PR 10066
[official-gcc.git] / gcc / alias.c
blobba8fceec298402e8a93ebbd86be7330dacc1ff33
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "expr.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "output.h"
37 #include "toplev.h"
38 #include "cselib.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
41 #include "langhooks.h"
42 #include "timevar.h"
43 #include "target.h"
44 #include "cgraph.h"
46 /* The alias sets assigned to MEMs assist the back-end in determining
47 which MEMs can alias which other MEMs. In general, two MEMs in
48 different alias sets cannot alias each other, with one important
49 exception. Consider something like:
51 struct S {int i; double d; };
53 a store to an `S' can alias something of either type `int' or type
54 `double'. (However, a store to an `int' cannot alias a `double'
55 and vice versa.) We indicate this via a tree structure that looks
56 like:
57 struct S
58 / \
59 / \
60 |/_ _\|
61 int double
63 (The arrows are directed and point downwards.)
64 In this situation we say the alias set for `struct S' is the
65 `superset' and that those for `int' and `double' are `subsets'.
67 To see whether two alias sets can point to the same memory, we must
68 see if either alias set is a subset of the other. We need not trace
69 past immediate descendants, however, since we propagate all
70 grandchildren up one level.
72 Alias set zero is implicitly a superset of all other alias sets.
73 However, this is no actual entry for alias set zero. It is an
74 error to attempt to explicitly construct a subset of zero. */
76 typedef struct alias_set_entry
78 /* The alias set number, as stored in MEM_ALIAS_SET. */
79 HOST_WIDE_INT alias_set;
81 /* The children of the alias set. These are not just the immediate
82 children, but, in fact, all descendants. So, if we have:
84 struct T { struct S s; float f; }
86 continuing our example above, the children here will be all of
87 `int', `double', `float', and `struct S'. */
88 splay_tree children;
90 /* Nonzero if would have a child of zero: this effectively makes this
91 alias set the same as alias set zero. */
92 int has_zero_child;
93 } *alias_set_entry;
95 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
96 static rtx find_symbolic_term PARAMS ((rtx));
97 rtx get_addr PARAMS ((rtx));
98 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
99 HOST_WIDE_INT));
100 static void record_set PARAMS ((rtx, rtx, void *));
101 static rtx find_base_term PARAMS ((rtx));
102 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
103 enum machine_mode));
104 static rtx find_base_value PARAMS ((rtx));
105 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
106 static int insert_subset_children PARAMS ((splay_tree_node, void*));
107 static tree find_base_decl PARAMS ((tree));
108 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
109 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
110 int (*) (rtx, int)));
111 static int aliases_everything_p PARAMS ((rtx));
112 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
113 static tree decl_for_component_ref PARAMS ((tree));
114 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
115 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
116 static int write_dependence_p PARAMS ((rtx, rtx, int));
118 static int nonlocal_mentioned_p_1 PARAMS ((rtx *, void *));
119 static int nonlocal_mentioned_p PARAMS ((rtx));
120 static int nonlocal_referenced_p_1 PARAMS ((rtx *, void *));
121 static int nonlocal_referenced_p PARAMS ((rtx));
122 static int nonlocal_set_p_1 PARAMS ((rtx *, void *));
123 static int nonlocal_set_p PARAMS ((rtx));
124 static void memory_modified_1 PARAMS ((rtx, rtx, void *));
126 /* Set up all info needed to perform alias analysis on memory references. */
128 /* Returns the size in bytes of the mode of X. */
129 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
131 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
132 different alias sets. We ignore alias sets in functions making use
133 of variable arguments because the va_arg macros on some systems are
134 not legal ANSI C. */
135 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
136 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
138 /* Cap the number of passes we make over the insns propagating alias
139 information through set chains. 10 is a completely arbitrary choice. */
140 #define MAX_ALIAS_LOOP_PASSES 10
142 /* reg_base_value[N] gives an address to which register N is related.
143 If all sets after the first add or subtract to the current value
144 or otherwise modify it so it does not point to a different top level
145 object, reg_base_value[N] is equal to the address part of the source
146 of the first set.
148 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
149 expressions represent certain special values: function arguments and
150 the stack, frame, and argument pointers.
152 The contents of an ADDRESS is not normally used, the mode of the
153 ADDRESS determines whether the ADDRESS is a function argument or some
154 other special value. Pointer equality, not rtx_equal_p, determines whether
155 two ADDRESS expressions refer to the same base address.
157 The only use of the contents of an ADDRESS is for determining if the
158 current function performs nonlocal memory memory references for the
159 purposes of marking the function as a constant function. */
161 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
162 static rtx *new_reg_base_value;
163 static unsigned int reg_base_value_size; /* size of reg_base_value array */
165 /* Static hunks of RTL used by the aliasing code; these are initialized
166 once per function to avoid unnecessary RTL allocations. */
167 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
169 #define REG_BASE_VALUE(X) \
170 (REGNO (X) < reg_base_value_size \
171 ? reg_base_value[REGNO (X)] : 0)
173 /* Vector of known invariant relationships between registers. Set in
174 loop unrolling. Indexed by register number, if nonzero the value
175 is an expression describing this register in terms of another.
177 The length of this array is REG_BASE_VALUE_SIZE.
179 Because this array contains only pseudo registers it has no effect
180 after reload. */
181 static rtx *alias_invariant;
183 /* Vector indexed by N giving the initial (unchanging) value known for
184 pseudo-register N. This array is initialized in
185 init_alias_analysis, and does not change until end_alias_analysis
186 is called. */
187 rtx *reg_known_value;
189 /* Indicates number of valid entries in reg_known_value. */
190 static unsigned int reg_known_value_size;
192 /* Vector recording for each reg_known_value whether it is due to a
193 REG_EQUIV note. Future passes (viz., reload) may replace the
194 pseudo with the equivalent expression and so we account for the
195 dependences that would be introduced if that happens.
197 The REG_EQUIV notes created in assign_parms may mention the arg
198 pointer, and there are explicit insns in the RTL that modify the
199 arg pointer. Thus we must ensure that such insns don't get
200 scheduled across each other because that would invalidate the
201 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
202 wrong, but solving the problem in the scheduler will likely give
203 better code, so we do it here. */
204 char *reg_known_equiv_p;
206 /* True when scanning insns from the start of the rtl to the
207 NOTE_INSN_FUNCTION_BEG note. */
208 static bool copying_arguments;
210 /* The splay-tree used to store the various alias set entries. */
211 static splay_tree alias_sets;
213 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
214 such an entry, or NULL otherwise. */
216 static alias_set_entry
217 get_alias_set_entry (alias_set)
218 HOST_WIDE_INT alias_set;
220 splay_tree_node sn
221 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
223 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
226 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
227 the two MEMs cannot alias each other. */
229 static int
230 mems_in_disjoint_alias_sets_p (mem1, mem2)
231 rtx mem1;
232 rtx mem2;
234 #ifdef ENABLE_CHECKING
235 /* Perform a basic sanity check. Namely, that there are no alias sets
236 if we're not using strict aliasing. This helps to catch bugs
237 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
238 where a MEM is allocated in some way other than by the use of
239 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
240 use alias sets to indicate that spilled registers cannot alias each
241 other, we might need to remove this check. */
242 if (! flag_strict_aliasing
243 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
244 abort ();
245 #endif
247 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
250 /* Insert the NODE into the splay tree given by DATA. Used by
251 record_alias_subset via splay_tree_foreach. */
253 static int
254 insert_subset_children (node, data)
255 splay_tree_node node;
256 void *data;
258 splay_tree_insert ((splay_tree) data, node->key, node->value);
260 return 0;
263 /* Return 1 if the two specified alias sets may conflict. */
266 alias_sets_conflict_p (set1, set2)
267 HOST_WIDE_INT set1, set2;
269 alias_set_entry ase;
271 /* If have no alias set information for one of the operands, we have
272 to assume it can alias anything. */
273 if (set1 == 0 || set2 == 0
274 /* If the two alias sets are the same, they may alias. */
275 || set1 == set2)
276 return 1;
278 /* See if the first alias set is a subset of the second. */
279 ase = get_alias_set_entry (set1);
280 if (ase != 0
281 && (ase->has_zero_child
282 || splay_tree_lookup (ase->children,
283 (splay_tree_key) set2)))
284 return 1;
286 /* Now do the same, but with the alias sets reversed. */
287 ase = get_alias_set_entry (set2);
288 if (ase != 0
289 && (ase->has_zero_child
290 || splay_tree_lookup (ase->children,
291 (splay_tree_key) set1)))
292 return 1;
294 /* The two alias sets are distinct and neither one is the
295 child of the other. Therefore, they cannot alias. */
296 return 0;
299 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
300 has any readonly fields. If any of the fields have types that
301 contain readonly fields, return true as well. */
304 readonly_fields_p (type)
305 tree type;
307 tree field;
309 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
310 && TREE_CODE (type) != QUAL_UNION_TYPE)
311 return 0;
313 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
314 if (TREE_CODE (field) == FIELD_DECL
315 && (TREE_READONLY (field)
316 || readonly_fields_p (TREE_TYPE (field))))
317 return 1;
319 return 0;
322 /* Return 1 if any MEM object of type T1 will always conflict (using the
323 dependency routines in this file) with any MEM object of type T2.
324 This is used when allocating temporary storage. If T1 and/or T2 are
325 NULL_TREE, it means we know nothing about the storage. */
328 objects_must_conflict_p (t1, t2)
329 tree t1, t2;
331 /* If neither has a type specified, we don't know if they'll conflict
332 because we may be using them to store objects of various types, for
333 example the argument and local variables areas of inlined functions. */
334 if (t1 == 0 && t2 == 0)
335 return 0;
337 /* If one or the other has readonly fields or is readonly,
338 then they may not conflict. */
339 if ((t1 != 0 && readonly_fields_p (t1))
340 || (t2 != 0 && readonly_fields_p (t2))
341 || (t1 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t1))
342 || (t2 != 0 && lang_hooks.honor_readonly && TYPE_READONLY (t2)))
343 return 0;
345 /* If they are the same type, they must conflict. */
346 if (t1 == t2
347 /* Likewise if both are volatile. */
348 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
349 return 1;
351 /* If one is aggregate and the other is scalar then they may not
352 conflict. */
353 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
354 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
355 return 0;
357 /* Otherwise they conflict only if the alias sets conflict. */
358 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
359 t2 ? get_alias_set (t2) : 0);
362 /* T is an expression with pointer type. Find the DECL on which this
363 expression is based. (For example, in `a[i]' this would be `a'.)
364 If there is no such DECL, or a unique decl cannot be determined,
365 NULL_TREE is returned. */
367 static tree
368 find_base_decl (t)
369 tree t;
371 tree d0, d1, d2;
373 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
374 return 0;
376 /* If this is a declaration, return it. */
377 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
378 return t;
380 /* Handle general expressions. It would be nice to deal with
381 COMPONENT_REFs here. If we could tell that `a' and `b' were the
382 same, then `a->f' and `b->f' are also the same. */
383 switch (TREE_CODE_CLASS (TREE_CODE (t)))
385 case '1':
386 return find_base_decl (TREE_OPERAND (t, 0));
388 case '2':
389 /* Return 0 if found in neither or both are the same. */
390 d0 = find_base_decl (TREE_OPERAND (t, 0));
391 d1 = find_base_decl (TREE_OPERAND (t, 1));
392 if (d0 == d1)
393 return d0;
394 else if (d0 == 0)
395 return d1;
396 else if (d1 == 0)
397 return d0;
398 else
399 return 0;
401 case '3':
402 d0 = find_base_decl (TREE_OPERAND (t, 0));
403 d1 = find_base_decl (TREE_OPERAND (t, 1));
404 d2 = find_base_decl (TREE_OPERAND (t, 2));
406 /* Set any nonzero values from the last, then from the first. */
407 if (d1 == 0) d1 = d2;
408 if (d0 == 0) d0 = d1;
409 if (d1 == 0) d1 = d0;
410 if (d2 == 0) d2 = d1;
412 /* At this point all are nonzero or all are zero. If all three are the
413 same, return it. Otherwise, return zero. */
414 return (d0 == d1 && d1 == d2) ? d0 : 0;
416 default:
417 return 0;
421 /* Return 1 if all the nested component references handled by
422 get_inner_reference in T are such that we can address the object in T. */
425 can_address_p (t)
426 tree t;
428 /* If we're at the end, it is vacuously addressable. */
429 if (! handled_component_p (t))
430 return 1;
432 /* Bitfields are never addressable. */
433 else if (TREE_CODE (t) == BIT_FIELD_REF)
434 return 0;
436 /* Fields are addressable unless they are marked as nonaddressable or
437 the containing type has alias set 0. */
438 else if (TREE_CODE (t) == COMPONENT_REF
439 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
440 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
441 && can_address_p (TREE_OPERAND (t, 0)))
442 return 1;
444 /* Likewise for arrays. */
445 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
446 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
447 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
448 && can_address_p (TREE_OPERAND (t, 0)))
449 return 1;
451 return 0;
454 /* Return the alias set for T, which may be either a type or an
455 expression. Call language-specific routine for help, if needed. */
457 HOST_WIDE_INT
458 get_alias_set (t)
459 tree t;
461 HOST_WIDE_INT set;
463 /* If we're not doing any alias analysis, just assume everything
464 aliases everything else. Also return 0 if this or its type is
465 an error. */
466 if (! flag_strict_aliasing || t == error_mark_node
467 || (! TYPE_P (t)
468 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
469 return 0;
471 /* We can be passed either an expression or a type. This and the
472 language-specific routine may make mutually-recursive calls to each other
473 to figure out what to do. At each juncture, we see if this is a tree
474 that the language may need to handle specially. First handle things that
475 aren't types. */
476 if (! TYPE_P (t))
478 tree inner = t;
479 tree placeholder_ptr = 0;
481 /* Remove any nops, then give the language a chance to do
482 something with this tree before we look at it. */
483 STRIP_NOPS (t);
484 set = (*lang_hooks.get_alias_set) (t);
485 if (set != -1)
486 return set;
488 /* First see if the actual object referenced is an INDIRECT_REF from a
489 restrict-qualified pointer or a "void *". Replace
490 PLACEHOLDER_EXPRs. */
491 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
492 || handled_component_p (inner))
494 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
495 inner = find_placeholder (inner, &placeholder_ptr);
496 else
497 inner = TREE_OPERAND (inner, 0);
499 STRIP_NOPS (inner);
502 /* Check for accesses through restrict-qualified pointers. */
503 if (TREE_CODE (inner) == INDIRECT_REF)
505 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
507 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
509 /* If we haven't computed the actual alias set, do it now. */
510 if (DECL_POINTER_ALIAS_SET (decl) == -2)
512 /* No two restricted pointers can point at the same thing.
513 However, a restricted pointer can point at the same thing
514 as an unrestricted pointer, if that unrestricted pointer
515 is based on the restricted pointer. So, we make the
516 alias set for the restricted pointer a subset of the
517 alias set for the type pointed to by the type of the
518 decl. */
519 HOST_WIDE_INT pointed_to_alias_set
520 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
522 if (pointed_to_alias_set == 0)
523 /* It's not legal to make a subset of alias set zero. */
525 else
527 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
528 record_alias_subset (pointed_to_alias_set,
529 DECL_POINTER_ALIAS_SET (decl));
533 /* We use the alias set indicated in the declaration. */
534 return DECL_POINTER_ALIAS_SET (decl);
537 /* If we have an INDIRECT_REF via a void pointer, we don't
538 know anything about what that might alias. */
539 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
540 return 0;
543 /* Otherwise, pick up the outermost object that we could have a pointer
544 to, processing conversion and PLACEHOLDER_EXPR as above. */
545 placeholder_ptr = 0;
546 while (TREE_CODE (t) == PLACEHOLDER_EXPR
547 || (handled_component_p (t) && ! can_address_p (t)))
549 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
550 t = find_placeholder (t, &placeholder_ptr);
551 else
552 t = TREE_OPERAND (t, 0);
554 STRIP_NOPS (t);
557 /* If we've already determined the alias set for a decl, just return
558 it. This is necessary for C++ anonymous unions, whose component
559 variables don't look like union members (boo!). */
560 if (TREE_CODE (t) == VAR_DECL
561 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
562 return MEM_ALIAS_SET (DECL_RTL (t));
564 /* Now all we care about is the type. */
565 t = TREE_TYPE (t);
568 /* Variant qualifiers don't affect the alias set, so get the main
569 variant. If this is a type with a known alias set, return it. */
570 t = TYPE_MAIN_VARIANT (t);
571 if (TYPE_ALIAS_SET_KNOWN_P (t))
572 return TYPE_ALIAS_SET (t);
574 /* See if the language has special handling for this type. */
575 set = (*lang_hooks.get_alias_set) (t);
576 if (set != -1)
577 return set;
579 /* There are no objects of FUNCTION_TYPE, so there's no point in
580 using up an alias set for them. (There are, of course, pointers
581 and references to functions, but that's different.) */
582 else if (TREE_CODE (t) == FUNCTION_TYPE)
583 set = 0;
585 /* Unless the language specifies otherwise, let vector types alias
586 their components. This avoids some nasty type punning issues in
587 normal usage. And indeed lets vectors be treated more like an
588 array slice. */
589 else if (TREE_CODE (t) == VECTOR_TYPE)
590 set = get_alias_set (TREE_TYPE (t));
592 else
593 /* Otherwise make a new alias set for this type. */
594 set = new_alias_set ();
596 TYPE_ALIAS_SET (t) = set;
598 /* If this is an aggregate type, we must record any component aliasing
599 information. */
600 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
601 record_component_aliases (t);
603 return set;
606 /* Return a brand-new alias set. */
608 HOST_WIDE_INT
609 new_alias_set ()
611 static HOST_WIDE_INT last_alias_set;
613 if (flag_strict_aliasing)
614 return ++last_alias_set;
615 else
616 return 0;
619 /* Indicate that things in SUBSET can alias things in SUPERSET, but
620 not vice versa. For example, in C, a store to an `int' can alias a
621 structure containing an `int', but not vice versa. Here, the
622 structure would be the SUPERSET and `int' the SUBSET. This
623 function should be called only once per SUPERSET/SUBSET pair.
625 It is illegal for SUPERSET to be zero; everything is implicitly a
626 subset of alias set zero. */
628 void
629 record_alias_subset (superset, subset)
630 HOST_WIDE_INT superset;
631 HOST_WIDE_INT subset;
633 alias_set_entry superset_entry;
634 alias_set_entry subset_entry;
636 /* It is possible in complex type situations for both sets to be the same,
637 in which case we can ignore this operation. */
638 if (superset == subset)
639 return;
641 if (superset == 0)
642 abort ();
644 superset_entry = get_alias_set_entry (superset);
645 if (superset_entry == 0)
647 /* Create an entry for the SUPERSET, so that we have a place to
648 attach the SUBSET. */
649 superset_entry
650 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
651 superset_entry->alias_set = superset;
652 superset_entry->children
653 = splay_tree_new (splay_tree_compare_ints, 0, 0);
654 superset_entry->has_zero_child = 0;
655 splay_tree_insert (alias_sets, (splay_tree_key) superset,
656 (splay_tree_value) superset_entry);
659 if (subset == 0)
660 superset_entry->has_zero_child = 1;
661 else
663 subset_entry = get_alias_set_entry (subset);
664 /* If there is an entry for the subset, enter all of its children
665 (if they are not already present) as children of the SUPERSET. */
666 if (subset_entry)
668 if (subset_entry->has_zero_child)
669 superset_entry->has_zero_child = 1;
671 splay_tree_foreach (subset_entry->children, insert_subset_children,
672 superset_entry->children);
675 /* Enter the SUBSET itself as a child of the SUPERSET. */
676 splay_tree_insert (superset_entry->children,
677 (splay_tree_key) subset, 0);
681 /* Record that component types of TYPE, if any, are part of that type for
682 aliasing purposes. For record types, we only record component types
683 for fields that are marked addressable. For array types, we always
684 record the component types, so the front end should not call this
685 function if the individual component aren't addressable. */
687 void
688 record_component_aliases (type)
689 tree type;
691 HOST_WIDE_INT superset = get_alias_set (type);
692 tree field;
694 if (superset == 0)
695 return;
697 switch (TREE_CODE (type))
699 case ARRAY_TYPE:
700 if (! TYPE_NONALIASED_COMPONENT (type))
701 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
702 break;
704 case RECORD_TYPE:
705 case UNION_TYPE:
706 case QUAL_UNION_TYPE:
707 /* Recursively record aliases for the base classes, if there are any */
708 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
710 int i;
711 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
713 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
714 record_alias_subset (superset,
715 get_alias_set (BINFO_TYPE (binfo)));
718 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
719 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
720 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
721 break;
723 case COMPLEX_TYPE:
724 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
725 break;
727 default:
728 break;
732 /* Allocate an alias set for use in storing and reading from the varargs
733 spill area. */
735 HOST_WIDE_INT
736 get_varargs_alias_set ()
738 static HOST_WIDE_INT set = -1;
740 if (set == -1)
741 set = new_alias_set ();
743 return set;
746 /* Likewise, but used for the fixed portions of the frame, e.g., register
747 save areas. */
749 HOST_WIDE_INT
750 get_frame_alias_set ()
752 static HOST_WIDE_INT set = -1;
754 if (set == -1)
755 set = new_alias_set ();
757 return set;
760 /* Inside SRC, the source of a SET, find a base address. */
762 static rtx
763 find_base_value (src)
764 rtx src;
766 unsigned int regno;
768 switch (GET_CODE (src))
770 case SYMBOL_REF:
771 case LABEL_REF:
772 return src;
774 case REG:
775 regno = REGNO (src);
776 /* At the start of a function, argument registers have known base
777 values which may be lost later. Returning an ADDRESS
778 expression here allows optimization based on argument values
779 even when the argument registers are used for other purposes. */
780 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
781 return new_reg_base_value[regno];
783 /* If a pseudo has a known base value, return it. Do not do this
784 for non-fixed hard regs since it can result in a circular
785 dependency chain for registers which have values at function entry.
787 The test above is not sufficient because the scheduler may move
788 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
789 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
790 && regno < reg_base_value_size)
792 /* If we're inside init_alias_analysis, use new_reg_base_value
793 to reduce the number of relaxation iterations. */
794 if (new_reg_base_value && new_reg_base_value[regno]
795 && REG_N_SETS (regno) == 1)
796 return new_reg_base_value[regno];
798 if (reg_base_value[regno])
799 return reg_base_value[regno];
802 return src;
804 case MEM:
805 /* Check for an argument passed in memory. Only record in the
806 copying-arguments block; it is too hard to track changes
807 otherwise. */
808 if (copying_arguments
809 && (XEXP (src, 0) == arg_pointer_rtx
810 || (GET_CODE (XEXP (src, 0)) == PLUS
811 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
812 return gen_rtx_ADDRESS (VOIDmode, src);
813 return 0;
815 case CONST:
816 src = XEXP (src, 0);
817 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
818 break;
820 /* ... fall through ... */
822 case PLUS:
823 case MINUS:
825 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
827 /* If either operand is a REG that is a known pointer, then it
828 is the base. */
829 if (REG_P (src_0) && REG_POINTER (src_0))
830 return find_base_value (src_0);
831 if (REG_P (src_1) && REG_POINTER (src_1))
832 return find_base_value (src_1);
834 /* If either operand is a REG, then see if we already have
835 a known value for it. */
836 if (REG_P (src_0))
838 temp = find_base_value (src_0);
839 if (temp != 0)
840 src_0 = temp;
843 if (REG_P (src_1))
845 temp = find_base_value (src_1);
846 if (temp!= 0)
847 src_1 = temp;
850 /* If either base is named object or a special address
851 (like an argument or stack reference), then use it for the
852 base term. */
853 if (src_0 != 0
854 && (GET_CODE (src_0) == SYMBOL_REF
855 || GET_CODE (src_0) == LABEL_REF
856 || (GET_CODE (src_0) == ADDRESS
857 && GET_MODE (src_0) != VOIDmode)))
858 return src_0;
860 if (src_1 != 0
861 && (GET_CODE (src_1) == SYMBOL_REF
862 || GET_CODE (src_1) == LABEL_REF
863 || (GET_CODE (src_1) == ADDRESS
864 && GET_MODE (src_1) != VOIDmode)))
865 return src_1;
867 /* Guess which operand is the base address:
868 If either operand is a symbol, then it is the base. If
869 either operand is a CONST_INT, then the other is the base. */
870 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
871 return find_base_value (src_0);
872 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
873 return find_base_value (src_1);
875 return 0;
878 case LO_SUM:
879 /* The standard form is (lo_sum reg sym) so look only at the
880 second operand. */
881 return find_base_value (XEXP (src, 1));
883 case AND:
884 /* If the second operand is constant set the base
885 address to the first operand. */
886 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
887 return find_base_value (XEXP (src, 0));
888 return 0;
890 case TRUNCATE:
891 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
892 break;
893 /* Fall through. */
894 case HIGH:
895 case PRE_INC:
896 case PRE_DEC:
897 case POST_INC:
898 case POST_DEC:
899 case PRE_MODIFY:
900 case POST_MODIFY:
901 return find_base_value (XEXP (src, 0));
903 case ZERO_EXTEND:
904 case SIGN_EXTEND: /* used for NT/Alpha pointers */
906 rtx temp = find_base_value (XEXP (src, 0));
908 #ifdef POINTERS_EXTEND_UNSIGNED
909 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
910 temp = convert_memory_address (Pmode, temp);
911 #endif
913 return temp;
916 default:
917 break;
920 return 0;
923 /* Called from init_alias_analysis indirectly through note_stores. */
925 /* While scanning insns to find base values, reg_seen[N] is nonzero if
926 register N has been set in this function. */
927 static char *reg_seen;
929 /* Addresses which are known not to alias anything else are identified
930 by a unique integer. */
931 static int unique_id;
933 static void
934 record_set (dest, set, data)
935 rtx dest, set;
936 void *data ATTRIBUTE_UNUSED;
938 unsigned regno;
939 rtx src;
940 int n;
942 if (GET_CODE (dest) != REG)
943 return;
945 regno = REGNO (dest);
947 if (regno >= reg_base_value_size)
948 abort ();
950 /* If this spans multiple hard registers, then we must indicate that every
951 register has an unusable value. */
952 if (regno < FIRST_PSEUDO_REGISTER)
953 n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
954 else
955 n = 1;
956 if (n != 1)
958 while (--n >= 0)
960 reg_seen[regno + n] = 1;
961 new_reg_base_value[regno + n] = 0;
963 return;
966 if (set)
968 /* A CLOBBER wipes out any old value but does not prevent a previously
969 unset register from acquiring a base address (i.e. reg_seen is not
970 set). */
971 if (GET_CODE (set) == CLOBBER)
973 new_reg_base_value[regno] = 0;
974 return;
976 src = SET_SRC (set);
978 else
980 if (reg_seen[regno])
982 new_reg_base_value[regno] = 0;
983 return;
985 reg_seen[regno] = 1;
986 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
987 GEN_INT (unique_id++));
988 return;
991 /* This is not the first set. If the new value is not related to the
992 old value, forget the base value. Note that the following code is
993 not detected:
994 extern int x, y; int *p = &x; p += (&y-&x);
995 ANSI C does not allow computing the difference of addresses
996 of distinct top level objects. */
997 if (new_reg_base_value[regno])
998 switch (GET_CODE (src))
1000 case LO_SUM:
1001 case MINUS:
1002 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1003 new_reg_base_value[regno] = 0;
1004 break;
1005 case PLUS:
1006 /* If the value we add in the PLUS is also a valid base value,
1007 this might be the actual base value, and the original value
1008 an index. */
1010 rtx other = NULL_RTX;
1012 if (XEXP (src, 0) == dest)
1013 other = XEXP (src, 1);
1014 else if (XEXP (src, 1) == dest)
1015 other = XEXP (src, 0);
1017 if (! other || find_base_value (other))
1018 new_reg_base_value[regno] = 0;
1019 break;
1021 case AND:
1022 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1023 new_reg_base_value[regno] = 0;
1024 break;
1025 default:
1026 new_reg_base_value[regno] = 0;
1027 break;
1029 /* If this is the first set of a register, record the value. */
1030 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1031 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1032 new_reg_base_value[regno] = find_base_value (src);
1034 reg_seen[regno] = 1;
1037 /* Called from loop optimization when a new pseudo-register is
1038 created. It indicates that REGNO is being set to VAL. f INVARIANT
1039 is true then this value also describes an invariant relationship
1040 which can be used to deduce that two registers with unknown values
1041 are different. */
1043 void
1044 record_base_value (regno, val, invariant)
1045 unsigned int regno;
1046 rtx val;
1047 int invariant;
1049 if (regno >= reg_base_value_size)
1050 return;
1052 if (invariant && alias_invariant)
1053 alias_invariant[regno] = val;
1055 if (GET_CODE (val) == REG)
1057 if (REGNO (val) < reg_base_value_size)
1058 reg_base_value[regno] = reg_base_value[REGNO (val)];
1060 return;
1063 reg_base_value[regno] = find_base_value (val);
1066 /* Clear alias info for a register. This is used if an RTL transformation
1067 changes the value of a register. This is used in flow by AUTO_INC_DEC
1068 optimizations. We don't need to clear reg_base_value, since flow only
1069 changes the offset. */
1071 void
1072 clear_reg_alias_info (reg)
1073 rtx reg;
1075 unsigned int regno = REGNO (reg);
1077 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1078 reg_known_value[regno] = reg;
1081 /* Returns a canonical version of X, from the point of view alias
1082 analysis. (For example, if X is a MEM whose address is a register,
1083 and the register has a known value (say a SYMBOL_REF), then a MEM
1084 whose address is the SYMBOL_REF is returned.) */
1087 canon_rtx (x)
1088 rtx x;
1090 /* Recursively look for equivalences. */
1091 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1092 && REGNO (x) < reg_known_value_size)
1093 return reg_known_value[REGNO (x)] == x
1094 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1095 else if (GET_CODE (x) == PLUS)
1097 rtx x0 = canon_rtx (XEXP (x, 0));
1098 rtx x1 = canon_rtx (XEXP (x, 1));
1100 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1102 if (GET_CODE (x0) == CONST_INT)
1103 return plus_constant (x1, INTVAL (x0));
1104 else if (GET_CODE (x1) == CONST_INT)
1105 return plus_constant (x0, INTVAL (x1));
1106 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1110 /* This gives us much better alias analysis when called from
1111 the loop optimizer. Note we want to leave the original
1112 MEM alone, but need to return the canonicalized MEM with
1113 all the flags with their original values. */
1114 else if (GET_CODE (x) == MEM)
1115 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1117 return x;
1120 /* Return 1 if X and Y are identical-looking rtx's.
1121 Expect that X and Y has been already canonicalized.
1123 We use the data in reg_known_value above to see if two registers with
1124 different numbers are, in fact, equivalent. */
1126 static int
1127 rtx_equal_for_memref_p (x, y)
1128 rtx x, y;
1130 int i;
1131 int j;
1132 enum rtx_code code;
1133 const char *fmt;
1135 if (x == 0 && y == 0)
1136 return 1;
1137 if (x == 0 || y == 0)
1138 return 0;
1140 if (x == y)
1141 return 1;
1143 code = GET_CODE (x);
1144 /* Rtx's of different codes cannot be equal. */
1145 if (code != GET_CODE (y))
1146 return 0;
1148 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1149 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1151 if (GET_MODE (x) != GET_MODE (y))
1152 return 0;
1154 /* Some RTL can be compared without a recursive examination. */
1155 switch (code)
1157 case VALUE:
1158 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1160 case REG:
1161 return REGNO (x) == REGNO (y);
1163 case LABEL_REF:
1164 return XEXP (x, 0) == XEXP (y, 0);
1166 case SYMBOL_REF:
1167 return XSTR (x, 0) == XSTR (y, 0);
1169 case CONST_INT:
1170 case CONST_DOUBLE:
1171 /* There's no need to compare the contents of CONST_DOUBLEs or
1172 CONST_INTs because pointer equality is a good enough
1173 comparison for these nodes. */
1174 return 0;
1176 case ADDRESSOF:
1177 return (XINT (x, 1) == XINT (y, 1)
1178 && rtx_equal_for_memref_p (XEXP (x, 0),
1179 XEXP (y, 0)));
1181 default:
1182 break;
1185 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1186 if (code == PLUS)
1187 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1188 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1189 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1190 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1191 /* For commutative operations, the RTX match if the operand match in any
1192 order. Also handle the simple binary and unary cases without a loop. */
1193 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1195 rtx xop0 = canon_rtx (XEXP (x, 0));
1196 rtx yop0 = canon_rtx (XEXP (y, 0));
1197 rtx yop1 = canon_rtx (XEXP (y, 1));
1199 return ((rtx_equal_for_memref_p (xop0, yop0)
1200 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1201 || (rtx_equal_for_memref_p (xop0, yop1)
1202 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1204 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1206 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1207 canon_rtx (XEXP (y, 0)))
1208 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1209 canon_rtx (XEXP (y, 1))));
1211 else if (GET_RTX_CLASS (code) == '1')
1212 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1213 canon_rtx (XEXP (y, 0)));
1215 /* Compare the elements. If any pair of corresponding elements
1216 fail to match, return 0 for the whole things.
1218 Limit cases to types which actually appear in addresses. */
1220 fmt = GET_RTX_FORMAT (code);
1221 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1223 switch (fmt[i])
1225 case 'i':
1226 if (XINT (x, i) != XINT (y, i))
1227 return 0;
1228 break;
1230 case 'E':
1231 /* Two vectors must have the same length. */
1232 if (XVECLEN (x, i) != XVECLEN (y, i))
1233 return 0;
1235 /* And the corresponding elements must match. */
1236 for (j = 0; j < XVECLEN (x, i); j++)
1237 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1238 canon_rtx (XVECEXP (y, i, j))) == 0)
1239 return 0;
1240 break;
1242 case 'e':
1243 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1244 canon_rtx (XEXP (y, i))) == 0)
1245 return 0;
1246 break;
1248 /* This can happen for asm operands. */
1249 case 's':
1250 if (strcmp (XSTR (x, i), XSTR (y, i)))
1251 return 0;
1252 break;
1254 /* This can happen for an asm which clobbers memory. */
1255 case '0':
1256 break;
1258 /* It is believed that rtx's at this level will never
1259 contain anything but integers and other rtx's,
1260 except for within LABEL_REFs and SYMBOL_REFs. */
1261 default:
1262 abort ();
1265 return 1;
1268 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1269 X and return it, or return 0 if none found. */
1271 static rtx
1272 find_symbolic_term (x)
1273 rtx x;
1275 int i;
1276 enum rtx_code code;
1277 const char *fmt;
1279 code = GET_CODE (x);
1280 if (code == SYMBOL_REF || code == LABEL_REF)
1281 return x;
1282 if (GET_RTX_CLASS (code) == 'o')
1283 return 0;
1285 fmt = GET_RTX_FORMAT (code);
1286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1288 rtx t;
1290 if (fmt[i] == 'e')
1292 t = find_symbolic_term (XEXP (x, i));
1293 if (t != 0)
1294 return t;
1296 else if (fmt[i] == 'E')
1297 break;
1299 return 0;
1302 static rtx
1303 find_base_term (x)
1304 rtx x;
1306 cselib_val *val;
1307 struct elt_loc_list *l;
1309 #if defined (FIND_BASE_TERM)
1310 /* Try machine-dependent ways to find the base term. */
1311 x = FIND_BASE_TERM (x);
1312 #endif
1314 switch (GET_CODE (x))
1316 case REG:
1317 return REG_BASE_VALUE (x);
1319 case TRUNCATE:
1320 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1321 return 0;
1322 /* Fall through. */
1323 case HIGH:
1324 case PRE_INC:
1325 case PRE_DEC:
1326 case POST_INC:
1327 case POST_DEC:
1328 case PRE_MODIFY:
1329 case POST_MODIFY:
1330 return find_base_term (XEXP (x, 0));
1332 case ZERO_EXTEND:
1333 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1335 rtx temp = find_base_term (XEXP (x, 0));
1337 #ifdef POINTERS_EXTEND_UNSIGNED
1338 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1339 temp = convert_memory_address (Pmode, temp);
1340 #endif
1342 return temp;
1345 case VALUE:
1346 val = CSELIB_VAL_PTR (x);
1347 for (l = val->locs; l; l = l->next)
1348 if ((x = find_base_term (l->loc)) != 0)
1349 return x;
1350 return 0;
1352 case CONST:
1353 x = XEXP (x, 0);
1354 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1355 return 0;
1356 /* fall through */
1357 case LO_SUM:
1358 case PLUS:
1359 case MINUS:
1361 rtx tmp1 = XEXP (x, 0);
1362 rtx tmp2 = XEXP (x, 1);
1364 /* This is a little bit tricky since we have to determine which of
1365 the two operands represents the real base address. Otherwise this
1366 routine may return the index register instead of the base register.
1368 That may cause us to believe no aliasing was possible, when in
1369 fact aliasing is possible.
1371 We use a few simple tests to guess the base register. Additional
1372 tests can certainly be added. For example, if one of the operands
1373 is a shift or multiply, then it must be the index register and the
1374 other operand is the base register. */
1376 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1377 return find_base_term (tmp2);
1379 /* If either operand is known to be a pointer, then use it
1380 to determine the base term. */
1381 if (REG_P (tmp1) && REG_POINTER (tmp1))
1382 return find_base_term (tmp1);
1384 if (REG_P (tmp2) && REG_POINTER (tmp2))
1385 return find_base_term (tmp2);
1387 /* Neither operand was known to be a pointer. Go ahead and find the
1388 base term for both operands. */
1389 tmp1 = find_base_term (tmp1);
1390 tmp2 = find_base_term (tmp2);
1392 /* If either base term is named object or a special address
1393 (like an argument or stack reference), then use it for the
1394 base term. */
1395 if (tmp1 != 0
1396 && (GET_CODE (tmp1) == SYMBOL_REF
1397 || GET_CODE (tmp1) == LABEL_REF
1398 || (GET_CODE (tmp1) == ADDRESS
1399 && GET_MODE (tmp1) != VOIDmode)))
1400 return tmp1;
1402 if (tmp2 != 0
1403 && (GET_CODE (tmp2) == SYMBOL_REF
1404 || GET_CODE (tmp2) == LABEL_REF
1405 || (GET_CODE (tmp2) == ADDRESS
1406 && GET_MODE (tmp2) != VOIDmode)))
1407 return tmp2;
1409 /* We could not determine which of the two operands was the
1410 base register and which was the index. So we can determine
1411 nothing from the base alias check. */
1412 return 0;
1415 case AND:
1416 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1417 return find_base_term (XEXP (x, 0));
1418 return 0;
1420 case SYMBOL_REF:
1421 case LABEL_REF:
1422 return x;
1424 case ADDRESSOF:
1425 return REG_BASE_VALUE (frame_pointer_rtx);
1427 default:
1428 return 0;
1432 /* Return 0 if the addresses X and Y are known to point to different
1433 objects, 1 if they might be pointers to the same object. */
1435 static int
1436 base_alias_check (x, y, x_mode, y_mode)
1437 rtx x, y;
1438 enum machine_mode x_mode, y_mode;
1440 rtx x_base = find_base_term (x);
1441 rtx y_base = find_base_term (y);
1443 /* If the address itself has no known base see if a known equivalent
1444 value has one. If either address still has no known base, nothing
1445 is known about aliasing. */
1446 if (x_base == 0)
1448 rtx x_c;
1450 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1451 return 1;
1453 x_base = find_base_term (x_c);
1454 if (x_base == 0)
1455 return 1;
1458 if (y_base == 0)
1460 rtx y_c;
1461 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1462 return 1;
1464 y_base = find_base_term (y_c);
1465 if (y_base == 0)
1466 return 1;
1469 /* If the base addresses are equal nothing is known about aliasing. */
1470 if (rtx_equal_p (x_base, y_base))
1471 return 1;
1473 /* The base addresses of the read and write are different expressions.
1474 If they are both symbols and they are not accessed via AND, there is
1475 no conflict. We can bring knowledge of object alignment into play
1476 here. For example, on alpha, "char a, b;" can alias one another,
1477 though "char a; long b;" cannot. */
1478 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1480 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1481 return 1;
1482 if (GET_CODE (x) == AND
1483 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1484 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1485 return 1;
1486 if (GET_CODE (y) == AND
1487 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1488 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1489 return 1;
1490 /* Differing symbols never alias. */
1491 return 0;
1494 /* If one address is a stack reference there can be no alias:
1495 stack references using different base registers do not alias,
1496 a stack reference can not alias a parameter, and a stack reference
1497 can not alias a global. */
1498 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1499 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1500 return 0;
1502 if (! flag_argument_noalias)
1503 return 1;
1505 if (flag_argument_noalias > 1)
1506 return 0;
1508 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1509 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1512 /* Convert the address X into something we can use. This is done by returning
1513 it unchanged unless it is a value; in the latter case we call cselib to get
1514 a more useful rtx. */
1517 get_addr (x)
1518 rtx x;
1520 cselib_val *v;
1521 struct elt_loc_list *l;
1523 if (GET_CODE (x) != VALUE)
1524 return x;
1525 v = CSELIB_VAL_PTR (x);
1526 for (l = v->locs; l; l = l->next)
1527 if (CONSTANT_P (l->loc))
1528 return l->loc;
1529 for (l = v->locs; l; l = l->next)
1530 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1531 return l->loc;
1532 if (v->locs)
1533 return v->locs->loc;
1534 return x;
1537 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1538 where SIZE is the size in bytes of the memory reference. If ADDR
1539 is not modified by the memory reference then ADDR is returned. */
1542 addr_side_effect_eval (addr, size, n_refs)
1543 rtx addr;
1544 int size;
1545 int n_refs;
1547 int offset = 0;
1549 switch (GET_CODE (addr))
1551 case PRE_INC:
1552 offset = (n_refs + 1) * size;
1553 break;
1554 case PRE_DEC:
1555 offset = -(n_refs + 1) * size;
1556 break;
1557 case POST_INC:
1558 offset = n_refs * size;
1559 break;
1560 case POST_DEC:
1561 offset = -n_refs * size;
1562 break;
1564 default:
1565 return addr;
1568 if (offset)
1569 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1570 GEN_INT (offset));
1571 else
1572 addr = XEXP (addr, 0);
1573 addr = canon_rtx (addr);
1575 return addr;
1578 /* Return nonzero if X and Y (memory addresses) could reference the
1579 same location in memory. C is an offset accumulator. When
1580 C is nonzero, we are testing aliases between X and Y + C.
1581 XSIZE is the size in bytes of the X reference,
1582 similarly YSIZE is the size in bytes for Y.
1583 Expect that canon_rtx has been already called for X and Y.
1585 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1586 referenced (the reference was BLKmode), so make the most pessimistic
1587 assumptions.
1589 If XSIZE or YSIZE is negative, we may access memory outside the object
1590 being referenced as a side effect. This can happen when using AND to
1591 align memory references, as is done on the Alpha.
1593 Nice to notice that varying addresses cannot conflict with fp if no
1594 local variables had their addresses taken, but that's too hard now. */
1596 static int
1597 memrefs_conflict_p (xsize, x, ysize, y, c)
1598 rtx x, y;
1599 int xsize, ysize;
1600 HOST_WIDE_INT c;
1602 if (GET_CODE (x) == VALUE)
1603 x = get_addr (x);
1604 if (GET_CODE (y) == VALUE)
1605 y = get_addr (y);
1606 if (GET_CODE (x) == HIGH)
1607 x = XEXP (x, 0);
1608 else if (GET_CODE (x) == LO_SUM)
1609 x = XEXP (x, 1);
1610 else
1611 x = addr_side_effect_eval (x, xsize, 0);
1612 if (GET_CODE (y) == HIGH)
1613 y = XEXP (y, 0);
1614 else if (GET_CODE (y) == LO_SUM)
1615 y = XEXP (y, 1);
1616 else
1617 y = addr_side_effect_eval (y, ysize, 0);
1619 if (rtx_equal_for_memref_p (x, y))
1621 if (xsize <= 0 || ysize <= 0)
1622 return 1;
1623 if (c >= 0 && xsize > c)
1624 return 1;
1625 if (c < 0 && ysize+c > 0)
1626 return 1;
1627 return 0;
1630 /* This code used to check for conflicts involving stack references and
1631 globals but the base address alias code now handles these cases. */
1633 if (GET_CODE (x) == PLUS)
1635 /* The fact that X is canonicalized means that this
1636 PLUS rtx is canonicalized. */
1637 rtx x0 = XEXP (x, 0);
1638 rtx x1 = XEXP (x, 1);
1640 if (GET_CODE (y) == PLUS)
1642 /* The fact that Y is canonicalized means that this
1643 PLUS rtx is canonicalized. */
1644 rtx y0 = XEXP (y, 0);
1645 rtx y1 = XEXP (y, 1);
1647 if (rtx_equal_for_memref_p (x1, y1))
1648 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1649 if (rtx_equal_for_memref_p (x0, y0))
1650 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1651 if (GET_CODE (x1) == CONST_INT)
1653 if (GET_CODE (y1) == CONST_INT)
1654 return memrefs_conflict_p (xsize, x0, ysize, y0,
1655 c - INTVAL (x1) + INTVAL (y1));
1656 else
1657 return memrefs_conflict_p (xsize, x0, ysize, y,
1658 c - INTVAL (x1));
1660 else if (GET_CODE (y1) == CONST_INT)
1661 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1663 return 1;
1665 else if (GET_CODE (x1) == CONST_INT)
1666 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1668 else if (GET_CODE (y) == PLUS)
1670 /* The fact that Y is canonicalized means that this
1671 PLUS rtx is canonicalized. */
1672 rtx y0 = XEXP (y, 0);
1673 rtx y1 = XEXP (y, 1);
1675 if (GET_CODE (y1) == CONST_INT)
1676 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1677 else
1678 return 1;
1681 if (GET_CODE (x) == GET_CODE (y))
1682 switch (GET_CODE (x))
1684 case MULT:
1686 /* Handle cases where we expect the second operands to be the
1687 same, and check only whether the first operand would conflict
1688 or not. */
1689 rtx x0, y0;
1690 rtx x1 = canon_rtx (XEXP (x, 1));
1691 rtx y1 = canon_rtx (XEXP (y, 1));
1692 if (! rtx_equal_for_memref_p (x1, y1))
1693 return 1;
1694 x0 = canon_rtx (XEXP (x, 0));
1695 y0 = canon_rtx (XEXP (y, 0));
1696 if (rtx_equal_for_memref_p (x0, y0))
1697 return (xsize == 0 || ysize == 0
1698 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1700 /* Can't properly adjust our sizes. */
1701 if (GET_CODE (x1) != CONST_INT)
1702 return 1;
1703 xsize /= INTVAL (x1);
1704 ysize /= INTVAL (x1);
1705 c /= INTVAL (x1);
1706 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1709 case REG:
1710 /* Are these registers known not to be equal? */
1711 if (alias_invariant)
1713 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1714 rtx i_x, i_y; /* invariant relationships of X and Y */
1716 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1717 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1719 if (i_x == 0 && i_y == 0)
1720 break;
1722 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1723 ysize, i_y ? i_y : y, c))
1724 return 0;
1726 break;
1728 default:
1729 break;
1732 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1733 as an access with indeterminate size. Assume that references
1734 besides AND are aligned, so if the size of the other reference is
1735 at least as large as the alignment, assume no other overlap. */
1736 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1738 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1739 xsize = -1;
1740 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1742 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1744 /* ??? If we are indexing far enough into the array/structure, we
1745 may yet be able to determine that we can not overlap. But we
1746 also need to that we are far enough from the end not to overlap
1747 a following reference, so we do nothing with that for now. */
1748 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1749 ysize = -1;
1750 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1753 if (GET_CODE (x) == ADDRESSOF)
1755 if (y == frame_pointer_rtx
1756 || GET_CODE (y) == ADDRESSOF)
1757 return xsize <= 0 || ysize <= 0;
1759 if (GET_CODE (y) == ADDRESSOF)
1761 if (x == frame_pointer_rtx)
1762 return xsize <= 0 || ysize <= 0;
1765 if (CONSTANT_P (x))
1767 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1769 c += (INTVAL (y) - INTVAL (x));
1770 return (xsize <= 0 || ysize <= 0
1771 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1774 if (GET_CODE (x) == CONST)
1776 if (GET_CODE (y) == CONST)
1777 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1778 ysize, canon_rtx (XEXP (y, 0)), c);
1779 else
1780 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1781 ysize, y, c);
1783 if (GET_CODE (y) == CONST)
1784 return memrefs_conflict_p (xsize, x, ysize,
1785 canon_rtx (XEXP (y, 0)), c);
1787 if (CONSTANT_P (y))
1788 return (xsize <= 0 || ysize <= 0
1789 || (rtx_equal_for_memref_p (x, y)
1790 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1792 return 1;
1794 return 1;
1797 /* Functions to compute memory dependencies.
1799 Since we process the insns in execution order, we can build tables
1800 to keep track of what registers are fixed (and not aliased), what registers
1801 are varying in known ways, and what registers are varying in unknown
1802 ways.
1804 If both memory references are volatile, then there must always be a
1805 dependence between the two references, since their order can not be
1806 changed. A volatile and non-volatile reference can be interchanged
1807 though.
1809 A MEM_IN_STRUCT reference at a non-AND varying address can never
1810 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1811 also must allow AND addresses, because they may generate accesses
1812 outside the object being referenced. This is used to generate
1813 aligned addresses from unaligned addresses, for instance, the alpha
1814 storeqi_unaligned pattern. */
1816 /* Read dependence: X is read after read in MEM takes place. There can
1817 only be a dependence here if both reads are volatile. */
1820 read_dependence (mem, x)
1821 rtx mem;
1822 rtx x;
1824 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1827 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1828 MEM2 is a reference to a structure at a varying address, or returns
1829 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1830 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1831 to decide whether or not an address may vary; it should return
1832 nonzero whenever variation is possible.
1833 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1835 static rtx
1836 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1837 rtx mem1, mem2;
1838 rtx mem1_addr, mem2_addr;
1839 int (*varies_p) PARAMS ((rtx, int));
1841 if (! flag_strict_aliasing)
1842 return NULL_RTX;
1844 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1845 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1846 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1847 varying address. */
1848 return mem1;
1850 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1851 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1852 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1853 varying address. */
1854 return mem2;
1856 return NULL_RTX;
1859 /* Returns nonzero if something about the mode or address format MEM1
1860 indicates that it might well alias *anything*. */
1862 static int
1863 aliases_everything_p (mem)
1864 rtx mem;
1866 if (GET_CODE (XEXP (mem, 0)) == AND)
1867 /* If the address is an AND, its very hard to know at what it is
1868 actually pointing. */
1869 return 1;
1871 return 0;
1874 /* Return true if we can determine that the fields referenced cannot
1875 overlap for any pair of objects. */
1877 static bool
1878 nonoverlapping_component_refs_p (x, y)
1879 tree x, y;
1881 tree fieldx, fieldy, typex, typey, orig_y;
1885 /* The comparison has to be done at a common type, since we don't
1886 know how the inheritance hierarchy works. */
1887 orig_y = y;
1890 fieldx = TREE_OPERAND (x, 1);
1891 typex = DECL_FIELD_CONTEXT (fieldx);
1893 y = orig_y;
1896 fieldy = TREE_OPERAND (y, 1);
1897 typey = DECL_FIELD_CONTEXT (fieldy);
1899 if (typex == typey)
1900 goto found;
1902 y = TREE_OPERAND (y, 0);
1904 while (y && TREE_CODE (y) == COMPONENT_REF);
1906 x = TREE_OPERAND (x, 0);
1908 while (x && TREE_CODE (x) == COMPONENT_REF);
1910 /* Never found a common type. */
1911 return false;
1913 found:
1914 /* If we're left with accessing different fields of a structure,
1915 then no overlap. */
1916 if (TREE_CODE (typex) == RECORD_TYPE
1917 && fieldx != fieldy)
1918 return true;
1920 /* The comparison on the current field failed. If we're accessing
1921 a very nested structure, look at the next outer level. */
1922 x = TREE_OPERAND (x, 0);
1923 y = TREE_OPERAND (y, 0);
1925 while (x && y
1926 && TREE_CODE (x) == COMPONENT_REF
1927 && TREE_CODE (y) == COMPONENT_REF);
1929 return false;
1932 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1934 static tree
1935 decl_for_component_ref (x)
1936 tree x;
1940 x = TREE_OPERAND (x, 0);
1942 while (x && TREE_CODE (x) == COMPONENT_REF);
1944 return x && DECL_P (x) ? x : NULL_TREE;
1947 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1948 offset of the field reference. */
1950 static rtx
1951 adjust_offset_for_component_ref (x, offset)
1952 tree x;
1953 rtx offset;
1955 HOST_WIDE_INT ioffset;
1957 if (! offset)
1958 return NULL_RTX;
1960 ioffset = INTVAL (offset);
1963 tree field = TREE_OPERAND (x, 1);
1965 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1966 return NULL_RTX;
1967 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1968 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1969 / BITS_PER_UNIT));
1971 x = TREE_OPERAND (x, 0);
1973 while (x && TREE_CODE (x) == COMPONENT_REF);
1975 return GEN_INT (ioffset);
1978 /* Return nonzero if we can determine the exprs corresponding to memrefs
1979 X and Y and they do not overlap. */
1981 static int
1982 nonoverlapping_memrefs_p (x, y)
1983 rtx x, y;
1985 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1986 rtx rtlx, rtly;
1987 rtx basex, basey;
1988 rtx moffsetx, moffsety;
1989 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1991 /* Unless both have exprs, we can't tell anything. */
1992 if (exprx == 0 || expry == 0)
1993 return 0;
1995 /* If both are field references, we may be able to determine something. */
1996 if (TREE_CODE (exprx) == COMPONENT_REF
1997 && TREE_CODE (expry) == COMPONENT_REF
1998 && nonoverlapping_component_refs_p (exprx, expry))
1999 return 1;
2001 /* If the field reference test failed, look at the DECLs involved. */
2002 moffsetx = MEM_OFFSET (x);
2003 if (TREE_CODE (exprx) == COMPONENT_REF)
2005 tree t = decl_for_component_ref (exprx);
2006 if (! t)
2007 return 0;
2008 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2009 exprx = t;
2011 else if (TREE_CODE (exprx) == INDIRECT_REF)
2013 exprx = TREE_OPERAND (exprx, 0);
2014 if (flag_argument_noalias < 2
2015 || TREE_CODE (exprx) != PARM_DECL)
2016 return 0;
2019 moffsety = MEM_OFFSET (y);
2020 if (TREE_CODE (expry) == COMPONENT_REF)
2022 tree t = decl_for_component_ref (expry);
2023 if (! t)
2024 return 0;
2025 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2026 expry = t;
2028 else if (TREE_CODE (expry) == INDIRECT_REF)
2030 expry = TREE_OPERAND (expry, 0);
2031 if (flag_argument_noalias < 2
2032 || TREE_CODE (expry) != PARM_DECL)
2033 return 0;
2036 if (! DECL_P (exprx) || ! DECL_P (expry))
2037 return 0;
2039 rtlx = DECL_RTL (exprx);
2040 rtly = DECL_RTL (expry);
2042 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2043 can't overlap unless they are the same because we never reuse that part
2044 of the stack frame used for locals for spilled pseudos. */
2045 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
2046 && ! rtx_equal_p (rtlx, rtly))
2047 return 1;
2049 /* Get the base and offsets of both decls. If either is a register, we
2050 know both are and are the same, so use that as the base. The only
2051 we can avoid overlap is if we can deduce that they are nonoverlapping
2052 pieces of that decl, which is very rare. */
2053 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2054 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2055 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2057 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2058 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2059 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2061 /* If the bases are different, we know they do not overlap if both
2062 are constants or if one is a constant and the other a pointer into the
2063 stack frame. Otherwise a different base means we can't tell if they
2064 overlap or not. */
2065 if (! rtx_equal_p (basex, basey))
2066 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2067 || (CONSTANT_P (basex) && REG_P (basey)
2068 && REGNO_PTR_FRAME_P (REGNO (basey)))
2069 || (CONSTANT_P (basey) && REG_P (basex)
2070 && REGNO_PTR_FRAME_P (REGNO (basex))));
2072 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2073 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2074 : -1);
2075 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2076 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2077 -1);
2079 /* If we have an offset for either memref, it can update the values computed
2080 above. */
2081 if (moffsetx)
2082 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2083 if (moffsety)
2084 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2086 /* If a memref has both a size and an offset, we can use the smaller size.
2087 We can't do this if the offset isn't known because we must view this
2088 memref as being anywhere inside the DECL's MEM. */
2089 if (MEM_SIZE (x) && moffsetx)
2090 sizex = INTVAL (MEM_SIZE (x));
2091 if (MEM_SIZE (y) && moffsety)
2092 sizey = INTVAL (MEM_SIZE (y));
2094 /* Put the values of the memref with the lower offset in X's values. */
2095 if (offsetx > offsety)
2097 tem = offsetx, offsetx = offsety, offsety = tem;
2098 tem = sizex, sizex = sizey, sizey = tem;
2101 /* If we don't know the size of the lower-offset value, we can't tell
2102 if they conflict. Otherwise, we do the test. */
2103 return sizex >= 0 && offsety >= offsetx + sizex;
2106 /* True dependence: X is read after store in MEM takes place. */
2109 true_dependence (mem, mem_mode, x, varies)
2110 rtx mem;
2111 enum machine_mode mem_mode;
2112 rtx x;
2113 int (*varies) PARAMS ((rtx, int));
2115 rtx x_addr, mem_addr;
2116 rtx base;
2118 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2119 return 1;
2121 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2122 This is used in epilogue deallocation functions. */
2123 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2124 return 1;
2125 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2126 return 1;
2128 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2129 return 0;
2131 /* Unchanging memory can't conflict with non-unchanging memory.
2132 A non-unchanging read can conflict with a non-unchanging write.
2133 An unchanging read can conflict with an unchanging write since
2134 there may be a single store to this address to initialize it.
2135 Note that an unchanging store can conflict with a non-unchanging read
2136 since we have to make conservative assumptions when we have a
2137 record with readonly fields and we are copying the whole thing.
2138 Just fall through to the code below to resolve potential conflicts.
2139 This won't handle all cases optimally, but the possible performance
2140 loss should be negligible. */
2141 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2142 return 0;
2144 if (nonoverlapping_memrefs_p (mem, x))
2145 return 0;
2147 if (mem_mode == VOIDmode)
2148 mem_mode = GET_MODE (mem);
2150 x_addr = get_addr (XEXP (x, 0));
2151 mem_addr = get_addr (XEXP (mem, 0));
2153 base = find_base_term (x_addr);
2154 if (base && (GET_CODE (base) == LABEL_REF
2155 || (GET_CODE (base) == SYMBOL_REF
2156 && CONSTANT_POOL_ADDRESS_P (base))))
2157 return 0;
2159 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2160 return 0;
2162 x_addr = canon_rtx (x_addr);
2163 mem_addr = canon_rtx (mem_addr);
2165 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2166 SIZE_FOR_MODE (x), x_addr, 0))
2167 return 0;
2169 if (aliases_everything_p (x))
2170 return 1;
2172 /* We cannot use aliases_everything_p to test MEM, since we must look
2173 at MEM_MODE, rather than GET_MODE (MEM). */
2174 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2175 return 1;
2177 /* In true_dependence we also allow BLKmode to alias anything. Why
2178 don't we do this in anti_dependence and output_dependence? */
2179 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2180 return 1;
2182 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2183 varies);
2186 /* Canonical true dependence: X is read after store in MEM takes place.
2187 Variant of true_dependence which assumes MEM has already been
2188 canonicalized (hence we no longer do that here).
2189 The mem_addr argument has been added, since true_dependence computed
2190 this value prior to canonicalizing. */
2193 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2194 rtx mem, mem_addr, x;
2195 enum machine_mode mem_mode;
2196 int (*varies) PARAMS ((rtx, int));
2198 rtx x_addr;
2200 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2201 return 1;
2203 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2204 This is used in epilogue deallocation functions. */
2205 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2206 return 1;
2207 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2208 return 1;
2210 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2211 return 0;
2213 /* If X is an unchanging read, then it can't possibly conflict with any
2214 non-unchanging store. It may conflict with an unchanging write though,
2215 because there may be a single store to this address to initialize it.
2216 Just fall through to the code below to resolve the case where we have
2217 both an unchanging read and an unchanging write. This won't handle all
2218 cases optimally, but the possible performance loss should be
2219 negligible. */
2220 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2221 return 0;
2223 if (nonoverlapping_memrefs_p (x, mem))
2224 return 0;
2226 x_addr = get_addr (XEXP (x, 0));
2228 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2229 return 0;
2231 x_addr = canon_rtx (x_addr);
2232 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2233 SIZE_FOR_MODE (x), x_addr, 0))
2234 return 0;
2236 if (aliases_everything_p (x))
2237 return 1;
2239 /* We cannot use aliases_everything_p to test MEM, since we must look
2240 at MEM_MODE, rather than GET_MODE (MEM). */
2241 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2242 return 1;
2244 /* In true_dependence we also allow BLKmode to alias anything. Why
2245 don't we do this in anti_dependence and output_dependence? */
2246 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2247 return 1;
2249 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2250 varies);
2253 /* Returns nonzero if a write to X might alias a previous read from
2254 (or, if WRITEP is nonzero, a write to) MEM. */
2256 static int
2257 write_dependence_p (mem, x, writep)
2258 rtx mem;
2259 rtx x;
2260 int writep;
2262 rtx x_addr, mem_addr;
2263 rtx fixed_scalar;
2264 rtx base;
2266 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2267 return 1;
2269 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2270 This is used in epilogue deallocation functions. */
2271 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2272 return 1;
2273 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2274 return 1;
2276 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2277 return 0;
2279 /* Unchanging memory can't conflict with non-unchanging memory. */
2280 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2281 return 0;
2283 /* If MEM is an unchanging read, then it can't possibly conflict with
2284 the store to X, because there is at most one store to MEM, and it must
2285 have occurred somewhere before MEM. */
2286 if (! writep && RTX_UNCHANGING_P (mem))
2287 return 0;
2289 if (nonoverlapping_memrefs_p (x, mem))
2290 return 0;
2292 x_addr = get_addr (XEXP (x, 0));
2293 mem_addr = get_addr (XEXP (mem, 0));
2295 if (! writep)
2297 base = find_base_term (mem_addr);
2298 if (base && (GET_CODE (base) == LABEL_REF
2299 || (GET_CODE (base) == SYMBOL_REF
2300 && CONSTANT_POOL_ADDRESS_P (base))))
2301 return 0;
2304 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2305 GET_MODE (mem)))
2306 return 0;
2308 x_addr = canon_rtx (x_addr);
2309 mem_addr = canon_rtx (mem_addr);
2311 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2312 SIZE_FOR_MODE (x), x_addr, 0))
2313 return 0;
2315 fixed_scalar
2316 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2317 rtx_addr_varies_p);
2319 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2320 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2323 /* Anti dependence: X is written after read in MEM takes place. */
2326 anti_dependence (mem, x)
2327 rtx mem;
2328 rtx x;
2330 return write_dependence_p (mem, x, /*writep=*/0);
2333 /* Output dependence: X is written after store in MEM takes place. */
2336 output_dependence (mem, x)
2337 rtx mem;
2338 rtx x;
2340 return write_dependence_p (mem, x, /*writep=*/1);
2343 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2344 something which is not local to the function and is not constant. */
2346 static int
2347 nonlocal_mentioned_p_1 (loc, data)
2348 rtx *loc;
2349 void *data ATTRIBUTE_UNUSED;
2351 rtx x = *loc;
2352 rtx base;
2353 int regno;
2355 if (! x)
2356 return 0;
2358 switch (GET_CODE (x))
2360 case SUBREG:
2361 if (GET_CODE (SUBREG_REG (x)) == REG)
2363 /* Global registers are not local. */
2364 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2365 && global_regs[subreg_regno (x)])
2366 return 1;
2367 return 0;
2369 break;
2371 case REG:
2372 regno = REGNO (x);
2373 /* Global registers are not local. */
2374 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2375 return 1;
2376 return 0;
2378 case SCRATCH:
2379 case PC:
2380 case CC0:
2381 case CONST_INT:
2382 case CONST_DOUBLE:
2383 case CONST_VECTOR:
2384 case CONST:
2385 case LABEL_REF:
2386 return 0;
2388 case SYMBOL_REF:
2389 /* Constants in the function's constants pool are constant. */
2390 if (CONSTANT_POOL_ADDRESS_P (x))
2391 return 0;
2392 return 1;
2394 case CALL:
2395 /* Non-constant calls and recursion are not local. */
2396 return 1;
2398 case MEM:
2399 /* Be overly conservative and consider any volatile memory
2400 reference as not local. */
2401 if (MEM_VOLATILE_P (x))
2402 return 1;
2403 base = find_base_term (XEXP (x, 0));
2404 if (base)
2406 /* A Pmode ADDRESS could be a reference via the structure value
2407 address or static chain. Such memory references are nonlocal.
2409 Thus, we have to examine the contents of the ADDRESS to find
2410 out if this is a local reference or not. */
2411 if (GET_CODE (base) == ADDRESS
2412 && GET_MODE (base) == Pmode
2413 && (XEXP (base, 0) == stack_pointer_rtx
2414 || XEXP (base, 0) == arg_pointer_rtx
2415 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2416 || XEXP (base, 0) == hard_frame_pointer_rtx
2417 #endif
2418 || XEXP (base, 0) == frame_pointer_rtx))
2419 return 0;
2420 /* Constants in the function's constant pool are constant. */
2421 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2422 return 0;
2424 return 1;
2426 case UNSPEC_VOLATILE:
2427 case ASM_INPUT:
2428 return 1;
2430 case ASM_OPERANDS:
2431 if (MEM_VOLATILE_P (x))
2432 return 1;
2434 /* FALLTHROUGH */
2436 default:
2437 break;
2440 return 0;
2443 /* Returns nonzero if X might mention something which is not
2444 local to the function and is not constant. */
2446 static int
2447 nonlocal_mentioned_p (x)
2448 rtx x;
2451 if (INSN_P (x))
2453 if (GET_CODE (x) == CALL_INSN)
2455 if (! CONST_OR_PURE_CALL_P (x))
2456 return 1;
2457 x = CALL_INSN_FUNCTION_USAGE (x);
2458 if (x == 0)
2459 return 0;
2461 else
2462 x = PATTERN (x);
2465 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2468 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2469 something which is not local to the function and is not constant. */
2471 static int
2472 nonlocal_referenced_p_1 (loc, data)
2473 rtx *loc;
2474 void *data ATTRIBUTE_UNUSED;
2476 rtx x = *loc;
2478 if (! x)
2479 return 0;
2481 switch (GET_CODE (x))
2483 case MEM:
2484 case REG:
2485 case SYMBOL_REF:
2486 case SUBREG:
2487 return nonlocal_mentioned_p (x);
2489 case CALL:
2490 /* Non-constant calls and recursion are not local. */
2491 return 1;
2493 case SET:
2494 if (nonlocal_mentioned_p (SET_SRC (x)))
2495 return 1;
2497 if (GET_CODE (SET_DEST (x)) == MEM)
2498 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2500 /* If the destination is anything other than a CC0, PC,
2501 MEM, REG, or a SUBREG of a REG that occupies all of
2502 the REG, then X references nonlocal memory if it is
2503 mentioned in the destination. */
2504 if (GET_CODE (SET_DEST (x)) != CC0
2505 && GET_CODE (SET_DEST (x)) != PC
2506 && GET_CODE (SET_DEST (x)) != REG
2507 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2508 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2509 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2510 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2511 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2512 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2513 return nonlocal_mentioned_p (SET_DEST (x));
2514 return 0;
2516 case CLOBBER:
2517 if (GET_CODE (XEXP (x, 0)) == MEM)
2518 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2519 return 0;
2521 case USE:
2522 return nonlocal_mentioned_p (XEXP (x, 0));
2524 case ASM_INPUT:
2525 case UNSPEC_VOLATILE:
2526 return 1;
2528 case ASM_OPERANDS:
2529 if (MEM_VOLATILE_P (x))
2530 return 1;
2532 /* FALLTHROUGH */
2534 default:
2535 break;
2538 return 0;
2541 /* Returns nonzero if X might reference something which is not
2542 local to the function and is not constant. */
2544 static int
2545 nonlocal_referenced_p (x)
2546 rtx x;
2549 if (INSN_P (x))
2551 if (GET_CODE (x) == CALL_INSN)
2553 if (! CONST_OR_PURE_CALL_P (x))
2554 return 1;
2555 x = CALL_INSN_FUNCTION_USAGE (x);
2556 if (x == 0)
2557 return 0;
2559 else
2560 x = PATTERN (x);
2563 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2566 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2567 something which is not local to the function and is not constant. */
2569 static int
2570 nonlocal_set_p_1 (loc, data)
2571 rtx *loc;
2572 void *data ATTRIBUTE_UNUSED;
2574 rtx x = *loc;
2576 if (! x)
2577 return 0;
2579 switch (GET_CODE (x))
2581 case CALL:
2582 /* Non-constant calls and recursion are not local. */
2583 return 1;
2585 case PRE_INC:
2586 case PRE_DEC:
2587 case POST_INC:
2588 case POST_DEC:
2589 case PRE_MODIFY:
2590 case POST_MODIFY:
2591 return nonlocal_mentioned_p (XEXP (x, 0));
2593 case SET:
2594 if (nonlocal_mentioned_p (SET_DEST (x)))
2595 return 1;
2596 return nonlocal_set_p (SET_SRC (x));
2598 case CLOBBER:
2599 return nonlocal_mentioned_p (XEXP (x, 0));
2601 case USE:
2602 return 0;
2604 case ASM_INPUT:
2605 case UNSPEC_VOLATILE:
2606 return 1;
2608 case ASM_OPERANDS:
2609 if (MEM_VOLATILE_P (x))
2610 return 1;
2612 /* FALLTHROUGH */
2614 default:
2615 break;
2618 return 0;
2621 /* Returns nonzero if X might set something which is not
2622 local to the function and is not constant. */
2624 static int
2625 nonlocal_set_p (x)
2626 rtx x;
2629 if (INSN_P (x))
2631 if (GET_CODE (x) == CALL_INSN)
2633 if (! CONST_OR_PURE_CALL_P (x))
2634 return 1;
2635 x = CALL_INSN_FUNCTION_USAGE (x);
2636 if (x == 0)
2637 return 0;
2639 else
2640 x = PATTERN (x);
2643 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2646 /* Mark the function if it is constant. */
2648 void
2649 mark_constant_function ()
2651 rtx insn;
2652 int nonlocal_memory_referenced;
2654 if (TREE_READONLY (current_function_decl)
2655 || DECL_IS_PURE (current_function_decl)
2656 || TREE_THIS_VOLATILE (current_function_decl)
2657 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode
2658 || current_function_has_nonlocal_goto
2659 || !(*targetm.binds_local_p) (current_function_decl))
2660 return;
2662 /* A loop might not return which counts as a side effect. */
2663 if (mark_dfs_back_edges ())
2664 return;
2666 nonlocal_memory_referenced = 0;
2668 init_alias_analysis ();
2670 /* Determine if this is a constant or pure function. */
2672 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2674 if (! INSN_P (insn))
2675 continue;
2677 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2678 || volatile_refs_p (PATTERN (insn)))
2679 break;
2681 if (! nonlocal_memory_referenced)
2682 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2685 end_alias_analysis ();
2687 /* Mark the function. */
2689 if (insn)
2691 else if (nonlocal_memory_referenced)
2692 cgraph_rtl_info (current_function_decl)->pure_function = 1;
2693 else
2694 cgraph_rtl_info (current_function_decl)->const_function = 1;
2698 void
2699 init_alias_once ()
2701 int i;
2703 #ifndef OUTGOING_REGNO
2704 #define OUTGOING_REGNO(N) N
2705 #endif
2706 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2707 /* Check whether this register can hold an incoming pointer
2708 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2709 numbers, so translate if necessary due to register windows. */
2710 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2711 && HARD_REGNO_MODE_OK (i, Pmode))
2712 static_reg_base_value[i]
2713 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2715 static_reg_base_value[STACK_POINTER_REGNUM]
2716 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2717 static_reg_base_value[ARG_POINTER_REGNUM]
2718 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2719 static_reg_base_value[FRAME_POINTER_REGNUM]
2720 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2721 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2722 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2723 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2724 #endif
2726 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2729 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2730 to be memory reference. */
2731 static bool memory_modified;
2732 static void
2733 memory_modified_1 (x, pat, data)
2734 rtx x, pat ATTRIBUTE_UNUSED;
2735 void *data;
2737 if (GET_CODE (x) == MEM)
2739 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2740 memory_modified = true;
2745 /* Return true when INSN possibly modify memory contents of MEM
2746 (ie address can be modified). */
2747 bool
2748 memory_modified_in_insn_p (mem, insn)
2749 rtx mem, insn;
2751 if (!INSN_P (insn))
2752 return false;
2753 memory_modified = false;
2754 note_stores (PATTERN (insn), memory_modified_1, mem);
2755 return memory_modified;
2758 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2759 array. */
2761 void
2762 init_alias_analysis ()
2764 int maxreg = max_reg_num ();
2765 int changed, pass;
2766 int i;
2767 unsigned int ui;
2768 rtx insn;
2770 timevar_push (TV_ALIAS_ANALYSIS);
2772 reg_known_value_size = maxreg;
2774 reg_known_value
2775 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2776 - FIRST_PSEUDO_REGISTER;
2777 reg_known_equiv_p
2778 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2779 - FIRST_PSEUDO_REGISTER;
2781 /* Overallocate reg_base_value to allow some growth during loop
2782 optimization. Loop unrolling can create a large number of
2783 registers. */
2784 reg_base_value_size = maxreg * 2;
2785 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2786 * sizeof (rtx));
2788 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2789 reg_seen = (char *) xmalloc (reg_base_value_size);
2790 if (! reload_completed && flag_old_unroll_loops)
2792 /* ??? Why are we realloc'ing if we're just going to zero it? */
2793 alias_invariant = (rtx *)xrealloc (alias_invariant,
2794 reg_base_value_size * sizeof (rtx));
2795 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2798 /* The basic idea is that each pass through this loop will use the
2799 "constant" information from the previous pass to propagate alias
2800 information through another level of assignments.
2802 This could get expensive if the assignment chains are long. Maybe
2803 we should throttle the number of iterations, possibly based on
2804 the optimization level or flag_expensive_optimizations.
2806 We could propagate more information in the first pass by making use
2807 of REG_N_SETS to determine immediately that the alias information
2808 for a pseudo is "constant".
2810 A program with an uninitialized variable can cause an infinite loop
2811 here. Instead of doing a full dataflow analysis to detect such problems
2812 we just cap the number of iterations for the loop.
2814 The state of the arrays for the set chain in question does not matter
2815 since the program has undefined behavior. */
2817 pass = 0;
2820 /* Assume nothing will change this iteration of the loop. */
2821 changed = 0;
2823 /* We want to assign the same IDs each iteration of this loop, so
2824 start counting from zero each iteration of the loop. */
2825 unique_id = 0;
2827 /* We're at the start of the function each iteration through the
2828 loop, so we're copying arguments. */
2829 copying_arguments = true;
2831 /* Wipe the potential alias information clean for this pass. */
2832 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2834 /* Wipe the reg_seen array clean. */
2835 memset ((char *) reg_seen, 0, reg_base_value_size);
2837 /* Mark all hard registers which may contain an address.
2838 The stack, frame and argument pointers may contain an address.
2839 An argument register which can hold a Pmode value may contain
2840 an address even if it is not in BASE_REGS.
2842 The address expression is VOIDmode for an argument and
2843 Pmode for other registers. */
2845 memcpy (new_reg_base_value, static_reg_base_value,
2846 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2848 /* Walk the insns adding values to the new_reg_base_value array. */
2849 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2851 if (INSN_P (insn))
2853 rtx note, set;
2855 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2856 /* The prologue/epilogue insns are not threaded onto the
2857 insn chain until after reload has completed. Thus,
2858 there is no sense wasting time checking if INSN is in
2859 the prologue/epilogue until after reload has completed. */
2860 if (reload_completed
2861 && prologue_epilogue_contains (insn))
2862 continue;
2863 #endif
2865 /* If this insn has a noalias note, process it, Otherwise,
2866 scan for sets. A simple set will have no side effects
2867 which could change the base value of any other register. */
2869 if (GET_CODE (PATTERN (insn)) == SET
2870 && REG_NOTES (insn) != 0
2871 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2872 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2873 else
2874 note_stores (PATTERN (insn), record_set, NULL);
2876 set = single_set (insn);
2878 if (set != 0
2879 && GET_CODE (SET_DEST (set)) == REG
2880 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2882 unsigned int regno = REGNO (SET_DEST (set));
2883 rtx src = SET_SRC (set);
2885 if (REG_NOTES (insn) != 0
2886 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2887 && REG_N_SETS (regno) == 1)
2888 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2889 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2890 && ! rtx_varies_p (XEXP (note, 0), 1)
2891 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2893 reg_known_value[regno] = XEXP (note, 0);
2894 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2896 else if (REG_N_SETS (regno) == 1
2897 && GET_CODE (src) == PLUS
2898 && GET_CODE (XEXP (src, 0)) == REG
2899 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2900 && (reg_known_value[REGNO (XEXP (src, 0))])
2901 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2903 rtx op0 = XEXP (src, 0);
2904 op0 = reg_known_value[REGNO (op0)];
2905 reg_known_value[regno]
2906 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2907 reg_known_equiv_p[regno] = 0;
2909 else if (REG_N_SETS (regno) == 1
2910 && ! rtx_varies_p (src, 1))
2912 reg_known_value[regno] = src;
2913 reg_known_equiv_p[regno] = 0;
2917 else if (GET_CODE (insn) == NOTE
2918 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2919 copying_arguments = false;
2922 /* Now propagate values from new_reg_base_value to reg_base_value. */
2923 for (ui = 0; ui < reg_base_value_size; ui++)
2925 if (new_reg_base_value[ui]
2926 && new_reg_base_value[ui] != reg_base_value[ui]
2927 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2929 reg_base_value[ui] = new_reg_base_value[ui];
2930 changed = 1;
2934 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2936 /* Fill in the remaining entries. */
2937 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2938 if (reg_known_value[i] == 0)
2939 reg_known_value[i] = regno_reg_rtx[i];
2941 /* Simplify the reg_base_value array so that no register refers to
2942 another register, except to special registers indirectly through
2943 ADDRESS expressions.
2945 In theory this loop can take as long as O(registers^2), but unless
2946 there are very long dependency chains it will run in close to linear
2947 time.
2949 This loop may not be needed any longer now that the main loop does
2950 a better job at propagating alias information. */
2951 pass = 0;
2954 changed = 0;
2955 pass++;
2956 for (ui = 0; ui < reg_base_value_size; ui++)
2958 rtx base = reg_base_value[ui];
2959 if (base && GET_CODE (base) == REG)
2961 unsigned int base_regno = REGNO (base);
2962 if (base_regno == ui) /* register set from itself */
2963 reg_base_value[ui] = 0;
2964 else
2965 reg_base_value[ui] = reg_base_value[base_regno];
2966 changed = 1;
2970 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2972 /* Clean up. */
2973 free (new_reg_base_value);
2974 new_reg_base_value = 0;
2975 free (reg_seen);
2976 reg_seen = 0;
2977 timevar_pop (TV_ALIAS_ANALYSIS);
2980 void
2981 end_alias_analysis ()
2983 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2984 reg_known_value = 0;
2985 reg_known_value_size = 0;
2986 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2987 reg_known_equiv_p = 0;
2988 reg_base_value = 0;
2989 reg_base_value_size = 0;
2990 if (alias_invariant)
2992 free (alias_invariant);
2993 alias_invariant = 0;
2997 #include "gt-alias.h"