PR middle-end/30262
[official-gcc.git] / gcc / dwarf2out.c
bloba9f6308a934031507b04948ec5e7506ac971b585
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_pubtypes_section;
160 static GTY(()) section *debug_str_section;
161 static GTY(()) section *debug_ranges_section;
162 static GTY(()) section *debug_frame_section;
164 /* How to start an assembler comment. */
165 #ifndef ASM_COMMENT_START
166 #define ASM_COMMENT_START ";#"
167 #endif
169 typedef struct dw_cfi_struct *dw_cfi_ref;
170 typedef struct dw_fde_struct *dw_fde_ref;
171 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173 /* Call frames are described using a sequence of Call Frame
174 Information instructions. The register number, offset
175 and address fields are provided as possible operands;
176 their use is selected by the opcode field. */
178 enum dw_cfi_oprnd_type {
179 dw_cfi_oprnd_unused,
180 dw_cfi_oprnd_reg_num,
181 dw_cfi_oprnd_offset,
182 dw_cfi_oprnd_addr,
183 dw_cfi_oprnd_loc
186 typedef union dw_cfi_oprnd_struct GTY(())
188 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
189 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
190 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
191 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 dw_cfi_oprnd;
195 typedef struct dw_cfi_struct GTY(())
197 dw_cfi_ref dw_cfi_next;
198 enum dwarf_call_frame_info dw_cfi_opc;
199 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
200 dw_cfi_oprnd1;
201 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
202 dw_cfi_oprnd2;
204 dw_cfi_node;
206 /* This is how we define the location of the CFA. We use to handle it
207 as REG + OFFSET all the time, but now it can be more complex.
208 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
209 Instead of passing around REG and OFFSET, we pass a copy
210 of this structure. */
211 typedef struct cfa_loc GTY(())
213 HOST_WIDE_INT offset;
214 HOST_WIDE_INT base_offset;
215 unsigned int reg;
216 int indirect; /* 1 if CFA is accessed via a dereference. */
217 } dw_cfa_location;
219 /* All call frame descriptions (FDE's) in the GCC generated DWARF
220 refer to a single Common Information Entry (CIE), defined at
221 the beginning of the .debug_frame section. This use of a single
222 CIE obviates the need to keep track of multiple CIE's
223 in the DWARF generation routines below. */
225 typedef struct dw_fde_struct GTY(())
227 tree decl;
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 const char *dw_fde_hot_section_label;
232 const char *dw_fde_hot_section_end_label;
233 const char *dw_fde_unlikely_section_label;
234 const char *dw_fde_unlikely_section_end_label;
235 bool dw_fde_switched_sections;
236 dw_cfi_ref dw_fde_cfi;
237 unsigned funcdef_number;
238 unsigned all_throwers_are_sibcalls : 1;
239 unsigned nothrow : 1;
240 unsigned uses_eh_lsda : 1;
242 dw_fde_node;
244 /* Maximum size (in bytes) of an artificially generated label. */
245 #define MAX_ARTIFICIAL_LABEL_BYTES 30
247 /* The size of addresses as they appear in the Dwarf 2 data.
248 Some architectures use word addresses to refer to code locations,
249 but Dwarf 2 info always uses byte addresses. On such machines,
250 Dwarf 2 addresses need to be larger than the architecture's
251 pointers. */
252 #ifndef DWARF2_ADDR_SIZE
253 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
254 #endif
256 /* The size in bytes of a DWARF field indicating an offset or length
257 relative to a debug info section, specified to be 4 bytes in the
258 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
259 as PTR_SIZE. */
261 #ifndef DWARF_OFFSET_SIZE
262 #define DWARF_OFFSET_SIZE 4
263 #endif
265 /* According to the (draft) DWARF 3 specification, the initial length
266 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
267 bytes are 0xffffffff, followed by the length stored in the next 8
268 bytes.
270 However, the SGI/MIPS ABI uses an initial length which is equal to
271 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
273 #ifndef DWARF_INITIAL_LENGTH_SIZE
274 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
275 #endif
277 #define DWARF_VERSION 2
279 /* Round SIZE up to the nearest BOUNDARY. */
280 #define DWARF_ROUND(SIZE,BOUNDARY) \
281 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
283 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
284 #ifndef DWARF_CIE_DATA_ALIGNMENT
285 #ifdef STACK_GROWS_DOWNWARD
286 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
287 #else
288 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
289 #endif
290 #endif
292 /* CIE identifier. */
293 #if HOST_BITS_PER_WIDE_INT >= 64
294 #define DWARF_CIE_ID \
295 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
296 #else
297 #define DWARF_CIE_ID DW_CIE_ID
298 #endif
300 /* A pointer to the base of a table that contains frame description
301 information for each routine. */
302 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
304 /* Number of elements currently allocated for fde_table. */
305 static GTY(()) unsigned fde_table_allocated;
307 /* Number of elements in fde_table currently in use. */
308 static GTY(()) unsigned fde_table_in_use;
310 /* Size (in elements) of increments by which we may expand the
311 fde_table. */
312 #define FDE_TABLE_INCREMENT 256
314 /* A list of call frame insns for the CIE. */
315 static GTY(()) dw_cfi_ref cie_cfi_head;
317 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
318 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
319 attribute that accelerates the lookup of the FDE associated
320 with the subprogram. This variable holds the table index of the FDE
321 associated with the current function (body) definition. */
322 static unsigned current_funcdef_fde;
323 #endif
325 struct indirect_string_node GTY(())
327 const char *str;
328 unsigned int refcount;
329 unsigned int form;
330 char *label;
333 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
335 static GTY(()) int dw2_string_counter;
336 static GTY(()) unsigned long dwarf2out_cfi_label_num;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
340 /* Forward declarations for functions defined in this file. */
342 static char *stripattributes (const char *);
343 static const char *dwarf_cfi_name (unsigned);
344 static dw_cfi_ref new_cfi (void);
345 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
346 static void add_fde_cfi (const char *, dw_cfi_ref);
347 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
348 static void lookup_cfa (dw_cfa_location *);
349 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
350 static void initial_return_save (rtx);
351 static HOST_WIDE_INT stack_adjust_offset (rtx);
352 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
353 static void output_call_frame_info (int);
354 static void dwarf2out_stack_adjust (rtx, bool);
355 static void flush_queued_reg_saves (void);
356 static bool clobbers_queued_reg_save (rtx);
357 static void dwarf2out_frame_debug_expr (rtx, const char *);
359 /* Support for complex CFA locations. */
360 static void output_cfa_loc (dw_cfi_ref);
361 static void get_cfa_from_loc_descr (dw_cfa_location *,
362 struct dw_loc_descr_struct *);
363 static struct dw_loc_descr_struct *build_cfa_loc
364 (dw_cfa_location *, HOST_WIDE_INT);
365 static void def_cfa_1 (const char *, dw_cfa_location *);
367 /* How to start an assembler comment. */
368 #ifndef ASM_COMMENT_START
369 #define ASM_COMMENT_START ";#"
370 #endif
372 /* Data and reference forms for relocatable data. */
373 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
374 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
376 #ifndef DEBUG_FRAME_SECTION
377 #define DEBUG_FRAME_SECTION ".debug_frame"
378 #endif
380 #ifndef FUNC_BEGIN_LABEL
381 #define FUNC_BEGIN_LABEL "LFB"
382 #endif
384 #ifndef FUNC_END_LABEL
385 #define FUNC_END_LABEL "LFE"
386 #endif
388 #ifndef FRAME_BEGIN_LABEL
389 #define FRAME_BEGIN_LABEL "Lframe"
390 #endif
391 #define CIE_AFTER_SIZE_LABEL "LSCIE"
392 #define CIE_END_LABEL "LECIE"
393 #define FDE_LABEL "LSFDE"
394 #define FDE_AFTER_SIZE_LABEL "LASFDE"
395 #define FDE_END_LABEL "LEFDE"
396 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
397 #define LINE_NUMBER_END_LABEL "LELT"
398 #define LN_PROLOG_AS_LABEL "LASLTP"
399 #define LN_PROLOG_END_LABEL "LELTP"
400 #define DIE_LABEL_PREFIX "DW"
402 /* The DWARF 2 CFA column which tracks the return address. Normally this
403 is the column for PC, or the first column after all of the hard
404 registers. */
405 #ifndef DWARF_FRAME_RETURN_COLUMN
406 #ifdef PC_REGNUM
407 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
408 #else
409 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
410 #endif
411 #endif
413 /* The mapping from gcc register number to DWARF 2 CFA column number. By
414 default, we just provide columns for all registers. */
415 #ifndef DWARF_FRAME_REGNUM
416 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
417 #endif
419 /* Hook used by __throw. */
422 expand_builtin_dwarf_sp_column (void)
424 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
425 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
428 /* Return a pointer to a copy of the section string name S with all
429 attributes stripped off, and an asterisk prepended (for assemble_name). */
431 static inline char *
432 stripattributes (const char *s)
434 char *stripped = XNEWVEC (char, strlen (s) + 2);
435 char *p = stripped;
437 *p++ = '*';
439 while (*s && *s != ',')
440 *p++ = *s++;
442 *p = '\0';
443 return stripped;
446 /* Generate code to initialize the register size table. */
448 void
449 expand_builtin_init_dwarf_reg_sizes (tree address)
451 unsigned int i;
452 enum machine_mode mode = TYPE_MODE (char_type_node);
453 rtx addr = expand_normal (address);
454 rtx mem = gen_rtx_MEM (BLKmode, addr);
455 bool wrote_return_column = false;
457 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
459 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
461 if (rnum < DWARF_FRAME_REGISTERS)
463 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
464 enum machine_mode save_mode = reg_raw_mode[i];
465 HOST_WIDE_INT size;
467 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
468 save_mode = choose_hard_reg_mode (i, 1, true);
469 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
471 if (save_mode == VOIDmode)
472 continue;
473 wrote_return_column = true;
475 size = GET_MODE_SIZE (save_mode);
476 if (offset < 0)
477 continue;
479 emit_move_insn (adjust_address (mem, mode, offset),
480 gen_int_mode (size, mode));
484 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
485 gcc_assert (wrote_return_column);
486 i = DWARF_ALT_FRAME_RETURN_COLUMN;
487 wrote_return_column = false;
488 #else
489 i = DWARF_FRAME_RETURN_COLUMN;
490 #endif
492 if (! wrote_return_column)
494 enum machine_mode save_mode = Pmode;
495 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
496 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
497 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 /* Convert a DWARF call frame info. operation to its string name */
503 static const char *
504 dwarf_cfi_name (unsigned int cfi_opc)
506 switch (cfi_opc)
508 case DW_CFA_advance_loc:
509 return "DW_CFA_advance_loc";
510 case DW_CFA_offset:
511 return "DW_CFA_offset";
512 case DW_CFA_restore:
513 return "DW_CFA_restore";
514 case DW_CFA_nop:
515 return "DW_CFA_nop";
516 case DW_CFA_set_loc:
517 return "DW_CFA_set_loc";
518 case DW_CFA_advance_loc1:
519 return "DW_CFA_advance_loc1";
520 case DW_CFA_advance_loc2:
521 return "DW_CFA_advance_loc2";
522 case DW_CFA_advance_loc4:
523 return "DW_CFA_advance_loc4";
524 case DW_CFA_offset_extended:
525 return "DW_CFA_offset_extended";
526 case DW_CFA_restore_extended:
527 return "DW_CFA_restore_extended";
528 case DW_CFA_undefined:
529 return "DW_CFA_undefined";
530 case DW_CFA_same_value:
531 return "DW_CFA_same_value";
532 case DW_CFA_register:
533 return "DW_CFA_register";
534 case DW_CFA_remember_state:
535 return "DW_CFA_remember_state";
536 case DW_CFA_restore_state:
537 return "DW_CFA_restore_state";
538 case DW_CFA_def_cfa:
539 return "DW_CFA_def_cfa";
540 case DW_CFA_def_cfa_register:
541 return "DW_CFA_def_cfa_register";
542 case DW_CFA_def_cfa_offset:
543 return "DW_CFA_def_cfa_offset";
545 /* DWARF 3 */
546 case DW_CFA_def_cfa_expression:
547 return "DW_CFA_def_cfa_expression";
548 case DW_CFA_expression:
549 return "DW_CFA_expression";
550 case DW_CFA_offset_extended_sf:
551 return "DW_CFA_offset_extended_sf";
552 case DW_CFA_def_cfa_sf:
553 return "DW_CFA_def_cfa_sf";
554 case DW_CFA_def_cfa_offset_sf:
555 return "DW_CFA_def_cfa_offset_sf";
557 /* SGI/MIPS specific */
558 case DW_CFA_MIPS_advance_loc8:
559 return "DW_CFA_MIPS_advance_loc8";
561 /* GNU extensions */
562 case DW_CFA_GNU_window_save:
563 return "DW_CFA_GNU_window_save";
564 case DW_CFA_GNU_args_size:
565 return "DW_CFA_GNU_args_size";
566 case DW_CFA_GNU_negative_offset_extended:
567 return "DW_CFA_GNU_negative_offset_extended";
569 default:
570 return "DW_CFA_<unknown>";
574 /* Return a pointer to a newly allocated Call Frame Instruction. */
576 static inline dw_cfi_ref
577 new_cfi (void)
579 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
581 cfi->dw_cfi_next = NULL;
582 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
583 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
585 return cfi;
588 /* Add a Call Frame Instruction to list of instructions. */
590 static inline void
591 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
593 dw_cfi_ref *p;
595 /* Find the end of the chain. */
596 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
599 *p = cfi;
602 /* Generate a new label for the CFI info to refer to. */
604 char *
605 dwarf2out_cfi_label (void)
607 static char label[20];
609 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
610 ASM_OUTPUT_LABEL (asm_out_file, label);
611 return label;
614 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
615 or to the CIE if LABEL is NULL. */
617 static void
618 add_fde_cfi (const char *label, dw_cfi_ref cfi)
620 if (label)
622 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
624 if (*label == 0)
625 label = dwarf2out_cfi_label ();
627 if (fde->dw_fde_current_label == NULL
628 || strcmp (label, fde->dw_fde_current_label) != 0)
630 dw_cfi_ref xcfi;
632 label = xstrdup (label);
634 /* Set the location counter to the new label. */
635 xcfi = new_cfi ();
636 /* If we have a current label, advance from there, otherwise
637 set the location directly using set_loc. */
638 xcfi->dw_cfi_opc = fde->dw_fde_current_label
639 ? DW_CFA_advance_loc4
640 : DW_CFA_set_loc;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
644 fde->dw_fde_current_label = label;
647 add_cfi (&fde->dw_fde_cfi, cfi);
650 else
651 add_cfi (&cie_cfi_head, cfi);
654 /* Subroutine of lookup_cfa. */
656 static void
657 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
659 switch (cfi->dw_cfi_opc)
661 case DW_CFA_def_cfa_offset:
662 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
663 break;
664 case DW_CFA_def_cfa_offset_sf:
665 loc->offset
666 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
667 break;
668 case DW_CFA_def_cfa_register:
669 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
670 break;
671 case DW_CFA_def_cfa:
672 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
673 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_sf:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 loc->offset
678 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
679 break;
680 case DW_CFA_def_cfa_expression:
681 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
682 break;
683 default:
684 break;
688 /* Find the previous value for the CFA. */
690 static void
691 lookup_cfa (dw_cfa_location *loc)
693 dw_cfi_ref cfi;
695 loc->reg = INVALID_REGNUM;
696 loc->offset = 0;
697 loc->indirect = 0;
698 loc->base_offset = 0;
700 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
701 lookup_cfa_1 (cfi, loc);
703 if (fde_table_in_use)
705 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
706 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
707 lookup_cfa_1 (cfi, loc);
711 /* The current rule for calculating the DWARF2 canonical frame address. */
712 static dw_cfa_location cfa;
714 /* The register used for saving registers to the stack, and its offset
715 from the CFA. */
716 static dw_cfa_location cfa_store;
718 /* The running total of the size of arguments pushed onto the stack. */
719 static HOST_WIDE_INT args_size;
721 /* The last args_size we actually output. */
722 static HOST_WIDE_INT old_args_size;
724 /* Entry point to update the canonical frame address (CFA).
725 LABEL is passed to add_fde_cfi. The value of CFA is now to be
726 calculated from REG+OFFSET. */
728 void
729 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
731 dw_cfa_location loc;
732 loc.indirect = 0;
733 loc.base_offset = 0;
734 loc.reg = reg;
735 loc.offset = offset;
736 def_cfa_1 (label, &loc);
739 /* Determine if two dw_cfa_location structures define the same data. */
741 static bool
742 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
744 return (loc1->reg == loc2->reg
745 && loc1->offset == loc2->offset
746 && loc1->indirect == loc2->indirect
747 && (loc1->indirect == 0
748 || loc1->base_offset == loc2->base_offset));
751 /* This routine does the actual work. The CFA is now calculated from
752 the dw_cfa_location structure. */
754 static void
755 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
757 dw_cfi_ref cfi;
758 dw_cfa_location old_cfa, loc;
760 cfa = *loc_p;
761 loc = *loc_p;
763 if (cfa_store.reg == loc.reg && loc.indirect == 0)
764 cfa_store.offset = loc.offset;
766 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
767 lookup_cfa (&old_cfa);
769 /* If nothing changed, no need to issue any call frame instructions. */
770 if (cfa_equal_p (&loc, &old_cfa))
771 return;
773 cfi = new_cfi ();
775 if (loc.reg == old_cfa.reg && !loc.indirect)
777 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
778 the CFA register did not change but the offset did. */
779 if (loc.offset < 0)
781 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
782 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
784 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
785 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
787 else
789 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
790 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
794 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
795 else if (loc.offset == old_cfa.offset
796 && old_cfa.reg != INVALID_REGNUM
797 && !loc.indirect)
799 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
800 indicating the CFA register has changed to <register> but the
801 offset has not changed. */
802 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
803 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
805 #endif
807 else if (loc.indirect == 0)
809 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
810 indicating the CFA register has changed to <register> with
811 the specified offset. */
812 if (loc.offset < 0)
814 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
815 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
817 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
818 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
819 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
821 else
823 cfi->dw_cfi_opc = DW_CFA_def_cfa;
824 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
825 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
828 else
830 /* Construct a DW_CFA_def_cfa_expression instruction to
831 calculate the CFA using a full location expression since no
832 register-offset pair is available. */
833 struct dw_loc_descr_struct *loc_list;
835 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
836 loc_list = build_cfa_loc (&loc, 0);
837 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
840 add_fde_cfi (label, cfi);
843 /* Add the CFI for saving a register. REG is the CFA column number.
844 LABEL is passed to add_fde_cfi.
845 If SREG is -1, the register is saved at OFFSET from the CFA;
846 otherwise it is saved in SREG. */
848 static void
849 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
851 dw_cfi_ref cfi = new_cfi ();
853 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
855 if (sreg == INVALID_REGNUM)
857 if (reg & ~0x3f)
858 /* The register number won't fit in 6 bits, so we have to use
859 the long form. */
860 cfi->dw_cfi_opc = DW_CFA_offset_extended;
861 else
862 cfi->dw_cfi_opc = DW_CFA_offset;
864 #ifdef ENABLE_CHECKING
866 /* If we get an offset that is not a multiple of
867 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
868 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
869 description. */
870 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
872 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
874 #endif
875 offset /= DWARF_CIE_DATA_ALIGNMENT;
876 if (offset < 0)
877 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
879 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
881 else if (sreg == reg)
882 cfi->dw_cfi_opc = DW_CFA_same_value;
883 else
885 cfi->dw_cfi_opc = DW_CFA_register;
886 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
889 add_fde_cfi (label, cfi);
892 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
893 This CFI tells the unwinder that it needs to restore the window registers
894 from the previous frame's window save area.
896 ??? Perhaps we should note in the CIE where windows are saved (instead of
897 assuming 0(cfa)) and what registers are in the window. */
899 void
900 dwarf2out_window_save (const char *label)
902 dw_cfi_ref cfi = new_cfi ();
904 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
905 add_fde_cfi (label, cfi);
908 /* Add a CFI to update the running total of the size of arguments
909 pushed onto the stack. */
911 void
912 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
914 dw_cfi_ref cfi;
916 if (size == old_args_size)
917 return;
919 old_args_size = size;
921 cfi = new_cfi ();
922 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
923 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
924 add_fde_cfi (label, cfi);
927 /* Entry point for saving a register to the stack. REG is the GCC register
928 number. LABEL and OFFSET are passed to reg_save. */
930 void
931 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
933 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
936 /* Entry point for saving the return address in the stack.
937 LABEL and OFFSET are passed to reg_save. */
939 void
940 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
942 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
945 /* Entry point for saving the return address in a register.
946 LABEL and SREG are passed to reg_save. */
948 void
949 dwarf2out_return_reg (const char *label, unsigned int sreg)
951 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
954 /* Record the initial position of the return address. RTL is
955 INCOMING_RETURN_ADDR_RTX. */
957 static void
958 initial_return_save (rtx rtl)
960 unsigned int reg = INVALID_REGNUM;
961 HOST_WIDE_INT offset = 0;
963 switch (GET_CODE (rtl))
965 case REG:
966 /* RA is in a register. */
967 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
968 break;
970 case MEM:
971 /* RA is on the stack. */
972 rtl = XEXP (rtl, 0);
973 switch (GET_CODE (rtl))
975 case REG:
976 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
977 offset = 0;
978 break;
980 case PLUS:
981 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
982 offset = INTVAL (XEXP (rtl, 1));
983 break;
985 case MINUS:
986 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
987 offset = -INTVAL (XEXP (rtl, 1));
988 break;
990 default:
991 gcc_unreachable ();
994 break;
996 case PLUS:
997 /* The return address is at some offset from any value we can
998 actually load. For instance, on the SPARC it is in %i7+8. Just
999 ignore the offset for now; it doesn't matter for unwinding frames. */
1000 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1001 initial_return_save (XEXP (rtl, 0));
1002 return;
1004 default:
1005 gcc_unreachable ();
1008 if (reg != DWARF_FRAME_RETURN_COLUMN)
1009 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1012 /* Given a SET, calculate the amount of stack adjustment it
1013 contains. */
1015 static HOST_WIDE_INT
1016 stack_adjust_offset (rtx pattern)
1018 rtx src = SET_SRC (pattern);
1019 rtx dest = SET_DEST (pattern);
1020 HOST_WIDE_INT offset = 0;
1021 enum rtx_code code;
1023 if (dest == stack_pointer_rtx)
1025 /* (set (reg sp) (plus (reg sp) (const_int))) */
1026 code = GET_CODE (src);
1027 if (! (code == PLUS || code == MINUS)
1028 || XEXP (src, 0) != stack_pointer_rtx
1029 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1030 return 0;
1032 offset = INTVAL (XEXP (src, 1));
1033 if (code == PLUS)
1034 offset = -offset;
1036 else if (MEM_P (dest))
1038 /* (set (mem (pre_dec (reg sp))) (foo)) */
1039 src = XEXP (dest, 0);
1040 code = GET_CODE (src);
1042 switch (code)
1044 case PRE_MODIFY:
1045 case POST_MODIFY:
1046 if (XEXP (src, 0) == stack_pointer_rtx)
1048 rtx val = XEXP (XEXP (src, 1), 1);
1049 /* We handle only adjustments by constant amount. */
1050 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1051 && GET_CODE (val) == CONST_INT);
1052 offset = -INTVAL (val);
1053 break;
1055 return 0;
1057 case PRE_DEC:
1058 case POST_DEC:
1059 if (XEXP (src, 0) == stack_pointer_rtx)
1061 offset = GET_MODE_SIZE (GET_MODE (dest));
1062 break;
1064 return 0;
1066 case PRE_INC:
1067 case POST_INC:
1068 if (XEXP (src, 0) == stack_pointer_rtx)
1070 offset = -GET_MODE_SIZE (GET_MODE (dest));
1071 break;
1073 return 0;
1075 default:
1076 return 0;
1079 else
1080 return 0;
1082 return offset;
1085 /* Check INSN to see if it looks like a push or a stack adjustment, and
1086 make a note of it if it does. EH uses this information to find out how
1087 much extra space it needs to pop off the stack. */
1089 static void
1090 dwarf2out_stack_adjust (rtx insn, bool after_p)
1092 HOST_WIDE_INT offset;
1093 const char *label;
1094 int i;
1096 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1097 with this function. Proper support would require all frame-related
1098 insns to be marked, and to be able to handle saving state around
1099 epilogues textually in the middle of the function. */
1100 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1101 return;
1103 /* If only calls can throw, and we have a frame pointer,
1104 save up adjustments until we see the CALL_INSN. */
1105 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1107 if (CALL_P (insn) && !after_p)
1109 /* Extract the size of the args from the CALL rtx itself. */
1110 insn = PATTERN (insn);
1111 if (GET_CODE (insn) == PARALLEL)
1112 insn = XVECEXP (insn, 0, 0);
1113 if (GET_CODE (insn) == SET)
1114 insn = SET_SRC (insn);
1115 gcc_assert (GET_CODE (insn) == CALL);
1116 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1118 return;
1121 if (CALL_P (insn) && !after_p)
1123 if (!flag_asynchronous_unwind_tables)
1124 dwarf2out_args_size ("", args_size);
1125 return;
1127 else if (BARRIER_P (insn))
1129 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1130 the compiler will have already emitted a stack adjustment, but
1131 doesn't bother for calls to noreturn functions. */
1132 #ifdef STACK_GROWS_DOWNWARD
1133 offset = -args_size;
1134 #else
1135 offset = args_size;
1136 #endif
1138 else if (GET_CODE (PATTERN (insn)) == SET)
1139 offset = stack_adjust_offset (PATTERN (insn));
1140 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1141 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1143 /* There may be stack adjustments inside compound insns. Search
1144 for them. */
1145 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1146 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1147 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1149 else
1150 return;
1152 if (offset == 0)
1153 return;
1155 if (cfa.reg == STACK_POINTER_REGNUM)
1156 cfa.offset += offset;
1158 #ifndef STACK_GROWS_DOWNWARD
1159 offset = -offset;
1160 #endif
1162 args_size += offset;
1163 if (args_size < 0)
1164 args_size = 0;
1166 label = dwarf2out_cfi_label ();
1167 def_cfa_1 (label, &cfa);
1168 if (flag_asynchronous_unwind_tables)
1169 dwarf2out_args_size (label, args_size);
1172 #endif
1174 /* We delay emitting a register save until either (a) we reach the end
1175 of the prologue or (b) the register is clobbered. This clusters
1176 register saves so that there are fewer pc advances. */
1178 struct queued_reg_save GTY(())
1180 struct queued_reg_save *next;
1181 rtx reg;
1182 HOST_WIDE_INT cfa_offset;
1183 rtx saved_reg;
1186 static GTY(()) struct queued_reg_save *queued_reg_saves;
1188 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1189 struct reg_saved_in_data GTY(()) {
1190 rtx orig_reg;
1191 rtx saved_in_reg;
1194 /* A list of registers saved in other registers.
1195 The list intentionally has a small maximum capacity of 4; if your
1196 port needs more than that, you might consider implementing a
1197 more efficient data structure. */
1198 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1199 static GTY(()) size_t num_regs_saved_in_regs;
1201 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1202 static const char *last_reg_save_label;
1204 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1205 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1207 static void
1208 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1210 struct queued_reg_save *q;
1212 /* Duplicates waste space, but it's also necessary to remove them
1213 for correctness, since the queue gets output in reverse
1214 order. */
1215 for (q = queued_reg_saves; q != NULL; q = q->next)
1216 if (REGNO (q->reg) == REGNO (reg))
1217 break;
1219 if (q == NULL)
1221 q = ggc_alloc (sizeof (*q));
1222 q->next = queued_reg_saves;
1223 queued_reg_saves = q;
1226 q->reg = reg;
1227 q->cfa_offset = offset;
1228 q->saved_reg = sreg;
1230 last_reg_save_label = label;
1233 /* Output all the entries in QUEUED_REG_SAVES. */
1235 static void
1236 flush_queued_reg_saves (void)
1238 struct queued_reg_save *q;
1240 for (q = queued_reg_saves; q; q = q->next)
1242 size_t i;
1243 unsigned int reg, sreg;
1245 for (i = 0; i < num_regs_saved_in_regs; i++)
1246 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1247 break;
1248 if (q->saved_reg && i == num_regs_saved_in_regs)
1250 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1251 num_regs_saved_in_regs++;
1253 if (i != num_regs_saved_in_regs)
1255 regs_saved_in_regs[i].orig_reg = q->reg;
1256 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1259 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1260 if (q->saved_reg)
1261 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1262 else
1263 sreg = INVALID_REGNUM;
1264 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1267 queued_reg_saves = NULL;
1268 last_reg_save_label = NULL;
1271 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1272 location for? Or, does it clobber a register which we've previously
1273 said that some other register is saved in, and for which we now
1274 have a new location for? */
1276 static bool
1277 clobbers_queued_reg_save (rtx insn)
1279 struct queued_reg_save *q;
1281 for (q = queued_reg_saves; q; q = q->next)
1283 size_t i;
1284 if (modified_in_p (q->reg, insn))
1285 return true;
1286 for (i = 0; i < num_regs_saved_in_regs; i++)
1287 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1288 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1289 return true;
1292 return false;
1295 /* Entry point for saving the first register into the second. */
1297 void
1298 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1300 size_t i;
1301 unsigned int regno, sregno;
1303 for (i = 0; i < num_regs_saved_in_regs; i++)
1304 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1305 break;
1306 if (i == num_regs_saved_in_regs)
1308 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1309 num_regs_saved_in_regs++;
1311 regs_saved_in_regs[i].orig_reg = reg;
1312 regs_saved_in_regs[i].saved_in_reg = sreg;
1314 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1315 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1316 reg_save (label, regno, sregno, 0);
1319 /* What register, if any, is currently saved in REG? */
1321 static rtx
1322 reg_saved_in (rtx reg)
1324 unsigned int regn = REGNO (reg);
1325 size_t i;
1326 struct queued_reg_save *q;
1328 for (q = queued_reg_saves; q; q = q->next)
1329 if (q->saved_reg && regn == REGNO (q->saved_reg))
1330 return q->reg;
1332 for (i = 0; i < num_regs_saved_in_regs; i++)
1333 if (regs_saved_in_regs[i].saved_in_reg
1334 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1335 return regs_saved_in_regs[i].orig_reg;
1337 return NULL_RTX;
1341 /* A temporary register holding an integral value used in adjusting SP
1342 or setting up the store_reg. The "offset" field holds the integer
1343 value, not an offset. */
1344 static dw_cfa_location cfa_temp;
1346 /* Record call frame debugging information for an expression EXPR,
1347 which either sets SP or FP (adjusting how we calculate the frame
1348 address) or saves a register to the stack or another register.
1349 LABEL indicates the address of EXPR.
1351 This function encodes a state machine mapping rtxes to actions on
1352 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1353 users need not read the source code.
1355 The High-Level Picture
1357 Changes in the register we use to calculate the CFA: Currently we
1358 assume that if you copy the CFA register into another register, we
1359 should take the other one as the new CFA register; this seems to
1360 work pretty well. If it's wrong for some target, it's simple
1361 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1363 Changes in the register we use for saving registers to the stack:
1364 This is usually SP, but not always. Again, we deduce that if you
1365 copy SP into another register (and SP is not the CFA register),
1366 then the new register is the one we will be using for register
1367 saves. This also seems to work.
1369 Register saves: There's not much guesswork about this one; if
1370 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1371 register save, and the register used to calculate the destination
1372 had better be the one we think we're using for this purpose.
1373 It's also assumed that a copy from a call-saved register to another
1374 register is saving that register if RTX_FRAME_RELATED_P is set on
1375 that instruction. If the copy is from a call-saved register to
1376 the *same* register, that means that the register is now the same
1377 value as in the caller.
1379 Except: If the register being saved is the CFA register, and the
1380 offset is nonzero, we are saving the CFA, so we assume we have to
1381 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1382 the intent is to save the value of SP from the previous frame.
1384 In addition, if a register has previously been saved to a different
1385 register,
1387 Invariants / Summaries of Rules
1389 cfa current rule for calculating the CFA. It usually
1390 consists of a register and an offset.
1391 cfa_store register used by prologue code to save things to the stack
1392 cfa_store.offset is the offset from the value of
1393 cfa_store.reg to the actual CFA
1394 cfa_temp register holding an integral value. cfa_temp.offset
1395 stores the value, which will be used to adjust the
1396 stack pointer. cfa_temp is also used like cfa_store,
1397 to track stores to the stack via fp or a temp reg.
1399 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1400 with cfa.reg as the first operand changes the cfa.reg and its
1401 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1402 cfa_temp.offset.
1404 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1405 expression yielding a constant. This sets cfa_temp.reg
1406 and cfa_temp.offset.
1408 Rule 5: Create a new register cfa_store used to save items to the
1409 stack.
1411 Rules 10-14: Save a register to the stack. Define offset as the
1412 difference of the original location and cfa_store's
1413 location (or cfa_temp's location if cfa_temp is used).
1415 The Rules
1417 "{a,b}" indicates a choice of a xor b.
1418 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1420 Rule 1:
1421 (set <reg1> <reg2>:cfa.reg)
1422 effects: cfa.reg = <reg1>
1423 cfa.offset unchanged
1424 cfa_temp.reg = <reg1>
1425 cfa_temp.offset = cfa.offset
1427 Rule 2:
1428 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1429 {<const_int>,<reg>:cfa_temp.reg}))
1430 effects: cfa.reg = sp if fp used
1431 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1432 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1433 if cfa_store.reg==sp
1435 Rule 3:
1436 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1437 effects: cfa.reg = fp
1438 cfa_offset += +/- <const_int>
1440 Rule 4:
1441 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1442 constraints: <reg1> != fp
1443 <reg1> != sp
1444 effects: cfa.reg = <reg1>
1445 cfa_temp.reg = <reg1>
1446 cfa_temp.offset = cfa.offset
1448 Rule 5:
1449 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1450 constraints: <reg1> != fp
1451 <reg1> != sp
1452 effects: cfa_store.reg = <reg1>
1453 cfa_store.offset = cfa.offset - cfa_temp.offset
1455 Rule 6:
1456 (set <reg> <const_int>)
1457 effects: cfa_temp.reg = <reg>
1458 cfa_temp.offset = <const_int>
1460 Rule 7:
1461 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1462 effects: cfa_temp.reg = <reg1>
1463 cfa_temp.offset |= <const_int>
1465 Rule 8:
1466 (set <reg> (high <exp>))
1467 effects: none
1469 Rule 9:
1470 (set <reg> (lo_sum <exp> <const_int>))
1471 effects: cfa_temp.reg = <reg>
1472 cfa_temp.offset = <const_int>
1474 Rule 10:
1475 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1476 effects: cfa_store.offset -= <const_int>
1477 cfa.offset = cfa_store.offset if cfa.reg == sp
1478 cfa.reg = sp
1479 cfa.base_offset = -cfa_store.offset
1481 Rule 11:
1482 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1483 effects: cfa_store.offset += -/+ mode_size(mem)
1484 cfa.offset = cfa_store.offset if cfa.reg == sp
1485 cfa.reg = sp
1486 cfa.base_offset = -cfa_store.offset
1488 Rule 12:
1489 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1491 <reg2>)
1492 effects: cfa.reg = <reg1>
1493 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1495 Rule 13:
1496 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1497 effects: cfa.reg = <reg1>
1498 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1500 Rule 14:
1501 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1502 effects: cfa.reg = <reg1>
1503 cfa.base_offset = -cfa_temp.offset
1504 cfa_temp.offset -= mode_size(mem)
1506 Rule 15:
1507 (set <reg> {unspec, unspec_volatile})
1508 effects: target-dependent */
1510 static void
1511 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1513 rtx src, dest;
1514 HOST_WIDE_INT offset;
1516 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1517 the PARALLEL independently. The first element is always processed if
1518 it is a SET. This is for backward compatibility. Other elements
1519 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1520 flag is set in them. */
1521 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1523 int par_index;
1524 int limit = XVECLEN (expr, 0);
1526 for (par_index = 0; par_index < limit; par_index++)
1527 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1528 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1529 || par_index == 0))
1530 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1532 return;
1535 gcc_assert (GET_CODE (expr) == SET);
1537 src = SET_SRC (expr);
1538 dest = SET_DEST (expr);
1540 if (REG_P (src))
1542 rtx rsi = reg_saved_in (src);
1543 if (rsi)
1544 src = rsi;
1547 switch (GET_CODE (dest))
1549 case REG:
1550 switch (GET_CODE (src))
1552 /* Setting FP from SP. */
1553 case REG:
1554 if (cfa.reg == (unsigned) REGNO (src))
1556 /* Rule 1 */
1557 /* Update the CFA rule wrt SP or FP. Make sure src is
1558 relative to the current CFA register.
1560 We used to require that dest be either SP or FP, but the
1561 ARM copies SP to a temporary register, and from there to
1562 FP. So we just rely on the backends to only set
1563 RTX_FRAME_RELATED_P on appropriate insns. */
1564 cfa.reg = REGNO (dest);
1565 cfa_temp.reg = cfa.reg;
1566 cfa_temp.offset = cfa.offset;
1568 else
1570 /* Saving a register in a register. */
1571 gcc_assert (!fixed_regs [REGNO (dest)]
1572 /* For the SPARC and its register window. */
1573 || (DWARF_FRAME_REGNUM (REGNO (src))
1574 == DWARF_FRAME_RETURN_COLUMN));
1575 queue_reg_save (label, src, dest, 0);
1577 break;
1579 case PLUS:
1580 case MINUS:
1581 case LO_SUM:
1582 if (dest == stack_pointer_rtx)
1584 /* Rule 2 */
1585 /* Adjusting SP. */
1586 switch (GET_CODE (XEXP (src, 1)))
1588 case CONST_INT:
1589 offset = INTVAL (XEXP (src, 1));
1590 break;
1591 case REG:
1592 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1593 == cfa_temp.reg);
1594 offset = cfa_temp.offset;
1595 break;
1596 default:
1597 gcc_unreachable ();
1600 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1602 /* Restoring SP from FP in the epilogue. */
1603 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1604 cfa.reg = STACK_POINTER_REGNUM;
1606 else if (GET_CODE (src) == LO_SUM)
1607 /* Assume we've set the source reg of the LO_SUM from sp. */
1609 else
1610 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1612 if (GET_CODE (src) != MINUS)
1613 offset = -offset;
1614 if (cfa.reg == STACK_POINTER_REGNUM)
1615 cfa.offset += offset;
1616 if (cfa_store.reg == STACK_POINTER_REGNUM)
1617 cfa_store.offset += offset;
1619 else if (dest == hard_frame_pointer_rtx)
1621 /* Rule 3 */
1622 /* Either setting the FP from an offset of the SP,
1623 or adjusting the FP */
1624 gcc_assert (frame_pointer_needed);
1626 gcc_assert (REG_P (XEXP (src, 0))
1627 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1628 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1629 offset = INTVAL (XEXP (src, 1));
1630 if (GET_CODE (src) != MINUS)
1631 offset = -offset;
1632 cfa.offset += offset;
1633 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1635 else
1637 gcc_assert (GET_CODE (src) != MINUS);
1639 /* Rule 4 */
1640 if (REG_P (XEXP (src, 0))
1641 && REGNO (XEXP (src, 0)) == cfa.reg
1642 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1644 /* Setting a temporary CFA register that will be copied
1645 into the FP later on. */
1646 offset = - INTVAL (XEXP (src, 1));
1647 cfa.offset += offset;
1648 cfa.reg = REGNO (dest);
1649 /* Or used to save regs to the stack. */
1650 cfa_temp.reg = cfa.reg;
1651 cfa_temp.offset = cfa.offset;
1654 /* Rule 5 */
1655 else if (REG_P (XEXP (src, 0))
1656 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1657 && XEXP (src, 1) == stack_pointer_rtx)
1659 /* Setting a scratch register that we will use instead
1660 of SP for saving registers to the stack. */
1661 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1662 cfa_store.reg = REGNO (dest);
1663 cfa_store.offset = cfa.offset - cfa_temp.offset;
1666 /* Rule 9 */
1667 else if (GET_CODE (src) == LO_SUM
1668 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1670 cfa_temp.reg = REGNO (dest);
1671 cfa_temp.offset = INTVAL (XEXP (src, 1));
1673 else
1674 gcc_unreachable ();
1676 break;
1678 /* Rule 6 */
1679 case CONST_INT:
1680 cfa_temp.reg = REGNO (dest);
1681 cfa_temp.offset = INTVAL (src);
1682 break;
1684 /* Rule 7 */
1685 case IOR:
1686 gcc_assert (REG_P (XEXP (src, 0))
1687 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1688 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1690 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1691 cfa_temp.reg = REGNO (dest);
1692 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1693 break;
1695 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1696 which will fill in all of the bits. */
1697 /* Rule 8 */
1698 case HIGH:
1699 break;
1701 /* Rule 15 */
1702 case UNSPEC:
1703 case UNSPEC_VOLATILE:
1704 gcc_assert (targetm.dwarf_handle_frame_unspec);
1705 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1706 return;
1708 default:
1709 gcc_unreachable ();
1712 def_cfa_1 (label, &cfa);
1713 break;
1715 case MEM:
1716 gcc_assert (REG_P (src));
1718 /* Saving a register to the stack. Make sure dest is relative to the
1719 CFA register. */
1720 switch (GET_CODE (XEXP (dest, 0)))
1722 /* Rule 10 */
1723 /* With a push. */
1724 case PRE_MODIFY:
1725 /* We can't handle variable size modifications. */
1726 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1727 == CONST_INT);
1728 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1730 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1731 && cfa_store.reg == STACK_POINTER_REGNUM);
1733 cfa_store.offset += offset;
1734 if (cfa.reg == STACK_POINTER_REGNUM)
1735 cfa.offset = cfa_store.offset;
1737 offset = -cfa_store.offset;
1738 break;
1740 /* Rule 11 */
1741 case PRE_INC:
1742 case PRE_DEC:
1743 offset = GET_MODE_SIZE (GET_MODE (dest));
1744 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1745 offset = -offset;
1747 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1748 && cfa_store.reg == STACK_POINTER_REGNUM);
1750 cfa_store.offset += offset;
1751 if (cfa.reg == STACK_POINTER_REGNUM)
1752 cfa.offset = cfa_store.offset;
1754 offset = -cfa_store.offset;
1755 break;
1757 /* Rule 12 */
1758 /* With an offset. */
1759 case PLUS:
1760 case MINUS:
1761 case LO_SUM:
1763 int regno;
1765 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1766 && REG_P (XEXP (XEXP (dest, 0), 0)));
1767 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1768 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1769 offset = -offset;
1771 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1773 if (cfa_store.reg == (unsigned) regno)
1774 offset -= cfa_store.offset;
1775 else
1777 gcc_assert (cfa_temp.reg == (unsigned) regno);
1778 offset -= cfa_temp.offset;
1781 break;
1783 /* Rule 13 */
1784 /* Without an offset. */
1785 case REG:
1787 int regno = REGNO (XEXP (dest, 0));
1789 if (cfa_store.reg == (unsigned) regno)
1790 offset = -cfa_store.offset;
1791 else
1793 gcc_assert (cfa_temp.reg == (unsigned) regno);
1794 offset = -cfa_temp.offset;
1797 break;
1799 /* Rule 14 */
1800 case POST_INC:
1801 gcc_assert (cfa_temp.reg
1802 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1803 offset = -cfa_temp.offset;
1804 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1805 break;
1807 default:
1808 gcc_unreachable ();
1811 if (REGNO (src) != STACK_POINTER_REGNUM
1812 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1813 && (unsigned) REGNO (src) == cfa.reg)
1815 /* We're storing the current CFA reg into the stack. */
1817 if (cfa.offset == 0)
1819 /* If the source register is exactly the CFA, assume
1820 we're saving SP like any other register; this happens
1821 on the ARM. */
1822 def_cfa_1 (label, &cfa);
1823 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1824 break;
1826 else
1828 /* Otherwise, we'll need to look in the stack to
1829 calculate the CFA. */
1830 rtx x = XEXP (dest, 0);
1832 if (!REG_P (x))
1833 x = XEXP (x, 0);
1834 gcc_assert (REG_P (x));
1836 cfa.reg = REGNO (x);
1837 cfa.base_offset = offset;
1838 cfa.indirect = 1;
1839 def_cfa_1 (label, &cfa);
1840 break;
1844 def_cfa_1 (label, &cfa);
1845 queue_reg_save (label, src, NULL_RTX, offset);
1846 break;
1848 default:
1849 gcc_unreachable ();
1853 /* Record call frame debugging information for INSN, which either
1854 sets SP or FP (adjusting how we calculate the frame address) or saves a
1855 register to the stack. If INSN is NULL_RTX, initialize our state.
1857 If AFTER_P is false, we're being called before the insn is emitted,
1858 otherwise after. Call instructions get invoked twice. */
1860 void
1861 dwarf2out_frame_debug (rtx insn, bool after_p)
1863 const char *label;
1864 rtx src;
1866 if (insn == NULL_RTX)
1868 size_t i;
1870 /* Flush any queued register saves. */
1871 flush_queued_reg_saves ();
1873 /* Set up state for generating call frame debug info. */
1874 lookup_cfa (&cfa);
1875 gcc_assert (cfa.reg
1876 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1878 cfa.reg = STACK_POINTER_REGNUM;
1879 cfa_store = cfa;
1880 cfa_temp.reg = -1;
1881 cfa_temp.offset = 0;
1883 for (i = 0; i < num_regs_saved_in_regs; i++)
1885 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1886 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1888 num_regs_saved_in_regs = 0;
1889 return;
1892 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1893 flush_queued_reg_saves ();
1895 if (! RTX_FRAME_RELATED_P (insn))
1897 if (!ACCUMULATE_OUTGOING_ARGS)
1898 dwarf2out_stack_adjust (insn, after_p);
1899 return;
1902 label = dwarf2out_cfi_label ();
1903 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1904 if (src)
1905 insn = XEXP (src, 0);
1906 else
1907 insn = PATTERN (insn);
1909 dwarf2out_frame_debug_expr (insn, label);
1912 #endif
1914 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1915 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1916 (enum dwarf_call_frame_info cfi);
1918 static enum dw_cfi_oprnd_type
1919 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1921 switch (cfi)
1923 case DW_CFA_nop:
1924 case DW_CFA_GNU_window_save:
1925 return dw_cfi_oprnd_unused;
1927 case DW_CFA_set_loc:
1928 case DW_CFA_advance_loc1:
1929 case DW_CFA_advance_loc2:
1930 case DW_CFA_advance_loc4:
1931 case DW_CFA_MIPS_advance_loc8:
1932 return dw_cfi_oprnd_addr;
1934 case DW_CFA_offset:
1935 case DW_CFA_offset_extended:
1936 case DW_CFA_def_cfa:
1937 case DW_CFA_offset_extended_sf:
1938 case DW_CFA_def_cfa_sf:
1939 case DW_CFA_restore_extended:
1940 case DW_CFA_undefined:
1941 case DW_CFA_same_value:
1942 case DW_CFA_def_cfa_register:
1943 case DW_CFA_register:
1944 return dw_cfi_oprnd_reg_num;
1946 case DW_CFA_def_cfa_offset:
1947 case DW_CFA_GNU_args_size:
1948 case DW_CFA_def_cfa_offset_sf:
1949 return dw_cfi_oprnd_offset;
1951 case DW_CFA_def_cfa_expression:
1952 case DW_CFA_expression:
1953 return dw_cfi_oprnd_loc;
1955 default:
1956 gcc_unreachable ();
1960 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1961 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1962 (enum dwarf_call_frame_info cfi);
1964 static enum dw_cfi_oprnd_type
1965 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1967 switch (cfi)
1969 case DW_CFA_def_cfa:
1970 case DW_CFA_def_cfa_sf:
1971 case DW_CFA_offset:
1972 case DW_CFA_offset_extended_sf:
1973 case DW_CFA_offset_extended:
1974 return dw_cfi_oprnd_offset;
1976 case DW_CFA_register:
1977 return dw_cfi_oprnd_reg_num;
1979 default:
1980 return dw_cfi_oprnd_unused;
1984 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1986 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1987 switch to the data section instead, and write out a synthetic label
1988 for collect2. */
1990 static void
1991 switch_to_eh_frame_section (void)
1993 tree label;
1995 #ifdef EH_FRAME_SECTION_NAME
1996 if (eh_frame_section == 0)
1998 int flags;
2000 if (EH_TABLES_CAN_BE_READ_ONLY)
2002 int fde_encoding;
2003 int per_encoding;
2004 int lsda_encoding;
2006 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2007 /*global=*/0);
2008 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2009 /*global=*/1);
2010 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2011 /*global=*/0);
2012 flags = ((! flag_pic
2013 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2014 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2015 && (per_encoding & 0x70) != DW_EH_PE_absptr
2016 && (per_encoding & 0x70) != DW_EH_PE_aligned
2017 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2018 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2019 ? 0 : SECTION_WRITE);
2021 else
2022 flags = SECTION_WRITE;
2023 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2025 #endif
2027 if (eh_frame_section)
2028 switch_to_section (eh_frame_section);
2029 else
2031 /* We have no special eh_frame section. Put the information in
2032 the data section and emit special labels to guide collect2. */
2033 switch_to_section (data_section);
2034 label = get_file_function_name ("F");
2035 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2036 targetm.asm_out.globalize_label (asm_out_file,
2037 IDENTIFIER_POINTER (label));
2038 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2042 /* Output a Call Frame Information opcode and its operand(s). */
2044 static void
2045 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2047 unsigned long r;
2048 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2049 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2050 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2051 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2052 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2053 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2055 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2056 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2057 "DW_CFA_offset, column 0x%lx", r);
2058 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2060 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2062 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2063 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2064 "DW_CFA_restore, column 0x%lx", r);
2066 else
2068 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2069 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2071 switch (cfi->dw_cfi_opc)
2073 case DW_CFA_set_loc:
2074 if (for_eh)
2075 dw2_asm_output_encoded_addr_rtx (
2076 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2077 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2078 false, NULL);
2079 else
2080 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2081 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2082 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2083 break;
2085 case DW_CFA_advance_loc1:
2086 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2087 fde->dw_fde_current_label, NULL);
2088 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2089 break;
2091 case DW_CFA_advance_loc2:
2092 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2093 fde->dw_fde_current_label, NULL);
2094 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2095 break;
2097 case DW_CFA_advance_loc4:
2098 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2099 fde->dw_fde_current_label, NULL);
2100 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2101 break;
2103 case DW_CFA_MIPS_advance_loc8:
2104 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2105 fde->dw_fde_current_label, NULL);
2106 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2107 break;
2109 case DW_CFA_offset_extended:
2110 case DW_CFA_def_cfa:
2111 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2112 dw2_asm_output_data_uleb128 (r, NULL);
2113 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2114 break;
2116 case DW_CFA_offset_extended_sf:
2117 case DW_CFA_def_cfa_sf:
2118 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2119 dw2_asm_output_data_uleb128 (r, NULL);
2120 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2121 break;
2123 case DW_CFA_restore_extended:
2124 case DW_CFA_undefined:
2125 case DW_CFA_same_value:
2126 case DW_CFA_def_cfa_register:
2127 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2128 dw2_asm_output_data_uleb128 (r, NULL);
2129 break;
2131 case DW_CFA_register:
2132 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2133 dw2_asm_output_data_uleb128 (r, NULL);
2134 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2135 dw2_asm_output_data_uleb128 (r, NULL);
2136 break;
2138 case DW_CFA_def_cfa_offset:
2139 case DW_CFA_GNU_args_size:
2140 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2141 break;
2143 case DW_CFA_def_cfa_offset_sf:
2144 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2145 break;
2147 case DW_CFA_GNU_window_save:
2148 break;
2150 case DW_CFA_def_cfa_expression:
2151 case DW_CFA_expression:
2152 output_cfa_loc (cfi);
2153 break;
2155 case DW_CFA_GNU_negative_offset_extended:
2156 /* Obsoleted by DW_CFA_offset_extended_sf. */
2157 gcc_unreachable ();
2159 default:
2160 break;
2165 /* Output the call frame information used to record information
2166 that relates to calculating the frame pointer, and records the
2167 location of saved registers. */
2169 static void
2170 output_call_frame_info (int for_eh)
2172 unsigned int i;
2173 dw_fde_ref fde;
2174 dw_cfi_ref cfi;
2175 char l1[20], l2[20], section_start_label[20];
2176 bool any_lsda_needed = false;
2177 char augmentation[6];
2178 int augmentation_size;
2179 int fde_encoding = DW_EH_PE_absptr;
2180 int per_encoding = DW_EH_PE_absptr;
2181 int lsda_encoding = DW_EH_PE_absptr;
2182 int return_reg;
2184 /* Don't emit a CIE if there won't be any FDEs. */
2185 if (fde_table_in_use == 0)
2186 return;
2188 /* If we make FDEs linkonce, we may have to emit an empty label for
2189 an FDE that wouldn't otherwise be emitted. We want to avoid
2190 having an FDE kept around when the function it refers to is
2191 discarded. Example where this matters: a primary function
2192 template in C++ requires EH information, but an explicit
2193 specialization doesn't. */
2194 if (TARGET_USES_WEAK_UNWIND_INFO
2195 && ! flag_asynchronous_unwind_tables
2196 && for_eh)
2197 for (i = 0; i < fde_table_in_use; i++)
2198 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2199 && !fde_table[i].uses_eh_lsda
2200 && ! DECL_WEAK (fde_table[i].decl))
2201 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2202 for_eh, /* empty */ 1);
2204 /* If we don't have any functions we'll want to unwind out of, don't
2205 emit any EH unwind information. Note that if exceptions aren't
2206 enabled, we won't have collected nothrow information, and if we
2207 asked for asynchronous tables, we always want this info. */
2208 if (for_eh)
2210 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2212 for (i = 0; i < fde_table_in_use; i++)
2213 if (fde_table[i].uses_eh_lsda)
2214 any_eh_needed = any_lsda_needed = true;
2215 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2216 any_eh_needed = true;
2217 else if (! fde_table[i].nothrow
2218 && ! fde_table[i].all_throwers_are_sibcalls)
2219 any_eh_needed = true;
2221 if (! any_eh_needed)
2222 return;
2225 /* We're going to be generating comments, so turn on app. */
2226 if (flag_debug_asm)
2227 app_enable ();
2229 if (for_eh)
2230 switch_to_eh_frame_section ();
2231 else
2233 if (!debug_frame_section)
2234 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2235 SECTION_DEBUG, NULL);
2236 switch_to_section (debug_frame_section);
2239 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2240 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2242 /* Output the CIE. */
2243 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2244 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2245 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2246 dw2_asm_output_data (4, 0xffffffff,
2247 "Initial length escape value indicating 64-bit DWARF extension");
2248 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2249 "Length of Common Information Entry");
2250 ASM_OUTPUT_LABEL (asm_out_file, l1);
2252 /* Now that the CIE pointer is PC-relative for EH,
2253 use 0 to identify the CIE. */
2254 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2255 (for_eh ? 0 : DWARF_CIE_ID),
2256 "CIE Identifier Tag");
2258 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2260 augmentation[0] = 0;
2261 augmentation_size = 0;
2262 if (for_eh)
2264 char *p;
2266 /* Augmentation:
2267 z Indicates that a uleb128 is present to size the
2268 augmentation section.
2269 L Indicates the encoding (and thus presence) of
2270 an LSDA pointer in the FDE augmentation.
2271 R Indicates a non-default pointer encoding for
2272 FDE code pointers.
2273 P Indicates the presence of an encoding + language
2274 personality routine in the CIE augmentation. */
2276 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2277 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2278 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2280 p = augmentation + 1;
2281 if (eh_personality_libfunc)
2283 *p++ = 'P';
2284 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2286 if (any_lsda_needed)
2288 *p++ = 'L';
2289 augmentation_size += 1;
2291 if (fde_encoding != DW_EH_PE_absptr)
2293 *p++ = 'R';
2294 augmentation_size += 1;
2296 if (p > augmentation + 1)
2298 augmentation[0] = 'z';
2299 *p = '\0';
2302 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2303 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2305 int offset = ( 4 /* Length */
2306 + 4 /* CIE Id */
2307 + 1 /* CIE version */
2308 + strlen (augmentation) + 1 /* Augmentation */
2309 + size_of_uleb128 (1) /* Code alignment */
2310 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2311 + 1 /* RA column */
2312 + 1 /* Augmentation size */
2313 + 1 /* Personality encoding */ );
2314 int pad = -offset & (PTR_SIZE - 1);
2316 augmentation_size += pad;
2318 /* Augmentations should be small, so there's scarce need to
2319 iterate for a solution. Die if we exceed one uleb128 byte. */
2320 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2324 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2325 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2326 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2327 "CIE Data Alignment Factor");
2329 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2330 if (DW_CIE_VERSION == 1)
2331 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2332 else
2333 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2335 if (augmentation[0])
2337 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2338 if (eh_personality_libfunc)
2340 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2341 eh_data_format_name (per_encoding));
2342 dw2_asm_output_encoded_addr_rtx (per_encoding,
2343 eh_personality_libfunc,
2344 true, NULL);
2347 if (any_lsda_needed)
2348 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2349 eh_data_format_name (lsda_encoding));
2351 if (fde_encoding != DW_EH_PE_absptr)
2352 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2353 eh_data_format_name (fde_encoding));
2356 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2357 output_cfi (cfi, NULL, for_eh);
2359 /* Pad the CIE out to an address sized boundary. */
2360 ASM_OUTPUT_ALIGN (asm_out_file,
2361 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2362 ASM_OUTPUT_LABEL (asm_out_file, l2);
2364 /* Loop through all of the FDE's. */
2365 for (i = 0; i < fde_table_in_use; i++)
2367 fde = &fde_table[i];
2369 /* Don't emit EH unwind info for leaf functions that don't need it. */
2370 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2371 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2372 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2373 && !fde->uses_eh_lsda)
2374 continue;
2376 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2377 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2379 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2380 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2381 dw2_asm_output_data (4, 0xffffffff,
2382 "Initial length escape value indicating 64-bit DWARF extension");
2383 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2384 "FDE Length");
2385 ASM_OUTPUT_LABEL (asm_out_file, l1);
2387 if (for_eh)
2388 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2389 else
2390 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2391 debug_frame_section, "FDE CIE offset");
2393 if (for_eh)
2395 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2396 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2397 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2398 sym_ref,
2399 false,
2400 "FDE initial location");
2401 if (fde->dw_fde_switched_sections)
2403 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2404 fde->dw_fde_unlikely_section_label);
2405 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2406 fde->dw_fde_hot_section_label);
2407 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2408 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2409 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2410 "FDE initial location");
2411 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2412 fde->dw_fde_hot_section_end_label,
2413 fde->dw_fde_hot_section_label,
2414 "FDE address range");
2415 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2416 "FDE initial location");
2417 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2418 fde->dw_fde_unlikely_section_end_label,
2419 fde->dw_fde_unlikely_section_label,
2420 "FDE address range");
2422 else
2423 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2424 fde->dw_fde_end, fde->dw_fde_begin,
2425 "FDE address range");
2427 else
2429 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2430 "FDE initial location");
2431 if (fde->dw_fde_switched_sections)
2433 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2434 fde->dw_fde_hot_section_label,
2435 "FDE initial location");
2436 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2437 fde->dw_fde_hot_section_end_label,
2438 fde->dw_fde_hot_section_label,
2439 "FDE address range");
2440 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2441 fde->dw_fde_unlikely_section_label,
2442 "FDE initial location");
2443 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2444 fde->dw_fde_unlikely_section_end_label,
2445 fde->dw_fde_unlikely_section_label,
2446 "FDE address range");
2448 else
2449 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2450 fde->dw_fde_end, fde->dw_fde_begin,
2451 "FDE address range");
2454 if (augmentation[0])
2456 if (any_lsda_needed)
2458 int size = size_of_encoded_value (lsda_encoding);
2460 if (lsda_encoding == DW_EH_PE_aligned)
2462 int offset = ( 4 /* Length */
2463 + 4 /* CIE offset */
2464 + 2 * size_of_encoded_value (fde_encoding)
2465 + 1 /* Augmentation size */ );
2466 int pad = -offset & (PTR_SIZE - 1);
2468 size += pad;
2469 gcc_assert (size_of_uleb128 (size) == 1);
2472 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2474 if (fde->uses_eh_lsda)
2476 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2477 fde->funcdef_number);
2478 dw2_asm_output_encoded_addr_rtx (
2479 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2480 false, "Language Specific Data Area");
2482 else
2484 if (lsda_encoding == DW_EH_PE_aligned)
2485 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2486 dw2_asm_output_data
2487 (size_of_encoded_value (lsda_encoding), 0,
2488 "Language Specific Data Area (none)");
2491 else
2492 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2495 /* Loop through the Call Frame Instructions associated with
2496 this FDE. */
2497 fde->dw_fde_current_label = fde->dw_fde_begin;
2498 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2499 output_cfi (cfi, fde, for_eh);
2501 /* Pad the FDE out to an address sized boundary. */
2502 ASM_OUTPUT_ALIGN (asm_out_file,
2503 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2504 ASM_OUTPUT_LABEL (asm_out_file, l2);
2507 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2508 dw2_asm_output_data (4, 0, "End of Table");
2509 #ifdef MIPS_DEBUGGING_INFO
2510 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2511 get a value of 0. Putting .align 0 after the label fixes it. */
2512 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2513 #endif
2515 /* Turn off app to make assembly quicker. */
2516 if (flag_debug_asm)
2517 app_disable ();
2520 /* Output a marker (i.e. a label) for the beginning of a function, before
2521 the prologue. */
2523 void
2524 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2525 const char *file ATTRIBUTE_UNUSED)
2527 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2528 char * dup_label;
2529 dw_fde_ref fde;
2531 current_function_func_begin_label = NULL;
2533 #ifdef TARGET_UNWIND_INFO
2534 /* ??? current_function_func_begin_label is also used by except.c
2535 for call-site information. We must emit this label if it might
2536 be used. */
2537 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2538 && ! dwarf2out_do_frame ())
2539 return;
2540 #else
2541 if (! dwarf2out_do_frame ())
2542 return;
2543 #endif
2545 switch_to_section (function_section (current_function_decl));
2546 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2547 current_function_funcdef_no);
2548 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2549 current_function_funcdef_no);
2550 dup_label = xstrdup (label);
2551 current_function_func_begin_label = dup_label;
2553 #ifdef TARGET_UNWIND_INFO
2554 /* We can elide the fde allocation if we're not emitting debug info. */
2555 if (! dwarf2out_do_frame ())
2556 return;
2557 #endif
2559 /* Expand the fde table if necessary. */
2560 if (fde_table_in_use == fde_table_allocated)
2562 fde_table_allocated += FDE_TABLE_INCREMENT;
2563 fde_table = ggc_realloc (fde_table,
2564 fde_table_allocated * sizeof (dw_fde_node));
2565 memset (fde_table + fde_table_in_use, 0,
2566 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2569 /* Record the FDE associated with this function. */
2570 current_funcdef_fde = fde_table_in_use;
2572 /* Add the new FDE at the end of the fde_table. */
2573 fde = &fde_table[fde_table_in_use++];
2574 fde->decl = current_function_decl;
2575 fde->dw_fde_begin = dup_label;
2576 fde->dw_fde_current_label = dup_label;
2577 fde->dw_fde_hot_section_label = NULL;
2578 fde->dw_fde_hot_section_end_label = NULL;
2579 fde->dw_fde_unlikely_section_label = NULL;
2580 fde->dw_fde_unlikely_section_end_label = NULL;
2581 fde->dw_fde_switched_sections = false;
2582 fde->dw_fde_end = NULL;
2583 fde->dw_fde_cfi = NULL;
2584 fde->funcdef_number = current_function_funcdef_no;
2585 fde->nothrow = TREE_NOTHROW (current_function_decl);
2586 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2587 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2589 args_size = old_args_size = 0;
2591 /* We only want to output line number information for the genuine dwarf2
2592 prologue case, not the eh frame case. */
2593 #ifdef DWARF2_DEBUGGING_INFO
2594 if (file)
2595 dwarf2out_source_line (line, file);
2596 #endif
2599 /* Output a marker (i.e. a label) for the absolute end of the generated code
2600 for a function definition. This gets called *after* the epilogue code has
2601 been generated. */
2603 void
2604 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2605 const char *file ATTRIBUTE_UNUSED)
2607 dw_fde_ref fde;
2608 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2610 /* Output a label to mark the endpoint of the code generated for this
2611 function. */
2612 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2613 current_function_funcdef_no);
2614 ASM_OUTPUT_LABEL (asm_out_file, label);
2615 fde = &fde_table[fde_table_in_use - 1];
2616 fde->dw_fde_end = xstrdup (label);
2619 void
2620 dwarf2out_frame_init (void)
2622 /* Allocate the initial hunk of the fde_table. */
2623 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2624 fde_table_allocated = FDE_TABLE_INCREMENT;
2625 fde_table_in_use = 0;
2627 /* Generate the CFA instructions common to all FDE's. Do it now for the
2628 sake of lookup_cfa. */
2630 /* On entry, the Canonical Frame Address is at SP. */
2631 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2633 #ifdef DWARF2_UNWIND_INFO
2634 if (DWARF2_UNWIND_INFO)
2635 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2636 #endif
2639 void
2640 dwarf2out_frame_finish (void)
2642 /* Output call frame information. */
2643 if (DWARF2_FRAME_INFO)
2644 output_call_frame_info (0);
2646 #ifndef TARGET_UNWIND_INFO
2647 /* Output another copy for the unwinder. */
2648 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2649 output_call_frame_info (1);
2650 #endif
2652 #endif
2654 /* And now, the subset of the debugging information support code necessary
2655 for emitting location expressions. */
2657 /* Data about a single source file. */
2658 struct dwarf_file_data GTY(())
2660 const char * filename;
2661 int emitted_number;
2664 /* We need some way to distinguish DW_OP_addr with a direct symbol
2665 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2666 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2669 typedef struct dw_val_struct *dw_val_ref;
2670 typedef struct die_struct *dw_die_ref;
2671 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2672 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2674 /* Each DIE may have a series of attribute/value pairs. Values
2675 can take on several forms. The forms that are used in this
2676 implementation are listed below. */
2678 enum dw_val_class
2680 dw_val_class_addr,
2681 dw_val_class_offset,
2682 dw_val_class_loc,
2683 dw_val_class_loc_list,
2684 dw_val_class_range_list,
2685 dw_val_class_const,
2686 dw_val_class_unsigned_const,
2687 dw_val_class_long_long,
2688 dw_val_class_vec,
2689 dw_val_class_flag,
2690 dw_val_class_die_ref,
2691 dw_val_class_fde_ref,
2692 dw_val_class_lbl_id,
2693 dw_val_class_lineptr,
2694 dw_val_class_str,
2695 dw_val_class_macptr,
2696 dw_val_class_file
2699 /* Describe a double word constant value. */
2700 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2702 typedef struct dw_long_long_struct GTY(())
2704 unsigned long hi;
2705 unsigned long low;
2707 dw_long_long_const;
2709 /* Describe a floating point constant value, or a vector constant value. */
2711 typedef struct dw_vec_struct GTY(())
2713 unsigned char * GTY((length ("%h.length"))) array;
2714 unsigned length;
2715 unsigned elt_size;
2717 dw_vec_const;
2719 /* The dw_val_node describes an attribute's value, as it is
2720 represented internally. */
2722 typedef struct dw_val_struct GTY(())
2724 enum dw_val_class val_class;
2725 union dw_val_struct_union
2727 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2728 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2729 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2730 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2731 HOST_WIDE_INT GTY ((default)) val_int;
2732 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2733 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2734 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2735 struct dw_val_die_union
2737 dw_die_ref die;
2738 int external;
2739 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2740 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2741 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2742 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2743 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2744 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2746 GTY ((desc ("%1.val_class"))) v;
2748 dw_val_node;
2750 /* Locations in memory are described using a sequence of stack machine
2751 operations. */
2753 typedef struct dw_loc_descr_struct GTY(())
2755 dw_loc_descr_ref dw_loc_next;
2756 enum dwarf_location_atom dw_loc_opc;
2757 dw_val_node dw_loc_oprnd1;
2758 dw_val_node dw_loc_oprnd2;
2759 int dw_loc_addr;
2761 dw_loc_descr_node;
2763 /* Location lists are ranges + location descriptions for that range,
2764 so you can track variables that are in different places over
2765 their entire life. */
2766 typedef struct dw_loc_list_struct GTY(())
2768 dw_loc_list_ref dw_loc_next;
2769 const char *begin; /* Label for begin address of range */
2770 const char *end; /* Label for end address of range */
2771 char *ll_symbol; /* Label for beginning of location list.
2772 Only on head of list */
2773 const char *section; /* Section this loclist is relative to */
2774 dw_loc_descr_ref expr;
2775 } dw_loc_list_node;
2777 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2779 static const char *dwarf_stack_op_name (unsigned);
2780 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2781 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2782 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2783 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2784 static unsigned long size_of_locs (dw_loc_descr_ref);
2785 static void output_loc_operands (dw_loc_descr_ref);
2786 static void output_loc_sequence (dw_loc_descr_ref);
2788 /* Convert a DWARF stack opcode into its string name. */
2790 static const char *
2791 dwarf_stack_op_name (unsigned int op)
2793 switch (op)
2795 case DW_OP_addr:
2796 case INTERNAL_DW_OP_tls_addr:
2797 return "DW_OP_addr";
2798 case DW_OP_deref:
2799 return "DW_OP_deref";
2800 case DW_OP_const1u:
2801 return "DW_OP_const1u";
2802 case DW_OP_const1s:
2803 return "DW_OP_const1s";
2804 case DW_OP_const2u:
2805 return "DW_OP_const2u";
2806 case DW_OP_const2s:
2807 return "DW_OP_const2s";
2808 case DW_OP_const4u:
2809 return "DW_OP_const4u";
2810 case DW_OP_const4s:
2811 return "DW_OP_const4s";
2812 case DW_OP_const8u:
2813 return "DW_OP_const8u";
2814 case DW_OP_const8s:
2815 return "DW_OP_const8s";
2816 case DW_OP_constu:
2817 return "DW_OP_constu";
2818 case DW_OP_consts:
2819 return "DW_OP_consts";
2820 case DW_OP_dup:
2821 return "DW_OP_dup";
2822 case DW_OP_drop:
2823 return "DW_OP_drop";
2824 case DW_OP_over:
2825 return "DW_OP_over";
2826 case DW_OP_pick:
2827 return "DW_OP_pick";
2828 case DW_OP_swap:
2829 return "DW_OP_swap";
2830 case DW_OP_rot:
2831 return "DW_OP_rot";
2832 case DW_OP_xderef:
2833 return "DW_OP_xderef";
2834 case DW_OP_abs:
2835 return "DW_OP_abs";
2836 case DW_OP_and:
2837 return "DW_OP_and";
2838 case DW_OP_div:
2839 return "DW_OP_div";
2840 case DW_OP_minus:
2841 return "DW_OP_minus";
2842 case DW_OP_mod:
2843 return "DW_OP_mod";
2844 case DW_OP_mul:
2845 return "DW_OP_mul";
2846 case DW_OP_neg:
2847 return "DW_OP_neg";
2848 case DW_OP_not:
2849 return "DW_OP_not";
2850 case DW_OP_or:
2851 return "DW_OP_or";
2852 case DW_OP_plus:
2853 return "DW_OP_plus";
2854 case DW_OP_plus_uconst:
2855 return "DW_OP_plus_uconst";
2856 case DW_OP_shl:
2857 return "DW_OP_shl";
2858 case DW_OP_shr:
2859 return "DW_OP_shr";
2860 case DW_OP_shra:
2861 return "DW_OP_shra";
2862 case DW_OP_xor:
2863 return "DW_OP_xor";
2864 case DW_OP_bra:
2865 return "DW_OP_bra";
2866 case DW_OP_eq:
2867 return "DW_OP_eq";
2868 case DW_OP_ge:
2869 return "DW_OP_ge";
2870 case DW_OP_gt:
2871 return "DW_OP_gt";
2872 case DW_OP_le:
2873 return "DW_OP_le";
2874 case DW_OP_lt:
2875 return "DW_OP_lt";
2876 case DW_OP_ne:
2877 return "DW_OP_ne";
2878 case DW_OP_skip:
2879 return "DW_OP_skip";
2880 case DW_OP_lit0:
2881 return "DW_OP_lit0";
2882 case DW_OP_lit1:
2883 return "DW_OP_lit1";
2884 case DW_OP_lit2:
2885 return "DW_OP_lit2";
2886 case DW_OP_lit3:
2887 return "DW_OP_lit3";
2888 case DW_OP_lit4:
2889 return "DW_OP_lit4";
2890 case DW_OP_lit5:
2891 return "DW_OP_lit5";
2892 case DW_OP_lit6:
2893 return "DW_OP_lit6";
2894 case DW_OP_lit7:
2895 return "DW_OP_lit7";
2896 case DW_OP_lit8:
2897 return "DW_OP_lit8";
2898 case DW_OP_lit9:
2899 return "DW_OP_lit9";
2900 case DW_OP_lit10:
2901 return "DW_OP_lit10";
2902 case DW_OP_lit11:
2903 return "DW_OP_lit11";
2904 case DW_OP_lit12:
2905 return "DW_OP_lit12";
2906 case DW_OP_lit13:
2907 return "DW_OP_lit13";
2908 case DW_OP_lit14:
2909 return "DW_OP_lit14";
2910 case DW_OP_lit15:
2911 return "DW_OP_lit15";
2912 case DW_OP_lit16:
2913 return "DW_OP_lit16";
2914 case DW_OP_lit17:
2915 return "DW_OP_lit17";
2916 case DW_OP_lit18:
2917 return "DW_OP_lit18";
2918 case DW_OP_lit19:
2919 return "DW_OP_lit19";
2920 case DW_OP_lit20:
2921 return "DW_OP_lit20";
2922 case DW_OP_lit21:
2923 return "DW_OP_lit21";
2924 case DW_OP_lit22:
2925 return "DW_OP_lit22";
2926 case DW_OP_lit23:
2927 return "DW_OP_lit23";
2928 case DW_OP_lit24:
2929 return "DW_OP_lit24";
2930 case DW_OP_lit25:
2931 return "DW_OP_lit25";
2932 case DW_OP_lit26:
2933 return "DW_OP_lit26";
2934 case DW_OP_lit27:
2935 return "DW_OP_lit27";
2936 case DW_OP_lit28:
2937 return "DW_OP_lit28";
2938 case DW_OP_lit29:
2939 return "DW_OP_lit29";
2940 case DW_OP_lit30:
2941 return "DW_OP_lit30";
2942 case DW_OP_lit31:
2943 return "DW_OP_lit31";
2944 case DW_OP_reg0:
2945 return "DW_OP_reg0";
2946 case DW_OP_reg1:
2947 return "DW_OP_reg1";
2948 case DW_OP_reg2:
2949 return "DW_OP_reg2";
2950 case DW_OP_reg3:
2951 return "DW_OP_reg3";
2952 case DW_OP_reg4:
2953 return "DW_OP_reg4";
2954 case DW_OP_reg5:
2955 return "DW_OP_reg5";
2956 case DW_OP_reg6:
2957 return "DW_OP_reg6";
2958 case DW_OP_reg7:
2959 return "DW_OP_reg7";
2960 case DW_OP_reg8:
2961 return "DW_OP_reg8";
2962 case DW_OP_reg9:
2963 return "DW_OP_reg9";
2964 case DW_OP_reg10:
2965 return "DW_OP_reg10";
2966 case DW_OP_reg11:
2967 return "DW_OP_reg11";
2968 case DW_OP_reg12:
2969 return "DW_OP_reg12";
2970 case DW_OP_reg13:
2971 return "DW_OP_reg13";
2972 case DW_OP_reg14:
2973 return "DW_OP_reg14";
2974 case DW_OP_reg15:
2975 return "DW_OP_reg15";
2976 case DW_OP_reg16:
2977 return "DW_OP_reg16";
2978 case DW_OP_reg17:
2979 return "DW_OP_reg17";
2980 case DW_OP_reg18:
2981 return "DW_OP_reg18";
2982 case DW_OP_reg19:
2983 return "DW_OP_reg19";
2984 case DW_OP_reg20:
2985 return "DW_OP_reg20";
2986 case DW_OP_reg21:
2987 return "DW_OP_reg21";
2988 case DW_OP_reg22:
2989 return "DW_OP_reg22";
2990 case DW_OP_reg23:
2991 return "DW_OP_reg23";
2992 case DW_OP_reg24:
2993 return "DW_OP_reg24";
2994 case DW_OP_reg25:
2995 return "DW_OP_reg25";
2996 case DW_OP_reg26:
2997 return "DW_OP_reg26";
2998 case DW_OP_reg27:
2999 return "DW_OP_reg27";
3000 case DW_OP_reg28:
3001 return "DW_OP_reg28";
3002 case DW_OP_reg29:
3003 return "DW_OP_reg29";
3004 case DW_OP_reg30:
3005 return "DW_OP_reg30";
3006 case DW_OP_reg31:
3007 return "DW_OP_reg31";
3008 case DW_OP_breg0:
3009 return "DW_OP_breg0";
3010 case DW_OP_breg1:
3011 return "DW_OP_breg1";
3012 case DW_OP_breg2:
3013 return "DW_OP_breg2";
3014 case DW_OP_breg3:
3015 return "DW_OP_breg3";
3016 case DW_OP_breg4:
3017 return "DW_OP_breg4";
3018 case DW_OP_breg5:
3019 return "DW_OP_breg5";
3020 case DW_OP_breg6:
3021 return "DW_OP_breg6";
3022 case DW_OP_breg7:
3023 return "DW_OP_breg7";
3024 case DW_OP_breg8:
3025 return "DW_OP_breg8";
3026 case DW_OP_breg9:
3027 return "DW_OP_breg9";
3028 case DW_OP_breg10:
3029 return "DW_OP_breg10";
3030 case DW_OP_breg11:
3031 return "DW_OP_breg11";
3032 case DW_OP_breg12:
3033 return "DW_OP_breg12";
3034 case DW_OP_breg13:
3035 return "DW_OP_breg13";
3036 case DW_OP_breg14:
3037 return "DW_OP_breg14";
3038 case DW_OP_breg15:
3039 return "DW_OP_breg15";
3040 case DW_OP_breg16:
3041 return "DW_OP_breg16";
3042 case DW_OP_breg17:
3043 return "DW_OP_breg17";
3044 case DW_OP_breg18:
3045 return "DW_OP_breg18";
3046 case DW_OP_breg19:
3047 return "DW_OP_breg19";
3048 case DW_OP_breg20:
3049 return "DW_OP_breg20";
3050 case DW_OP_breg21:
3051 return "DW_OP_breg21";
3052 case DW_OP_breg22:
3053 return "DW_OP_breg22";
3054 case DW_OP_breg23:
3055 return "DW_OP_breg23";
3056 case DW_OP_breg24:
3057 return "DW_OP_breg24";
3058 case DW_OP_breg25:
3059 return "DW_OP_breg25";
3060 case DW_OP_breg26:
3061 return "DW_OP_breg26";
3062 case DW_OP_breg27:
3063 return "DW_OP_breg27";
3064 case DW_OP_breg28:
3065 return "DW_OP_breg28";
3066 case DW_OP_breg29:
3067 return "DW_OP_breg29";
3068 case DW_OP_breg30:
3069 return "DW_OP_breg30";
3070 case DW_OP_breg31:
3071 return "DW_OP_breg31";
3072 case DW_OP_regx:
3073 return "DW_OP_regx";
3074 case DW_OP_fbreg:
3075 return "DW_OP_fbreg";
3076 case DW_OP_bregx:
3077 return "DW_OP_bregx";
3078 case DW_OP_piece:
3079 return "DW_OP_piece";
3080 case DW_OP_deref_size:
3081 return "DW_OP_deref_size";
3082 case DW_OP_xderef_size:
3083 return "DW_OP_xderef_size";
3084 case DW_OP_nop:
3085 return "DW_OP_nop";
3086 case DW_OP_push_object_address:
3087 return "DW_OP_push_object_address";
3088 case DW_OP_call2:
3089 return "DW_OP_call2";
3090 case DW_OP_call4:
3091 return "DW_OP_call4";
3092 case DW_OP_call_ref:
3093 return "DW_OP_call_ref";
3094 case DW_OP_GNU_push_tls_address:
3095 return "DW_OP_GNU_push_tls_address";
3096 default:
3097 return "OP_<unknown>";
3101 /* Return a pointer to a newly allocated location description. Location
3102 descriptions are simple expression terms that can be strung
3103 together to form more complicated location (address) descriptions. */
3105 static inline dw_loc_descr_ref
3106 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3107 unsigned HOST_WIDE_INT oprnd2)
3109 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3111 descr->dw_loc_opc = op;
3112 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3113 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3114 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3115 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3117 return descr;
3120 /* Add a location description term to a location description expression. */
3122 static inline void
3123 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3125 dw_loc_descr_ref *d;
3127 /* Find the end of the chain. */
3128 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3131 *d = descr;
3134 /* Return the size of a location descriptor. */
3136 static unsigned long
3137 size_of_loc_descr (dw_loc_descr_ref loc)
3139 unsigned long size = 1;
3141 switch (loc->dw_loc_opc)
3143 case DW_OP_addr:
3144 case INTERNAL_DW_OP_tls_addr:
3145 size += DWARF2_ADDR_SIZE;
3146 break;
3147 case DW_OP_const1u:
3148 case DW_OP_const1s:
3149 size += 1;
3150 break;
3151 case DW_OP_const2u:
3152 case DW_OP_const2s:
3153 size += 2;
3154 break;
3155 case DW_OP_const4u:
3156 case DW_OP_const4s:
3157 size += 4;
3158 break;
3159 case DW_OP_const8u:
3160 case DW_OP_const8s:
3161 size += 8;
3162 break;
3163 case DW_OP_constu:
3164 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3165 break;
3166 case DW_OP_consts:
3167 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3168 break;
3169 case DW_OP_pick:
3170 size += 1;
3171 break;
3172 case DW_OP_plus_uconst:
3173 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3174 break;
3175 case DW_OP_skip:
3176 case DW_OP_bra:
3177 size += 2;
3178 break;
3179 case DW_OP_breg0:
3180 case DW_OP_breg1:
3181 case DW_OP_breg2:
3182 case DW_OP_breg3:
3183 case DW_OP_breg4:
3184 case DW_OP_breg5:
3185 case DW_OP_breg6:
3186 case DW_OP_breg7:
3187 case DW_OP_breg8:
3188 case DW_OP_breg9:
3189 case DW_OP_breg10:
3190 case DW_OP_breg11:
3191 case DW_OP_breg12:
3192 case DW_OP_breg13:
3193 case DW_OP_breg14:
3194 case DW_OP_breg15:
3195 case DW_OP_breg16:
3196 case DW_OP_breg17:
3197 case DW_OP_breg18:
3198 case DW_OP_breg19:
3199 case DW_OP_breg20:
3200 case DW_OP_breg21:
3201 case DW_OP_breg22:
3202 case DW_OP_breg23:
3203 case DW_OP_breg24:
3204 case DW_OP_breg25:
3205 case DW_OP_breg26:
3206 case DW_OP_breg27:
3207 case DW_OP_breg28:
3208 case DW_OP_breg29:
3209 case DW_OP_breg30:
3210 case DW_OP_breg31:
3211 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3212 break;
3213 case DW_OP_regx:
3214 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3215 break;
3216 case DW_OP_fbreg:
3217 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3218 break;
3219 case DW_OP_bregx:
3220 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3221 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3222 break;
3223 case DW_OP_piece:
3224 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3225 break;
3226 case DW_OP_deref_size:
3227 case DW_OP_xderef_size:
3228 size += 1;
3229 break;
3230 case DW_OP_call2:
3231 size += 2;
3232 break;
3233 case DW_OP_call4:
3234 size += 4;
3235 break;
3236 case DW_OP_call_ref:
3237 size += DWARF2_ADDR_SIZE;
3238 break;
3239 default:
3240 break;
3243 return size;
3246 /* Return the size of a series of location descriptors. */
3248 static unsigned long
3249 size_of_locs (dw_loc_descr_ref loc)
3251 dw_loc_descr_ref l;
3252 unsigned long size;
3254 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3255 field, to avoid writing to a PCH file. */
3256 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3258 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3259 break;
3260 size += size_of_loc_descr (l);
3262 if (! l)
3263 return size;
3265 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3267 l->dw_loc_addr = size;
3268 size += size_of_loc_descr (l);
3271 return size;
3274 /* Output location description stack opcode's operands (if any). */
3276 static void
3277 output_loc_operands (dw_loc_descr_ref loc)
3279 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3280 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3282 switch (loc->dw_loc_opc)
3284 #ifdef DWARF2_DEBUGGING_INFO
3285 case DW_OP_addr:
3286 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3287 break;
3288 case DW_OP_const2u:
3289 case DW_OP_const2s:
3290 dw2_asm_output_data (2, val1->v.val_int, NULL);
3291 break;
3292 case DW_OP_const4u:
3293 case DW_OP_const4s:
3294 dw2_asm_output_data (4, val1->v.val_int, NULL);
3295 break;
3296 case DW_OP_const8u:
3297 case DW_OP_const8s:
3298 gcc_assert (HOST_BITS_PER_LONG >= 64);
3299 dw2_asm_output_data (8, val1->v.val_int, NULL);
3300 break;
3301 case DW_OP_skip:
3302 case DW_OP_bra:
3304 int offset;
3306 gcc_assert (val1->val_class == dw_val_class_loc);
3307 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3309 dw2_asm_output_data (2, offset, NULL);
3311 break;
3312 #else
3313 case DW_OP_addr:
3314 case DW_OP_const2u:
3315 case DW_OP_const2s:
3316 case DW_OP_const4u:
3317 case DW_OP_const4s:
3318 case DW_OP_const8u:
3319 case DW_OP_const8s:
3320 case DW_OP_skip:
3321 case DW_OP_bra:
3322 /* We currently don't make any attempt to make sure these are
3323 aligned properly like we do for the main unwind info, so
3324 don't support emitting things larger than a byte if we're
3325 only doing unwinding. */
3326 gcc_unreachable ();
3327 #endif
3328 case DW_OP_const1u:
3329 case DW_OP_const1s:
3330 dw2_asm_output_data (1, val1->v.val_int, NULL);
3331 break;
3332 case DW_OP_constu:
3333 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3334 break;
3335 case DW_OP_consts:
3336 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3337 break;
3338 case DW_OP_pick:
3339 dw2_asm_output_data (1, val1->v.val_int, NULL);
3340 break;
3341 case DW_OP_plus_uconst:
3342 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3343 break;
3344 case DW_OP_breg0:
3345 case DW_OP_breg1:
3346 case DW_OP_breg2:
3347 case DW_OP_breg3:
3348 case DW_OP_breg4:
3349 case DW_OP_breg5:
3350 case DW_OP_breg6:
3351 case DW_OP_breg7:
3352 case DW_OP_breg8:
3353 case DW_OP_breg9:
3354 case DW_OP_breg10:
3355 case DW_OP_breg11:
3356 case DW_OP_breg12:
3357 case DW_OP_breg13:
3358 case DW_OP_breg14:
3359 case DW_OP_breg15:
3360 case DW_OP_breg16:
3361 case DW_OP_breg17:
3362 case DW_OP_breg18:
3363 case DW_OP_breg19:
3364 case DW_OP_breg20:
3365 case DW_OP_breg21:
3366 case DW_OP_breg22:
3367 case DW_OP_breg23:
3368 case DW_OP_breg24:
3369 case DW_OP_breg25:
3370 case DW_OP_breg26:
3371 case DW_OP_breg27:
3372 case DW_OP_breg28:
3373 case DW_OP_breg29:
3374 case DW_OP_breg30:
3375 case DW_OP_breg31:
3376 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3377 break;
3378 case DW_OP_regx:
3379 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3380 break;
3381 case DW_OP_fbreg:
3382 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3383 break;
3384 case DW_OP_bregx:
3385 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3386 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3387 break;
3388 case DW_OP_piece:
3389 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3390 break;
3391 case DW_OP_deref_size:
3392 case DW_OP_xderef_size:
3393 dw2_asm_output_data (1, val1->v.val_int, NULL);
3394 break;
3396 case INTERNAL_DW_OP_tls_addr:
3397 if (targetm.asm_out.output_dwarf_dtprel)
3399 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3400 DWARF2_ADDR_SIZE,
3401 val1->v.val_addr);
3402 fputc ('\n', asm_out_file);
3404 else
3405 gcc_unreachable ();
3406 break;
3408 default:
3409 /* Other codes have no operands. */
3410 break;
3414 /* Output a sequence of location operations. */
3416 static void
3417 output_loc_sequence (dw_loc_descr_ref loc)
3419 for (; loc != NULL; loc = loc->dw_loc_next)
3421 /* Output the opcode. */
3422 dw2_asm_output_data (1, loc->dw_loc_opc,
3423 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3425 /* Output the operand(s) (if any). */
3426 output_loc_operands (loc);
3430 /* This routine will generate the correct assembly data for a location
3431 description based on a cfi entry with a complex address. */
3433 static void
3434 output_cfa_loc (dw_cfi_ref cfi)
3436 dw_loc_descr_ref loc;
3437 unsigned long size;
3439 /* Output the size of the block. */
3440 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3441 size = size_of_locs (loc);
3442 dw2_asm_output_data_uleb128 (size, NULL);
3444 /* Now output the operations themselves. */
3445 output_loc_sequence (loc);
3448 /* This function builds a dwarf location descriptor sequence from a
3449 dw_cfa_location, adding the given OFFSET to the result of the
3450 expression. */
3452 static struct dw_loc_descr_struct *
3453 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3455 struct dw_loc_descr_struct *head, *tmp;
3457 offset += cfa->offset;
3459 if (cfa->indirect)
3461 if (cfa->base_offset)
3463 if (cfa->reg <= 31)
3464 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3465 else
3466 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3468 else if (cfa->reg <= 31)
3469 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3470 else
3471 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3473 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3474 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3475 add_loc_descr (&head, tmp);
3476 if (offset != 0)
3478 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3479 add_loc_descr (&head, tmp);
3482 else
3484 if (offset == 0)
3485 if (cfa->reg <= 31)
3486 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3487 else
3488 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3489 else if (cfa->reg <= 31)
3490 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3491 else
3492 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3495 return head;
3498 /* This function fills in aa dw_cfa_location structure from a dwarf location
3499 descriptor sequence. */
3501 static void
3502 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3504 struct dw_loc_descr_struct *ptr;
3505 cfa->offset = 0;
3506 cfa->base_offset = 0;
3507 cfa->indirect = 0;
3508 cfa->reg = -1;
3510 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3512 enum dwarf_location_atom op = ptr->dw_loc_opc;
3514 switch (op)
3516 case DW_OP_reg0:
3517 case DW_OP_reg1:
3518 case DW_OP_reg2:
3519 case DW_OP_reg3:
3520 case DW_OP_reg4:
3521 case DW_OP_reg5:
3522 case DW_OP_reg6:
3523 case DW_OP_reg7:
3524 case DW_OP_reg8:
3525 case DW_OP_reg9:
3526 case DW_OP_reg10:
3527 case DW_OP_reg11:
3528 case DW_OP_reg12:
3529 case DW_OP_reg13:
3530 case DW_OP_reg14:
3531 case DW_OP_reg15:
3532 case DW_OP_reg16:
3533 case DW_OP_reg17:
3534 case DW_OP_reg18:
3535 case DW_OP_reg19:
3536 case DW_OP_reg20:
3537 case DW_OP_reg21:
3538 case DW_OP_reg22:
3539 case DW_OP_reg23:
3540 case DW_OP_reg24:
3541 case DW_OP_reg25:
3542 case DW_OP_reg26:
3543 case DW_OP_reg27:
3544 case DW_OP_reg28:
3545 case DW_OP_reg29:
3546 case DW_OP_reg30:
3547 case DW_OP_reg31:
3548 cfa->reg = op - DW_OP_reg0;
3549 break;
3550 case DW_OP_regx:
3551 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3552 break;
3553 case DW_OP_breg0:
3554 case DW_OP_breg1:
3555 case DW_OP_breg2:
3556 case DW_OP_breg3:
3557 case DW_OP_breg4:
3558 case DW_OP_breg5:
3559 case DW_OP_breg6:
3560 case DW_OP_breg7:
3561 case DW_OP_breg8:
3562 case DW_OP_breg9:
3563 case DW_OP_breg10:
3564 case DW_OP_breg11:
3565 case DW_OP_breg12:
3566 case DW_OP_breg13:
3567 case DW_OP_breg14:
3568 case DW_OP_breg15:
3569 case DW_OP_breg16:
3570 case DW_OP_breg17:
3571 case DW_OP_breg18:
3572 case DW_OP_breg19:
3573 case DW_OP_breg20:
3574 case DW_OP_breg21:
3575 case DW_OP_breg22:
3576 case DW_OP_breg23:
3577 case DW_OP_breg24:
3578 case DW_OP_breg25:
3579 case DW_OP_breg26:
3580 case DW_OP_breg27:
3581 case DW_OP_breg28:
3582 case DW_OP_breg29:
3583 case DW_OP_breg30:
3584 case DW_OP_breg31:
3585 cfa->reg = op - DW_OP_breg0;
3586 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3587 break;
3588 case DW_OP_bregx:
3589 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3590 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3591 break;
3592 case DW_OP_deref:
3593 cfa->indirect = 1;
3594 break;
3595 case DW_OP_plus_uconst:
3596 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3597 break;
3598 default:
3599 internal_error ("DW_LOC_OP %s not implemented",
3600 dwarf_stack_op_name (ptr->dw_loc_opc));
3604 #endif /* .debug_frame support */
3606 /* And now, the support for symbolic debugging information. */
3607 #ifdef DWARF2_DEBUGGING_INFO
3609 /* .debug_str support. */
3610 static int output_indirect_string (void **, void *);
3612 static void dwarf2out_init (const char *);
3613 static void dwarf2out_finish (const char *);
3614 static void dwarf2out_define (unsigned int, const char *);
3615 static void dwarf2out_undef (unsigned int, const char *);
3616 static void dwarf2out_start_source_file (unsigned, const char *);
3617 static void dwarf2out_end_source_file (unsigned);
3618 static void dwarf2out_begin_block (unsigned, unsigned);
3619 static void dwarf2out_end_block (unsigned, unsigned);
3620 static bool dwarf2out_ignore_block (tree);
3621 static void dwarf2out_global_decl (tree);
3622 static void dwarf2out_type_decl (tree, int);
3623 static void dwarf2out_imported_module_or_decl (tree, tree);
3624 static void dwarf2out_abstract_function (tree);
3625 static void dwarf2out_var_location (rtx);
3626 static void dwarf2out_begin_function (tree);
3627 static void dwarf2out_switch_text_section (void);
3629 /* The debug hooks structure. */
3631 const struct gcc_debug_hooks dwarf2_debug_hooks =
3633 dwarf2out_init,
3634 dwarf2out_finish,
3635 dwarf2out_define,
3636 dwarf2out_undef,
3637 dwarf2out_start_source_file,
3638 dwarf2out_end_source_file,
3639 dwarf2out_begin_block,
3640 dwarf2out_end_block,
3641 dwarf2out_ignore_block,
3642 dwarf2out_source_line,
3643 dwarf2out_begin_prologue,
3644 debug_nothing_int_charstar, /* end_prologue */
3645 dwarf2out_end_epilogue,
3646 dwarf2out_begin_function,
3647 debug_nothing_int, /* end_function */
3648 dwarf2out_decl, /* function_decl */
3649 dwarf2out_global_decl,
3650 dwarf2out_type_decl, /* type_decl */
3651 dwarf2out_imported_module_or_decl,
3652 debug_nothing_tree, /* deferred_inline_function */
3653 /* The DWARF 2 backend tries to reduce debugging bloat by not
3654 emitting the abstract description of inline functions until
3655 something tries to reference them. */
3656 dwarf2out_abstract_function, /* outlining_inline_function */
3657 debug_nothing_rtx, /* label */
3658 debug_nothing_int, /* handle_pch */
3659 dwarf2out_var_location,
3660 dwarf2out_switch_text_section,
3661 1 /* start_end_main_source_file */
3663 #endif
3665 /* NOTE: In the comments in this file, many references are made to
3666 "Debugging Information Entries". This term is abbreviated as `DIE'
3667 throughout the remainder of this file. */
3669 /* An internal representation of the DWARF output is built, and then
3670 walked to generate the DWARF debugging info. The walk of the internal
3671 representation is done after the entire program has been compiled.
3672 The types below are used to describe the internal representation. */
3674 /* Various DIE's use offsets relative to the beginning of the
3675 .debug_info section to refer to each other. */
3677 typedef long int dw_offset;
3679 /* Define typedefs here to avoid circular dependencies. */
3681 typedef struct dw_attr_struct *dw_attr_ref;
3682 typedef struct dw_line_info_struct *dw_line_info_ref;
3683 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3684 typedef struct pubname_struct *pubname_ref;
3685 typedef struct dw_ranges_struct *dw_ranges_ref;
3687 /* Each entry in the line_info_table maintains the file and
3688 line number associated with the label generated for that
3689 entry. The label gives the PC value associated with
3690 the line number entry. */
3692 typedef struct dw_line_info_struct GTY(())
3694 unsigned long dw_file_num;
3695 unsigned long dw_line_num;
3697 dw_line_info_entry;
3699 /* Line information for functions in separate sections; each one gets its
3700 own sequence. */
3701 typedef struct dw_separate_line_info_struct GTY(())
3703 unsigned long dw_file_num;
3704 unsigned long dw_line_num;
3705 unsigned long function;
3707 dw_separate_line_info_entry;
3709 /* Each DIE attribute has a field specifying the attribute kind,
3710 a link to the next attribute in the chain, and an attribute value.
3711 Attributes are typically linked below the DIE they modify. */
3713 typedef struct dw_attr_struct GTY(())
3715 enum dwarf_attribute dw_attr;
3716 dw_val_node dw_attr_val;
3718 dw_attr_node;
3720 DEF_VEC_O(dw_attr_node);
3721 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3723 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3724 The children of each node form a circular list linked by
3725 die_sib. die_child points to the node *before* the "first" child node. */
3727 typedef struct die_struct GTY(())
3729 enum dwarf_tag die_tag;
3730 char *die_symbol;
3731 VEC(dw_attr_node,gc) * die_attr;
3732 dw_die_ref die_parent;
3733 dw_die_ref die_child;
3734 dw_die_ref die_sib;
3735 dw_die_ref die_definition; /* ref from a specification to its definition */
3736 dw_offset die_offset;
3737 unsigned long die_abbrev;
3738 int die_mark;
3739 /* Die is used and must not be pruned as unused. */
3740 int die_perennial_p;
3741 unsigned int decl_id;
3743 die_node;
3745 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3746 #define FOR_EACH_CHILD(die, c, expr) do { \
3747 c = die->die_child; \
3748 if (c) do { \
3749 c = c->die_sib; \
3750 expr; \
3751 } while (c != die->die_child); \
3752 } while (0)
3754 /* The pubname structure */
3756 typedef struct pubname_struct GTY(())
3758 dw_die_ref die;
3759 const char *name;
3761 pubname_entry;
3763 DEF_VEC_O(pubname_entry);
3764 DEF_VEC_ALLOC_O(pubname_entry, gc);
3766 struct dw_ranges_struct GTY(())
3768 int block_num;
3771 /* The limbo die list structure. */
3772 typedef struct limbo_die_struct GTY(())
3774 dw_die_ref die;
3775 tree created_for;
3776 struct limbo_die_struct *next;
3778 limbo_die_node;
3780 /* How to start an assembler comment. */
3781 #ifndef ASM_COMMENT_START
3782 #define ASM_COMMENT_START ";#"
3783 #endif
3785 /* Define a macro which returns nonzero for a TYPE_DECL which was
3786 implicitly generated for a tagged type.
3788 Note that unlike the gcc front end (which generates a NULL named
3789 TYPE_DECL node for each complete tagged type, each array type, and
3790 each function type node created) the g++ front end generates a
3791 _named_ TYPE_DECL node for each tagged type node created.
3792 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3793 generate a DW_TAG_typedef DIE for them. */
3795 #define TYPE_DECL_IS_STUB(decl) \
3796 (DECL_NAME (decl) == NULL_TREE \
3797 || (DECL_ARTIFICIAL (decl) \
3798 && is_tagged_type (TREE_TYPE (decl)) \
3799 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3800 /* This is necessary for stub decls that \
3801 appear in nested inline functions. */ \
3802 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3803 && (decl_ultimate_origin (decl) \
3804 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3806 /* Information concerning the compilation unit's programming
3807 language, and compiler version. */
3809 /* Fixed size portion of the DWARF compilation unit header. */
3810 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3811 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3813 /* Fixed size portion of public names info. */
3814 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3816 /* Fixed size portion of the address range info. */
3817 #define DWARF_ARANGES_HEADER_SIZE \
3818 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3819 DWARF2_ADDR_SIZE * 2) \
3820 - DWARF_INITIAL_LENGTH_SIZE)
3822 /* Size of padding portion in the address range info. It must be
3823 aligned to twice the pointer size. */
3824 #define DWARF_ARANGES_PAD_SIZE \
3825 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3826 DWARF2_ADDR_SIZE * 2) \
3827 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3829 /* Use assembler line directives if available. */
3830 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3831 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3832 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3833 #else
3834 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3835 #endif
3836 #endif
3838 /* Minimum line offset in a special line info. opcode.
3839 This value was chosen to give a reasonable range of values. */
3840 #define DWARF_LINE_BASE -10
3842 /* First special line opcode - leave room for the standard opcodes. */
3843 #define DWARF_LINE_OPCODE_BASE 10
3845 /* Range of line offsets in a special line info. opcode. */
3846 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3848 /* Flag that indicates the initial value of the is_stmt_start flag.
3849 In the present implementation, we do not mark any lines as
3850 the beginning of a source statement, because that information
3851 is not made available by the GCC front-end. */
3852 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3854 #ifdef DWARF2_DEBUGGING_INFO
3855 /* This location is used by calc_die_sizes() to keep track
3856 the offset of each DIE within the .debug_info section. */
3857 static unsigned long next_die_offset;
3858 #endif
3860 /* Record the root of the DIE's built for the current compilation unit. */
3861 static GTY(()) dw_die_ref comp_unit_die;
3863 /* A list of DIEs with a NULL parent waiting to be relocated. */
3864 static GTY(()) limbo_die_node *limbo_die_list;
3866 /* Filenames referenced by this compilation unit. */
3867 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3869 /* A hash table of references to DIE's that describe declarations.
3870 The key is a DECL_UID() which is a unique number identifying each decl. */
3871 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3873 /* Node of the variable location list. */
3874 struct var_loc_node GTY ((chain_next ("%h.next")))
3876 rtx GTY (()) var_loc_note;
3877 const char * GTY (()) label;
3878 const char * GTY (()) section_label;
3879 struct var_loc_node * GTY (()) next;
3882 /* Variable location list. */
3883 struct var_loc_list_def GTY (())
3885 struct var_loc_node * GTY (()) first;
3887 /* Do not mark the last element of the chained list because
3888 it is marked through the chain. */
3889 struct var_loc_node * GTY ((skip ("%h"))) last;
3891 /* DECL_UID of the variable decl. */
3892 unsigned int decl_id;
3894 typedef struct var_loc_list_def var_loc_list;
3897 /* Table of decl location linked lists. */
3898 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3900 /* A pointer to the base of a list of references to DIE's that
3901 are uniquely identified by their tag, presence/absence of
3902 children DIE's, and list of attribute/value pairs. */
3903 static GTY((length ("abbrev_die_table_allocated")))
3904 dw_die_ref *abbrev_die_table;
3906 /* Number of elements currently allocated for abbrev_die_table. */
3907 static GTY(()) unsigned abbrev_die_table_allocated;
3909 /* Number of elements in type_die_table currently in use. */
3910 static GTY(()) unsigned abbrev_die_table_in_use;
3912 /* Size (in elements) of increments by which we may expand the
3913 abbrev_die_table. */
3914 #define ABBREV_DIE_TABLE_INCREMENT 256
3916 /* A pointer to the base of a table that contains line information
3917 for each source code line in .text in the compilation unit. */
3918 static GTY((length ("line_info_table_allocated")))
3919 dw_line_info_ref line_info_table;
3921 /* Number of elements currently allocated for line_info_table. */
3922 static GTY(()) unsigned line_info_table_allocated;
3924 /* Number of elements in line_info_table currently in use. */
3925 static GTY(()) unsigned line_info_table_in_use;
3927 /* True if the compilation unit places functions in more than one section. */
3928 static GTY(()) bool have_multiple_function_sections = false;
3930 /* A pointer to the base of a table that contains line information
3931 for each source code line outside of .text in the compilation unit. */
3932 static GTY ((length ("separate_line_info_table_allocated")))
3933 dw_separate_line_info_ref separate_line_info_table;
3935 /* Number of elements currently allocated for separate_line_info_table. */
3936 static GTY(()) unsigned separate_line_info_table_allocated;
3938 /* Number of elements in separate_line_info_table currently in use. */
3939 static GTY(()) unsigned separate_line_info_table_in_use;
3941 /* Size (in elements) of increments by which we may expand the
3942 line_info_table. */
3943 #define LINE_INFO_TABLE_INCREMENT 1024
3945 /* A pointer to the base of a table that contains a list of publicly
3946 accessible names. */
3947 static GTY (()) VEC (pubname_entry, gc) * pubname_table;
3949 /* A pointer to the base of a table that contains a list of publicly
3950 accessible types. */
3951 static GTY (()) VEC (pubname_entry, gc) * pubtype_table;
3953 /* Array of dies for which we should generate .debug_arange info. */
3954 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3956 /* Number of elements currently allocated for arange_table. */
3957 static GTY(()) unsigned arange_table_allocated;
3959 /* Number of elements in arange_table currently in use. */
3960 static GTY(()) unsigned arange_table_in_use;
3962 /* Size (in elements) of increments by which we may expand the
3963 arange_table. */
3964 #define ARANGE_TABLE_INCREMENT 64
3966 /* Array of dies for which we should generate .debug_ranges info. */
3967 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3969 /* Number of elements currently allocated for ranges_table. */
3970 static GTY(()) unsigned ranges_table_allocated;
3972 /* Number of elements in ranges_table currently in use. */
3973 static GTY(()) unsigned ranges_table_in_use;
3975 /* Size (in elements) of increments by which we may expand the
3976 ranges_table. */
3977 #define RANGES_TABLE_INCREMENT 64
3979 /* Whether we have location lists that need outputting */
3980 static GTY(()) bool have_location_lists;
3982 /* Unique label counter. */
3983 static GTY(()) unsigned int loclabel_num;
3985 #ifdef DWARF2_DEBUGGING_INFO
3986 /* Record whether the function being analyzed contains inlined functions. */
3987 static int current_function_has_inlines;
3988 #endif
3989 #if 0 && defined (MIPS_DEBUGGING_INFO)
3990 static int comp_unit_has_inlines;
3991 #endif
3993 /* The last file entry emitted by maybe_emit_file(). */
3994 static GTY(()) struct dwarf_file_data * last_emitted_file;
3996 /* Number of internal labels generated by gen_internal_sym(). */
3997 static GTY(()) int label_num;
3999 /* Cached result of previous call to lookup_filename. */
4000 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
4002 #ifdef DWARF2_DEBUGGING_INFO
4004 /* Offset from the "steady-state frame pointer" to the frame base,
4005 within the current function. */
4006 static HOST_WIDE_INT frame_pointer_fb_offset;
4008 /* Forward declarations for functions defined in this file. */
4010 static int is_pseudo_reg (rtx);
4011 static tree type_main_variant (tree);
4012 static int is_tagged_type (tree);
4013 static const char *dwarf_tag_name (unsigned);
4014 static const char *dwarf_attr_name (unsigned);
4015 static const char *dwarf_form_name (unsigned);
4016 static tree decl_ultimate_origin (tree);
4017 static tree block_ultimate_origin (tree);
4018 static tree decl_class_context (tree);
4019 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4020 static inline enum dw_val_class AT_class (dw_attr_ref);
4021 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4022 static inline unsigned AT_flag (dw_attr_ref);
4023 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4024 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4025 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4026 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4027 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4028 unsigned long);
4029 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4030 unsigned int, unsigned char *);
4031 static hashval_t debug_str_do_hash (const void *);
4032 static int debug_str_eq (const void *, const void *);
4033 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4034 static inline const char *AT_string (dw_attr_ref);
4035 static int AT_string_form (dw_attr_ref);
4036 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4037 static void add_AT_specification (dw_die_ref, dw_die_ref);
4038 static inline dw_die_ref AT_ref (dw_attr_ref);
4039 static inline int AT_ref_external (dw_attr_ref);
4040 static inline void set_AT_ref_external (dw_attr_ref, int);
4041 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4042 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4043 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4044 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4045 dw_loc_list_ref);
4046 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4047 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4048 static inline rtx AT_addr (dw_attr_ref);
4049 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4050 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4051 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4052 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4053 unsigned HOST_WIDE_INT);
4054 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4055 unsigned long);
4056 static inline const char *AT_lbl (dw_attr_ref);
4057 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4058 static const char *get_AT_low_pc (dw_die_ref);
4059 static const char *get_AT_hi_pc (dw_die_ref);
4060 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4061 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4062 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4063 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4064 static bool is_c_family (void);
4065 static bool is_cxx (void);
4066 static bool is_java (void);
4067 static bool is_fortran (void);
4068 static bool is_ada (void);
4069 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4070 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4071 static void add_child_die (dw_die_ref, dw_die_ref);
4072 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4073 static dw_die_ref lookup_type_die (tree);
4074 static void equate_type_number_to_die (tree, dw_die_ref);
4075 static hashval_t decl_die_table_hash (const void *);
4076 static int decl_die_table_eq (const void *, const void *);
4077 static dw_die_ref lookup_decl_die (tree);
4078 static hashval_t decl_loc_table_hash (const void *);
4079 static int decl_loc_table_eq (const void *, const void *);
4080 static var_loc_list *lookup_decl_loc (tree);
4081 static void equate_decl_number_to_die (tree, dw_die_ref);
4082 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4083 static void print_spaces (FILE *);
4084 static void print_die (dw_die_ref, FILE *);
4085 static void print_dwarf_line_table (FILE *);
4086 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4087 static dw_die_ref pop_compile_unit (dw_die_ref);
4088 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4089 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4090 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4091 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4092 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4093 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4094 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4095 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4096 static void compute_section_prefix (dw_die_ref);
4097 static int is_type_die (dw_die_ref);
4098 static int is_comdat_die (dw_die_ref);
4099 static int is_symbol_die (dw_die_ref);
4100 static void assign_symbol_names (dw_die_ref);
4101 static void break_out_includes (dw_die_ref);
4102 static hashval_t htab_cu_hash (const void *);
4103 static int htab_cu_eq (const void *, const void *);
4104 static void htab_cu_del (void *);
4105 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4106 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4107 static void add_sibling_attributes (dw_die_ref);
4108 static void build_abbrev_table (dw_die_ref);
4109 static void output_location_lists (dw_die_ref);
4110 static int constant_size (long unsigned);
4111 static unsigned long size_of_die (dw_die_ref);
4112 static void calc_die_sizes (dw_die_ref);
4113 static void mark_dies (dw_die_ref);
4114 static void unmark_dies (dw_die_ref);
4115 static void unmark_all_dies (dw_die_ref);
4116 static unsigned long size_of_pubnames (VEC (pubname_entry,gc) *);
4117 static unsigned long size_of_aranges (void);
4118 static enum dwarf_form value_format (dw_attr_ref);
4119 static void output_value_format (dw_attr_ref);
4120 static void output_abbrev_section (void);
4121 static void output_die_symbol (dw_die_ref);
4122 static void output_die (dw_die_ref);
4123 static void output_compilation_unit_header (void);
4124 static void output_comp_unit (dw_die_ref, int);
4125 static const char *dwarf2_name (tree, int);
4126 static void add_pubname (tree, dw_die_ref);
4127 static void add_pubtype (tree, dw_die_ref);
4128 static void output_pubnames (VEC (pubname_entry,gc) *);
4129 static void add_arange (tree, dw_die_ref);
4130 static void output_aranges (void);
4131 static unsigned int add_ranges (tree);
4132 static void output_ranges (void);
4133 static void output_line_info (void);
4134 static void output_file_names (void);
4135 static dw_die_ref base_type_die (tree);
4136 static tree root_type (tree);
4137 static int is_base_type (tree);
4138 static bool is_subrange_type (tree);
4139 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4140 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4141 static int type_is_enum (tree);
4142 static unsigned int dbx_reg_number (rtx);
4143 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4144 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4145 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4146 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4147 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4148 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4149 static int is_based_loc (rtx);
4150 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4151 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4152 static dw_loc_descr_ref loc_descriptor (rtx);
4153 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4154 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4155 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4156 static tree field_type (tree);
4157 static unsigned int simple_type_align_in_bits (tree);
4158 static unsigned int simple_decl_align_in_bits (tree);
4159 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4160 static HOST_WIDE_INT field_byte_offset (tree);
4161 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4162 dw_loc_descr_ref);
4163 static void add_data_member_location_attribute (dw_die_ref, tree);
4164 static void add_const_value_attribute (dw_die_ref, rtx);
4165 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4166 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4167 static void insert_float (rtx, unsigned char *);
4168 static rtx rtl_for_decl_location (tree);
4169 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4170 enum dwarf_attribute);
4171 static void tree_add_const_value_attribute (dw_die_ref, tree);
4172 static void add_name_attribute (dw_die_ref, const char *);
4173 static void add_comp_dir_attribute (dw_die_ref);
4174 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4175 static void add_subscript_info (dw_die_ref, tree);
4176 static void add_byte_size_attribute (dw_die_ref, tree);
4177 static void add_bit_offset_attribute (dw_die_ref, tree);
4178 static void add_bit_size_attribute (dw_die_ref, tree);
4179 static void add_prototyped_attribute (dw_die_ref, tree);
4180 static void add_abstract_origin_attribute (dw_die_ref, tree);
4181 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4182 static void add_src_coords_attributes (dw_die_ref, tree);
4183 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4184 static void push_decl_scope (tree);
4185 static void pop_decl_scope (void);
4186 static dw_die_ref scope_die_for (tree, dw_die_ref);
4187 static inline int local_scope_p (dw_die_ref);
4188 static inline int class_or_namespace_scope_p (dw_die_ref);
4189 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4190 static void add_calling_convention_attribute (dw_die_ref, tree);
4191 static const char *type_tag (tree);
4192 static tree member_declared_type (tree);
4193 #if 0
4194 static const char *decl_start_label (tree);
4195 #endif
4196 static void gen_array_type_die (tree, dw_die_ref);
4197 #if 0
4198 static void gen_entry_point_die (tree, dw_die_ref);
4199 #endif
4200 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4201 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4202 static void gen_inlined_union_type_die (tree, dw_die_ref);
4203 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4204 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4205 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4206 static void gen_formal_types_die (tree, dw_die_ref);
4207 static void gen_subprogram_die (tree, dw_die_ref);
4208 static void gen_variable_die (tree, dw_die_ref);
4209 static void gen_label_die (tree, dw_die_ref);
4210 static void gen_lexical_block_die (tree, dw_die_ref, int);
4211 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4212 static void gen_field_die (tree, dw_die_ref);
4213 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4214 static dw_die_ref gen_compile_unit_die (const char *);
4215 static void gen_inheritance_die (tree, tree, dw_die_ref);
4216 static void gen_member_die (tree, dw_die_ref);
4217 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4218 static void gen_subroutine_type_die (tree, dw_die_ref);
4219 static void gen_typedef_die (tree, dw_die_ref);
4220 static void gen_type_die (tree, dw_die_ref);
4221 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4222 static void gen_block_die (tree, dw_die_ref, int);
4223 static void decls_for_scope (tree, dw_die_ref, int);
4224 static int is_redundant_typedef (tree);
4225 static void gen_namespace_die (tree);
4226 static void gen_decl_die (tree, dw_die_ref);
4227 static dw_die_ref force_decl_die (tree);
4228 static dw_die_ref force_type_die (tree);
4229 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4230 static void declare_in_namespace (tree, dw_die_ref);
4231 static struct dwarf_file_data * lookup_filename (const char *);
4232 static void retry_incomplete_types (void);
4233 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4234 static void splice_child_die (dw_die_ref, dw_die_ref);
4235 static int file_info_cmp (const void *, const void *);
4236 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4237 const char *, const char *, unsigned);
4238 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4239 const char *, const char *,
4240 const char *);
4241 static void output_loc_list (dw_loc_list_ref);
4242 static char *gen_internal_sym (const char *);
4244 static void prune_unmark_dies (dw_die_ref);
4245 static void prune_unused_types_mark (dw_die_ref, int);
4246 static void prune_unused_types_walk (dw_die_ref);
4247 static void prune_unused_types_walk_attribs (dw_die_ref);
4248 static void prune_unused_types_prune (dw_die_ref);
4249 static void prune_unused_types (void);
4250 static int maybe_emit_file (struct dwarf_file_data *fd);
4252 /* Section names used to hold DWARF debugging information. */
4253 #ifndef DEBUG_INFO_SECTION
4254 #define DEBUG_INFO_SECTION ".debug_info"
4255 #endif
4256 #ifndef DEBUG_ABBREV_SECTION
4257 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4258 #endif
4259 #ifndef DEBUG_ARANGES_SECTION
4260 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4261 #endif
4262 #ifndef DEBUG_MACINFO_SECTION
4263 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4264 #endif
4265 #ifndef DEBUG_LINE_SECTION
4266 #define DEBUG_LINE_SECTION ".debug_line"
4267 #endif
4268 #ifndef DEBUG_LOC_SECTION
4269 #define DEBUG_LOC_SECTION ".debug_loc"
4270 #endif
4271 #ifndef DEBUG_PUBNAMES_SECTION
4272 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4273 #endif
4274 #ifndef DEBUG_STR_SECTION
4275 #define DEBUG_STR_SECTION ".debug_str"
4276 #endif
4277 #ifndef DEBUG_RANGES_SECTION
4278 #define DEBUG_RANGES_SECTION ".debug_ranges"
4279 #endif
4281 /* Standard ELF section names for compiled code and data. */
4282 #ifndef TEXT_SECTION_NAME
4283 #define TEXT_SECTION_NAME ".text"
4284 #endif
4286 /* Section flags for .debug_str section. */
4287 #define DEBUG_STR_SECTION_FLAGS \
4288 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4289 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4290 : SECTION_DEBUG)
4292 /* Labels we insert at beginning sections we can reference instead of
4293 the section names themselves. */
4295 #ifndef TEXT_SECTION_LABEL
4296 #define TEXT_SECTION_LABEL "Ltext"
4297 #endif
4298 #ifndef COLD_TEXT_SECTION_LABEL
4299 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4300 #endif
4301 #ifndef DEBUG_LINE_SECTION_LABEL
4302 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4303 #endif
4304 #ifndef DEBUG_INFO_SECTION_LABEL
4305 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4306 #endif
4307 #ifndef DEBUG_ABBREV_SECTION_LABEL
4308 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4309 #endif
4310 #ifndef DEBUG_LOC_SECTION_LABEL
4311 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4312 #endif
4313 #ifndef DEBUG_RANGES_SECTION_LABEL
4314 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4315 #endif
4316 #ifndef DEBUG_MACINFO_SECTION_LABEL
4317 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4318 #endif
4320 /* Definitions of defaults for formats and names of various special
4321 (artificial) labels which may be generated within this file (when the -g
4322 options is used and DWARF2_DEBUGGING_INFO is in effect.
4323 If necessary, these may be overridden from within the tm.h file, but
4324 typically, overriding these defaults is unnecessary. */
4326 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4327 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4334 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4335 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4337 #ifndef TEXT_END_LABEL
4338 #define TEXT_END_LABEL "Letext"
4339 #endif
4340 #ifndef COLD_END_LABEL
4341 #define COLD_END_LABEL "Letext_cold"
4342 #endif
4343 #ifndef BLOCK_BEGIN_LABEL
4344 #define BLOCK_BEGIN_LABEL "LBB"
4345 #endif
4346 #ifndef BLOCK_END_LABEL
4347 #define BLOCK_END_LABEL "LBE"
4348 #endif
4349 #ifndef LINE_CODE_LABEL
4350 #define LINE_CODE_LABEL "LM"
4351 #endif
4352 #ifndef SEPARATE_LINE_CODE_LABEL
4353 #define SEPARATE_LINE_CODE_LABEL "LSM"
4354 #endif
4356 /* We allow a language front-end to designate a function that is to be
4357 called to "demangle" any name before it is put into a DIE. */
4359 static const char *(*demangle_name_func) (const char *);
4361 void
4362 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4364 demangle_name_func = func;
4367 /* Test if rtl node points to a pseudo register. */
4369 static inline int
4370 is_pseudo_reg (rtx rtl)
4372 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4373 || (GET_CODE (rtl) == SUBREG
4374 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4377 /* Return a reference to a type, with its const and volatile qualifiers
4378 removed. */
4380 static inline tree
4381 type_main_variant (tree type)
4383 type = TYPE_MAIN_VARIANT (type);
4385 /* ??? There really should be only one main variant among any group of
4386 variants of a given type (and all of the MAIN_VARIANT values for all
4387 members of the group should point to that one type) but sometimes the C
4388 front-end messes this up for array types, so we work around that bug
4389 here. */
4390 if (TREE_CODE (type) == ARRAY_TYPE)
4391 while (type != TYPE_MAIN_VARIANT (type))
4392 type = TYPE_MAIN_VARIANT (type);
4394 return type;
4397 /* Return nonzero if the given type node represents a tagged type. */
4399 static inline int
4400 is_tagged_type (tree type)
4402 enum tree_code code = TREE_CODE (type);
4404 return (code == RECORD_TYPE || code == UNION_TYPE
4405 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4408 /* Convert a DIE tag into its string name. */
4410 static const char *
4411 dwarf_tag_name (unsigned int tag)
4413 switch (tag)
4415 case DW_TAG_padding:
4416 return "DW_TAG_padding";
4417 case DW_TAG_array_type:
4418 return "DW_TAG_array_type";
4419 case DW_TAG_class_type:
4420 return "DW_TAG_class_type";
4421 case DW_TAG_entry_point:
4422 return "DW_TAG_entry_point";
4423 case DW_TAG_enumeration_type:
4424 return "DW_TAG_enumeration_type";
4425 case DW_TAG_formal_parameter:
4426 return "DW_TAG_formal_parameter";
4427 case DW_TAG_imported_declaration:
4428 return "DW_TAG_imported_declaration";
4429 case DW_TAG_label:
4430 return "DW_TAG_label";
4431 case DW_TAG_lexical_block:
4432 return "DW_TAG_lexical_block";
4433 case DW_TAG_member:
4434 return "DW_TAG_member";
4435 case DW_TAG_pointer_type:
4436 return "DW_TAG_pointer_type";
4437 case DW_TAG_reference_type:
4438 return "DW_TAG_reference_type";
4439 case DW_TAG_compile_unit:
4440 return "DW_TAG_compile_unit";
4441 case DW_TAG_string_type:
4442 return "DW_TAG_string_type";
4443 case DW_TAG_structure_type:
4444 return "DW_TAG_structure_type";
4445 case DW_TAG_subroutine_type:
4446 return "DW_TAG_subroutine_type";
4447 case DW_TAG_typedef:
4448 return "DW_TAG_typedef";
4449 case DW_TAG_union_type:
4450 return "DW_TAG_union_type";
4451 case DW_TAG_unspecified_parameters:
4452 return "DW_TAG_unspecified_parameters";
4453 case DW_TAG_variant:
4454 return "DW_TAG_variant";
4455 case DW_TAG_common_block:
4456 return "DW_TAG_common_block";
4457 case DW_TAG_common_inclusion:
4458 return "DW_TAG_common_inclusion";
4459 case DW_TAG_inheritance:
4460 return "DW_TAG_inheritance";
4461 case DW_TAG_inlined_subroutine:
4462 return "DW_TAG_inlined_subroutine";
4463 case DW_TAG_module:
4464 return "DW_TAG_module";
4465 case DW_TAG_ptr_to_member_type:
4466 return "DW_TAG_ptr_to_member_type";
4467 case DW_TAG_set_type:
4468 return "DW_TAG_set_type";
4469 case DW_TAG_subrange_type:
4470 return "DW_TAG_subrange_type";
4471 case DW_TAG_with_stmt:
4472 return "DW_TAG_with_stmt";
4473 case DW_TAG_access_declaration:
4474 return "DW_TAG_access_declaration";
4475 case DW_TAG_base_type:
4476 return "DW_TAG_base_type";
4477 case DW_TAG_catch_block:
4478 return "DW_TAG_catch_block";
4479 case DW_TAG_const_type:
4480 return "DW_TAG_const_type";
4481 case DW_TAG_constant:
4482 return "DW_TAG_constant";
4483 case DW_TAG_enumerator:
4484 return "DW_TAG_enumerator";
4485 case DW_TAG_file_type:
4486 return "DW_TAG_file_type";
4487 case DW_TAG_friend:
4488 return "DW_TAG_friend";
4489 case DW_TAG_namelist:
4490 return "DW_TAG_namelist";
4491 case DW_TAG_namelist_item:
4492 return "DW_TAG_namelist_item";
4493 case DW_TAG_namespace:
4494 return "DW_TAG_namespace";
4495 case DW_TAG_packed_type:
4496 return "DW_TAG_packed_type";
4497 case DW_TAG_subprogram:
4498 return "DW_TAG_subprogram";
4499 case DW_TAG_template_type_param:
4500 return "DW_TAG_template_type_param";
4501 case DW_TAG_template_value_param:
4502 return "DW_TAG_template_value_param";
4503 case DW_TAG_thrown_type:
4504 return "DW_TAG_thrown_type";
4505 case DW_TAG_try_block:
4506 return "DW_TAG_try_block";
4507 case DW_TAG_variant_part:
4508 return "DW_TAG_variant_part";
4509 case DW_TAG_variable:
4510 return "DW_TAG_variable";
4511 case DW_TAG_volatile_type:
4512 return "DW_TAG_volatile_type";
4513 case DW_TAG_imported_module:
4514 return "DW_TAG_imported_module";
4515 case DW_TAG_MIPS_loop:
4516 return "DW_TAG_MIPS_loop";
4517 case DW_TAG_format_label:
4518 return "DW_TAG_format_label";
4519 case DW_TAG_function_template:
4520 return "DW_TAG_function_template";
4521 case DW_TAG_class_template:
4522 return "DW_TAG_class_template";
4523 case DW_TAG_GNU_BINCL:
4524 return "DW_TAG_GNU_BINCL";
4525 case DW_TAG_GNU_EINCL:
4526 return "DW_TAG_GNU_EINCL";
4527 default:
4528 return "DW_TAG_<unknown>";
4532 /* Convert a DWARF attribute code into its string name. */
4534 static const char *
4535 dwarf_attr_name (unsigned int attr)
4537 switch (attr)
4539 case DW_AT_sibling:
4540 return "DW_AT_sibling";
4541 case DW_AT_location:
4542 return "DW_AT_location";
4543 case DW_AT_name:
4544 return "DW_AT_name";
4545 case DW_AT_ordering:
4546 return "DW_AT_ordering";
4547 case DW_AT_subscr_data:
4548 return "DW_AT_subscr_data";
4549 case DW_AT_byte_size:
4550 return "DW_AT_byte_size";
4551 case DW_AT_bit_offset:
4552 return "DW_AT_bit_offset";
4553 case DW_AT_bit_size:
4554 return "DW_AT_bit_size";
4555 case DW_AT_element_list:
4556 return "DW_AT_element_list";
4557 case DW_AT_stmt_list:
4558 return "DW_AT_stmt_list";
4559 case DW_AT_low_pc:
4560 return "DW_AT_low_pc";
4561 case DW_AT_high_pc:
4562 return "DW_AT_high_pc";
4563 case DW_AT_language:
4564 return "DW_AT_language";
4565 case DW_AT_member:
4566 return "DW_AT_member";
4567 case DW_AT_discr:
4568 return "DW_AT_discr";
4569 case DW_AT_discr_value:
4570 return "DW_AT_discr_value";
4571 case DW_AT_visibility:
4572 return "DW_AT_visibility";
4573 case DW_AT_import:
4574 return "DW_AT_import";
4575 case DW_AT_string_length:
4576 return "DW_AT_string_length";
4577 case DW_AT_common_reference:
4578 return "DW_AT_common_reference";
4579 case DW_AT_comp_dir:
4580 return "DW_AT_comp_dir";
4581 case DW_AT_const_value:
4582 return "DW_AT_const_value";
4583 case DW_AT_containing_type:
4584 return "DW_AT_containing_type";
4585 case DW_AT_default_value:
4586 return "DW_AT_default_value";
4587 case DW_AT_inline:
4588 return "DW_AT_inline";
4589 case DW_AT_is_optional:
4590 return "DW_AT_is_optional";
4591 case DW_AT_lower_bound:
4592 return "DW_AT_lower_bound";
4593 case DW_AT_producer:
4594 return "DW_AT_producer";
4595 case DW_AT_prototyped:
4596 return "DW_AT_prototyped";
4597 case DW_AT_return_addr:
4598 return "DW_AT_return_addr";
4599 case DW_AT_start_scope:
4600 return "DW_AT_start_scope";
4601 case DW_AT_stride_size:
4602 return "DW_AT_stride_size";
4603 case DW_AT_upper_bound:
4604 return "DW_AT_upper_bound";
4605 case DW_AT_abstract_origin:
4606 return "DW_AT_abstract_origin";
4607 case DW_AT_accessibility:
4608 return "DW_AT_accessibility";
4609 case DW_AT_address_class:
4610 return "DW_AT_address_class";
4611 case DW_AT_artificial:
4612 return "DW_AT_artificial";
4613 case DW_AT_base_types:
4614 return "DW_AT_base_types";
4615 case DW_AT_calling_convention:
4616 return "DW_AT_calling_convention";
4617 case DW_AT_count:
4618 return "DW_AT_count";
4619 case DW_AT_data_member_location:
4620 return "DW_AT_data_member_location";
4621 case DW_AT_decl_column:
4622 return "DW_AT_decl_column";
4623 case DW_AT_decl_file:
4624 return "DW_AT_decl_file";
4625 case DW_AT_decl_line:
4626 return "DW_AT_decl_line";
4627 case DW_AT_declaration:
4628 return "DW_AT_declaration";
4629 case DW_AT_discr_list:
4630 return "DW_AT_discr_list";
4631 case DW_AT_encoding:
4632 return "DW_AT_encoding";
4633 case DW_AT_external:
4634 return "DW_AT_external";
4635 case DW_AT_frame_base:
4636 return "DW_AT_frame_base";
4637 case DW_AT_friend:
4638 return "DW_AT_friend";
4639 case DW_AT_identifier_case:
4640 return "DW_AT_identifier_case";
4641 case DW_AT_macro_info:
4642 return "DW_AT_macro_info";
4643 case DW_AT_namelist_items:
4644 return "DW_AT_namelist_items";
4645 case DW_AT_priority:
4646 return "DW_AT_priority";
4647 case DW_AT_segment:
4648 return "DW_AT_segment";
4649 case DW_AT_specification:
4650 return "DW_AT_specification";
4651 case DW_AT_static_link:
4652 return "DW_AT_static_link";
4653 case DW_AT_type:
4654 return "DW_AT_type";
4655 case DW_AT_use_location:
4656 return "DW_AT_use_location";
4657 case DW_AT_variable_parameter:
4658 return "DW_AT_variable_parameter";
4659 case DW_AT_virtuality:
4660 return "DW_AT_virtuality";
4661 case DW_AT_vtable_elem_location:
4662 return "DW_AT_vtable_elem_location";
4664 case DW_AT_allocated:
4665 return "DW_AT_allocated";
4666 case DW_AT_associated:
4667 return "DW_AT_associated";
4668 case DW_AT_data_location:
4669 return "DW_AT_data_location";
4670 case DW_AT_stride:
4671 return "DW_AT_stride";
4672 case DW_AT_entry_pc:
4673 return "DW_AT_entry_pc";
4674 case DW_AT_use_UTF8:
4675 return "DW_AT_use_UTF8";
4676 case DW_AT_extension:
4677 return "DW_AT_extension";
4678 case DW_AT_ranges:
4679 return "DW_AT_ranges";
4680 case DW_AT_trampoline:
4681 return "DW_AT_trampoline";
4682 case DW_AT_call_column:
4683 return "DW_AT_call_column";
4684 case DW_AT_call_file:
4685 return "DW_AT_call_file";
4686 case DW_AT_call_line:
4687 return "DW_AT_call_line";
4689 case DW_AT_MIPS_fde:
4690 return "DW_AT_MIPS_fde";
4691 case DW_AT_MIPS_loop_begin:
4692 return "DW_AT_MIPS_loop_begin";
4693 case DW_AT_MIPS_tail_loop_begin:
4694 return "DW_AT_MIPS_tail_loop_begin";
4695 case DW_AT_MIPS_epilog_begin:
4696 return "DW_AT_MIPS_epilog_begin";
4697 case DW_AT_MIPS_loop_unroll_factor:
4698 return "DW_AT_MIPS_loop_unroll_factor";
4699 case DW_AT_MIPS_software_pipeline_depth:
4700 return "DW_AT_MIPS_software_pipeline_depth";
4701 case DW_AT_MIPS_linkage_name:
4702 return "DW_AT_MIPS_linkage_name";
4703 case DW_AT_MIPS_stride:
4704 return "DW_AT_MIPS_stride";
4705 case DW_AT_MIPS_abstract_name:
4706 return "DW_AT_MIPS_abstract_name";
4707 case DW_AT_MIPS_clone_origin:
4708 return "DW_AT_MIPS_clone_origin";
4709 case DW_AT_MIPS_has_inlines:
4710 return "DW_AT_MIPS_has_inlines";
4712 case DW_AT_sf_names:
4713 return "DW_AT_sf_names";
4714 case DW_AT_src_info:
4715 return "DW_AT_src_info";
4716 case DW_AT_mac_info:
4717 return "DW_AT_mac_info";
4718 case DW_AT_src_coords:
4719 return "DW_AT_src_coords";
4720 case DW_AT_body_begin:
4721 return "DW_AT_body_begin";
4722 case DW_AT_body_end:
4723 return "DW_AT_body_end";
4724 case DW_AT_GNU_vector:
4725 return "DW_AT_GNU_vector";
4727 case DW_AT_VMS_rtnbeg_pd_address:
4728 return "DW_AT_VMS_rtnbeg_pd_address";
4730 default:
4731 return "DW_AT_<unknown>";
4735 /* Convert a DWARF value form code into its string name. */
4737 static const char *
4738 dwarf_form_name (unsigned int form)
4740 switch (form)
4742 case DW_FORM_addr:
4743 return "DW_FORM_addr";
4744 case DW_FORM_block2:
4745 return "DW_FORM_block2";
4746 case DW_FORM_block4:
4747 return "DW_FORM_block4";
4748 case DW_FORM_data2:
4749 return "DW_FORM_data2";
4750 case DW_FORM_data4:
4751 return "DW_FORM_data4";
4752 case DW_FORM_data8:
4753 return "DW_FORM_data8";
4754 case DW_FORM_string:
4755 return "DW_FORM_string";
4756 case DW_FORM_block:
4757 return "DW_FORM_block";
4758 case DW_FORM_block1:
4759 return "DW_FORM_block1";
4760 case DW_FORM_data1:
4761 return "DW_FORM_data1";
4762 case DW_FORM_flag:
4763 return "DW_FORM_flag";
4764 case DW_FORM_sdata:
4765 return "DW_FORM_sdata";
4766 case DW_FORM_strp:
4767 return "DW_FORM_strp";
4768 case DW_FORM_udata:
4769 return "DW_FORM_udata";
4770 case DW_FORM_ref_addr:
4771 return "DW_FORM_ref_addr";
4772 case DW_FORM_ref1:
4773 return "DW_FORM_ref1";
4774 case DW_FORM_ref2:
4775 return "DW_FORM_ref2";
4776 case DW_FORM_ref4:
4777 return "DW_FORM_ref4";
4778 case DW_FORM_ref8:
4779 return "DW_FORM_ref8";
4780 case DW_FORM_ref_udata:
4781 return "DW_FORM_ref_udata";
4782 case DW_FORM_indirect:
4783 return "DW_FORM_indirect";
4784 default:
4785 return "DW_FORM_<unknown>";
4789 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4790 instance of an inlined instance of a decl which is local to an inline
4791 function, so we have to trace all of the way back through the origin chain
4792 to find out what sort of node actually served as the original seed for the
4793 given block. */
4795 static tree
4796 decl_ultimate_origin (tree decl)
4798 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4799 return NULL_TREE;
4801 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4802 nodes in the function to point to themselves; ignore that if
4803 we're trying to output the abstract instance of this function. */
4804 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4805 return NULL_TREE;
4807 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4808 most distant ancestor, this should never happen. */
4809 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4811 return DECL_ABSTRACT_ORIGIN (decl);
4814 /* Determine the "ultimate origin" of a block. The block may be an inlined
4815 instance of an inlined instance of a block which is local to an inline
4816 function, so we have to trace all of the way back through the origin chain
4817 to find out what sort of node actually served as the original seed for the
4818 given block. */
4820 static tree
4821 block_ultimate_origin (tree block)
4823 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4825 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4826 nodes in the function to point to themselves; ignore that if
4827 we're trying to output the abstract instance of this function. */
4828 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4829 return NULL_TREE;
4831 if (immediate_origin == NULL_TREE)
4832 return NULL_TREE;
4833 else
4835 tree ret_val;
4836 tree lookahead = immediate_origin;
4840 ret_val = lookahead;
4841 lookahead = (TREE_CODE (ret_val) == BLOCK
4842 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4844 while (lookahead != NULL && lookahead != ret_val);
4846 /* The block's abstract origin chain may not be the *ultimate* origin of
4847 the block. It could lead to a DECL that has an abstract origin set.
4848 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4849 will give us if it has one). Note that DECL's abstract origins are
4850 supposed to be the most distant ancestor (or so decl_ultimate_origin
4851 claims), so we don't need to loop following the DECL origins. */
4852 if (DECL_P (ret_val))
4853 return DECL_ORIGIN (ret_val);
4855 return ret_val;
4859 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4860 of a virtual function may refer to a base class, so we check the 'this'
4861 parameter. */
4863 static tree
4864 decl_class_context (tree decl)
4866 tree context = NULL_TREE;
4868 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4869 context = DECL_CONTEXT (decl);
4870 else
4871 context = TYPE_MAIN_VARIANT
4872 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4874 if (context && !TYPE_P (context))
4875 context = NULL_TREE;
4877 return context;
4880 /* Add an attribute/value pair to a DIE. */
4882 static inline void
4883 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4885 /* Maybe this should be an assert? */
4886 if (die == NULL)
4887 return;
4889 if (die->die_attr == NULL)
4890 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4891 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4894 static inline enum dw_val_class
4895 AT_class (dw_attr_ref a)
4897 return a->dw_attr_val.val_class;
4900 /* Add a flag value attribute to a DIE. */
4902 static inline void
4903 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4905 dw_attr_node attr;
4907 attr.dw_attr = attr_kind;
4908 attr.dw_attr_val.val_class = dw_val_class_flag;
4909 attr.dw_attr_val.v.val_flag = flag;
4910 add_dwarf_attr (die, &attr);
4913 static inline unsigned
4914 AT_flag (dw_attr_ref a)
4916 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4917 return a->dw_attr_val.v.val_flag;
4920 /* Add a signed integer attribute value to a DIE. */
4922 static inline void
4923 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4925 dw_attr_node attr;
4927 attr.dw_attr = attr_kind;
4928 attr.dw_attr_val.val_class = dw_val_class_const;
4929 attr.dw_attr_val.v.val_int = int_val;
4930 add_dwarf_attr (die, &attr);
4933 static inline HOST_WIDE_INT
4934 AT_int (dw_attr_ref a)
4936 gcc_assert (a && AT_class (a) == dw_val_class_const);
4937 return a->dw_attr_val.v.val_int;
4940 /* Add an unsigned integer attribute value to a DIE. */
4942 static inline void
4943 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4944 unsigned HOST_WIDE_INT unsigned_val)
4946 dw_attr_node attr;
4948 attr.dw_attr = attr_kind;
4949 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4950 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4951 add_dwarf_attr (die, &attr);
4954 static inline unsigned HOST_WIDE_INT
4955 AT_unsigned (dw_attr_ref a)
4957 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4958 return a->dw_attr_val.v.val_unsigned;
4961 /* Add an unsigned double integer attribute value to a DIE. */
4963 static inline void
4964 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4965 long unsigned int val_hi, long unsigned int val_low)
4967 dw_attr_node attr;
4969 attr.dw_attr = attr_kind;
4970 attr.dw_attr_val.val_class = dw_val_class_long_long;
4971 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4972 attr.dw_attr_val.v.val_long_long.low = val_low;
4973 add_dwarf_attr (die, &attr);
4976 /* Add a floating point attribute value to a DIE and return it. */
4978 static inline void
4979 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4980 unsigned int length, unsigned int elt_size, unsigned char *array)
4982 dw_attr_node attr;
4984 attr.dw_attr = attr_kind;
4985 attr.dw_attr_val.val_class = dw_val_class_vec;
4986 attr.dw_attr_val.v.val_vec.length = length;
4987 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4988 attr.dw_attr_val.v.val_vec.array = array;
4989 add_dwarf_attr (die, &attr);
4992 /* Hash and equality functions for debug_str_hash. */
4994 static hashval_t
4995 debug_str_do_hash (const void *x)
4997 return htab_hash_string (((const struct indirect_string_node *)x)->str);
5000 static int
5001 debug_str_eq (const void *x1, const void *x2)
5003 return strcmp ((((const struct indirect_string_node *)x1)->str),
5004 (const char *)x2) == 0;
5007 /* Add a string attribute value to a DIE. */
5009 static inline void
5010 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5012 dw_attr_node attr;
5013 struct indirect_string_node *node;
5014 void **slot;
5016 if (! debug_str_hash)
5017 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5018 debug_str_eq, NULL);
5020 slot = htab_find_slot_with_hash (debug_str_hash, str,
5021 htab_hash_string (str), INSERT);
5022 if (*slot == NULL)
5023 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5024 node = (struct indirect_string_node *) *slot;
5025 node->str = ggc_strdup (str);
5026 node->refcount++;
5028 attr.dw_attr = attr_kind;
5029 attr.dw_attr_val.val_class = dw_val_class_str;
5030 attr.dw_attr_val.v.val_str = node;
5031 add_dwarf_attr (die, &attr);
5034 static inline const char *
5035 AT_string (dw_attr_ref a)
5037 gcc_assert (a && AT_class (a) == dw_val_class_str);
5038 return a->dw_attr_val.v.val_str->str;
5041 /* Find out whether a string should be output inline in DIE
5042 or out-of-line in .debug_str section. */
5044 static int
5045 AT_string_form (dw_attr_ref a)
5047 struct indirect_string_node *node;
5048 unsigned int len;
5049 char label[32];
5051 gcc_assert (a && AT_class (a) == dw_val_class_str);
5053 node = a->dw_attr_val.v.val_str;
5054 if (node->form)
5055 return node->form;
5057 len = strlen (node->str) + 1;
5059 /* If the string is shorter or equal to the size of the reference, it is
5060 always better to put it inline. */
5061 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5062 return node->form = DW_FORM_string;
5064 /* If we cannot expect the linker to merge strings in .debug_str
5065 section, only put it into .debug_str if it is worth even in this
5066 single module. */
5067 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5068 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5069 return node->form = DW_FORM_string;
5071 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5072 ++dw2_string_counter;
5073 node->label = xstrdup (label);
5075 return node->form = DW_FORM_strp;
5078 /* Add a DIE reference attribute value to a DIE. */
5080 static inline void
5081 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5083 dw_attr_node attr;
5085 attr.dw_attr = attr_kind;
5086 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5087 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5088 attr.dw_attr_val.v.val_die_ref.external = 0;
5089 add_dwarf_attr (die, &attr);
5092 /* Add an AT_specification attribute to a DIE, and also make the back
5093 pointer from the specification to the definition. */
5095 static inline void
5096 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5098 add_AT_die_ref (die, DW_AT_specification, targ_die);
5099 gcc_assert (!targ_die->die_definition);
5100 targ_die->die_definition = die;
5103 static inline dw_die_ref
5104 AT_ref (dw_attr_ref a)
5106 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5107 return a->dw_attr_val.v.val_die_ref.die;
5110 static inline int
5111 AT_ref_external (dw_attr_ref a)
5113 if (a && AT_class (a) == dw_val_class_die_ref)
5114 return a->dw_attr_val.v.val_die_ref.external;
5116 return 0;
5119 static inline void
5120 set_AT_ref_external (dw_attr_ref a, int i)
5122 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5123 a->dw_attr_val.v.val_die_ref.external = i;
5126 /* Add an FDE reference attribute value to a DIE. */
5128 static inline void
5129 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5131 dw_attr_node attr;
5133 attr.dw_attr = attr_kind;
5134 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5135 attr.dw_attr_val.v.val_fde_index = targ_fde;
5136 add_dwarf_attr (die, &attr);
5139 /* Add a location description attribute value to a DIE. */
5141 static inline void
5142 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5144 dw_attr_node attr;
5146 attr.dw_attr = attr_kind;
5147 attr.dw_attr_val.val_class = dw_val_class_loc;
5148 attr.dw_attr_val.v.val_loc = loc;
5149 add_dwarf_attr (die, &attr);
5152 static inline dw_loc_descr_ref
5153 AT_loc (dw_attr_ref a)
5155 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5156 return a->dw_attr_val.v.val_loc;
5159 static inline void
5160 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5162 dw_attr_node attr;
5164 attr.dw_attr = attr_kind;
5165 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5166 attr.dw_attr_val.v.val_loc_list = loc_list;
5167 add_dwarf_attr (die, &attr);
5168 have_location_lists = true;
5171 static inline dw_loc_list_ref
5172 AT_loc_list (dw_attr_ref a)
5174 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5175 return a->dw_attr_val.v.val_loc_list;
5178 /* Add an address constant attribute value to a DIE. */
5180 static inline void
5181 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5183 dw_attr_node attr;
5185 attr.dw_attr = attr_kind;
5186 attr.dw_attr_val.val_class = dw_val_class_addr;
5187 attr.dw_attr_val.v.val_addr = addr;
5188 add_dwarf_attr (die, &attr);
5191 /* Get the RTX from to an address DIE attribute. */
5193 static inline rtx
5194 AT_addr (dw_attr_ref a)
5196 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5197 return a->dw_attr_val.v.val_addr;
5200 /* Add a file attribute value to a DIE. */
5202 static inline void
5203 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5204 struct dwarf_file_data *fd)
5206 dw_attr_node attr;
5208 attr.dw_attr = attr_kind;
5209 attr.dw_attr_val.val_class = dw_val_class_file;
5210 attr.dw_attr_val.v.val_file = fd;
5211 add_dwarf_attr (die, &attr);
5214 /* Get the dwarf_file_data from a file DIE attribute. */
5216 static inline struct dwarf_file_data *
5217 AT_file (dw_attr_ref a)
5219 gcc_assert (a && AT_class (a) == dw_val_class_file);
5220 return a->dw_attr_val.v.val_file;
5223 /* Add a label identifier attribute value to a DIE. */
5225 static inline void
5226 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5228 dw_attr_node attr;
5230 attr.dw_attr = attr_kind;
5231 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5232 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5233 add_dwarf_attr (die, &attr);
5236 /* Add a section offset attribute value to a DIE, an offset into the
5237 debug_line section. */
5239 static inline void
5240 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5241 const char *label)
5243 dw_attr_node attr;
5245 attr.dw_attr = attr_kind;
5246 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5247 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5248 add_dwarf_attr (die, &attr);
5251 /* Add a section offset attribute value to a DIE, an offset into the
5252 debug_macinfo section. */
5254 static inline void
5255 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5256 const char *label)
5258 dw_attr_node attr;
5260 attr.dw_attr = attr_kind;
5261 attr.dw_attr_val.val_class = dw_val_class_macptr;
5262 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5263 add_dwarf_attr (die, &attr);
5266 /* Add an offset attribute value to a DIE. */
5268 static inline void
5269 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5270 unsigned HOST_WIDE_INT offset)
5272 dw_attr_node attr;
5274 attr.dw_attr = attr_kind;
5275 attr.dw_attr_val.val_class = dw_val_class_offset;
5276 attr.dw_attr_val.v.val_offset = offset;
5277 add_dwarf_attr (die, &attr);
5280 /* Add an range_list attribute value to a DIE. */
5282 static void
5283 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5284 long unsigned int offset)
5286 dw_attr_node attr;
5288 attr.dw_attr = attr_kind;
5289 attr.dw_attr_val.val_class = dw_val_class_range_list;
5290 attr.dw_attr_val.v.val_offset = offset;
5291 add_dwarf_attr (die, &attr);
5294 static inline const char *
5295 AT_lbl (dw_attr_ref a)
5297 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5298 || AT_class (a) == dw_val_class_lineptr
5299 || AT_class (a) == dw_val_class_macptr));
5300 return a->dw_attr_val.v.val_lbl_id;
5303 /* Get the attribute of type attr_kind. */
5305 static dw_attr_ref
5306 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5308 dw_attr_ref a;
5309 unsigned ix;
5310 dw_die_ref spec = NULL;
5312 if (! die)
5313 return NULL;
5315 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5316 if (a->dw_attr == attr_kind)
5317 return a;
5318 else if (a->dw_attr == DW_AT_specification
5319 || a->dw_attr == DW_AT_abstract_origin)
5320 spec = AT_ref (a);
5322 if (spec)
5323 return get_AT (spec, attr_kind);
5325 return NULL;
5328 /* Return the "low pc" attribute value, typically associated with a subprogram
5329 DIE. Return null if the "low pc" attribute is either not present, or if it
5330 cannot be represented as an assembler label identifier. */
5332 static inline const char *
5333 get_AT_low_pc (dw_die_ref die)
5335 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5337 return a ? AT_lbl (a) : NULL;
5340 /* Return the "high pc" attribute value, typically associated with a subprogram
5341 DIE. Return null if the "high pc" attribute is either not present, or if it
5342 cannot be represented as an assembler label identifier. */
5344 static inline const char *
5345 get_AT_hi_pc (dw_die_ref die)
5347 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5349 return a ? AT_lbl (a) : NULL;
5352 /* Return the value of the string attribute designated by ATTR_KIND, or
5353 NULL if it is not present. */
5355 static inline const char *
5356 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5358 dw_attr_ref a = get_AT (die, attr_kind);
5360 return a ? AT_string (a) : NULL;
5363 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5364 if it is not present. */
5366 static inline int
5367 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5369 dw_attr_ref a = get_AT (die, attr_kind);
5371 return a ? AT_flag (a) : 0;
5374 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5375 if it is not present. */
5377 static inline unsigned
5378 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5380 dw_attr_ref a = get_AT (die, attr_kind);
5382 return a ? AT_unsigned (a) : 0;
5385 static inline dw_die_ref
5386 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5388 dw_attr_ref a = get_AT (die, attr_kind);
5390 return a ? AT_ref (a) : NULL;
5393 static inline struct dwarf_file_data *
5394 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5396 dw_attr_ref a = get_AT (die, attr_kind);
5398 return a ? AT_file (a) : NULL;
5401 /* Return TRUE if the language is C or C++. */
5403 static inline bool
5404 is_c_family (void)
5406 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5408 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5409 || lang == DW_LANG_C99
5410 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5413 /* Return TRUE if the language is C++. */
5415 static inline bool
5416 is_cxx (void)
5418 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5420 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5423 /* Return TRUE if the language is Fortran. */
5425 static inline bool
5426 is_fortran (void)
5428 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5430 return (lang == DW_LANG_Fortran77
5431 || lang == DW_LANG_Fortran90
5432 || lang == DW_LANG_Fortran95);
5435 /* Return TRUE if the language is Java. */
5437 static inline bool
5438 is_java (void)
5440 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5442 return lang == DW_LANG_Java;
5445 /* Return TRUE if the language is Ada. */
5447 static inline bool
5448 is_ada (void)
5450 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5452 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5455 /* Remove the specified attribute if present. */
5457 static void
5458 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5460 dw_attr_ref a;
5461 unsigned ix;
5463 if (! die)
5464 return;
5466 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5467 if (a->dw_attr == attr_kind)
5469 if (AT_class (a) == dw_val_class_str)
5470 if (a->dw_attr_val.v.val_str->refcount)
5471 a->dw_attr_val.v.val_str->refcount--;
5473 /* VEC_ordered_remove should help reduce the number of abbrevs
5474 that are needed. */
5475 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5476 return;
5480 /* Remove CHILD from its parent. PREV must have the property that
5481 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5483 static void
5484 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5486 gcc_assert (child->die_parent == prev->die_parent);
5487 gcc_assert (prev->die_sib == child);
5488 if (prev == child)
5490 gcc_assert (child->die_parent->die_child == child);
5491 prev = NULL;
5493 else
5494 prev->die_sib = child->die_sib;
5495 if (child->die_parent->die_child == child)
5496 child->die_parent->die_child = prev;
5499 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5500 matches TAG. */
5502 static void
5503 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5505 dw_die_ref c;
5507 c = die->die_child;
5508 if (c) do {
5509 dw_die_ref prev = c;
5510 c = c->die_sib;
5511 while (c->die_tag == tag)
5513 remove_child_with_prev (c, prev);
5514 /* Might have removed every child. */
5515 if (c == c->die_sib)
5516 return;
5517 c = c->die_sib;
5519 } while (c != die->die_child);
5522 /* Add a CHILD_DIE as the last child of DIE. */
5524 static void
5525 add_child_die (dw_die_ref die, dw_die_ref child_die)
5527 /* FIXME this should probably be an assert. */
5528 if (! die || ! child_die)
5529 return;
5530 gcc_assert (die != child_die);
5532 child_die->die_parent = die;
5533 if (die->die_child)
5535 child_die->die_sib = die->die_child->die_sib;
5536 die->die_child->die_sib = child_die;
5538 else
5539 child_die->die_sib = child_die;
5540 die->die_child = child_die;
5543 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5544 is the specification, to the end of PARENT's list of children.
5545 This is done by removing and re-adding it. */
5547 static void
5548 splice_child_die (dw_die_ref parent, dw_die_ref child)
5550 dw_die_ref p;
5552 /* We want the declaration DIE from inside the class, not the
5553 specification DIE at toplevel. */
5554 if (child->die_parent != parent)
5556 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5558 if (tmp)
5559 child = tmp;
5562 gcc_assert (child->die_parent == parent
5563 || (child->die_parent
5564 == get_AT_ref (parent, DW_AT_specification)));
5566 for (p = child->die_parent->die_child; ; p = p->die_sib)
5567 if (p->die_sib == child)
5569 remove_child_with_prev (child, p);
5570 break;
5573 add_child_die (parent, child);
5576 /* Return a pointer to a newly created DIE node. */
5578 static inline dw_die_ref
5579 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5581 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5583 die->die_tag = tag_value;
5585 if (parent_die != NULL)
5586 add_child_die (parent_die, die);
5587 else
5589 limbo_die_node *limbo_node;
5591 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5592 limbo_node->die = die;
5593 limbo_node->created_for = t;
5594 limbo_node->next = limbo_die_list;
5595 limbo_die_list = limbo_node;
5598 return die;
5601 /* Return the DIE associated with the given type specifier. */
5603 static inline dw_die_ref
5604 lookup_type_die (tree type)
5606 return TYPE_SYMTAB_DIE (type);
5609 /* Equate a DIE to a given type specifier. */
5611 static inline void
5612 equate_type_number_to_die (tree type, dw_die_ref type_die)
5614 TYPE_SYMTAB_DIE (type) = type_die;
5617 /* Returns a hash value for X (which really is a die_struct). */
5619 static hashval_t
5620 decl_die_table_hash (const void *x)
5622 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5625 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5627 static int
5628 decl_die_table_eq (const void *x, const void *y)
5630 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5633 /* Return the DIE associated with a given declaration. */
5635 static inline dw_die_ref
5636 lookup_decl_die (tree decl)
5638 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5641 /* Returns a hash value for X (which really is a var_loc_list). */
5643 static hashval_t
5644 decl_loc_table_hash (const void *x)
5646 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5649 /* Return nonzero if decl_id of var_loc_list X is the same as
5650 UID of decl *Y. */
5652 static int
5653 decl_loc_table_eq (const void *x, const void *y)
5655 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5658 /* Return the var_loc list associated with a given declaration. */
5660 static inline var_loc_list *
5661 lookup_decl_loc (tree decl)
5663 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5666 /* Equate a DIE to a particular declaration. */
5668 static void
5669 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5671 unsigned int decl_id = DECL_UID (decl);
5672 void **slot;
5674 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5675 *slot = decl_die;
5676 decl_die->decl_id = decl_id;
5679 /* Add a variable location node to the linked list for DECL. */
5681 static void
5682 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5684 unsigned int decl_id = DECL_UID (decl);
5685 var_loc_list *temp;
5686 void **slot;
5688 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5689 if (*slot == NULL)
5691 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5692 temp->decl_id = decl_id;
5693 *slot = temp;
5695 else
5696 temp = *slot;
5698 if (temp->last)
5700 /* If the current location is the same as the end of the list,
5701 we have nothing to do. */
5702 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5703 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5705 /* Add LOC to the end of list and update LAST. */
5706 temp->last->next = loc;
5707 temp->last = loc;
5710 /* Do not add empty location to the beginning of the list. */
5711 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5713 temp->first = loc;
5714 temp->last = loc;
5718 /* Keep track of the number of spaces used to indent the
5719 output of the debugging routines that print the structure of
5720 the DIE internal representation. */
5721 static int print_indent;
5723 /* Indent the line the number of spaces given by print_indent. */
5725 static inline void
5726 print_spaces (FILE *outfile)
5728 fprintf (outfile, "%*s", print_indent, "");
5731 /* Print the information associated with a given DIE, and its children.
5732 This routine is a debugging aid only. */
5734 static void
5735 print_die (dw_die_ref die, FILE *outfile)
5737 dw_attr_ref a;
5738 dw_die_ref c;
5739 unsigned ix;
5741 print_spaces (outfile);
5742 fprintf (outfile, "DIE %4lu: %s\n",
5743 die->die_offset, dwarf_tag_name (die->die_tag));
5744 print_spaces (outfile);
5745 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5746 fprintf (outfile, " offset: %lu\n", die->die_offset);
5748 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5750 print_spaces (outfile);
5751 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5753 switch (AT_class (a))
5755 case dw_val_class_addr:
5756 fprintf (outfile, "address");
5757 break;
5758 case dw_val_class_offset:
5759 fprintf (outfile, "offset");
5760 break;
5761 case dw_val_class_loc:
5762 fprintf (outfile, "location descriptor");
5763 break;
5764 case dw_val_class_loc_list:
5765 fprintf (outfile, "location list -> label:%s",
5766 AT_loc_list (a)->ll_symbol);
5767 break;
5768 case dw_val_class_range_list:
5769 fprintf (outfile, "range list");
5770 break;
5771 case dw_val_class_const:
5772 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5773 break;
5774 case dw_val_class_unsigned_const:
5775 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5776 break;
5777 case dw_val_class_long_long:
5778 fprintf (outfile, "constant (%lu,%lu)",
5779 a->dw_attr_val.v.val_long_long.hi,
5780 a->dw_attr_val.v.val_long_long.low);
5781 break;
5782 case dw_val_class_vec:
5783 fprintf (outfile, "floating-point or vector constant");
5784 break;
5785 case dw_val_class_flag:
5786 fprintf (outfile, "%u", AT_flag (a));
5787 break;
5788 case dw_val_class_die_ref:
5789 if (AT_ref (a) != NULL)
5791 if (AT_ref (a)->die_symbol)
5792 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5793 else
5794 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5796 else
5797 fprintf (outfile, "die -> <null>");
5798 break;
5799 case dw_val_class_lbl_id:
5800 case dw_val_class_lineptr:
5801 case dw_val_class_macptr:
5802 fprintf (outfile, "label: %s", AT_lbl (a));
5803 break;
5804 case dw_val_class_str:
5805 if (AT_string (a) != NULL)
5806 fprintf (outfile, "\"%s\"", AT_string (a));
5807 else
5808 fprintf (outfile, "<null>");
5809 break;
5810 case dw_val_class_file:
5811 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5812 AT_file (a)->emitted_number);
5813 break;
5814 default:
5815 break;
5818 fprintf (outfile, "\n");
5821 if (die->die_child != NULL)
5823 print_indent += 4;
5824 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5825 print_indent -= 4;
5827 if (print_indent == 0)
5828 fprintf (outfile, "\n");
5831 /* Print the contents of the source code line number correspondence table.
5832 This routine is a debugging aid only. */
5834 static void
5835 print_dwarf_line_table (FILE *outfile)
5837 unsigned i;
5838 dw_line_info_ref line_info;
5840 fprintf (outfile, "\n\nDWARF source line information\n");
5841 for (i = 1; i < line_info_table_in_use; i++)
5843 line_info = &line_info_table[i];
5844 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5845 line_info->dw_file_num,
5846 line_info->dw_line_num);
5849 fprintf (outfile, "\n\n");
5852 /* Print the information collected for a given DIE. */
5854 void
5855 debug_dwarf_die (dw_die_ref die)
5857 print_die (die, stderr);
5860 /* Print all DWARF information collected for the compilation unit.
5861 This routine is a debugging aid only. */
5863 void
5864 debug_dwarf (void)
5866 print_indent = 0;
5867 print_die (comp_unit_die, stderr);
5868 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5869 print_dwarf_line_table (stderr);
5872 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5873 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5874 DIE that marks the start of the DIEs for this include file. */
5876 static dw_die_ref
5877 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5879 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5880 dw_die_ref new_unit = gen_compile_unit_die (filename);
5882 new_unit->die_sib = old_unit;
5883 return new_unit;
5886 /* Close an include-file CU and reopen the enclosing one. */
5888 static dw_die_ref
5889 pop_compile_unit (dw_die_ref old_unit)
5891 dw_die_ref new_unit = old_unit->die_sib;
5893 old_unit->die_sib = NULL;
5894 return new_unit;
5897 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5898 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5900 /* Calculate the checksum of a location expression. */
5902 static inline void
5903 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5905 CHECKSUM (loc->dw_loc_opc);
5906 CHECKSUM (loc->dw_loc_oprnd1);
5907 CHECKSUM (loc->dw_loc_oprnd2);
5910 /* Calculate the checksum of an attribute. */
5912 static void
5913 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5915 dw_loc_descr_ref loc;
5916 rtx r;
5918 CHECKSUM (at->dw_attr);
5920 /* We don't care that this was compiled with a different compiler
5921 snapshot; if the output is the same, that's what matters. */
5922 if (at->dw_attr == DW_AT_producer)
5923 return;
5925 switch (AT_class (at))
5927 case dw_val_class_const:
5928 CHECKSUM (at->dw_attr_val.v.val_int);
5929 break;
5930 case dw_val_class_unsigned_const:
5931 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5932 break;
5933 case dw_val_class_long_long:
5934 CHECKSUM (at->dw_attr_val.v.val_long_long);
5935 break;
5936 case dw_val_class_vec:
5937 CHECKSUM (at->dw_attr_val.v.val_vec);
5938 break;
5939 case dw_val_class_flag:
5940 CHECKSUM (at->dw_attr_val.v.val_flag);
5941 break;
5942 case dw_val_class_str:
5943 CHECKSUM_STRING (AT_string (at));
5944 break;
5946 case dw_val_class_addr:
5947 r = AT_addr (at);
5948 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5949 CHECKSUM_STRING (XSTR (r, 0));
5950 break;
5952 case dw_val_class_offset:
5953 CHECKSUM (at->dw_attr_val.v.val_offset);
5954 break;
5956 case dw_val_class_loc:
5957 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5958 loc_checksum (loc, ctx);
5959 break;
5961 case dw_val_class_die_ref:
5962 die_checksum (AT_ref (at), ctx, mark);
5963 break;
5965 case dw_val_class_fde_ref:
5966 case dw_val_class_lbl_id:
5967 case dw_val_class_lineptr:
5968 case dw_val_class_macptr:
5969 break;
5971 case dw_val_class_file:
5972 CHECKSUM_STRING (AT_file (at)->filename);
5973 break;
5975 default:
5976 break;
5980 /* Calculate the checksum of a DIE. */
5982 static void
5983 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5985 dw_die_ref c;
5986 dw_attr_ref a;
5987 unsigned ix;
5989 /* To avoid infinite recursion. */
5990 if (die->die_mark)
5992 CHECKSUM (die->die_mark);
5993 return;
5995 die->die_mark = ++(*mark);
5997 CHECKSUM (die->die_tag);
5999 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6000 attr_checksum (a, ctx, mark);
6002 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6005 #undef CHECKSUM
6006 #undef CHECKSUM_STRING
6008 /* Do the location expressions look same? */
6009 static inline int
6010 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6012 return loc1->dw_loc_opc == loc2->dw_loc_opc
6013 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6014 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6017 /* Do the values look the same? */
6018 static int
6019 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6021 dw_loc_descr_ref loc1, loc2;
6022 rtx r1, r2;
6024 if (v1->val_class != v2->val_class)
6025 return 0;
6027 switch (v1->val_class)
6029 case dw_val_class_const:
6030 return v1->v.val_int == v2->v.val_int;
6031 case dw_val_class_unsigned_const:
6032 return v1->v.val_unsigned == v2->v.val_unsigned;
6033 case dw_val_class_long_long:
6034 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6035 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6036 case dw_val_class_vec:
6037 if (v1->v.val_vec.length != v2->v.val_vec.length
6038 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6039 return 0;
6040 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6041 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6042 return 0;
6043 return 1;
6044 case dw_val_class_flag:
6045 return v1->v.val_flag == v2->v.val_flag;
6046 case dw_val_class_str:
6047 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6049 case dw_val_class_addr:
6050 r1 = v1->v.val_addr;
6051 r2 = v2->v.val_addr;
6052 if (GET_CODE (r1) != GET_CODE (r2))
6053 return 0;
6054 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6055 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6057 case dw_val_class_offset:
6058 return v1->v.val_offset == v2->v.val_offset;
6060 case dw_val_class_loc:
6061 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6062 loc1 && loc2;
6063 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6064 if (!same_loc_p (loc1, loc2, mark))
6065 return 0;
6066 return !loc1 && !loc2;
6068 case dw_val_class_die_ref:
6069 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6071 case dw_val_class_fde_ref:
6072 case dw_val_class_lbl_id:
6073 case dw_val_class_lineptr:
6074 case dw_val_class_macptr:
6075 return 1;
6077 case dw_val_class_file:
6078 return v1->v.val_file == v2->v.val_file;
6080 default:
6081 return 1;
6085 /* Do the attributes look the same? */
6087 static int
6088 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6090 if (at1->dw_attr != at2->dw_attr)
6091 return 0;
6093 /* We don't care that this was compiled with a different compiler
6094 snapshot; if the output is the same, that's what matters. */
6095 if (at1->dw_attr == DW_AT_producer)
6096 return 1;
6098 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6101 /* Do the dies look the same? */
6103 static int
6104 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6106 dw_die_ref c1, c2;
6107 dw_attr_ref a1;
6108 unsigned ix;
6110 /* To avoid infinite recursion. */
6111 if (die1->die_mark)
6112 return die1->die_mark == die2->die_mark;
6113 die1->die_mark = die2->die_mark = ++(*mark);
6115 if (die1->die_tag != die2->die_tag)
6116 return 0;
6118 if (VEC_length (dw_attr_node, die1->die_attr)
6119 != VEC_length (dw_attr_node, die2->die_attr))
6120 return 0;
6122 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6123 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6124 return 0;
6126 c1 = die1->die_child;
6127 c2 = die2->die_child;
6128 if (! c1)
6130 if (c2)
6131 return 0;
6133 else
6134 for (;;)
6136 if (!same_die_p (c1, c2, mark))
6137 return 0;
6138 c1 = c1->die_sib;
6139 c2 = c2->die_sib;
6140 if (c1 == die1->die_child)
6142 if (c2 == die2->die_child)
6143 break;
6144 else
6145 return 0;
6149 return 1;
6152 /* Do the dies look the same? Wrapper around same_die_p. */
6154 static int
6155 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6157 int mark = 0;
6158 int ret = same_die_p (die1, die2, &mark);
6160 unmark_all_dies (die1);
6161 unmark_all_dies (die2);
6163 return ret;
6166 /* The prefix to attach to symbols on DIEs in the current comdat debug
6167 info section. */
6168 static char *comdat_symbol_id;
6170 /* The index of the current symbol within the current comdat CU. */
6171 static unsigned int comdat_symbol_number;
6173 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6174 children, and set comdat_symbol_id accordingly. */
6176 static void
6177 compute_section_prefix (dw_die_ref unit_die)
6179 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6180 const char *base = die_name ? lbasename (die_name) : "anonymous";
6181 char *name = alloca (strlen (base) + 64);
6182 char *p;
6183 int i, mark;
6184 unsigned char checksum[16];
6185 struct md5_ctx ctx;
6187 /* Compute the checksum of the DIE, then append part of it as hex digits to
6188 the name filename of the unit. */
6190 md5_init_ctx (&ctx);
6191 mark = 0;
6192 die_checksum (unit_die, &ctx, &mark);
6193 unmark_all_dies (unit_die);
6194 md5_finish_ctx (&ctx, checksum);
6196 sprintf (name, "%s.", base);
6197 clean_symbol_name (name);
6199 p = name + strlen (name);
6200 for (i = 0; i < 4; i++)
6202 sprintf (p, "%.2x", checksum[i]);
6203 p += 2;
6206 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6207 comdat_symbol_number = 0;
6210 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6212 static int
6213 is_type_die (dw_die_ref die)
6215 switch (die->die_tag)
6217 case DW_TAG_array_type:
6218 case DW_TAG_class_type:
6219 case DW_TAG_enumeration_type:
6220 case DW_TAG_pointer_type:
6221 case DW_TAG_reference_type:
6222 case DW_TAG_string_type:
6223 case DW_TAG_structure_type:
6224 case DW_TAG_subroutine_type:
6225 case DW_TAG_union_type:
6226 case DW_TAG_ptr_to_member_type:
6227 case DW_TAG_set_type:
6228 case DW_TAG_subrange_type:
6229 case DW_TAG_base_type:
6230 case DW_TAG_const_type:
6231 case DW_TAG_file_type:
6232 case DW_TAG_packed_type:
6233 case DW_TAG_volatile_type:
6234 case DW_TAG_typedef:
6235 return 1;
6236 default:
6237 return 0;
6241 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6242 Basically, we want to choose the bits that are likely to be shared between
6243 compilations (types) and leave out the bits that are specific to individual
6244 compilations (functions). */
6246 static int
6247 is_comdat_die (dw_die_ref c)
6249 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6250 we do for stabs. The advantage is a greater likelihood of sharing between
6251 objects that don't include headers in the same order (and therefore would
6252 put the base types in a different comdat). jason 8/28/00 */
6254 if (c->die_tag == DW_TAG_base_type)
6255 return 0;
6257 if (c->die_tag == DW_TAG_pointer_type
6258 || c->die_tag == DW_TAG_reference_type
6259 || c->die_tag == DW_TAG_const_type
6260 || c->die_tag == DW_TAG_volatile_type)
6262 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6264 return t ? is_comdat_die (t) : 0;
6267 return is_type_die (c);
6270 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6271 compilation unit. */
6273 static int
6274 is_symbol_die (dw_die_ref c)
6276 return (is_type_die (c)
6277 || (get_AT (c, DW_AT_declaration)
6278 && !get_AT (c, DW_AT_specification))
6279 || c->die_tag == DW_TAG_namespace);
6282 static char *
6283 gen_internal_sym (const char *prefix)
6285 char buf[256];
6287 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6288 return xstrdup (buf);
6291 /* Assign symbols to all worthy DIEs under DIE. */
6293 static void
6294 assign_symbol_names (dw_die_ref die)
6296 dw_die_ref c;
6298 if (is_symbol_die (die))
6300 if (comdat_symbol_id)
6302 char *p = alloca (strlen (comdat_symbol_id) + 64);
6304 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6305 comdat_symbol_id, comdat_symbol_number++);
6306 die->die_symbol = xstrdup (p);
6308 else
6309 die->die_symbol = gen_internal_sym ("LDIE");
6312 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6315 struct cu_hash_table_entry
6317 dw_die_ref cu;
6318 unsigned min_comdat_num, max_comdat_num;
6319 struct cu_hash_table_entry *next;
6322 /* Routines to manipulate hash table of CUs. */
6323 static hashval_t
6324 htab_cu_hash (const void *of)
6326 const struct cu_hash_table_entry *entry = of;
6328 return htab_hash_string (entry->cu->die_symbol);
6331 static int
6332 htab_cu_eq (const void *of1, const void *of2)
6334 const struct cu_hash_table_entry *entry1 = of1;
6335 const struct die_struct *entry2 = of2;
6337 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6340 static void
6341 htab_cu_del (void *what)
6343 struct cu_hash_table_entry *next, *entry = what;
6345 while (entry)
6347 next = entry->next;
6348 free (entry);
6349 entry = next;
6353 /* Check whether we have already seen this CU and set up SYM_NUM
6354 accordingly. */
6355 static int
6356 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6358 struct cu_hash_table_entry dummy;
6359 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6361 dummy.max_comdat_num = 0;
6363 slot = (struct cu_hash_table_entry **)
6364 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6365 INSERT);
6366 entry = *slot;
6368 for (; entry; last = entry, entry = entry->next)
6370 if (same_die_p_wrap (cu, entry->cu))
6371 break;
6374 if (entry)
6376 *sym_num = entry->min_comdat_num;
6377 return 1;
6380 entry = XCNEW (struct cu_hash_table_entry);
6381 entry->cu = cu;
6382 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6383 entry->next = *slot;
6384 *slot = entry;
6386 return 0;
6389 /* Record SYM_NUM to record of CU in HTABLE. */
6390 static void
6391 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6393 struct cu_hash_table_entry **slot, *entry;
6395 slot = (struct cu_hash_table_entry **)
6396 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6397 NO_INSERT);
6398 entry = *slot;
6400 entry->max_comdat_num = sym_num;
6403 /* Traverse the DIE (which is always comp_unit_die), and set up
6404 additional compilation units for each of the include files we see
6405 bracketed by BINCL/EINCL. */
6407 static void
6408 break_out_includes (dw_die_ref die)
6410 dw_die_ref c;
6411 dw_die_ref unit = NULL;
6412 limbo_die_node *node, **pnode;
6413 htab_t cu_hash_table;
6415 c = die->die_child;
6416 if (c) do {
6417 dw_die_ref prev = c;
6418 c = c->die_sib;
6419 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6420 || (unit && is_comdat_die (c)))
6422 dw_die_ref next = c->die_sib;
6424 /* This DIE is for a secondary CU; remove it from the main one. */
6425 remove_child_with_prev (c, prev);
6427 if (c->die_tag == DW_TAG_GNU_BINCL)
6428 unit = push_new_compile_unit (unit, c);
6429 else if (c->die_tag == DW_TAG_GNU_EINCL)
6430 unit = pop_compile_unit (unit);
6431 else
6432 add_child_die (unit, c);
6433 c = next;
6434 if (c == die->die_child)
6435 break;
6437 } while (c != die->die_child);
6439 #if 0
6440 /* We can only use this in debugging, since the frontend doesn't check
6441 to make sure that we leave every include file we enter. */
6442 gcc_assert (!unit);
6443 #endif
6445 assign_symbol_names (die);
6446 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6447 for (node = limbo_die_list, pnode = &limbo_die_list;
6448 node;
6449 node = node->next)
6451 int is_dupl;
6453 compute_section_prefix (node->die);
6454 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6455 &comdat_symbol_number);
6456 assign_symbol_names (node->die);
6457 if (is_dupl)
6458 *pnode = node->next;
6459 else
6461 pnode = &node->next;
6462 record_comdat_symbol_number (node->die, cu_hash_table,
6463 comdat_symbol_number);
6466 htab_delete (cu_hash_table);
6469 /* Traverse the DIE and add a sibling attribute if it may have the
6470 effect of speeding up access to siblings. To save some space,
6471 avoid generating sibling attributes for DIE's without children. */
6473 static void
6474 add_sibling_attributes (dw_die_ref die)
6476 dw_die_ref c;
6478 if (! die->die_child)
6479 return;
6481 if (die->die_parent && die != die->die_parent->die_child)
6482 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6484 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6487 /* Output all location lists for the DIE and its children. */
6489 static void
6490 output_location_lists (dw_die_ref die)
6492 dw_die_ref c;
6493 dw_attr_ref a;
6494 unsigned ix;
6496 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6497 if (AT_class (a) == dw_val_class_loc_list)
6498 output_loc_list (AT_loc_list (a));
6500 FOR_EACH_CHILD (die, c, output_location_lists (c));
6503 /* The format of each DIE (and its attribute value pairs) is encoded in an
6504 abbreviation table. This routine builds the abbreviation table and assigns
6505 a unique abbreviation id for each abbreviation entry. The children of each
6506 die are visited recursively. */
6508 static void
6509 build_abbrev_table (dw_die_ref die)
6511 unsigned long abbrev_id;
6512 unsigned int n_alloc;
6513 dw_die_ref c;
6514 dw_attr_ref a;
6515 unsigned ix;
6517 /* Scan the DIE references, and mark as external any that refer to
6518 DIEs from other CUs (i.e. those which are not marked). */
6519 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6520 if (AT_class (a) == dw_val_class_die_ref
6521 && AT_ref (a)->die_mark == 0)
6523 gcc_assert (AT_ref (a)->die_symbol);
6525 set_AT_ref_external (a, 1);
6528 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6530 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6531 dw_attr_ref die_a, abbrev_a;
6532 unsigned ix;
6533 bool ok = true;
6535 if (abbrev->die_tag != die->die_tag)
6536 continue;
6537 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6538 continue;
6540 if (VEC_length (dw_attr_node, abbrev->die_attr)
6541 != VEC_length (dw_attr_node, die->die_attr))
6542 continue;
6544 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6546 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6547 if ((abbrev_a->dw_attr != die_a->dw_attr)
6548 || (value_format (abbrev_a) != value_format (die_a)))
6550 ok = false;
6551 break;
6554 if (ok)
6555 break;
6558 if (abbrev_id >= abbrev_die_table_in_use)
6560 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6562 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6563 abbrev_die_table = ggc_realloc (abbrev_die_table,
6564 sizeof (dw_die_ref) * n_alloc);
6566 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6567 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6568 abbrev_die_table_allocated = n_alloc;
6571 ++abbrev_die_table_in_use;
6572 abbrev_die_table[abbrev_id] = die;
6575 die->die_abbrev = abbrev_id;
6576 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6579 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6581 static int
6582 constant_size (long unsigned int value)
6584 int log;
6586 if (value == 0)
6587 log = 0;
6588 else
6589 log = floor_log2 (value);
6591 log = log / 8;
6592 log = 1 << (floor_log2 (log) + 1);
6594 return log;
6597 /* Return the size of a DIE as it is represented in the
6598 .debug_info section. */
6600 static unsigned long
6601 size_of_die (dw_die_ref die)
6603 unsigned long size = 0;
6604 dw_attr_ref a;
6605 unsigned ix;
6607 size += size_of_uleb128 (die->die_abbrev);
6608 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6610 switch (AT_class (a))
6612 case dw_val_class_addr:
6613 size += DWARF2_ADDR_SIZE;
6614 break;
6615 case dw_val_class_offset:
6616 size += DWARF_OFFSET_SIZE;
6617 break;
6618 case dw_val_class_loc:
6620 unsigned long lsize = size_of_locs (AT_loc (a));
6622 /* Block length. */
6623 size += constant_size (lsize);
6624 size += lsize;
6626 break;
6627 case dw_val_class_loc_list:
6628 size += DWARF_OFFSET_SIZE;
6629 break;
6630 case dw_val_class_range_list:
6631 size += DWARF_OFFSET_SIZE;
6632 break;
6633 case dw_val_class_const:
6634 size += size_of_sleb128 (AT_int (a));
6635 break;
6636 case dw_val_class_unsigned_const:
6637 size += constant_size (AT_unsigned (a));
6638 break;
6639 case dw_val_class_long_long:
6640 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6641 break;
6642 case dw_val_class_vec:
6643 size += 1 + (a->dw_attr_val.v.val_vec.length
6644 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6645 break;
6646 case dw_val_class_flag:
6647 size += 1;
6648 break;
6649 case dw_val_class_die_ref:
6650 if (AT_ref_external (a))
6651 size += DWARF2_ADDR_SIZE;
6652 else
6653 size += DWARF_OFFSET_SIZE;
6654 break;
6655 case dw_val_class_fde_ref:
6656 size += DWARF_OFFSET_SIZE;
6657 break;
6658 case dw_val_class_lbl_id:
6659 size += DWARF2_ADDR_SIZE;
6660 break;
6661 case dw_val_class_lineptr:
6662 case dw_val_class_macptr:
6663 size += DWARF_OFFSET_SIZE;
6664 break;
6665 case dw_val_class_str:
6666 if (AT_string_form (a) == DW_FORM_strp)
6667 size += DWARF_OFFSET_SIZE;
6668 else
6669 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6670 break;
6671 case dw_val_class_file:
6672 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6673 break;
6674 default:
6675 gcc_unreachable ();
6679 return size;
6682 /* Size the debugging information associated with a given DIE. Visits the
6683 DIE's children recursively. Updates the global variable next_die_offset, on
6684 each time through. Uses the current value of next_die_offset to update the
6685 die_offset field in each DIE. */
6687 static void
6688 calc_die_sizes (dw_die_ref die)
6690 dw_die_ref c;
6692 die->die_offset = next_die_offset;
6693 next_die_offset += size_of_die (die);
6695 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6697 if (die->die_child != NULL)
6698 /* Count the null byte used to terminate sibling lists. */
6699 next_die_offset += 1;
6702 /* Set the marks for a die and its children. We do this so
6703 that we know whether or not a reference needs to use FORM_ref_addr; only
6704 DIEs in the same CU will be marked. We used to clear out the offset
6705 and use that as the flag, but ran into ordering problems. */
6707 static void
6708 mark_dies (dw_die_ref die)
6710 dw_die_ref c;
6712 gcc_assert (!die->die_mark);
6714 die->die_mark = 1;
6715 FOR_EACH_CHILD (die, c, mark_dies (c));
6718 /* Clear the marks for a die and its children. */
6720 static void
6721 unmark_dies (dw_die_ref die)
6723 dw_die_ref c;
6725 gcc_assert (die->die_mark);
6727 die->die_mark = 0;
6728 FOR_EACH_CHILD (die, c, unmark_dies (c));
6731 /* Clear the marks for a die, its children and referred dies. */
6733 static void
6734 unmark_all_dies (dw_die_ref die)
6736 dw_die_ref c;
6737 dw_attr_ref a;
6738 unsigned ix;
6740 if (!die->die_mark)
6741 return;
6742 die->die_mark = 0;
6744 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6746 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6747 if (AT_class (a) == dw_val_class_die_ref)
6748 unmark_all_dies (AT_ref (a));
6751 /* Return the size of the .debug_pubnames or .debug_pubtypes table
6752 generated for the compilation unit. */
6754 static unsigned long
6755 size_of_pubnames (VEC (pubname_entry, gc) * names)
6757 unsigned long size;
6758 unsigned i;
6759 pubname_ref p;
6761 size = DWARF_PUBNAMES_HEADER_SIZE;
6762 for (i = 0; VEC_iterate (pubname_entry, names, i, p); i++)
6763 if (names != pubtype_table
6764 || p->die->die_offset != 0
6765 || !flag_eliminate_unused_debug_types)
6766 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1;
6768 size += DWARF_OFFSET_SIZE;
6769 return size;
6772 /* Return the size of the information in the .debug_aranges section. */
6774 static unsigned long
6775 size_of_aranges (void)
6777 unsigned long size;
6779 size = DWARF_ARANGES_HEADER_SIZE;
6781 /* Count the address/length pair for this compilation unit. */
6782 size += 2 * DWARF2_ADDR_SIZE;
6783 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6785 /* Count the two zero words used to terminated the address range table. */
6786 size += 2 * DWARF2_ADDR_SIZE;
6787 return size;
6790 /* Select the encoding of an attribute value. */
6792 static enum dwarf_form
6793 value_format (dw_attr_ref a)
6795 switch (a->dw_attr_val.val_class)
6797 case dw_val_class_addr:
6798 return DW_FORM_addr;
6799 case dw_val_class_range_list:
6800 case dw_val_class_offset:
6801 case dw_val_class_loc_list:
6802 switch (DWARF_OFFSET_SIZE)
6804 case 4:
6805 return DW_FORM_data4;
6806 case 8:
6807 return DW_FORM_data8;
6808 default:
6809 gcc_unreachable ();
6811 case dw_val_class_loc:
6812 switch (constant_size (size_of_locs (AT_loc (a))))
6814 case 1:
6815 return DW_FORM_block1;
6816 case 2:
6817 return DW_FORM_block2;
6818 default:
6819 gcc_unreachable ();
6821 case dw_val_class_const:
6822 return DW_FORM_sdata;
6823 case dw_val_class_unsigned_const:
6824 switch (constant_size (AT_unsigned (a)))
6826 case 1:
6827 return DW_FORM_data1;
6828 case 2:
6829 return DW_FORM_data2;
6830 case 4:
6831 return DW_FORM_data4;
6832 case 8:
6833 return DW_FORM_data8;
6834 default:
6835 gcc_unreachable ();
6837 case dw_val_class_long_long:
6838 return DW_FORM_block1;
6839 case dw_val_class_vec:
6840 return DW_FORM_block1;
6841 case dw_val_class_flag:
6842 return DW_FORM_flag;
6843 case dw_val_class_die_ref:
6844 if (AT_ref_external (a))
6845 return DW_FORM_ref_addr;
6846 else
6847 return DW_FORM_ref;
6848 case dw_val_class_fde_ref:
6849 return DW_FORM_data;
6850 case dw_val_class_lbl_id:
6851 return DW_FORM_addr;
6852 case dw_val_class_lineptr:
6853 case dw_val_class_macptr:
6854 return DW_FORM_data;
6855 case dw_val_class_str:
6856 return AT_string_form (a);
6857 case dw_val_class_file:
6858 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6860 case 1:
6861 return DW_FORM_data1;
6862 case 2:
6863 return DW_FORM_data2;
6864 case 4:
6865 return DW_FORM_data4;
6866 default:
6867 gcc_unreachable ();
6870 default:
6871 gcc_unreachable ();
6875 /* Output the encoding of an attribute value. */
6877 static void
6878 output_value_format (dw_attr_ref a)
6880 enum dwarf_form form = value_format (a);
6882 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6885 /* Output the .debug_abbrev section which defines the DIE abbreviation
6886 table. */
6888 static void
6889 output_abbrev_section (void)
6891 unsigned long abbrev_id;
6893 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6895 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6896 unsigned ix;
6897 dw_attr_ref a_attr;
6899 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6900 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6901 dwarf_tag_name (abbrev->die_tag));
6903 if (abbrev->die_child != NULL)
6904 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6905 else
6906 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6908 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6909 ix++)
6911 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6912 dwarf_attr_name (a_attr->dw_attr));
6913 output_value_format (a_attr);
6916 dw2_asm_output_data (1, 0, NULL);
6917 dw2_asm_output_data (1, 0, NULL);
6920 /* Terminate the table. */
6921 dw2_asm_output_data (1, 0, NULL);
6924 /* Output a symbol we can use to refer to this DIE from another CU. */
6926 static inline void
6927 output_die_symbol (dw_die_ref die)
6929 char *sym = die->die_symbol;
6931 if (sym == 0)
6932 return;
6934 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6935 /* We make these global, not weak; if the target doesn't support
6936 .linkonce, it doesn't support combining the sections, so debugging
6937 will break. */
6938 targetm.asm_out.globalize_label (asm_out_file, sym);
6940 ASM_OUTPUT_LABEL (asm_out_file, sym);
6943 /* Return a new location list, given the begin and end range, and the
6944 expression. gensym tells us whether to generate a new internal symbol for
6945 this location list node, which is done for the head of the list only. */
6947 static inline dw_loc_list_ref
6948 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6949 const char *section, unsigned int gensym)
6951 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6953 retlist->begin = begin;
6954 retlist->end = end;
6955 retlist->expr = expr;
6956 retlist->section = section;
6957 if (gensym)
6958 retlist->ll_symbol = gen_internal_sym ("LLST");
6960 return retlist;
6963 /* Add a location description expression to a location list. */
6965 static inline void
6966 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6967 const char *begin, const char *end,
6968 const char *section)
6970 dw_loc_list_ref *d;
6972 /* Find the end of the chain. */
6973 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6976 /* Add a new location list node to the list. */
6977 *d = new_loc_list (descr, begin, end, section, 0);
6980 static void
6981 dwarf2out_switch_text_section (void)
6983 dw_fde_ref fde;
6985 gcc_assert (cfun);
6987 fde = &fde_table[fde_table_in_use - 1];
6988 fde->dw_fde_switched_sections = true;
6989 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6990 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6991 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6992 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6993 have_multiple_function_sections = true;
6995 /* Reset the current label on switching text sections, so that we
6996 don't attempt to advance_loc4 between labels in different sections. */
6997 fde->dw_fde_current_label = NULL;
7000 /* Output the location list given to us. */
7002 static void
7003 output_loc_list (dw_loc_list_ref list_head)
7005 dw_loc_list_ref curr = list_head;
7007 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7009 /* Walk the location list, and output each range + expression. */
7010 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7012 unsigned long size;
7013 if (!have_multiple_function_sections)
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7016 "Location list begin address (%s)",
7017 list_head->ll_symbol);
7018 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7019 "Location list end address (%s)",
7020 list_head->ll_symbol);
7022 else
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7025 "Location list begin address (%s)",
7026 list_head->ll_symbol);
7027 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7028 "Location list end address (%s)",
7029 list_head->ll_symbol);
7031 size = size_of_locs (curr->expr);
7033 /* Output the block length for this list of location operations. */
7034 gcc_assert (size <= 0xffff);
7035 dw2_asm_output_data (2, size, "%s", "Location expression size");
7037 output_loc_sequence (curr->expr);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator begin (%s)",
7042 list_head->ll_symbol);
7043 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7044 "Location list terminator end (%s)",
7045 list_head->ll_symbol);
7048 /* Output the DIE and its attributes. Called recursively to generate
7049 the definitions of each child DIE. */
7051 static void
7052 output_die (dw_die_ref die)
7054 dw_attr_ref a;
7055 dw_die_ref c;
7056 unsigned long size;
7057 unsigned ix;
7059 /* If someone in another CU might refer to us, set up a symbol for
7060 them to point to. */
7061 if (die->die_symbol)
7062 output_die_symbol (die);
7064 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7065 die->die_offset, dwarf_tag_name (die->die_tag));
7067 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7069 const char *name = dwarf_attr_name (a->dw_attr);
7071 switch (AT_class (a))
7073 case dw_val_class_addr:
7074 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7075 break;
7077 case dw_val_class_offset:
7078 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7079 "%s", name);
7080 break;
7082 case dw_val_class_range_list:
7084 char *p = strchr (ranges_section_label, '\0');
7086 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7087 a->dw_attr_val.v.val_offset);
7088 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7089 debug_ranges_section, "%s", name);
7090 *p = '\0';
7092 break;
7094 case dw_val_class_loc:
7095 size = size_of_locs (AT_loc (a));
7097 /* Output the block length for this list of location operations. */
7098 dw2_asm_output_data (constant_size (size), size, "%s", name);
7100 output_loc_sequence (AT_loc (a));
7101 break;
7103 case dw_val_class_const:
7104 /* ??? It would be slightly more efficient to use a scheme like is
7105 used for unsigned constants below, but gdb 4.x does not sign
7106 extend. Gdb 5.x does sign extend. */
7107 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7108 break;
7110 case dw_val_class_unsigned_const:
7111 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7112 AT_unsigned (a), "%s", name);
7113 break;
7115 case dw_val_class_long_long:
7117 unsigned HOST_WIDE_INT first, second;
7119 dw2_asm_output_data (1,
7120 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7121 "%s", name);
7123 if (WORDS_BIG_ENDIAN)
7125 first = a->dw_attr_val.v.val_long_long.hi;
7126 second = a->dw_attr_val.v.val_long_long.low;
7128 else
7130 first = a->dw_attr_val.v.val_long_long.low;
7131 second = a->dw_attr_val.v.val_long_long.hi;
7134 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7135 first, "long long constant");
7136 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7137 second, NULL);
7139 break;
7141 case dw_val_class_vec:
7143 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7144 unsigned int len = a->dw_attr_val.v.val_vec.length;
7145 unsigned int i;
7146 unsigned char *p;
7148 dw2_asm_output_data (1, len * elt_size, "%s", name);
7149 if (elt_size > sizeof (HOST_WIDE_INT))
7151 elt_size /= 2;
7152 len *= 2;
7154 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7155 i < len;
7156 i++, p += elt_size)
7157 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7158 "fp or vector constant word %u", i);
7159 break;
7162 case dw_val_class_flag:
7163 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7164 break;
7166 case dw_val_class_loc_list:
7168 char *sym = AT_loc_list (a)->ll_symbol;
7170 gcc_assert (sym);
7171 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7172 "%s", name);
7174 break;
7176 case dw_val_class_die_ref:
7177 if (AT_ref_external (a))
7179 char *sym = AT_ref (a)->die_symbol;
7181 gcc_assert (sym);
7182 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7183 "%s", name);
7185 else
7187 gcc_assert (AT_ref (a)->die_offset);
7188 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7189 "%s", name);
7191 break;
7193 case dw_val_class_fde_ref:
7195 char l1[20];
7197 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7198 a->dw_attr_val.v.val_fde_index * 2);
7199 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7200 "%s", name);
7202 break;
7204 case dw_val_class_lbl_id:
7205 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7206 break;
7208 case dw_val_class_lineptr:
7209 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7210 debug_line_section, "%s", name);
7211 break;
7213 case dw_val_class_macptr:
7214 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7215 debug_macinfo_section, "%s", name);
7216 break;
7218 case dw_val_class_str:
7219 if (AT_string_form (a) == DW_FORM_strp)
7220 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7221 a->dw_attr_val.v.val_str->label,
7222 debug_str_section,
7223 "%s: \"%s\"", name, AT_string (a));
7224 else
7225 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7226 break;
7228 case dw_val_class_file:
7230 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7232 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7233 a->dw_attr_val.v.val_file->filename);
7234 break;
7237 default:
7238 gcc_unreachable ();
7242 FOR_EACH_CHILD (die, c, output_die (c));
7244 /* Add null byte to terminate sibling list. */
7245 if (die->die_child != NULL)
7246 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7247 die->die_offset);
7250 /* Output the compilation unit that appears at the beginning of the
7251 .debug_info section, and precedes the DIE descriptions. */
7253 static void
7254 output_compilation_unit_header (void)
7256 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7257 dw2_asm_output_data (4, 0xffffffff,
7258 "Initial length escape value indicating 64-bit DWARF extension");
7259 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7260 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7261 "Length of Compilation Unit Info");
7262 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7263 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7264 debug_abbrev_section,
7265 "Offset Into Abbrev. Section");
7266 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7269 /* Output the compilation unit DIE and its children. */
7271 static void
7272 output_comp_unit (dw_die_ref die, int output_if_empty)
7274 const char *secname;
7275 char *oldsym, *tmp;
7277 /* Unless we are outputting main CU, we may throw away empty ones. */
7278 if (!output_if_empty && die->die_child == NULL)
7279 return;
7281 /* Even if there are no children of this DIE, we must output the information
7282 about the compilation unit. Otherwise, on an empty translation unit, we
7283 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7284 will then complain when examining the file. First mark all the DIEs in
7285 this CU so we know which get local refs. */
7286 mark_dies (die);
7288 build_abbrev_table (die);
7290 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7291 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7292 calc_die_sizes (die);
7294 oldsym = die->die_symbol;
7295 if (oldsym)
7297 tmp = alloca (strlen (oldsym) + 24);
7299 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7300 secname = tmp;
7301 die->die_symbol = NULL;
7302 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7304 else
7305 switch_to_section (debug_info_section);
7307 /* Output debugging information. */
7308 output_compilation_unit_header ();
7309 output_die (die);
7311 /* Leave the marks on the main CU, so we can check them in
7312 output_pubnames. */
7313 if (oldsym)
7315 unmark_dies (die);
7316 die->die_symbol = oldsym;
7320 /* Return the DWARF2/3 pubname associated with a decl. */
7322 static const char *
7323 dwarf2_name (tree decl, int scope)
7325 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7328 /* Add a new entry to .debug_pubnames if appropriate. */
7330 static void
7331 add_pubname (tree decl, dw_die_ref die)
7333 pubname_entry e;
7335 if (! TREE_PUBLIC (decl))
7336 return;
7338 e.die = die;
7339 e.name = xstrdup (dwarf2_name (decl, 1));
7340 VEC_safe_push (pubname_entry, gc, pubname_table, &e);
7343 /* Add a new entry to .debug_pubtypes if appropriate. */
7345 static void
7346 add_pubtype (tree decl, dw_die_ref die)
7348 pubname_entry e;
7350 e.name = NULL;
7351 if ((TREE_PUBLIC (decl)
7352 || die->die_parent == comp_unit_die)
7353 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
7355 e.die = die;
7356 if (TYPE_P (decl))
7358 if (TYPE_NAME (decl))
7360 if (TREE_CODE (TYPE_NAME (decl)) == IDENTIFIER_NODE)
7361 e.name = IDENTIFIER_POINTER (TYPE_NAME (decl));
7362 else if (TREE_CODE (TYPE_NAME (decl)) == TYPE_DECL
7363 && DECL_NAME (TYPE_NAME (decl)))
7364 e.name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (decl)));
7365 else
7366 e.name = xstrdup ((const char *) get_AT_string (die, DW_AT_name));
7369 else
7370 e.name = xstrdup (dwarf2_name (decl, 1));
7372 /* If we don't have a name for the type, there's no point in adding
7373 it to the table. */
7374 if (e.name && e.name[0] != '\0')
7375 VEC_safe_push (pubname_entry, gc, pubtype_table, &e);
7379 /* Output the public names table used to speed up access to externally
7380 visible names; or the public types table used to find type definitions. */
7382 static void
7383 output_pubnames (VEC (pubname_entry, gc) * names)
7385 unsigned i;
7386 unsigned long pubnames_length = size_of_pubnames (names);
7387 pubname_ref pub;
7389 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7390 dw2_asm_output_data (4, 0xffffffff,
7391 "Initial length escape value indicating 64-bit DWARF extension");
7392 if (names == pubname_table)
7393 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7394 "Length of Public Names Info");
7395 else
7396 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7397 "Length of Public Type Names Info");
7398 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7399 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7400 debug_info_section,
7401 "Offset of Compilation Unit Info");
7402 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7403 "Compilation Unit Length");
7405 for (i = 0; VEC_iterate (pubname_entry, names, i, pub); i++)
7407 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7408 if (names == pubname_table)
7409 gcc_assert (pub->die->die_mark);
7411 if (names != pubtype_table
7412 || pub->die->die_offset != 0
7413 || !flag_eliminate_unused_debug_types)
7415 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7416 "DIE offset");
7418 dw2_asm_output_nstring (pub->name, -1, "external name");
7422 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7425 /* Add a new entry to .debug_aranges if appropriate. */
7427 static void
7428 add_arange (tree decl, dw_die_ref die)
7430 if (! DECL_SECTION_NAME (decl))
7431 return;
7433 if (arange_table_in_use == arange_table_allocated)
7435 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7436 arange_table = ggc_realloc (arange_table,
7437 (arange_table_allocated
7438 * sizeof (dw_die_ref)));
7439 memset (arange_table + arange_table_in_use, 0,
7440 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7443 arange_table[arange_table_in_use++] = die;
7446 /* Output the information that goes into the .debug_aranges table.
7447 Namely, define the beginning and ending address range of the
7448 text section generated for this compilation unit. */
7450 static void
7451 output_aranges (void)
7453 unsigned i;
7454 unsigned long aranges_length = size_of_aranges ();
7456 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7457 dw2_asm_output_data (4, 0xffffffff,
7458 "Initial length escape value indicating 64-bit DWARF extension");
7459 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7460 "Length of Address Ranges Info");
7461 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7462 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7463 debug_info_section,
7464 "Offset of Compilation Unit Info");
7465 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7466 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7468 /* We need to align to twice the pointer size here. */
7469 if (DWARF_ARANGES_PAD_SIZE)
7471 /* Pad using a 2 byte words so that padding is correct for any
7472 pointer size. */
7473 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7474 2 * DWARF2_ADDR_SIZE);
7475 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7476 dw2_asm_output_data (2, 0, NULL);
7479 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7480 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7481 text_section_label, "Length");
7482 if (flag_reorder_blocks_and_partition)
7484 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7485 "Address");
7486 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7487 cold_text_section_label, "Length");
7490 for (i = 0; i < arange_table_in_use; i++)
7492 dw_die_ref die = arange_table[i];
7494 /* We shouldn't see aranges for DIEs outside of the main CU. */
7495 gcc_assert (die->die_mark);
7497 if (die->die_tag == DW_TAG_subprogram)
7499 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7500 "Address");
7501 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7502 get_AT_low_pc (die), "Length");
7504 else
7506 /* A static variable; extract the symbol from DW_AT_location.
7507 Note that this code isn't currently hit, as we only emit
7508 aranges for functions (jason 9/23/99). */
7509 dw_attr_ref a = get_AT (die, DW_AT_location);
7510 dw_loc_descr_ref loc;
7512 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7514 loc = AT_loc (a);
7515 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7517 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7518 loc->dw_loc_oprnd1.v.val_addr, "Address");
7519 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7520 get_AT_unsigned (die, DW_AT_byte_size),
7521 "Length");
7525 /* Output the terminator words. */
7526 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7527 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7530 /* Add a new entry to .debug_ranges. Return the offset at which it
7531 was placed. */
7533 static unsigned int
7534 add_ranges (tree block)
7536 unsigned int in_use = ranges_table_in_use;
7538 if (in_use == ranges_table_allocated)
7540 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7541 ranges_table
7542 = ggc_realloc (ranges_table, (ranges_table_allocated
7543 * sizeof (struct dw_ranges_struct)));
7544 memset (ranges_table + ranges_table_in_use, 0,
7545 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7548 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7549 ranges_table_in_use = in_use + 1;
7551 return in_use * 2 * DWARF2_ADDR_SIZE;
7554 static void
7555 output_ranges (void)
7557 unsigned i;
7558 static const char *const start_fmt = "Offset 0x%x";
7559 const char *fmt = start_fmt;
7561 for (i = 0; i < ranges_table_in_use; i++)
7563 int block_num = ranges_table[i].block_num;
7565 if (block_num)
7567 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7568 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7570 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7571 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7573 /* If all code is in the text section, then the compilation
7574 unit base address defaults to DW_AT_low_pc, which is the
7575 base of the text section. */
7576 if (!have_multiple_function_sections)
7578 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7579 text_section_label,
7580 fmt, i * 2 * DWARF2_ADDR_SIZE);
7581 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7582 text_section_label, NULL);
7585 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7586 compilation unit base address to zero, which allows us to
7587 use absolute addresses, and not worry about whether the
7588 target supports cross-section arithmetic. */
7589 else
7591 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7592 fmt, i * 2 * DWARF2_ADDR_SIZE);
7593 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7596 fmt = NULL;
7598 else
7600 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7601 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7602 fmt = start_fmt;
7607 /* Data structure containing information about input files. */
7608 struct file_info
7610 const char *path; /* Complete file name. */
7611 const char *fname; /* File name part. */
7612 int length; /* Length of entire string. */
7613 struct dwarf_file_data * file_idx; /* Index in input file table. */
7614 int dir_idx; /* Index in directory table. */
7617 /* Data structure containing information about directories with source
7618 files. */
7619 struct dir_info
7621 const char *path; /* Path including directory name. */
7622 int length; /* Path length. */
7623 int prefix; /* Index of directory entry which is a prefix. */
7624 int count; /* Number of files in this directory. */
7625 int dir_idx; /* Index of directory used as base. */
7628 /* Callback function for file_info comparison. We sort by looking at
7629 the directories in the path. */
7631 static int
7632 file_info_cmp (const void *p1, const void *p2)
7634 const struct file_info *s1 = p1;
7635 const struct file_info *s2 = p2;
7636 unsigned char *cp1;
7637 unsigned char *cp2;
7639 /* Take care of file names without directories. We need to make sure that
7640 we return consistent values to qsort since some will get confused if
7641 we return the same value when identical operands are passed in opposite
7642 orders. So if neither has a directory, return 0 and otherwise return
7643 1 or -1 depending on which one has the directory. */
7644 if ((s1->path == s1->fname || s2->path == s2->fname))
7645 return (s2->path == s2->fname) - (s1->path == s1->fname);
7647 cp1 = (unsigned char *) s1->path;
7648 cp2 = (unsigned char *) s2->path;
7650 while (1)
7652 ++cp1;
7653 ++cp2;
7654 /* Reached the end of the first path? If so, handle like above. */
7655 if ((cp1 == (unsigned char *) s1->fname)
7656 || (cp2 == (unsigned char *) s2->fname))
7657 return ((cp2 == (unsigned char *) s2->fname)
7658 - (cp1 == (unsigned char *) s1->fname));
7660 /* Character of current path component the same? */
7661 else if (*cp1 != *cp2)
7662 return *cp1 - *cp2;
7666 struct file_name_acquire_data
7668 struct file_info *files;
7669 int used_files;
7670 int max_files;
7673 /* Traversal function for the hash table. */
7675 static int
7676 file_name_acquire (void ** slot, void *data)
7678 struct file_name_acquire_data *fnad = data;
7679 struct dwarf_file_data *d = *slot;
7680 struct file_info *fi;
7681 const char *f;
7683 gcc_assert (fnad->max_files >= d->emitted_number);
7685 if (! d->emitted_number)
7686 return 1;
7688 gcc_assert (fnad->max_files != fnad->used_files);
7690 fi = fnad->files + fnad->used_files++;
7692 /* Skip all leading "./". */
7693 f = d->filename;
7694 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
7695 f += 2;
7697 /* Create a new array entry. */
7698 fi->path = f;
7699 fi->length = strlen (f);
7700 fi->file_idx = d;
7702 /* Search for the file name part. */
7703 f = strrchr (f, DIR_SEPARATOR);
7704 #if defined (DIR_SEPARATOR_2)
7706 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
7708 if (g != NULL)
7710 if (f == NULL || f < g)
7711 f = g;
7714 #endif
7716 fi->fname = f == NULL ? fi->path : f + 1;
7717 return 1;
7720 /* Output the directory table and the file name table. We try to minimize
7721 the total amount of memory needed. A heuristic is used to avoid large
7722 slowdowns with many input files. */
7724 static void
7725 output_file_names (void)
7727 struct file_name_acquire_data fnad;
7728 int numfiles;
7729 struct file_info *files;
7730 struct dir_info *dirs;
7731 int *saved;
7732 int *savehere;
7733 int *backmap;
7734 int ndirs;
7735 int idx_offset;
7736 int i;
7737 int idx;
7739 if (!last_emitted_file)
7741 dw2_asm_output_data (1, 0, "End directory table");
7742 dw2_asm_output_data (1, 0, "End file name table");
7743 return;
7746 numfiles = last_emitted_file->emitted_number;
7748 /* Allocate the various arrays we need. */
7749 files = alloca (numfiles * sizeof (struct file_info));
7750 dirs = alloca (numfiles * sizeof (struct dir_info));
7752 fnad.files = files;
7753 fnad.used_files = 0;
7754 fnad.max_files = numfiles;
7755 htab_traverse (file_table, file_name_acquire, &fnad);
7756 gcc_assert (fnad.used_files == fnad.max_files);
7758 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7760 /* Find all the different directories used. */
7761 dirs[0].path = files[0].path;
7762 dirs[0].length = files[0].fname - files[0].path;
7763 dirs[0].prefix = -1;
7764 dirs[0].count = 1;
7765 dirs[0].dir_idx = 0;
7766 files[0].dir_idx = 0;
7767 ndirs = 1;
7769 for (i = 1; i < numfiles; i++)
7770 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7771 && memcmp (dirs[ndirs - 1].path, files[i].path,
7772 dirs[ndirs - 1].length) == 0)
7774 /* Same directory as last entry. */
7775 files[i].dir_idx = ndirs - 1;
7776 ++dirs[ndirs - 1].count;
7778 else
7780 int j;
7782 /* This is a new directory. */
7783 dirs[ndirs].path = files[i].path;
7784 dirs[ndirs].length = files[i].fname - files[i].path;
7785 dirs[ndirs].count = 1;
7786 dirs[ndirs].dir_idx = ndirs;
7787 files[i].dir_idx = ndirs;
7789 /* Search for a prefix. */
7790 dirs[ndirs].prefix = -1;
7791 for (j = 0; j < ndirs; j++)
7792 if (dirs[j].length < dirs[ndirs].length
7793 && dirs[j].length > 1
7794 && (dirs[ndirs].prefix == -1
7795 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7796 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7797 dirs[ndirs].prefix = j;
7799 ++ndirs;
7802 /* Now to the actual work. We have to find a subset of the directories which
7803 allow expressing the file name using references to the directory table
7804 with the least amount of characters. We do not do an exhaustive search
7805 where we would have to check out every combination of every single
7806 possible prefix. Instead we use a heuristic which provides nearly optimal
7807 results in most cases and never is much off. */
7808 saved = alloca (ndirs * sizeof (int));
7809 savehere = alloca (ndirs * sizeof (int));
7811 memset (saved, '\0', ndirs * sizeof (saved[0]));
7812 for (i = 0; i < ndirs; i++)
7814 int j;
7815 int total;
7817 /* We can always save some space for the current directory. But this
7818 does not mean it will be enough to justify adding the directory. */
7819 savehere[i] = dirs[i].length;
7820 total = (savehere[i] - saved[i]) * dirs[i].count;
7822 for (j = i + 1; j < ndirs; j++)
7824 savehere[j] = 0;
7825 if (saved[j] < dirs[i].length)
7827 /* Determine whether the dirs[i] path is a prefix of the
7828 dirs[j] path. */
7829 int k;
7831 k = dirs[j].prefix;
7832 while (k != -1 && k != (int) i)
7833 k = dirs[k].prefix;
7835 if (k == (int) i)
7837 /* Yes it is. We can possibly save some memory by
7838 writing the filenames in dirs[j] relative to
7839 dirs[i]. */
7840 savehere[j] = dirs[i].length;
7841 total += (savehere[j] - saved[j]) * dirs[j].count;
7846 /* Check whether we can save enough to justify adding the dirs[i]
7847 directory. */
7848 if (total > dirs[i].length + 1)
7850 /* It's worthwhile adding. */
7851 for (j = i; j < ndirs; j++)
7852 if (savehere[j] > 0)
7854 /* Remember how much we saved for this directory so far. */
7855 saved[j] = savehere[j];
7857 /* Remember the prefix directory. */
7858 dirs[j].dir_idx = i;
7863 /* Emit the directory name table. */
7864 idx = 1;
7865 idx_offset = dirs[0].length > 0 ? 1 : 0;
7866 for (i = 1 - idx_offset; i < ndirs; i++)
7867 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7868 "Directory Entry: 0x%x", i + idx_offset);
7870 dw2_asm_output_data (1, 0, "End directory table");
7872 /* We have to emit them in the order of emitted_number since that's
7873 used in the debug info generation. To do this efficiently we
7874 generate a back-mapping of the indices first. */
7875 backmap = alloca (numfiles * sizeof (int));
7876 for (i = 0; i < numfiles; i++)
7877 backmap[files[i].file_idx->emitted_number - 1] = i;
7879 /* Now write all the file names. */
7880 for (i = 0; i < numfiles; i++)
7882 int file_idx = backmap[i];
7883 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7885 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7886 "File Entry: 0x%x", (unsigned) i + 1);
7888 /* Include directory index. */
7889 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7891 /* Modification time. */
7892 dw2_asm_output_data_uleb128 (0, NULL);
7894 /* File length in bytes. */
7895 dw2_asm_output_data_uleb128 (0, NULL);
7898 dw2_asm_output_data (1, 0, "End file name table");
7902 /* Output the source line number correspondence information. This
7903 information goes into the .debug_line section. */
7905 static void
7906 output_line_info (void)
7908 char l1[20], l2[20], p1[20], p2[20];
7909 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7910 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7911 unsigned opc;
7912 unsigned n_op_args;
7913 unsigned long lt_index;
7914 unsigned long current_line;
7915 long line_offset;
7916 long line_delta;
7917 unsigned long current_file;
7918 unsigned long function;
7920 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7921 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7922 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7923 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7925 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7926 dw2_asm_output_data (4, 0xffffffff,
7927 "Initial length escape value indicating 64-bit DWARF extension");
7928 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7929 "Length of Source Line Info");
7930 ASM_OUTPUT_LABEL (asm_out_file, l1);
7932 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7933 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7934 ASM_OUTPUT_LABEL (asm_out_file, p1);
7936 /* Define the architecture-dependent minimum instruction length (in
7937 bytes). In this implementation of DWARF, this field is used for
7938 information purposes only. Since GCC generates assembly language,
7939 we have no a priori knowledge of how many instruction bytes are
7940 generated for each source line, and therefore can use only the
7941 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7942 commands. Accordingly, we fix this as `1', which is "correct
7943 enough" for all architectures, and don't let the target override. */
7944 dw2_asm_output_data (1, 1,
7945 "Minimum Instruction Length");
7947 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7948 "Default is_stmt_start flag");
7949 dw2_asm_output_data (1, DWARF_LINE_BASE,
7950 "Line Base Value (Special Opcodes)");
7951 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7952 "Line Range Value (Special Opcodes)");
7953 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7954 "Special Opcode Base");
7956 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7958 switch (opc)
7960 case DW_LNS_advance_pc:
7961 case DW_LNS_advance_line:
7962 case DW_LNS_set_file:
7963 case DW_LNS_set_column:
7964 case DW_LNS_fixed_advance_pc:
7965 n_op_args = 1;
7966 break;
7967 default:
7968 n_op_args = 0;
7969 break;
7972 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7973 opc, n_op_args);
7976 /* Write out the information about the files we use. */
7977 output_file_names ();
7978 ASM_OUTPUT_LABEL (asm_out_file, p2);
7980 /* We used to set the address register to the first location in the text
7981 section here, but that didn't accomplish anything since we already
7982 have a line note for the opening brace of the first function. */
7984 /* Generate the line number to PC correspondence table, encoded as
7985 a series of state machine operations. */
7986 current_file = 1;
7987 current_line = 1;
7989 if (cfun && in_cold_section_p)
7990 strcpy (prev_line_label, cfun->cold_section_label);
7991 else
7992 strcpy (prev_line_label, text_section_label);
7993 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7995 dw_line_info_ref line_info = &line_info_table[lt_index];
7997 #if 0
7998 /* Disable this optimization for now; GDB wants to see two line notes
7999 at the beginning of a function so it can find the end of the
8000 prologue. */
8002 /* Don't emit anything for redundant notes. Just updating the
8003 address doesn't accomplish anything, because we already assume
8004 that anything after the last address is this line. */
8005 if (line_info->dw_line_num == current_line
8006 && line_info->dw_file_num == current_file)
8007 continue;
8008 #endif
8010 /* Emit debug info for the address of the current line.
8012 Unfortunately, we have little choice here currently, and must always
8013 use the most general form. GCC does not know the address delta
8014 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
8015 attributes which will give an upper bound on the address range. We
8016 could perhaps use length attributes to determine when it is safe to
8017 use DW_LNS_fixed_advance_pc. */
8019 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
8020 if (0)
8022 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
8023 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8024 "DW_LNS_fixed_advance_pc");
8025 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8027 else
8029 /* This can handle any delta. This takes
8030 4+DWARF2_ADDR_SIZE bytes. */
8031 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8032 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8033 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8034 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8037 strcpy (prev_line_label, line_label);
8039 /* Emit debug info for the source file of the current line, if
8040 different from the previous line. */
8041 if (line_info->dw_file_num != current_file)
8043 current_file = line_info->dw_file_num;
8044 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8045 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8048 /* Emit debug info for the current line number, choosing the encoding
8049 that uses the least amount of space. */
8050 if (line_info->dw_line_num != current_line)
8052 line_offset = line_info->dw_line_num - current_line;
8053 line_delta = line_offset - DWARF_LINE_BASE;
8054 current_line = line_info->dw_line_num;
8055 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8056 /* This can handle deltas from -10 to 234, using the current
8057 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8058 takes 1 byte. */
8059 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8060 "line %lu", current_line);
8061 else
8063 /* This can handle any delta. This takes at least 4 bytes,
8064 depending on the value being encoded. */
8065 dw2_asm_output_data (1, DW_LNS_advance_line,
8066 "advance to line %lu", current_line);
8067 dw2_asm_output_data_sleb128 (line_offset, NULL);
8068 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8071 else
8072 /* We still need to start a new row, so output a copy insn. */
8073 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8076 /* Emit debug info for the address of the end of the function. */
8077 if (0)
8079 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8080 "DW_LNS_fixed_advance_pc");
8081 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8083 else
8085 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8086 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8087 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8088 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8091 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8092 dw2_asm_output_data_uleb128 (1, NULL);
8093 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8095 function = 0;
8096 current_file = 1;
8097 current_line = 1;
8098 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8100 dw_separate_line_info_ref line_info
8101 = &separate_line_info_table[lt_index];
8103 #if 0
8104 /* Don't emit anything for redundant notes. */
8105 if (line_info->dw_line_num == current_line
8106 && line_info->dw_file_num == current_file
8107 && line_info->function == function)
8108 goto cont;
8109 #endif
8111 /* Emit debug info for the address of the current line. If this is
8112 a new function, or the first line of a function, then we need
8113 to handle it differently. */
8114 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8115 lt_index);
8116 if (function != line_info->function)
8118 function = line_info->function;
8120 /* Set the address register to the first line in the function. */
8121 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8122 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8123 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8124 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8126 else
8128 /* ??? See the DW_LNS_advance_pc comment above. */
8129 if (0)
8131 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8132 "DW_LNS_fixed_advance_pc");
8133 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8135 else
8137 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8138 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8139 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8140 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8144 strcpy (prev_line_label, line_label);
8146 /* Emit debug info for the source file of the current line, if
8147 different from the previous line. */
8148 if (line_info->dw_file_num != current_file)
8150 current_file = line_info->dw_file_num;
8151 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8152 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8155 /* Emit debug info for the current line number, choosing the encoding
8156 that uses the least amount of space. */
8157 if (line_info->dw_line_num != current_line)
8159 line_offset = line_info->dw_line_num - current_line;
8160 line_delta = line_offset - DWARF_LINE_BASE;
8161 current_line = line_info->dw_line_num;
8162 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8163 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8164 "line %lu", current_line);
8165 else
8167 dw2_asm_output_data (1, DW_LNS_advance_line,
8168 "advance to line %lu", current_line);
8169 dw2_asm_output_data_sleb128 (line_offset, NULL);
8170 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8173 else
8174 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8176 #if 0
8177 cont:
8178 #endif
8180 lt_index++;
8182 /* If we're done with a function, end its sequence. */
8183 if (lt_index == separate_line_info_table_in_use
8184 || separate_line_info_table[lt_index].function != function)
8186 current_file = 1;
8187 current_line = 1;
8189 /* Emit debug info for the address of the end of the function. */
8190 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8191 if (0)
8193 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8194 "DW_LNS_fixed_advance_pc");
8195 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8197 else
8199 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8200 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8201 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8202 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8205 /* Output the marker for the end of this sequence. */
8206 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8207 dw2_asm_output_data_uleb128 (1, NULL);
8208 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8212 /* Output the marker for the end of the line number info. */
8213 ASM_OUTPUT_LABEL (asm_out_file, l2);
8216 /* Given a pointer to a tree node for some base type, return a pointer to
8217 a DIE that describes the given type.
8219 This routine must only be called for GCC type nodes that correspond to
8220 Dwarf base (fundamental) types. */
8222 static dw_die_ref
8223 base_type_die (tree type)
8225 dw_die_ref base_type_result;
8226 enum dwarf_type encoding;
8228 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8229 return 0;
8231 switch (TREE_CODE (type))
8233 case INTEGER_TYPE:
8234 if (TYPE_STRING_FLAG (type))
8236 if (TYPE_UNSIGNED (type))
8237 encoding = DW_ATE_unsigned_char;
8238 else
8239 encoding = DW_ATE_signed_char;
8241 else if (TYPE_UNSIGNED (type))
8242 encoding = DW_ATE_unsigned;
8243 else
8244 encoding = DW_ATE_signed;
8245 break;
8247 case REAL_TYPE:
8248 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8249 encoding = DW_ATE_decimal_float;
8250 else
8251 encoding = DW_ATE_float;
8252 break;
8254 /* Dwarf2 doesn't know anything about complex ints, so use
8255 a user defined type for it. */
8256 case COMPLEX_TYPE:
8257 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8258 encoding = DW_ATE_complex_float;
8259 else
8260 encoding = DW_ATE_lo_user;
8261 break;
8263 case BOOLEAN_TYPE:
8264 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8265 encoding = DW_ATE_boolean;
8266 break;
8268 default:
8269 /* No other TREE_CODEs are Dwarf fundamental types. */
8270 gcc_unreachable ();
8273 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8275 /* This probably indicates a bug. */
8276 if (! TYPE_NAME (type))
8277 add_name_attribute (base_type_result, "__unknown__");
8279 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8280 int_size_in_bytes (type));
8281 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8283 return base_type_result;
8286 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8287 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8288 a given type is generally the same as the given type, except that if the
8289 given type is a pointer or reference type, then the root type of the given
8290 type is the root type of the "basis" type for the pointer or reference
8291 type. (This definition of the "root" type is recursive.) Also, the root
8292 type of a `const' qualified type or a `volatile' qualified type is the
8293 root type of the given type without the qualifiers. */
8295 static tree
8296 root_type (tree type)
8298 if (TREE_CODE (type) == ERROR_MARK)
8299 return error_mark_node;
8301 switch (TREE_CODE (type))
8303 case ERROR_MARK:
8304 return error_mark_node;
8306 case POINTER_TYPE:
8307 case REFERENCE_TYPE:
8308 return type_main_variant (root_type (TREE_TYPE (type)));
8310 default:
8311 return type_main_variant (type);
8315 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8316 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8318 static inline int
8319 is_base_type (tree type)
8321 switch (TREE_CODE (type))
8323 case ERROR_MARK:
8324 case VOID_TYPE:
8325 case INTEGER_TYPE:
8326 case REAL_TYPE:
8327 case COMPLEX_TYPE:
8328 case BOOLEAN_TYPE:
8329 return 1;
8331 case ARRAY_TYPE:
8332 case RECORD_TYPE:
8333 case UNION_TYPE:
8334 case QUAL_UNION_TYPE:
8335 case ENUMERAL_TYPE:
8336 case FUNCTION_TYPE:
8337 case METHOD_TYPE:
8338 case POINTER_TYPE:
8339 case REFERENCE_TYPE:
8340 case OFFSET_TYPE:
8341 case LANG_TYPE:
8342 case VECTOR_TYPE:
8343 return 0;
8345 default:
8346 gcc_unreachable ();
8349 return 0;
8352 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8353 node, return the size in bits for the type if it is a constant, or else
8354 return the alignment for the type if the type's size is not constant, or
8355 else return BITS_PER_WORD if the type actually turns out to be an
8356 ERROR_MARK node. */
8358 static inline unsigned HOST_WIDE_INT
8359 simple_type_size_in_bits (tree type)
8361 if (TREE_CODE (type) == ERROR_MARK)
8362 return BITS_PER_WORD;
8363 else if (TYPE_SIZE (type) == NULL_TREE)
8364 return 0;
8365 else if (host_integerp (TYPE_SIZE (type), 1))
8366 return tree_low_cst (TYPE_SIZE (type), 1);
8367 else
8368 return TYPE_ALIGN (type);
8371 /* Return true if the debug information for the given type should be
8372 emitted as a subrange type. */
8374 static inline bool
8375 is_subrange_type (tree type)
8377 tree subtype = TREE_TYPE (type);
8379 /* Subrange types are identified by the fact that they are integer
8380 types, and that they have a subtype which is either an integer type
8381 or an enumeral type. */
8383 if (TREE_CODE (type) != INTEGER_TYPE
8384 || subtype == NULL_TREE)
8385 return false;
8387 if (TREE_CODE (subtype) != INTEGER_TYPE
8388 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8389 return false;
8391 if (TREE_CODE (type) == TREE_CODE (subtype)
8392 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8393 && TYPE_MIN_VALUE (type) != NULL
8394 && TYPE_MIN_VALUE (subtype) != NULL
8395 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8396 && TYPE_MAX_VALUE (type) != NULL
8397 && TYPE_MAX_VALUE (subtype) != NULL
8398 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8400 /* The type and its subtype have the same representation. If in
8401 addition the two types also have the same name, then the given
8402 type is not a subrange type, but rather a plain base type. */
8403 /* FIXME: brobecker/2004-03-22:
8404 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8405 therefore be sufficient to check the TYPE_SIZE node pointers
8406 rather than checking the actual size. Unfortunately, we have
8407 found some cases, such as in the Ada "integer" type, where
8408 this is not the case. Until this problem is solved, we need to
8409 keep checking the actual size. */
8410 tree type_name = TYPE_NAME (type);
8411 tree subtype_name = TYPE_NAME (subtype);
8413 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8414 type_name = DECL_NAME (type_name);
8416 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8417 subtype_name = DECL_NAME (subtype_name);
8419 if (type_name == subtype_name)
8420 return false;
8423 return true;
8426 /* Given a pointer to a tree node for a subrange type, return a pointer
8427 to a DIE that describes the given type. */
8429 static dw_die_ref
8430 subrange_type_die (tree type, dw_die_ref context_die)
8432 dw_die_ref subrange_die;
8433 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8435 if (context_die == NULL)
8436 context_die = comp_unit_die;
8438 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8440 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8442 /* The size of the subrange type and its base type do not match,
8443 so we need to generate a size attribute for the subrange type. */
8444 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8447 if (TYPE_MIN_VALUE (type) != NULL)
8448 add_bound_info (subrange_die, DW_AT_lower_bound,
8449 TYPE_MIN_VALUE (type));
8450 if (TYPE_MAX_VALUE (type) != NULL)
8451 add_bound_info (subrange_die, DW_AT_upper_bound,
8452 TYPE_MAX_VALUE (type));
8454 return subrange_die;
8457 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8458 entry that chains various modifiers in front of the given type. */
8460 static dw_die_ref
8461 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8462 dw_die_ref context_die)
8464 enum tree_code code = TREE_CODE (type);
8465 dw_die_ref mod_type_die;
8466 dw_die_ref sub_die = NULL;
8467 tree item_type = NULL;
8468 tree qualified_type;
8469 tree name;
8471 if (code == ERROR_MARK)
8472 return NULL;
8474 /* See if we already have the appropriately qualified variant of
8475 this type. */
8476 qualified_type
8477 = get_qualified_type (type,
8478 ((is_const_type ? TYPE_QUAL_CONST : 0)
8479 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8481 /* If we do, then we can just use its DIE, if it exists. */
8482 if (qualified_type)
8484 mod_type_die = lookup_type_die (qualified_type);
8485 if (mod_type_die)
8486 return mod_type_die;
8489 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8491 /* Handle C typedef types. */
8492 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8494 tree dtype = TREE_TYPE (name);
8496 if (qualified_type == dtype)
8498 /* For a named type, use the typedef. */
8499 gen_type_die (qualified_type, context_die);
8500 return lookup_type_die (qualified_type);
8502 else if (DECL_ORIGINAL_TYPE (name)
8503 && (is_const_type < TYPE_READONLY (dtype)
8504 || is_volatile_type < TYPE_VOLATILE (dtype)))
8505 /* cv-unqualified version of named type. Just use the unnamed
8506 type to which it refers. */
8507 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8508 is_const_type, is_volatile_type,
8509 context_die);
8510 /* Else cv-qualified version of named type; fall through. */
8513 if (is_const_type)
8515 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8516 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8518 else if (is_volatile_type)
8520 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8521 sub_die = modified_type_die (type, 0, 0, context_die);
8523 else if (code == POINTER_TYPE)
8525 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8526 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8527 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8528 item_type = TREE_TYPE (type);
8530 else if (code == REFERENCE_TYPE)
8532 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8533 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8534 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8535 item_type = TREE_TYPE (type);
8537 else if (is_subrange_type (type))
8539 mod_type_die = subrange_type_die (type, context_die);
8540 item_type = TREE_TYPE (type);
8542 else if (is_base_type (type))
8543 mod_type_die = base_type_die (type);
8544 else
8546 gen_type_die (type, context_die);
8548 /* We have to get the type_main_variant here (and pass that to the
8549 `lookup_type_die' routine) because the ..._TYPE node we have
8550 might simply be a *copy* of some original type node (where the
8551 copy was created to help us keep track of typedef names) and
8552 that copy might have a different TYPE_UID from the original
8553 ..._TYPE node. */
8554 if (TREE_CODE (type) != VECTOR_TYPE)
8555 return lookup_type_die (type_main_variant (type));
8556 else
8557 /* Vectors have the debugging information in the type,
8558 not the main variant. */
8559 return lookup_type_die (type);
8562 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8563 don't output a DW_TAG_typedef, since there isn't one in the
8564 user's program; just attach a DW_AT_name to the type. */
8565 if (name
8566 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8568 if (TREE_CODE (name) == TYPE_DECL)
8569 /* Could just call add_name_and_src_coords_attributes here,
8570 but since this is a builtin type it doesn't have any
8571 useful source coordinates anyway. */
8572 name = DECL_NAME (name);
8573 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8576 if (qualified_type)
8577 equate_type_number_to_die (qualified_type, mod_type_die);
8579 if (item_type)
8580 /* We must do this after the equate_type_number_to_die call, in case
8581 this is a recursive type. This ensures that the modified_type_die
8582 recursion will terminate even if the type is recursive. Recursive
8583 types are possible in Ada. */
8584 sub_die = modified_type_die (item_type,
8585 TYPE_READONLY (item_type),
8586 TYPE_VOLATILE (item_type),
8587 context_die);
8589 if (sub_die != NULL)
8590 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8592 return mod_type_die;
8595 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8596 an enumerated type. */
8598 static inline int
8599 type_is_enum (tree type)
8601 return TREE_CODE (type) == ENUMERAL_TYPE;
8604 /* Return the DBX register number described by a given RTL node. */
8606 static unsigned int
8607 dbx_reg_number (rtx rtl)
8609 unsigned regno = REGNO (rtl);
8611 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8613 #ifdef LEAF_REG_REMAP
8615 int leaf_reg;
8617 leaf_reg = LEAF_REG_REMAP (regno);
8618 if (leaf_reg != -1)
8619 regno = (unsigned) leaf_reg;
8621 #endif
8623 return DBX_REGISTER_NUMBER (regno);
8626 /* Optionally add a DW_OP_piece term to a location description expression.
8627 DW_OP_piece is only added if the location description expression already
8628 doesn't end with DW_OP_piece. */
8630 static void
8631 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8633 dw_loc_descr_ref loc;
8635 if (*list_head != NULL)
8637 /* Find the end of the chain. */
8638 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8641 if (loc->dw_loc_opc != DW_OP_piece)
8642 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8646 /* Return a location descriptor that designates a machine register or
8647 zero if there is none. */
8649 static dw_loc_descr_ref
8650 reg_loc_descriptor (rtx rtl)
8652 rtx regs;
8654 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8655 return 0;
8657 regs = targetm.dwarf_register_span (rtl);
8659 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8660 return multiple_reg_loc_descriptor (rtl, regs);
8661 else
8662 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8665 /* Return a location descriptor that designates a machine register for
8666 a given hard register number. */
8668 static dw_loc_descr_ref
8669 one_reg_loc_descriptor (unsigned int regno)
8671 if (regno <= 31)
8672 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8673 else
8674 return new_loc_descr (DW_OP_regx, regno, 0);
8677 /* Given an RTL of a register, return a location descriptor that
8678 designates a value that spans more than one register. */
8680 static dw_loc_descr_ref
8681 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8683 int nregs, size, i;
8684 unsigned reg;
8685 dw_loc_descr_ref loc_result = NULL;
8687 reg = REGNO (rtl);
8688 #ifdef LEAF_REG_REMAP
8690 int leaf_reg;
8692 leaf_reg = LEAF_REG_REMAP (reg);
8693 if (leaf_reg != -1)
8694 reg = (unsigned) leaf_reg;
8696 #endif
8697 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8698 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8700 /* Simple, contiguous registers. */
8701 if (regs == NULL_RTX)
8703 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8705 loc_result = NULL;
8706 while (nregs--)
8708 dw_loc_descr_ref t;
8710 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8711 add_loc_descr (&loc_result, t);
8712 add_loc_descr_op_piece (&loc_result, size);
8713 ++reg;
8715 return loc_result;
8718 /* Now onto stupid register sets in non contiguous locations. */
8720 gcc_assert (GET_CODE (regs) == PARALLEL);
8722 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8723 loc_result = NULL;
8725 for (i = 0; i < XVECLEN (regs, 0); ++i)
8727 dw_loc_descr_ref t;
8729 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8730 add_loc_descr (&loc_result, t);
8731 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8732 add_loc_descr_op_piece (&loc_result, size);
8734 return loc_result;
8737 /* Return a location descriptor that designates a constant. */
8739 static dw_loc_descr_ref
8740 int_loc_descriptor (HOST_WIDE_INT i)
8742 enum dwarf_location_atom op;
8744 /* Pick the smallest representation of a constant, rather than just
8745 defaulting to the LEB encoding. */
8746 if (i >= 0)
8748 if (i <= 31)
8749 op = DW_OP_lit0 + i;
8750 else if (i <= 0xff)
8751 op = DW_OP_const1u;
8752 else if (i <= 0xffff)
8753 op = DW_OP_const2u;
8754 else if (HOST_BITS_PER_WIDE_INT == 32
8755 || i <= 0xffffffff)
8756 op = DW_OP_const4u;
8757 else
8758 op = DW_OP_constu;
8760 else
8762 if (i >= -0x80)
8763 op = DW_OP_const1s;
8764 else if (i >= -0x8000)
8765 op = DW_OP_const2s;
8766 else if (HOST_BITS_PER_WIDE_INT == 32
8767 || i >= -0x80000000)
8768 op = DW_OP_const4s;
8769 else
8770 op = DW_OP_consts;
8773 return new_loc_descr (op, i, 0);
8776 /* Return a location descriptor that designates a base+offset location. */
8778 static dw_loc_descr_ref
8779 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8781 unsigned int regno;
8783 /* We only use "frame base" when we're sure we're talking about the
8784 post-prologue local stack frame. We do this by *not* running
8785 register elimination until this point, and recognizing the special
8786 argument pointer and soft frame pointer rtx's. */
8787 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8789 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8791 if (elim != reg)
8793 if (GET_CODE (elim) == PLUS)
8795 offset += INTVAL (XEXP (elim, 1));
8796 elim = XEXP (elim, 0);
8798 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8799 : stack_pointer_rtx));
8800 offset += frame_pointer_fb_offset;
8802 return new_loc_descr (DW_OP_fbreg, offset, 0);
8806 regno = dbx_reg_number (reg);
8807 if (regno <= 31)
8808 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8809 else
8810 return new_loc_descr (DW_OP_bregx, regno, offset);
8813 /* Return true if this RTL expression describes a base+offset calculation. */
8815 static inline int
8816 is_based_loc (rtx rtl)
8818 return (GET_CODE (rtl) == PLUS
8819 && ((REG_P (XEXP (rtl, 0))
8820 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8821 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8824 /* The following routine converts the RTL for a variable or parameter
8825 (resident in memory) into an equivalent Dwarf representation of a
8826 mechanism for getting the address of that same variable onto the top of a
8827 hypothetical "address evaluation" stack.
8829 When creating memory location descriptors, we are effectively transforming
8830 the RTL for a memory-resident object into its Dwarf postfix expression
8831 equivalent. This routine recursively descends an RTL tree, turning
8832 it into Dwarf postfix code as it goes.
8834 MODE is the mode of the memory reference, needed to handle some
8835 autoincrement addressing modes.
8837 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8838 location list for RTL.
8840 Return 0 if we can't represent the location. */
8842 static dw_loc_descr_ref
8843 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8845 dw_loc_descr_ref mem_loc_result = NULL;
8846 enum dwarf_location_atom op;
8848 /* Note that for a dynamically sized array, the location we will generate a
8849 description of here will be the lowest numbered location which is
8850 actually within the array. That's *not* necessarily the same as the
8851 zeroth element of the array. */
8853 rtl = targetm.delegitimize_address (rtl);
8855 switch (GET_CODE (rtl))
8857 case POST_INC:
8858 case POST_DEC:
8859 case POST_MODIFY:
8860 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8861 just fall into the SUBREG code. */
8863 /* ... fall through ... */
8865 case SUBREG:
8866 /* The case of a subreg may arise when we have a local (register)
8867 variable or a formal (register) parameter which doesn't quite fill
8868 up an entire register. For now, just assume that it is
8869 legitimate to make the Dwarf info refer to the whole register which
8870 contains the given subreg. */
8871 rtl = XEXP (rtl, 0);
8873 /* ... fall through ... */
8875 case REG:
8876 /* Whenever a register number forms a part of the description of the
8877 method for calculating the (dynamic) address of a memory resident
8878 object, DWARF rules require the register number be referred to as
8879 a "base register". This distinction is not based in any way upon
8880 what category of register the hardware believes the given register
8881 belongs to. This is strictly DWARF terminology we're dealing with
8882 here. Note that in cases where the location of a memory-resident
8883 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8884 OP_CONST (0)) the actual DWARF location descriptor that we generate
8885 may just be OP_BASEREG (basereg). This may look deceptively like
8886 the object in question was allocated to a register (rather than in
8887 memory) so DWARF consumers need to be aware of the subtle
8888 distinction between OP_REG and OP_BASEREG. */
8889 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8890 mem_loc_result = based_loc_descr (rtl, 0);
8891 break;
8893 case MEM:
8894 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8895 if (mem_loc_result != 0)
8896 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8897 break;
8899 case LO_SUM:
8900 rtl = XEXP (rtl, 1);
8902 /* ... fall through ... */
8904 case LABEL_REF:
8905 /* Some ports can transform a symbol ref into a label ref, because
8906 the symbol ref is too far away and has to be dumped into a constant
8907 pool. */
8908 case CONST:
8909 case SYMBOL_REF:
8910 /* Alternatively, the symbol in the constant pool might be referenced
8911 by a different symbol. */
8912 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8914 bool marked;
8915 rtx tmp = get_pool_constant_mark (rtl, &marked);
8917 if (GET_CODE (tmp) == SYMBOL_REF)
8919 rtl = tmp;
8920 if (CONSTANT_POOL_ADDRESS_P (tmp))
8921 get_pool_constant_mark (tmp, &marked);
8922 else
8923 marked = true;
8926 /* If all references to this pool constant were optimized away,
8927 it was not output and thus we can't represent it.
8928 FIXME: might try to use DW_OP_const_value here, though
8929 DW_OP_piece complicates it. */
8930 if (!marked)
8931 return 0;
8934 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8935 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8936 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8937 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8938 break;
8940 case PRE_MODIFY:
8941 /* Extract the PLUS expression nested inside and fall into
8942 PLUS code below. */
8943 rtl = XEXP (rtl, 1);
8944 goto plus;
8946 case PRE_INC:
8947 case PRE_DEC:
8948 /* Turn these into a PLUS expression and fall into the PLUS code
8949 below. */
8950 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8951 GEN_INT (GET_CODE (rtl) == PRE_INC
8952 ? GET_MODE_UNIT_SIZE (mode)
8953 : -GET_MODE_UNIT_SIZE (mode)));
8955 /* ... fall through ... */
8957 case PLUS:
8958 plus:
8959 if (is_based_loc (rtl))
8960 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8961 INTVAL (XEXP (rtl, 1)));
8962 else
8964 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8965 if (mem_loc_result == 0)
8966 break;
8968 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8969 && INTVAL (XEXP (rtl, 1)) >= 0)
8970 add_loc_descr (&mem_loc_result,
8971 new_loc_descr (DW_OP_plus_uconst,
8972 INTVAL (XEXP (rtl, 1)), 0));
8973 else
8975 add_loc_descr (&mem_loc_result,
8976 mem_loc_descriptor (XEXP (rtl, 1), mode));
8977 add_loc_descr (&mem_loc_result,
8978 new_loc_descr (DW_OP_plus, 0, 0));
8981 break;
8983 /* If a pseudo-reg is optimized away, it is possible for it to
8984 be replaced with a MEM containing a multiply or shift. */
8985 case MULT:
8986 op = DW_OP_mul;
8987 goto do_binop;
8989 case ASHIFT:
8990 op = DW_OP_shl;
8991 goto do_binop;
8993 case ASHIFTRT:
8994 op = DW_OP_shra;
8995 goto do_binop;
8997 case LSHIFTRT:
8998 op = DW_OP_shr;
8999 goto do_binop;
9001 do_binop:
9003 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
9004 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
9006 if (op0 == 0 || op1 == 0)
9007 break;
9009 mem_loc_result = op0;
9010 add_loc_descr (&mem_loc_result, op1);
9011 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
9012 break;
9015 case CONST_INT:
9016 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
9017 break;
9019 default:
9020 gcc_unreachable ();
9023 return mem_loc_result;
9026 /* Return a descriptor that describes the concatenation of two locations.
9027 This is typically a complex variable. */
9029 static dw_loc_descr_ref
9030 concat_loc_descriptor (rtx x0, rtx x1)
9032 dw_loc_descr_ref cc_loc_result = NULL;
9033 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
9034 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
9036 if (x0_ref == 0 || x1_ref == 0)
9037 return 0;
9039 cc_loc_result = x0_ref;
9040 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
9042 add_loc_descr (&cc_loc_result, x1_ref);
9043 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
9045 return cc_loc_result;
9048 /* Output a proper Dwarf location descriptor for a variable or parameter
9049 which is either allocated in a register or in a memory location. For a
9050 register, we just generate an OP_REG and the register number. For a
9051 memory location we provide a Dwarf postfix expression describing how to
9052 generate the (dynamic) address of the object onto the address stack.
9054 If we don't know how to describe it, return 0. */
9056 static dw_loc_descr_ref
9057 loc_descriptor (rtx rtl)
9059 dw_loc_descr_ref loc_result = NULL;
9061 switch (GET_CODE (rtl))
9063 case SUBREG:
9064 /* The case of a subreg may arise when we have a local (register)
9065 variable or a formal (register) parameter which doesn't quite fill
9066 up an entire register. For now, just assume that it is
9067 legitimate to make the Dwarf info refer to the whole register which
9068 contains the given subreg. */
9069 rtl = SUBREG_REG (rtl);
9071 /* ... fall through ... */
9073 case REG:
9074 loc_result = reg_loc_descriptor (rtl);
9075 break;
9077 case MEM:
9078 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9079 break;
9081 case CONCAT:
9082 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9083 break;
9085 case VAR_LOCATION:
9086 /* Single part. */
9087 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9089 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9090 break;
9093 rtl = XEXP (rtl, 1);
9094 /* FALLTHRU */
9096 case PARALLEL:
9098 rtvec par_elems = XVEC (rtl, 0);
9099 int num_elem = GET_NUM_ELEM (par_elems);
9100 enum machine_mode mode;
9101 int i;
9103 /* Create the first one, so we have something to add to. */
9104 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9105 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9106 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9107 for (i = 1; i < num_elem; i++)
9109 dw_loc_descr_ref temp;
9111 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9112 add_loc_descr (&loc_result, temp);
9113 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9114 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9117 break;
9119 default:
9120 gcc_unreachable ();
9123 return loc_result;
9126 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9127 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9128 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9129 top-level invocation, and we require the address of LOC; is 0 if we require
9130 the value of LOC. */
9132 static dw_loc_descr_ref
9133 loc_descriptor_from_tree_1 (tree loc, int want_address)
9135 dw_loc_descr_ref ret, ret1;
9136 int have_address = 0;
9137 enum dwarf_location_atom op;
9139 /* ??? Most of the time we do not take proper care for sign/zero
9140 extending the values properly. Hopefully this won't be a real
9141 problem... */
9143 switch (TREE_CODE (loc))
9145 case ERROR_MARK:
9146 return 0;
9148 case PLACEHOLDER_EXPR:
9149 /* This case involves extracting fields from an object to determine the
9150 position of other fields. We don't try to encode this here. The
9151 only user of this is Ada, which encodes the needed information using
9152 the names of types. */
9153 return 0;
9155 case CALL_EXPR:
9156 return 0;
9158 case PREINCREMENT_EXPR:
9159 case PREDECREMENT_EXPR:
9160 case POSTINCREMENT_EXPR:
9161 case POSTDECREMENT_EXPR:
9162 /* There are no opcodes for these operations. */
9163 return 0;
9165 case ADDR_EXPR:
9166 /* If we already want an address, there's nothing we can do. */
9167 if (want_address)
9168 return 0;
9170 /* Otherwise, process the argument and look for the address. */
9171 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9173 case VAR_DECL:
9174 if (DECL_THREAD_LOCAL_P (loc))
9176 rtx rtl;
9178 /* If this is not defined, we have no way to emit the data. */
9179 if (!targetm.asm_out.output_dwarf_dtprel)
9180 return 0;
9182 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9183 look up addresses of objects in the current module. */
9184 if (DECL_EXTERNAL (loc))
9185 return 0;
9187 rtl = rtl_for_decl_location (loc);
9188 if (rtl == NULL_RTX)
9189 return 0;
9191 if (!MEM_P (rtl))
9192 return 0;
9193 rtl = XEXP (rtl, 0);
9194 if (! CONSTANT_P (rtl))
9195 return 0;
9197 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9198 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9199 ret->dw_loc_oprnd1.v.val_addr = rtl;
9201 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9202 add_loc_descr (&ret, ret1);
9204 have_address = 1;
9205 break;
9207 /* FALLTHRU */
9209 case PARM_DECL:
9210 if (DECL_HAS_VALUE_EXPR_P (loc))
9211 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9212 want_address);
9213 /* FALLTHRU */
9215 case RESULT_DECL:
9216 case FUNCTION_DECL:
9218 rtx rtl = rtl_for_decl_location (loc);
9220 if (rtl == NULL_RTX)
9221 return 0;
9222 else if (GET_CODE (rtl) == CONST_INT)
9224 HOST_WIDE_INT val = INTVAL (rtl);
9225 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9226 val &= GET_MODE_MASK (DECL_MODE (loc));
9227 ret = int_loc_descriptor (val);
9229 else if (GET_CODE (rtl) == CONST_STRING)
9230 return 0;
9231 else if (CONSTANT_P (rtl))
9233 ret = new_loc_descr (DW_OP_addr, 0, 0);
9234 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9235 ret->dw_loc_oprnd1.v.val_addr = rtl;
9237 else
9239 enum machine_mode mode;
9241 /* Certain constructs can only be represented at top-level. */
9242 if (want_address == 2)
9243 return loc_descriptor (rtl);
9245 mode = GET_MODE (rtl);
9246 if (MEM_P (rtl))
9248 rtl = XEXP (rtl, 0);
9249 have_address = 1;
9251 ret = mem_loc_descriptor (rtl, mode);
9254 break;
9256 case INDIRECT_REF:
9257 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9258 have_address = 1;
9259 break;
9261 case COMPOUND_EXPR:
9262 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9264 case NOP_EXPR:
9265 case CONVERT_EXPR:
9266 case NON_LVALUE_EXPR:
9267 case VIEW_CONVERT_EXPR:
9268 case SAVE_EXPR:
9269 case GIMPLE_MODIFY_STMT:
9270 return loc_descriptor_from_tree_1 (GENERIC_TREE_OPERAND (loc, 0),
9271 want_address);
9273 case COMPONENT_REF:
9274 case BIT_FIELD_REF:
9275 case ARRAY_REF:
9276 case ARRAY_RANGE_REF:
9278 tree obj, offset;
9279 HOST_WIDE_INT bitsize, bitpos, bytepos;
9280 enum machine_mode mode;
9281 int volatilep;
9282 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9284 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9285 &unsignedp, &volatilep, false);
9287 if (obj == loc)
9288 return 0;
9290 ret = loc_descriptor_from_tree_1 (obj, 1);
9291 if (ret == 0
9292 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9293 return 0;
9295 if (offset != NULL_TREE)
9297 /* Variable offset. */
9298 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9299 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9302 bytepos = bitpos / BITS_PER_UNIT;
9303 if (bytepos > 0)
9304 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9305 else if (bytepos < 0)
9307 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9308 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9311 have_address = 1;
9312 break;
9315 case INTEGER_CST:
9316 if (host_integerp (loc, 0))
9317 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9318 else
9319 return 0;
9320 break;
9322 case CONSTRUCTOR:
9324 /* Get an RTL for this, if something has been emitted. */
9325 rtx rtl = lookup_constant_def (loc);
9326 enum machine_mode mode;
9328 if (!rtl || !MEM_P (rtl))
9329 return 0;
9330 mode = GET_MODE (rtl);
9331 rtl = XEXP (rtl, 0);
9332 ret = mem_loc_descriptor (rtl, mode);
9333 have_address = 1;
9334 break;
9337 case TRUTH_AND_EXPR:
9338 case TRUTH_ANDIF_EXPR:
9339 case BIT_AND_EXPR:
9340 op = DW_OP_and;
9341 goto do_binop;
9343 case TRUTH_XOR_EXPR:
9344 case BIT_XOR_EXPR:
9345 op = DW_OP_xor;
9346 goto do_binop;
9348 case TRUTH_OR_EXPR:
9349 case TRUTH_ORIF_EXPR:
9350 case BIT_IOR_EXPR:
9351 op = DW_OP_or;
9352 goto do_binop;
9354 case FLOOR_DIV_EXPR:
9355 case CEIL_DIV_EXPR:
9356 case ROUND_DIV_EXPR:
9357 case TRUNC_DIV_EXPR:
9358 op = DW_OP_div;
9359 goto do_binop;
9361 case MINUS_EXPR:
9362 op = DW_OP_minus;
9363 goto do_binop;
9365 case FLOOR_MOD_EXPR:
9366 case CEIL_MOD_EXPR:
9367 case ROUND_MOD_EXPR:
9368 case TRUNC_MOD_EXPR:
9369 op = DW_OP_mod;
9370 goto do_binop;
9372 case MULT_EXPR:
9373 op = DW_OP_mul;
9374 goto do_binop;
9376 case LSHIFT_EXPR:
9377 op = DW_OP_shl;
9378 goto do_binop;
9380 case RSHIFT_EXPR:
9381 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9382 goto do_binop;
9384 case PLUS_EXPR:
9385 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9386 && host_integerp (TREE_OPERAND (loc, 1), 0))
9388 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9389 if (ret == 0)
9390 return 0;
9392 add_loc_descr (&ret,
9393 new_loc_descr (DW_OP_plus_uconst,
9394 tree_low_cst (TREE_OPERAND (loc, 1),
9396 0));
9397 break;
9400 op = DW_OP_plus;
9401 goto do_binop;
9403 case LE_EXPR:
9404 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9405 return 0;
9407 op = DW_OP_le;
9408 goto do_binop;
9410 case GE_EXPR:
9411 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9412 return 0;
9414 op = DW_OP_ge;
9415 goto do_binop;
9417 case LT_EXPR:
9418 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9419 return 0;
9421 op = DW_OP_lt;
9422 goto do_binop;
9424 case GT_EXPR:
9425 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9426 return 0;
9428 op = DW_OP_gt;
9429 goto do_binop;
9431 case EQ_EXPR:
9432 op = DW_OP_eq;
9433 goto do_binop;
9435 case NE_EXPR:
9436 op = DW_OP_ne;
9437 goto do_binop;
9439 do_binop:
9440 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9441 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9442 if (ret == 0 || ret1 == 0)
9443 return 0;
9445 add_loc_descr (&ret, ret1);
9446 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9447 break;
9449 case TRUTH_NOT_EXPR:
9450 case BIT_NOT_EXPR:
9451 op = DW_OP_not;
9452 goto do_unop;
9454 case ABS_EXPR:
9455 op = DW_OP_abs;
9456 goto do_unop;
9458 case NEGATE_EXPR:
9459 op = DW_OP_neg;
9460 goto do_unop;
9462 do_unop:
9463 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9464 if (ret == 0)
9465 return 0;
9467 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9468 break;
9470 case MIN_EXPR:
9471 case MAX_EXPR:
9473 const enum tree_code code =
9474 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9476 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9477 build2 (code, integer_type_node,
9478 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9479 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9482 /* ... fall through ... */
9484 case COND_EXPR:
9486 dw_loc_descr_ref lhs
9487 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9488 dw_loc_descr_ref rhs
9489 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9490 dw_loc_descr_ref bra_node, jump_node, tmp;
9492 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9493 if (ret == 0 || lhs == 0 || rhs == 0)
9494 return 0;
9496 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9497 add_loc_descr (&ret, bra_node);
9499 add_loc_descr (&ret, rhs);
9500 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9501 add_loc_descr (&ret, jump_node);
9503 add_loc_descr (&ret, lhs);
9504 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9505 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9507 /* ??? Need a node to point the skip at. Use a nop. */
9508 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9509 add_loc_descr (&ret, tmp);
9510 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9511 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9513 break;
9515 case FIX_TRUNC_EXPR:
9516 return 0;
9518 default:
9519 /* Leave front-end specific codes as simply unknown. This comes
9520 up, for instance, with the C STMT_EXPR. */
9521 if ((unsigned int) TREE_CODE (loc)
9522 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9523 return 0;
9525 #ifdef ENABLE_CHECKING
9526 /* Otherwise this is a generic code; we should just lists all of
9527 these explicitly. We forgot one. */
9528 gcc_unreachable ();
9529 #else
9530 /* In a release build, we want to degrade gracefully: better to
9531 generate incomplete debugging information than to crash. */
9532 return NULL;
9533 #endif
9536 /* Show if we can't fill the request for an address. */
9537 if (want_address && !have_address)
9538 return 0;
9540 /* If we've got an address and don't want one, dereference. */
9541 if (!want_address && have_address && ret)
9543 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9545 if (size > DWARF2_ADDR_SIZE || size == -1)
9546 return 0;
9547 else if (size == DWARF2_ADDR_SIZE)
9548 op = DW_OP_deref;
9549 else
9550 op = DW_OP_deref_size;
9552 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9555 return ret;
9558 static inline dw_loc_descr_ref
9559 loc_descriptor_from_tree (tree loc)
9561 return loc_descriptor_from_tree_1 (loc, 2);
9564 /* Given a value, round it up to the lowest multiple of `boundary'
9565 which is not less than the value itself. */
9567 static inline HOST_WIDE_INT
9568 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9570 return (((value + boundary - 1) / boundary) * boundary);
9573 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9574 pointer to the declared type for the relevant field variable, or return
9575 `integer_type_node' if the given node turns out to be an
9576 ERROR_MARK node. */
9578 static inline tree
9579 field_type (tree decl)
9581 tree type;
9583 if (TREE_CODE (decl) == ERROR_MARK)
9584 return integer_type_node;
9586 type = DECL_BIT_FIELD_TYPE (decl);
9587 if (type == NULL_TREE)
9588 type = TREE_TYPE (decl);
9590 return type;
9593 /* Given a pointer to a tree node, return the alignment in bits for
9594 it, or else return BITS_PER_WORD if the node actually turns out to
9595 be an ERROR_MARK node. */
9597 static inline unsigned
9598 simple_type_align_in_bits (tree type)
9600 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9603 static inline unsigned
9604 simple_decl_align_in_bits (tree decl)
9606 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9609 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9610 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9611 or return 0 if we are unable to determine what that offset is, either
9612 because the argument turns out to be a pointer to an ERROR_MARK node, or
9613 because the offset is actually variable. (We can't handle the latter case
9614 just yet). */
9616 static HOST_WIDE_INT
9617 field_byte_offset (tree decl)
9619 unsigned int type_align_in_bits;
9620 unsigned int decl_align_in_bits;
9621 unsigned HOST_WIDE_INT type_size_in_bits;
9622 HOST_WIDE_INT object_offset_in_bits;
9623 tree type;
9624 tree field_size_tree;
9625 HOST_WIDE_INT bitpos_int;
9626 HOST_WIDE_INT deepest_bitpos;
9627 unsigned HOST_WIDE_INT field_size_in_bits;
9629 if (TREE_CODE (decl) == ERROR_MARK)
9630 return 0;
9632 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9634 type = field_type (decl);
9635 field_size_tree = DECL_SIZE (decl);
9637 /* The size could be unspecified if there was an error, or for
9638 a flexible array member. */
9639 if (! field_size_tree)
9640 field_size_tree = bitsize_zero_node;
9642 /* We cannot yet cope with fields whose positions are variable, so
9643 for now, when we see such things, we simply return 0. Someday, we may
9644 be able to handle such cases, but it will be damn difficult. */
9645 if (! host_integerp (bit_position (decl), 0))
9646 return 0;
9648 bitpos_int = int_bit_position (decl);
9650 /* If we don't know the size of the field, pretend it's a full word. */
9651 if (host_integerp (field_size_tree, 1))
9652 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9653 else
9654 field_size_in_bits = BITS_PER_WORD;
9656 type_size_in_bits = simple_type_size_in_bits (type);
9657 type_align_in_bits = simple_type_align_in_bits (type);
9658 decl_align_in_bits = simple_decl_align_in_bits (decl);
9660 /* The GCC front-end doesn't make any attempt to keep track of the starting
9661 bit offset (relative to the start of the containing structure type) of the
9662 hypothetical "containing object" for a bit-field. Thus, when computing
9663 the byte offset value for the start of the "containing object" of a
9664 bit-field, we must deduce this information on our own. This can be rather
9665 tricky to do in some cases. For example, handling the following structure
9666 type definition when compiling for an i386/i486 target (which only aligns
9667 long long's to 32-bit boundaries) can be very tricky:
9669 struct S { int field1; long long field2:31; };
9671 Fortunately, there is a simple rule-of-thumb which can be used in such
9672 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9673 structure shown above. It decides to do this based upon one simple rule
9674 for bit-field allocation. GCC allocates each "containing object" for each
9675 bit-field at the first (i.e. lowest addressed) legitimate alignment
9676 boundary (based upon the required minimum alignment for the declared type
9677 of the field) which it can possibly use, subject to the condition that
9678 there is still enough available space remaining in the containing object
9679 (when allocated at the selected point) to fully accommodate all of the
9680 bits of the bit-field itself.
9682 This simple rule makes it obvious why GCC allocates 8 bytes for each
9683 object of the structure type shown above. When looking for a place to
9684 allocate the "containing object" for `field2', the compiler simply tries
9685 to allocate a 64-bit "containing object" at each successive 32-bit
9686 boundary (starting at zero) until it finds a place to allocate that 64-
9687 bit field such that at least 31 contiguous (and previously unallocated)
9688 bits remain within that selected 64 bit field. (As it turns out, for the
9689 example above, the compiler finds it is OK to allocate the "containing
9690 object" 64-bit field at bit-offset zero within the structure type.)
9692 Here we attempt to work backwards from the limited set of facts we're
9693 given, and we try to deduce from those facts, where GCC must have believed
9694 that the containing object started (within the structure type). The value
9695 we deduce is then used (by the callers of this routine) to generate
9696 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9697 and, in the case of DW_AT_location, regular fields as well). */
9699 /* Figure out the bit-distance from the start of the structure to the
9700 "deepest" bit of the bit-field. */
9701 deepest_bitpos = bitpos_int + field_size_in_bits;
9703 /* This is the tricky part. Use some fancy footwork to deduce where the
9704 lowest addressed bit of the containing object must be. */
9705 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9707 /* Round up to type_align by default. This works best for bitfields. */
9708 object_offset_in_bits += type_align_in_bits - 1;
9709 object_offset_in_bits /= type_align_in_bits;
9710 object_offset_in_bits *= type_align_in_bits;
9712 if (object_offset_in_bits > bitpos_int)
9714 /* Sigh, the decl must be packed. */
9715 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9717 /* Round up to decl_align instead. */
9718 object_offset_in_bits += decl_align_in_bits - 1;
9719 object_offset_in_bits /= decl_align_in_bits;
9720 object_offset_in_bits *= decl_align_in_bits;
9723 return object_offset_in_bits / BITS_PER_UNIT;
9726 /* The following routines define various Dwarf attributes and any data
9727 associated with them. */
9729 /* Add a location description attribute value to a DIE.
9731 This emits location attributes suitable for whole variables and
9732 whole parameters. Note that the location attributes for struct fields are
9733 generated by the routine `data_member_location_attribute' below. */
9735 static inline void
9736 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9737 dw_loc_descr_ref descr)
9739 if (descr != 0)
9740 add_AT_loc (die, attr_kind, descr);
9743 /* Attach the specialized form of location attribute used for data members of
9744 struct and union types. In the special case of a FIELD_DECL node which
9745 represents a bit-field, the "offset" part of this special location
9746 descriptor must indicate the distance in bytes from the lowest-addressed
9747 byte of the containing struct or union type to the lowest-addressed byte of
9748 the "containing object" for the bit-field. (See the `field_byte_offset'
9749 function above).
9751 For any given bit-field, the "containing object" is a hypothetical object
9752 (of some integral or enum type) within which the given bit-field lives. The
9753 type of this hypothetical "containing object" is always the same as the
9754 declared type of the individual bit-field itself (for GCC anyway... the
9755 DWARF spec doesn't actually mandate this). Note that it is the size (in
9756 bytes) of the hypothetical "containing object" which will be given in the
9757 DW_AT_byte_size attribute for this bit-field. (See the
9758 `byte_size_attribute' function below.) It is also used when calculating the
9759 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9760 function below.) */
9762 static void
9763 add_data_member_location_attribute (dw_die_ref die, tree decl)
9765 HOST_WIDE_INT offset;
9766 dw_loc_descr_ref loc_descr = 0;
9768 if (TREE_CODE (decl) == TREE_BINFO)
9770 /* We're working on the TAG_inheritance for a base class. */
9771 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9773 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9774 aren't at a fixed offset from all (sub)objects of the same
9775 type. We need to extract the appropriate offset from our
9776 vtable. The following dwarf expression means
9778 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9780 This is specific to the V3 ABI, of course. */
9782 dw_loc_descr_ref tmp;
9784 /* Make a copy of the object address. */
9785 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9786 add_loc_descr (&loc_descr, tmp);
9788 /* Extract the vtable address. */
9789 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9790 add_loc_descr (&loc_descr, tmp);
9792 /* Calculate the address of the offset. */
9793 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9794 gcc_assert (offset < 0);
9796 tmp = int_loc_descriptor (-offset);
9797 add_loc_descr (&loc_descr, tmp);
9798 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9799 add_loc_descr (&loc_descr, tmp);
9801 /* Extract the offset. */
9802 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9803 add_loc_descr (&loc_descr, tmp);
9805 /* Add it to the object address. */
9806 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9807 add_loc_descr (&loc_descr, tmp);
9809 else
9810 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9812 else
9813 offset = field_byte_offset (decl);
9815 if (! loc_descr)
9817 enum dwarf_location_atom op;
9819 /* The DWARF2 standard says that we should assume that the structure
9820 address is already on the stack, so we can specify a structure field
9821 address by using DW_OP_plus_uconst. */
9823 #ifdef MIPS_DEBUGGING_INFO
9824 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9825 operator correctly. It works only if we leave the offset on the
9826 stack. */
9827 op = DW_OP_constu;
9828 #else
9829 op = DW_OP_plus_uconst;
9830 #endif
9832 loc_descr = new_loc_descr (op, offset, 0);
9835 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9838 /* Writes integer values to dw_vec_const array. */
9840 static void
9841 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9843 while (size != 0)
9845 *dest++ = val & 0xff;
9846 val >>= 8;
9847 --size;
9851 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9853 static HOST_WIDE_INT
9854 extract_int (const unsigned char *src, unsigned int size)
9856 HOST_WIDE_INT val = 0;
9858 src += size;
9859 while (size != 0)
9861 val <<= 8;
9862 val |= *--src & 0xff;
9863 --size;
9865 return val;
9868 /* Writes floating point values to dw_vec_const array. */
9870 static void
9871 insert_float (rtx rtl, unsigned char *array)
9873 REAL_VALUE_TYPE rv;
9874 long val[4];
9875 int i;
9877 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9878 real_to_target (val, &rv, GET_MODE (rtl));
9880 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9881 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9883 insert_int (val[i], 4, array);
9884 array += 4;
9888 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9889 does not have a "location" either in memory or in a register. These
9890 things can arise in GNU C when a constant is passed as an actual parameter
9891 to an inlined function. They can also arise in C++ where declared
9892 constants do not necessarily get memory "homes". */
9894 static void
9895 add_const_value_attribute (dw_die_ref die, rtx rtl)
9897 switch (GET_CODE (rtl))
9899 case CONST_INT:
9901 HOST_WIDE_INT val = INTVAL (rtl);
9903 if (val < 0)
9904 add_AT_int (die, DW_AT_const_value, val);
9905 else
9906 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9908 break;
9910 case CONST_DOUBLE:
9911 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9912 floating-point constant. A CONST_DOUBLE is used whenever the
9913 constant requires more than one word in order to be adequately
9914 represented. We output CONST_DOUBLEs as blocks. */
9916 enum machine_mode mode = GET_MODE (rtl);
9918 if (SCALAR_FLOAT_MODE_P (mode))
9920 unsigned int length = GET_MODE_SIZE (mode);
9921 unsigned char *array = ggc_alloc (length);
9923 insert_float (rtl, array);
9924 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9926 else
9928 /* ??? We really should be using HOST_WIDE_INT throughout. */
9929 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9931 add_AT_long_long (die, DW_AT_const_value,
9932 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9935 break;
9937 case CONST_VECTOR:
9939 enum machine_mode mode = GET_MODE (rtl);
9940 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9941 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9942 unsigned char *array = ggc_alloc (length * elt_size);
9943 unsigned int i;
9944 unsigned char *p;
9946 switch (GET_MODE_CLASS (mode))
9948 case MODE_VECTOR_INT:
9949 for (i = 0, p = array; i < length; i++, p += elt_size)
9951 rtx elt = CONST_VECTOR_ELT (rtl, i);
9952 HOST_WIDE_INT lo, hi;
9954 switch (GET_CODE (elt))
9956 case CONST_INT:
9957 lo = INTVAL (elt);
9958 hi = -(lo < 0);
9959 break;
9961 case CONST_DOUBLE:
9962 lo = CONST_DOUBLE_LOW (elt);
9963 hi = CONST_DOUBLE_HIGH (elt);
9964 break;
9966 default:
9967 gcc_unreachable ();
9970 if (elt_size <= sizeof (HOST_WIDE_INT))
9971 insert_int (lo, elt_size, p);
9972 else
9974 unsigned char *p0 = p;
9975 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9977 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9978 if (WORDS_BIG_ENDIAN)
9980 p0 = p1;
9981 p1 = p;
9983 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9984 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9987 break;
9989 case MODE_VECTOR_FLOAT:
9990 for (i = 0, p = array; i < length; i++, p += elt_size)
9992 rtx elt = CONST_VECTOR_ELT (rtl, i);
9993 insert_float (elt, p);
9995 break;
9997 default:
9998 gcc_unreachable ();
10001 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
10003 break;
10005 case CONST_STRING:
10006 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
10007 break;
10009 case SYMBOL_REF:
10010 case LABEL_REF:
10011 case CONST:
10012 add_AT_addr (die, DW_AT_const_value, rtl);
10013 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
10014 break;
10016 case PLUS:
10017 /* In cases where an inlined instance of an inline function is passed
10018 the address of an `auto' variable (which is local to the caller) we
10019 can get a situation where the DECL_RTL of the artificial local
10020 variable (for the inlining) which acts as a stand-in for the
10021 corresponding formal parameter (of the inline function) will look
10022 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
10023 exactly a compile-time constant expression, but it isn't the address
10024 of the (artificial) local variable either. Rather, it represents the
10025 *value* which the artificial local variable always has during its
10026 lifetime. We currently have no way to represent such quasi-constant
10027 values in Dwarf, so for now we just punt and generate nothing. */
10028 break;
10030 default:
10031 /* No other kinds of rtx should be possible here. */
10032 gcc_unreachable ();
10037 /* Determine whether the evaluation of EXPR references any variables
10038 or functions which aren't otherwise used (and therefore may not be
10039 output). */
10040 static tree
10041 reference_to_unused (tree * tp, int * walk_subtrees,
10042 void * data ATTRIBUTE_UNUSED)
10044 if (! EXPR_P (*tp) && ! GIMPLE_STMT_P (*tp) && ! CONSTANT_CLASS_P (*tp))
10045 *walk_subtrees = 0;
10047 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10048 && ! TREE_ASM_WRITTEN (*tp))
10049 return *tp;
10050 else
10051 return NULL_TREE;
10054 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10055 for use in a later add_const_value_attribute call. */
10057 static rtx
10058 rtl_for_decl_init (tree init, tree type)
10060 rtx rtl = NULL_RTX;
10062 /* If a variable is initialized with a string constant without embedded
10063 zeros, build CONST_STRING. */
10064 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10066 tree enttype = TREE_TYPE (type);
10067 tree domain = TYPE_DOMAIN (type);
10068 enum machine_mode mode = TYPE_MODE (enttype);
10070 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10071 && domain
10072 && integer_zerop (TYPE_MIN_VALUE (domain))
10073 && compare_tree_int (TYPE_MAX_VALUE (domain),
10074 TREE_STRING_LENGTH (init) - 1) == 0
10075 && ((size_t) TREE_STRING_LENGTH (init)
10076 == strlen (TREE_STRING_POINTER (init)) + 1))
10077 rtl = gen_rtx_CONST_STRING (VOIDmode,
10078 ggc_strdup (TREE_STRING_POINTER (init)));
10080 /* Other aggregates, and complex values, could be represented using
10081 CONCAT: FIXME! */
10082 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10084 /* Vectors only work if their mode is supported by the target.
10085 FIXME: generic vectors ought to work too. */
10086 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10088 /* If the initializer is something that we know will expand into an
10089 immediate RTL constant, expand it now. We must be careful not to
10090 reference variables which won't be output. */
10091 else if (initializer_constant_valid_p (init, type)
10092 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10094 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10096 /* If expand_expr returns a MEM, it wasn't immediate. */
10097 gcc_assert (!rtl || !MEM_P (rtl));
10100 return rtl;
10103 /* Generate RTL for the variable DECL to represent its location. */
10105 static rtx
10106 rtl_for_decl_location (tree decl)
10108 rtx rtl;
10110 /* Here we have to decide where we are going to say the parameter "lives"
10111 (as far as the debugger is concerned). We only have a couple of
10112 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10114 DECL_RTL normally indicates where the parameter lives during most of the
10115 activation of the function. If optimization is enabled however, this
10116 could be either NULL or else a pseudo-reg. Both of those cases indicate
10117 that the parameter doesn't really live anywhere (as far as the code
10118 generation parts of GCC are concerned) during most of the function's
10119 activation. That will happen (for example) if the parameter is never
10120 referenced within the function.
10122 We could just generate a location descriptor here for all non-NULL
10123 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10124 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10125 where DECL_RTL is NULL or is a pseudo-reg.
10127 Note however that we can only get away with using DECL_INCOMING_RTL as
10128 a backup substitute for DECL_RTL in certain limited cases. In cases
10129 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10130 we can be sure that the parameter was passed using the same type as it is
10131 declared to have within the function, and that its DECL_INCOMING_RTL
10132 points us to a place where a value of that type is passed.
10134 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10135 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10136 because in these cases DECL_INCOMING_RTL points us to a value of some
10137 type which is *different* from the type of the parameter itself. Thus,
10138 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10139 such cases, the debugger would end up (for example) trying to fetch a
10140 `float' from a place which actually contains the first part of a
10141 `double'. That would lead to really incorrect and confusing
10142 output at debug-time.
10144 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10145 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10146 are a couple of exceptions however. On little-endian machines we can
10147 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10148 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10149 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10150 when (on a little-endian machine) a non-prototyped function has a
10151 parameter declared to be of type `short' or `char'. In such cases,
10152 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10153 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10154 passed `int' value. If the debugger then uses that address to fetch
10155 a `short' or a `char' (on a little-endian machine) the result will be
10156 the correct data, so we allow for such exceptional cases below.
10158 Note that our goal here is to describe the place where the given formal
10159 parameter lives during most of the function's activation (i.e. between the
10160 end of the prologue and the start of the epilogue). We'll do that as best
10161 as we can. Note however that if the given formal parameter is modified
10162 sometime during the execution of the function, then a stack backtrace (at
10163 debug-time) will show the function as having been called with the *new*
10164 value rather than the value which was originally passed in. This happens
10165 rarely enough that it is not a major problem, but it *is* a problem, and
10166 I'd like to fix it.
10168 A future version of dwarf2out.c may generate two additional attributes for
10169 any given DW_TAG_formal_parameter DIE which will describe the "passed
10170 type" and the "passed location" for the given formal parameter in addition
10171 to the attributes we now generate to indicate the "declared type" and the
10172 "active location" for each parameter. This additional set of attributes
10173 could be used by debuggers for stack backtraces. Separately, note that
10174 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10175 This happens (for example) for inlined-instances of inline function formal
10176 parameters which are never referenced. This really shouldn't be
10177 happening. All PARM_DECL nodes should get valid non-NULL
10178 DECL_INCOMING_RTL values. FIXME. */
10180 /* Use DECL_RTL as the "location" unless we find something better. */
10181 rtl = DECL_RTL_IF_SET (decl);
10183 /* When generating abstract instances, ignore everything except
10184 constants, symbols living in memory, and symbols living in
10185 fixed registers. */
10186 if (! reload_completed)
10188 if (rtl
10189 && (CONSTANT_P (rtl)
10190 || (MEM_P (rtl)
10191 && CONSTANT_P (XEXP (rtl, 0)))
10192 || (REG_P (rtl)
10193 && TREE_CODE (decl) == VAR_DECL
10194 && TREE_STATIC (decl))))
10196 rtl = targetm.delegitimize_address (rtl);
10197 return rtl;
10199 rtl = NULL_RTX;
10201 else if (TREE_CODE (decl) == PARM_DECL)
10203 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10205 tree declared_type = TREE_TYPE (decl);
10206 tree passed_type = DECL_ARG_TYPE (decl);
10207 enum machine_mode dmode = TYPE_MODE (declared_type);
10208 enum machine_mode pmode = TYPE_MODE (passed_type);
10210 /* This decl represents a formal parameter which was optimized out.
10211 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10212 all cases where (rtl == NULL_RTX) just below. */
10213 if (dmode == pmode)
10214 rtl = DECL_INCOMING_RTL (decl);
10215 else if (SCALAR_INT_MODE_P (dmode)
10216 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10217 && DECL_INCOMING_RTL (decl))
10219 rtx inc = DECL_INCOMING_RTL (decl);
10220 if (REG_P (inc))
10221 rtl = inc;
10222 else if (MEM_P (inc))
10224 if (BYTES_BIG_ENDIAN)
10225 rtl = adjust_address_nv (inc, dmode,
10226 GET_MODE_SIZE (pmode)
10227 - GET_MODE_SIZE (dmode));
10228 else
10229 rtl = inc;
10234 /* If the parm was passed in registers, but lives on the stack, then
10235 make a big endian correction if the mode of the type of the
10236 parameter is not the same as the mode of the rtl. */
10237 /* ??? This is the same series of checks that are made in dbxout.c before
10238 we reach the big endian correction code there. It isn't clear if all
10239 of these checks are necessary here, but keeping them all is the safe
10240 thing to do. */
10241 else if (MEM_P (rtl)
10242 && XEXP (rtl, 0) != const0_rtx
10243 && ! CONSTANT_P (XEXP (rtl, 0))
10244 /* Not passed in memory. */
10245 && !MEM_P (DECL_INCOMING_RTL (decl))
10246 /* Not passed by invisible reference. */
10247 && (!REG_P (XEXP (rtl, 0))
10248 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10249 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10250 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10251 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10252 #endif
10254 /* Big endian correction check. */
10255 && BYTES_BIG_ENDIAN
10256 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10257 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10258 < UNITS_PER_WORD))
10260 int offset = (UNITS_PER_WORD
10261 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10263 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10264 plus_constant (XEXP (rtl, 0), offset));
10267 else if (TREE_CODE (decl) == VAR_DECL
10268 && rtl
10269 && MEM_P (rtl)
10270 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10271 && BYTES_BIG_ENDIAN)
10273 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10274 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10276 /* If a variable is declared "register" yet is smaller than
10277 a register, then if we store the variable to memory, it
10278 looks like we're storing a register-sized value, when in
10279 fact we are not. We need to adjust the offset of the
10280 storage location to reflect the actual value's bytes,
10281 else gdb will not be able to display it. */
10282 if (rsize > dsize)
10283 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10284 plus_constant (XEXP (rtl, 0), rsize-dsize));
10287 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10288 and will have been substituted directly into all expressions that use it.
10289 C does not have such a concept, but C++ and other languages do. */
10290 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10291 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10293 if (rtl)
10294 rtl = targetm.delegitimize_address (rtl);
10296 /* If we don't look past the constant pool, we risk emitting a
10297 reference to a constant pool entry that isn't referenced from
10298 code, and thus is not emitted. */
10299 if (rtl)
10300 rtl = avoid_constant_pool_reference (rtl);
10302 return rtl;
10305 /* We need to figure out what section we should use as the base for the
10306 address ranges where a given location is valid.
10307 1. If this particular DECL has a section associated with it, use that.
10308 2. If this function has a section associated with it, use that.
10309 3. Otherwise, use the text section.
10310 XXX: If you split a variable across multiple sections, we won't notice. */
10312 static const char *
10313 secname_for_decl (tree decl)
10315 const char *secname;
10317 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10319 tree sectree = DECL_SECTION_NAME (decl);
10320 secname = TREE_STRING_POINTER (sectree);
10322 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10324 tree sectree = DECL_SECTION_NAME (current_function_decl);
10325 secname = TREE_STRING_POINTER (sectree);
10327 else if (cfun && in_cold_section_p)
10328 secname = cfun->cold_section_label;
10329 else
10330 secname = text_section_label;
10332 return secname;
10335 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10336 data attribute for a variable or a parameter. We generate the
10337 DW_AT_const_value attribute only in those cases where the given variable
10338 or parameter does not have a true "location" either in memory or in a
10339 register. This can happen (for example) when a constant is passed as an
10340 actual argument in a call to an inline function. (It's possible that
10341 these things can crop up in other ways also.) Note that one type of
10342 constant value which can be passed into an inlined function is a constant
10343 pointer. This can happen for example if an actual argument in an inlined
10344 function call evaluates to a compile-time constant address. */
10346 static void
10347 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10348 enum dwarf_attribute attr)
10350 rtx rtl;
10351 dw_loc_descr_ref descr;
10352 var_loc_list *loc_list;
10353 struct var_loc_node *node;
10354 if (TREE_CODE (decl) == ERROR_MARK)
10355 return;
10357 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10358 || TREE_CODE (decl) == RESULT_DECL);
10360 /* See if we possibly have multiple locations for this variable. */
10361 loc_list = lookup_decl_loc (decl);
10363 /* If it truly has multiple locations, the first and last node will
10364 differ. */
10365 if (loc_list && loc_list->first != loc_list->last)
10367 const char *endname, *secname;
10368 dw_loc_list_ref list;
10369 rtx varloc;
10371 /* Now that we know what section we are using for a base,
10372 actually construct the list of locations.
10373 The first location information is what is passed to the
10374 function that creates the location list, and the remaining
10375 locations just get added on to that list.
10376 Note that we only know the start address for a location
10377 (IE location changes), so to build the range, we use
10378 the range [current location start, next location start].
10379 This means we have to special case the last node, and generate
10380 a range of [last location start, end of function label]. */
10382 node = loc_list->first;
10383 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10384 secname = secname_for_decl (decl);
10386 list = new_loc_list (loc_descriptor (varloc),
10387 node->label, node->next->label, secname, 1);
10388 node = node->next;
10390 for (; node->next; node = node->next)
10391 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10393 /* The variable has a location between NODE->LABEL and
10394 NODE->NEXT->LABEL. */
10395 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10396 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10397 node->label, node->next->label, secname);
10400 /* If the variable has a location at the last label
10401 it keeps its location until the end of function. */
10402 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10404 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10406 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10407 if (!current_function_decl)
10408 endname = text_end_label;
10409 else
10411 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10412 current_function_funcdef_no);
10413 endname = ggc_strdup (label_id);
10415 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10416 node->label, endname, secname);
10419 /* Finally, add the location list to the DIE, and we are done. */
10420 add_AT_loc_list (die, attr, list);
10421 return;
10424 /* Try to get some constant RTL for this decl, and use that as the value of
10425 the location. */
10427 rtl = rtl_for_decl_location (decl);
10428 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10430 add_const_value_attribute (die, rtl);
10431 return;
10434 /* If we have tried to generate the location otherwise, and it
10435 didn't work out (we wouldn't be here if we did), and we have a one entry
10436 location list, try generating a location from that. */
10437 if (loc_list && loc_list->first)
10439 node = loc_list->first;
10440 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10441 if (descr)
10443 add_AT_location_description (die, attr, descr);
10444 return;
10448 /* We couldn't get any rtl, so try directly generating the location
10449 description from the tree. */
10450 descr = loc_descriptor_from_tree (decl);
10451 if (descr)
10453 add_AT_location_description (die, attr, descr);
10454 return;
10456 /* None of that worked, so it must not really have a location;
10457 try adding a constant value attribute from the DECL_INITIAL. */
10458 tree_add_const_value_attribute (die, decl);
10461 /* If we don't have a copy of this variable in memory for some reason (such
10462 as a C++ member constant that doesn't have an out-of-line definition),
10463 we should tell the debugger about the constant value. */
10465 static void
10466 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10468 tree init = DECL_INITIAL (decl);
10469 tree type = TREE_TYPE (decl);
10470 rtx rtl;
10472 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10473 /* OK */;
10474 else
10475 return;
10477 rtl = rtl_for_decl_init (init, type);
10478 if (rtl)
10479 add_const_value_attribute (var_die, rtl);
10482 /* Convert the CFI instructions for the current function into a
10483 location list. This is used for DW_AT_frame_base when we targeting
10484 a dwarf2 consumer that does not support the dwarf3
10485 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10486 expressions. */
10488 static dw_loc_list_ref
10489 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10491 dw_fde_ref fde;
10492 dw_loc_list_ref list, *list_tail;
10493 dw_cfi_ref cfi;
10494 dw_cfa_location last_cfa, next_cfa;
10495 const char *start_label, *last_label, *section;
10497 fde = &fde_table[fde_table_in_use - 1];
10499 section = secname_for_decl (current_function_decl);
10500 list_tail = &list;
10501 list = NULL;
10503 next_cfa.reg = INVALID_REGNUM;
10504 next_cfa.offset = 0;
10505 next_cfa.indirect = 0;
10506 next_cfa.base_offset = 0;
10508 start_label = fde->dw_fde_begin;
10510 /* ??? Bald assumption that the CIE opcode list does not contain
10511 advance opcodes. */
10512 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10513 lookup_cfa_1 (cfi, &next_cfa);
10515 last_cfa = next_cfa;
10516 last_label = start_label;
10518 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10519 switch (cfi->dw_cfi_opc)
10521 case DW_CFA_set_loc:
10522 case DW_CFA_advance_loc1:
10523 case DW_CFA_advance_loc2:
10524 case DW_CFA_advance_loc4:
10525 if (!cfa_equal_p (&last_cfa, &next_cfa))
10527 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10528 start_label, last_label, section,
10529 list == NULL);
10531 list_tail = &(*list_tail)->dw_loc_next;
10532 last_cfa = next_cfa;
10533 start_label = last_label;
10535 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10536 break;
10538 case DW_CFA_advance_loc:
10539 /* The encoding is complex enough that we should never emit this. */
10540 case DW_CFA_remember_state:
10541 case DW_CFA_restore_state:
10542 /* We don't handle these two in this function. It would be possible
10543 if it were to be required. */
10544 gcc_unreachable ();
10546 default:
10547 lookup_cfa_1 (cfi, &next_cfa);
10548 break;
10551 if (!cfa_equal_p (&last_cfa, &next_cfa))
10553 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10554 start_label, last_label, section,
10555 list == NULL);
10556 list_tail = &(*list_tail)->dw_loc_next;
10557 start_label = last_label;
10559 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10560 start_label, fde->dw_fde_end, section,
10561 list == NULL);
10563 return list;
10566 /* Compute a displacement from the "steady-state frame pointer" to the
10567 frame base (often the same as the CFA), and store it in
10568 frame_pointer_fb_offset. OFFSET is added to the displacement
10569 before the latter is negated. */
10571 static void
10572 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10574 rtx reg, elim;
10576 #ifdef FRAME_POINTER_CFA_OFFSET
10577 reg = frame_pointer_rtx;
10578 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10579 #else
10580 reg = arg_pointer_rtx;
10581 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10582 #endif
10584 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10585 if (GET_CODE (elim) == PLUS)
10587 offset += INTVAL (XEXP (elim, 1));
10588 elim = XEXP (elim, 0);
10590 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10591 : stack_pointer_rtx));
10593 frame_pointer_fb_offset = -offset;
10596 /* Generate a DW_AT_name attribute given some string value to be included as
10597 the value of the attribute. */
10599 static void
10600 add_name_attribute (dw_die_ref die, const char *name_string)
10602 if (name_string != NULL && *name_string != 0)
10604 if (demangle_name_func)
10605 name_string = (*demangle_name_func) (name_string);
10607 add_AT_string (die, DW_AT_name, name_string);
10611 /* Generate a DW_AT_comp_dir attribute for DIE. */
10613 static void
10614 add_comp_dir_attribute (dw_die_ref die)
10616 const char *wd = get_src_pwd ();
10617 if (wd != NULL)
10618 add_AT_string (die, DW_AT_comp_dir, wd);
10621 /* Given a tree node describing an array bound (either lower or upper) output
10622 a representation for that bound. */
10624 static void
10625 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10627 switch (TREE_CODE (bound))
10629 case ERROR_MARK:
10630 return;
10632 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10633 case INTEGER_CST:
10634 if (! host_integerp (bound, 0)
10635 || (bound_attr == DW_AT_lower_bound
10636 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10637 || (is_fortran () && integer_onep (bound)))))
10638 /* Use the default. */
10640 else
10641 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10642 break;
10644 case CONVERT_EXPR:
10645 case NOP_EXPR:
10646 case NON_LVALUE_EXPR:
10647 case VIEW_CONVERT_EXPR:
10648 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10649 break;
10651 case SAVE_EXPR:
10652 break;
10654 case VAR_DECL:
10655 case PARM_DECL:
10656 case RESULT_DECL:
10658 dw_die_ref decl_die = lookup_decl_die (bound);
10660 /* ??? Can this happen, or should the variable have been bound
10661 first? Probably it can, since I imagine that we try to create
10662 the types of parameters in the order in which they exist in
10663 the list, and won't have created a forward reference to a
10664 later parameter. */
10665 if (decl_die != NULL)
10666 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10667 break;
10670 default:
10672 /* Otherwise try to create a stack operation procedure to
10673 evaluate the value of the array bound. */
10675 dw_die_ref ctx, decl_die;
10676 dw_loc_descr_ref loc;
10678 loc = loc_descriptor_from_tree (bound);
10679 if (loc == NULL)
10680 break;
10682 if (current_function_decl == 0)
10683 ctx = comp_unit_die;
10684 else
10685 ctx = lookup_decl_die (current_function_decl);
10687 decl_die = new_die (DW_TAG_variable, ctx, bound);
10688 add_AT_flag (decl_die, DW_AT_artificial, 1);
10689 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10690 add_AT_loc (decl_die, DW_AT_location, loc);
10692 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10693 break;
10698 /* Note that the block of subscript information for an array type also
10699 includes information about the element type of type given array type. */
10701 static void
10702 add_subscript_info (dw_die_ref type_die, tree type)
10704 #ifndef MIPS_DEBUGGING_INFO
10705 unsigned dimension_number;
10706 #endif
10707 tree lower, upper;
10708 dw_die_ref subrange_die;
10710 /* The GNU compilers represent multidimensional array types as sequences of
10711 one dimensional array types whose element types are themselves array
10712 types. Here we squish that down, so that each multidimensional array
10713 type gets only one array_type DIE in the Dwarf debugging info. The draft
10714 Dwarf specification say that we are allowed to do this kind of
10715 compression in C (because there is no difference between an array or
10716 arrays and a multidimensional array in C) but for other source languages
10717 (e.g. Ada) we probably shouldn't do this. */
10719 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10720 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10721 We work around this by disabling this feature. See also
10722 gen_array_type_die. */
10723 #ifndef MIPS_DEBUGGING_INFO
10724 for (dimension_number = 0;
10725 TREE_CODE (type) == ARRAY_TYPE;
10726 type = TREE_TYPE (type), dimension_number++)
10727 #endif
10729 tree domain = TYPE_DOMAIN (type);
10731 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10732 and (in GNU C only) variable bounds. Handle all three forms
10733 here. */
10734 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10735 if (domain)
10737 /* We have an array type with specified bounds. */
10738 lower = TYPE_MIN_VALUE (domain);
10739 upper = TYPE_MAX_VALUE (domain);
10741 /* Define the index type. */
10742 if (TREE_TYPE (domain))
10744 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10745 TREE_TYPE field. We can't emit debug info for this
10746 because it is an unnamed integral type. */
10747 if (TREE_CODE (domain) == INTEGER_TYPE
10748 && TYPE_NAME (domain) == NULL_TREE
10749 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10750 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10752 else
10753 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10754 type_die);
10757 /* ??? If upper is NULL, the array has unspecified length,
10758 but it does have a lower bound. This happens with Fortran
10759 dimension arr(N:*)
10760 Since the debugger is definitely going to need to know N
10761 to produce useful results, go ahead and output the lower
10762 bound solo, and hope the debugger can cope. */
10764 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10765 if (upper)
10766 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10769 /* Otherwise we have an array type with an unspecified length. The
10770 DWARF-2 spec does not say how to handle this; let's just leave out the
10771 bounds. */
10775 static void
10776 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10778 unsigned size;
10780 switch (TREE_CODE (tree_node))
10782 case ERROR_MARK:
10783 size = 0;
10784 break;
10785 case ENUMERAL_TYPE:
10786 case RECORD_TYPE:
10787 case UNION_TYPE:
10788 case QUAL_UNION_TYPE:
10789 size = int_size_in_bytes (tree_node);
10790 break;
10791 case FIELD_DECL:
10792 /* For a data member of a struct or union, the DW_AT_byte_size is
10793 generally given as the number of bytes normally allocated for an
10794 object of the *declared* type of the member itself. This is true
10795 even for bit-fields. */
10796 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10797 break;
10798 default:
10799 gcc_unreachable ();
10802 /* Note that `size' might be -1 when we get to this point. If it is, that
10803 indicates that the byte size of the entity in question is variable. We
10804 have no good way of expressing this fact in Dwarf at the present time,
10805 so just let the -1 pass on through. */
10806 add_AT_unsigned (die, DW_AT_byte_size, size);
10809 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10810 which specifies the distance in bits from the highest order bit of the
10811 "containing object" for the bit-field to the highest order bit of the
10812 bit-field itself.
10814 For any given bit-field, the "containing object" is a hypothetical object
10815 (of some integral or enum type) within which the given bit-field lives. The
10816 type of this hypothetical "containing object" is always the same as the
10817 declared type of the individual bit-field itself. The determination of the
10818 exact location of the "containing object" for a bit-field is rather
10819 complicated. It's handled by the `field_byte_offset' function (above).
10821 Note that it is the size (in bytes) of the hypothetical "containing object"
10822 which will be given in the DW_AT_byte_size attribute for this bit-field.
10823 (See `byte_size_attribute' above). */
10825 static inline void
10826 add_bit_offset_attribute (dw_die_ref die, tree decl)
10828 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10829 tree type = DECL_BIT_FIELD_TYPE (decl);
10830 HOST_WIDE_INT bitpos_int;
10831 HOST_WIDE_INT highest_order_object_bit_offset;
10832 HOST_WIDE_INT highest_order_field_bit_offset;
10833 HOST_WIDE_INT unsigned bit_offset;
10835 /* Must be a field and a bit field. */
10836 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10838 /* We can't yet handle bit-fields whose offsets are variable, so if we
10839 encounter such things, just return without generating any attribute
10840 whatsoever. Likewise for variable or too large size. */
10841 if (! host_integerp (bit_position (decl), 0)
10842 || ! host_integerp (DECL_SIZE (decl), 1))
10843 return;
10845 bitpos_int = int_bit_position (decl);
10847 /* Note that the bit offset is always the distance (in bits) from the
10848 highest-order bit of the "containing object" to the highest-order bit of
10849 the bit-field itself. Since the "high-order end" of any object or field
10850 is different on big-endian and little-endian machines, the computation
10851 below must take account of these differences. */
10852 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10853 highest_order_field_bit_offset = bitpos_int;
10855 if (! BYTES_BIG_ENDIAN)
10857 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10858 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10861 bit_offset
10862 = (! BYTES_BIG_ENDIAN
10863 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10864 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10866 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10869 /* For a FIELD_DECL node which represents a bit field, output an attribute
10870 which specifies the length in bits of the given field. */
10872 static inline void
10873 add_bit_size_attribute (dw_die_ref die, tree decl)
10875 /* Must be a field and a bit field. */
10876 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10877 && DECL_BIT_FIELD_TYPE (decl));
10879 if (host_integerp (DECL_SIZE (decl), 1))
10880 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10883 /* If the compiled language is ANSI C, then add a 'prototyped'
10884 attribute, if arg types are given for the parameters of a function. */
10886 static inline void
10887 add_prototyped_attribute (dw_die_ref die, tree func_type)
10889 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10890 && TYPE_ARG_TYPES (func_type) != NULL)
10891 add_AT_flag (die, DW_AT_prototyped, 1);
10894 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10895 by looking in either the type declaration or object declaration
10896 equate table. */
10898 static inline void
10899 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10901 dw_die_ref origin_die = NULL;
10903 if (TREE_CODE (origin) != FUNCTION_DECL)
10905 /* We may have gotten separated from the block for the inlined
10906 function, if we're in an exception handler or some such; make
10907 sure that the abstract function has been written out.
10909 Doing this for nested functions is wrong, however; functions are
10910 distinct units, and our context might not even be inline. */
10911 tree fn = origin;
10913 if (TYPE_P (fn))
10914 fn = TYPE_STUB_DECL (fn);
10916 fn = decl_function_context (fn);
10917 if (fn)
10918 dwarf2out_abstract_function (fn);
10921 if (DECL_P (origin))
10922 origin_die = lookup_decl_die (origin);
10923 else if (TYPE_P (origin))
10924 origin_die = lookup_type_die (origin);
10926 /* XXX: Functions that are never lowered don't always have correct block
10927 trees (in the case of java, they simply have no block tree, in some other
10928 languages). For these functions, there is nothing we can really do to
10929 output correct debug info for inlined functions in all cases. Rather
10930 than die, we'll just produce deficient debug info now, in that we will
10931 have variables without a proper abstract origin. In the future, when all
10932 functions are lowered, we should re-add a gcc_assert (origin_die)
10933 here. */
10935 if (origin_die)
10936 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10939 /* We do not currently support the pure_virtual attribute. */
10941 static inline void
10942 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10944 if (DECL_VINDEX (func_decl))
10946 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10948 if (host_integerp (DECL_VINDEX (func_decl), 0))
10949 add_AT_loc (die, DW_AT_vtable_elem_location,
10950 new_loc_descr (DW_OP_constu,
10951 tree_low_cst (DECL_VINDEX (func_decl), 0),
10952 0));
10954 /* GNU extension: Record what type this method came from originally. */
10955 if (debug_info_level > DINFO_LEVEL_TERSE)
10956 add_AT_die_ref (die, DW_AT_containing_type,
10957 lookup_type_die (DECL_CONTEXT (func_decl)));
10961 /* Add source coordinate attributes for the given decl. */
10963 static void
10964 add_src_coords_attributes (dw_die_ref die, tree decl)
10966 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10968 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10969 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10972 /* Add a DW_AT_name attribute and source coordinate attribute for the
10973 given decl, but only if it actually has a name. */
10975 static void
10976 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10978 tree decl_name;
10980 decl_name = DECL_NAME (decl);
10981 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10983 add_name_attribute (die, dwarf2_name (decl, 0));
10984 if (! DECL_ARTIFICIAL (decl))
10985 add_src_coords_attributes (die, decl);
10987 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10988 && TREE_PUBLIC (decl)
10989 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10990 && !DECL_ABSTRACT (decl)
10991 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10992 add_AT_string (die, DW_AT_MIPS_linkage_name,
10993 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10996 #ifdef VMS_DEBUGGING_INFO
10997 /* Get the function's name, as described by its RTL. This may be different
10998 from the DECL_NAME name used in the source file. */
10999 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
11001 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
11002 XEXP (DECL_RTL (decl), 0));
11003 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
11005 #endif
11008 /* Push a new declaration scope. */
11010 static void
11011 push_decl_scope (tree scope)
11013 VEC_safe_push (tree, gc, decl_scope_table, scope);
11016 /* Pop a declaration scope. */
11018 static inline void
11019 pop_decl_scope (void)
11021 VEC_pop (tree, decl_scope_table);
11024 /* Return the DIE for the scope that immediately contains this type.
11025 Non-named types get global scope. Named types nested in other
11026 types get their containing scope if it's open, or global scope
11027 otherwise. All other types (i.e. function-local named types) get
11028 the current active scope. */
11030 static dw_die_ref
11031 scope_die_for (tree t, dw_die_ref context_die)
11033 dw_die_ref scope_die = NULL;
11034 tree containing_scope;
11035 int i;
11037 /* Non-types always go in the current scope. */
11038 gcc_assert (TYPE_P (t));
11040 containing_scope = TYPE_CONTEXT (t);
11042 /* Use the containing namespace if it was passed in (for a declaration). */
11043 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
11045 if (context_die == lookup_decl_die (containing_scope))
11046 /* OK */;
11047 else
11048 containing_scope = NULL_TREE;
11051 /* Ignore function type "scopes" from the C frontend. They mean that
11052 a tagged type is local to a parmlist of a function declarator, but
11053 that isn't useful to DWARF. */
11054 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11055 containing_scope = NULL_TREE;
11057 if (containing_scope == NULL_TREE)
11058 scope_die = comp_unit_die;
11059 else if (TYPE_P (containing_scope))
11061 /* For types, we can just look up the appropriate DIE. But
11062 first we check to see if we're in the middle of emitting it
11063 so we know where the new DIE should go. */
11064 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11065 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11066 break;
11068 if (i < 0)
11070 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11071 || TREE_ASM_WRITTEN (containing_scope));
11073 /* If none of the current dies are suitable, we get file scope. */
11074 scope_die = comp_unit_die;
11076 else
11077 scope_die = lookup_type_die (containing_scope);
11079 else
11080 scope_die = context_die;
11082 return scope_die;
11085 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11087 static inline int
11088 local_scope_p (dw_die_ref context_die)
11090 for (; context_die; context_die = context_die->die_parent)
11091 if (context_die->die_tag == DW_TAG_inlined_subroutine
11092 || context_die->die_tag == DW_TAG_subprogram)
11093 return 1;
11095 return 0;
11098 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11099 whether or not to treat a DIE in this context as a declaration. */
11101 static inline int
11102 class_or_namespace_scope_p (dw_die_ref context_die)
11104 return (context_die
11105 && (context_die->die_tag == DW_TAG_structure_type
11106 || context_die->die_tag == DW_TAG_union_type
11107 || context_die->die_tag == DW_TAG_namespace));
11110 /* Many forms of DIEs require a "type description" attribute. This
11111 routine locates the proper "type descriptor" die for the type given
11112 by 'type', and adds a DW_AT_type attribute below the given die. */
11114 static void
11115 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11116 int decl_volatile, dw_die_ref context_die)
11118 enum tree_code code = TREE_CODE (type);
11119 dw_die_ref type_die = NULL;
11121 /* ??? If this type is an unnamed subrange type of an integral or
11122 floating-point type, use the inner type. This is because we have no
11123 support for unnamed types in base_type_die. This can happen if this is
11124 an Ada subrange type. Correct solution is emit a subrange type die. */
11125 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11126 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11127 type = TREE_TYPE (type), code = TREE_CODE (type);
11129 if (code == ERROR_MARK
11130 /* Handle a special case. For functions whose return type is void, we
11131 generate *no* type attribute. (Note that no object may have type
11132 `void', so this only applies to function return types). */
11133 || code == VOID_TYPE)
11134 return;
11136 type_die = modified_type_die (type,
11137 decl_const || TYPE_READONLY (type),
11138 decl_volatile || TYPE_VOLATILE (type),
11139 context_die);
11141 if (type_die != NULL)
11142 add_AT_die_ref (object_die, DW_AT_type, type_die);
11145 /* Given an object die, add the calling convention attribute for the
11146 function call type. */
11147 static void
11148 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11150 enum dwarf_calling_convention value = DW_CC_normal;
11152 value = targetm.dwarf_calling_convention (type);
11154 /* Only add the attribute if the backend requests it, and
11155 is not DW_CC_normal. */
11156 if (value && (value != DW_CC_normal))
11157 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11160 /* Given a tree pointer to a struct, class, union, or enum type node, return
11161 a pointer to the (string) tag name for the given type, or zero if the type
11162 was declared without a tag. */
11164 static const char *
11165 type_tag (tree type)
11167 const char *name = 0;
11169 if (TYPE_NAME (type) != 0)
11171 tree t = 0;
11173 /* Find the IDENTIFIER_NODE for the type name. */
11174 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11175 t = TYPE_NAME (type);
11177 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11178 a TYPE_DECL node, regardless of whether or not a `typedef' was
11179 involved. */
11180 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11181 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11182 t = DECL_NAME (TYPE_NAME (type));
11184 /* Now get the name as a string, or invent one. */
11185 if (t != 0)
11186 name = IDENTIFIER_POINTER (t);
11189 return (name == 0 || *name == '\0') ? 0 : name;
11192 /* Return the type associated with a data member, make a special check
11193 for bit field types. */
11195 static inline tree
11196 member_declared_type (tree member)
11198 return (DECL_BIT_FIELD_TYPE (member)
11199 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11202 /* Get the decl's label, as described by its RTL. This may be different
11203 from the DECL_NAME name used in the source file. */
11205 #if 0
11206 static const char *
11207 decl_start_label (tree decl)
11209 rtx x;
11210 const char *fnname;
11212 x = DECL_RTL (decl);
11213 gcc_assert (MEM_P (x));
11215 x = XEXP (x, 0);
11216 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11218 fnname = XSTR (x, 0);
11219 return fnname;
11221 #endif
11223 /* These routines generate the internal representation of the DIE's for
11224 the compilation unit. Debugging information is collected by walking
11225 the declaration trees passed in from dwarf2out_decl(). */
11227 static void
11228 gen_array_type_die (tree type, dw_die_ref context_die)
11230 dw_die_ref scope_die = scope_die_for (type, context_die);
11231 dw_die_ref array_die;
11232 tree element_type;
11234 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11235 the inner array type comes before the outer array type. Thus we must
11236 call gen_type_die before we call new_die. See below also. */
11237 #ifdef MIPS_DEBUGGING_INFO
11238 gen_type_die (TREE_TYPE (type), context_die);
11239 #endif
11241 array_die = new_die (DW_TAG_array_type, scope_die, type);
11242 add_name_attribute (array_die, type_tag (type));
11243 equate_type_number_to_die (type, array_die);
11245 if (TREE_CODE (type) == VECTOR_TYPE)
11247 /* The frontend feeds us a representation for the vector as a struct
11248 containing an array. Pull out the array type. */
11249 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11250 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11253 #if 0
11254 /* We default the array ordering. SDB will probably do
11255 the right things even if DW_AT_ordering is not present. It's not even
11256 an issue until we start to get into multidimensional arrays anyway. If
11257 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11258 then we'll have to put the DW_AT_ordering attribute back in. (But if
11259 and when we find out that we need to put these in, we will only do so
11260 for multidimensional arrays. */
11261 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11262 #endif
11264 #ifdef MIPS_DEBUGGING_INFO
11265 /* The SGI compilers handle arrays of unknown bound by setting
11266 AT_declaration and not emitting any subrange DIEs. */
11267 if (! TYPE_DOMAIN (type))
11268 add_AT_flag (array_die, DW_AT_declaration, 1);
11269 else
11270 #endif
11271 add_subscript_info (array_die, type);
11273 /* Add representation of the type of the elements of this array type. */
11274 element_type = TREE_TYPE (type);
11276 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11277 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11278 We work around this by disabling this feature. See also
11279 add_subscript_info. */
11280 #ifndef MIPS_DEBUGGING_INFO
11281 while (TREE_CODE (element_type) == ARRAY_TYPE)
11282 element_type = TREE_TYPE (element_type);
11284 gen_type_die (element_type, context_die);
11285 #endif
11287 add_type_attribute (array_die, element_type, 0, 0, context_die);
11289 if (get_AT (array_die, DW_AT_name))
11290 add_pubtype (type, array_die);
11293 #if 0
11294 static void
11295 gen_entry_point_die (tree decl, dw_die_ref context_die)
11297 tree origin = decl_ultimate_origin (decl);
11298 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11300 if (origin != NULL)
11301 add_abstract_origin_attribute (decl_die, origin);
11302 else
11304 add_name_and_src_coords_attributes (decl_die, decl);
11305 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11306 0, 0, context_die);
11309 if (DECL_ABSTRACT (decl))
11310 equate_decl_number_to_die (decl, decl_die);
11311 else
11312 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11314 #endif
11316 /* Walk through the list of incomplete types again, trying once more to
11317 emit full debugging info for them. */
11319 static void
11320 retry_incomplete_types (void)
11322 int i;
11324 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11325 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11328 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11330 static void
11331 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11333 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11335 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11336 be incomplete and such types are not marked. */
11337 add_abstract_origin_attribute (type_die, type);
11340 /* Generate a DIE to represent an inlined instance of a structure type. */
11342 static void
11343 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11345 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11347 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11348 be incomplete and such types are not marked. */
11349 add_abstract_origin_attribute (type_die, type);
11352 /* Generate a DIE to represent an inlined instance of a union type. */
11354 static void
11355 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11357 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11359 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11360 be incomplete and such types are not marked. */
11361 add_abstract_origin_attribute (type_die, type);
11364 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11365 include all of the information about the enumeration values also. Each
11366 enumerated type name/value is listed as a child of the enumerated type
11367 DIE. */
11369 static dw_die_ref
11370 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11372 dw_die_ref type_die = lookup_type_die (type);
11374 if (type_die == NULL)
11376 type_die = new_die (DW_TAG_enumeration_type,
11377 scope_die_for (type, context_die), type);
11378 equate_type_number_to_die (type, type_die);
11379 add_name_attribute (type_die, type_tag (type));
11381 else if (! TYPE_SIZE (type))
11382 return type_die;
11383 else
11384 remove_AT (type_die, DW_AT_declaration);
11386 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11387 given enum type is incomplete, do not generate the DW_AT_byte_size
11388 attribute or the DW_AT_element_list attribute. */
11389 if (TYPE_SIZE (type))
11391 tree link;
11393 TREE_ASM_WRITTEN (type) = 1;
11394 add_byte_size_attribute (type_die, type);
11395 if (TYPE_STUB_DECL (type) != NULL_TREE)
11396 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11398 /* If the first reference to this type was as the return type of an
11399 inline function, then it may not have a parent. Fix this now. */
11400 if (type_die->die_parent == NULL)
11401 add_child_die (scope_die_for (type, context_die), type_die);
11403 for (link = TYPE_VALUES (type);
11404 link != NULL; link = TREE_CHAIN (link))
11406 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11407 tree value = TREE_VALUE (link);
11409 add_name_attribute (enum_die,
11410 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11412 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11413 /* DWARF2 does not provide a way of indicating whether or
11414 not enumeration constants are signed or unsigned. GDB
11415 always assumes the values are signed, so we output all
11416 values as if they were signed. That means that
11417 enumeration constants with very large unsigned values
11418 will appear to have negative values in the debugger. */
11419 add_AT_int (enum_die, DW_AT_const_value,
11420 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11423 else
11424 add_AT_flag (type_die, DW_AT_declaration, 1);
11426 if (get_AT (type_die, DW_AT_name))
11427 add_pubtype (type, type_die);
11429 return type_die;
11432 /* Generate a DIE to represent either a real live formal parameter decl or to
11433 represent just the type of some formal parameter position in some function
11434 type.
11436 Note that this routine is a bit unusual because its argument may be a
11437 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11438 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11439 node. If it's the former then this function is being called to output a
11440 DIE to represent a formal parameter object (or some inlining thereof). If
11441 it's the latter, then this function is only being called to output a
11442 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11443 argument type of some subprogram type. */
11445 static dw_die_ref
11446 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11448 dw_die_ref parm_die
11449 = new_die (DW_TAG_formal_parameter, context_die, node);
11450 tree origin;
11452 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11454 case tcc_declaration:
11455 origin = decl_ultimate_origin (node);
11456 if (origin != NULL)
11457 add_abstract_origin_attribute (parm_die, origin);
11458 else
11460 add_name_and_src_coords_attributes (parm_die, node);
11461 add_type_attribute (parm_die, TREE_TYPE (node),
11462 TREE_READONLY (node),
11463 TREE_THIS_VOLATILE (node),
11464 context_die);
11465 if (DECL_ARTIFICIAL (node))
11466 add_AT_flag (parm_die, DW_AT_artificial, 1);
11469 equate_decl_number_to_die (node, parm_die);
11470 if (! DECL_ABSTRACT (node))
11471 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11473 break;
11475 case tcc_type:
11476 /* We were called with some kind of a ..._TYPE node. */
11477 add_type_attribute (parm_die, node, 0, 0, context_die);
11478 break;
11480 default:
11481 gcc_unreachable ();
11484 return parm_die;
11487 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11488 at the end of an (ANSI prototyped) formal parameters list. */
11490 static void
11491 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11493 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11496 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11497 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11498 parameters as specified in some function type specification (except for
11499 those which appear as part of a function *definition*). */
11501 static void
11502 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11504 tree link;
11505 tree formal_type = NULL;
11506 tree first_parm_type;
11507 tree arg;
11509 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11511 arg = DECL_ARGUMENTS (function_or_method_type);
11512 function_or_method_type = TREE_TYPE (function_or_method_type);
11514 else
11515 arg = NULL_TREE;
11517 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11519 /* Make our first pass over the list of formal parameter types and output a
11520 DW_TAG_formal_parameter DIE for each one. */
11521 for (link = first_parm_type; link; )
11523 dw_die_ref parm_die;
11525 formal_type = TREE_VALUE (link);
11526 if (formal_type == void_type_node)
11527 break;
11529 /* Output a (nameless) DIE to represent the formal parameter itself. */
11530 parm_die = gen_formal_parameter_die (formal_type, context_die);
11531 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11532 && link == first_parm_type)
11533 || (arg && DECL_ARTIFICIAL (arg)))
11534 add_AT_flag (parm_die, DW_AT_artificial, 1);
11536 link = TREE_CHAIN (link);
11537 if (arg)
11538 arg = TREE_CHAIN (arg);
11541 /* If this function type has an ellipsis, add a
11542 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11543 if (formal_type != void_type_node)
11544 gen_unspecified_parameters_die (function_or_method_type, context_die);
11546 /* Make our second (and final) pass over the list of formal parameter types
11547 and output DIEs to represent those types (as necessary). */
11548 for (link = TYPE_ARG_TYPES (function_or_method_type);
11549 link && TREE_VALUE (link);
11550 link = TREE_CHAIN (link))
11551 gen_type_die (TREE_VALUE (link), context_die);
11554 /* We want to generate the DIE for TYPE so that we can generate the
11555 die for MEMBER, which has been defined; we will need to refer back
11556 to the member declaration nested within TYPE. If we're trying to
11557 generate minimal debug info for TYPE, processing TYPE won't do the
11558 trick; we need to attach the member declaration by hand. */
11560 static void
11561 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11563 gen_type_die (type, context_die);
11565 /* If we're trying to avoid duplicate debug info, we may not have
11566 emitted the member decl for this function. Emit it now. */
11567 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11568 && ! lookup_decl_die (member))
11570 dw_die_ref type_die;
11571 gcc_assert (!decl_ultimate_origin (member));
11573 push_decl_scope (type);
11574 type_die = lookup_type_die (type);
11575 if (TREE_CODE (member) == FUNCTION_DECL)
11576 gen_subprogram_die (member, type_die);
11577 else if (TREE_CODE (member) == FIELD_DECL)
11579 /* Ignore the nameless fields that are used to skip bits but handle
11580 C++ anonymous unions and structs. */
11581 if (DECL_NAME (member) != NULL_TREE
11582 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11583 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11585 gen_type_die (member_declared_type (member), type_die);
11586 gen_field_die (member, type_die);
11589 else
11590 gen_variable_die (member, type_die);
11592 pop_decl_scope ();
11596 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11597 may later generate inlined and/or out-of-line instances of. */
11599 static void
11600 dwarf2out_abstract_function (tree decl)
11602 dw_die_ref old_die;
11603 tree save_fn;
11604 struct function *save_cfun;
11605 tree context;
11606 int was_abstract = DECL_ABSTRACT (decl);
11608 /* Make sure we have the actual abstract inline, not a clone. */
11609 decl = DECL_ORIGIN (decl);
11611 old_die = lookup_decl_die (decl);
11612 if (old_die && get_AT (old_die, DW_AT_inline))
11613 /* We've already generated the abstract instance. */
11614 return;
11616 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11617 we don't get confused by DECL_ABSTRACT. */
11618 if (debug_info_level > DINFO_LEVEL_TERSE)
11620 context = decl_class_context (decl);
11621 if (context)
11622 gen_type_die_for_member
11623 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11626 /* Pretend we've just finished compiling this function. */
11627 save_fn = current_function_decl;
11628 save_cfun = cfun;
11629 current_function_decl = decl;
11630 cfun = DECL_STRUCT_FUNCTION (decl);
11632 set_decl_abstract_flags (decl, 1);
11633 dwarf2out_decl (decl);
11634 if (! was_abstract)
11635 set_decl_abstract_flags (decl, 0);
11637 current_function_decl = save_fn;
11638 cfun = save_cfun;
11641 /* Helper function of premark_used_types() which gets called through
11642 htab_traverse_resize().
11644 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11645 marked as unused by prune_unused_types. */
11646 static int
11647 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11649 tree type;
11650 dw_die_ref die;
11652 type = *slot;
11653 die = lookup_type_die (type);
11654 if (die != NULL)
11655 die->die_perennial_p = 1;
11656 return 1;
11659 /* Mark all members of used_types_hash as perennial. */
11660 static void
11661 premark_used_types (void)
11663 if (cfun && cfun->used_types_hash)
11664 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11667 /* Generate a DIE to represent a declared function (either file-scope or
11668 block-local). */
11670 static void
11671 gen_subprogram_die (tree decl, dw_die_ref context_die)
11673 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11674 tree origin = decl_ultimate_origin (decl);
11675 dw_die_ref subr_die;
11676 tree fn_arg_types;
11677 tree outer_scope;
11678 dw_die_ref old_die = lookup_decl_die (decl);
11679 int declaration = (current_function_decl != decl
11680 || class_or_namespace_scope_p (context_die));
11682 premark_used_types ();
11684 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11685 started to generate the abstract instance of an inline, decided to output
11686 its containing class, and proceeded to emit the declaration of the inline
11687 from the member list for the class. If so, DECLARATION takes priority;
11688 we'll get back to the abstract instance when done with the class. */
11690 /* The class-scope declaration DIE must be the primary DIE. */
11691 if (origin && declaration && class_or_namespace_scope_p (context_die))
11693 origin = NULL;
11694 gcc_assert (!old_die);
11697 /* Now that the C++ front end lazily declares artificial member fns, we
11698 might need to retrofit the declaration into its class. */
11699 if (!declaration && !origin && !old_die
11700 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11701 && !class_or_namespace_scope_p (context_die)
11702 && debug_info_level > DINFO_LEVEL_TERSE)
11703 old_die = force_decl_die (decl);
11705 if (origin != NULL)
11707 gcc_assert (!declaration || local_scope_p (context_die));
11709 /* Fixup die_parent for the abstract instance of a nested
11710 inline function. */
11711 if (old_die && old_die->die_parent == NULL)
11712 add_child_die (context_die, old_die);
11714 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11715 add_abstract_origin_attribute (subr_die, origin);
11717 else if (old_die)
11719 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11720 struct dwarf_file_data * file_index = lookup_filename (s.file);
11722 if (!get_AT_flag (old_die, DW_AT_declaration)
11723 /* We can have a normal definition following an inline one in the
11724 case of redefinition of GNU C extern inlines.
11725 It seems reasonable to use AT_specification in this case. */
11726 && !get_AT (old_die, DW_AT_inline))
11728 /* Detect and ignore this case, where we are trying to output
11729 something we have already output. */
11730 return;
11733 /* If the definition comes from the same place as the declaration,
11734 maybe use the old DIE. We always want the DIE for this function
11735 that has the *_pc attributes to be under comp_unit_die so the
11736 debugger can find it. We also need to do this for abstract
11737 instances of inlines, since the spec requires the out-of-line copy
11738 to have the same parent. For local class methods, this doesn't
11739 apply; we just use the old DIE. */
11740 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11741 && (DECL_ARTIFICIAL (decl)
11742 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11743 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11744 == (unsigned) s.line))))
11746 subr_die = old_die;
11748 /* Clear out the declaration attribute and the formal parameters.
11749 Do not remove all children, because it is possible that this
11750 declaration die was forced using force_decl_die(). In such
11751 cases die that forced declaration die (e.g. TAG_imported_module)
11752 is one of the children that we do not want to remove. */
11753 remove_AT (subr_die, DW_AT_declaration);
11754 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11756 else
11758 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11759 add_AT_specification (subr_die, old_die);
11760 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11761 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11762 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11763 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11766 else
11768 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11770 if (TREE_PUBLIC (decl))
11771 add_AT_flag (subr_die, DW_AT_external, 1);
11773 add_name_and_src_coords_attributes (subr_die, decl);
11774 if (debug_info_level > DINFO_LEVEL_TERSE)
11776 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11777 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11778 0, 0, context_die);
11781 add_pure_or_virtual_attribute (subr_die, decl);
11782 if (DECL_ARTIFICIAL (decl))
11783 add_AT_flag (subr_die, DW_AT_artificial, 1);
11785 if (TREE_PROTECTED (decl))
11786 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11787 else if (TREE_PRIVATE (decl))
11788 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11791 if (declaration)
11793 if (!old_die || !get_AT (old_die, DW_AT_inline))
11795 add_AT_flag (subr_die, DW_AT_declaration, 1);
11797 /* The first time we see a member function, it is in the context of
11798 the class to which it belongs. We make sure of this by emitting
11799 the class first. The next time is the definition, which is
11800 handled above. The two may come from the same source text.
11802 Note that force_decl_die() forces function declaration die. It is
11803 later reused to represent definition. */
11804 equate_decl_number_to_die (decl, subr_die);
11807 else if (DECL_ABSTRACT (decl))
11809 if (DECL_DECLARED_INLINE_P (decl))
11811 if (cgraph_function_possibly_inlined_p (decl))
11812 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11813 else
11814 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11816 else
11818 if (cgraph_function_possibly_inlined_p (decl))
11819 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11820 else
11821 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11824 equate_decl_number_to_die (decl, subr_die);
11826 else if (!DECL_EXTERNAL (decl))
11828 HOST_WIDE_INT cfa_fb_offset;
11830 if (!old_die || !get_AT (old_die, DW_AT_inline))
11831 equate_decl_number_to_die (decl, subr_die);
11833 if (!flag_reorder_blocks_and_partition)
11835 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11836 current_function_funcdef_no);
11837 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11838 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11839 current_function_funcdef_no);
11840 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11842 add_pubname (decl, subr_die);
11843 add_arange (decl, subr_die);
11845 else
11846 { /* Do nothing for now; maybe need to duplicate die, one for
11847 hot section and ond for cold section, then use the hot/cold
11848 section begin/end labels to generate the aranges... */
11850 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11851 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11852 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11853 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11855 add_pubname (decl, subr_die);
11856 add_arange (decl, subr_die);
11857 add_arange (decl, subr_die);
11861 #ifdef MIPS_DEBUGGING_INFO
11862 /* Add a reference to the FDE for this routine. */
11863 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11864 #endif
11866 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11868 /* We define the "frame base" as the function's CFA. This is more
11869 convenient for several reasons: (1) It's stable across the prologue
11870 and epilogue, which makes it better than just a frame pointer,
11871 (2) With dwarf3, there exists a one-byte encoding that allows us
11872 to reference the .debug_frame data by proxy, but failing that,
11873 (3) We can at least reuse the code inspection and interpretation
11874 code that determines the CFA position at various points in the
11875 function. */
11876 /* ??? Use some command-line or configury switch to enable the use
11877 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11878 consumers that understand it; fall back to "pure" dwarf2 and
11879 convert the CFA data into a location list. */
11881 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11882 if (list->dw_loc_next)
11883 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11884 else
11885 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11888 /* Compute a displacement from the "steady-state frame pointer" to
11889 the CFA. The former is what all stack slots and argument slots
11890 will reference in the rtl; the later is what we've told the
11891 debugger about. We'll need to adjust all frame_base references
11892 by this displacement. */
11893 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11895 if (cfun->static_chain_decl)
11896 add_AT_location_description (subr_die, DW_AT_static_link,
11897 loc_descriptor_from_tree (cfun->static_chain_decl));
11900 /* Now output descriptions of the arguments for this function. This gets
11901 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11902 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11903 `...' at the end of the formal parameter list. In order to find out if
11904 there was a trailing ellipsis or not, we must instead look at the type
11905 associated with the FUNCTION_DECL. This will be a node of type
11906 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11907 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11908 an ellipsis at the end. */
11910 /* In the case where we are describing a mere function declaration, all we
11911 need to do here (and all we *can* do here) is to describe the *types* of
11912 its formal parameters. */
11913 if (debug_info_level <= DINFO_LEVEL_TERSE)
11915 else if (declaration)
11916 gen_formal_types_die (decl, subr_die);
11917 else
11919 /* Generate DIEs to represent all known formal parameters. */
11920 tree arg_decls = DECL_ARGUMENTS (decl);
11921 tree parm;
11923 /* When generating DIEs, generate the unspecified_parameters DIE
11924 instead if we come across the arg "__builtin_va_alist" */
11925 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11926 if (TREE_CODE (parm) == PARM_DECL)
11928 if (DECL_NAME (parm)
11929 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11930 "__builtin_va_alist"))
11931 gen_unspecified_parameters_die (parm, subr_die);
11932 else
11933 gen_decl_die (parm, subr_die);
11936 /* Decide whether we need an unspecified_parameters DIE at the end.
11937 There are 2 more cases to do this for: 1) the ansi ... declaration -
11938 this is detectable when the end of the arg list is not a
11939 void_type_node 2) an unprototyped function declaration (not a
11940 definition). This just means that we have no info about the
11941 parameters at all. */
11942 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11943 if (fn_arg_types != NULL)
11945 /* This is the prototyped case, check for.... */
11946 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11947 gen_unspecified_parameters_die (decl, subr_die);
11949 else if (DECL_INITIAL (decl) == NULL_TREE)
11950 gen_unspecified_parameters_die (decl, subr_die);
11953 /* Output Dwarf info for all of the stuff within the body of the function
11954 (if it has one - it may be just a declaration). */
11955 outer_scope = DECL_INITIAL (decl);
11957 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11958 a function. This BLOCK actually represents the outermost binding contour
11959 for the function, i.e. the contour in which the function's formal
11960 parameters and labels get declared. Curiously, it appears that the front
11961 end doesn't actually put the PARM_DECL nodes for the current function onto
11962 the BLOCK_VARS list for this outer scope, but are strung off of the
11963 DECL_ARGUMENTS list for the function instead.
11965 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11966 the LABEL_DECL nodes for the function however, and we output DWARF info
11967 for those in decls_for_scope. Just within the `outer_scope' there will be
11968 a BLOCK node representing the function's outermost pair of curly braces,
11969 and any blocks used for the base and member initializers of a C++
11970 constructor function. */
11971 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11973 /* Emit a DW_TAG_variable DIE for a named return value. */
11974 if (DECL_NAME (DECL_RESULT (decl)))
11975 gen_decl_die (DECL_RESULT (decl), subr_die);
11977 current_function_has_inlines = 0;
11978 decls_for_scope (outer_scope, subr_die, 0);
11980 #if 0 && defined (MIPS_DEBUGGING_INFO)
11981 if (current_function_has_inlines)
11983 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11984 if (! comp_unit_has_inlines)
11986 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11987 comp_unit_has_inlines = 1;
11990 #endif
11992 /* Add the calling convention attribute if requested. */
11993 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11997 /* Generate a DIE to represent a declared data object. */
11999 static void
12000 gen_variable_die (tree decl, dw_die_ref context_die)
12002 tree origin = decl_ultimate_origin (decl);
12003 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
12005 dw_die_ref old_die = lookup_decl_die (decl);
12006 int declaration = (DECL_EXTERNAL (decl)
12007 /* If DECL is COMDAT and has not actually been
12008 emitted, we cannot take its address; there
12009 might end up being no definition anywhere in
12010 the program. For example, consider the C++
12011 test case:
12013 template <class T>
12014 struct S { static const int i = 7; };
12016 template <class T>
12017 const int S<T>::i;
12019 int f() { return S<int>::i; }
12021 Here, S<int>::i is not DECL_EXTERNAL, but no
12022 definition is required, so the compiler will
12023 not emit a definition. */
12024 || (TREE_CODE (decl) == VAR_DECL
12025 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
12026 || class_or_namespace_scope_p (context_die));
12028 if (origin != NULL)
12029 add_abstract_origin_attribute (var_die, origin);
12031 /* Loop unrolling can create multiple blocks that refer to the same
12032 static variable, so we must test for the DW_AT_declaration flag.
12034 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
12035 copy decls and set the DECL_ABSTRACT flag on them instead of
12036 sharing them.
12038 ??? Duplicated blocks have been rewritten to use .debug_ranges.
12040 ??? The declare_in_namespace support causes us to get two DIEs for one
12041 variable, both of which are declarations. We want to avoid considering
12042 one to be a specification, so we must test that this DIE is not a
12043 declaration. */
12044 else if (old_die && TREE_STATIC (decl) && ! declaration
12045 && get_AT_flag (old_die, DW_AT_declaration) == 1)
12047 /* This is a definition of a C++ class level static. */
12048 add_AT_specification (var_die, old_die);
12049 if (DECL_NAME (decl))
12051 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
12052 struct dwarf_file_data * file_index = lookup_filename (s.file);
12054 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12055 add_AT_file (var_die, DW_AT_decl_file, file_index);
12057 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12058 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12061 else
12063 add_name_and_src_coords_attributes (var_die, decl);
12064 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12065 TREE_THIS_VOLATILE (decl), context_die);
12067 if (TREE_PUBLIC (decl))
12068 add_AT_flag (var_die, DW_AT_external, 1);
12070 if (DECL_ARTIFICIAL (decl))
12071 add_AT_flag (var_die, DW_AT_artificial, 1);
12073 if (TREE_PROTECTED (decl))
12074 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12075 else if (TREE_PRIVATE (decl))
12076 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12079 if (declaration)
12080 add_AT_flag (var_die, DW_AT_declaration, 1);
12082 if (DECL_ABSTRACT (decl) || declaration)
12083 equate_decl_number_to_die (decl, var_die);
12085 if (! declaration && ! DECL_ABSTRACT (decl))
12087 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12088 add_pubname (decl, var_die);
12090 else
12091 tree_add_const_value_attribute (var_die, decl);
12094 /* Generate a DIE to represent a label identifier. */
12096 static void
12097 gen_label_die (tree decl, dw_die_ref context_die)
12099 tree origin = decl_ultimate_origin (decl);
12100 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12101 rtx insn;
12102 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12104 if (origin != NULL)
12105 add_abstract_origin_attribute (lbl_die, origin);
12106 else
12107 add_name_and_src_coords_attributes (lbl_die, decl);
12109 if (DECL_ABSTRACT (decl))
12110 equate_decl_number_to_die (decl, lbl_die);
12111 else
12113 insn = DECL_RTL_IF_SET (decl);
12115 /* Deleted labels are programmer specified labels which have been
12116 eliminated because of various optimizations. We still emit them
12117 here so that it is possible to put breakpoints on them. */
12118 if (insn
12119 && (LABEL_P (insn)
12120 || ((NOTE_P (insn)
12121 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12123 /* When optimization is enabled (via -O) some parts of the compiler
12124 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12125 represent source-level labels which were explicitly declared by
12126 the user. This really shouldn't be happening though, so catch
12127 it if it ever does happen. */
12128 gcc_assert (!INSN_DELETED_P (insn));
12130 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12131 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12136 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12137 attributes to the DIE for a block STMT, to describe where the inlined
12138 function was called from. This is similar to add_src_coords_attributes. */
12140 static inline void
12141 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12143 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12145 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12146 add_AT_unsigned (die, DW_AT_call_line, s.line);
12149 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12150 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12152 static inline void
12153 add_high_low_attributes (tree stmt, dw_die_ref die)
12155 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12157 if (BLOCK_FRAGMENT_CHAIN (stmt))
12159 tree chain;
12161 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12163 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12166 add_ranges (chain);
12167 chain = BLOCK_FRAGMENT_CHAIN (chain);
12169 while (chain);
12170 add_ranges (NULL);
12172 else
12174 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12175 BLOCK_NUMBER (stmt));
12176 add_AT_lbl_id (die, DW_AT_low_pc, label);
12177 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12178 BLOCK_NUMBER (stmt));
12179 add_AT_lbl_id (die, DW_AT_high_pc, label);
12183 /* Generate a DIE for a lexical block. */
12185 static void
12186 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12188 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12190 if (! BLOCK_ABSTRACT (stmt))
12191 add_high_low_attributes (stmt, stmt_die);
12193 decls_for_scope (stmt, stmt_die, depth);
12196 /* Generate a DIE for an inlined subprogram. */
12198 static void
12199 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12201 tree decl = block_ultimate_origin (stmt);
12203 /* Emit info for the abstract instance first, if we haven't yet. We
12204 must emit this even if the block is abstract, otherwise when we
12205 emit the block below (or elsewhere), we may end up trying to emit
12206 a die whose origin die hasn't been emitted, and crashing. */
12207 dwarf2out_abstract_function (decl);
12209 if (! BLOCK_ABSTRACT (stmt))
12211 dw_die_ref subr_die
12212 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12214 add_abstract_origin_attribute (subr_die, decl);
12215 add_high_low_attributes (stmt, subr_die);
12216 add_call_src_coords_attributes (stmt, subr_die);
12218 decls_for_scope (stmt, subr_die, depth);
12219 current_function_has_inlines = 1;
12221 else
12222 /* We may get here if we're the outer block of function A that was
12223 inlined into function B that was inlined into function C. When
12224 generating debugging info for C, dwarf2out_abstract_function(B)
12225 would mark all inlined blocks as abstract, including this one.
12226 So, we wouldn't (and shouldn't) expect labels to be generated
12227 for this one. Instead, just emit debugging info for
12228 declarations within the block. This is particularly important
12229 in the case of initializers of arguments passed from B to us:
12230 if they're statement expressions containing declarations, we
12231 wouldn't generate dies for their abstract variables, and then,
12232 when generating dies for the real variables, we'd die (pun
12233 intended :-) */
12234 gen_lexical_block_die (stmt, context_die, depth);
12237 /* Generate a DIE for a field in a record, or structure. */
12239 static void
12240 gen_field_die (tree decl, dw_die_ref context_die)
12242 dw_die_ref decl_die;
12244 if (TREE_TYPE (decl) == error_mark_node)
12245 return;
12247 decl_die = new_die (DW_TAG_member, context_die, decl);
12248 add_name_and_src_coords_attributes (decl_die, decl);
12249 add_type_attribute (decl_die, member_declared_type (decl),
12250 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12251 context_die);
12253 if (DECL_BIT_FIELD_TYPE (decl))
12255 add_byte_size_attribute (decl_die, decl);
12256 add_bit_size_attribute (decl_die, decl);
12257 add_bit_offset_attribute (decl_die, decl);
12260 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12261 add_data_member_location_attribute (decl_die, decl);
12263 if (DECL_ARTIFICIAL (decl))
12264 add_AT_flag (decl_die, DW_AT_artificial, 1);
12266 if (TREE_PROTECTED (decl))
12267 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12268 else if (TREE_PRIVATE (decl))
12269 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12271 /* Equate decl number to die, so that we can look up this decl later on. */
12272 equate_decl_number_to_die (decl, decl_die);
12275 #if 0
12276 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12277 Use modified_type_die instead.
12278 We keep this code here just in case these types of DIEs may be needed to
12279 represent certain things in other languages (e.g. Pascal) someday. */
12281 static void
12282 gen_pointer_type_die (tree type, dw_die_ref context_die)
12284 dw_die_ref ptr_die
12285 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12287 equate_type_number_to_die (type, ptr_die);
12288 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12289 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12292 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12293 Use modified_type_die instead.
12294 We keep this code here just in case these types of DIEs may be needed to
12295 represent certain things in other languages (e.g. Pascal) someday. */
12297 static void
12298 gen_reference_type_die (tree type, dw_die_ref context_die)
12300 dw_die_ref ref_die
12301 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12303 equate_type_number_to_die (type, ref_die);
12304 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12305 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12307 #endif
12309 /* Generate a DIE for a pointer to a member type. */
12311 static void
12312 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12314 dw_die_ref ptr_die
12315 = new_die (DW_TAG_ptr_to_member_type,
12316 scope_die_for (type, context_die), type);
12318 equate_type_number_to_die (type, ptr_die);
12319 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12320 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12321 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12324 /* Generate the DIE for the compilation unit. */
12326 static dw_die_ref
12327 gen_compile_unit_die (const char *filename)
12329 dw_die_ref die;
12330 char producer[250];
12331 const char *language_string = lang_hooks.name;
12332 int language;
12334 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12336 if (filename)
12338 add_name_attribute (die, filename);
12339 /* Don't add cwd for <built-in>. */
12340 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
12341 add_comp_dir_attribute (die);
12344 sprintf (producer, "%s %s", language_string, version_string);
12346 #ifdef MIPS_DEBUGGING_INFO
12347 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12348 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12349 not appear in the producer string, the debugger reaches the conclusion
12350 that the object file is stripped and has no debugging information.
12351 To get the MIPS/SGI debugger to believe that there is debugging
12352 information in the object file, we add a -g to the producer string. */
12353 if (debug_info_level > DINFO_LEVEL_TERSE)
12354 strcat (producer, " -g");
12355 #endif
12357 add_AT_string (die, DW_AT_producer, producer);
12359 if (strcmp (language_string, "GNU C++") == 0)
12360 language = DW_LANG_C_plus_plus;
12361 else if (strcmp (language_string, "GNU Ada") == 0)
12362 language = DW_LANG_Ada95;
12363 else if (strcmp (language_string, "GNU F77") == 0)
12364 language = DW_LANG_Fortran77;
12365 else if (strcmp (language_string, "GNU F95") == 0)
12366 language = DW_LANG_Fortran95;
12367 else if (strcmp (language_string, "GNU Pascal") == 0)
12368 language = DW_LANG_Pascal83;
12369 else if (strcmp (language_string, "GNU Java") == 0)
12370 language = DW_LANG_Java;
12371 else if (strcmp (language_string, "GNU Objective-C") == 0)
12372 language = DW_LANG_ObjC;
12373 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12374 language = DW_LANG_ObjC_plus_plus;
12375 else
12376 language = DW_LANG_C89;
12378 add_AT_unsigned (die, DW_AT_language, language);
12379 return die;
12382 /* Generate the DIE for a base class. */
12384 static void
12385 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12387 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12389 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12390 add_data_member_location_attribute (die, binfo);
12392 if (BINFO_VIRTUAL_P (binfo))
12393 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12395 if (access == access_public_node)
12396 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12397 else if (access == access_protected_node)
12398 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12401 /* Generate a DIE for a class member. */
12403 static void
12404 gen_member_die (tree type, dw_die_ref context_die)
12406 tree member;
12407 tree binfo = TYPE_BINFO (type);
12408 dw_die_ref child;
12410 /* If this is not an incomplete type, output descriptions of each of its
12411 members. Note that as we output the DIEs necessary to represent the
12412 members of this record or union type, we will also be trying to output
12413 DIEs to represent the *types* of those members. However the `type'
12414 function (above) will specifically avoid generating type DIEs for member
12415 types *within* the list of member DIEs for this (containing) type except
12416 for those types (of members) which are explicitly marked as also being
12417 members of this (containing) type themselves. The g++ front- end can
12418 force any given type to be treated as a member of some other (containing)
12419 type by setting the TYPE_CONTEXT of the given (member) type to point to
12420 the TREE node representing the appropriate (containing) type. */
12422 /* First output info about the base classes. */
12423 if (binfo)
12425 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12426 int i;
12427 tree base;
12429 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12430 gen_inheritance_die (base,
12431 (accesses ? VEC_index (tree, accesses, i)
12432 : access_public_node), context_die);
12435 /* Now output info about the data members and type members. */
12436 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12438 /* If we thought we were generating minimal debug info for TYPE
12439 and then changed our minds, some of the member declarations
12440 may have already been defined. Don't define them again, but
12441 do put them in the right order. */
12443 child = lookup_decl_die (member);
12444 if (child)
12445 splice_child_die (context_die, child);
12446 else
12447 gen_decl_die (member, context_die);
12450 /* Now output info about the function members (if any). */
12451 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12453 /* Don't include clones in the member list. */
12454 if (DECL_ABSTRACT_ORIGIN (member))
12455 continue;
12457 child = lookup_decl_die (member);
12458 if (child)
12459 splice_child_die (context_die, child);
12460 else
12461 gen_decl_die (member, context_die);
12465 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12466 is set, we pretend that the type was never defined, so we only get the
12467 member DIEs needed by later specification DIEs. */
12469 static void
12470 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12472 dw_die_ref type_die = lookup_type_die (type);
12473 dw_die_ref scope_die = 0;
12474 int nested = 0;
12475 int complete = (TYPE_SIZE (type)
12476 && (! TYPE_STUB_DECL (type)
12477 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12478 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12480 if (type_die && ! complete)
12481 return;
12483 if (TYPE_CONTEXT (type) != NULL_TREE
12484 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12485 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12486 nested = 1;
12488 scope_die = scope_die_for (type, context_die);
12490 if (! type_die || (nested && scope_die == comp_unit_die))
12491 /* First occurrence of type or toplevel definition of nested class. */
12493 dw_die_ref old_die = type_die;
12495 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12496 ? DW_TAG_structure_type : DW_TAG_union_type,
12497 scope_die, type);
12498 equate_type_number_to_die (type, type_die);
12499 if (old_die)
12500 add_AT_specification (type_die, old_die);
12501 else
12502 add_name_attribute (type_die, type_tag (type));
12504 else
12505 remove_AT (type_die, DW_AT_declaration);
12507 /* If this type has been completed, then give it a byte_size attribute and
12508 then give a list of members. */
12509 if (complete && !ns_decl)
12511 /* Prevent infinite recursion in cases where the type of some member of
12512 this type is expressed in terms of this type itself. */
12513 TREE_ASM_WRITTEN (type) = 1;
12514 add_byte_size_attribute (type_die, type);
12515 if (TYPE_STUB_DECL (type) != NULL_TREE)
12516 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12518 /* If the first reference to this type was as the return type of an
12519 inline function, then it may not have a parent. Fix this now. */
12520 if (type_die->die_parent == NULL)
12521 add_child_die (scope_die, type_die);
12523 push_decl_scope (type);
12524 gen_member_die (type, type_die);
12525 pop_decl_scope ();
12527 /* GNU extension: Record what type our vtable lives in. */
12528 if (TYPE_VFIELD (type))
12530 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12532 gen_type_die (vtype, context_die);
12533 add_AT_die_ref (type_die, DW_AT_containing_type,
12534 lookup_type_die (vtype));
12537 else
12539 add_AT_flag (type_die, DW_AT_declaration, 1);
12541 /* We don't need to do this for function-local types. */
12542 if (TYPE_STUB_DECL (type)
12543 && ! decl_function_context (TYPE_STUB_DECL (type)))
12544 VEC_safe_push (tree, gc, incomplete_types, type);
12547 if (get_AT (type_die, DW_AT_name))
12548 add_pubtype (type, type_die);
12551 /* Generate a DIE for a subroutine _type_. */
12553 static void
12554 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12556 tree return_type = TREE_TYPE (type);
12557 dw_die_ref subr_die
12558 = new_die (DW_TAG_subroutine_type,
12559 scope_die_for (type, context_die), type);
12561 equate_type_number_to_die (type, subr_die);
12562 add_prototyped_attribute (subr_die, type);
12563 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12564 gen_formal_types_die (type, subr_die);
12566 if (get_AT (subr_die, DW_AT_name))
12567 add_pubtype (type, subr_die);
12570 /* Generate a DIE for a type definition. */
12572 static void
12573 gen_typedef_die (tree decl, dw_die_ref context_die)
12575 dw_die_ref type_die;
12576 tree origin;
12578 if (TREE_ASM_WRITTEN (decl))
12579 return;
12581 TREE_ASM_WRITTEN (decl) = 1;
12582 type_die = new_die (DW_TAG_typedef, context_die, decl);
12583 origin = decl_ultimate_origin (decl);
12584 if (origin != NULL)
12585 add_abstract_origin_attribute (type_die, origin);
12586 else
12588 tree type;
12590 add_name_and_src_coords_attributes (type_die, decl);
12591 if (DECL_ORIGINAL_TYPE (decl))
12593 type = DECL_ORIGINAL_TYPE (decl);
12595 gcc_assert (type != TREE_TYPE (decl));
12596 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12598 else
12599 type = TREE_TYPE (decl);
12601 add_type_attribute (type_die, type, TREE_READONLY (decl),
12602 TREE_THIS_VOLATILE (decl), context_die);
12605 if (DECL_ABSTRACT (decl))
12606 equate_decl_number_to_die (decl, type_die);
12608 if (get_AT (type_die, DW_AT_name))
12609 add_pubtype (decl, type_die);
12612 /* Generate a type description DIE. */
12614 static void
12615 gen_type_die (tree type, dw_die_ref context_die)
12617 int need_pop;
12619 if (type == NULL_TREE || type == error_mark_node)
12620 return;
12622 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12623 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12625 if (TREE_ASM_WRITTEN (type))
12626 return;
12628 /* Prevent broken recursion; we can't hand off to the same type. */
12629 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12631 TREE_ASM_WRITTEN (type) = 1;
12632 gen_decl_die (TYPE_NAME (type), context_die);
12633 return;
12636 /* We are going to output a DIE to represent the unqualified version
12637 of this type (i.e. without any const or volatile qualifiers) so
12638 get the main variant (i.e. the unqualified version) of this type
12639 now. (Vectors are special because the debugging info is in the
12640 cloned type itself). */
12641 if (TREE_CODE (type) != VECTOR_TYPE)
12642 type = type_main_variant (type);
12644 if (TREE_ASM_WRITTEN (type))
12645 return;
12647 switch (TREE_CODE (type))
12649 case ERROR_MARK:
12650 break;
12652 case POINTER_TYPE:
12653 case REFERENCE_TYPE:
12654 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12655 ensures that the gen_type_die recursion will terminate even if the
12656 type is recursive. Recursive types are possible in Ada. */
12657 /* ??? We could perhaps do this for all types before the switch
12658 statement. */
12659 TREE_ASM_WRITTEN (type) = 1;
12661 /* For these types, all that is required is that we output a DIE (or a
12662 set of DIEs) to represent the "basis" type. */
12663 gen_type_die (TREE_TYPE (type), context_die);
12664 break;
12666 case OFFSET_TYPE:
12667 /* This code is used for C++ pointer-to-data-member types.
12668 Output a description of the relevant class type. */
12669 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12671 /* Output a description of the type of the object pointed to. */
12672 gen_type_die (TREE_TYPE (type), context_die);
12674 /* Now output a DIE to represent this pointer-to-data-member type
12675 itself. */
12676 gen_ptr_to_mbr_type_die (type, context_die);
12677 break;
12679 case FUNCTION_TYPE:
12680 /* Force out return type (in case it wasn't forced out already). */
12681 gen_type_die (TREE_TYPE (type), context_die);
12682 gen_subroutine_type_die (type, context_die);
12683 break;
12685 case METHOD_TYPE:
12686 /* Force out return type (in case it wasn't forced out already). */
12687 gen_type_die (TREE_TYPE (type), context_die);
12688 gen_subroutine_type_die (type, context_die);
12689 break;
12691 case ARRAY_TYPE:
12692 gen_array_type_die (type, context_die);
12693 break;
12695 case VECTOR_TYPE:
12696 gen_array_type_die (type, context_die);
12697 break;
12699 case ENUMERAL_TYPE:
12700 case RECORD_TYPE:
12701 case UNION_TYPE:
12702 case QUAL_UNION_TYPE:
12703 /* If this is a nested type whose containing class hasn't been written
12704 out yet, writing it out will cover this one, too. This does not apply
12705 to instantiations of member class templates; they need to be added to
12706 the containing class as they are generated. FIXME: This hurts the
12707 idea of combining type decls from multiple TUs, since we can't predict
12708 what set of template instantiations we'll get. */
12709 if (TYPE_CONTEXT (type)
12710 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12711 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12713 gen_type_die (TYPE_CONTEXT (type), context_die);
12715 if (TREE_ASM_WRITTEN (type))
12716 return;
12718 /* If that failed, attach ourselves to the stub. */
12719 push_decl_scope (TYPE_CONTEXT (type));
12720 context_die = lookup_type_die (TYPE_CONTEXT (type));
12721 need_pop = 1;
12723 else
12725 declare_in_namespace (type, context_die);
12726 need_pop = 0;
12729 if (TREE_CODE (type) == ENUMERAL_TYPE)
12730 gen_enumeration_type_die (type, context_die);
12731 else
12732 gen_struct_or_union_type_die (type, context_die);
12734 if (need_pop)
12735 pop_decl_scope ();
12737 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12738 it up if it is ever completed. gen_*_type_die will set it for us
12739 when appropriate. */
12740 return;
12742 case VOID_TYPE:
12743 case INTEGER_TYPE:
12744 case REAL_TYPE:
12745 case COMPLEX_TYPE:
12746 case BOOLEAN_TYPE:
12747 /* No DIEs needed for fundamental types. */
12748 break;
12750 case LANG_TYPE:
12751 /* No Dwarf representation currently defined. */
12752 break;
12754 default:
12755 gcc_unreachable ();
12758 TREE_ASM_WRITTEN (type) = 1;
12761 /* Generate a DIE for a tagged type instantiation. */
12763 static void
12764 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12766 if (type == NULL_TREE || type == error_mark_node)
12767 return;
12769 /* We are going to output a DIE to represent the unqualified version of
12770 this type (i.e. without any const or volatile qualifiers) so make sure
12771 that we have the main variant (i.e. the unqualified version) of this
12772 type now. */
12773 gcc_assert (type == type_main_variant (type));
12775 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12776 an instance of an unresolved type. */
12778 switch (TREE_CODE (type))
12780 case ERROR_MARK:
12781 break;
12783 case ENUMERAL_TYPE:
12784 gen_inlined_enumeration_type_die (type, context_die);
12785 break;
12787 case RECORD_TYPE:
12788 gen_inlined_structure_type_die (type, context_die);
12789 break;
12791 case UNION_TYPE:
12792 case QUAL_UNION_TYPE:
12793 gen_inlined_union_type_die (type, context_die);
12794 break;
12796 default:
12797 gcc_unreachable ();
12801 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12802 things which are local to the given block. */
12804 static void
12805 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12807 int must_output_die = 0;
12808 tree origin;
12809 tree decl;
12810 enum tree_code origin_code;
12812 /* Ignore blocks that are NULL. */
12813 if (stmt == NULL_TREE)
12814 return;
12816 /* If the block is one fragment of a non-contiguous block, do not
12817 process the variables, since they will have been done by the
12818 origin block. Do process subblocks. */
12819 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12821 tree sub;
12823 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12824 gen_block_die (sub, context_die, depth + 1);
12826 return;
12829 /* Determine the "ultimate origin" of this block. This block may be an
12830 inlined instance of an inlined instance of inline function, so we have
12831 to trace all of the way back through the origin chain to find out what
12832 sort of node actually served as the original seed for the creation of
12833 the current block. */
12834 origin = block_ultimate_origin (stmt);
12835 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12837 /* Determine if we need to output any Dwarf DIEs at all to represent this
12838 block. */
12839 if (origin_code == FUNCTION_DECL)
12840 /* The outer scopes for inlinings *must* always be represented. We
12841 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12842 must_output_die = 1;
12843 else
12845 /* In the case where the current block represents an inlining of the
12846 "body block" of an inline function, we must *NOT* output any DIE for
12847 this block because we have already output a DIE to represent the whole
12848 inlined function scope and the "body block" of any function doesn't
12849 really represent a different scope according to ANSI C rules. So we
12850 check here to make sure that this block does not represent a "body
12851 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12852 if (! is_body_block (origin ? origin : stmt))
12854 /* Determine if this block directly contains any "significant"
12855 local declarations which we will need to output DIEs for. */
12856 if (debug_info_level > DINFO_LEVEL_TERSE)
12857 /* We are not in terse mode so *any* local declaration counts
12858 as being a "significant" one. */
12859 must_output_die = (BLOCK_VARS (stmt) != NULL
12860 && (TREE_USED (stmt)
12861 || TREE_ASM_WRITTEN (stmt)
12862 || BLOCK_ABSTRACT (stmt)));
12863 else
12864 /* We are in terse mode, so only local (nested) function
12865 definitions count as "significant" local declarations. */
12866 for (decl = BLOCK_VARS (stmt);
12867 decl != NULL; decl = TREE_CHAIN (decl))
12868 if (TREE_CODE (decl) == FUNCTION_DECL
12869 && DECL_INITIAL (decl))
12871 must_output_die = 1;
12872 break;
12877 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12878 DIE for any block which contains no significant local declarations at
12879 all. Rather, in such cases we just call `decls_for_scope' so that any
12880 needed Dwarf info for any sub-blocks will get properly generated. Note
12881 that in terse mode, our definition of what constitutes a "significant"
12882 local declaration gets restricted to include only inlined function
12883 instances and local (nested) function definitions. */
12884 if (must_output_die)
12886 if (origin_code == FUNCTION_DECL)
12887 gen_inlined_subroutine_die (stmt, context_die, depth);
12888 else
12889 gen_lexical_block_die (stmt, context_die, depth);
12891 else
12892 decls_for_scope (stmt, context_die, depth);
12895 /* Generate all of the decls declared within a given scope and (recursively)
12896 all of its sub-blocks. */
12898 static void
12899 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12901 tree decl;
12902 tree subblocks;
12904 /* Ignore NULL blocks. */
12905 if (stmt == NULL_TREE)
12906 return;
12908 if (TREE_USED (stmt))
12910 /* Output the DIEs to represent all of the data objects and typedefs
12911 declared directly within this block but not within any nested
12912 sub-blocks. Also, nested function and tag DIEs have been
12913 generated with a parent of NULL; fix that up now. */
12914 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12916 dw_die_ref die;
12918 if (TREE_CODE (decl) == FUNCTION_DECL)
12919 die = lookup_decl_die (decl);
12920 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12921 die = lookup_type_die (TREE_TYPE (decl));
12922 else
12923 die = NULL;
12925 if (die != NULL && die->die_parent == NULL)
12926 add_child_die (context_die, die);
12927 /* Do not produce debug information for static variables since
12928 these might be optimized out. We are called for these later
12929 in varpool_analyze_pending_decls. */
12930 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12932 else
12933 gen_decl_die (decl, context_die);
12937 /* If we're at -g1, we're not interested in subblocks. */
12938 if (debug_info_level <= DINFO_LEVEL_TERSE)
12939 return;
12941 /* Output the DIEs to represent all sub-blocks (and the items declared
12942 therein) of this block. */
12943 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12944 subblocks != NULL;
12945 subblocks = BLOCK_CHAIN (subblocks))
12946 gen_block_die (subblocks, context_die, depth + 1);
12949 /* Is this a typedef we can avoid emitting? */
12951 static inline int
12952 is_redundant_typedef (tree decl)
12954 if (TYPE_DECL_IS_STUB (decl))
12955 return 1;
12957 if (DECL_ARTIFICIAL (decl)
12958 && DECL_CONTEXT (decl)
12959 && is_tagged_type (DECL_CONTEXT (decl))
12960 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12961 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12962 /* Also ignore the artificial member typedef for the class name. */
12963 return 1;
12965 return 0;
12968 /* Returns the DIE for decl. A DIE will always be returned. */
12970 static dw_die_ref
12971 force_decl_die (tree decl)
12973 dw_die_ref decl_die;
12974 unsigned saved_external_flag;
12975 tree save_fn = NULL_TREE;
12976 decl_die = lookup_decl_die (decl);
12977 if (!decl_die)
12979 dw_die_ref context_die;
12980 tree decl_context = DECL_CONTEXT (decl);
12981 if (decl_context)
12983 /* Find die that represents this context. */
12984 if (TYPE_P (decl_context))
12985 context_die = force_type_die (decl_context);
12986 else
12987 context_die = force_decl_die (decl_context);
12989 else
12990 context_die = comp_unit_die;
12992 decl_die = lookup_decl_die (decl);
12993 if (decl_die)
12994 return decl_die;
12996 switch (TREE_CODE (decl))
12998 case FUNCTION_DECL:
12999 /* Clear current_function_decl, so that gen_subprogram_die thinks
13000 that this is a declaration. At this point, we just want to force
13001 declaration die. */
13002 save_fn = current_function_decl;
13003 current_function_decl = NULL_TREE;
13004 gen_subprogram_die (decl, context_die);
13005 current_function_decl = save_fn;
13006 break;
13008 case VAR_DECL:
13009 /* Set external flag to force declaration die. Restore it after
13010 gen_decl_die() call. */
13011 saved_external_flag = DECL_EXTERNAL (decl);
13012 DECL_EXTERNAL (decl) = 1;
13013 gen_decl_die (decl, context_die);
13014 DECL_EXTERNAL (decl) = saved_external_flag;
13015 break;
13017 case NAMESPACE_DECL:
13018 dwarf2out_decl (decl);
13019 break;
13021 default:
13022 gcc_unreachable ();
13025 /* We should be able to find the DIE now. */
13026 if (!decl_die)
13027 decl_die = lookup_decl_die (decl);
13028 gcc_assert (decl_die);
13031 return decl_die;
13034 /* Returns the DIE for TYPE. A DIE is always returned. */
13036 static dw_die_ref
13037 force_type_die (tree type)
13039 dw_die_ref type_die;
13041 type_die = lookup_type_die (type);
13042 if (!type_die)
13044 dw_die_ref context_die;
13045 if (TYPE_CONTEXT (type))
13047 if (TYPE_P (TYPE_CONTEXT (type)))
13048 context_die = force_type_die (TYPE_CONTEXT (type));
13049 else
13050 context_die = force_decl_die (TYPE_CONTEXT (type));
13052 else
13053 context_die = comp_unit_die;
13055 type_die = lookup_type_die (type);
13056 if (type_die)
13057 return type_die;
13058 gen_type_die (type, context_die);
13059 type_die = lookup_type_die (type);
13060 gcc_assert (type_die);
13062 return type_die;
13065 /* Force out any required namespaces to be able to output DECL,
13066 and return the new context_die for it, if it's changed. */
13068 static dw_die_ref
13069 setup_namespace_context (tree thing, dw_die_ref context_die)
13071 tree context = (DECL_P (thing)
13072 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13073 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13074 /* Force out the namespace. */
13075 context_die = force_decl_die (context);
13077 return context_die;
13080 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13081 type) within its namespace, if appropriate.
13083 For compatibility with older debuggers, namespace DIEs only contain
13084 declarations; all definitions are emitted at CU scope. */
13086 static void
13087 declare_in_namespace (tree thing, dw_die_ref context_die)
13089 dw_die_ref ns_context;
13091 if (debug_info_level <= DINFO_LEVEL_TERSE)
13092 return;
13094 /* If this decl is from an inlined function, then don't try to emit it in its
13095 namespace, as we will get confused. It would have already been emitted
13096 when the abstract instance of the inline function was emitted anyways. */
13097 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13098 return;
13100 ns_context = setup_namespace_context (thing, context_die);
13102 if (ns_context != context_die)
13104 if (DECL_P (thing))
13105 gen_decl_die (thing, ns_context);
13106 else
13107 gen_type_die (thing, ns_context);
13111 /* Generate a DIE for a namespace or namespace alias. */
13113 static void
13114 gen_namespace_die (tree decl)
13116 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13118 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13119 they are an alias of. */
13120 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13122 /* Output a real namespace. */
13123 dw_die_ref namespace_die
13124 = new_die (DW_TAG_namespace, context_die, decl);
13125 add_name_and_src_coords_attributes (namespace_die, decl);
13126 equate_decl_number_to_die (decl, namespace_die);
13128 else
13130 /* Output a namespace alias. */
13132 /* Force out the namespace we are an alias of, if necessary. */
13133 dw_die_ref origin_die
13134 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13136 /* Now create the namespace alias DIE. */
13137 dw_die_ref namespace_die
13138 = new_die (DW_TAG_imported_declaration, context_die, decl);
13139 add_name_and_src_coords_attributes (namespace_die, decl);
13140 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13141 equate_decl_number_to_die (decl, namespace_die);
13145 /* Generate Dwarf debug information for a decl described by DECL. */
13147 static void
13148 gen_decl_die (tree decl, dw_die_ref context_die)
13150 tree origin;
13152 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13153 return;
13155 switch (TREE_CODE (decl))
13157 case ERROR_MARK:
13158 break;
13160 case CONST_DECL:
13161 /* The individual enumerators of an enum type get output when we output
13162 the Dwarf representation of the relevant enum type itself. */
13163 break;
13165 case FUNCTION_DECL:
13166 /* Don't output any DIEs to represent mere function declarations,
13167 unless they are class members or explicit block externs. */
13168 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13169 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13170 break;
13172 #if 0
13173 /* FIXME */
13174 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13175 on local redeclarations of global functions. That seems broken. */
13176 if (current_function_decl != decl)
13177 /* This is only a declaration. */;
13178 #endif
13180 /* If we're emitting a clone, emit info for the abstract instance. */
13181 if (DECL_ORIGIN (decl) != decl)
13182 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13184 /* If we're emitting an out-of-line copy of an inline function,
13185 emit info for the abstract instance and set up to refer to it. */
13186 else if (cgraph_function_possibly_inlined_p (decl)
13187 && ! DECL_ABSTRACT (decl)
13188 && ! class_or_namespace_scope_p (context_die)
13189 /* dwarf2out_abstract_function won't emit a die if this is just
13190 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13191 that case, because that works only if we have a die. */
13192 && DECL_INITIAL (decl) != NULL_TREE)
13194 dwarf2out_abstract_function (decl);
13195 set_decl_origin_self (decl);
13198 /* Otherwise we're emitting the primary DIE for this decl. */
13199 else if (debug_info_level > DINFO_LEVEL_TERSE)
13201 /* Before we describe the FUNCTION_DECL itself, make sure that we
13202 have described its return type. */
13203 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13205 /* And its virtual context. */
13206 if (DECL_VINDEX (decl) != NULL_TREE)
13207 gen_type_die (DECL_CONTEXT (decl), context_die);
13209 /* And its containing type. */
13210 origin = decl_class_context (decl);
13211 if (origin != NULL_TREE)
13212 gen_type_die_for_member (origin, decl, context_die);
13214 /* And its containing namespace. */
13215 declare_in_namespace (decl, context_die);
13218 /* Now output a DIE to represent the function itself. */
13219 gen_subprogram_die (decl, context_die);
13220 break;
13222 case TYPE_DECL:
13223 /* If we are in terse mode, don't generate any DIEs to represent any
13224 actual typedefs. */
13225 if (debug_info_level <= DINFO_LEVEL_TERSE)
13226 break;
13228 /* In the special case of a TYPE_DECL node representing the declaration
13229 of some type tag, if the given TYPE_DECL is marked as having been
13230 instantiated from some other (original) TYPE_DECL node (e.g. one which
13231 was generated within the original definition of an inline function) we
13232 have to generate a special (abbreviated) DW_TAG_structure_type,
13233 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13234 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13236 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13237 break;
13240 if (is_redundant_typedef (decl))
13241 gen_type_die (TREE_TYPE (decl), context_die);
13242 else
13243 /* Output a DIE to represent the typedef itself. */
13244 gen_typedef_die (decl, context_die);
13245 break;
13247 case LABEL_DECL:
13248 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13249 gen_label_die (decl, context_die);
13250 break;
13252 case VAR_DECL:
13253 case RESULT_DECL:
13254 /* If we are in terse mode, don't generate any DIEs to represent any
13255 variable declarations or definitions. */
13256 if (debug_info_level <= DINFO_LEVEL_TERSE)
13257 break;
13259 /* Output any DIEs that are needed to specify the type of this data
13260 object. */
13261 gen_type_die (TREE_TYPE (decl), context_die);
13263 /* And its containing type. */
13264 origin = decl_class_context (decl);
13265 if (origin != NULL_TREE)
13266 gen_type_die_for_member (origin, decl, context_die);
13268 /* And its containing namespace. */
13269 declare_in_namespace (decl, context_die);
13271 /* Now output the DIE to represent the data object itself. This gets
13272 complicated because of the possibility that the VAR_DECL really
13273 represents an inlined instance of a formal parameter for an inline
13274 function. */
13275 origin = decl_ultimate_origin (decl);
13276 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13277 gen_formal_parameter_die (decl, context_die);
13278 else
13279 gen_variable_die (decl, context_die);
13280 break;
13282 case FIELD_DECL:
13283 /* Ignore the nameless fields that are used to skip bits but handle C++
13284 anonymous unions and structs. */
13285 if (DECL_NAME (decl) != NULL_TREE
13286 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13287 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13289 gen_type_die (member_declared_type (decl), context_die);
13290 gen_field_die (decl, context_die);
13292 break;
13294 case PARM_DECL:
13295 gen_type_die (TREE_TYPE (decl), context_die);
13296 gen_formal_parameter_die (decl, context_die);
13297 break;
13299 case NAMESPACE_DECL:
13300 gen_namespace_die (decl);
13301 break;
13303 default:
13304 /* Probably some frontend-internal decl. Assume we don't care. */
13305 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13306 break;
13310 /* Output debug information for global decl DECL. Called from toplev.c after
13311 compilation proper has finished. */
13313 static void
13314 dwarf2out_global_decl (tree decl)
13316 /* Output DWARF2 information for file-scope tentative data object
13317 declarations, file-scope (extern) function declarations (which had no
13318 corresponding body) and file-scope tagged type declarations and
13319 definitions which have not yet been forced out. */
13320 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13321 dwarf2out_decl (decl);
13324 /* Output debug information for type decl DECL. Called from toplev.c
13325 and from language front ends (to record built-in types). */
13326 static void
13327 dwarf2out_type_decl (tree decl, int local)
13329 if (!local)
13330 dwarf2out_decl (decl);
13333 /* Output debug information for imported module or decl. */
13335 static void
13336 dwarf2out_imported_module_or_decl (tree decl, tree context)
13338 dw_die_ref imported_die, at_import_die;
13339 dw_die_ref scope_die;
13340 expanded_location xloc;
13342 if (debug_info_level <= DINFO_LEVEL_TERSE)
13343 return;
13345 gcc_assert (decl);
13347 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13348 We need decl DIE for reference and scope die. First, get DIE for the decl
13349 itself. */
13351 /* Get the scope die for decl context. Use comp_unit_die for global module
13352 or decl. If die is not found for non globals, force new die. */
13353 if (!context)
13354 scope_die = comp_unit_die;
13355 else if (TYPE_P (context))
13356 scope_die = force_type_die (context);
13357 else
13358 scope_die = force_decl_die (context);
13360 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13361 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13362 at_import_die = force_type_die (TREE_TYPE (decl));
13363 else
13365 at_import_die = lookup_decl_die (decl);
13366 if (!at_import_die)
13368 /* If we're trying to avoid duplicate debug info, we may not have
13369 emitted the member decl for this field. Emit it now. */
13370 if (TREE_CODE (decl) == FIELD_DECL)
13372 tree type = DECL_CONTEXT (decl);
13373 dw_die_ref type_context_die;
13375 if (TYPE_CONTEXT (type))
13376 if (TYPE_P (TYPE_CONTEXT (type)))
13377 type_context_die = force_type_die (TYPE_CONTEXT (type));
13378 else
13379 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13380 else
13381 type_context_die = comp_unit_die;
13382 gen_type_die_for_member (type, decl, type_context_die);
13384 at_import_die = force_decl_die (decl);
13388 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13389 if (TREE_CODE (decl) == NAMESPACE_DECL)
13390 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13391 else
13392 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13394 xloc = expand_location (input_location);
13395 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13396 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13397 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13400 /* Write the debugging output for DECL. */
13402 void
13403 dwarf2out_decl (tree decl)
13405 dw_die_ref context_die = comp_unit_die;
13407 switch (TREE_CODE (decl))
13409 case ERROR_MARK:
13410 return;
13412 case FUNCTION_DECL:
13413 /* What we would really like to do here is to filter out all mere
13414 file-scope declarations of file-scope functions which are never
13415 referenced later within this translation unit (and keep all of ones
13416 that *are* referenced later on) but we aren't clairvoyant, so we have
13417 no idea which functions will be referenced in the future (i.e. later
13418 on within the current translation unit). So here we just ignore all
13419 file-scope function declarations which are not also definitions. If
13420 and when the debugger needs to know something about these functions,
13421 it will have to hunt around and find the DWARF information associated
13422 with the definition of the function.
13424 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13425 nodes represent definitions and which ones represent mere
13426 declarations. We have to check DECL_INITIAL instead. That's because
13427 the C front-end supports some weird semantics for "extern inline"
13428 function definitions. These can get inlined within the current
13429 translation unit (and thus, we need to generate Dwarf info for their
13430 abstract instances so that the Dwarf info for the concrete inlined
13431 instances can have something to refer to) but the compiler never
13432 generates any out-of-lines instances of such things (despite the fact
13433 that they *are* definitions).
13435 The important point is that the C front-end marks these "extern
13436 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13437 them anyway. Note that the C++ front-end also plays some similar games
13438 for inline function definitions appearing within include files which
13439 also contain `#pragma interface' pragmas. */
13440 if (DECL_INITIAL (decl) == NULL_TREE)
13441 return;
13443 /* If we're a nested function, initially use a parent of NULL; if we're
13444 a plain function, this will be fixed up in decls_for_scope. If
13445 we're a method, it will be ignored, since we already have a DIE. */
13446 if (decl_function_context (decl)
13447 /* But if we're in terse mode, we don't care about scope. */
13448 && debug_info_level > DINFO_LEVEL_TERSE)
13449 context_die = NULL;
13450 break;
13452 case VAR_DECL:
13453 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13454 declaration and if the declaration was never even referenced from
13455 within this entire compilation unit. We suppress these DIEs in
13456 order to save space in the .debug section (by eliminating entries
13457 which are probably useless). Note that we must not suppress
13458 block-local extern declarations (whether used or not) because that
13459 would screw-up the debugger's name lookup mechanism and cause it to
13460 miss things which really ought to be in scope at a given point. */
13461 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13462 return;
13464 /* For local statics lookup proper context die. */
13465 if (TREE_STATIC (decl) && decl_function_context (decl))
13466 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13468 /* If we are in terse mode, don't generate any DIEs to represent any
13469 variable declarations or definitions. */
13470 if (debug_info_level <= DINFO_LEVEL_TERSE)
13471 return;
13472 break;
13474 case NAMESPACE_DECL:
13475 if (debug_info_level <= DINFO_LEVEL_TERSE)
13476 return;
13477 if (lookup_decl_die (decl) != NULL)
13478 return;
13479 break;
13481 case TYPE_DECL:
13482 /* Don't emit stubs for types unless they are needed by other DIEs. */
13483 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13484 return;
13486 /* Don't bother trying to generate any DIEs to represent any of the
13487 normal built-in types for the language we are compiling. */
13488 if (DECL_IS_BUILTIN (decl))
13490 /* OK, we need to generate one for `bool' so GDB knows what type
13491 comparisons have. */
13492 if (is_cxx ()
13493 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13494 && ! DECL_IGNORED_P (decl))
13495 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13497 return;
13500 /* If we are in terse mode, don't generate any DIEs for types. */
13501 if (debug_info_level <= DINFO_LEVEL_TERSE)
13502 return;
13504 /* If we're a function-scope tag, initially use a parent of NULL;
13505 this will be fixed up in decls_for_scope. */
13506 if (decl_function_context (decl))
13507 context_die = NULL;
13509 break;
13511 default:
13512 return;
13515 gen_decl_die (decl, context_die);
13518 /* Output a marker (i.e. a label) for the beginning of the generated code for
13519 a lexical block. */
13521 static void
13522 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13523 unsigned int blocknum)
13525 switch_to_section (current_function_section ());
13526 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13529 /* Output a marker (i.e. a label) for the end of the generated code for a
13530 lexical block. */
13532 static void
13533 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13535 switch_to_section (current_function_section ());
13536 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13539 /* Returns nonzero if it is appropriate not to emit any debugging
13540 information for BLOCK, because it doesn't contain any instructions.
13542 Don't allow this for blocks with nested functions or local classes
13543 as we would end up with orphans, and in the presence of scheduling
13544 we may end up calling them anyway. */
13546 static bool
13547 dwarf2out_ignore_block (tree block)
13549 tree decl;
13551 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13552 if (TREE_CODE (decl) == FUNCTION_DECL
13553 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13554 return 0;
13556 return 1;
13559 /* Hash table routines for file_hash. */
13561 static int
13562 file_table_eq (const void *p1_p, const void *p2_p)
13564 const struct dwarf_file_data * p1 = p1_p;
13565 const char * p2 = p2_p;
13566 return strcmp (p1->filename, p2) == 0;
13569 static hashval_t
13570 file_table_hash (const void *p_p)
13572 const struct dwarf_file_data * p = p_p;
13573 return htab_hash_string (p->filename);
13576 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13577 dwarf2out.c) and return its "index". The index of each (known) filename is
13578 just a unique number which is associated with only that one filename. We
13579 need such numbers for the sake of generating labels (in the .debug_sfnames
13580 section) and references to those files numbers (in the .debug_srcinfo
13581 and.debug_macinfo sections). If the filename given as an argument is not
13582 found in our current list, add it to the list and assign it the next
13583 available unique index number. In order to speed up searches, we remember
13584 the index of the filename was looked up last. This handles the majority of
13585 all searches. */
13587 static struct dwarf_file_data *
13588 lookup_filename (const char *file_name)
13590 void ** slot;
13591 struct dwarf_file_data * created;
13593 /* Check to see if the file name that was searched on the previous
13594 call matches this file name. If so, return the index. */
13595 if (file_table_last_lookup
13596 && (file_name == file_table_last_lookup->filename
13597 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13598 return file_table_last_lookup;
13600 /* Didn't match the previous lookup, search the table. */
13601 slot = htab_find_slot_with_hash (file_table, file_name,
13602 htab_hash_string (file_name), INSERT);
13603 if (*slot)
13604 return *slot;
13606 created = ggc_alloc (sizeof (struct dwarf_file_data));
13607 created->filename = file_name;
13608 created->emitted_number = 0;
13609 *slot = created;
13610 return created;
13613 /* If the assembler will construct the file table, then translate the compiler
13614 internal file table number into the assembler file table number, and emit
13615 a .file directive if we haven't already emitted one yet. The file table
13616 numbers are different because we prune debug info for unused variables and
13617 types, which may include filenames. */
13619 static int
13620 maybe_emit_file (struct dwarf_file_data * fd)
13622 if (! fd->emitted_number)
13624 if (last_emitted_file)
13625 fd->emitted_number = last_emitted_file->emitted_number + 1;
13626 else
13627 fd->emitted_number = 1;
13628 last_emitted_file = fd;
13630 if (DWARF2_ASM_LINE_DEBUG_INFO)
13632 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13633 output_quoted_string (asm_out_file, fd->filename);
13634 fputc ('\n', asm_out_file);
13638 return fd->emitted_number;
13641 /* Called by the final INSN scan whenever we see a var location. We
13642 use it to drop labels in the right places, and throw the location in
13643 our lookup table. */
13645 static void
13646 dwarf2out_var_location (rtx loc_note)
13648 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13649 struct var_loc_node *newloc;
13650 rtx prev_insn;
13651 static rtx last_insn;
13652 static const char *last_label;
13653 tree decl;
13655 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13656 return;
13657 prev_insn = PREV_INSN (loc_note);
13659 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13660 /* If the insn we processed last time is the previous insn
13661 and it is also a var location note, use the label we emitted
13662 last time. */
13663 if (last_insn != NULL_RTX
13664 && last_insn == prev_insn
13665 && NOTE_P (prev_insn)
13666 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13668 newloc->label = last_label;
13670 else
13672 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13673 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13674 loclabel_num++;
13675 newloc->label = ggc_strdup (loclabel);
13677 newloc->var_loc_note = loc_note;
13678 newloc->next = NULL;
13680 if (cfun && in_cold_section_p)
13681 newloc->section_label = cfun->cold_section_label;
13682 else
13683 newloc->section_label = text_section_label;
13685 last_insn = loc_note;
13686 last_label = newloc->label;
13687 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13688 add_var_loc_to_decl (decl, newloc);
13691 /* We need to reset the locations at the beginning of each
13692 function. We can't do this in the end_function hook, because the
13693 declarations that use the locations won't have been output when
13694 that hook is called. Also compute have_multiple_function_sections here. */
13696 static void
13697 dwarf2out_begin_function (tree fun)
13699 htab_empty (decl_loc_table);
13701 if (function_section (fun) != text_section)
13702 have_multiple_function_sections = true;
13705 /* Output a label to mark the beginning of a source code line entry
13706 and record information relating to this source line, in
13707 'line_info_table' for later output of the .debug_line section. */
13709 static void
13710 dwarf2out_source_line (unsigned int line, const char *filename)
13712 if (debug_info_level >= DINFO_LEVEL_NORMAL
13713 && line != 0)
13715 int file_num = maybe_emit_file (lookup_filename (filename));
13717 switch_to_section (current_function_section ());
13719 /* If requested, emit something human-readable. */
13720 if (flag_debug_asm)
13721 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13722 filename, line);
13724 if (DWARF2_ASM_LINE_DEBUG_INFO)
13726 /* Emit the .loc directive understood by GNU as. */
13727 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13729 /* Indicate that line number info exists. */
13730 line_info_table_in_use++;
13732 else if (function_section (current_function_decl) != text_section)
13734 dw_separate_line_info_ref line_info;
13735 targetm.asm_out.internal_label (asm_out_file,
13736 SEPARATE_LINE_CODE_LABEL,
13737 separate_line_info_table_in_use);
13739 /* Expand the line info table if necessary. */
13740 if (separate_line_info_table_in_use
13741 == separate_line_info_table_allocated)
13743 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13744 separate_line_info_table
13745 = ggc_realloc (separate_line_info_table,
13746 separate_line_info_table_allocated
13747 * sizeof (dw_separate_line_info_entry));
13748 memset (separate_line_info_table
13749 + separate_line_info_table_in_use,
13751 (LINE_INFO_TABLE_INCREMENT
13752 * sizeof (dw_separate_line_info_entry)));
13755 /* Add the new entry at the end of the line_info_table. */
13756 line_info
13757 = &separate_line_info_table[separate_line_info_table_in_use++];
13758 line_info->dw_file_num = file_num;
13759 line_info->dw_line_num = line;
13760 line_info->function = current_function_funcdef_no;
13762 else
13764 dw_line_info_ref line_info;
13766 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13767 line_info_table_in_use);
13769 /* Expand the line info table if necessary. */
13770 if (line_info_table_in_use == line_info_table_allocated)
13772 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13773 line_info_table
13774 = ggc_realloc (line_info_table,
13775 (line_info_table_allocated
13776 * sizeof (dw_line_info_entry)));
13777 memset (line_info_table + line_info_table_in_use, 0,
13778 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13781 /* Add the new entry at the end of the line_info_table. */
13782 line_info = &line_info_table[line_info_table_in_use++];
13783 line_info->dw_file_num = file_num;
13784 line_info->dw_line_num = line;
13789 /* Record the beginning of a new source file. */
13791 static void
13792 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13794 if (flag_eliminate_dwarf2_dups)
13796 /* Record the beginning of the file for break_out_includes. */
13797 dw_die_ref bincl_die;
13799 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13800 add_AT_string (bincl_die, DW_AT_name, filename);
13803 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13805 int file_num = maybe_emit_file (lookup_filename (filename));
13807 switch_to_section (debug_macinfo_section);
13808 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13809 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13810 lineno);
13812 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13816 /* Record the end of a source file. */
13818 static void
13819 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13821 if (flag_eliminate_dwarf2_dups)
13822 /* Record the end of the file for break_out_includes. */
13823 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13825 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13827 switch_to_section (debug_macinfo_section);
13828 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13832 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13833 the tail part of the directive line, i.e. the part which is past the
13834 initial whitespace, #, whitespace, directive-name, whitespace part. */
13836 static void
13837 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13838 const char *buffer ATTRIBUTE_UNUSED)
13840 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13842 switch_to_section (debug_macinfo_section);
13843 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13844 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13845 dw2_asm_output_nstring (buffer, -1, "The macro");
13849 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13850 the tail part of the directive line, i.e. the part which is past the
13851 initial whitespace, #, whitespace, directive-name, whitespace part. */
13853 static void
13854 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13855 const char *buffer ATTRIBUTE_UNUSED)
13857 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13859 switch_to_section (debug_macinfo_section);
13860 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13861 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13862 dw2_asm_output_nstring (buffer, -1, "The macro");
13866 /* Set up for Dwarf output at the start of compilation. */
13868 static void
13869 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13871 /* Allocate the file_table. */
13872 file_table = htab_create_ggc (50, file_table_hash,
13873 file_table_eq, NULL);
13875 /* Allocate the decl_die_table. */
13876 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13877 decl_die_table_eq, NULL);
13879 /* Allocate the decl_loc_table. */
13880 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13881 decl_loc_table_eq, NULL);
13883 /* Allocate the initial hunk of the decl_scope_table. */
13884 decl_scope_table = VEC_alloc (tree, gc, 256);
13886 /* Allocate the initial hunk of the abbrev_die_table. */
13887 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13888 * sizeof (dw_die_ref));
13889 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13890 /* Zero-th entry is allocated, but unused. */
13891 abbrev_die_table_in_use = 1;
13893 /* Allocate the initial hunk of the line_info_table. */
13894 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13895 * sizeof (dw_line_info_entry));
13896 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13898 /* Zero-th entry is allocated, but unused. */
13899 line_info_table_in_use = 1;
13901 /* Allocate the pubtypes and pubnames vectors. */
13902 pubname_table = VEC_alloc (pubname_entry, gc, 32);
13903 pubtype_table = VEC_alloc (pubname_entry, gc, 32);
13905 /* Generate the initial DIE for the .debug section. Note that the (string)
13906 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13907 will (typically) be a relative pathname and that this pathname should be
13908 taken as being relative to the directory from which the compiler was
13909 invoked when the given (base) source file was compiled. We will fill
13910 in this value in dwarf2out_finish. */
13911 comp_unit_die = gen_compile_unit_die (NULL);
13913 incomplete_types = VEC_alloc (tree, gc, 64);
13915 used_rtx_array = VEC_alloc (rtx, gc, 32);
13917 debug_info_section = get_section (DEBUG_INFO_SECTION,
13918 SECTION_DEBUG, NULL);
13919 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13920 SECTION_DEBUG, NULL);
13921 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13922 SECTION_DEBUG, NULL);
13923 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13924 SECTION_DEBUG, NULL);
13925 debug_line_section = get_section (DEBUG_LINE_SECTION,
13926 SECTION_DEBUG, NULL);
13927 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13928 SECTION_DEBUG, NULL);
13929 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13930 SECTION_DEBUG, NULL);
13931 #ifdef DEBUG_PUBTYPES_SECTION
13932 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
13933 SECTION_DEBUG, NULL);
13934 #endif
13935 debug_str_section = get_section (DEBUG_STR_SECTION,
13936 DEBUG_STR_SECTION_FLAGS, NULL);
13937 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13938 SECTION_DEBUG, NULL);
13939 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13940 SECTION_DEBUG, NULL);
13942 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13943 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13944 DEBUG_ABBREV_SECTION_LABEL, 0);
13945 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13946 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13947 COLD_TEXT_SECTION_LABEL, 0);
13948 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13950 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13951 DEBUG_INFO_SECTION_LABEL, 0);
13952 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13953 DEBUG_LINE_SECTION_LABEL, 0);
13954 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13955 DEBUG_RANGES_SECTION_LABEL, 0);
13956 switch_to_section (debug_abbrev_section);
13957 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13958 switch_to_section (debug_info_section);
13959 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13960 switch_to_section (debug_line_section);
13961 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13963 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13965 switch_to_section (debug_macinfo_section);
13966 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13967 DEBUG_MACINFO_SECTION_LABEL, 0);
13968 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13971 switch_to_section (text_section);
13972 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13973 if (flag_reorder_blocks_and_partition)
13975 switch_to_section (unlikely_text_section ());
13976 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13980 /* A helper function for dwarf2out_finish called through
13981 ht_forall. Emit one queued .debug_str string. */
13983 static int
13984 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13986 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13988 if (node->form == DW_FORM_strp)
13990 switch_to_section (debug_str_section);
13991 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13992 assemble_string (node->str, strlen (node->str) + 1);
13995 return 1;
13998 #if ENABLE_ASSERT_CHECKING
13999 /* Verify that all marks are clear. */
14001 static void
14002 verify_marks_clear (dw_die_ref die)
14004 dw_die_ref c;
14006 gcc_assert (! die->die_mark);
14007 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
14009 #endif /* ENABLE_ASSERT_CHECKING */
14011 /* Clear the marks for a die and its children.
14012 Be cool if the mark isn't set. */
14014 static void
14015 prune_unmark_dies (dw_die_ref die)
14017 dw_die_ref c;
14019 if (die->die_mark)
14020 die->die_mark = 0;
14021 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
14024 /* Given DIE that we're marking as used, find any other dies
14025 it references as attributes and mark them as used. */
14027 static void
14028 prune_unused_types_walk_attribs (dw_die_ref die)
14030 dw_attr_ref a;
14031 unsigned ix;
14033 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14035 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
14037 /* A reference to another DIE.
14038 Make sure that it will get emitted. */
14039 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
14041 /* Set the string's refcount to 0 so that prune_unused_types_mark
14042 accounts properly for it. */
14043 if (AT_class (a) == dw_val_class_str)
14044 a->dw_attr_val.v.val_str->refcount = 0;
14049 /* Mark DIE as being used. If DOKIDS is true, then walk down
14050 to DIE's children. */
14052 static void
14053 prune_unused_types_mark (dw_die_ref die, int dokids)
14055 dw_die_ref c;
14057 if (die->die_mark == 0)
14059 /* We haven't done this node yet. Mark it as used. */
14060 die->die_mark = 1;
14062 /* We also have to mark its parents as used.
14063 (But we don't want to mark our parents' kids due to this.) */
14064 if (die->die_parent)
14065 prune_unused_types_mark (die->die_parent, 0);
14067 /* Mark any referenced nodes. */
14068 prune_unused_types_walk_attribs (die);
14070 /* If this node is a specification,
14071 also mark the definition, if it exists. */
14072 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14073 prune_unused_types_mark (die->die_definition, 1);
14076 if (dokids && die->die_mark != 2)
14078 /* We need to walk the children, but haven't done so yet.
14079 Remember that we've walked the kids. */
14080 die->die_mark = 2;
14082 /* If this is an array type, we need to make sure our
14083 kids get marked, even if they're types. */
14084 if (die->die_tag == DW_TAG_array_type)
14085 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14086 else
14087 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14092 /* Walk the tree DIE and mark types that we actually use. */
14094 static void
14095 prune_unused_types_walk (dw_die_ref die)
14097 dw_die_ref c;
14099 /* Don't do anything if this node is already marked. */
14100 if (die->die_mark)
14101 return;
14103 switch (die->die_tag)
14105 case DW_TAG_const_type:
14106 case DW_TAG_packed_type:
14107 case DW_TAG_pointer_type:
14108 case DW_TAG_reference_type:
14109 case DW_TAG_volatile_type:
14110 case DW_TAG_typedef:
14111 case DW_TAG_array_type:
14112 case DW_TAG_structure_type:
14113 case DW_TAG_union_type:
14114 case DW_TAG_class_type:
14115 case DW_TAG_friend:
14116 case DW_TAG_variant_part:
14117 case DW_TAG_enumeration_type:
14118 case DW_TAG_subroutine_type:
14119 case DW_TAG_string_type:
14120 case DW_TAG_set_type:
14121 case DW_TAG_subrange_type:
14122 case DW_TAG_ptr_to_member_type:
14123 case DW_TAG_file_type:
14124 if (die->die_perennial_p)
14125 break;
14127 /* It's a type node --- don't mark it. */
14128 return;
14130 default:
14131 /* Mark everything else. */
14132 break;
14135 die->die_mark = 1;
14137 /* Now, mark any dies referenced from here. */
14138 prune_unused_types_walk_attribs (die);
14140 /* Mark children. */
14141 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14144 /* Increment the string counts on strings referred to from DIE's
14145 attributes. */
14147 static void
14148 prune_unused_types_update_strings (dw_die_ref die)
14150 dw_attr_ref a;
14151 unsigned ix;
14153 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14154 if (AT_class (a) == dw_val_class_str)
14156 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14157 s->refcount++;
14158 /* Avoid unnecessarily putting strings that are used less than
14159 twice in the hash table. */
14160 if (s->refcount
14161 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14163 void ** slot;
14164 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14165 htab_hash_string (s->str),
14166 INSERT);
14167 gcc_assert (*slot == NULL);
14168 *slot = s;
14173 /* Remove from the tree DIE any dies that aren't marked. */
14175 static void
14176 prune_unused_types_prune (dw_die_ref die)
14178 dw_die_ref c;
14180 gcc_assert (die->die_mark);
14181 prune_unused_types_update_strings (die);
14183 if (! die->die_child)
14184 return;
14186 c = die->die_child;
14187 do {
14188 dw_die_ref prev = c;
14189 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14190 if (c == die->die_child)
14192 /* No marked children between 'prev' and the end of the list. */
14193 if (prev == c)
14194 /* No marked children at all. */
14195 die->die_child = NULL;
14196 else
14198 prev->die_sib = c->die_sib;
14199 die->die_child = prev;
14201 return;
14204 if (c != prev->die_sib)
14205 prev->die_sib = c;
14206 prune_unused_types_prune (c);
14207 } while (c != die->die_child);
14211 /* Remove dies representing declarations that we never use. */
14213 static void
14214 prune_unused_types (void)
14216 unsigned int i;
14217 limbo_die_node *node;
14218 pubname_ref pub;
14220 #if ENABLE_ASSERT_CHECKING
14221 /* All the marks should already be clear. */
14222 verify_marks_clear (comp_unit_die);
14223 for (node = limbo_die_list; node; node = node->next)
14224 verify_marks_clear (node->die);
14225 #endif /* ENABLE_ASSERT_CHECKING */
14227 /* Set the mark on nodes that are actually used. */
14228 prune_unused_types_walk (comp_unit_die);
14229 for (node = limbo_die_list; node; node = node->next)
14230 prune_unused_types_walk (node->die);
14232 /* Also set the mark on nodes referenced from the
14233 pubname_table or arange_table. */
14234 for (i = 0; VEC_iterate (pubname_entry, pubname_table, i, pub); i++)
14235 prune_unused_types_mark (pub->die, 1);
14236 for (i = 0; i < arange_table_in_use; i++)
14237 prune_unused_types_mark (arange_table[i], 1);
14239 /* Get rid of nodes that aren't marked; and update the string counts. */
14240 if (debug_str_hash)
14241 htab_empty (debug_str_hash);
14242 prune_unused_types_prune (comp_unit_die);
14243 for (node = limbo_die_list; node; node = node->next)
14244 prune_unused_types_prune (node->die);
14246 /* Leave the marks clear. */
14247 prune_unmark_dies (comp_unit_die);
14248 for (node = limbo_die_list; node; node = node->next)
14249 prune_unmark_dies (node->die);
14252 /* Set the parameter to true if there are any relative pathnames in
14253 the file table. */
14254 static int
14255 file_table_relative_p (void ** slot, void *param)
14257 bool *p = param;
14258 struct dwarf_file_data *d = *slot;
14259 if (d->emitted_number && !IS_ABSOLUTE_PATH (d->filename))
14261 *p = true;
14262 return 0;
14264 return 1;
14267 /* Output stuff that dwarf requires at the end of every file,
14268 and generate the DWARF-2 debugging info. */
14270 static void
14271 dwarf2out_finish (const char *filename)
14273 limbo_die_node *node, *next_node;
14274 dw_die_ref die = 0;
14276 /* Add the name for the main input file now. We delayed this from
14277 dwarf2out_init to avoid complications with PCH. */
14278 add_name_attribute (comp_unit_die, filename);
14279 if (!IS_ABSOLUTE_PATH (filename))
14280 add_comp_dir_attribute (comp_unit_die);
14281 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14283 bool p = false;
14284 htab_traverse (file_table, file_table_relative_p, &p);
14285 if (p)
14286 add_comp_dir_attribute (comp_unit_die);
14289 /* Traverse the limbo die list, and add parent/child links. The only
14290 dies without parents that should be here are concrete instances of
14291 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14292 For concrete instances, we can get the parent die from the abstract
14293 instance. */
14294 for (node = limbo_die_list; node; node = next_node)
14296 next_node = node->next;
14297 die = node->die;
14299 if (die->die_parent == NULL)
14301 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14303 if (origin)
14304 add_child_die (origin->die_parent, die);
14305 else if (die == comp_unit_die)
14307 else if (errorcount > 0 || sorrycount > 0)
14308 /* It's OK to be confused by errors in the input. */
14309 add_child_die (comp_unit_die, die);
14310 else
14312 /* In certain situations, the lexical block containing a
14313 nested function can be optimized away, which results
14314 in the nested function die being orphaned. Likewise
14315 with the return type of that nested function. Force
14316 this to be a child of the containing function.
14318 It may happen that even the containing function got fully
14319 inlined and optimized out. In that case we are lost and
14320 assign the empty child. This should not be big issue as
14321 the function is likely unreachable too. */
14322 tree context = NULL_TREE;
14324 gcc_assert (node->created_for);
14326 if (DECL_P (node->created_for))
14327 context = DECL_CONTEXT (node->created_for);
14328 else if (TYPE_P (node->created_for))
14329 context = TYPE_CONTEXT (node->created_for);
14331 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14333 origin = lookup_decl_die (context);
14334 if (origin)
14335 add_child_die (origin, die);
14336 else
14337 add_child_die (comp_unit_die, die);
14342 limbo_die_list = NULL;
14344 /* Walk through the list of incomplete types again, trying once more to
14345 emit full debugging info for them. */
14346 retry_incomplete_types ();
14348 if (flag_eliminate_unused_debug_types)
14349 prune_unused_types ();
14351 /* Generate separate CUs for each of the include files we've seen.
14352 They will go into limbo_die_list. */
14353 if (flag_eliminate_dwarf2_dups)
14354 break_out_includes (comp_unit_die);
14356 /* Traverse the DIE's and add add sibling attributes to those DIE's
14357 that have children. */
14358 add_sibling_attributes (comp_unit_die);
14359 for (node = limbo_die_list; node; node = node->next)
14360 add_sibling_attributes (node->die);
14362 /* Output a terminator label for the .text section. */
14363 switch_to_section (text_section);
14364 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14365 if (flag_reorder_blocks_and_partition)
14367 switch_to_section (unlikely_text_section ());
14368 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14371 /* We can only use the low/high_pc attributes if all of the code was
14372 in .text. */
14373 if (!have_multiple_function_sections)
14375 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14376 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14379 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14380 "base address". Use zero so that these addresses become absolute. */
14381 else if (have_location_lists || ranges_table_in_use)
14382 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14384 /* Output location list section if necessary. */
14385 if (have_location_lists)
14387 /* Output the location lists info. */
14388 switch_to_section (debug_loc_section);
14389 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14390 DEBUG_LOC_SECTION_LABEL, 0);
14391 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14392 output_location_lists (die);
14395 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14396 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14397 debug_line_section_label);
14399 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14400 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14402 /* Output all of the compilation units. We put the main one last so that
14403 the offsets are available to output_pubnames. */
14404 for (node = limbo_die_list; node; node = node->next)
14405 output_comp_unit (node->die, 0);
14407 output_comp_unit (comp_unit_die, 0);
14409 /* Output the abbreviation table. */
14410 switch_to_section (debug_abbrev_section);
14411 output_abbrev_section ();
14413 /* Output public names table if necessary. */
14414 if (!VEC_empty (pubname_entry, pubname_table))
14416 switch_to_section (debug_pubnames_section);
14417 output_pubnames (pubname_table);
14420 #ifdef DEBUG_PUBTYPES_SECTION
14421 /* Output public types table if necessary. */
14422 if (!VEC_empty (pubname_entry, pubtype_table))
14424 switch_to_section (debug_pubtypes_section);
14425 output_pubnames (pubtype_table);
14427 #endif
14429 /* Output the address range information. We only put functions in the arange
14430 table, so don't write it out if we don't have any. */
14431 if (fde_table_in_use)
14433 switch_to_section (debug_aranges_section);
14434 output_aranges ();
14437 /* Output ranges section if necessary. */
14438 if (ranges_table_in_use)
14440 switch_to_section (debug_ranges_section);
14441 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14442 output_ranges ();
14445 /* Output the source line correspondence table. We must do this
14446 even if there is no line information. Otherwise, on an empty
14447 translation unit, we will generate a present, but empty,
14448 .debug_info section. IRIX 6.5 `nm' will then complain when
14449 examining the file. This is done late so that any filenames
14450 used by the debug_info section are marked as 'used'. */
14451 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14453 switch_to_section (debug_line_section);
14454 output_line_info ();
14457 /* Have to end the macro section. */
14458 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14460 switch_to_section (debug_macinfo_section);
14461 dw2_asm_output_data (1, 0, "End compilation unit");
14464 /* If we emitted any DW_FORM_strp form attribute, output the string
14465 table too. */
14466 if (debug_str_hash)
14467 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14469 #else
14471 /* This should never be used, but its address is needed for comparisons. */
14472 const struct gcc_debug_hooks dwarf2_debug_hooks;
14474 #endif /* DWARF2_DEBUGGING_INFO */
14476 #include "gt-dwarf2out.h"