PR middle-end/30262
[official-gcc.git] / gcc / rtlanal.c
blobc45a020709f5865c3d54c8cf0ab52256fd66d666
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
41 /* Information about a subreg of a hard register. */
42 struct subreg_info
44 /* Offset of first hard register involved in the subreg. */
45 int offset;
46 /* Number of hard registers involved in the subreg. */
47 int nregs;
48 /* Whether this subreg can be represented as a hard reg with the new
49 mode. */
50 bool representable_p;
53 /* Forward declarations */
54 static void set_of_1 (rtx, rtx, void *);
55 static bool covers_regno_p (rtx, unsigned int);
56 static bool covers_regno_no_parallel_p (rtx, unsigned int);
57 static int rtx_referenced_p_1 (rtx *, void *);
58 static int computed_jump_p_1 (rtx);
59 static void parms_set (rtx, rtx, void *);
60 static void subreg_get_info (unsigned int, enum machine_mode,
61 unsigned int, enum machine_mode,
62 struct subreg_info *);
64 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
65 rtx, enum machine_mode,
66 unsigned HOST_WIDE_INT);
67 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
68 enum machine_mode,
69 unsigned HOST_WIDE_INT);
70 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
71 enum machine_mode,
72 unsigned int);
73 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
74 enum machine_mode, unsigned int);
76 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
77 -1 if a code has no such operand. */
78 static int non_rtx_starting_operands[NUM_RTX_CODE];
80 /* Bit flags that specify the machine subtype we are compiling for.
81 Bits are tested using macros TARGET_... defined in the tm.h file
82 and set by `-m...' switches. Must be defined in rtlanal.c. */
84 int target_flags;
86 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
87 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
88 SIGN_EXTEND then while narrowing we also have to enforce the
89 representation and sign-extend the value to mode DESTINATION_REP.
91 If the value is already sign-extended to DESTINATION_REP mode we
92 can just switch to DESTINATION mode on it. For each pair of
93 integral modes SOURCE and DESTINATION, when truncating from SOURCE
94 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
95 contains the number of high-order bits in SOURCE that have to be
96 copies of the sign-bit so that we can do this mode-switch to
97 DESTINATION. */
99 static unsigned int
100 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 /* Return 1 if the value of X is unstable
103 (would be different at a different point in the program).
104 The frame pointer, arg pointer, etc. are considered stable
105 (within one function) and so is anything marked `unchanging'. */
108 rtx_unstable_p (rtx x)
110 RTX_CODE code = GET_CODE (x);
111 int i;
112 const char *fmt;
114 switch (code)
116 case MEM:
117 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119 case CONST:
120 case CONST_INT:
121 case CONST_DOUBLE:
122 case CONST_VECTOR:
123 case SYMBOL_REF:
124 case LABEL_REF:
125 return 0;
127 case REG:
128 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
129 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
130 /* The arg pointer varies if it is not a fixed register. */
131 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
132 return 0;
133 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
134 /* ??? When call-clobbered, the value is stable modulo the restore
135 that must happen after a call. This currently screws up local-alloc
136 into believing that the restore is not needed. */
137 if (x == pic_offset_table_rtx)
138 return 0;
139 #endif
140 return 1;
142 case ASM_OPERANDS:
143 if (MEM_VOLATILE_P (x))
144 return 1;
146 /* Fall through. */
148 default:
149 break;
152 fmt = GET_RTX_FORMAT (code);
153 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
154 if (fmt[i] == 'e')
156 if (rtx_unstable_p (XEXP (x, i)))
157 return 1;
159 else if (fmt[i] == 'E')
161 int j;
162 for (j = 0; j < XVECLEN (x, i); j++)
163 if (rtx_unstable_p (XVECEXP (x, i, j)))
164 return 1;
167 return 0;
170 /* Return 1 if X has a value that can vary even between two
171 executions of the program. 0 means X can be compared reliably
172 against certain constants or near-constants.
173 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
174 zero, we are slightly more conservative.
175 The frame pointer and the arg pointer are considered constant. */
178 rtx_varies_p (rtx x, int for_alias)
180 RTX_CODE code;
181 int i;
182 const char *fmt;
184 if (!x)
185 return 0;
187 code = GET_CODE (x);
188 switch (code)
190 case MEM:
191 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
193 case CONST:
194 case CONST_INT:
195 case CONST_DOUBLE:
196 case CONST_VECTOR:
197 case SYMBOL_REF:
198 case LABEL_REF:
199 return 0;
201 case REG:
202 /* Note that we have to test for the actual rtx used for the frame
203 and arg pointers and not just the register number in case we have
204 eliminated the frame and/or arg pointer and are using it
205 for pseudos. */
206 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
207 /* The arg pointer varies if it is not a fixed register. */
208 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
209 return 0;
210 if (x == pic_offset_table_rtx
211 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
212 /* ??? When call-clobbered, the value is stable modulo the restore
213 that must happen after a call. This currently screws up
214 local-alloc into believing that the restore is not needed, so we
215 must return 0 only if we are called from alias analysis. */
216 && for_alias
217 #endif
219 return 0;
220 return 1;
222 case LO_SUM:
223 /* The operand 0 of a LO_SUM is considered constant
224 (in fact it is related specifically to operand 1)
225 during alias analysis. */
226 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
227 || rtx_varies_p (XEXP (x, 1), for_alias);
229 case ASM_OPERANDS:
230 if (MEM_VOLATILE_P (x))
231 return 1;
233 /* Fall through. */
235 default:
236 break;
239 fmt = GET_RTX_FORMAT (code);
240 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
241 if (fmt[i] == 'e')
243 if (rtx_varies_p (XEXP (x, i), for_alias))
244 return 1;
246 else if (fmt[i] == 'E')
248 int j;
249 for (j = 0; j < XVECLEN (x, i); j++)
250 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
251 return 1;
254 return 0;
257 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
258 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
259 whether nonzero is returned for unaligned memory accesses on strict
260 alignment machines. */
262 static int
263 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
265 enum rtx_code code = GET_CODE (x);
267 switch (code)
269 case SYMBOL_REF:
270 return SYMBOL_REF_WEAK (x);
272 case LABEL_REF:
273 return 0;
275 case REG:
276 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
277 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
278 || x == stack_pointer_rtx
279 /* The arg pointer varies if it is not a fixed register. */
280 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
281 return 0;
282 /* All of the virtual frame registers are stack references. */
283 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
284 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
285 return 0;
286 return 1;
288 case CONST:
289 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
291 case PLUS:
292 /* An address is assumed not to trap if:
293 - it is an address that can't trap plus a constant integer,
294 with the proper remainder modulo the mode size if we are
295 considering unaligned memory references. */
296 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
297 && GET_CODE (XEXP (x, 1)) == CONST_INT)
299 HOST_WIDE_INT offset;
301 if (!STRICT_ALIGNMENT
302 || !unaligned_mems
303 || GET_MODE_SIZE (mode) == 0)
304 return 0;
306 offset = INTVAL (XEXP (x, 1));
308 #ifdef SPARC_STACK_BOUNDARY_HACK
309 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
310 the real alignment of %sp. However, when it does this, the
311 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
312 if (SPARC_STACK_BOUNDARY_HACK
313 && (XEXP (x, 0) == stack_pointer_rtx
314 || XEXP (x, 0) == hard_frame_pointer_rtx))
315 offset -= STACK_POINTER_OFFSET;
316 #endif
318 return offset % GET_MODE_SIZE (mode) != 0;
321 /* - or it is the pic register plus a constant. */
322 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
323 return 0;
325 return 1;
327 case LO_SUM:
328 case PRE_MODIFY:
329 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
331 case PRE_DEC:
332 case PRE_INC:
333 case POST_DEC:
334 case POST_INC:
335 case POST_MODIFY:
336 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
338 default:
339 break;
342 /* If it isn't one of the case above, it can cause a trap. */
343 return 1;
346 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
349 rtx_addr_can_trap_p (rtx x)
351 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
354 /* Return true if X is an address that is known to not be zero. */
356 bool
357 nonzero_address_p (rtx x)
359 enum rtx_code code = GET_CODE (x);
361 switch (code)
363 case SYMBOL_REF:
364 return !SYMBOL_REF_WEAK (x);
366 case LABEL_REF:
367 return true;
369 case REG:
370 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
371 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
372 || x == stack_pointer_rtx
373 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
374 return true;
375 /* All of the virtual frame registers are stack references. */
376 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
377 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
378 return true;
379 return false;
381 case CONST:
382 return nonzero_address_p (XEXP (x, 0));
384 case PLUS:
385 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
386 return nonzero_address_p (XEXP (x, 0));
387 /* Handle PIC references. */
388 else if (XEXP (x, 0) == pic_offset_table_rtx
389 && CONSTANT_P (XEXP (x, 1)))
390 return true;
391 return false;
393 case PRE_MODIFY:
394 /* Similar to the above; allow positive offsets. Further, since
395 auto-inc is only allowed in memories, the register must be a
396 pointer. */
397 if (GET_CODE (XEXP (x, 1)) == CONST_INT
398 && INTVAL (XEXP (x, 1)) > 0)
399 return true;
400 return nonzero_address_p (XEXP (x, 0));
402 case PRE_INC:
403 /* Similarly. Further, the offset is always positive. */
404 return true;
406 case PRE_DEC:
407 case POST_DEC:
408 case POST_INC:
409 case POST_MODIFY:
410 return nonzero_address_p (XEXP (x, 0));
412 case LO_SUM:
413 return nonzero_address_p (XEXP (x, 1));
415 default:
416 break;
419 /* If it isn't one of the case above, might be zero. */
420 return false;
423 /* Return 1 if X refers to a memory location whose address
424 cannot be compared reliably with constant addresses,
425 or if X refers to a BLKmode memory object.
426 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
427 zero, we are slightly more conservative. */
430 rtx_addr_varies_p (rtx x, int for_alias)
432 enum rtx_code code;
433 int i;
434 const char *fmt;
436 if (x == 0)
437 return 0;
439 code = GET_CODE (x);
440 if (code == MEM)
441 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
443 fmt = GET_RTX_FORMAT (code);
444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
445 if (fmt[i] == 'e')
447 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
448 return 1;
450 else if (fmt[i] == 'E')
452 int j;
453 for (j = 0; j < XVECLEN (x, i); j++)
454 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
455 return 1;
457 return 0;
460 /* Return the value of the integer term in X, if one is apparent;
461 otherwise return 0.
462 Only obvious integer terms are detected.
463 This is used in cse.c with the `related_value' field. */
465 HOST_WIDE_INT
466 get_integer_term (rtx x)
468 if (GET_CODE (x) == CONST)
469 x = XEXP (x, 0);
471 if (GET_CODE (x) == MINUS
472 && GET_CODE (XEXP (x, 1)) == CONST_INT)
473 return - INTVAL (XEXP (x, 1));
474 if (GET_CODE (x) == PLUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return INTVAL (XEXP (x, 1));
477 return 0;
480 /* If X is a constant, return the value sans apparent integer term;
481 otherwise return 0.
482 Only obvious integer terms are detected. */
485 get_related_value (rtx x)
487 if (GET_CODE (x) != CONST)
488 return 0;
489 x = XEXP (x, 0);
490 if (GET_CODE (x) == PLUS
491 && GET_CODE (XEXP (x, 1)) == CONST_INT)
492 return XEXP (x, 0);
493 else if (GET_CODE (x) == MINUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 return 0;
499 /* Return the number of places FIND appears within X. If COUNT_DEST is
500 zero, we do not count occurrences inside the destination of a SET. */
503 count_occurrences (rtx x, rtx find, int count_dest)
505 int i, j;
506 enum rtx_code code;
507 const char *format_ptr;
508 int count;
510 if (x == find)
511 return 1;
513 code = GET_CODE (x);
515 switch (code)
517 case REG:
518 case CONST_INT:
519 case CONST_DOUBLE:
520 case CONST_VECTOR:
521 case SYMBOL_REF:
522 case CODE_LABEL:
523 case PC:
524 case CC0:
525 return 0;
527 case EXPR_LIST:
528 count = count_occurrences (XEXP (x, 0), find, count_dest);
529 if (XEXP (x, 1))
530 count += count_occurrences (XEXP (x, 1), find, count_dest);
531 return count;
533 case MEM:
534 if (MEM_P (find) && rtx_equal_p (x, find))
535 return 1;
536 break;
538 case SET:
539 if (SET_DEST (x) == find && ! count_dest)
540 return count_occurrences (SET_SRC (x), find, count_dest);
541 break;
543 default:
544 break;
547 format_ptr = GET_RTX_FORMAT (code);
548 count = 0;
550 for (i = 0; i < GET_RTX_LENGTH (code); i++)
552 switch (*format_ptr++)
554 case 'e':
555 count += count_occurrences (XEXP (x, i), find, count_dest);
556 break;
558 case 'E':
559 for (j = 0; j < XVECLEN (x, i); j++)
560 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
561 break;
564 return count;
567 /* Nonzero if register REG appears somewhere within IN.
568 Also works if REG is not a register; in this case it checks
569 for a subexpression of IN that is Lisp "equal" to REG. */
572 reg_mentioned_p (rtx reg, rtx in)
574 const char *fmt;
575 int i;
576 enum rtx_code code;
578 if (in == 0)
579 return 0;
581 if (reg == in)
582 return 1;
584 if (GET_CODE (in) == LABEL_REF)
585 return reg == XEXP (in, 0);
587 code = GET_CODE (in);
589 switch (code)
591 /* Compare registers by number. */
592 case REG:
593 return REG_P (reg) && REGNO (in) == REGNO (reg);
595 /* These codes have no constituent expressions
596 and are unique. */
597 case SCRATCH:
598 case CC0:
599 case PC:
600 return 0;
602 case CONST_INT:
603 case CONST_VECTOR:
604 case CONST_DOUBLE:
605 /* These are kept unique for a given value. */
606 return 0;
608 default:
609 break;
612 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
613 return 1;
615 fmt = GET_RTX_FORMAT (code);
617 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
619 if (fmt[i] == 'E')
621 int j;
622 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
623 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
624 return 1;
626 else if (fmt[i] == 'e'
627 && reg_mentioned_p (reg, XEXP (in, i)))
628 return 1;
630 return 0;
633 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
634 no CODE_LABEL insn. */
637 no_labels_between_p (rtx beg, rtx end)
639 rtx p;
640 if (beg == end)
641 return 0;
642 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
643 if (LABEL_P (p))
644 return 0;
645 return 1;
648 /* Nonzero if register REG is used in an insn between
649 FROM_INSN and TO_INSN (exclusive of those two). */
652 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
654 rtx insn;
656 if (from_insn == to_insn)
657 return 0;
659 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
660 if (INSN_P (insn)
661 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
662 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
663 return 1;
664 return 0;
667 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
668 is entirely replaced by a new value and the only use is as a SET_DEST,
669 we do not consider it a reference. */
672 reg_referenced_p (rtx x, rtx body)
674 int i;
676 switch (GET_CODE (body))
678 case SET:
679 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
680 return 1;
682 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
683 of a REG that occupies all of the REG, the insn references X if
684 it is mentioned in the destination. */
685 if (GET_CODE (SET_DEST (body)) != CC0
686 && GET_CODE (SET_DEST (body)) != PC
687 && !REG_P (SET_DEST (body))
688 && ! (GET_CODE (SET_DEST (body)) == SUBREG
689 && REG_P (SUBREG_REG (SET_DEST (body)))
690 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
691 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
692 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
693 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
694 && reg_overlap_mentioned_p (x, SET_DEST (body)))
695 return 1;
696 return 0;
698 case ASM_OPERANDS:
699 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
700 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
701 return 1;
702 return 0;
704 case CALL:
705 case USE:
706 case IF_THEN_ELSE:
707 return reg_overlap_mentioned_p (x, body);
709 case TRAP_IF:
710 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
712 case PREFETCH:
713 return reg_overlap_mentioned_p (x, XEXP (body, 0));
715 case UNSPEC:
716 case UNSPEC_VOLATILE:
717 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
718 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
719 return 1;
720 return 0;
722 case PARALLEL:
723 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
724 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
725 return 1;
726 return 0;
728 case CLOBBER:
729 if (MEM_P (XEXP (body, 0)))
730 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
731 return 1;
732 return 0;
734 case COND_EXEC:
735 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
736 return 1;
737 return reg_referenced_p (x, COND_EXEC_CODE (body));
739 default:
740 return 0;
744 /* Nonzero if register REG is set or clobbered in an insn between
745 FROM_INSN and TO_INSN (exclusive of those two). */
748 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
750 rtx insn;
752 if (from_insn == to_insn)
753 return 0;
755 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
756 if (INSN_P (insn) && reg_set_p (reg, insn))
757 return 1;
758 return 0;
761 /* Internals of reg_set_between_p. */
763 reg_set_p (rtx reg, rtx insn)
765 /* We can be passed an insn or part of one. If we are passed an insn,
766 check if a side-effect of the insn clobbers REG. */
767 if (INSN_P (insn)
768 && (FIND_REG_INC_NOTE (insn, reg)
769 || (CALL_P (insn)
770 && ((REG_P (reg)
771 && REGNO (reg) < FIRST_PSEUDO_REGISTER
772 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
773 REGNO (reg)))
774 || MEM_P (reg)
775 || find_reg_fusage (insn, CLOBBER, reg)))))
776 return 1;
778 return set_of (reg, insn) != NULL_RTX;
781 /* Similar to reg_set_between_p, but check all registers in X. Return 0
782 only if none of them are modified between START and END. Return 1 if
783 X contains a MEM; this routine does usememory aliasing. */
786 modified_between_p (rtx x, rtx start, rtx end)
788 enum rtx_code code = GET_CODE (x);
789 const char *fmt;
790 int i, j;
791 rtx insn;
793 if (start == end)
794 return 0;
796 switch (code)
798 case CONST_INT:
799 case CONST_DOUBLE:
800 case CONST_VECTOR:
801 case CONST:
802 case SYMBOL_REF:
803 case LABEL_REF:
804 return 0;
806 case PC:
807 case CC0:
808 return 1;
810 case MEM:
811 if (modified_between_p (XEXP (x, 0), start, end))
812 return 1;
813 if (MEM_READONLY_P (x))
814 return 0;
815 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
816 if (memory_modified_in_insn_p (x, insn))
817 return 1;
818 return 0;
819 break;
821 case REG:
822 return reg_set_between_p (x, start, end);
824 default:
825 break;
828 fmt = GET_RTX_FORMAT (code);
829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
831 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
832 return 1;
834 else if (fmt[i] == 'E')
835 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
836 if (modified_between_p (XVECEXP (x, i, j), start, end))
837 return 1;
840 return 0;
843 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
844 of them are modified in INSN. Return 1 if X contains a MEM; this routine
845 does use memory aliasing. */
848 modified_in_p (rtx x, rtx insn)
850 enum rtx_code code = GET_CODE (x);
851 const char *fmt;
852 int i, j;
854 switch (code)
856 case CONST_INT:
857 case CONST_DOUBLE:
858 case CONST_VECTOR:
859 case CONST:
860 case SYMBOL_REF:
861 case LABEL_REF:
862 return 0;
864 case PC:
865 case CC0:
866 return 1;
868 case MEM:
869 if (modified_in_p (XEXP (x, 0), insn))
870 return 1;
871 if (MEM_READONLY_P (x))
872 return 0;
873 if (memory_modified_in_insn_p (x, insn))
874 return 1;
875 return 0;
876 break;
878 case REG:
879 return reg_set_p (x, insn);
881 default:
882 break;
885 fmt = GET_RTX_FORMAT (code);
886 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
888 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
889 return 1;
891 else if (fmt[i] == 'E')
892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
893 if (modified_in_p (XVECEXP (x, i, j), insn))
894 return 1;
897 return 0;
900 /* Helper function for set_of. */
901 struct set_of_data
903 rtx found;
904 rtx pat;
907 static void
908 set_of_1 (rtx x, rtx pat, void *data1)
910 struct set_of_data *data = (struct set_of_data *) (data1);
911 if (rtx_equal_p (x, data->pat)
912 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
913 data->found = pat;
916 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
917 (either directly or via STRICT_LOW_PART and similar modifiers). */
919 set_of (rtx pat, rtx insn)
921 struct set_of_data data;
922 data.found = NULL_RTX;
923 data.pat = pat;
924 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
925 return data.found;
928 /* Given an INSN, return a SET expression if this insn has only a single SET.
929 It may also have CLOBBERs, USEs, or SET whose output
930 will not be used, which we ignore. */
933 single_set_2 (rtx insn, rtx pat)
935 rtx set = NULL;
936 int set_verified = 1;
937 int i;
939 if (GET_CODE (pat) == PARALLEL)
941 for (i = 0; i < XVECLEN (pat, 0); i++)
943 rtx sub = XVECEXP (pat, 0, i);
944 switch (GET_CODE (sub))
946 case USE:
947 case CLOBBER:
948 break;
950 case SET:
951 /* We can consider insns having multiple sets, where all
952 but one are dead as single set insns. In common case
953 only single set is present in the pattern so we want
954 to avoid checking for REG_UNUSED notes unless necessary.
956 When we reach set first time, we just expect this is
957 the single set we are looking for and only when more
958 sets are found in the insn, we check them. */
959 if (!set_verified)
961 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
962 && !side_effects_p (set))
963 set = NULL;
964 else
965 set_verified = 1;
967 if (!set)
968 set = sub, set_verified = 0;
969 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
970 || side_effects_p (sub))
971 return NULL_RTX;
972 break;
974 default:
975 return NULL_RTX;
979 return set;
982 /* Given an INSN, return nonzero if it has more than one SET, else return
983 zero. */
986 multiple_sets (rtx insn)
988 int found;
989 int i;
991 /* INSN must be an insn. */
992 if (! INSN_P (insn))
993 return 0;
995 /* Only a PARALLEL can have multiple SETs. */
996 if (GET_CODE (PATTERN (insn)) == PARALLEL)
998 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
999 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1001 /* If we have already found a SET, then return now. */
1002 if (found)
1003 return 1;
1004 else
1005 found = 1;
1009 /* Either zero or one SET. */
1010 return 0;
1013 /* Return nonzero if the destination of SET equals the source
1014 and there are no side effects. */
1017 set_noop_p (rtx set)
1019 rtx src = SET_SRC (set);
1020 rtx dst = SET_DEST (set);
1022 if (dst == pc_rtx && src == pc_rtx)
1023 return 1;
1025 if (MEM_P (dst) && MEM_P (src))
1026 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1028 if (GET_CODE (dst) == ZERO_EXTRACT)
1029 return rtx_equal_p (XEXP (dst, 0), src)
1030 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1031 && !side_effects_p (src);
1033 if (GET_CODE (dst) == STRICT_LOW_PART)
1034 dst = XEXP (dst, 0);
1036 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1038 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1039 return 0;
1040 src = SUBREG_REG (src);
1041 dst = SUBREG_REG (dst);
1044 return (REG_P (src) && REG_P (dst)
1045 && REGNO (src) == REGNO (dst));
1048 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1049 value to itself. */
1052 noop_move_p (rtx insn)
1054 rtx pat = PATTERN (insn);
1056 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1057 return 1;
1059 /* Insns carrying these notes are useful later on. */
1060 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1061 return 0;
1063 /* For now treat an insn with a REG_RETVAL note as a
1064 a special insn which should not be considered a no-op. */
1065 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1066 return 0;
1068 if (GET_CODE (pat) == SET && set_noop_p (pat))
1069 return 1;
1071 if (GET_CODE (pat) == PARALLEL)
1073 int i;
1074 /* If nothing but SETs of registers to themselves,
1075 this insn can also be deleted. */
1076 for (i = 0; i < XVECLEN (pat, 0); i++)
1078 rtx tem = XVECEXP (pat, 0, i);
1080 if (GET_CODE (tem) == USE
1081 || GET_CODE (tem) == CLOBBER)
1082 continue;
1084 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1085 return 0;
1088 return 1;
1090 return 0;
1094 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1095 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1096 If the object was modified, if we hit a partial assignment to X, or hit a
1097 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1098 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1099 be the src. */
1102 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1104 rtx p;
1106 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1107 p = PREV_INSN (p))
1108 if (INSN_P (p))
1110 rtx set = single_set (p);
1111 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1113 if (set && rtx_equal_p (x, SET_DEST (set)))
1115 rtx src = SET_SRC (set);
1117 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1118 src = XEXP (note, 0);
1120 if ((valid_to == NULL_RTX
1121 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1122 /* Reject hard registers because we don't usually want
1123 to use them; we'd rather use a pseudo. */
1124 && (! (REG_P (src)
1125 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1127 *pinsn = p;
1128 return src;
1132 /* If set in non-simple way, we don't have a value. */
1133 if (reg_set_p (x, p))
1134 break;
1137 return x;
1140 /* Return nonzero if register in range [REGNO, ENDREGNO)
1141 appears either explicitly or implicitly in X
1142 other than being stored into.
1144 References contained within the substructure at LOC do not count.
1145 LOC may be zero, meaning don't ignore anything. */
1148 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1149 rtx *loc)
1151 int i;
1152 unsigned int x_regno;
1153 RTX_CODE code;
1154 const char *fmt;
1156 repeat:
1157 /* The contents of a REG_NONNEG note is always zero, so we must come here
1158 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1159 if (x == 0)
1160 return 0;
1162 code = GET_CODE (x);
1164 switch (code)
1166 case REG:
1167 x_regno = REGNO (x);
1169 /* If we modifying the stack, frame, or argument pointer, it will
1170 clobber a virtual register. In fact, we could be more precise,
1171 but it isn't worth it. */
1172 if ((x_regno == STACK_POINTER_REGNUM
1173 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1174 || x_regno == ARG_POINTER_REGNUM
1175 #endif
1176 || x_regno == FRAME_POINTER_REGNUM)
1177 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1178 return 1;
1180 return (endregno > x_regno
1181 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1182 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1183 : 1));
1185 case SUBREG:
1186 /* If this is a SUBREG of a hard reg, we can see exactly which
1187 registers are being modified. Otherwise, handle normally. */
1188 if (REG_P (SUBREG_REG (x))
1189 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1191 unsigned int inner_regno = subreg_regno (x);
1192 unsigned int inner_endregno
1193 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1194 ? subreg_nregs (x) : 1);
1196 return endregno > inner_regno && regno < inner_endregno;
1198 break;
1200 case CLOBBER:
1201 case SET:
1202 if (&SET_DEST (x) != loc
1203 /* Note setting a SUBREG counts as referring to the REG it is in for
1204 a pseudo but not for hard registers since we can
1205 treat each word individually. */
1206 && ((GET_CODE (SET_DEST (x)) == SUBREG
1207 && loc != &SUBREG_REG (SET_DEST (x))
1208 && REG_P (SUBREG_REG (SET_DEST (x)))
1209 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1210 && refers_to_regno_p (regno, endregno,
1211 SUBREG_REG (SET_DEST (x)), loc))
1212 || (!REG_P (SET_DEST (x))
1213 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1214 return 1;
1216 if (code == CLOBBER || loc == &SET_SRC (x))
1217 return 0;
1218 x = SET_SRC (x);
1219 goto repeat;
1221 default:
1222 break;
1225 /* X does not match, so try its subexpressions. */
1227 fmt = GET_RTX_FORMAT (code);
1228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1230 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1232 if (i == 0)
1234 x = XEXP (x, 0);
1235 goto repeat;
1237 else
1238 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1239 return 1;
1241 else if (fmt[i] == 'E')
1243 int j;
1244 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1245 if (loc != &XVECEXP (x, i, j)
1246 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1247 return 1;
1250 return 0;
1253 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1254 we check if any register number in X conflicts with the relevant register
1255 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1256 contains a MEM (we don't bother checking for memory addresses that can't
1257 conflict because we expect this to be a rare case. */
1260 reg_overlap_mentioned_p (rtx x, rtx in)
1262 unsigned int regno, endregno;
1264 /* If either argument is a constant, then modifying X can not
1265 affect IN. Here we look at IN, we can profitably combine
1266 CONSTANT_P (x) with the switch statement below. */
1267 if (CONSTANT_P (in))
1268 return 0;
1270 recurse:
1271 switch (GET_CODE (x))
1273 case STRICT_LOW_PART:
1274 case ZERO_EXTRACT:
1275 case SIGN_EXTRACT:
1276 /* Overly conservative. */
1277 x = XEXP (x, 0);
1278 goto recurse;
1280 case SUBREG:
1281 regno = REGNO (SUBREG_REG (x));
1282 if (regno < FIRST_PSEUDO_REGISTER)
1283 regno = subreg_regno (x);
1284 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1285 ? subreg_nregs (x) : 1);
1286 goto do_reg;
1288 case REG:
1289 regno = REGNO (x);
1290 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1291 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1292 do_reg:
1293 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1295 case MEM:
1297 const char *fmt;
1298 int i;
1300 if (MEM_P (in))
1301 return 1;
1303 fmt = GET_RTX_FORMAT (GET_CODE (in));
1304 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1305 if (fmt[i] == 'e')
1307 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1308 return 1;
1310 else if (fmt[i] == 'E')
1312 int j;
1313 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1314 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1315 return 1;
1318 return 0;
1321 case SCRATCH:
1322 case PC:
1323 case CC0:
1324 return reg_mentioned_p (x, in);
1326 case PARALLEL:
1328 int i;
1330 /* If any register in here refers to it we return true. */
1331 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1332 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1333 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1334 return 1;
1335 return 0;
1338 default:
1339 gcc_assert (CONSTANT_P (x));
1340 return 0;
1344 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1345 (X would be the pattern of an insn).
1346 FUN receives two arguments:
1347 the REG, MEM, CC0 or PC being stored in or clobbered,
1348 the SET or CLOBBER rtx that does the store.
1350 If the item being stored in or clobbered is a SUBREG of a hard register,
1351 the SUBREG will be passed. */
1353 void
1354 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1356 int i;
1358 if (GET_CODE (x) == COND_EXEC)
1359 x = COND_EXEC_CODE (x);
1361 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1363 rtx dest = SET_DEST (x);
1365 while ((GET_CODE (dest) == SUBREG
1366 && (!REG_P (SUBREG_REG (dest))
1367 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1368 || GET_CODE (dest) == ZERO_EXTRACT
1369 || GET_CODE (dest) == STRICT_LOW_PART)
1370 dest = XEXP (dest, 0);
1372 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1373 each of whose first operand is a register. */
1374 if (GET_CODE (dest) == PARALLEL)
1376 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1377 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1378 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1380 else
1381 (*fun) (dest, x, data);
1384 else if (GET_CODE (x) == PARALLEL)
1385 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1386 note_stores (XVECEXP (x, 0, i), fun, data);
1389 /* Like notes_stores, but call FUN for each expression that is being
1390 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1391 FUN for each expression, not any interior subexpressions. FUN receives a
1392 pointer to the expression and the DATA passed to this function.
1394 Note that this is not quite the same test as that done in reg_referenced_p
1395 since that considers something as being referenced if it is being
1396 partially set, while we do not. */
1398 void
1399 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1401 rtx body = *pbody;
1402 int i;
1404 switch (GET_CODE (body))
1406 case COND_EXEC:
1407 (*fun) (&COND_EXEC_TEST (body), data);
1408 note_uses (&COND_EXEC_CODE (body), fun, data);
1409 return;
1411 case PARALLEL:
1412 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1413 note_uses (&XVECEXP (body, 0, i), fun, data);
1414 return;
1416 case SEQUENCE:
1417 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1418 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1419 return;
1421 case USE:
1422 (*fun) (&XEXP (body, 0), data);
1423 return;
1425 case ASM_OPERANDS:
1426 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1427 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1428 return;
1430 case TRAP_IF:
1431 (*fun) (&TRAP_CONDITION (body), data);
1432 return;
1434 case PREFETCH:
1435 (*fun) (&XEXP (body, 0), data);
1436 return;
1438 case UNSPEC:
1439 case UNSPEC_VOLATILE:
1440 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1441 (*fun) (&XVECEXP (body, 0, i), data);
1442 return;
1444 case CLOBBER:
1445 if (MEM_P (XEXP (body, 0)))
1446 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1447 return;
1449 case SET:
1451 rtx dest = SET_DEST (body);
1453 /* For sets we replace everything in source plus registers in memory
1454 expression in store and operands of a ZERO_EXTRACT. */
1455 (*fun) (&SET_SRC (body), data);
1457 if (GET_CODE (dest) == ZERO_EXTRACT)
1459 (*fun) (&XEXP (dest, 1), data);
1460 (*fun) (&XEXP (dest, 2), data);
1463 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1464 dest = XEXP (dest, 0);
1466 if (MEM_P (dest))
1467 (*fun) (&XEXP (dest, 0), data);
1469 return;
1471 default:
1472 /* All the other possibilities never store. */
1473 (*fun) (pbody, data);
1474 return;
1478 /* Return nonzero if X's old contents don't survive after INSN.
1479 This will be true if X is (cc0) or if X is a register and
1480 X dies in INSN or because INSN entirely sets X.
1482 "Entirely set" means set directly and not through a SUBREG, or
1483 ZERO_EXTRACT, so no trace of the old contents remains.
1484 Likewise, REG_INC does not count.
1486 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1487 but for this use that makes no difference, since regs don't overlap
1488 during their lifetimes. Therefore, this function may be used
1489 at any time after deaths have been computed (in flow.c).
1491 If REG is a hard reg that occupies multiple machine registers, this
1492 function will only return 1 if each of those registers will be replaced
1493 by INSN. */
1496 dead_or_set_p (rtx insn, rtx x)
1498 unsigned int regno, last_regno;
1499 unsigned int i;
1501 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1502 if (GET_CODE (x) == CC0)
1503 return 1;
1505 gcc_assert (REG_P (x));
1507 regno = REGNO (x);
1508 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1509 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1511 for (i = regno; i <= last_regno; i++)
1512 if (! dead_or_set_regno_p (insn, i))
1513 return 0;
1515 return 1;
1518 /* Return TRUE iff DEST is a register or subreg of a register and
1519 doesn't change the number of words of the inner register, and any
1520 part of the register is TEST_REGNO. */
1522 static bool
1523 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1525 unsigned int regno, endregno;
1527 if (GET_CODE (dest) == SUBREG
1528 && (((GET_MODE_SIZE (GET_MODE (dest))
1529 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1530 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1531 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1532 dest = SUBREG_REG (dest);
1534 if (!REG_P (dest))
1535 return false;
1537 regno = REGNO (dest);
1538 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1539 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1540 return (test_regno >= regno && test_regno < endregno);
1543 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1544 any member matches the covers_regno_no_parallel_p criteria. */
1546 static bool
1547 covers_regno_p (rtx dest, unsigned int test_regno)
1549 if (GET_CODE (dest) == PARALLEL)
1551 /* Some targets place small structures in registers for return
1552 values of functions, and those registers are wrapped in
1553 PARALLELs that we may see as the destination of a SET. */
1554 int i;
1556 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1558 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1559 if (inner != NULL_RTX
1560 && covers_regno_no_parallel_p (inner, test_regno))
1561 return true;
1564 return false;
1566 else
1567 return covers_regno_no_parallel_p (dest, test_regno);
1570 /* Utility function for dead_or_set_p to check an individual register. Also
1571 called from flow.c. */
1574 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1576 rtx pattern;
1578 /* See if there is a death note for something that includes TEST_REGNO. */
1579 if (find_regno_note (insn, REG_DEAD, test_regno))
1580 return 1;
1582 if (CALL_P (insn)
1583 && find_regno_fusage (insn, CLOBBER, test_regno))
1584 return 1;
1586 pattern = PATTERN (insn);
1588 if (GET_CODE (pattern) == COND_EXEC)
1589 pattern = COND_EXEC_CODE (pattern);
1591 if (GET_CODE (pattern) == SET)
1592 return covers_regno_p (SET_DEST (pattern), test_regno);
1593 else if (GET_CODE (pattern) == PARALLEL)
1595 int i;
1597 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1599 rtx body = XVECEXP (pattern, 0, i);
1601 if (GET_CODE (body) == COND_EXEC)
1602 body = COND_EXEC_CODE (body);
1604 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1605 && covers_regno_p (SET_DEST (body), test_regno))
1606 return 1;
1610 return 0;
1613 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1614 If DATUM is nonzero, look for one whose datum is DATUM. */
1617 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1619 rtx link;
1621 gcc_assert (insn);
1623 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1624 if (! INSN_P (insn))
1625 return 0;
1626 if (datum == 0)
1628 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1629 if (REG_NOTE_KIND (link) == kind)
1630 return link;
1631 return 0;
1634 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1635 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1636 return link;
1637 return 0;
1640 /* Return the reg-note of kind KIND in insn INSN which applies to register
1641 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1642 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1643 it might be the case that the note overlaps REGNO. */
1646 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1648 rtx link;
1650 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1651 if (! INSN_P (insn))
1652 return 0;
1654 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1655 if (REG_NOTE_KIND (link) == kind
1656 /* Verify that it is a register, so that scratch and MEM won't cause a
1657 problem here. */
1658 && REG_P (XEXP (link, 0))
1659 && REGNO (XEXP (link, 0)) <= regno
1660 && ((REGNO (XEXP (link, 0))
1661 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1662 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1663 [GET_MODE (XEXP (link, 0))]))
1664 > regno))
1665 return link;
1666 return 0;
1669 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1670 has such a note. */
1673 find_reg_equal_equiv_note (rtx insn)
1675 rtx link;
1677 if (!INSN_P (insn))
1678 return 0;
1679 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1680 if (REG_NOTE_KIND (link) == REG_EQUAL
1681 || REG_NOTE_KIND (link) == REG_EQUIV)
1683 if (single_set (insn) == 0)
1684 return 0;
1685 return link;
1687 return NULL;
1690 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1691 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1694 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1696 /* If it's not a CALL_INSN, it can't possibly have a
1697 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1698 if (!CALL_P (insn))
1699 return 0;
1701 gcc_assert (datum);
1703 if (!REG_P (datum))
1705 rtx link;
1707 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1708 link;
1709 link = XEXP (link, 1))
1710 if (GET_CODE (XEXP (link, 0)) == code
1711 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1712 return 1;
1714 else
1716 unsigned int regno = REGNO (datum);
1718 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1719 to pseudo registers, so don't bother checking. */
1721 if (regno < FIRST_PSEUDO_REGISTER)
1723 unsigned int end_regno
1724 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1725 unsigned int i;
1727 for (i = regno; i < end_regno; i++)
1728 if (find_regno_fusage (insn, code, i))
1729 return 1;
1733 return 0;
1736 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1737 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1740 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1742 rtx link;
1744 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1745 to pseudo registers, so don't bother checking. */
1747 if (regno >= FIRST_PSEUDO_REGISTER
1748 || !CALL_P (insn) )
1749 return 0;
1751 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1753 unsigned int regnote;
1754 rtx op, reg;
1756 if (GET_CODE (op = XEXP (link, 0)) == code
1757 && REG_P (reg = XEXP (op, 0))
1758 && (regnote = REGNO (reg)) <= regno
1759 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1760 return 1;
1763 return 0;
1766 /* Return true if INSN is a call to a pure function. */
1769 pure_call_p (rtx insn)
1771 rtx link;
1773 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1774 return 0;
1776 /* Look for the note that differentiates const and pure functions. */
1777 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1779 rtx u, m;
1781 if (GET_CODE (u = XEXP (link, 0)) == USE
1782 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1783 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1784 return 1;
1787 return 0;
1790 /* Remove register note NOTE from the REG_NOTES of INSN. */
1792 void
1793 remove_note (rtx insn, rtx note)
1795 rtx link;
1797 if (note == NULL_RTX)
1798 return;
1800 if (REG_NOTES (insn) == note)
1802 REG_NOTES (insn) = XEXP (note, 1);
1803 return;
1806 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1807 if (XEXP (link, 1) == note)
1809 XEXP (link, 1) = XEXP (note, 1);
1810 return;
1813 gcc_unreachable ();
1816 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1817 return 1 if it is found. A simple equality test is used to determine if
1818 NODE matches. */
1821 in_expr_list_p (rtx listp, rtx node)
1823 rtx x;
1825 for (x = listp; x; x = XEXP (x, 1))
1826 if (node == XEXP (x, 0))
1827 return 1;
1829 return 0;
1832 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1833 remove that entry from the list if it is found.
1835 A simple equality test is used to determine if NODE matches. */
1837 void
1838 remove_node_from_expr_list (rtx node, rtx *listp)
1840 rtx temp = *listp;
1841 rtx prev = NULL_RTX;
1843 while (temp)
1845 if (node == XEXP (temp, 0))
1847 /* Splice the node out of the list. */
1848 if (prev)
1849 XEXP (prev, 1) = XEXP (temp, 1);
1850 else
1851 *listp = XEXP (temp, 1);
1853 return;
1856 prev = temp;
1857 temp = XEXP (temp, 1);
1861 /* Nonzero if X contains any volatile instructions. These are instructions
1862 which may cause unpredictable machine state instructions, and thus no
1863 instructions should be moved or combined across them. This includes
1864 only volatile asms and UNSPEC_VOLATILE instructions. */
1867 volatile_insn_p (rtx x)
1869 RTX_CODE code;
1871 code = GET_CODE (x);
1872 switch (code)
1874 case LABEL_REF:
1875 case SYMBOL_REF:
1876 case CONST_INT:
1877 case CONST:
1878 case CONST_DOUBLE:
1879 case CONST_VECTOR:
1880 case CC0:
1881 case PC:
1882 case REG:
1883 case SCRATCH:
1884 case CLOBBER:
1885 case ADDR_VEC:
1886 case ADDR_DIFF_VEC:
1887 case CALL:
1888 case MEM:
1889 return 0;
1891 case UNSPEC_VOLATILE:
1892 /* case TRAP_IF: This isn't clear yet. */
1893 return 1;
1895 case ASM_INPUT:
1896 case ASM_OPERANDS:
1897 if (MEM_VOLATILE_P (x))
1898 return 1;
1900 default:
1901 break;
1904 /* Recursively scan the operands of this expression. */
1907 const char *fmt = GET_RTX_FORMAT (code);
1908 int i;
1910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1912 if (fmt[i] == 'e')
1914 if (volatile_insn_p (XEXP (x, i)))
1915 return 1;
1917 else if (fmt[i] == 'E')
1919 int j;
1920 for (j = 0; j < XVECLEN (x, i); j++)
1921 if (volatile_insn_p (XVECEXP (x, i, j)))
1922 return 1;
1926 return 0;
1929 /* Nonzero if X contains any volatile memory references
1930 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1933 volatile_refs_p (rtx x)
1935 RTX_CODE code;
1937 code = GET_CODE (x);
1938 switch (code)
1940 case LABEL_REF:
1941 case SYMBOL_REF:
1942 case CONST_INT:
1943 case CONST:
1944 case CONST_DOUBLE:
1945 case CONST_VECTOR:
1946 case CC0:
1947 case PC:
1948 case REG:
1949 case SCRATCH:
1950 case CLOBBER:
1951 case ADDR_VEC:
1952 case ADDR_DIFF_VEC:
1953 return 0;
1955 case UNSPEC_VOLATILE:
1956 return 1;
1958 case MEM:
1959 case ASM_INPUT:
1960 case ASM_OPERANDS:
1961 if (MEM_VOLATILE_P (x))
1962 return 1;
1964 default:
1965 break;
1968 /* Recursively scan the operands of this expression. */
1971 const char *fmt = GET_RTX_FORMAT (code);
1972 int i;
1974 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1976 if (fmt[i] == 'e')
1978 if (volatile_refs_p (XEXP (x, i)))
1979 return 1;
1981 else if (fmt[i] == 'E')
1983 int j;
1984 for (j = 0; j < XVECLEN (x, i); j++)
1985 if (volatile_refs_p (XVECEXP (x, i, j)))
1986 return 1;
1990 return 0;
1993 /* Similar to above, except that it also rejects register pre- and post-
1994 incrementing. */
1997 side_effects_p (rtx x)
1999 RTX_CODE code;
2001 code = GET_CODE (x);
2002 switch (code)
2004 case LABEL_REF:
2005 case SYMBOL_REF:
2006 case CONST_INT:
2007 case CONST:
2008 case CONST_DOUBLE:
2009 case CONST_VECTOR:
2010 case CC0:
2011 case PC:
2012 case REG:
2013 case SCRATCH:
2014 case ADDR_VEC:
2015 case ADDR_DIFF_VEC:
2016 return 0;
2018 case CLOBBER:
2019 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2020 when some combination can't be done. If we see one, don't think
2021 that we can simplify the expression. */
2022 return (GET_MODE (x) != VOIDmode);
2024 case PRE_INC:
2025 case PRE_DEC:
2026 case POST_INC:
2027 case POST_DEC:
2028 case PRE_MODIFY:
2029 case POST_MODIFY:
2030 case CALL:
2031 case UNSPEC_VOLATILE:
2032 /* case TRAP_IF: This isn't clear yet. */
2033 return 1;
2035 case MEM:
2036 case ASM_INPUT:
2037 case ASM_OPERANDS:
2038 if (MEM_VOLATILE_P (x))
2039 return 1;
2041 default:
2042 break;
2045 /* Recursively scan the operands of this expression. */
2048 const char *fmt = GET_RTX_FORMAT (code);
2049 int i;
2051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2053 if (fmt[i] == 'e')
2055 if (side_effects_p (XEXP (x, i)))
2056 return 1;
2058 else if (fmt[i] == 'E')
2060 int j;
2061 for (j = 0; j < XVECLEN (x, i); j++)
2062 if (side_effects_p (XVECEXP (x, i, j)))
2063 return 1;
2067 return 0;
2070 enum may_trap_p_flags
2072 MTP_UNALIGNED_MEMS = 1,
2073 MTP_AFTER_MOVE = 2
2075 /* Return nonzero if evaluating rtx X might cause a trap.
2076 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2077 unaligned memory accesses on strict alignment machines. If
2078 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2079 cannot trap at its current location, but it might become trapping if moved
2080 elsewhere. */
2082 static int
2083 may_trap_p_1 (rtx x, unsigned flags)
2085 int i;
2086 enum rtx_code code;
2087 const char *fmt;
2088 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2090 if (x == 0)
2091 return 0;
2092 code = GET_CODE (x);
2093 switch (code)
2095 /* Handle these cases quickly. */
2096 case CONST_INT:
2097 case CONST_DOUBLE:
2098 case CONST_VECTOR:
2099 case SYMBOL_REF:
2100 case LABEL_REF:
2101 case CONST:
2102 case PC:
2103 case CC0:
2104 case REG:
2105 case SCRATCH:
2106 return 0;
2108 case ASM_INPUT:
2109 case UNSPEC_VOLATILE:
2110 case TRAP_IF:
2111 return 1;
2113 case ASM_OPERANDS:
2114 return MEM_VOLATILE_P (x);
2116 /* Memory ref can trap unless it's a static var or a stack slot. */
2117 case MEM:
2118 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2119 reference; moving it out of condition might cause its address
2120 become invalid. */
2121 !(flags & MTP_AFTER_MOVE)
2122 && MEM_NOTRAP_P (x)
2123 && (!STRICT_ALIGNMENT || !unaligned_mems))
2124 return 0;
2125 return
2126 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2128 /* Division by a non-constant might trap. */
2129 case DIV:
2130 case MOD:
2131 case UDIV:
2132 case UMOD:
2133 if (HONOR_SNANS (GET_MODE (x)))
2134 return 1;
2135 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2136 return flag_trapping_math;
2137 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2138 return 1;
2139 break;
2141 case EXPR_LIST:
2142 /* An EXPR_LIST is used to represent a function call. This
2143 certainly may trap. */
2144 return 1;
2146 case GE:
2147 case GT:
2148 case LE:
2149 case LT:
2150 case LTGT:
2151 case COMPARE:
2152 /* Some floating point comparisons may trap. */
2153 if (!flag_trapping_math)
2154 break;
2155 /* ??? There is no machine independent way to check for tests that trap
2156 when COMPARE is used, though many targets do make this distinction.
2157 For instance, sparc uses CCFPE for compares which generate exceptions
2158 and CCFP for compares which do not generate exceptions. */
2159 if (HONOR_NANS (GET_MODE (x)))
2160 return 1;
2161 /* But often the compare has some CC mode, so check operand
2162 modes as well. */
2163 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2164 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2165 return 1;
2166 break;
2168 case EQ:
2169 case NE:
2170 if (HONOR_SNANS (GET_MODE (x)))
2171 return 1;
2172 /* Often comparison is CC mode, so check operand modes. */
2173 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2174 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2175 return 1;
2176 break;
2178 case FIX:
2179 /* Conversion of floating point might trap. */
2180 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2181 return 1;
2182 break;
2184 case NEG:
2185 case ABS:
2186 case SUBREG:
2187 /* These operations don't trap even with floating point. */
2188 break;
2190 default:
2191 /* Any floating arithmetic may trap. */
2192 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2193 && flag_trapping_math)
2194 return 1;
2197 fmt = GET_RTX_FORMAT (code);
2198 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2200 if (fmt[i] == 'e')
2202 if (may_trap_p_1 (XEXP (x, i), flags))
2203 return 1;
2205 else if (fmt[i] == 'E')
2207 int j;
2208 for (j = 0; j < XVECLEN (x, i); j++)
2209 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2210 return 1;
2213 return 0;
2216 /* Return nonzero if evaluating rtx X might cause a trap. */
2219 may_trap_p (rtx x)
2221 return may_trap_p_1 (x, 0);
2224 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2225 is moved from its current location by some optimization. */
2228 may_trap_after_code_motion_p (rtx x)
2230 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2233 /* Same as above, but additionally return nonzero if evaluating rtx X might
2234 cause a fault. We define a fault for the purpose of this function as a
2235 erroneous execution condition that cannot be encountered during the normal
2236 execution of a valid program; the typical example is an unaligned memory
2237 access on a strict alignment machine. The compiler guarantees that it
2238 doesn't generate code that will fault from a valid program, but this
2239 guarantee doesn't mean anything for individual instructions. Consider
2240 the following example:
2242 struct S { int d; union { char *cp; int *ip; }; };
2244 int foo(struct S *s)
2246 if (s->d == 1)
2247 return *s->ip;
2248 else
2249 return *s->cp;
2252 on a strict alignment machine. In a valid program, foo will never be
2253 invoked on a structure for which d is equal to 1 and the underlying
2254 unique field of the union not aligned on a 4-byte boundary, but the
2255 expression *s->ip might cause a fault if considered individually.
2257 At the RTL level, potentially problematic expressions will almost always
2258 verify may_trap_p; for example, the above dereference can be emitted as
2259 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2260 However, suppose that foo is inlined in a caller that causes s->cp to
2261 point to a local character variable and guarantees that s->d is not set
2262 to 1; foo may have been effectively translated into pseudo-RTL as:
2264 if ((reg:SI) == 1)
2265 (set (reg:SI) (mem:SI (%fp - 7)))
2266 else
2267 (set (reg:QI) (mem:QI (%fp - 7)))
2269 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2270 memory reference to a stack slot, but it will certainly cause a fault
2271 on a strict alignment machine. */
2274 may_trap_or_fault_p (rtx x)
2276 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2279 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2280 i.e., an inequality. */
2283 inequality_comparisons_p (rtx x)
2285 const char *fmt;
2286 int len, i;
2287 enum rtx_code code = GET_CODE (x);
2289 switch (code)
2291 case REG:
2292 case SCRATCH:
2293 case PC:
2294 case CC0:
2295 case CONST_INT:
2296 case CONST_DOUBLE:
2297 case CONST_VECTOR:
2298 case CONST:
2299 case LABEL_REF:
2300 case SYMBOL_REF:
2301 return 0;
2303 case LT:
2304 case LTU:
2305 case GT:
2306 case GTU:
2307 case LE:
2308 case LEU:
2309 case GE:
2310 case GEU:
2311 return 1;
2313 default:
2314 break;
2317 len = GET_RTX_LENGTH (code);
2318 fmt = GET_RTX_FORMAT (code);
2320 for (i = 0; i < len; i++)
2322 if (fmt[i] == 'e')
2324 if (inequality_comparisons_p (XEXP (x, i)))
2325 return 1;
2327 else if (fmt[i] == 'E')
2329 int j;
2330 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2331 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2332 return 1;
2336 return 0;
2339 /* Replace any occurrence of FROM in X with TO. The function does
2340 not enter into CONST_DOUBLE for the replace.
2342 Note that copying is not done so X must not be shared unless all copies
2343 are to be modified. */
2346 replace_rtx (rtx x, rtx from, rtx to)
2348 int i, j;
2349 const char *fmt;
2351 /* The following prevents loops occurrence when we change MEM in
2352 CONST_DOUBLE onto the same CONST_DOUBLE. */
2353 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2354 return x;
2356 if (x == from)
2357 return to;
2359 /* Allow this function to make replacements in EXPR_LISTs. */
2360 if (x == 0)
2361 return 0;
2363 if (GET_CODE (x) == SUBREG)
2365 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2367 if (GET_CODE (new) == CONST_INT)
2369 x = simplify_subreg (GET_MODE (x), new,
2370 GET_MODE (SUBREG_REG (x)),
2371 SUBREG_BYTE (x));
2372 gcc_assert (x);
2374 else
2375 SUBREG_REG (x) = new;
2377 return x;
2379 else if (GET_CODE (x) == ZERO_EXTEND)
2381 rtx new = replace_rtx (XEXP (x, 0), from, to);
2383 if (GET_CODE (new) == CONST_INT)
2385 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2386 new, GET_MODE (XEXP (x, 0)));
2387 gcc_assert (x);
2389 else
2390 XEXP (x, 0) = new;
2392 return x;
2395 fmt = GET_RTX_FORMAT (GET_CODE (x));
2396 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2398 if (fmt[i] == 'e')
2399 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2400 else if (fmt[i] == 'E')
2401 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2402 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2405 return x;
2408 /* Replace occurrences of the old label in *X with the new one.
2409 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2412 replace_label (rtx *x, void *data)
2414 rtx l = *x;
2415 rtx old_label = ((replace_label_data *) data)->r1;
2416 rtx new_label = ((replace_label_data *) data)->r2;
2417 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2419 if (l == NULL_RTX)
2420 return 0;
2422 if (GET_CODE (l) == SYMBOL_REF
2423 && CONSTANT_POOL_ADDRESS_P (l))
2425 rtx c = get_pool_constant (l);
2426 if (rtx_referenced_p (old_label, c))
2428 rtx new_c, new_l;
2429 replace_label_data *d = (replace_label_data *) data;
2431 /* Create a copy of constant C; replace the label inside
2432 but do not update LABEL_NUSES because uses in constant pool
2433 are not counted. */
2434 new_c = copy_rtx (c);
2435 d->update_label_nuses = false;
2436 for_each_rtx (&new_c, replace_label, data);
2437 d->update_label_nuses = update_label_nuses;
2439 /* Add the new constant NEW_C to constant pool and replace
2440 the old reference to constant by new reference. */
2441 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2442 *x = replace_rtx (l, l, new_l);
2444 return 0;
2447 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2448 field. This is not handled by for_each_rtx because it doesn't
2449 handle unprinted ('0') fields. */
2450 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2451 JUMP_LABEL (l) = new_label;
2453 if ((GET_CODE (l) == LABEL_REF
2454 || GET_CODE (l) == INSN_LIST)
2455 && XEXP (l, 0) == old_label)
2457 XEXP (l, 0) = new_label;
2458 if (update_label_nuses)
2460 ++LABEL_NUSES (new_label);
2461 --LABEL_NUSES (old_label);
2463 return 0;
2466 return 0;
2469 /* When *BODY is equal to X or X is directly referenced by *BODY
2470 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2471 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2473 static int
2474 rtx_referenced_p_1 (rtx *body, void *x)
2476 rtx y = (rtx) x;
2478 if (*body == NULL_RTX)
2479 return y == NULL_RTX;
2481 /* Return true if a label_ref *BODY refers to label Y. */
2482 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2483 return XEXP (*body, 0) == y;
2485 /* If *BODY is a reference to pool constant traverse the constant. */
2486 if (GET_CODE (*body) == SYMBOL_REF
2487 && CONSTANT_POOL_ADDRESS_P (*body))
2488 return rtx_referenced_p (y, get_pool_constant (*body));
2490 /* By default, compare the RTL expressions. */
2491 return rtx_equal_p (*body, y);
2494 /* Return true if X is referenced in BODY. */
2497 rtx_referenced_p (rtx x, rtx body)
2499 return for_each_rtx (&body, rtx_referenced_p_1, x);
2502 /* If INSN is a tablejump return true and store the label (before jump table) to
2503 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2505 bool
2506 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2508 rtx label, table;
2510 if (JUMP_P (insn)
2511 && (label = JUMP_LABEL (insn)) != NULL_RTX
2512 && (table = next_active_insn (label)) != NULL_RTX
2513 && JUMP_P (table)
2514 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2515 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2517 if (labelp)
2518 *labelp = label;
2519 if (tablep)
2520 *tablep = table;
2521 return true;
2523 return false;
2526 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2527 constant that is not in the constant pool and not in the condition
2528 of an IF_THEN_ELSE. */
2530 static int
2531 computed_jump_p_1 (rtx x)
2533 enum rtx_code code = GET_CODE (x);
2534 int i, j;
2535 const char *fmt;
2537 switch (code)
2539 case LABEL_REF:
2540 case PC:
2541 return 0;
2543 case CONST:
2544 case CONST_INT:
2545 case CONST_DOUBLE:
2546 case CONST_VECTOR:
2547 case SYMBOL_REF:
2548 case REG:
2549 return 1;
2551 case MEM:
2552 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2553 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2555 case IF_THEN_ELSE:
2556 return (computed_jump_p_1 (XEXP (x, 1))
2557 || computed_jump_p_1 (XEXP (x, 2)));
2559 default:
2560 break;
2563 fmt = GET_RTX_FORMAT (code);
2564 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2566 if (fmt[i] == 'e'
2567 && computed_jump_p_1 (XEXP (x, i)))
2568 return 1;
2570 else if (fmt[i] == 'E')
2571 for (j = 0; j < XVECLEN (x, i); j++)
2572 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2573 return 1;
2576 return 0;
2579 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2581 Tablejumps and casesi insns are not considered indirect jumps;
2582 we can recognize them by a (use (label_ref)). */
2585 computed_jump_p (rtx insn)
2587 int i;
2588 if (JUMP_P (insn))
2590 rtx pat = PATTERN (insn);
2592 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2593 return 0;
2594 else if (GET_CODE (pat) == PARALLEL)
2596 int len = XVECLEN (pat, 0);
2597 int has_use_labelref = 0;
2599 for (i = len - 1; i >= 0; i--)
2600 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2601 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2602 == LABEL_REF))
2603 has_use_labelref = 1;
2605 if (! has_use_labelref)
2606 for (i = len - 1; i >= 0; i--)
2607 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2608 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2609 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2610 return 1;
2612 else if (GET_CODE (pat) == SET
2613 && SET_DEST (pat) == pc_rtx
2614 && computed_jump_p_1 (SET_SRC (pat)))
2615 return 1;
2617 return 0;
2620 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2621 calls. Processes the subexpressions of EXP and passes them to F. */
2622 static int
2623 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2625 int result, i, j;
2626 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2627 rtx *x;
2629 for (; format[n] != '\0'; n++)
2631 switch (format[n])
2633 case 'e':
2634 /* Call F on X. */
2635 x = &XEXP (exp, n);
2636 result = (*f) (x, data);
2637 if (result == -1)
2638 /* Do not traverse sub-expressions. */
2639 continue;
2640 else if (result != 0)
2641 /* Stop the traversal. */
2642 return result;
2644 if (*x == NULL_RTX)
2645 /* There are no sub-expressions. */
2646 continue;
2648 i = non_rtx_starting_operands[GET_CODE (*x)];
2649 if (i >= 0)
2651 result = for_each_rtx_1 (*x, i, f, data);
2652 if (result != 0)
2653 return result;
2655 break;
2657 case 'V':
2658 case 'E':
2659 if (XVEC (exp, n) == 0)
2660 continue;
2661 for (j = 0; j < XVECLEN (exp, n); ++j)
2663 /* Call F on X. */
2664 x = &XVECEXP (exp, n, j);
2665 result = (*f) (x, data);
2666 if (result == -1)
2667 /* Do not traverse sub-expressions. */
2668 continue;
2669 else if (result != 0)
2670 /* Stop the traversal. */
2671 return result;
2673 if (*x == NULL_RTX)
2674 /* There are no sub-expressions. */
2675 continue;
2677 i = non_rtx_starting_operands[GET_CODE (*x)];
2678 if (i >= 0)
2680 result = for_each_rtx_1 (*x, i, f, data);
2681 if (result != 0)
2682 return result;
2685 break;
2687 default:
2688 /* Nothing to do. */
2689 break;
2693 return 0;
2696 /* Traverse X via depth-first search, calling F for each
2697 sub-expression (including X itself). F is also passed the DATA.
2698 If F returns -1, do not traverse sub-expressions, but continue
2699 traversing the rest of the tree. If F ever returns any other
2700 nonzero value, stop the traversal, and return the value returned
2701 by F. Otherwise, return 0. This function does not traverse inside
2702 tree structure that contains RTX_EXPRs, or into sub-expressions
2703 whose format code is `0' since it is not known whether or not those
2704 codes are actually RTL.
2706 This routine is very general, and could (should?) be used to
2707 implement many of the other routines in this file. */
2710 for_each_rtx (rtx *x, rtx_function f, void *data)
2712 int result;
2713 int i;
2715 /* Call F on X. */
2716 result = (*f) (x, data);
2717 if (result == -1)
2718 /* Do not traverse sub-expressions. */
2719 return 0;
2720 else if (result != 0)
2721 /* Stop the traversal. */
2722 return result;
2724 if (*x == NULL_RTX)
2725 /* There are no sub-expressions. */
2726 return 0;
2728 i = non_rtx_starting_operands[GET_CODE (*x)];
2729 if (i < 0)
2730 return 0;
2732 return for_each_rtx_1 (*x, i, f, data);
2736 /* Searches X for any reference to REGNO, returning the rtx of the
2737 reference found if any. Otherwise, returns NULL_RTX. */
2740 regno_use_in (unsigned int regno, rtx x)
2742 const char *fmt;
2743 int i, j;
2744 rtx tem;
2746 if (REG_P (x) && REGNO (x) == regno)
2747 return x;
2749 fmt = GET_RTX_FORMAT (GET_CODE (x));
2750 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2752 if (fmt[i] == 'e')
2754 if ((tem = regno_use_in (regno, XEXP (x, i))))
2755 return tem;
2757 else if (fmt[i] == 'E')
2758 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2759 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2760 return tem;
2763 return NULL_RTX;
2766 /* Return a value indicating whether OP, an operand of a commutative
2767 operation, is preferred as the first or second operand. The higher
2768 the value, the stronger the preference for being the first operand.
2769 We use negative values to indicate a preference for the first operand
2770 and positive values for the second operand. */
2773 commutative_operand_precedence (rtx op)
2775 enum rtx_code code = GET_CODE (op);
2777 /* Constants always come the second operand. Prefer "nice" constants. */
2778 if (code == CONST_INT)
2779 return -7;
2780 if (code == CONST_DOUBLE)
2781 return -6;
2782 op = avoid_constant_pool_reference (op);
2783 code = GET_CODE (op);
2785 switch (GET_RTX_CLASS (code))
2787 case RTX_CONST_OBJ:
2788 if (code == CONST_INT)
2789 return -5;
2790 if (code == CONST_DOUBLE)
2791 return -4;
2792 return -3;
2794 case RTX_EXTRA:
2795 /* SUBREGs of objects should come second. */
2796 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2797 return -2;
2799 if (!CONSTANT_P (op))
2800 return 0;
2801 else
2802 /* As for RTX_CONST_OBJ. */
2803 return -3;
2805 case RTX_OBJ:
2806 /* Complex expressions should be the first, so decrease priority
2807 of objects. */
2808 return -1;
2810 case RTX_COMM_ARITH:
2811 /* Prefer operands that are themselves commutative to be first.
2812 This helps to make things linear. In particular,
2813 (and (and (reg) (reg)) (not (reg))) is canonical. */
2814 return 4;
2816 case RTX_BIN_ARITH:
2817 /* If only one operand is a binary expression, it will be the first
2818 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2819 is canonical, although it will usually be further simplified. */
2820 return 2;
2822 case RTX_UNARY:
2823 /* Then prefer NEG and NOT. */
2824 if (code == NEG || code == NOT)
2825 return 1;
2827 default:
2828 return 0;
2832 /* Return 1 iff it is necessary to swap operands of commutative operation
2833 in order to canonicalize expression. */
2836 swap_commutative_operands_p (rtx x, rtx y)
2838 return (commutative_operand_precedence (x)
2839 < commutative_operand_precedence (y));
2842 /* Return 1 if X is an autoincrement side effect and the register is
2843 not the stack pointer. */
2845 auto_inc_p (rtx x)
2847 switch (GET_CODE (x))
2849 case PRE_INC:
2850 case POST_INC:
2851 case PRE_DEC:
2852 case POST_DEC:
2853 case PRE_MODIFY:
2854 case POST_MODIFY:
2855 /* There are no REG_INC notes for SP. */
2856 if (XEXP (x, 0) != stack_pointer_rtx)
2857 return 1;
2858 default:
2859 break;
2861 return 0;
2864 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2866 loc_mentioned_in_p (rtx *loc, rtx in)
2868 enum rtx_code code;
2869 const char *fmt;
2870 int i, j;
2872 if (!in)
2873 return 0;
2875 code = GET_CODE (in);
2876 fmt = GET_RTX_FORMAT (code);
2877 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2879 if (loc == &in->u.fld[i].rt_rtx)
2880 return 1;
2881 if (fmt[i] == 'e')
2883 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2884 return 1;
2886 else if (fmt[i] == 'E')
2887 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2888 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2889 return 1;
2891 return 0;
2894 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2895 and SUBREG_BYTE, return the bit offset where the subreg begins
2896 (counting from the least significant bit of the operand). */
2898 unsigned int
2899 subreg_lsb_1 (enum machine_mode outer_mode,
2900 enum machine_mode inner_mode,
2901 unsigned int subreg_byte)
2903 unsigned int bitpos;
2904 unsigned int byte;
2905 unsigned int word;
2907 /* A paradoxical subreg begins at bit position 0. */
2908 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2909 return 0;
2911 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2912 /* If the subreg crosses a word boundary ensure that
2913 it also begins and ends on a word boundary. */
2914 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2915 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2916 && (subreg_byte % UNITS_PER_WORD
2917 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2919 if (WORDS_BIG_ENDIAN)
2920 word = (GET_MODE_SIZE (inner_mode)
2921 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
2922 else
2923 word = subreg_byte / UNITS_PER_WORD;
2924 bitpos = word * BITS_PER_WORD;
2926 if (BYTES_BIG_ENDIAN)
2927 byte = (GET_MODE_SIZE (inner_mode)
2928 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
2929 else
2930 byte = subreg_byte % UNITS_PER_WORD;
2931 bitpos += byte * BITS_PER_UNIT;
2933 return bitpos;
2936 /* Given a subreg X, return the bit offset where the subreg begins
2937 (counting from the least significant bit of the reg). */
2939 unsigned int
2940 subreg_lsb (rtx x)
2942 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
2943 SUBREG_BYTE (x));
2946 /* Fill in information about a subreg of a hard register.
2947 xregno - A regno of an inner hard subreg_reg (or what will become one).
2948 xmode - The mode of xregno.
2949 offset - The byte offset.
2950 ymode - The mode of a top level SUBREG (or what may become one).
2951 info - Pointer to structure to fill in. */
2952 static void
2953 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
2954 unsigned int offset, enum machine_mode ymode,
2955 struct subreg_info *info)
2957 int nregs_xmode, nregs_ymode;
2958 int mode_multiple, nregs_multiple;
2959 int offset_adj, y_offset, y_offset_adj;
2960 int regsize_xmode, regsize_ymode;
2961 bool rknown;
2963 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2965 rknown = false;
2967 /* If there are holes in a non-scalar mode in registers, we expect
2968 that it is made up of its units concatenated together. */
2969 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
2971 enum machine_mode xmode_unit;
2973 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
2974 if (GET_MODE_INNER (xmode) == VOIDmode)
2975 xmode_unit = xmode;
2976 else
2977 xmode_unit = GET_MODE_INNER (xmode);
2978 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
2979 gcc_assert (nregs_xmode
2980 == (GET_MODE_NUNITS (xmode)
2981 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
2982 gcc_assert (hard_regno_nregs[xregno][xmode]
2983 == (hard_regno_nregs[xregno][xmode_unit]
2984 * GET_MODE_NUNITS (xmode)));
2986 /* You can only ask for a SUBREG of a value with holes in the middle
2987 if you don't cross the holes. (Such a SUBREG should be done by
2988 picking a different register class, or doing it in memory if
2989 necessary.) An example of a value with holes is XCmode on 32-bit
2990 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
2991 3 for each part, but in memory it's two 128-bit parts.
2992 Padding is assumed to be at the end (not necessarily the 'high part')
2993 of each unit. */
2994 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
2995 < GET_MODE_NUNITS (xmode))
2996 && (offset / GET_MODE_SIZE (xmode_unit)
2997 != ((offset + GET_MODE_SIZE (ymode) - 1)
2998 / GET_MODE_SIZE (xmode_unit))))
3000 info->representable_p = false;
3001 rknown = true;
3004 else
3005 nregs_xmode = hard_regno_nregs[xregno][xmode];
3007 nregs_ymode = hard_regno_nregs[xregno][ymode];
3009 /* Paradoxical subregs are otherwise valid. */
3010 if (!rknown
3011 && offset == 0
3012 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3014 info->representable_p = true;
3015 /* If this is a big endian paradoxical subreg, which uses more
3016 actual hard registers than the original register, we must
3017 return a negative offset so that we find the proper highpart
3018 of the register. */
3019 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3020 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3021 info->offset = nregs_xmode - nregs_ymode;
3022 else
3023 info->offset = 0;
3024 info->nregs = nregs_ymode;
3025 return;
3028 /* If registers store different numbers of bits in the different
3029 modes, we cannot generally form this subreg. */
3030 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3031 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode))
3033 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3034 gcc_assert (regsize_xmode * nregs_xmode == GET_MODE_SIZE (xmode));
3035 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3036 gcc_assert (regsize_ymode * nregs_ymode == GET_MODE_SIZE (ymode));
3037 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3039 info->representable_p = false;
3040 info->nregs
3041 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3042 info->offset = offset / regsize_xmode;
3043 return;
3045 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3047 info->representable_p = false;
3048 info->nregs
3049 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3050 info->offset = offset / regsize_xmode;
3051 return;
3055 /* Lowpart subregs are otherwise valid. */
3056 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3058 info->representable_p = true;
3059 rknown = true;
3062 /* This should always pass, otherwise we don't know how to verify
3063 the constraint. These conditions may be relaxed but
3064 subreg_regno_offset would need to be redesigned. */
3065 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3066 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3068 /* The XMODE value can be seen as a vector of NREGS_XMODE
3069 values. The subreg must represent a lowpart of given field.
3070 Compute what field it is. */
3071 offset_adj = offset;
3072 offset_adj -= subreg_lowpart_offset (ymode,
3073 mode_for_size (GET_MODE_BITSIZE (xmode)
3074 / nregs_xmode,
3075 MODE_INT, 0));
3077 /* Size of ymode must not be greater than the size of xmode. */
3078 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3079 gcc_assert (mode_multiple != 0);
3081 y_offset = offset / GET_MODE_SIZE (ymode);
3082 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3083 nregs_multiple = nregs_xmode / nregs_ymode;
3085 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3086 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3088 if (!rknown)
3090 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3091 rknown = true;
3093 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3094 info->nregs = nregs_ymode;
3097 /* This function returns the regno offset of a subreg expression.
3098 xregno - A regno of an inner hard subreg_reg (or what will become one).
3099 xmode - The mode of xregno.
3100 offset - The byte offset.
3101 ymode - The mode of a top level SUBREG (or what may become one).
3102 RETURN - The regno offset which would be used. */
3103 unsigned int
3104 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3105 unsigned int offset, enum machine_mode ymode)
3107 struct subreg_info info;
3108 subreg_get_info (xregno, xmode, offset, ymode, &info);
3109 return info.offset;
3112 /* This function returns true when the offset is representable via
3113 subreg_offset in the given regno.
3114 xregno - A regno of an inner hard subreg_reg (or what will become one).
3115 xmode - The mode of xregno.
3116 offset - The byte offset.
3117 ymode - The mode of a top level SUBREG (or what may become one).
3118 RETURN - Whether the offset is representable. */
3119 bool
3120 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3121 unsigned int offset, enum machine_mode ymode)
3123 struct subreg_info info;
3124 subreg_get_info (xregno, xmode, offset, ymode, &info);
3125 return info.representable_p;
3128 /* Return the final regno that a subreg expression refers to. */
3129 unsigned int
3130 subreg_regno (rtx x)
3132 unsigned int ret;
3133 rtx subreg = SUBREG_REG (x);
3134 int regno = REGNO (subreg);
3136 ret = regno + subreg_regno_offset (regno,
3137 GET_MODE (subreg),
3138 SUBREG_BYTE (x),
3139 GET_MODE (x));
3140 return ret;
3144 /* Return the number of registers that a subreg expression refers
3145 to. */
3146 unsigned int
3147 subreg_nregs (rtx x)
3149 struct subreg_info info;
3150 rtx subreg = SUBREG_REG (x);
3151 int regno = REGNO (subreg);
3153 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3154 &info);
3155 return info.nregs;
3158 struct parms_set_data
3160 int nregs;
3161 HARD_REG_SET regs;
3164 /* Helper function for noticing stores to parameter registers. */
3165 static void
3166 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3168 struct parms_set_data *d = data;
3169 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3170 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3172 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3173 d->nregs--;
3177 /* Look backward for first parameter to be loaded.
3178 Note that loads of all parameters will not necessarily be
3179 found if CSE has eliminated some of them (e.g., an argument
3180 to the outer function is passed down as a parameter).
3181 Do not skip BOUNDARY. */
3183 find_first_parameter_load (rtx call_insn, rtx boundary)
3185 struct parms_set_data parm;
3186 rtx p, before, first_set;
3188 /* Since different machines initialize their parameter registers
3189 in different orders, assume nothing. Collect the set of all
3190 parameter registers. */
3191 CLEAR_HARD_REG_SET (parm.regs);
3192 parm.nregs = 0;
3193 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3194 if (GET_CODE (XEXP (p, 0)) == USE
3195 && REG_P (XEXP (XEXP (p, 0), 0)))
3197 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3199 /* We only care about registers which can hold function
3200 arguments. */
3201 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3202 continue;
3204 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3205 parm.nregs++;
3207 before = call_insn;
3208 first_set = call_insn;
3210 /* Search backward for the first set of a register in this set. */
3211 while (parm.nregs && before != boundary)
3213 before = PREV_INSN (before);
3215 /* It is possible that some loads got CSEed from one call to
3216 another. Stop in that case. */
3217 if (CALL_P (before))
3218 break;
3220 /* Our caller needs either ensure that we will find all sets
3221 (in case code has not been optimized yet), or take care
3222 for possible labels in a way by setting boundary to preceding
3223 CODE_LABEL. */
3224 if (LABEL_P (before))
3226 gcc_assert (before == boundary);
3227 break;
3230 if (INSN_P (before))
3232 int nregs_old = parm.nregs;
3233 note_stores (PATTERN (before), parms_set, &parm);
3234 /* If we found something that did not set a parameter reg,
3235 we're done. Do not keep going, as that might result
3236 in hoisting an insn before the setting of a pseudo
3237 that is used by the hoisted insn. */
3238 if (nregs_old != parm.nregs)
3239 first_set = before;
3240 else
3241 break;
3244 return first_set;
3247 /* Return true if we should avoid inserting code between INSN and preceding
3248 call instruction. */
3250 bool
3251 keep_with_call_p (rtx insn)
3253 rtx set;
3255 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3257 if (REG_P (SET_DEST (set))
3258 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3259 && fixed_regs[REGNO (SET_DEST (set))]
3260 && general_operand (SET_SRC (set), VOIDmode))
3261 return true;
3262 if (REG_P (SET_SRC (set))
3263 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3264 && REG_P (SET_DEST (set))
3265 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3266 return true;
3267 /* There may be a stack pop just after the call and before the store
3268 of the return register. Search for the actual store when deciding
3269 if we can break or not. */
3270 if (SET_DEST (set) == stack_pointer_rtx)
3272 rtx i2 = next_nonnote_insn (insn);
3273 if (i2 && keep_with_call_p (i2))
3274 return true;
3277 return false;
3280 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3281 to non-complex jumps. That is, direct unconditional, conditional,
3282 and tablejumps, but not computed jumps or returns. It also does
3283 not apply to the fallthru case of a conditional jump. */
3285 bool
3286 label_is_jump_target_p (rtx label, rtx jump_insn)
3288 rtx tmp = JUMP_LABEL (jump_insn);
3290 if (label == tmp)
3291 return true;
3293 if (tablejump_p (jump_insn, NULL, &tmp))
3295 rtvec vec = XVEC (PATTERN (tmp),
3296 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3297 int i, veclen = GET_NUM_ELEM (vec);
3299 for (i = 0; i < veclen; ++i)
3300 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3301 return true;
3304 return false;
3308 /* Return an estimate of the cost of computing rtx X.
3309 One use is in cse, to decide which expression to keep in the hash table.
3310 Another is in rtl generation, to pick the cheapest way to multiply.
3311 Other uses like the latter are expected in the future. */
3314 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3316 int i, j;
3317 enum rtx_code code;
3318 const char *fmt;
3319 int total;
3321 if (x == 0)
3322 return 0;
3324 /* Compute the default costs of certain things.
3325 Note that targetm.rtx_costs can override the defaults. */
3327 code = GET_CODE (x);
3328 switch (code)
3330 case MULT:
3331 total = COSTS_N_INSNS (5);
3332 break;
3333 case DIV:
3334 case UDIV:
3335 case MOD:
3336 case UMOD:
3337 total = COSTS_N_INSNS (7);
3338 break;
3339 case USE:
3340 /* Used in combine.c as a marker. */
3341 total = 0;
3342 break;
3343 default:
3344 total = COSTS_N_INSNS (1);
3347 switch (code)
3349 case REG:
3350 return 0;
3352 case SUBREG:
3353 total = 0;
3354 /* If we can't tie these modes, make this expensive. The larger
3355 the mode, the more expensive it is. */
3356 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3357 return COSTS_N_INSNS (2
3358 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3359 break;
3361 default:
3362 if (targetm.rtx_costs (x, code, outer_code, &total))
3363 return total;
3364 break;
3367 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3368 which is already in total. */
3370 fmt = GET_RTX_FORMAT (code);
3371 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3372 if (fmt[i] == 'e')
3373 total += rtx_cost (XEXP (x, i), code);
3374 else if (fmt[i] == 'E')
3375 for (j = 0; j < XVECLEN (x, i); j++)
3376 total += rtx_cost (XVECEXP (x, i, j), code);
3378 return total;
3381 /* Return cost of address expression X.
3382 Expect that X is properly formed address reference. */
3385 address_cost (rtx x, enum machine_mode mode)
3387 /* We may be asked for cost of various unusual addresses, such as operands
3388 of push instruction. It is not worthwhile to complicate writing
3389 of the target hook by such cases. */
3391 if (!memory_address_p (mode, x))
3392 return 1000;
3394 return targetm.address_cost (x);
3397 /* If the target doesn't override, compute the cost as with arithmetic. */
3400 default_address_cost (rtx x)
3402 return rtx_cost (x, MEM);
3406 unsigned HOST_WIDE_INT
3407 nonzero_bits (rtx x, enum machine_mode mode)
3409 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3412 unsigned int
3413 num_sign_bit_copies (rtx x, enum machine_mode mode)
3415 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3418 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3419 It avoids exponential behavior in nonzero_bits1 when X has
3420 identical subexpressions on the first or the second level. */
3422 static unsigned HOST_WIDE_INT
3423 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3424 enum machine_mode known_mode,
3425 unsigned HOST_WIDE_INT known_ret)
3427 if (x == known_x && mode == known_mode)
3428 return known_ret;
3430 /* Try to find identical subexpressions. If found call
3431 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3432 precomputed value for the subexpression as KNOWN_RET. */
3434 if (ARITHMETIC_P (x))
3436 rtx x0 = XEXP (x, 0);
3437 rtx x1 = XEXP (x, 1);
3439 /* Check the first level. */
3440 if (x0 == x1)
3441 return nonzero_bits1 (x, mode, x0, mode,
3442 cached_nonzero_bits (x0, mode, known_x,
3443 known_mode, known_ret));
3445 /* Check the second level. */
3446 if (ARITHMETIC_P (x0)
3447 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3448 return nonzero_bits1 (x, mode, x1, mode,
3449 cached_nonzero_bits (x1, mode, known_x,
3450 known_mode, known_ret));
3452 if (ARITHMETIC_P (x1)
3453 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3454 return nonzero_bits1 (x, mode, x0, mode,
3455 cached_nonzero_bits (x0, mode, known_x,
3456 known_mode, known_ret));
3459 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3462 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3463 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3464 is less useful. We can't allow both, because that results in exponential
3465 run time recursion. There is a nullstone testcase that triggered
3466 this. This macro avoids accidental uses of num_sign_bit_copies. */
3467 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3469 /* Given an expression, X, compute which bits in X can be nonzero.
3470 We don't care about bits outside of those defined in MODE.
3472 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3473 an arithmetic operation, we can do better. */
3475 static unsigned HOST_WIDE_INT
3476 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3477 enum machine_mode known_mode,
3478 unsigned HOST_WIDE_INT known_ret)
3480 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3481 unsigned HOST_WIDE_INT inner_nz;
3482 enum rtx_code code;
3483 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3485 /* For floating-point values, assume all bits are needed. */
3486 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3487 return nonzero;
3489 /* If X is wider than MODE, use its mode instead. */
3490 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3492 mode = GET_MODE (x);
3493 nonzero = GET_MODE_MASK (mode);
3494 mode_width = GET_MODE_BITSIZE (mode);
3497 if (mode_width > HOST_BITS_PER_WIDE_INT)
3498 /* Our only callers in this case look for single bit values. So
3499 just return the mode mask. Those tests will then be false. */
3500 return nonzero;
3502 #ifndef WORD_REGISTER_OPERATIONS
3503 /* If MODE is wider than X, but both are a single word for both the host
3504 and target machines, we can compute this from which bits of the
3505 object might be nonzero in its own mode, taking into account the fact
3506 that on many CISC machines, accessing an object in a wider mode
3507 causes the high-order bits to become undefined. So they are
3508 not known to be zero. */
3510 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3511 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3512 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3513 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3515 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3516 known_x, known_mode, known_ret);
3517 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3518 return nonzero;
3520 #endif
3522 code = GET_CODE (x);
3523 switch (code)
3525 case REG:
3526 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3527 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3528 all the bits above ptr_mode are known to be zero. */
3529 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3530 && REG_POINTER (x))
3531 nonzero &= GET_MODE_MASK (ptr_mode);
3532 #endif
3534 /* Include declared information about alignment of pointers. */
3535 /* ??? We don't properly preserve REG_POINTER changes across
3536 pointer-to-integer casts, so we can't trust it except for
3537 things that we know must be pointers. See execute/960116-1.c. */
3538 if ((x == stack_pointer_rtx
3539 || x == frame_pointer_rtx
3540 || x == arg_pointer_rtx)
3541 && REGNO_POINTER_ALIGN (REGNO (x)))
3543 unsigned HOST_WIDE_INT alignment
3544 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3546 #ifdef PUSH_ROUNDING
3547 /* If PUSH_ROUNDING is defined, it is possible for the
3548 stack to be momentarily aligned only to that amount,
3549 so we pick the least alignment. */
3550 if (x == stack_pointer_rtx && PUSH_ARGS)
3551 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3552 alignment);
3553 #endif
3555 nonzero &= ~(alignment - 1);
3559 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3560 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3561 known_mode, known_ret,
3562 &nonzero_for_hook);
3564 if (new)
3565 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3566 known_mode, known_ret);
3568 return nonzero_for_hook;
3571 case CONST_INT:
3572 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3573 /* If X is negative in MODE, sign-extend the value. */
3574 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3575 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3576 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3577 #endif
3579 return INTVAL (x);
3581 case MEM:
3582 #ifdef LOAD_EXTEND_OP
3583 /* In many, if not most, RISC machines, reading a byte from memory
3584 zeros the rest of the register. Noticing that fact saves a lot
3585 of extra zero-extends. */
3586 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3587 nonzero &= GET_MODE_MASK (GET_MODE (x));
3588 #endif
3589 break;
3591 case EQ: case NE:
3592 case UNEQ: case LTGT:
3593 case GT: case GTU: case UNGT:
3594 case LT: case LTU: case UNLT:
3595 case GE: case GEU: case UNGE:
3596 case LE: case LEU: case UNLE:
3597 case UNORDERED: case ORDERED:
3598 /* If this produces an integer result, we know which bits are set.
3599 Code here used to clear bits outside the mode of X, but that is
3600 now done above. */
3601 /* Mind that MODE is the mode the caller wants to look at this
3602 operation in, and not the actual operation mode. We can wind
3603 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3604 that describes the results of a vector compare. */
3605 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3606 && mode_width <= HOST_BITS_PER_WIDE_INT)
3607 nonzero = STORE_FLAG_VALUE;
3608 break;
3610 case NEG:
3611 #if 0
3612 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3613 and num_sign_bit_copies. */
3614 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3615 == GET_MODE_BITSIZE (GET_MODE (x)))
3616 nonzero = 1;
3617 #endif
3619 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3620 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3621 break;
3623 case ABS:
3624 #if 0
3625 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3626 and num_sign_bit_copies. */
3627 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3628 == GET_MODE_BITSIZE (GET_MODE (x)))
3629 nonzero = 1;
3630 #endif
3631 break;
3633 case TRUNCATE:
3634 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3635 known_x, known_mode, known_ret)
3636 & GET_MODE_MASK (mode));
3637 break;
3639 case ZERO_EXTEND:
3640 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3641 known_x, known_mode, known_ret);
3642 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3643 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3644 break;
3646 case SIGN_EXTEND:
3647 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3648 Otherwise, show all the bits in the outer mode but not the inner
3649 may be nonzero. */
3650 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3651 known_x, known_mode, known_ret);
3652 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3654 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3655 if (inner_nz
3656 & (((HOST_WIDE_INT) 1
3657 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3658 inner_nz |= (GET_MODE_MASK (mode)
3659 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3662 nonzero &= inner_nz;
3663 break;
3665 case AND:
3666 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3667 known_x, known_mode, known_ret)
3668 & cached_nonzero_bits (XEXP (x, 1), mode,
3669 known_x, known_mode, known_ret);
3670 break;
3672 case XOR: case IOR:
3673 case UMIN: case UMAX: case SMIN: case SMAX:
3675 unsigned HOST_WIDE_INT nonzero0 =
3676 cached_nonzero_bits (XEXP (x, 0), mode,
3677 known_x, known_mode, known_ret);
3679 /* Don't call nonzero_bits for the second time if it cannot change
3680 anything. */
3681 if ((nonzero & nonzero0) != nonzero)
3682 nonzero &= nonzero0
3683 | cached_nonzero_bits (XEXP (x, 1), mode,
3684 known_x, known_mode, known_ret);
3686 break;
3688 case PLUS: case MINUS:
3689 case MULT:
3690 case DIV: case UDIV:
3691 case MOD: case UMOD:
3692 /* We can apply the rules of arithmetic to compute the number of
3693 high- and low-order zero bits of these operations. We start by
3694 computing the width (position of the highest-order nonzero bit)
3695 and the number of low-order zero bits for each value. */
3697 unsigned HOST_WIDE_INT nz0 =
3698 cached_nonzero_bits (XEXP (x, 0), mode,
3699 known_x, known_mode, known_ret);
3700 unsigned HOST_WIDE_INT nz1 =
3701 cached_nonzero_bits (XEXP (x, 1), mode,
3702 known_x, known_mode, known_ret);
3703 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3704 int width0 = floor_log2 (nz0) + 1;
3705 int width1 = floor_log2 (nz1) + 1;
3706 int low0 = floor_log2 (nz0 & -nz0);
3707 int low1 = floor_log2 (nz1 & -nz1);
3708 HOST_WIDE_INT op0_maybe_minusp
3709 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3710 HOST_WIDE_INT op1_maybe_minusp
3711 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3712 unsigned int result_width = mode_width;
3713 int result_low = 0;
3715 switch (code)
3717 case PLUS:
3718 result_width = MAX (width0, width1) + 1;
3719 result_low = MIN (low0, low1);
3720 break;
3721 case MINUS:
3722 result_low = MIN (low0, low1);
3723 break;
3724 case MULT:
3725 result_width = width0 + width1;
3726 result_low = low0 + low1;
3727 break;
3728 case DIV:
3729 if (width1 == 0)
3730 break;
3731 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3732 result_width = width0;
3733 break;
3734 case UDIV:
3735 if (width1 == 0)
3736 break;
3737 result_width = width0;
3738 break;
3739 case MOD:
3740 if (width1 == 0)
3741 break;
3742 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3743 result_width = MIN (width0, width1);
3744 result_low = MIN (low0, low1);
3745 break;
3746 case UMOD:
3747 if (width1 == 0)
3748 break;
3749 result_width = MIN (width0, width1);
3750 result_low = MIN (low0, low1);
3751 break;
3752 default:
3753 gcc_unreachable ();
3756 if (result_width < mode_width)
3757 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3759 if (result_low > 0)
3760 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3762 #ifdef POINTERS_EXTEND_UNSIGNED
3763 /* If pointers extend unsigned and this is an addition or subtraction
3764 to a pointer in Pmode, all the bits above ptr_mode are known to be
3765 zero. */
3766 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3767 && (code == PLUS || code == MINUS)
3768 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3769 nonzero &= GET_MODE_MASK (ptr_mode);
3770 #endif
3772 break;
3774 case ZERO_EXTRACT:
3775 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3776 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3777 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3778 break;
3780 case SUBREG:
3781 /* If this is a SUBREG formed for a promoted variable that has
3782 been zero-extended, we know that at least the high-order bits
3783 are zero, though others might be too. */
3785 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3786 nonzero = GET_MODE_MASK (GET_MODE (x))
3787 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3788 known_x, known_mode, known_ret);
3790 /* If the inner mode is a single word for both the host and target
3791 machines, we can compute this from which bits of the inner
3792 object might be nonzero. */
3793 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3794 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3795 <= HOST_BITS_PER_WIDE_INT))
3797 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3798 known_x, known_mode, known_ret);
3800 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3801 /* If this is a typical RISC machine, we only have to worry
3802 about the way loads are extended. */
3803 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3804 ? (((nonzero
3805 & (((unsigned HOST_WIDE_INT) 1
3806 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3807 != 0))
3808 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3809 || !MEM_P (SUBREG_REG (x)))
3810 #endif
3812 /* On many CISC machines, accessing an object in a wider mode
3813 causes the high-order bits to become undefined. So they are
3814 not known to be zero. */
3815 if (GET_MODE_SIZE (GET_MODE (x))
3816 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3817 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3818 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3821 break;
3823 case ASHIFTRT:
3824 case LSHIFTRT:
3825 case ASHIFT:
3826 case ROTATE:
3827 /* The nonzero bits are in two classes: any bits within MODE
3828 that aren't in GET_MODE (x) are always significant. The rest of the
3829 nonzero bits are those that are significant in the operand of
3830 the shift when shifted the appropriate number of bits. This
3831 shows that high-order bits are cleared by the right shift and
3832 low-order bits by left shifts. */
3833 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3834 && INTVAL (XEXP (x, 1)) >= 0
3835 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3837 enum machine_mode inner_mode = GET_MODE (x);
3838 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3839 int count = INTVAL (XEXP (x, 1));
3840 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3841 unsigned HOST_WIDE_INT op_nonzero =
3842 cached_nonzero_bits (XEXP (x, 0), mode,
3843 known_x, known_mode, known_ret);
3844 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3845 unsigned HOST_WIDE_INT outer = 0;
3847 if (mode_width > width)
3848 outer = (op_nonzero & nonzero & ~mode_mask);
3850 if (code == LSHIFTRT)
3851 inner >>= count;
3852 else if (code == ASHIFTRT)
3854 inner >>= count;
3856 /* If the sign bit may have been nonzero before the shift, we
3857 need to mark all the places it could have been copied to
3858 by the shift as possibly nonzero. */
3859 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3860 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3862 else if (code == ASHIFT)
3863 inner <<= count;
3864 else
3865 inner = ((inner << (count % width)
3866 | (inner >> (width - (count % width)))) & mode_mask);
3868 nonzero &= (outer | inner);
3870 break;
3872 case FFS:
3873 case POPCOUNT:
3874 /* This is at most the number of bits in the mode. */
3875 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3876 break;
3878 case CLZ:
3879 /* If CLZ has a known value at zero, then the nonzero bits are
3880 that value, plus the number of bits in the mode minus one. */
3881 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3882 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3883 else
3884 nonzero = -1;
3885 break;
3887 case CTZ:
3888 /* If CTZ has a known value at zero, then the nonzero bits are
3889 that value, plus the number of bits in the mode minus one. */
3890 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3891 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3892 else
3893 nonzero = -1;
3894 break;
3896 case PARITY:
3897 nonzero = 1;
3898 break;
3900 case IF_THEN_ELSE:
3902 unsigned HOST_WIDE_INT nonzero_true =
3903 cached_nonzero_bits (XEXP (x, 1), mode,
3904 known_x, known_mode, known_ret);
3906 /* Don't call nonzero_bits for the second time if it cannot change
3907 anything. */
3908 if ((nonzero & nonzero_true) != nonzero)
3909 nonzero &= nonzero_true
3910 | cached_nonzero_bits (XEXP (x, 2), mode,
3911 known_x, known_mode, known_ret);
3913 break;
3915 default:
3916 break;
3919 return nonzero;
3922 /* See the macro definition above. */
3923 #undef cached_num_sign_bit_copies
3926 /* The function cached_num_sign_bit_copies is a wrapper around
3927 num_sign_bit_copies1. It avoids exponential behavior in
3928 num_sign_bit_copies1 when X has identical subexpressions on the
3929 first or the second level. */
3931 static unsigned int
3932 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3933 enum machine_mode known_mode,
3934 unsigned int known_ret)
3936 if (x == known_x && mode == known_mode)
3937 return known_ret;
3939 /* Try to find identical subexpressions. If found call
3940 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3941 the precomputed value for the subexpression as KNOWN_RET. */
3943 if (ARITHMETIC_P (x))
3945 rtx x0 = XEXP (x, 0);
3946 rtx x1 = XEXP (x, 1);
3948 /* Check the first level. */
3949 if (x0 == x1)
3950 return
3951 num_sign_bit_copies1 (x, mode, x0, mode,
3952 cached_num_sign_bit_copies (x0, mode, known_x,
3953 known_mode,
3954 known_ret));
3956 /* Check the second level. */
3957 if (ARITHMETIC_P (x0)
3958 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3959 return
3960 num_sign_bit_copies1 (x, mode, x1, mode,
3961 cached_num_sign_bit_copies (x1, mode, known_x,
3962 known_mode,
3963 known_ret));
3965 if (ARITHMETIC_P (x1)
3966 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3967 return
3968 num_sign_bit_copies1 (x, mode, x0, mode,
3969 cached_num_sign_bit_copies (x0, mode, known_x,
3970 known_mode,
3971 known_ret));
3974 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
3977 /* Return the number of bits at the high-order end of X that are known to
3978 be equal to the sign bit. X will be used in mode MODE; if MODE is
3979 VOIDmode, X will be used in its own mode. The returned value will always
3980 be between 1 and the number of bits in MODE. */
3982 static unsigned int
3983 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
3984 enum machine_mode known_mode,
3985 unsigned int known_ret)
3987 enum rtx_code code = GET_CODE (x);
3988 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
3989 int num0, num1, result;
3990 unsigned HOST_WIDE_INT nonzero;
3992 /* If we weren't given a mode, use the mode of X. If the mode is still
3993 VOIDmode, we don't know anything. Likewise if one of the modes is
3994 floating-point. */
3996 if (mode == VOIDmode)
3997 mode = GET_MODE (x);
3999 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4000 return 1;
4002 /* For a smaller object, just ignore the high bits. */
4003 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4005 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4006 known_x, known_mode, known_ret);
4007 return MAX (1,
4008 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4011 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4013 #ifndef WORD_REGISTER_OPERATIONS
4014 /* If this machine does not do all register operations on the entire
4015 register and MODE is wider than the mode of X, we can say nothing
4016 at all about the high-order bits. */
4017 return 1;
4018 #else
4019 /* Likewise on machines that do, if the mode of the object is smaller
4020 than a word and loads of that size don't sign extend, we can say
4021 nothing about the high order bits. */
4022 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4023 #ifdef LOAD_EXTEND_OP
4024 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4025 #endif
4027 return 1;
4028 #endif
4031 switch (code)
4033 case REG:
4035 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4036 /* If pointers extend signed and this is a pointer in Pmode, say that
4037 all the bits above ptr_mode are known to be sign bit copies. */
4038 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4039 && REG_POINTER (x))
4040 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4041 #endif
4044 unsigned int copies_for_hook = 1, copies = 1;
4045 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4046 known_mode, known_ret,
4047 &copies_for_hook);
4049 if (new)
4050 copies = cached_num_sign_bit_copies (new, mode, known_x,
4051 known_mode, known_ret);
4053 if (copies > 1 || copies_for_hook > 1)
4054 return MAX (copies, copies_for_hook);
4056 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4058 break;
4060 case MEM:
4061 #ifdef LOAD_EXTEND_OP
4062 /* Some RISC machines sign-extend all loads of smaller than a word. */
4063 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4064 return MAX (1, ((int) bitwidth
4065 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4066 #endif
4067 break;
4069 case CONST_INT:
4070 /* If the constant is negative, take its 1's complement and remask.
4071 Then see how many zero bits we have. */
4072 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4073 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4074 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4075 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4077 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4079 case SUBREG:
4080 /* If this is a SUBREG for a promoted object that is sign-extended
4081 and we are looking at it in a wider mode, we know that at least the
4082 high-order bits are known to be sign bit copies. */
4084 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4086 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4087 known_x, known_mode, known_ret);
4088 return MAX ((int) bitwidth
4089 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4090 num0);
4093 /* For a smaller object, just ignore the high bits. */
4094 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4096 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4097 known_x, known_mode, known_ret);
4098 return MAX (1, (num0
4099 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4100 - bitwidth)));
4103 #ifdef WORD_REGISTER_OPERATIONS
4104 #ifdef LOAD_EXTEND_OP
4105 /* For paradoxical SUBREGs on machines where all register operations
4106 affect the entire register, just look inside. Note that we are
4107 passing MODE to the recursive call, so the number of sign bit copies
4108 will remain relative to that mode, not the inner mode. */
4110 /* This works only if loads sign extend. Otherwise, if we get a
4111 reload for the inner part, it may be loaded from the stack, and
4112 then we lose all sign bit copies that existed before the store
4113 to the stack. */
4115 if ((GET_MODE_SIZE (GET_MODE (x))
4116 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4117 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4118 && MEM_P (SUBREG_REG (x)))
4119 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4120 known_x, known_mode, known_ret);
4121 #endif
4122 #endif
4123 break;
4125 case SIGN_EXTRACT:
4126 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4127 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4128 break;
4130 case SIGN_EXTEND:
4131 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4132 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4133 known_x, known_mode, known_ret));
4135 case TRUNCATE:
4136 /* For a smaller object, just ignore the high bits. */
4137 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4138 known_x, known_mode, known_ret);
4139 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4140 - bitwidth)));
4142 case NOT:
4143 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4144 known_x, known_mode, known_ret);
4146 case ROTATE: case ROTATERT:
4147 /* If we are rotating left by a number of bits less than the number
4148 of sign bit copies, we can just subtract that amount from the
4149 number. */
4150 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4151 && INTVAL (XEXP (x, 1)) >= 0
4152 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4154 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4155 known_x, known_mode, known_ret);
4156 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4157 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4159 break;
4161 case NEG:
4162 /* In general, this subtracts one sign bit copy. But if the value
4163 is known to be positive, the number of sign bit copies is the
4164 same as that of the input. Finally, if the input has just one bit
4165 that might be nonzero, all the bits are copies of the sign bit. */
4166 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4167 known_x, known_mode, known_ret);
4168 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4169 return num0 > 1 ? num0 - 1 : 1;
4171 nonzero = nonzero_bits (XEXP (x, 0), mode);
4172 if (nonzero == 1)
4173 return bitwidth;
4175 if (num0 > 1
4176 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4177 num0--;
4179 return num0;
4181 case IOR: case AND: case XOR:
4182 case SMIN: case SMAX: case UMIN: case UMAX:
4183 /* Logical operations will preserve the number of sign-bit copies.
4184 MIN and MAX operations always return one of the operands. */
4185 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4186 known_x, known_mode, known_ret);
4187 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4188 known_x, known_mode, known_ret);
4189 return MIN (num0, num1);
4191 case PLUS: case MINUS:
4192 /* For addition and subtraction, we can have a 1-bit carry. However,
4193 if we are subtracting 1 from a positive number, there will not
4194 be such a carry. Furthermore, if the positive number is known to
4195 be 0 or 1, we know the result is either -1 or 0. */
4197 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4198 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4200 nonzero = nonzero_bits (XEXP (x, 0), mode);
4201 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4202 return (nonzero == 1 || nonzero == 0 ? bitwidth
4203 : bitwidth - floor_log2 (nonzero) - 1);
4206 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4207 known_x, known_mode, known_ret);
4208 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4209 known_x, known_mode, known_ret);
4210 result = MAX (1, MIN (num0, num1) - 1);
4212 #ifdef POINTERS_EXTEND_UNSIGNED
4213 /* If pointers extend signed and this is an addition or subtraction
4214 to a pointer in Pmode, all the bits above ptr_mode are known to be
4215 sign bit copies. */
4216 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4217 && (code == PLUS || code == MINUS)
4218 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4219 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4220 - GET_MODE_BITSIZE (ptr_mode) + 1),
4221 result);
4222 #endif
4223 return result;
4225 case MULT:
4226 /* The number of bits of the product is the sum of the number of
4227 bits of both terms. However, unless one of the terms if known
4228 to be positive, we must allow for an additional bit since negating
4229 a negative number can remove one sign bit copy. */
4231 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4232 known_x, known_mode, known_ret);
4233 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4234 known_x, known_mode, known_ret);
4236 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4237 if (result > 0
4238 && (bitwidth > HOST_BITS_PER_WIDE_INT
4239 || (((nonzero_bits (XEXP (x, 0), mode)
4240 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4241 && ((nonzero_bits (XEXP (x, 1), mode)
4242 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4243 result--;
4245 return MAX (1, result);
4247 case UDIV:
4248 /* The result must be <= the first operand. If the first operand
4249 has the high bit set, we know nothing about the number of sign
4250 bit copies. */
4251 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4252 return 1;
4253 else if ((nonzero_bits (XEXP (x, 0), mode)
4254 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4255 return 1;
4256 else
4257 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4258 known_x, known_mode, known_ret);
4260 case UMOD:
4261 /* The result must be <= the second operand. */
4262 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4263 known_x, known_mode, known_ret);
4265 case DIV:
4266 /* Similar to unsigned division, except that we have to worry about
4267 the case where the divisor is negative, in which case we have
4268 to add 1. */
4269 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4270 known_x, known_mode, known_ret);
4271 if (result > 1
4272 && (bitwidth > HOST_BITS_PER_WIDE_INT
4273 || (nonzero_bits (XEXP (x, 1), mode)
4274 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4275 result--;
4277 return result;
4279 case MOD:
4280 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4281 known_x, known_mode, known_ret);
4282 if (result > 1
4283 && (bitwidth > HOST_BITS_PER_WIDE_INT
4284 || (nonzero_bits (XEXP (x, 1), mode)
4285 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4286 result--;
4288 return result;
4290 case ASHIFTRT:
4291 /* Shifts by a constant add to the number of bits equal to the
4292 sign bit. */
4293 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4294 known_x, known_mode, known_ret);
4295 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4296 && INTVAL (XEXP (x, 1)) > 0)
4297 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4299 return num0;
4301 case ASHIFT:
4302 /* Left shifts destroy copies. */
4303 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4304 || INTVAL (XEXP (x, 1)) < 0
4305 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4306 return 1;
4308 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4309 known_x, known_mode, known_ret);
4310 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4312 case IF_THEN_ELSE:
4313 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4314 known_x, known_mode, known_ret);
4315 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4316 known_x, known_mode, known_ret);
4317 return MIN (num0, num1);
4319 case EQ: case NE: case GE: case GT: case LE: case LT:
4320 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4321 case GEU: case GTU: case LEU: case LTU:
4322 case UNORDERED: case ORDERED:
4323 /* If the constant is negative, take its 1's complement and remask.
4324 Then see how many zero bits we have. */
4325 nonzero = STORE_FLAG_VALUE;
4326 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4327 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4328 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4330 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4332 default:
4333 break;
4336 /* If we haven't been able to figure it out by one of the above rules,
4337 see if some of the high-order bits are known to be zero. If so,
4338 count those bits and return one less than that amount. If we can't
4339 safely compute the mask for this mode, always return BITWIDTH. */
4341 bitwidth = GET_MODE_BITSIZE (mode);
4342 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4343 return 1;
4345 nonzero = nonzero_bits (x, mode);
4346 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4347 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4350 /* Calculate the rtx_cost of a single instruction. A return value of
4351 zero indicates an instruction pattern without a known cost. */
4354 insn_rtx_cost (rtx pat)
4356 int i, cost;
4357 rtx set;
4359 /* Extract the single set rtx from the instruction pattern.
4360 We can't use single_set since we only have the pattern. */
4361 if (GET_CODE (pat) == SET)
4362 set = pat;
4363 else if (GET_CODE (pat) == PARALLEL)
4365 set = NULL_RTX;
4366 for (i = 0; i < XVECLEN (pat, 0); i++)
4368 rtx x = XVECEXP (pat, 0, i);
4369 if (GET_CODE (x) == SET)
4371 if (set)
4372 return 0;
4373 set = x;
4376 if (!set)
4377 return 0;
4379 else
4380 return 0;
4382 cost = rtx_cost (SET_SRC (set), SET);
4383 return cost > 0 ? cost : COSTS_N_INSNS (1);
4386 /* Given an insn INSN and condition COND, return the condition in a
4387 canonical form to simplify testing by callers. Specifically:
4389 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4390 (2) Both operands will be machine operands; (cc0) will have been replaced.
4391 (3) If an operand is a constant, it will be the second operand.
4392 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4393 for GE, GEU, and LEU.
4395 If the condition cannot be understood, or is an inequality floating-point
4396 comparison which needs to be reversed, 0 will be returned.
4398 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4400 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4401 insn used in locating the condition was found. If a replacement test
4402 of the condition is desired, it should be placed in front of that
4403 insn and we will be sure that the inputs are still valid.
4405 If WANT_REG is nonzero, we wish the condition to be relative to that
4406 register, if possible. Therefore, do not canonicalize the condition
4407 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4408 to be a compare to a CC mode register.
4410 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4411 and at INSN. */
4414 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4415 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4417 enum rtx_code code;
4418 rtx prev = insn;
4419 rtx set;
4420 rtx tem;
4421 rtx op0, op1;
4422 int reverse_code = 0;
4423 enum machine_mode mode;
4424 basic_block bb = BLOCK_FOR_INSN (insn);
4426 code = GET_CODE (cond);
4427 mode = GET_MODE (cond);
4428 op0 = XEXP (cond, 0);
4429 op1 = XEXP (cond, 1);
4431 if (reverse)
4432 code = reversed_comparison_code (cond, insn);
4433 if (code == UNKNOWN)
4434 return 0;
4436 if (earliest)
4437 *earliest = insn;
4439 /* If we are comparing a register with zero, see if the register is set
4440 in the previous insn to a COMPARE or a comparison operation. Perform
4441 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4442 in cse.c */
4444 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4445 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4446 && op1 == CONST0_RTX (GET_MODE (op0))
4447 && op0 != want_reg)
4449 /* Set nonzero when we find something of interest. */
4450 rtx x = 0;
4452 #ifdef HAVE_cc0
4453 /* If comparison with cc0, import actual comparison from compare
4454 insn. */
4455 if (op0 == cc0_rtx)
4457 if ((prev = prev_nonnote_insn (prev)) == 0
4458 || !NONJUMP_INSN_P (prev)
4459 || (set = single_set (prev)) == 0
4460 || SET_DEST (set) != cc0_rtx)
4461 return 0;
4463 op0 = SET_SRC (set);
4464 op1 = CONST0_RTX (GET_MODE (op0));
4465 if (earliest)
4466 *earliest = prev;
4468 #endif
4470 /* If this is a COMPARE, pick up the two things being compared. */
4471 if (GET_CODE (op0) == COMPARE)
4473 op1 = XEXP (op0, 1);
4474 op0 = XEXP (op0, 0);
4475 continue;
4477 else if (!REG_P (op0))
4478 break;
4480 /* Go back to the previous insn. Stop if it is not an INSN. We also
4481 stop if it isn't a single set or if it has a REG_INC note because
4482 we don't want to bother dealing with it. */
4484 if ((prev = prev_nonnote_insn (prev)) == 0
4485 || !NONJUMP_INSN_P (prev)
4486 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4487 /* In cfglayout mode, there do not have to be labels at the
4488 beginning of a block, or jumps at the end, so the previous
4489 conditions would not stop us when we reach bb boundary. */
4490 || BLOCK_FOR_INSN (prev) != bb)
4491 break;
4493 set = set_of (op0, prev);
4495 if (set
4496 && (GET_CODE (set) != SET
4497 || !rtx_equal_p (SET_DEST (set), op0)))
4498 break;
4500 /* If this is setting OP0, get what it sets it to if it looks
4501 relevant. */
4502 if (set)
4504 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4505 #ifdef FLOAT_STORE_FLAG_VALUE
4506 REAL_VALUE_TYPE fsfv;
4507 #endif
4509 /* ??? We may not combine comparisons done in a CCmode with
4510 comparisons not done in a CCmode. This is to aid targets
4511 like Alpha that have an IEEE compliant EQ instruction, and
4512 a non-IEEE compliant BEQ instruction. The use of CCmode is
4513 actually artificial, simply to prevent the combination, but
4514 should not affect other platforms.
4516 However, we must allow VOIDmode comparisons to match either
4517 CCmode or non-CCmode comparison, because some ports have
4518 modeless comparisons inside branch patterns.
4520 ??? This mode check should perhaps look more like the mode check
4521 in simplify_comparison in combine. */
4523 if ((GET_CODE (SET_SRC (set)) == COMPARE
4524 || (((code == NE
4525 || (code == LT
4526 && GET_MODE_CLASS (inner_mode) == MODE_INT
4527 && (GET_MODE_BITSIZE (inner_mode)
4528 <= HOST_BITS_PER_WIDE_INT)
4529 && (STORE_FLAG_VALUE
4530 & ((HOST_WIDE_INT) 1
4531 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4532 #ifdef FLOAT_STORE_FLAG_VALUE
4533 || (code == LT
4534 && SCALAR_FLOAT_MODE_P (inner_mode)
4535 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4536 REAL_VALUE_NEGATIVE (fsfv)))
4537 #endif
4539 && COMPARISON_P (SET_SRC (set))))
4540 && (((GET_MODE_CLASS (mode) == MODE_CC)
4541 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4542 || mode == VOIDmode || inner_mode == VOIDmode))
4543 x = SET_SRC (set);
4544 else if (((code == EQ
4545 || (code == GE
4546 && (GET_MODE_BITSIZE (inner_mode)
4547 <= HOST_BITS_PER_WIDE_INT)
4548 && GET_MODE_CLASS (inner_mode) == MODE_INT
4549 && (STORE_FLAG_VALUE
4550 & ((HOST_WIDE_INT) 1
4551 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4552 #ifdef FLOAT_STORE_FLAG_VALUE
4553 || (code == GE
4554 && SCALAR_FLOAT_MODE_P (inner_mode)
4555 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4556 REAL_VALUE_NEGATIVE (fsfv)))
4557 #endif
4559 && COMPARISON_P (SET_SRC (set))
4560 && (((GET_MODE_CLASS (mode) == MODE_CC)
4561 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4562 || mode == VOIDmode || inner_mode == VOIDmode))
4565 reverse_code = 1;
4566 x = SET_SRC (set);
4568 else
4569 break;
4572 else if (reg_set_p (op0, prev))
4573 /* If this sets OP0, but not directly, we have to give up. */
4574 break;
4576 if (x)
4578 /* If the caller is expecting the condition to be valid at INSN,
4579 make sure X doesn't change before INSN. */
4580 if (valid_at_insn_p)
4581 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4582 break;
4583 if (COMPARISON_P (x))
4584 code = GET_CODE (x);
4585 if (reverse_code)
4587 code = reversed_comparison_code (x, prev);
4588 if (code == UNKNOWN)
4589 return 0;
4590 reverse_code = 0;
4593 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4594 if (earliest)
4595 *earliest = prev;
4599 /* If constant is first, put it last. */
4600 if (CONSTANT_P (op0))
4601 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4603 /* If OP0 is the result of a comparison, we weren't able to find what
4604 was really being compared, so fail. */
4605 if (!allow_cc_mode
4606 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4607 return 0;
4609 /* Canonicalize any ordered comparison with integers involving equality
4610 if we can do computations in the relevant mode and we do not
4611 overflow. */
4613 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4614 && GET_CODE (op1) == CONST_INT
4615 && GET_MODE (op0) != VOIDmode
4616 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4618 HOST_WIDE_INT const_val = INTVAL (op1);
4619 unsigned HOST_WIDE_INT uconst_val = const_val;
4620 unsigned HOST_WIDE_INT max_val
4621 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4623 switch (code)
4625 case LE:
4626 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4627 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4628 break;
4630 /* When cross-compiling, const_val might be sign-extended from
4631 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4632 case GE:
4633 if ((HOST_WIDE_INT) (const_val & max_val)
4634 != (((HOST_WIDE_INT) 1
4635 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4636 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4637 break;
4639 case LEU:
4640 if (uconst_val < max_val)
4641 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4642 break;
4644 case GEU:
4645 if (uconst_val != 0)
4646 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4647 break;
4649 default:
4650 break;
4654 /* Never return CC0; return zero instead. */
4655 if (CC0_P (op0))
4656 return 0;
4658 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4661 /* Given a jump insn JUMP, return the condition that will cause it to branch
4662 to its JUMP_LABEL. If the condition cannot be understood, or is an
4663 inequality floating-point comparison which needs to be reversed, 0 will
4664 be returned.
4666 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4667 insn used in locating the condition was found. If a replacement test
4668 of the condition is desired, it should be placed in front of that
4669 insn and we will be sure that the inputs are still valid. If EARLIEST
4670 is null, the returned condition will be valid at INSN.
4672 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4673 compare CC mode register.
4675 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4678 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4680 rtx cond;
4681 int reverse;
4682 rtx set;
4684 /* If this is not a standard conditional jump, we can't parse it. */
4685 if (!JUMP_P (jump)
4686 || ! any_condjump_p (jump))
4687 return 0;
4688 set = pc_set (jump);
4690 cond = XEXP (SET_SRC (set), 0);
4692 /* If this branches to JUMP_LABEL when the condition is false, reverse
4693 the condition. */
4694 reverse
4695 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4696 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4698 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4699 allow_cc_mode, valid_at_insn_p);
4702 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4703 TARGET_MODE_REP_EXTENDED.
4705 Note that we assume that the property of
4706 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4707 narrower than mode B. I.e., if A is a mode narrower than B then in
4708 order to be able to operate on it in mode B, mode A needs to
4709 satisfy the requirements set by the representation of mode B. */
4711 static void
4712 init_num_sign_bit_copies_in_rep (void)
4714 enum machine_mode mode, in_mode;
4716 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4717 in_mode = GET_MODE_WIDER_MODE (mode))
4718 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4719 mode = GET_MODE_WIDER_MODE (mode))
4721 enum machine_mode i;
4723 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4724 extends to the next widest mode. */
4725 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4726 || GET_MODE_WIDER_MODE (mode) == in_mode);
4728 /* We are in in_mode. Count how many bits outside of mode
4729 have to be copies of the sign-bit. */
4730 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4732 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4734 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4735 /* We can only check sign-bit copies starting from the
4736 top-bit. In order to be able to check the bits we
4737 have already seen we pretend that subsequent bits
4738 have to be sign-bit copies too. */
4739 || num_sign_bit_copies_in_rep [in_mode][mode])
4740 num_sign_bit_copies_in_rep [in_mode][mode]
4741 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4746 /* Suppose that truncation from the machine mode of X to MODE is not a
4747 no-op. See if there is anything special about X so that we can
4748 assume it already contains a truncated value of MODE. */
4750 bool
4751 truncated_to_mode (enum machine_mode mode, rtx x)
4753 /* This register has already been used in MODE without explicit
4754 truncation. */
4755 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4756 return true;
4758 /* See if we already satisfy the requirements of MODE. If yes we
4759 can just switch to MODE. */
4760 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4761 && (num_sign_bit_copies (x, GET_MODE (x))
4762 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4763 return true;
4765 return false;
4768 /* Initialize non_rtx_starting_operands, which is used to speed up
4769 for_each_rtx. */
4770 void
4771 init_rtlanal (void)
4773 int i;
4774 for (i = 0; i < NUM_RTX_CODE; i++)
4776 const char *format = GET_RTX_FORMAT (i);
4777 const char *first = strpbrk (format, "eEV");
4778 non_rtx_starting_operands[i] = first ? first - format : -1;
4781 init_num_sign_bit_copies_in_rep ();
4784 /* Check whether this is a constant pool constant. */
4785 bool
4786 constant_pool_constant_p (rtx x)
4788 x = avoid_constant_pool_reference (x);
4789 return GET_CODE (x) == CONST_DOUBLE;