2335 expand_unop (mode, unoptab, op0, target, unsignedp)
2336 enum machine_mode mode;
2337 optab unoptab;
2338 rtx op0;
2339 rtx target;
2340 int unsignedp;
2342 enum mode_class class;
2343 enum machine_mode wider_mode;
2344 rtx temp;
2345 rtx last = get_last_insn ();
2346 rtx pat;
2348 class = GET_MODE_CLASS (mode);
2350 op0 = protect_from_queue (op0, 0);
2352 if (flag_force_mem)
2354 op0 = force_not_mem (op0);
2357 if (target)
2358 target = protect_from_queue (target, 1);
2360 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2362 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2363 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2364 rtx xop0 = op0;
2366 if (target)
2367 temp = target;
2368 else
2369 temp = gen_reg_rtx (mode);
2371 if (GET_MODE (xop0) != VOIDmode
2372 && GET_MODE (xop0) != mode0)
2373 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2375 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2377 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2378 xop0 = copy_to_mode_reg (mode0, xop0);
2380 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2381 temp = gen_reg_rtx (mode);
2383 pat = GEN_FCN (icode) (temp, xop0);
2384 if (pat)
2386 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2387 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2389 delete_insns_since (last);
2390 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2393 emit_insn (pat);
2395 return temp;
2397 else
2398 delete_insns_since (last);
2401 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2403 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2404 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2405 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2407 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2409 rtx xop0 = op0;
2411 /* For certain operations, we need not actually extend
2412 the narrow operand, as long as we will truncate the
2413 results to the same narrowness. */
2415 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2416 (unoptab == neg_optab
2417 || unoptab == one_cmpl_optab)
2418 && class == MODE_INT);
2420 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2421 unsignedp);
2423 if (temp)
2425 if (class != MODE_INT)
2427 if (target == 0)
2428 target = gen_reg_rtx (mode);
2429 convert_move (target, temp, 0);
2430 return target;
2432 else
2433 return gen_lowpart (mode, temp);
2435 else
2436 delete_insns_since (last);
2440 /* These can be done a word at a time. */
2441 if (unoptab == one_cmpl_optab
2442 && class == MODE_INT
2443 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2444 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2446 int i;
2447 rtx insns;
2449 if (target == 0 || target == op0)
2450 target = gen_reg_rtx (mode);
2452 start_sequence ();
2454 /* Do the actual arithmetic. */
2455 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2457 rtx target_piece = operand_subword (target, i, 1, mode);
2458 rtx x = expand_unop (word_mode, unoptab,
2459 operand_subword_force (op0, i, mode),
2460 target_piece, unsignedp);
2462 if (target_piece != x)
2463 emit_move_insn (target_piece, x);
2466 insns = get_insns ();
2467 end_sequence ();
2469 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2470 gen_rtx_fmt_e (unoptab->code, mode,
2471 copy_rtx (op0)));
2472 return target;
2475 /* Open-code the complex negation operation. */
2476 else if (unoptab->code == NEG
2477 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2479 rtx target_piece;
2480 rtx x;
2481 rtx seq;
2483 /* Find the correct mode for the real and imaginary parts */
2484 enum machine_mode submode = GET_MODE_INNER (mode);
2486 if (submode == BLKmode)
2487 abort ();
2489 if (target == 0)
2490 target = gen_reg_rtx (mode);
2492 start_sequence ();
2494 target_piece = gen_imagpart (submode, target);
2495 x = expand_unop (submode, unoptab,
2496 gen_imagpart (submode, op0),
2497 target_piece, unsignedp);
2498 if (target_piece != x)
2499 emit_move_insn (target_piece, x);
2501 target_piece = gen_realpart (submode, target);
2502 x = expand_unop (submode, unoptab,
2503 gen_realpart (submode, op0),
2504 target_piece, unsignedp);
2505 if (target_piece != x)
2506 emit_move_insn (target_piece, x);
2508 seq = get_insns ();
2509 end_sequence ();
2511 emit_no_conflict_block (seq, target, op0, 0,
2512 gen_rtx_fmt_e (unoptab->code, mode,
2513 copy_rtx (op0)));
2514 return target;
2517 /* Now try a library call in this mode. */
2518 if (unoptab->handlers[(int) mode].libfunc)
2520 rtx insns;
2521 rtx value;
2523 start_sequence ();
2525 /* Pass 1 for NO_QUEUE so we don't lose any increments
2526 if the libcall is cse'd or moved. */
2527 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2528 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2529 insns = get_insns ();
2530 end_sequence ();
2532 target = gen_reg_rtx (mode);
2533 emit_libcall_block (insns, target, value,
2534 gen_rtx_fmt_e (unoptab->code, mode, op0));
2536 return target;
2539 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2540 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2542 /* It can't be done in this mode. Can we do it in a wider mode? */
2544 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2546 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2547 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2549 if ((unoptab->handlers[(int) wider_mode].insn_code
2550 != CODE_FOR_nothing)
2551 || unoptab->handlers[(int) wider_mode].libfunc)
2553 rtx xop0 = op0;
2555 /* For certain operations, we need not actually extend
2556 the narrow operand, as long as we will truncate the
2557 results to the same narrowness. */
2559 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2560 (unoptab == neg_optab
2561 || unoptab == one_cmpl_optab)
2562 && class == MODE_INT);
2564 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2565 unsignedp);
2567 if (temp)
2569 if (class != MODE_INT)
2571 if (target == 0)
2572 target = gen_reg_rtx (mode);
2573 convert_move (target, temp, 0);
2574 return target;
2576 else
2577 return gen_lowpart (mode, temp);
2579 else
2580 delete_insns_since (last);
2585 /* If there is no negate operation, try doing a subtract from zero.
2586 The US Software GOFAST library needs this. */
2587 if (unoptab->code == NEG)
2589 rtx temp;
2590 temp = expand_binop (mode,
2591 unoptab == negv_optab ? subv_optab : sub_optab,
2592 CONST0_RTX (mode), op0,
2593 target, unsignedp, OPTAB_LIB_WIDEN);
2594 if (temp)
2595 return temp;
2598 return 0;
2601 /* Emit code to compute the absolute value of OP0, with result to
2602 TARGET if convenient. (TARGET may be 0.) The return value says
2603 where the result actually is to be found.
2605 MODE is the mode of the operand; the mode of the result is
2606 different but can be deduced from MODE.
2611 expand_abs (mode, op0, target, result_unsignedp, safe)
2612 enum machine_mode mode;
2613 rtx op0;
2614 rtx target;
2615 int result_unsignedp;
2616 int safe;
2618 rtx temp, op1;
2620 if (! flag_trapv)
2621 result_unsignedp = 1;
2623 /* First try to do it with a special abs instruction. */
2624 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2625 op0, target, 0);
2626 if (temp != 0)
2627 return temp;
2629 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2630 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2632 rtx last = get_last_insn ();
2634 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2635 if (temp != 0)
2636 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2637 OPTAB_WIDEN);
2639 if (temp != 0)
2640 return temp;
2642 delete_insns_since (last);
2645 /* If this machine has expensive jumps, we can do integer absolute
2646 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2647 where W is the width of MODE. */
2649 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2651 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2652 size_int (GET_MODE_BITSIZE (mode) - 1),
2653 NULL_RTX, 0);
2655 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2656 OPTAB_LIB_WIDEN);
2657 if (temp != 0)
2658 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2659 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2661 if (temp != 0)
2662 return temp;
2665 /* If that does not win, use conditional jump and negate. */
2667 /* It is safe to use the target if it is the same
2668 as the source if this is also a pseudo register */
2669 if (op0 == target && GET_CODE (op0) == REG
2670 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2671 safe = 1;
2673 op1 = gen_label_rtx ();
2674 if (target == 0 || ! safe
2675 || GET_MODE (target) != mode
2676 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2677 || (GET_CODE (target) == REG
2678 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2679 target = gen_reg_rtx (mode);
2681 emit_move_insn (target, op0);
2682 NO_DEFER_POP;
2684 /* If this mode is an integer too wide to compare properly,
2685 compare word by word. Rely on CSE to optimize constant cases. */
2686 if (GET_MODE_CLASS (mode) == MODE_INT
2687 && ! can_compare_p (GE, mode, ccp_jump))
2688 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2689 NULL_RTX, op1);
2690 else
2691 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2692 NULL_RTX, NULL_RTX, op1);
2694 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2695 target, target, 0);
2696 if (op0 != target)
2697 emit_move_insn (target, op0);
2698 emit_label (op1);
2699 OK_DEFER_POP;
2700 return target;
2703 /* Emit code to compute the absolute value of OP0, with result to
2704 TARGET if convenient. (TARGET may be 0.) The return value says
2705 where the result actually is to be found.
2707 MODE is the mode of the operand; the mode of the result is
2708 different but can be deduced from MODE.
2710 UNSIGNEDP is relevant for complex integer modes. */
2713 expand_complex_abs (mode, op0, target, unsignedp)
2714 enum machine_mode mode;
2715 rtx op0;
2716 rtx target;
2717 int unsignedp;
2719 enum mode_class class = GET_MODE_CLASS (mode);
2720 enum machine_mode wider_mode;
2721 rtx temp;
2722 rtx entry_last = get_last_insn ();
2723 rtx last;
2724 rtx pat;
2725 optab this_abs_optab;
2727 /* Find the correct mode for the real and imaginary parts. */
2728 enum machine_mode submode = GET_MODE_INNER (mode);
2730 if (submode == BLKmode)
2731 abort ();
2733 op0 = protect_from_queue (op0, 0);
2735 if (flag_force_mem)
2737 op0 = force_not_mem (op0);
2740 last = get_last_insn ();
2742 if (target)
2743 target = protect_from_queue (target, 1);
2745 this_abs_optab = ! unsignedp && flag_trapv
2746 && (GET_MODE_CLASS(mode) == MODE_INT)
2747 ? absv_optab : abs_optab;
2749 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2751 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2752 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2753 rtx xop0 = op0;
2755 if (target)
2756 temp = target;
2757 else
2758 temp = gen_reg_rtx (submode);
2760 if (GET_MODE (xop0) != VOIDmode
2761 && GET_MODE (xop0) != mode0)
2762 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2764 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2766 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2767 xop0 = copy_to_mode_reg (mode0, xop0);
2769 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2770 temp = gen_reg_rtx (submode);
2772 pat = GEN_FCN (icode) (temp, xop0);
2773 if (pat)
2775 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2776 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2777 NULL_RTX))
2779 delete_insns_since (last);
2780 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2781 unsignedp);
2784 emit_insn (pat);
2786 return temp;
2788 else
2789 delete_insns_since (last);
2792 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2794 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2795 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2797 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2798 != CODE_FOR_nothing)
2800 rtx xop0 = op0;
2802 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2803 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2805 if (temp)
2807 if (class != MODE_COMPLEX_INT)
2809 if (target == 0)
2810 target = gen_reg_rtx (submode);
2811 convert_move (target, temp, 0);
2812 return target;
2814 else
2815 return gen_lowpart (submode, temp);
2817 else
2818 delete_insns_since (last);
2822 /* Open-code the complex absolute-value operation
2823 if we can open-code sqrt. Otherwise it's not worth while. */
2824 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2825 && ! flag_trapv)
2827 rtx real, imag, total;
2829 real = gen_realpart (submode, op0);
2830 imag = gen_imagpart (submode, op0);
2832 /* Square both parts. */
2833 real = expand_mult (submode, real, real, NULL_RTX, 0);
2834 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2836 /* Sum the parts. */
2837 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2838 0, OPTAB_LIB_WIDEN);
2840 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2841 target = expand_unop (submode, sqrt_optab, total, target, 0);
2842 if (target == 0)
2843 delete_insns_since (last);
2844 else
2845 return target;
2848 /* Now try a library call in this mode. */
2849 if (this_abs_optab->handlers[(int) mode].libfunc)
2851 rtx insns;
2852 rtx value;
2854 start_sequence ();
2856 /* Pass 1 for NO_QUEUE so we don't lose any increments
2857 if the libcall is cse'd or moved. */
2858 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2859 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2860 insns = get_insns ();
2861 end_sequence ();
2863 target = gen_reg_rtx (submode);
2864 emit_libcall_block (insns, target, value,
2865 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2867 return target;
2870 /* It can't be done in this mode. Can we do it in a wider mode? */
2872 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2873 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2875 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2876 != CODE_FOR_nothing)
2877 || this_abs_optab->handlers[(int) wider_mode].libfunc)
2879 rtx xop0 = op0;
2881 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2883 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2885 if (temp)
2887 if (class != MODE_COMPLEX_INT)
2889 if (target == 0)
2890 target = gen_reg_rtx (submode);
2891 convert_move (target, temp, 0);
2892 return target;
2894 else
2895 return gen_lowpart (submode, temp);
2897 else
2898 delete_insns_since (last);
2902 delete_insns_since (entry_last);
2903 return 0;
2906 /* Generate an instruction whose insn-code is INSN_CODE,
2907 with two operands: an output TARGET and an input OP0.
2908 TARGET *must* be nonzero, and the output is always stored there.
2909 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2910 the value that is stored into TARGET. */
2912 void
2913 emit_unop_insn (icode, target, op0, code)
2914 int icode;
2915 rtx target;
2916 rtx op0;
2917 enum rtx_code code;
2919 rtx temp;
2920 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2921 rtx pat;
2923 temp = target = protect_from_queue (target, 1);
2925 op0 = protect_from_queue (op0, 0);
2927 /* Sign and zero extension from memory is often done specially on
2928 RISC machines, so forcing into a register here can pessimize
2929 code. */
2930 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2931 op0 = force_not_mem (op0);
2933 /* Now, if insn does not accept our operands, put them into pseudos. */
2935 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2936 op0 = copy_to_mode_reg (mode0, op0);
2938 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2939 || (flag_force_mem && GET_CODE (temp) == MEM))
2940 temp = gen_reg_rtx (GET_MODE (temp));
2942 pat = GEN_FCN (icode) (temp, op0);
2944 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
2945 add_equal_note (pat, temp, code, op0, NULL_RTX);
2947 emit_insn (pat);
2949 if (temp != target)
2950 emit_move_insn (target, temp);
2953 /* Emit code to perform a series of operations on a multi-word quantity, one
2954 word at a time.
2956 Such a block is preceded by a CLOBBER of the output, consists of multiple
2957 insns, each setting one word of the output, and followed by a SET copying
2958 the output to itself.
2960 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2961 note indicating that it doesn't conflict with the (also multi-word)
2962 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2963 notes.
2965 INSNS is a block of code generated to perform the operation, not including
2966 the CLOBBER and final copy. All insns that compute intermediate values
2967 are first emitted, followed by the block as described above.
2969 TARGET, OP0, and OP1 are the output and inputs of the operations,
2970 respectively. OP1 may be zero for a unary operation.
2972 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
2973 on the last insn.
2975 If TARGET is not a register, INSNS is simply emitted with no special
2976 processing. Likewise if anything in INSNS is not an INSN or if
2977 there is a libcall block inside INSNS.
2979 The final insn emitted is returned. */
2982 emit_no_conflict_block (insns, target, op0, op1, equiv)
2983 rtx insns;
2984 rtx target;
2985 rtx op0, op1;
2986 rtx equiv;
2988 rtx prev, next, first, last, insn;
2990 if (GET_CODE (target) != REG || reload_in_progress)
2991 return emit_insn (insns);
2992 else
2993 for (insn = insns; insn; insn = NEXT_INSN (insn))
2994 if (GET_CODE (insn) != INSN
2995 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2996 return emit_insn (insns);
2998 /* First emit all insns that do not store into words of the output and remove
2999 these from the list. */
3000 for (insn = insns; insn; insn = next)
3002 rtx set = 0, note;
3003 int i;
3005 next = NEXT_INSN (insn);
3007 /* Some ports (cris) create an libcall regions at their own. We must
3008 avoid any potential nesting of LIBCALLs. */
3009 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3010 remove_note (insn, note);
3011 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3012 remove_note (insn, note);
3014 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3015 || GET_CODE (PATTERN (insn)) == CLOBBER)
3016 set = PATTERN (insn);
3017 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3019 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3020 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3022 set = XVECEXP (PATTERN (insn), 0, i);
3023 break;
3027 if (set == 0)
3028 abort ();
3030 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3032 if (PREV_INSN (insn))
3033 NEXT_INSN (PREV_INSN (insn)) = next;
3034 else
3035 insns = next;
3037 if (next)
3038 PREV_INSN (next) = PREV_INSN (insn);
3040 add_insn (insn);
3044 prev = get_last_insn ();
3046 /* Now write the CLOBBER of the output, followed by the setting of each
3047 of the words, followed by the final copy. */
3048 if (target != op0 && target != op1)
3049 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3051 for (insn = insns; insn; insn = next)
3053 next = NEXT_INSN (insn);
3054 add_insn (insn);
3056 if (op1 && GET_CODE (op1) == REG)
3057 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3058 REG_NOTES (insn));
3060 if (op0 && GET_CODE (op0) == REG)
3061 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3062 REG_NOTES (insn));
3065 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3066 != CODE_FOR_nothing)
3068 last = emit_move_insn (target, target);
3069 if (equiv)
3070 set_unique_reg_note (last, REG_EQUAL, equiv);
3072 else
3074 last = get_last_insn ();
3076 /* Remove any existing REG_EQUAL note from "last", or else it will
3077 be mistaken for a note referring to the full contents of the
3078 alleged libcall value when found together with the REG_RETVAL
3079 note added below. An existing note can come from an insn
3080 expansion at "last". */
3081 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3084 if (prev == 0)
3085 first = get_insns ();
3086 else
3087 first = NEXT_INSN (prev);
3089 /* Encapsulate the block so it gets manipulated as a unit. */
3090 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3091 REG_NOTES (first));
3092 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3094 return last;
3097 /* Emit code to make a call to a constant function or a library call.
3099 INSNS is a list containing all insns emitted in the call.
3100 These insns leave the result in RESULT. Our block is to copy RESULT
3101 to TARGET, which is logically equivalent to EQUIV.
3103 We first emit any insns that set a pseudo on the assumption that these are
3104 loading constants into registers; doing so allows them to be safely cse'ed
3105 between blocks. Then we emit all the other insns in the block, followed by
3106 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3107 note with an operand of EQUIV.
3109 Moving assignments to pseudos outside of the block is done to improve
3110 the generated code, but is not required to generate correct code,
3111 hence being unable to move an assignment is not grounds for not making
3112 a libcall block. There are two reasons why it is safe to leave these
3113 insns inside the block: First, we know that these pseudos cannot be
3114 used in generated RTL outside the block since they are created for
3115 temporary purposes within the block. Second, CSE will not record the
3116 values of anything set inside a libcall block, so we know they must
3117 be dead at the end of the block.
3119 Except for the first group of insns (the ones setting pseudos), the
3120 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3122 void
3123 emit_libcall_block (insns, target, result, equiv)
3124 rtx insns;
3125 rtx target;
3126 rtx result;
3127 rtx equiv;
3129 rtx final_dest = target;
3130 rtx prev, next, first, last, insn;
3132 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3133 into a MEM later. Protect the libcall block from this change. */
3134 if (! REG_P (target) || REG_USERVAR_P (target))
3135 target = gen_reg_rtx (GET_MODE (target));
3137 /* If we're using non-call exceptions, a libcall corresponding to an
3138 operation that may trap may also trap. */
3139 if (flag_non_call_exceptions && may_trap_p (equiv))
3141 for (insn = insns; insn; insn = NEXT_INSN (insn))
3142 if (GET_CODE (insn) == CALL_INSN)
3144 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3146 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3147 remove_note (insn, note);
3150 else
3151 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3152 reg note to indicate that this call cannot throw or execute a nonlocal
3153 goto (unless there is already a REG_EH_REGION note, in which case
3154 we update it). */
3155 for (insn = insns; insn; insn = NEXT_INSN (insn))
3156 if (GET_CODE (insn) == CALL_INSN)
3158 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3160 if (note != 0)
3161 XEXP (note, 0) = GEN_INT (-1);
3162 else
3163 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
3164 REG_NOTES (insn));
3167 /* First emit all insns that set pseudos. Remove them from the list as
3168 we go. Avoid insns that set pseudos which were referenced in previous
3169 insns. These can be generated by move_by_pieces, for example,
3170 to update an address. Similarly, avoid insns that reference things
3171 set in previous insns. */
3173 for (insn = insns; insn; insn = next)
3175 rtx set = single_set (insn);
3176 rtx note;
3178 /* Some ports (cris) create an libcall regions at their own. We must
3179 avoid any potential nesting of LIBCALLs. */
3180 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3181 remove_note (insn, note);
3182 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3183 remove_note (insn, note);
3185 next = NEXT_INSN (insn);
3187 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
3188 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3189 && (insn == insns
3190 || ((! INSN_P(insns)
3191 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3192 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3193 && ! modified_in_p (SET_SRC (set), insns)
3194 && ! modified_between_p (SET_SRC (set), insns, insn))))
3196 if (PREV_INSN (insn))
3197 NEXT_INSN (PREV_INSN (insn)) = next;
3198 else
3199 insns = next;
3201 if (next)
3202 PREV_INSN (next) = PREV_INSN (insn);
3204 add_insn (insn);
3208 prev = get_last_insn ();
3210 /* Write the remaining insns followed by the final copy. */
3212 for (insn = insns; insn; insn = next)
3214 next = NEXT_INSN (insn);
3216 add_insn (insn);
3219 last = emit_move_insn (target, result);
3220 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3221 != CODE_FOR_nothing)
3222 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3223 else
3225 /* Remove any existing REG_EQUAL note from "last", or else it will
3226 be mistaken for a note referring to the full contents of the
3227 libcall value when found together with the REG_RETVAL note added
3228 below. An existing note can come from an insn expansion at
3229 "last". */
3230 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3233 if (final_dest != target)
3234 emit_move_insn (final_dest, target);
3236 if (prev == 0)
3237 first = get_insns ();
3238 else
3239 first = NEXT_INSN (prev);
3241 /* Encapsulate the block so it gets manipulated as a unit. */
3242 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3244 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3245 REG_NOTES (first));
3246 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3247 REG_NOTES (last));
3251 /* Generate code to store zero in X. */
3253 void
3254 emit_clr_insn (x)
3255 rtx x;
3257 emit_move_insn (x, const0_rtx);
3260 /* Generate code to store 1 in X
3261 assuming it contains zero beforehand. */
3263 void
3264 emit_0_to_1_insn (x)
3265 rtx x;
3267 emit_move_insn (x, const1_rtx);
3270 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3271 PURPOSE describes how this comparison will be used. CODE is the rtx
3272 comparison code we will be using.
3274 ??? Actually, CODE is slightly weaker than that. A target is still
3275 required to implement all of the normal bcc operations, but not
3276 required to implement all (or any) of the unordered bcc operations. */
3279 can_compare_p (code, mode, purpose)
3280 enum rtx_code code;
3281 enum machine_mode mode;
3282 enum can_compare_purpose purpose;
3286 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3288 if (purpose == ccp_jump)
3289 return bcc_gen_fctn[(int) code] != NULL;
3290 else if (purpose == ccp_store_flag)
3291 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3292 else
3293 /* There's only one cmov entry point, and it's allowed to fail. */
3294 return 1;
3296 if (purpose == ccp_jump
3297 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3298 return 1;
3299 if (purpose == ccp_cmov
3300 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3301 return 1;
3302 if (purpose == ccp_store_flag
3303 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3304 return 1;
3306 mode = GET_MODE_WIDER_MODE (mode);
3308 while (mode != VOIDmode);
3310 return 0;
3313 /* This function is called when we are going to emit a compare instruction that
3314 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3316 *PMODE is the mode of the inputs (in case they are const_int).
3317 *PUNSIGNEDP nonzero says that the operands are unsigned;
3318 this matters if they need to be widened.
3320 If they have mode BLKmode, then SIZE specifies the size of both operands.
3322 This function performs all the setup necessary so that the caller only has
3323 to emit a single comparison insn. This setup can involve doing a BLKmode
3324 comparison or emitting a library call to perform the comparison if no insn
3325 is available to handle it.
3326 The values which are passed in through pointers can be modified; the caller
3327 should perform the comparison on the modified values. */
3329 static void
3330 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
3331 rtx *px, *py;
3332 enum rtx_code *pcomparison;
3333 rtx size;
3334 enum machine_mode *pmode;
3335 int *punsignedp;
3336 enum can_compare_purpose purpose;
3338 enum machine_mode mode = *pmode;
3339 rtx x = *px, y = *py;
3340 int unsignedp = *punsignedp;
3341 enum mode_class class;
3343 class = GET_MODE_CLASS (mode);
3345 /* They could both be VOIDmode if both args are immediate constants,
3346 but we should fold that at an earlier stage.
3347 With no special code here, this will call abort,
3348 reminding the programmer to implement such folding. */
3350 if (mode != BLKmode && flag_force_mem)
3352 x = force_not_mem (x);
3353 y = force_not_mem (y);
3356 /* If we are inside an appropriately-short loop and one operand is an
3357 expensive constant, force it into a register. */
3358 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3359 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3360 x = force_reg (mode, x);
3362 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3363 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3364 y = force_reg (mode, y);
3366 #ifdef HAVE_cc0
3367 /* Abort if we have a non-canonical comparison. The RTL documentation
3368 states that canonical comparisons are required only for targets which
3369 have cc0. */
3370 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3371 abort ();
3372 #endif
3374 /* Don't let both operands fail to indicate the mode. */
3375 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3376 x = force_reg (mode, x);
3378 /* Handle all BLKmode compares. */
3380 if (mode == BLKmode)
3382 rtx result;
3383 enum machine_mode result_mode;
3384 rtx opalign ATTRIBUTE_UNUSED
3385 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3387 emit_queue ();
3388 x = protect_from_queue (x, 0);
3389 y = protect_from_queue (y, 0);
3391 if (size == 0)
3392 abort ();
3393 #ifdef HAVE_cmpstrqi
3394 if (HAVE_cmpstrqi
3395 && GET_CODE (size) == CONST_INT
3396 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3398 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3399 result = gen_reg_rtx (result_mode);
3400 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3402 else
3403 #endif
3404 #ifdef HAVE_cmpstrhi
3405 if (HAVE_cmpstrhi
3406 && GET_CODE (size) == CONST_INT
3407 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3409 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3410 result = gen_reg_rtx (result_mode);
3411 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3413 else
3414 #endif
3415 #ifdef HAVE_cmpstrsi
3416 if (HAVE_cmpstrsi)
3418 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3419 result = gen_reg_rtx (result_mode);
3420 size = protect_from_queue (size, 0);
3421 emit_insn (gen_cmpstrsi (result, x, y,
3422 convert_to_mode (SImode, size, 1),
3423 opalign));
3425 else
3426 #endif
3428 #ifdef TARGET_MEM_FUNCTIONS
3429 result = emit_library_call_value (memcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3430 TYPE_MODE (integer_type_node), 3,
3431 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3432 convert_to_mode (TYPE_MODE (sizetype), size,
3433 TREE_UNSIGNED (sizetype)),
3434 TYPE_MODE (sizetype));
3435 #else
3436 result = emit_library_call_value (bcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3437 TYPE_MODE (integer_type_node), 3,
3438 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3439 convert_to_mode (TYPE_MODE (integer_type_node),
3440 size,
3441 TREE_UNSIGNED (integer_type_node)),
3442 TYPE_MODE (integer_type_node));
3443 #endif
3445 result_mode = TYPE_MODE (integer_type_node);
3447 *px = result;
3448 *py = const0_rtx;
3449 *pmode = result_mode;
3450 return;
3453 *px = x;
3454 *py = y;
3455 if (can_compare_p (*pcomparison, mode, purpose))
3456 return;
3458 /* Handle a lib call just for the mode we are using. */
3460 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3462 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3463 rtx result;
3465 /* If we want unsigned, and this mode has a distinct unsigned
3466 comparison routine, use that. */
3467 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3468 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3470 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3471 word_mode, 2, x, mode, y, mode);
3473 /* Integer comparison returns a result that must be compared against 1,
3474 so that even if we do an unsigned compare afterward,
3475 there is still a value that can represent the result "less than". */
3476 *px = result;
3477 *py = const1_rtx;
3478 *pmode = word_mode;
3479 return;
3482 if (class == MODE_FLOAT)
3483 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3485 else
3486 abort ();
3489 /* Before emitting an insn with code ICODE, make sure that X, which is going
3490 to be used for operand OPNUM of the insn, is converted from mode MODE to
3491 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3492 that it is accepted by the operand predicate. Return the new value. */
3495 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3496 int icode;
3497 rtx x;
3498 int opnum;
3499 enum machine_mode mode, wider_mode;
3500 int unsignedp;
3502 x = protect_from_queue (x, 0);
3504 if (mode != wider_mode)
3505 x = convert_modes (wider_mode, mode, x, unsignedp);
3507 if (! (*insn_data[icode].operand[opnum].predicate)
3508 (x, insn_data[icode].operand[opnum].mode))
3509 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3510 return x;
3513 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3514 we can do the comparison.
3515 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3516 be NULL_RTX which indicates that only a comparison is to be generated. */
3518 static void
3519 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3520 rtx x, y;
3521 enum machine_mode mode;
3522 enum rtx_code comparison;
3523 int unsignedp;
3524 rtx label;
3526 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3527 enum mode_class class = GET_MODE_CLASS (mode);
3528 enum machine_mode wider_mode = mode;
3530 /* Try combined insns first. */
3533 enum insn_code icode;
3534 PUT_MODE (test, wider_mode);
3536 if (label)
3538 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3540 if (icode != CODE_FOR_nothing
3541 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3543 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3544 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3545 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3546 return;
3550 /* Handle some compares against zero. */
3551 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3552 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3554 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3555 emit_insn (GEN_FCN (icode) (x));
3556 if (label)
3557 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3558 return;
3561 /* Handle compares for which there is a directly suitable insn. */
3563 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3564 if (icode != CODE_FOR_nothing)
3566 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3567 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3568 emit_insn (GEN_FCN (icode) (x, y));
3569 if (label)
3570 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3571 return;
3574 if (class != MODE_INT && class != MODE_FLOAT
3575 && class != MODE_COMPLEX_FLOAT)
3576 break;
3578 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3580 while (wider_mode != VOIDmode);
3582 abort ();
3585 /* Generate code to compare X with Y so that the condition codes are
3586 set and to jump to LABEL if the condition is true. If X is a
3587 constant and Y is not a constant, then the comparison is swapped to
3588 ensure that the comparison RTL has the canonical form.
3590 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3591 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3592 the proper branch condition code.
3594 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3596 MODE is the mode of the inputs (in case they are const_int).
3598 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3599 be passed unchanged to emit_cmp_insn, then potentially converted into an
3600 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3602 void
3603 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
3604 rtx x, y;
3605 enum rtx_code comparison;
3606 rtx size;
3607 enum machine_mode mode;
3608 int unsignedp;
3609 rtx label;
3611 rtx op0 = x, op1 = y;
3613 /* Swap operands and condition to ensure canonical RTL. */
3614 if (swap_commutative_operands_p (x, y))
3616 /* If we're not emitting a branch, this means some caller
3617 is out of sync. */
3618 if (! label)
3619 abort ();
3621 op0 = y, op1 = x;
3622 comparison = swap_condition (comparison);
3625 #ifdef HAVE_cc0
3626 /* If OP0 is still a constant, then both X and Y must be constants. Force
3627 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3628 RTL. */
3629 if (CONSTANT_P (op0))
3630 op0 = force_reg (mode, op0);
3631 #endif
3633 emit_queue ();
3634 if (unsignedp)
3635 comparison = unsigned_condition (comparison);
3637 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3638 ccp_jump);
3639 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3642 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3644 void
3645 emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
3646 rtx x, y;
3647 enum rtx_code comparison;
3648 rtx size;
3649 enum machine_mode mode;
3650 int unsignedp;
3652 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3655 /* Emit a library call comparison between floating point X and Y.
3656 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3658 static void
3659 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3660 rtx *px, *py;
3661 enum rtx_code *pcomparison;
3662 enum machine_mode *pmode;
3663 int *punsignedp;
3665 enum rtx_code comparison = *pcomparison;
3666 rtx tmp;
3667 rtx x = *px = protect_from_queue (*px, 0);
3668 rtx y = *py = protect_from_queue (*py, 0);
3669 enum machine_mode mode = GET_MODE (x);
3670 rtx libfunc = 0;
3671 rtx result;
3673 if (mode == HFmode)
3674 switch (comparison)
3676 case EQ:
3677 libfunc = eqhf2_libfunc;
3678 break;
3680 case NE:
3681 libfunc = nehf2_libfunc;
3682 break;
3684 case GT:
3685 libfunc = gthf2_libfunc;
3686 if (libfunc == NULL_RTX)
3688 tmp = x; x = y; y = tmp;
3689 *pcomparison = LT;
3690 libfunc = lthf2_libfunc;
3692 break;
3694 case GE:
3695 libfunc = gehf2_libfunc;
3696 if (libfunc == NULL_RTX)
3698 tmp = x; x = y; y = tmp;
3699 *pcomparison = LE;
3700 libfunc = lehf2_libfunc;
3702 break;
3704 case LT:
3705 libfunc = lthf2_libfunc;
3706 if (libfunc == NULL_RTX)
3708 tmp = x; x = y; y = tmp;
3709 *pcomparison = GT;
3710 libfunc = gthf2_libfunc;
3712 break;
3714 case LE:
3715 libfunc = lehf2_libfunc;
3716 if (libfunc == NULL_RTX)
3718 tmp = x; x = y; y = tmp;
3719 *pcomparison = GE;
3720 libfunc = gehf2_libfunc;
3722 break;
3724 case UNORDERED:
3725 libfunc = unordhf2_libfunc;
3726 break;
3728 default:
3729 break;
3731 else if (mode == SFmode)
3732 switch (comparison)
3734 case EQ:
3735 libfunc = eqsf2_libfunc;
3736 break;
3738 case NE:
3739 libfunc = nesf2_libfunc;
3740 break;
3742 case GT:
3743 libfunc = gtsf2_libfunc;
3744 if (libfunc == NULL_RTX)
3746 tmp = x; x = y; y = tmp;
3747 *pcomparison = LT;
3748 libfunc = ltsf2_libfunc;
3750 break;
3752 case GE:
3753 libfunc = gesf2_libfunc;
3754 if (libfunc == NULL_RTX)
3756 tmp = x; x = y; y = tmp;
3757 *pcomparison = LE;
3758 libfunc = lesf2_libfunc;
3760 break;
3762 case LT:
3763 libfunc = ltsf2_libfunc;
3764 if (libfunc == NULL_RTX)
3766 tmp = x; x = y; y = tmp;
3767 *pcomparison = GT;
3768 libfunc = gtsf2_libfunc;
3770 break;
3772 case LE:
3773 libfunc = lesf2_libfunc;
3774 if (libfunc == NULL_RTX)
3776 tmp = x; x = y; y = tmp;
3777 *pcomparison = GE;
3778 libfunc = gesf2_libfunc;
3780 break;
3782 case UNORDERED:
3783 libfunc = unordsf2_libfunc;
3784 break;
3786 default:
3787 break;
3789 else if (mode == DFmode)
3790 switch (comparison)
3792 case EQ:
3793 libfunc = eqdf2_libfunc;
3794 break;
3796 case NE:
3797 libfunc = nedf2_libfunc;
3798 break;
3800 case GT:
3801 libfunc = gtdf2_libfunc;
3802 if (libfunc == NULL_RTX)
3804 tmp = x; x = y; y = tmp;
3805 *pcomparison = LT;
3806 libfunc = ltdf2_libfunc;
3808 break;
3810 case GE:
3811 libfunc = gedf2_libfunc;
3812 if (libfunc == NULL_RTX)
3814 tmp = x; x = y; y = tmp;
3815 *pcomparison = LE;
3816 libfunc = ledf2_libfunc;
3818 break;
3820 case LT:
3821 libfunc = ltdf2_libfunc;
3822 if (libfunc == NULL_RTX)
3824 tmp = x; x = y; y = tmp;
3825 *pcomparison = GT;
3826 libfunc = gtdf2_libfunc;
3828 break;
3830 case LE:
3831 libfunc = ledf2_libfunc;
3832 if (libfunc == NULL_RTX)
3834 tmp = x; x = y; y = tmp;
3835 *pcomparison = GE;
3836 libfunc = gedf2_libfunc;
3838 break;
3840 case UNORDERED:
3841 libfunc = unorddf2_libfunc;
3842 break;
3844 default:
3845 break;
3847 else if (mode == XFmode)
3848 switch (comparison)
3850 case EQ:
3851 libfunc = eqxf2_libfunc;
3852 break;
3854 case NE:
3855 libfunc = nexf2_libfunc;
3856 break;
3858 case GT:
3859 libfunc = gtxf2_libfunc;
3860 if (libfunc == NULL_RTX)
3862 tmp = x; x = y; y = tmp;
3863 *pcomparison = LT;
3864 libfunc = ltxf2_libfunc;
3866 break;
3868 case GE:
3869 libfunc = gexf2_libfunc;
3870 if (libfunc == NULL_RTX)
3872 tmp = x; x = y; y = tmp;
3873 *pcomparison = LE;
3874 libfunc = lexf2_libfunc;
3876 break;
3878 case LT:
3879 libfunc = ltxf2_libfunc;
3880 if (libfunc == NULL_RTX)
3882 tmp = x; x = y; y = tmp;
3883 *pcomparison = GT;
3884 libfunc = gtxf2_libfunc;
3886 break;
3888 case LE:
3889 libfunc = lexf2_libfunc;
3890 if (libfunc == NULL_RTX)
3892 tmp = x; x = y; y = tmp;
3893 *pcomparison = GE;
3894 libfunc = gexf2_libfunc;
3896 break;
3898 case UNORDERED:
3899 libfunc = unordxf2_libfunc;
3900 break;
3902 default:
3903 break;
3905 else if (mode == TFmode)
3906 switch (comparison)
3908 case EQ:
3909 libfunc = eqtf2_libfunc;
3910 break;
3912 case NE:
3913 libfunc = netf2_libfunc;
3914 break;
3916 case GT:
3917 libfunc = gttf2_libfunc;
3918 if (libfunc == NULL_RTX)
3920 tmp = x; x = y; y = tmp;
3921 *pcomparison = LT;
3922 libfunc = lttf2_libfunc;
3924 break;
3926 case GE:
3927 libfunc = getf2_libfunc;
3928 if (libfunc == NULL_RTX)
3930 tmp = x; x = y; y = tmp;
3931 *pcomparison = LE;
3932 libfunc = letf2_libfunc;
3934 break;
3936 case LT:
3937 libfunc = lttf2_libfunc;
3938 if (libfunc == NULL_RTX)
3940 tmp = x; x = y; y = tmp;
3941 *pcomparison = GT;
3942 libfunc = gttf2_libfunc;
3944 break;
3946 case LE:
3947 libfunc = letf2_libfunc;
3948 if (libfunc == NULL_RTX)
3950 tmp = x; x = y; y = tmp;
3951 *pcomparison = GE;
3952 libfunc = getf2_libfunc;
3954 break;
3956 case UNORDERED:
3957 libfunc = unordtf2_libfunc;
3958 break;
3960 default:
3961 break;
3963 else
3965 enum machine_mode wider_mode;
3967 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3968 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3970 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3971 != CODE_FOR_nothing)
3972 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3974 x = protect_from_queue (x, 0);
3975 y = protect_from_queue (y, 0);
3976 *px = convert_to_mode (wider_mode, x, 0);
3977 *py = convert_to_mode (wider_mode, y, 0);
3978 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3979 return;
3982 abort ();
3985 if (libfunc == 0)
3986 abort ();
3988 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3989 word_mode, 2, x, mode, y, mode);
3990 *px = result;
3991 *py = const0_rtx;
3992 *pmode = word_mode;
3993 if (comparison == UNORDERED)
3994 *pcomparison = NE;
3995 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3996 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3997 *pcomparison = NE;
3998 #endif
3999 *punsignedp = 0;
4002 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4004 void
4005 emit_indirect_jump (loc)
4006 rtx loc;
4008 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4009 (loc, Pmode)))
4010 loc = copy_to_mode_reg (Pmode, loc);
4012 emit_jump_insn (gen_indirect_jump (loc));
4013 emit_barrier ();
4016 #ifdef HAVE_conditional_move
4018 /* Emit a conditional move instruction if the machine supports one for that
4019 condition and machine mode.
4021 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4022 the mode to use should they be constants. If it is VOIDmode, they cannot
4023 both be constants.
4025 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4026 should be stored there. MODE is the mode to use should they be constants.
4027 If it is VOIDmode, they cannot both be constants.
4029 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4030 is not supported. */
4033 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
4034 unsignedp)
4035 rtx target;
4036 enum rtx_code code;
4037 rtx op0, op1;
4038 enum machine_mode cmode;
4039 rtx op2, op3;
4040 enum machine_mode mode;
4041 int unsignedp;
4043 rtx tem, subtarget, comparison, insn;
4044 enum insn_code icode;
4045 enum rtx_code reversed;
4047 /* If one operand is constant, make it the second one. Only do this
4048 if the other operand is not constant as well. */
4050 if (swap_commutative_operands_p (op0, op1))
4052 tem = op0;
4053 op0 = op1;
4054 op1 = tem;
4055 code = swap_condition (code);
4058 /* get_condition will prefer to generate LT and GT even if the old
4059 comparison was against zero, so undo that canonicalization here since
4060 comparisons against zero are cheaper. */
4061 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4062 code = LE, op1 = const0_rtx;
4063 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4064 code = GE, op1 = const0_rtx;
4066 if (cmode == VOIDmode)
4067 cmode = GET_MODE (op0);
4069 if (swap_commutative_operands_p (op2, op3)
4070 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4071 != UNKNOWN))
4073 tem = op2;
4074 op2 = op3;
4075 op3 = tem;
4076 code = reversed;
4079 if (mode == VOIDmode)
4080 mode = GET_MODE (op2);
4082 icode = movcc_gen_code[mode];
4084 if (icode == CODE_FOR_nothing)
4085 return 0;
4087 if (flag_force_mem)
4089 op2 = force_not_mem (op2);
4090 op3 = force_not_mem (op3);
4093 if (target)
4094 target = protect_from_queue (target, 1);
4095 else
4096 target = gen_reg_rtx (mode);
4098 subtarget = target;
4100 emit_queue ();
4102 op2 = protect_from_queue (op2, 0);
4103 op3 = protect_from_queue (op3, 0);
4105 /* If the insn doesn't accept these operands, put them in pseudos. */
4107 if (! (*insn_data[icode].operand[0].predicate)
4108 (subtarget, insn_data[icode].operand[0].mode))
4109 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4111 if (! (*insn_data[icode].operand[2].predicate)
4112 (op2, insn_data[icode].operand[2].mode))
4113 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4115 if (! (*insn_data[icode].operand[3].predicate)
4116 (op3, insn_data[icode].operand[3].mode))
4117 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4119 /* Everything should now be in the suitable form, so emit the compare insn
4120 and then the conditional move. */
4122 comparison
4123 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4125 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4126 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4127 return NULL and let the caller figure out how best to deal with this
4128 situation. */
4129 if (GET_CODE (comparison) != code)
4130 return NULL_RTX;
4132 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4134 /* If that failed, then give up. */
4135 if (insn == 0)
4136 return 0;
4138 emit_insn (insn);
4140 if (subtarget != target)
4141 convert_move (target, subtarget, 0);
4143 return target;
4146 /* Return nonzero if a conditional move of mode MODE is supported.
4148 This function is for combine so it can tell whether an insn that looks
4149 like a conditional move is actually supported by the hardware. If we
4150 guess wrong we lose a bit on optimization, but that's it. */
4151 /* ??? sparc64 supports conditionally moving integers values based on fp
4152 comparisons, and vice versa. How do we handle them? */
4155 can_conditionally_move_p (mode)
4156 enum machine_mode mode;
4158 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4159 return 1;
4161 return 0;
4164 #endif /* HAVE_conditional_move */
4166 /* These functions generate an insn body and return it
4167 rather than emitting the insn.
4169 They do not protect from queued increments,
4170 because they may be used 1) in protect_from_queue itself
4171 and 2) in other passes where there is no queue. */
4173 /* Generate and return an insn body to add Y to X. */
4176 gen_add2_insn (x, y)
4177 rtx x, y;
4179 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4181 if (! ((*insn_data[icode].operand[0].predicate)
4182 (x, insn_data[icode].operand[0].mode))
4183 || ! ((*insn_data[icode].operand[1].predicate)
4184 (x, insn_data[icode].operand[1].mode))
4185 || ! ((*insn_data[icode].operand[2].predicate)
4186 (y, insn_data[icode].operand[2].mode)))
4187 abort ();
4189 return (GEN_FCN (icode) (x, x, y));
4192 /* Generate and return an insn body to add r1 and c,
4193 storing the result in r0. */
4195 gen_add3_insn (r0, r1, c)
4196 rtx r0, r1, c;
4198 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4200 if (icode == CODE_FOR_nothing
4201 || ! ((*insn_data[icode].operand[0].predicate)
4202 (r0, insn_data[icode].operand[0].mode))
4203 || ! ((*insn_data[icode].operand[1].predicate)
4204 (r1, insn_data[icode].operand[1].mode))
4205 || ! ((*insn_data[icode].operand[2].predicate)
4206 (c, insn_data[icode].operand[2].mode)))
4207 return NULL_RTX;
4209 return (GEN_FCN (icode) (r0, r1, c));
4213 have_add2_insn (x, y)
4214 rtx x, y;
4216 int icode;
4218 if (GET_MODE (x) == VOIDmode)
4219 abort ();
4221 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4223 if (icode == CODE_FOR_nothing)
4224 return 0;
4226 if (! ((*insn_data[icode].operand[0].predicate)
4227 (x, insn_data[icode].operand[0].mode))
4228 || ! ((*insn_data[icode].operand[1].predicate)
4229 (x, insn_data[icode].operand[1].mode))
4230 || ! ((*insn_data[icode].operand[2].predicate)
4231 (y, insn_data[icode].operand[2].mode)))
4232 return 0;
4234 return 1;
4237 /* Generate and return an insn body to subtract Y from X. */
4240 gen_sub2_insn (x, y)
4241 rtx x, y;
4243 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4245 if (! ((*insn_data[icode].operand[0].predicate)
4246 (x, insn_data[icode].operand[0].mode))
4247 || ! ((*insn_data[icode].operand[1].predicate)
4248 (x, insn_data[icode].operand[1].mode))
4249 || ! ((*insn_data[icode].operand[2].predicate)
4250 (y, insn_data[icode].operand[2].mode)))
4251 abort ();
4253 return (GEN_FCN (icode) (x, x, y));
4256 /* Generate and return an insn body to subtract r1 and c,
4257 storing the result in r0. */
4259 gen_sub3_insn (r0, r1, c)
4260 rtx r0, r1, c;
4262 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4264 if (icode == CODE_FOR_nothing
4265 || ! ((*insn_data[icode].operand[0].predicate)
4266 (r0, insn_data[icode].operand[0].mode))
4267 || ! ((*insn_data[icode].operand[1].predicate)
4268 (r1, insn_data[icode].operand[1].mode))
4269 || ! ((*insn_data[icode].operand[2].predicate)
4270 (c, insn_data[icode].operand[2].mode)))
4271 return NULL_RTX;
4273 return (GEN_FCN (icode) (r0, r1, c));
4277 have_sub2_insn (x, y)
4278 rtx x, y;
4280 int icode;
4282 if (GET_MODE (x) == VOIDmode)
4283 abort ();
4285 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4287 if (icode == CODE_FOR_nothing)
4288 return 0;
4290 if (! ((*insn_data[icode].operand[0].predicate)
4291 (x, insn_data[icode].operand[0].mode))
4292 || ! ((*insn_data[icode].operand[1].predicate)
4293 (x, insn_data[icode].operand[1].mode))
4294 || ! ((*insn_data[icode].operand[2].predicate)
4295 (y, insn_data[icode].operand[2].mode)))
4296 return 0;
4298 return 1;
4301 /* Generate the body of an instruction to copy Y into X.
4302 It may be a list of insns, if one insn isn't enough. */
4305 gen_move_insn (x, y)
4306 rtx x, y;
4308 enum machine_mode mode = GET_MODE (x);
4309 enum insn_code insn_code;
4310 rtx seq;
4312 if (mode == VOIDmode)
4313 mode = GET_MODE (y);
4315 insn_code = mov_optab->handlers[(int) mode].insn_code;
4317 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
4318 find a mode to do it in. If we have a movcc, use it. Otherwise,
4319 find the MODE_INT mode of the same width. */
4321 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
4323 enum machine_mode tmode = VOIDmode;
4324 rtx x1 = x, y1 = y;
4326 if (mode != CCmode
4327 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
4328 tmode = CCmode;
4329 else
4330 for (tmode = QImode; tmode != VOIDmode;
4331 tmode = GET_MODE_WIDER_MODE (tmode))
4332 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
4333 break;
4335 if (tmode == VOIDmode)
4336 abort ();
4338 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
4339 may call change_address which is not appropriate if we were
4340 called when a reload was in progress. We don't have to worry
4341 about changing the address since the size in bytes is supposed to
4342 be the same. Copy the MEM to change the mode and move any
4343 substitutions from the old MEM to the new one. */
4345 if (reload_in_progress)
4347 x = gen_lowpart_common (tmode, x1);
4348 if (x == 0 && GET_CODE (x1) == MEM)
4350 x = adjust_address_nv (x1, tmode, 0);
4351 copy_replacements (x1, x);
4354 y = gen_lowpart_common (tmode, y1);
4355 if (y == 0 && GET_CODE (y1) == MEM)
4357 y = adjust_address_nv (y1, tmode, 0);
4358 copy_replacements (y1, y);
4361 else
4363 x = gen_lowpart (tmode, x);
4364 y = gen_lowpart (tmode, y);
4367 insn_code = mov_optab->handlers[(int) tmode].insn_code;
4368 return (GEN_FCN (insn_code) (x, y));
4371 start_sequence ();
4372 emit_move_insn_1 (x, y);
4373 seq = get_insns ();
4374 end_sequence ();
4375 return seq;
4378 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4379 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4380 no such operation exists, CODE_FOR_nothing will be returned. */
4382 enum insn_code
4383 can_extend_p (to_mode, from_mode, unsignedp)
4384 enum machine_mode to_mode, from_mode;
4385 int unsignedp;
4387 #ifdef HAVE_ptr_extend
4388 if (unsignedp < 0)
4389 return CODE_FOR_ptr_extend;
4390 else
4391 #endif
4392 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
4395 /* Generate the body of an insn to extend Y (with mode MFROM)
4396 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4399 gen_extend_insn (x, y, mto, mfrom, unsignedp)
4400 rtx x, y;
4401 enum machine_mode mto, mfrom;
4402 int unsignedp;
4404 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
4407 /* can_fix_p and can_float_p say whether the target machine
4408 can directly convert a given fixed point type to
4409 a given floating point type, or vice versa.
4410 The returned value is the CODE_FOR_... value to use,
4411 or CODE_FOR_nothing if these modes cannot be directly converted.
4413 *TRUNCP_PTR is set to 1 if it is necessary to output
4414 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4416 static enum insn_code
4417 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4418 enum machine_mode fltmode, fixmode;
4419 int unsignedp;
4420 int *truncp_ptr;
4422 *truncp_ptr = 0;
4423 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4424 != CODE_FOR_nothing)
4425 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
4427 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4429 *truncp_ptr = 1;
4430 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
4432 return CODE_FOR_nothing;
4435 static enum insn_code
4436 can_float_p (fltmode, fixmode, unsignedp)
4437 enum machine_mode fixmode, fltmode;
4438 int unsignedp;
4440 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
4443 /* Generate code to convert FROM to floating point
4444 and store in TO. FROM must be fixed point and not VOIDmode.
4445 UNSIGNEDP nonzero means regard FROM as unsigned.
4446 Normally this is done by correcting the final value
4447 if it is negative. */
4449 void
4450 expand_float (to, from, unsignedp)
4451 rtx to, from;
4452 int unsignedp;
4454 enum insn_code icode;
4455 rtx target = to;
4456 enum machine_mode fmode, imode;
4458 /* Crash now, because we won't be able to decide which mode to use. */
4459 if (GET_MODE (from) == VOIDmode)
4460 abort ();
4462 /* Look for an insn to do the conversion. Do it in the specified
4463 modes if possible; otherwise convert either input, output or both to
4464 wider mode. If the integer mode is wider than the mode of FROM,
4465 we can do the conversion signed even if the input is unsigned. */
4467 for (imode = GET_MODE (from); imode != VOIDmode;
4468 imode = GET_MODE_WIDER_MODE (imode))
4469 for (fmode = GET_MODE (to); fmode != VOIDmode;
4470 fmode = GET_MODE_WIDER_MODE (fmode))
4472 int doing_unsigned = unsignedp;
4474 if (fmode != GET_MODE (to)
4475 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4476 continue;
4478 icode = can_float_p (fmode, imode, unsignedp);
4479 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4480 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4482 if (icode != CODE_FOR_nothing)
4484 to = protect_from_queue (to, 1);
4485 from = protect_from_queue (from, 0);
4487 if (imode != GET_MODE (from))
4488 from = convert_to_mode (imode, from, unsignedp);
4490 if (fmode != GET_MODE (to))
4491 target = gen_reg_rtx (fmode);
4493 emit_unop_insn (icode, target, from,
4494 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4496 if (target != to)
4497 convert_move (to, target, 0);
4498 return;
4502 /* Unsigned integer, and no way to convert directly.
4503 Convert as signed, then conditionally adjust the result. */
4504 if (unsignedp)
4506 rtx label = gen_label_rtx ();
4507 rtx temp;
4508 REAL_VALUE_TYPE offset;
4510 emit_queue ();
4512 to = protect_from_queue (to, 1);
4513 from = protect_from_queue (from, 0);
4515 if (flag_force_mem)
4516 from = force_not_mem (from);
4518 /* Look for a usable floating mode FMODE wider than the source and at
4519 least as wide as the target. Using FMODE will avoid rounding woes
4520 with unsigned values greater than the signed maximum value. */
4522 for (fmode = GET_MODE (to); fmode != VOIDmode;
4523 fmode = GET_MODE_WIDER_MODE (fmode))
4524 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4525 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4526 break;
4528 if (fmode == VOIDmode)
4530 /* There is no such mode. Pretend the target is wide enough. */
4531 fmode = GET_MODE (to);
4533 /* Avoid double-rounding when TO is narrower than FROM. */
4534 if ((significand_size (fmode) + 1)
4535 < GET_MODE_BITSIZE (GET_MODE (from)))
4537 rtx temp1;
4538 rtx neglabel = gen_label_rtx ();
4540 /* Don't use TARGET if it isn't a register, is a hard register,
4541 or is the wrong mode. */
4542 if (GET_CODE (target) != REG
4543 || REGNO (target) < FIRST_PSEUDO_REGISTER
4544 || GET_MODE (target) != fmode)
4545 target = gen_reg_rtx (fmode);
4547 imode = GET_MODE (from);
4548 do_pending_stack_adjust ();
4550 /* Test whether the sign bit is set. */
4551 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4552 0, neglabel);
4554 /* The sign bit is not set. Convert as signed. */
4555 expand_float (target, from, 0);
4556 emit_jump_insn (gen_jump (label));
4557 emit_barrier ();
4559 /* The sign bit is set.
4560 Convert to a usable (positive signed) value by shifting right
4561 one bit, while remembering if a nonzero bit was shifted
4562 out; i.e., compute (from & 1) | (from >> 1). */
4564 emit_label (neglabel);
4565 temp = expand_binop (imode, and_optab, from, const1_rtx,
4566 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4567 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4568 NULL_RTX, 1);
4569 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4570 OPTAB_LIB_WIDEN);
4571 expand_float (target, temp, 0);
4573 /* Multiply by 2 to undo the shift above. */
4574 temp = expand_binop (fmode, add_optab, target, target,
4575 target, 0, OPTAB_LIB_WIDEN);
4576 if (temp != target)
4577 emit_move_insn (target, temp);
4579 do_pending_stack_adjust ();
4580 emit_label (label);
4581 goto done;
4585 /* If we are about to do some arithmetic to correct for an
4586 unsigned operand, do it in a pseudo-register. */
4588 if (GET_MODE (to) != fmode
4589 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4590 target = gen_reg_rtx (fmode);
4592 /* Convert as signed integer to floating. */
4593 expand_float (target, from, 0);
4595 /* If FROM is negative (and therefore TO is negative),
4596 correct its value by 2**bitwidth. */
4598 do_pending_stack_adjust ();
4599 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4600 0, label);
4603 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4604 temp = expand_binop (fmode, add_optab, target,
4605 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4606 target, 0, OPTAB_LIB_WIDEN);
4607 if (temp != target)
4608 emit_move_insn (target, temp);
4610 do_pending_stack_adjust ();
4611 emit_label (label);
4612 goto done;
4615 /* No hardware instruction available; call a library routine to convert from
4616 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4618 rtx libfcn;
4619 rtx insns;
4620 rtx value;
4622 to = protect_from_queue (to, 1);
4623 from = protect_from_queue (from, 0);
4625 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4626 from = convert_to_mode (SImode, from, unsignedp);
4628 if (flag_force_mem)
4629 from = force_not_mem (from);
4631 if (GET_MODE (to) == SFmode)
4633 if (GET_MODE (from) == SImode)
4634 libfcn = floatsisf_libfunc;
4635 else if (GET_MODE (from) == DImode)
4636 libfcn = floatdisf_libfunc;
4637 else if (GET_MODE (from) == TImode)
4638 libfcn = floattisf_libfunc;
4639 else
4640 abort ();
4642 else if (GET_MODE (to) == DFmode)
4644 if (GET_MODE (from) == SImode)
4645 libfcn = floatsidf_libfunc;
4646 else if (GET_MODE (from) == DImode)
4647 libfcn = floatdidf_libfunc;
4648 else if (GET_MODE (from) == TImode)
4649 libfcn = floattidf_libfunc;
4650 else
4651 abort ();
4653 else if (GET_MODE (to) == XFmode)
4655 if (GET_MODE (from) == SImode)
4656 libfcn = floatsixf_libfunc;
4657 else if (GET_MODE (from) == DImode)
4658 libfcn = floatdixf_libfunc;
4659 else if (GET_MODE (from) == TImode)
4660 libfcn = floattixf_libfunc;
4661 else
4662 abort ();
4664 else if (GET_MODE (to) == TFmode)
4666 if (GET_MODE (from) == SImode)
4667 libfcn = floatsitf_libfunc;
4668 else if (GET_MODE (from) == DImode)
4669 libfcn = floatditf_libfunc;
4670 else if (GET_MODE (from) == TImode)
4671 libfcn = floattitf_libfunc;
4672 else
4673 abort ();
4675 else
4676 abort ();
4678 start_sequence ();
4680 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4681 GET_MODE (to), 1, from,
4682 GET_MODE (from));
4683 insns = get_insns ();
4684 end_sequence ();
4686 emit_libcall_block (insns, target, value,
4687 gen_rtx_FLOAT (GET_MODE (to), from));
4690 done:
4692 /* Copy result to requested destination
4693 if we have been computing in a temp location. */
4695 if (target != to)
4697 if (GET_MODE (target) == GET_MODE (to))
4698 emit_move_insn (to, target);
4699 else
4700 convert_move (to, target, 0);
4704 /* expand_fix: generate code to convert FROM to fixed point
4705 and store in TO. FROM must be floating point. */
4707 static rtx
4708 ftruncify (x)
4709 rtx x;
4711 rtx temp = gen_reg_rtx (GET_MODE (x));
4712 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4715 void
4716 expand_fix (to, from, unsignedp)
4717 rtx to, from;
4718 int unsignedp;
4720 enum insn_code icode;
4721 rtx target = to;
4722 enum machine_mode fmode, imode;
4723 int must_trunc = 0;
4724 rtx libfcn = 0;
4726 /* We first try to find a pair of modes, one real and one integer, at
4727 least as wide as FROM and TO, respectively, in which we can open-code
4728 this conversion. If the integer mode is wider than the mode of TO,
4729 we can do the conversion either signed or unsigned. */
4731 for (fmode = GET_MODE (from); fmode != VOIDmode;
4732 fmode = GET_MODE_WIDER_MODE (fmode))
4733 for (imode = GET_MODE (to); imode != VOIDmode;
4734 imode = GET_MODE_WIDER_MODE (imode))
4736 int doing_unsigned = unsignedp;
4738 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4739 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4740 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4742 if (icode != CODE_FOR_nothing)
4744 to = protect_from_queue (to, 1);
4745 from = protect_from_queue (from, 0);
4747 if (fmode != GET_MODE (from))
4748 from = convert_to_mode (fmode, from, 0);
4750 if (must_trunc)
4751 from = ftruncify (from);
4753 if (imode != GET_MODE (to))
4754 target = gen_reg_rtx (imode);
4756 emit_unop_insn (icode, target, from,
4757 doing_unsigned ? UNSIGNED_FIX : FIX);
4758 if (target != to)
4759 convert_move (to, target, unsignedp);
4760 return;
4764 /* For an unsigned conversion, there is one more way to do it.
4765 If we have a signed conversion, we generate code that compares
4766 the real value to the largest representable positive number. If if
4767 is smaller, the conversion is done normally. Otherwise, subtract
4768 one plus the highest signed number, convert, and add it back.
4770 We only need to check all real modes, since we know we didn't find
4771 anything with a wider integer mode. */
4773 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4774 for (fmode = GET_MODE (from); fmode != VOIDmode;
4775 fmode = GET_MODE_WIDER_MODE (fmode))
4776 /* Make sure we won't lose significant bits doing this. */
4777 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4778 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4779 &must_trunc))
4781 int bitsize;
4782 REAL_VALUE_TYPE offset;
4783 rtx limit, lab1, lab2, insn;
4785 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4786 real_2expN (&offset, bitsize - 1);
4787 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4788 lab1 = gen_label_rtx ();
4789 lab2 = gen_label_rtx ();
4791 emit_queue ();
4792 to = protect_from_queue (to, 1);
4793 from = protect_from_queue (from, 0);
4795 if (flag_force_mem)
4796 from = force_not_mem (from);
4798 if (fmode != GET_MODE (from))
4799 from = convert_to_mode (fmode, from, 0);
4801 /* See if we need to do the subtraction. */
4802 do_pending_stack_adjust ();
4803 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4804 0, lab1);
4806 /* If not, do the signed "fix" and branch around fixup code. */
4807 expand_fix (to, from, 0);
4808 emit_jump_insn (gen_jump (lab2));
4809 emit_barrier ();
4811 /* Otherwise, subtract 2**(N-1), convert to signed number,
4812 then add 2**(N-1). Do the addition using XOR since this
4813 will often generate better code. */
4814 emit_label (lab1);
4815 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4816 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4817 expand_fix (to, target, 0);
4818 target = expand_binop (GET_MODE (to), xor_optab, to,
4819 gen_int_mode
4820 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4821 GET_MODE (to)),
4822 to, 1, OPTAB_LIB_WIDEN);
4824 if (target != to)
4825 emit_move_insn (to, target);
4827 emit_label (lab2);
4829 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4830 != CODE_FOR_nothing)
4832 /* Make a place for a REG_NOTE and add it. */
4833 insn = emit_move_insn (to, to);
4834 set_unique_reg_note (insn,
4835 REG_EQUAL,
4836 gen_rtx_fmt_e (UNSIGNED_FIX,
4837 GET_MODE (to),
4838 copy_rtx (from)));
4841 return;
4844 /* We can't do it with an insn, so use a library call. But first ensure
4845 that the mode of TO is at least as wide as SImode, since those are the
4846 only library calls we know about. */
4848 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4850 target = gen_reg_rtx (SImode);
4852 expand_fix (target, from, unsignedp);
4854 else if (GET_MODE (from) == SFmode)
4856 if (GET_MODE (to) == SImode)
4857 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4858 else if (GET_MODE (to) == DImode)
4859 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4860 else if (GET_MODE (to) == TImode)
4861 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4862 else
4863 abort ();
4865 else if (GET_MODE (from) == DFmode)
4867 if (GET_MODE (to) == SImode)
4868 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4869 else if (GET_MODE (to) == DImode)
4870 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4871 else if (GET_MODE (to) == TImode)
4872 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4873 else
4874 abort ();
4876 else if (GET_MODE (from) == XFmode)
4878 if (GET_MODE (to) == SImode)
4879 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4880 else if (GET_MODE (to) == DImode)
4881 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4882 else if (GET_MODE (to) == TImode)
4883 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4884 else
4885 abort ();
4887 else if (GET_MODE (from) == TFmode)
4889 if (GET_MODE (to) == SImode)
4890 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4891 else if (GET_MODE (to) == DImode)
4892 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4893 else if (GET_MODE (to) == TImode)
4894 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4895 else
4896 abort ();
4898 else
4899 abort ();
4901 if (libfcn)
4903 rtx insns;
4904 rtx value;
4906 to = protect_from_queue (to, 1);
4907 from = protect_from_queue (from, 0);
4909 if (flag_force_mem)
4910 from = force_not_mem (from);
4912 start_sequence ();
4914 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4915 GET_MODE (to), 1, from,
4916 GET_MODE (from));
4917 insns = get_insns ();
4918 end_sequence ();
4920 emit_libcall_block (insns, target, value,
4921 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4922 GET_MODE (to), from));
4925 if (target != to)
4927 if (GET_MODE (to) == GET_MODE (target))
4928 emit_move_insn (to, target);
4929 else
4930 convert_move (to, target, 0);
4934 /* Report whether we have an instruction to perform the operation
4935 specified by CODE on operands of mode MODE. */
4937 have_insn_for (code, mode)
4938 enum rtx_code code;
4939 enum machine_mode mode;
4941 return (code_to_optab[(int) code] != 0
4942 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4943 != CODE_FOR_nothing));
4946 /* Create a blank optab. */
4947 static optab
4948 new_optab ()
4950 int i;
4951 optab op = (optab) ggc_alloc (sizeof (struct optab));
4952 for (i = 0; i < NUM_MACHINE_MODES; i++)
4954 op->handlers[i].insn_code = CODE_FOR_nothing;
4955 op->handlers[i].libfunc = 0;
4958 return op;
4961 /* Same, but fill in its code as CODE, and write it into the
4962 code_to_optab table. */
4963 static inline optab
4964 init_optab (code)
4965 enum rtx_code code;
4967 optab op = new_optab ();
4968 op->code = code;
4969 code_to_optab[(int) code] = op;
4970 return op;
4973 /* Same, but fill in its code as CODE, and do _not_ write it into
4974 the code_to_optab table. */
4975 static inline optab
4976 init_optabv (code)
4977 enum rtx_code code;
4979 optab op = new_optab ();
4980 op->code = code;
4981 return op;
4984 /* Initialize the libfunc fields of an entire group of entries in some
4985 optab. Each entry is set equal to a string consisting of a leading
4986 pair of underscores followed by a generic operation name followed by
4987 a mode name (downshifted to lower case) followed by a single character
4988 representing the number of operands for the given operation (which is
4989 usually one of the characters '2', '3', or '4').
4991 OPTABLE is the table in which libfunc fields are to be initialized.
4992 FIRST_MODE is the first machine mode index in the given optab to
4993 initialize.
4994 LAST_MODE is the last machine mode index in the given optab to
4995 initialize.
4996 OPNAME is the generic (string) name of the operation.
4997 SUFFIX is the character which specifies the number of operands for
4998 the given generic operation.
5001 static void
5002 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
5003 optab optable;
5004 int first_mode;
5005 int last_mode;
5006 const char *opname;
5007 int suffix;
5009 int mode;
5010 unsigned opname_len = strlen (opname);
5012 for (mode = first_mode; (int) mode <= (int) last_mode;
5013 mode = (enum machine_mode) ((int) mode + 1))
5015 const char *mname = GET_MODE_NAME (mode);
5016 unsigned mname_len = strlen (mname);
5017 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5018 char *p;
5019 const char *q;
5021 p = libfunc_name;
5022 *p++ = '_';
5023 *p++ = '_';
5024 for (q = opname; *q; )
5025 *p++ = *q++;
5026 for (q = mname; *q; q++)
5027 *p++ = TOLOWER (*q);
5028 *p++ = suffix;
5029 *p = '\0';
5031 optable->handlers[(int) mode].libfunc
5032 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
5033 p - libfunc_name));
5037 /* Initialize the libfunc fields of an entire group of entries in some
5038 optab which correspond to all integer mode operations. The parameters
5039 have the same meaning as similarly named ones for the `init_libfuncs'
5040 routine. (See above). */
5042 static void
5043 init_integral_libfuncs (optable, opname, suffix)
5044 optab optable;
5045 const char *opname;
5046 int suffix;
5048 init_libfuncs (optable, SImode, TImode, opname, suffix);
5051 /* Initialize the libfunc fields of an entire group of entries in some
5052 optab which correspond to all real mode operations. The parameters
5053 have the same meaning as similarly named ones for the `init_libfuncs'
5054 routine. (See above). */
5056 static void
5057 init_floating_libfuncs (optable, opname, suffix)
5058 optab optable;
5059 const char *opname;
5060 int suffix;
5062 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
5066 init_one_libfunc (name)
5067 const char *name;
5069 /* Create a FUNCTION_DECL that can be passed to
5070 targetm.encode_section_info. */
5071 /* ??? We don't have any type information except for this is
5072 a function. Pretend this is "int foo()". */
5073 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5074 build_function_type (integer_type_node, NULL_TREE));
5075 DECL_ARTIFICIAL (decl) = 1;
5076 DECL_EXTERNAL (decl) = 1;
5077 TREE_PUBLIC (decl) = 1;
5079 /* Return the symbol_ref from the mem rtx. */
5080 return XEXP (DECL_RTL (decl), 0);
5083 /* Call this once to initialize the contents of the optabs
5084 appropriately for the current target machine. */
5086 void
5087 init_optabs ()
5089 unsigned int i, j, k;
5091 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5093 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
5094 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
5095 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
5096 fixtab[i][j][k] = CODE_FOR_nothing;
5098 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
5099 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
5100 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
5101 fixtrunctab[i][j][k] = CODE_FOR_nothing;
5103 for (i = 0; i < ARRAY_SIZE (floattab); i++)
5104 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
5105 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
5106 floattab[i][j][k] = CODE_FOR_nothing;
5108 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
5109 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
5110 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
5111 extendtab[i][j][k] = CODE_FOR_nothing;
5113 for (i = 0; i < NUM_RTX_CODE; i++)
5114 setcc_gen_code[i] = CODE_FOR_nothing;
5116 #ifdef HAVE_conditional_move
5117 for (i = 0; i < NUM_MACHINE_MODES; i++)
5118 movcc_gen_code[i] = CODE_FOR_nothing;
5119 #endif
5121 add_optab = init_optab (PLUS);
5122 addv_optab = init_optabv (PLUS);
5123 sub_optab = init_optab (MINUS);
5124 subv_optab = init_optabv (MINUS);
5125 smul_optab = init_optab (MULT);
5126 smulv_optab = init_optabv (MULT);
5127 smul_highpart_optab = init_optab (UNKNOWN);
5128 umul_highpart_optab = init_optab (UNKNOWN);
5129 smul_widen_optab = init_optab (UNKNOWN);
5130 umul_widen_optab = init_optab (UNKNOWN);
5131 sdiv_optab = init_optab (DIV);
5132 sdivv_optab = init_optabv (DIV);
5133 sdivmod_optab = init_optab (UNKNOWN);
5134 udiv_optab = init_optab (UDIV);
5135 udivmod_optab = init_optab (UNKNOWN);
5136 smod_optab = init_optab (MOD);
5137 umod_optab = init_optab (UMOD);
5138 ftrunc_optab = init_optab (UNKNOWN);
5139 and_optab = init_optab (AND);
5140 ior_optab = init_optab (IOR);
5141 xor_optab = init_optab (XOR);
5142 ashl_optab = init_optab (ASHIFT);
5143 ashr_optab = init_optab (ASHIFTRT);
5144 lshr_optab = init_optab (LSHIFTRT);
5145 rotl_optab = init_optab (ROTATE);
5146 rotr_optab = init_optab (ROTATERT);
5147 smin_optab = init_optab (SMIN);
5148 smax_optab = init_optab (SMAX);
5149 umin_optab = init_optab (UMIN);
5150 umax_optab = init_optab (UMAX);
5152 /* These three have codes assigned exclusively for the sake of
5153 have_insn_for. */
5154 mov_optab = init_optab (SET);
5155 movstrict_optab = init_optab (STRICT_LOW_PART);
5156 cmp_optab = init_optab (COMPARE);
5158 ucmp_optab = init_optab (UNKNOWN);
5159 tst_optab = init_optab (UNKNOWN);
5160 neg_optab = init_optab (NEG);
5161 negv_optab = init_optabv (NEG);
5162 abs_optab = init_optab (ABS);
5163 absv_optab = init_optabv (ABS);
5164 one_cmpl_optab = init_optab (NOT);
5165 ffs_optab = init_optab (FFS);
5166 sqrt_optab = init_optab (SQRT);
5167 sin_optab = init_optab (UNKNOWN);
5168 cos_optab = init_optab (UNKNOWN);
5169 exp_optab = init_optab (UNKNOWN);
5170 log_optab = init_optab (UNKNOWN);
5171 strlen_optab = init_optab (UNKNOWN);
5172 cbranch_optab = init_optab (UNKNOWN);
5173 cmov_optab = init_optab (UNKNOWN);
5174 cstore_optab = init_optab (UNKNOWN);
5175 push_optab = init_optab (UNKNOWN);
5177 for (i = 0; i < NUM_MACHINE_MODES; i++)
5179 movstr_optab[i] = CODE_FOR_nothing;
5180 clrstr_optab[i] = CODE_FOR_nothing;
5182 #ifdef HAVE_SECONDARY_RELOADS
5183 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5184 #endif
5187 /* Fill in the optabs with the insns we support. */
5188 init_all_optabs ();
5190 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
5191 /* This flag says the same insns that convert to a signed fixnum
5192 also convert validly to an unsigned one. */
5193 for (i = 0; i < NUM_MACHINE_MODES; i++)
5194 for (j = 0; j < NUM_MACHINE_MODES; j++)
5195 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
5196 #endif
5198 /* Initialize the optabs with the names of the library functions. */
5199 init_integral_libfuncs (add_optab, "add", '3');
5200 init_floating_libfuncs (add_optab, "add", '3');
5201 init_integral_libfuncs (addv_optab, "addv", '3');
5202 init_floating_libfuncs (addv_optab, "add", '3');
5203 init_integral_libfuncs (sub_optab, "sub", '3');
5204 init_floating_libfuncs (sub_optab, "sub", '3');
5205 init_integral_libfuncs (subv_optab, "subv", '3');
5206 init_floating_libfuncs (subv_optab, "sub", '3');
5207 init_integral_libfuncs (smul_optab, "mul", '3');
5208 init_floating_libfuncs (smul_optab, "mul", '3');
5209 init_integral_libfuncs (smulv_optab, "mulv", '3');
5210 init_floating_libfuncs (smulv_optab, "mul", '3');
5211 init_integral_libfuncs (sdiv_optab, "div", '3');
5212 init_floating_libfuncs (sdiv_optab, "div", '3');
5213 init_integral_libfuncs (sdivv_optab, "divv", '3');
5214 init_integral_libfuncs (udiv_optab, "udiv", '3');
5215 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5216 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5217 init_integral_libfuncs (smod_optab, "mod", '3');
5218 init_integral_libfuncs (umod_optab, "umod", '3');
5219 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5220 init_integral_libfuncs (and_optab, "and", '3');
5221 init_integral_libfuncs (ior_optab, "ior", '3');
5222 init_integral_libfuncs (xor_optab, "xor", '3');
5223 init_integral_libfuncs (ashl_optab, "ashl", '3');
5224 init_integral_libfuncs (ashr_optab, "ashr", '3');
5225 init_integral_libfuncs (lshr_optab, "lshr", '3');
5226 init_integral_libfuncs (smin_optab, "min", '3');
5227 init_floating_libfuncs (smin_optab, "min", '3');
5228 init_integral_libfuncs (smax_optab, "max", '3');
5229 init_floating_libfuncs (smax_optab, "max", '3');
5230 init_integral_libfuncs (umin_optab, "umin", '3');
5231 init_integral_libfuncs (umax_optab, "umax", '3');
5232 init_integral_libfuncs (neg_optab, "neg", '2');
5233 init_floating_libfuncs (neg_optab, "neg", '2');
5234 init_integral_libfuncs (negv_optab, "negv", '2');
5235 init_floating_libfuncs (negv_optab, "neg", '2');
5236 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5237 init_integral_libfuncs (ffs_optab, "ffs", '2');
5239 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5240 init_integral_libfuncs (cmp_optab, "cmp", '2');
5241 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5242 init_floating_libfuncs (cmp_optab, "cmp", '2');
5244 #ifdef MULSI3_LIBCALL
5245 smul_optab->handlers[(int) SImode].libfunc
5246 = init_one_libfunc (MULSI3_LIBCALL);
5247 #endif
5248 #ifdef MULDI3_LIBCALL
5249 smul_optab->handlers[(int) DImode].libfunc
5250 = init_one_libfunc (MULDI3_LIBCALL);
5251 #endif
5253 #ifdef DIVSI3_LIBCALL
5254 sdiv_optab->handlers[(int) SImode].libfunc
5255 = init_one_libfunc (DIVSI3_LIBCALL);
5256 #endif
5257 #ifdef DIVDI3_LIBCALL
5258 sdiv_optab->handlers[(int) DImode].libfunc
5259 = init_one_libfunc (DIVDI3_LIBCALL);
5260 #endif
5262 #ifdef UDIVSI3_LIBCALL
5263 udiv_optab->handlers[(int) SImode].libfunc
5264 = init_one_libfunc (UDIVSI3_LIBCALL);
5265 #endif
5266 #ifdef UDIVDI3_LIBCALL
5267 udiv_optab->handlers[(int) DImode].libfunc
5268 = init_one_libfunc (UDIVDI3_LIBCALL);
5269 #endif
5271 #ifdef MODSI3_LIBCALL
5272 smod_optab->handlers[(int) SImode].libfunc
5273 = init_one_libfunc (MODSI3_LIBCALL);
5274 #endif
5275 #ifdef MODDI3_LIBCALL
5276 smod_optab->handlers[(int) DImode].libfunc
5277 = init_one_libfunc (MODDI3_LIBCALL);
5278 #endif
5280 #ifdef UMODSI3_LIBCALL
5281 umod_optab->handlers[(int) SImode].libfunc
5282 = init_one_libfunc (UMODSI3_LIBCALL);
5283 #endif
5284 #ifdef UMODDI3_LIBCALL
5285 umod_optab->handlers[(int) DImode].libfunc
5286 = init_one_libfunc (UMODDI3_LIBCALL);
5287 #endif
5289 /* Use cabs for DC complex abs, since systems generally have cabs.
5290 Don't define any libcall for SCmode, so that cabs will be used. */
5291 abs_optab->handlers[(int) DCmode].libfunc
5292 = init_one_libfunc ("cabs");
5294 /* The ffs function operates on `int'. */
5295 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5296 = init_one_libfunc ("ffs");
5298 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5299 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5300 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5301 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5302 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5304 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5305 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5306 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5307 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5308 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5310 abort_libfunc = init_one_libfunc ("abort");
5311 memcpy_libfunc = init_one_libfunc ("memcpy");
5312 memmove_libfunc = init_one_libfunc ("memmove");
5313 bcopy_libfunc = init_one_libfunc ("bcopy");
5314 memcmp_libfunc = init_one_libfunc ("memcmp");
5315 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5316 memset_libfunc = init_one_libfunc ("memset");
5317 bzero_libfunc = init_one_libfunc ("bzero");
5319 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5320 ? "_Unwind_SjLj_Resume"
5321 : "_Unwind_Resume");
5322 #ifndef DONT_USE_BUILTIN_SETJMP
5323 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5324 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5325 #else
5326 setjmp_libfunc = init_one_libfunc ("setjmp");
5327 longjmp_libfunc = init_one_libfunc ("longjmp");
5328 #endif
5329 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5330 unwind_sjlj_unregister_libfunc
5331 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5333 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5334 nehf2_libfunc = init_one_libfunc ("__nehf2");
5335 gthf2_libfunc = init_one_libfunc ("__gthf2");
5336 gehf2_libfunc = init_one_libfunc ("__gehf2");
5337 lthf2_libfunc = init_one_libfunc ("__lthf2");
5338 lehf2_libfunc = init_one_libfunc ("__lehf2");
5339 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
5341 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5342 nesf2_libfunc = init_one_libfunc ("__nesf2");
5343 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5344 gesf2_libfunc = init_one_libfunc ("__gesf2");
5345 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5346 lesf2_libfunc = init_one_libfunc ("__lesf2");
5347 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
5349 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5350 nedf2_libfunc = init_one_libfunc ("__nedf2");
5351 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5352 gedf2_libfunc = init_one_libfunc ("__gedf2");
5353 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5354 ledf2_libfunc = init_one_libfunc ("__ledf2");
5355 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
5357 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5358 nexf2_libfunc = init_one_libfunc ("__nexf2");
5359 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5360 gexf2_libfunc = init_one_libfunc ("__gexf2");
5361 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5362 lexf2_libfunc = init_one_libfunc ("__lexf2");
5363 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
5365 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5366 netf2_libfunc = init_one_libfunc ("__netf2");
5367 gttf2_libfunc = init_one_libfunc ("__gttf2");
5368 getf2_libfunc = init_one_libfunc ("__getf2");
5369 lttf2_libfunc = init_one_libfunc ("__lttf2");
5370 letf2_libfunc = init_one_libfunc ("__letf2");
5371 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
5373 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5374 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5375 floattisf_libfunc = init_one_libfunc ("__floattisf");
5377 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5378 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5379 floattidf_libfunc = init_one_libfunc ("__floattidf");
5381 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5382 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5383 floattixf_libfunc = init_one_libfunc ("__floattixf");
5385 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5386 floatditf_libfunc = init_one_libfunc ("__floatditf");
5387 floattitf_libfunc = init_one_libfunc ("__floattitf");
5389 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5390 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5391 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5393 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5394 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5395 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5397 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5398 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5399 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5401 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5402 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5403 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5405 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5406 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5407 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5409 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5410 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5411 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5413 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5414 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5415 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5417 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5418 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5419 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
5421 /* For function entry/exit instrumentation. */
5422 profile_function_entry_libfunc
5423 = init_one_libfunc ("__cyg_profile_func_enter");
5424 profile_function_exit_libfunc
5425 = init_one_libfunc ("__cyg_profile_func_exit");
5427 #ifdef HAVE_conditional_trap
5428 init_traps ();
5429 #endif
5431 #ifdef INIT_TARGET_OPTABS
5432 /* Allow the target to add more libcalls or rename some, etc. */
5433 INIT_TARGET_OPTABS;
5434 #endif
5437 static GTY(()) rtx trap_rtx;
5439 #ifdef HAVE_conditional_trap
5440 /* The insn generating function can not take an rtx_code argument.
5441 TRAP_RTX is used as an rtx argument. Its code is replaced with
5442 the code to be used in the trap insn and all other fields are
5443 ignored. */
5445 static void
5446 init_traps ()
5448 if (HAVE_conditional_trap)
5450 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5453 #endif
5455 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5456 CODE. Return 0 on failure. */
5459 gen_cond_trap (code, op1, op2, tcode)
5460 enum rtx_code code ATTRIBUTE_UNUSED;
5461 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
5463 enum machine_mode mode = GET_MODE (op1);
5465 if (mode == VOIDmode)
5466 return 0;
5468 #ifdef HAVE_conditional_trap
5469 if (HAVE_conditional_trap
5470 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
5472 rtx insn;
5473 start_sequence ();
5474 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
5475 PUT_CODE (trap_rtx, code);
5476 insn = gen_conditional_trap (trap_rtx, tcode);
5477 if (insn)
5479 emit_insn (insn);
5480 insn = get_insns ();
5482 end_sequence ();
5483 return insn;
5485 #endif
5487 return 0;
5490 #include "gt-optabs.h"