* config/arm/arm.c (is_load_address): Rename to... (arm_memory_load_p) ... this
[official-gcc.git] / gcc / cfgcleanup.c
blobeaefdf2e381da13f70048e91eca6cbab3f771014
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
52 /* cleanup_cfg maintains following flags for each basic block. */
54 enum bb_flags
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK = 1,
59 BB_NONTHREADABLE_BLOCK = 2
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
70 static bool try_crossjump_to_edge PARAMS ((int, edge, edge));
71 static bool try_crossjump_bb PARAMS ((int, basic_block));
72 static bool outgoing_edges_match PARAMS ((int,
73 basic_block, basic_block));
74 static int flow_find_cross_jump PARAMS ((int, basic_block, basic_block,
75 rtx *, rtx *));
76 static bool insns_match_p PARAMS ((int, rtx, rtx));
78 static bool label_is_jump_target_p PARAMS ((rtx, rtx));
79 static bool tail_recursion_label_p PARAMS ((rtx));
80 static void merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
81 basic_block));
82 static void merge_blocks_move_successor_nojumps PARAMS ((basic_block,
83 basic_block));
84 static bool merge_blocks PARAMS ((edge,basic_block,basic_block,
85 int));
86 static bool try_optimize_cfg PARAMS ((int));
87 static bool try_simplify_condjump PARAMS ((basic_block));
88 static bool try_forward_edges PARAMS ((int, basic_block));
89 static edge thread_jump PARAMS ((int, edge, basic_block));
90 static bool mark_effect PARAMS ((rtx, bitmap));
91 static void notice_new_block PARAMS ((basic_block));
92 static void update_forwarder_flag PARAMS ((basic_block));
93 static int mentions_nonequal_regs PARAMS ((rtx *, void *));
95 /* Set flags for newly created block. */
97 static void
98 notice_new_block (bb)
99 basic_block bb;
101 if (!bb)
102 return;
104 if (forwarder_block_p (bb))
105 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
108 /* Recompute forwarder flag after block has been modified. */
110 static void
111 update_forwarder_flag (bb)
112 basic_block bb;
114 if (forwarder_block_p (bb))
115 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
116 else
117 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
120 /* Simplify a conditional jump around an unconditional jump.
121 Return true if something changed. */
123 static bool
124 try_simplify_condjump (cbranch_block)
125 basic_block cbranch_block;
127 basic_block jump_block, jump_dest_block, cbranch_dest_block;
128 edge cbranch_jump_edge, cbranch_fallthru_edge;
129 rtx cbranch_insn;
131 /* Verify that there are exactly two successors. */
132 if (!cbranch_block->succ
133 || !cbranch_block->succ->succ_next
134 || cbranch_block->succ->succ_next->succ_next)
135 return false;
137 /* Verify that we've got a normal conditional branch at the end
138 of the block. */
139 cbranch_insn = cbranch_block->end;
140 if (!any_condjump_p (cbranch_insn))
141 return false;
143 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
144 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
146 /* The next block must not have multiple predecessors, must not
147 be the last block in the function, and must contain just the
148 unconditional jump. */
149 jump_block = cbranch_fallthru_edge->dest;
150 if (jump_block->pred->pred_next
151 || jump_block->next_bb == EXIT_BLOCK_PTR
152 || !FORWARDER_BLOCK_P (jump_block))
153 return false;
154 jump_dest_block = jump_block->succ->dest;
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
160 if (!can_fallthru (jump_block, cbranch_dest_block))
161 return false;
163 /* Invert the conditional branch. */
164 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
165 return false;
167 if (rtl_dump_file)
168 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
169 INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
171 /* Success. Update the CFG to match. Note that after this point
172 the edge variable names appear backwards; the redirection is done
173 this way to preserve edge profile data. */
174 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
175 cbranch_dest_block);
176 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
177 jump_dest_block);
178 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
179 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
180 update_br_prob_note (cbranch_block);
182 /* Delete the block with the unconditional jump, and clean up the mess. */
183 flow_delete_block (jump_block);
184 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
186 return true;
189 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
190 on register. Used by jump threading. */
192 static bool
193 mark_effect (exp, nonequal)
194 rtx exp;
195 regset nonequal;
197 int regno;
198 rtx dest;
199 switch (GET_CODE (exp))
201 /* In case we do clobber the register, mark it as equal, as we know the
202 value is dead so it don't have to match. */
203 case CLOBBER:
204 if (REG_P (XEXP (exp, 0)))
206 dest = XEXP (exp, 0);
207 regno = REGNO (dest);
208 CLEAR_REGNO_REG_SET (nonequal, regno);
209 if (regno < FIRST_PSEUDO_REGISTER)
211 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
212 while (--n > 0)
213 CLEAR_REGNO_REG_SET (nonequal, regno + n);
216 return false;
218 case SET:
219 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
220 return false;
221 dest = SET_DEST (exp);
222 if (dest == pc_rtx)
223 return false;
224 if (!REG_P (dest))
225 return true;
226 regno = REGNO (dest);
227 SET_REGNO_REG_SET (nonequal, regno);
228 if (regno < FIRST_PSEUDO_REGISTER)
230 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
231 while (--n > 0)
232 SET_REGNO_REG_SET (nonequal, regno + n);
234 return false;
236 default:
237 return false;
241 /* Return nonzero if X is an register set in regset DATA.
242 Called via for_each_rtx. */
243 static int
244 mentions_nonequal_regs (x, data)
245 rtx *x;
246 void *data;
248 regset nonequal = (regset) data;
249 if (REG_P (*x))
251 int regno;
253 regno = REGNO (*x);
254 if (REGNO_REG_SET_P (nonequal, regno))
255 return 1;
256 if (regno < FIRST_PSEUDO_REGISTER)
258 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
259 while (--n > 0)
260 if (REGNO_REG_SET_P (nonequal, regno + n))
261 return 1;
264 return 0;
266 /* Attempt to prove that the basic block B will have no side effects and
267 always continues in the same edge if reached via E. Return the edge
268 if exist, NULL otherwise. */
270 static edge
271 thread_jump (mode, e, b)
272 int mode;
273 edge e;
274 basic_block b;
276 rtx set1, set2, cond1, cond2, insn;
277 enum rtx_code code1, code2, reversed_code2;
278 bool reverse1 = false;
279 int i;
280 regset nonequal;
281 bool failed = false;
283 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
284 return NULL;
286 /* At the moment, we do handle only conditional jumps, but later we may
287 want to extend this code to tablejumps and others. */
288 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
289 return NULL;
290 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
292 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
293 return NULL;
296 /* Second branch must end with onlyjump, as we will eliminate the jump. */
297 if (!any_condjump_p (e->src->end))
298 return NULL;
300 if (!any_condjump_p (b->end) || !onlyjump_p (b->end))
302 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
303 return NULL;
306 set1 = pc_set (e->src->end);
307 set2 = pc_set (b->end);
308 if (((e->flags & EDGE_FALLTHRU) != 0)
309 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
310 reverse1 = true;
312 cond1 = XEXP (SET_SRC (set1), 0);
313 cond2 = XEXP (SET_SRC (set2), 0);
314 if (reverse1)
315 code1 = reversed_comparison_code (cond1, e->src->end);
316 else
317 code1 = GET_CODE (cond1);
319 code2 = GET_CODE (cond2);
320 reversed_code2 = reversed_comparison_code (cond2, b->end);
322 if (!comparison_dominates_p (code1, code2)
323 && !comparison_dominates_p (code1, reversed_code2))
324 return NULL;
326 /* Ensure that the comparison operators are equivalent.
327 ??? This is far too pessimistic. We should allow swapped operands,
328 different CCmodes, or for example comparisons for interval, that
329 dominate even when operands are not equivalent. */
330 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
331 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
332 return NULL;
334 /* Short circuit cases where block B contains some side effects, as we can't
335 safely bypass it. */
336 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end);
337 insn = NEXT_INSN (insn))
338 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
340 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
341 return NULL;
344 cselib_init ();
346 /* First process all values computed in the source basic block. */
347 for (insn = NEXT_INSN (e->src->head); insn != NEXT_INSN (e->src->end);
348 insn = NEXT_INSN (insn))
349 if (INSN_P (insn))
350 cselib_process_insn (insn);
352 nonequal = BITMAP_XMALLOC();
353 CLEAR_REG_SET (nonequal);
355 /* Now assume that we've continued by the edge E to B and continue
356 processing as if it were same basic block.
357 Our goal is to prove that whole block is an NOOP. */
359 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end) && !failed;
360 insn = NEXT_INSN (insn))
362 if (INSN_P (insn))
364 rtx pat = PATTERN (insn);
366 if (GET_CODE (pat) == PARALLEL)
368 for (i = 0; i < XVECLEN (pat, 0); i++)
369 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
371 else
372 failed |= mark_effect (pat, nonequal);
375 cselib_process_insn (insn);
378 /* Later we should clear nonequal of dead registers. So far we don't
379 have life information in cfg_cleanup. */
380 if (failed)
382 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
383 goto failed_exit;
386 /* cond2 must not mention any register that is not equal to the
387 former block. */
388 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
389 goto failed_exit;
391 /* In case liveness information is available, we need to prove equivalence
392 only of the live values. */
393 if (mode & CLEANUP_UPDATE_LIFE)
394 AND_REG_SET (nonequal, b->global_live_at_end);
396 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
398 BITMAP_XFREE (nonequal);
399 cselib_finish ();
400 if ((comparison_dominates_p (code1, code2) != 0)
401 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
402 return BRANCH_EDGE (b);
403 else
404 return FALLTHRU_EDGE (b);
406 failed_exit:
407 BITMAP_XFREE (nonequal);
408 cselib_finish ();
409 return NULL;
412 /* Attempt to forward edges leaving basic block B.
413 Return true if successful. */
415 static bool
416 try_forward_edges (mode, b)
417 basic_block b;
418 int mode;
420 bool changed = false;
421 edge e, next, *threaded_edges = NULL;
423 for (e = b->succ; e; e = next)
425 basic_block target, first;
426 int counter;
427 bool threaded = false;
428 int nthreaded_edges = 0;
430 next = e->succ_next;
432 /* Skip complex edges because we don't know how to update them.
434 Still handle fallthru edges, as we can succeed to forward fallthru
435 edge to the same place as the branch edge of conditional branch
436 and turn conditional branch to an unconditional branch. */
437 if (e->flags & EDGE_COMPLEX)
438 continue;
440 target = first = e->dest;
441 counter = 0;
443 while (counter < n_basic_blocks)
445 basic_block new_target = NULL;
446 bool new_target_threaded = false;
448 if (FORWARDER_BLOCK_P (target)
449 && target->succ->dest != EXIT_BLOCK_PTR)
451 /* Bypass trivial infinite loops. */
452 if (target == target->succ->dest)
453 counter = n_basic_blocks;
454 new_target = target->succ->dest;
457 /* Allow to thread only over one edge at time to simplify updating
458 of probabilities. */
459 else if (mode & CLEANUP_THREADING)
461 edge t = thread_jump (mode, e, target);
462 if (t)
464 if (!threaded_edges)
465 threaded_edges = xmalloc (sizeof (*threaded_edges)
466 * n_basic_blocks);
467 else
469 int i;
471 /* Detect an infinite loop across blocks not
472 including the start block. */
473 for (i = 0; i < nthreaded_edges; ++i)
474 if (threaded_edges[i] == t)
475 break;
476 if (i < nthreaded_edges)
478 counter = n_basic_blocks;
479 break;
483 /* Detect an infinite loop across the start block. */
484 if (t->dest == b)
485 break;
487 if (nthreaded_edges >= n_basic_blocks)
488 abort ();
489 threaded_edges[nthreaded_edges++] = t;
491 new_target = t->dest;
492 new_target_threaded = true;
496 if (!new_target)
497 break;
499 /* Avoid killing of loop pre-headers, as it is the place loop
500 optimizer wants to hoist code to.
502 For fallthru forwarders, the LOOP_BEG note must appear between
503 the header of block and CODE_LABEL of the loop, for non forwarders
504 it must appear before the JUMP_INSN. */
505 if ((mode & CLEANUP_PRE_LOOP) && optimize)
507 rtx insn = (target->succ->flags & EDGE_FALLTHRU
508 ? target->head : prev_nonnote_insn (target->end));
510 if (GET_CODE (insn) != NOTE)
511 insn = NEXT_INSN (insn);
513 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
514 insn = NEXT_INSN (insn))
515 if (GET_CODE (insn) == NOTE
516 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
517 break;
519 if (GET_CODE (insn) == NOTE)
520 break;
522 /* Do not clean up branches to just past the end of a loop
523 at this time; it can mess up the loop optimizer's
524 recognition of some patterns. */
526 insn = PREV_INSN (target->head);
527 if (insn && GET_CODE (insn) == NOTE
528 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
529 break;
532 counter++;
533 target = new_target;
534 threaded |= new_target_threaded;
537 if (counter >= n_basic_blocks)
539 if (rtl_dump_file)
540 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
541 target->index);
543 else if (target == first)
544 ; /* We didn't do anything. */
545 else
547 /* Save the values now, as the edge may get removed. */
548 gcov_type edge_count = e->count;
549 int edge_probability = e->probability;
550 int edge_frequency;
551 int n = 0;
553 /* Don't force if target is exit block. */
554 if (threaded && target != EXIT_BLOCK_PTR)
556 notice_new_block (redirect_edge_and_branch_force (e, target));
557 if (rtl_dump_file)
558 fprintf (rtl_dump_file, "Conditionals threaded.\n");
560 else if (!redirect_edge_and_branch (e, target))
562 if (rtl_dump_file)
563 fprintf (rtl_dump_file,
564 "Forwarding edge %i->%i to %i failed.\n",
565 b->index, e->dest->index, target->index);
566 continue;
569 /* We successfully forwarded the edge. Now update profile
570 data: for each edge we traversed in the chain, remove
571 the original edge's execution count. */
572 edge_frequency = ((edge_probability * b->frequency
573 + REG_BR_PROB_BASE / 2)
574 / REG_BR_PROB_BASE);
576 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
577 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
581 edge t;
583 first->count -= edge_count;
584 if (first->count < 0)
585 first->count = 0;
586 first->frequency -= edge_frequency;
587 if (first->frequency < 0)
588 first->frequency = 0;
589 if (first->succ->succ_next)
591 edge e;
592 int prob;
593 if (n >= nthreaded_edges)
594 abort ();
595 t = threaded_edges [n++];
596 if (t->src != first)
597 abort ();
598 if (first->frequency)
599 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
600 else
601 prob = 0;
602 if (prob > t->probability)
603 prob = t->probability;
604 t->probability -= prob;
605 prob = REG_BR_PROB_BASE - prob;
606 if (prob <= 0)
608 first->succ->probability = REG_BR_PROB_BASE;
609 first->succ->succ_next->probability = 0;
611 else
612 for (e = first->succ; e; e = e->succ_next)
613 e->probability = ((e->probability * REG_BR_PROB_BASE)
614 / (double) prob);
615 update_br_prob_note (first);
617 else
619 /* It is possible that as the result of
620 threading we've removed edge as it is
621 threaded to the fallthru edge. Avoid
622 getting out of sync. */
623 if (n < nthreaded_edges
624 && first == threaded_edges [n]->src)
625 n++;
626 t = first->succ;
629 t->count -= edge_count;
630 if (t->count < 0)
631 t->count = 0;
632 first = t->dest;
634 while (first != target);
636 changed = true;
640 if (threaded_edges)
641 free (threaded_edges);
642 return changed;
645 /* Return true if LABEL is a target of JUMP_INSN. This applies only
646 to non-complex jumps. That is, direct unconditional, conditional,
647 and tablejumps, but not computed jumps or returns. It also does
648 not apply to the fallthru case of a conditional jump. */
650 static bool
651 label_is_jump_target_p (label, jump_insn)
652 rtx label, jump_insn;
654 rtx tmp = JUMP_LABEL (jump_insn);
656 if (label == tmp)
657 return true;
659 if (tmp != NULL_RTX
660 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
661 && GET_CODE (tmp) == JUMP_INSN
662 && (tmp = PATTERN (tmp),
663 GET_CODE (tmp) == ADDR_VEC
664 || GET_CODE (tmp) == ADDR_DIFF_VEC))
666 rtvec vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
667 int i, veclen = GET_NUM_ELEM (vec);
669 for (i = 0; i < veclen; ++i)
670 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
671 return true;
674 return false;
677 /* Return true if LABEL is used for tail recursion. */
679 static bool
680 tail_recursion_label_p (label)
681 rtx label;
683 rtx x;
685 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
686 if (label == XEXP (x, 0))
687 return true;
689 return false;
692 /* Blocks A and B are to be merged into a single block. A has no incoming
693 fallthru edge, so it can be moved before B without adding or modifying
694 any jumps (aside from the jump from A to B). */
696 static void
697 merge_blocks_move_predecessor_nojumps (a, b)
698 basic_block a, b;
700 rtx barrier;
702 barrier = next_nonnote_insn (a->end);
703 if (GET_CODE (barrier) != BARRIER)
704 abort ();
705 delete_insn (barrier);
707 /* Move block and loop notes out of the chain so that we do not
708 disturb their order.
710 ??? A better solution would be to squeeze out all the non-nested notes
711 and adjust the block trees appropriately. Even better would be to have
712 a tighter connection between block trees and rtl so that this is not
713 necessary. */
714 if (squeeze_notes (&a->head, &a->end))
715 abort ();
717 /* Scramble the insn chain. */
718 if (a->end != PREV_INSN (b->head))
719 reorder_insns_nobb (a->head, a->end, PREV_INSN (b->head));
720 a->flags |= BB_DIRTY;
722 if (rtl_dump_file)
723 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
724 a->index, b->index);
726 /* Swap the records for the two blocks around. */
728 unlink_block (a);
729 link_block (a, b->prev_bb);
731 /* Now blocks A and B are contiguous. Merge them. */
732 merge_blocks_nomove (a, b);
735 /* Blocks A and B are to be merged into a single block. B has no outgoing
736 fallthru edge, so it can be moved after A without adding or modifying
737 any jumps (aside from the jump from A to B). */
739 static void
740 merge_blocks_move_successor_nojumps (a, b)
741 basic_block a, b;
743 rtx barrier, real_b_end;
745 real_b_end = b->end;
746 barrier = NEXT_INSN (b->end);
748 /* Recognize a jump table following block B. */
749 if (barrier
750 && GET_CODE (barrier) == CODE_LABEL
751 && NEXT_INSN (barrier)
752 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
753 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
754 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
756 /* Temporarily add the table jump insn to b, so that it will also
757 be moved to the correct location. */
758 b->end = NEXT_INSN (barrier);
759 barrier = NEXT_INSN (b->end);
762 /* There had better have been a barrier there. Delete it. */
763 if (barrier && GET_CODE (barrier) == BARRIER)
764 delete_insn (barrier);
766 /* Move block and loop notes out of the chain so that we do not
767 disturb their order.
769 ??? A better solution would be to squeeze out all the non-nested notes
770 and adjust the block trees appropriately. Even better would be to have
771 a tighter connection between block trees and rtl so that this is not
772 necessary. */
773 if (squeeze_notes (&b->head, &b->end))
774 abort ();
776 /* Scramble the insn chain. */
777 reorder_insns_nobb (b->head, b->end, a->end);
779 /* Restore the real end of b. */
780 b->end = real_b_end;
782 if (rtl_dump_file)
783 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
784 b->index, a->index);
786 /* Now blocks A and B are contiguous. Merge them. */
787 merge_blocks_nomove (a, b);
790 /* Attempt to merge basic blocks that are potentially non-adjacent.
791 Return true iff the attempt succeeded. */
793 static bool
794 merge_blocks (e, b, c, mode)
795 edge e;
796 basic_block b, c;
797 int mode;
799 /* If C has a tail recursion label, do not merge. There is no
800 edge recorded from the call_placeholder back to this label, as
801 that would make optimize_sibling_and_tail_recursive_calls more
802 complex for no gain. */
803 if ((mode & CLEANUP_PRE_SIBCALL)
804 && GET_CODE (c->head) == CODE_LABEL
805 && tail_recursion_label_p (c->head))
806 return false;
808 /* If B has a fallthru edge to C, no need to move anything. */
809 if (e->flags & EDGE_FALLTHRU)
811 int b_index = b->index, c_index = c->index;
812 merge_blocks_nomove (b, c);
813 update_forwarder_flag (b);
815 if (rtl_dump_file)
816 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
817 b_index, c_index);
819 return true;
822 /* Otherwise we will need to move code around. Do that only if expensive
823 transformations are allowed. */
824 else if (mode & CLEANUP_EXPENSIVE)
826 edge tmp_edge, b_fallthru_edge;
827 bool c_has_outgoing_fallthru;
828 bool b_has_incoming_fallthru;
830 /* Avoid overactive code motion, as the forwarder blocks should be
831 eliminated by edge redirection instead. One exception might have
832 been if B is a forwarder block and C has no fallthru edge, but
833 that should be cleaned up by bb-reorder instead. */
834 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
835 return false;
837 /* We must make sure to not munge nesting of lexical blocks,
838 and loop notes. This is done by squeezing out all the notes
839 and leaving them there to lie. Not ideal, but functional. */
841 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
842 if (tmp_edge->flags & EDGE_FALLTHRU)
843 break;
845 c_has_outgoing_fallthru = (tmp_edge != NULL);
847 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
848 if (tmp_edge->flags & EDGE_FALLTHRU)
849 break;
851 b_has_incoming_fallthru = (tmp_edge != NULL);
852 b_fallthru_edge = tmp_edge;
854 /* Otherwise, we're going to try to move C after B. If C does
855 not have an outgoing fallthru, then it can be moved
856 immediately after B without introducing or modifying jumps. */
857 if (! c_has_outgoing_fallthru)
859 merge_blocks_move_successor_nojumps (b, c);
860 return true;
863 /* If B does not have an incoming fallthru, then it can be moved
864 immediately before C without introducing or modifying jumps.
865 C cannot be the first block, so we do not have to worry about
866 accessing a non-existent block. */
868 if (b_has_incoming_fallthru)
870 basic_block bb;
872 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
873 return false;
874 bb = force_nonfallthru (b_fallthru_edge);
875 if (bb)
876 notice_new_block (bb);
879 merge_blocks_move_predecessor_nojumps (b, c);
880 return true;
883 return false;
887 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
889 static bool
890 insns_match_p (mode, i1, i2)
891 int mode ATTRIBUTE_UNUSED;
892 rtx i1, i2;
894 rtx p1, p2;
896 /* Verify that I1 and I2 are equivalent. */
897 if (GET_CODE (i1) != GET_CODE (i2))
898 return false;
900 p1 = PATTERN (i1);
901 p2 = PATTERN (i2);
903 if (GET_CODE (p1) != GET_CODE (p2))
904 return false;
906 /* If this is a CALL_INSN, compare register usage information.
907 If we don't check this on stack register machines, the two
908 CALL_INSNs might be merged leaving reg-stack.c with mismatching
909 numbers of stack registers in the same basic block.
910 If we don't check this on machines with delay slots, a delay slot may
911 be filled that clobbers a parameter expected by the subroutine.
913 ??? We take the simple route for now and assume that if they're
914 equal, they were constructed identically. */
916 if (GET_CODE (i1) == CALL_INSN
917 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
918 CALL_INSN_FUNCTION_USAGE (i2))
919 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
920 return false;
922 #ifdef STACK_REGS
923 /* If cross_jump_death_matters is not 0, the insn's mode
924 indicates whether or not the insn contains any stack-like
925 regs. */
927 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
929 /* If register stack conversion has already been done, then
930 death notes must also be compared before it is certain that
931 the two instruction streams match. */
933 rtx note;
934 HARD_REG_SET i1_regset, i2_regset;
936 CLEAR_HARD_REG_SET (i1_regset);
937 CLEAR_HARD_REG_SET (i2_regset);
939 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
940 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
941 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
943 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
944 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
945 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
947 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
949 return false;
951 done:
954 #endif
956 if (reload_completed
957 ? ! rtx_renumbered_equal_p (p1, p2) : ! rtx_equal_p (p1, p2))
959 /* The following code helps take care of G++ cleanups. */
960 rtx equiv1 = find_reg_equal_equiv_note (i1);
961 rtx equiv2 = find_reg_equal_equiv_note (i2);
963 if (equiv1 && equiv2
964 /* If the equivalences are not to a constant, they may
965 reference pseudos that no longer exist, so we can't
966 use them. */
967 && (! reload_completed
968 || (CONSTANT_P (XEXP (equiv1, 0))
969 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
971 rtx s1 = single_set (i1);
972 rtx s2 = single_set (i2);
973 if (s1 != 0 && s2 != 0
974 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
976 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
977 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
978 if (! rtx_renumbered_equal_p (p1, p2))
979 cancel_changes (0);
980 else if (apply_change_group ())
981 return true;
985 return false;
988 return true;
991 /* Look through the insns at the end of BB1 and BB2 and find the longest
992 sequence that are equivalent. Store the first insns for that sequence
993 in *F1 and *F2 and return the sequence length.
995 To simplify callers of this function, if the blocks match exactly,
996 store the head of the blocks in *F1 and *F2. */
998 static int
999 flow_find_cross_jump (mode, bb1, bb2, f1, f2)
1000 int mode ATTRIBUTE_UNUSED;
1001 basic_block bb1, bb2;
1002 rtx *f1, *f2;
1004 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1005 int ninsns = 0;
1007 /* Skip simple jumps at the end of the blocks. Complex jumps still
1008 need to be compared for equivalence, which we'll do below. */
1010 i1 = bb1->end;
1011 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1012 if (onlyjump_p (i1)
1013 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1015 last1 = i1;
1016 i1 = PREV_INSN (i1);
1019 i2 = bb2->end;
1020 if (onlyjump_p (i2)
1021 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1023 last2 = i2;
1024 /* Count everything except for unconditional jump as insn. */
1025 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1026 ninsns++;
1027 i2 = PREV_INSN (i2);
1030 while (true)
1032 /* Ignore notes. */
1033 while (!active_insn_p (i1) && i1 != bb1->head)
1034 i1 = PREV_INSN (i1);
1036 while (!active_insn_p (i2) && i2 != bb2->head)
1037 i2 = PREV_INSN (i2);
1039 if (i1 == bb1->head || i2 == bb2->head)
1040 break;
1042 if (!insns_match_p (mode, i1, i2))
1043 break;
1045 /* Don't begin a cross-jump with a USE or CLOBBER insn. */
1046 if (active_insn_p (i1))
1048 /* If the merged insns have different REG_EQUAL notes, then
1049 remove them. */
1050 rtx equiv1 = find_reg_equal_equiv_note (i1);
1051 rtx equiv2 = find_reg_equal_equiv_note (i2);
1053 if (equiv1 && !equiv2)
1054 remove_note (i1, equiv1);
1055 else if (!equiv1 && equiv2)
1056 remove_note (i2, equiv2);
1057 else if (equiv1 && equiv2
1058 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1060 remove_note (i1, equiv1);
1061 remove_note (i2, equiv2);
1064 afterlast1 = last1, afterlast2 = last2;
1065 last1 = i1, last2 = i2;
1066 ninsns++;
1069 i1 = PREV_INSN (i1);
1070 i2 = PREV_INSN (i2);
1073 #ifdef HAVE_cc0
1074 /* Don't allow the insn after a compare to be shared by
1075 cross-jumping unless the compare is also shared. */
1076 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1077 last1 = afterlast1, last2 = afterlast2, ninsns--;
1078 #endif
1080 /* Include preceding notes and labels in the cross-jump. One,
1081 this may bring us to the head of the blocks as requested above.
1082 Two, it keeps line number notes as matched as may be. */
1083 if (ninsns)
1085 while (last1 != bb1->head && !active_insn_p (PREV_INSN (last1)))
1086 last1 = PREV_INSN (last1);
1088 if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1089 last1 = PREV_INSN (last1);
1091 while (last2 != bb2->head && !active_insn_p (PREV_INSN (last2)))
1092 last2 = PREV_INSN (last2);
1094 if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1095 last2 = PREV_INSN (last2);
1097 *f1 = last1;
1098 *f2 = last2;
1101 return ninsns;
1104 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1105 the branch instruction. This means that if we commonize the control
1106 flow before end of the basic block, the semantic remains unchanged.
1108 We may assume that there exists one edge with a common destination. */
1110 static bool
1111 outgoing_edges_match (mode, bb1, bb2)
1112 int mode;
1113 basic_block bb1;
1114 basic_block bb2;
1116 int nehedges1 = 0, nehedges2 = 0;
1117 edge fallthru1 = 0, fallthru2 = 0;
1118 edge e1, e2;
1120 /* If BB1 has only one successor, we may be looking at either an
1121 unconditional jump, or a fake edge to exit. */
1122 if (bb1->succ && !bb1->succ->succ_next
1123 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1124 && (GET_CODE (bb1->end) != JUMP_INSN || simplejump_p (bb1->end)))
1125 return (bb2->succ && !bb2->succ->succ_next
1126 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1127 && (GET_CODE (bb2->end) != JUMP_INSN || simplejump_p (bb2->end)));
1129 /* Match conditional jumps - this may get tricky when fallthru and branch
1130 edges are crossed. */
1131 if (bb1->succ
1132 && bb1->succ->succ_next
1133 && !bb1->succ->succ_next->succ_next
1134 && any_condjump_p (bb1->end)
1135 && onlyjump_p (bb1->end))
1137 edge b1, f1, b2, f2;
1138 bool reverse, match;
1139 rtx set1, set2, cond1, cond2;
1140 enum rtx_code code1, code2;
1142 if (!bb2->succ
1143 || !bb2->succ->succ_next
1144 || bb2->succ->succ_next->succ_next
1145 || !any_condjump_p (bb2->end)
1146 || !onlyjump_p (bb2->end))
1147 return false;
1149 b1 = BRANCH_EDGE (bb1);
1150 b2 = BRANCH_EDGE (bb2);
1151 f1 = FALLTHRU_EDGE (bb1);
1152 f2 = FALLTHRU_EDGE (bb2);
1154 /* Get around possible forwarders on fallthru edges. Other cases
1155 should be optimized out already. */
1156 if (FORWARDER_BLOCK_P (f1->dest))
1157 f1 = f1->dest->succ;
1159 if (FORWARDER_BLOCK_P (f2->dest))
1160 f2 = f2->dest->succ;
1162 /* To simplify use of this function, return false if there are
1163 unneeded forwarder blocks. These will get eliminated later
1164 during cleanup_cfg. */
1165 if (FORWARDER_BLOCK_P (f1->dest)
1166 || FORWARDER_BLOCK_P (f2->dest)
1167 || FORWARDER_BLOCK_P (b1->dest)
1168 || FORWARDER_BLOCK_P (b2->dest))
1169 return false;
1171 if (f1->dest == f2->dest && b1->dest == b2->dest)
1172 reverse = false;
1173 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1174 reverse = true;
1175 else
1176 return false;
1178 set1 = pc_set (bb1->end);
1179 set2 = pc_set (bb2->end);
1180 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1181 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1182 reverse = !reverse;
1184 cond1 = XEXP (SET_SRC (set1), 0);
1185 cond2 = XEXP (SET_SRC (set2), 0);
1186 code1 = GET_CODE (cond1);
1187 if (reverse)
1188 code2 = reversed_comparison_code (cond2, bb2->end);
1189 else
1190 code2 = GET_CODE (cond2);
1192 if (code2 == UNKNOWN)
1193 return false;
1195 /* Verify codes and operands match. */
1196 match = ((code1 == code2
1197 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1198 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1199 || (code1 == swap_condition (code2)
1200 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1201 XEXP (cond2, 0))
1202 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1203 XEXP (cond2, 1))));
1205 /* If we return true, we will join the blocks. Which means that
1206 we will only have one branch prediction bit to work with. Thus
1207 we require the existing branches to have probabilities that are
1208 roughly similar. */
1209 if (match
1210 && !optimize_size
1211 && maybe_hot_bb_p (bb1)
1212 && maybe_hot_bb_p (bb2))
1214 int prob2;
1216 if (b1->dest == b2->dest)
1217 prob2 = b2->probability;
1218 else
1219 /* Do not use f2 probability as f2 may be forwarded. */
1220 prob2 = REG_BR_PROB_BASE - b2->probability;
1222 /* Fail if the difference in probabilities is greater than 50%.
1223 This rules out two well-predicted branches with opposite
1224 outcomes. */
1225 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1227 if (rtl_dump_file)
1228 fprintf (rtl_dump_file,
1229 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1230 bb1->index, bb2->index, b1->probability, prob2);
1232 return false;
1236 if (rtl_dump_file && match)
1237 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1238 bb1->index, bb2->index);
1240 return match;
1243 /* Generic case - we are seeing a computed jump, table jump or trapping
1244 instruction. */
1246 /* First ensure that the instructions match. There may be many outgoing
1247 edges so this test is generally cheaper.
1248 ??? Currently the tablejumps will never match, as they do have
1249 different tables. */
1250 if (!insns_match_p (mode, bb1->end, bb2->end))
1251 return false;
1253 /* Search the outgoing edges, ensure that the counts do match, find possible
1254 fallthru and exception handling edges since these needs more
1255 validation. */
1256 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1257 e1 = e1->succ_next, e2 = e2->succ_next)
1259 if (e1->flags & EDGE_EH)
1260 nehedges1++;
1262 if (e2->flags & EDGE_EH)
1263 nehedges2++;
1265 if (e1->flags & EDGE_FALLTHRU)
1266 fallthru1 = e1;
1267 if (e2->flags & EDGE_FALLTHRU)
1268 fallthru2 = e2;
1271 /* If number of edges of various types does not match, fail. */
1272 if (e1 || e2
1273 || nehedges1 != nehedges2
1274 || (fallthru1 != 0) != (fallthru2 != 0))
1275 return false;
1277 /* fallthru edges must be forwarded to the same destination. */
1278 if (fallthru1)
1280 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1281 ? fallthru1->dest->succ->dest: fallthru1->dest);
1282 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1283 ? fallthru2->dest->succ->dest: fallthru2->dest);
1285 if (d1 != d2)
1286 return false;
1289 /* In case we do have EH edges, ensure we are in the same region. */
1290 if (nehedges1)
1292 rtx n1 = find_reg_note (bb1->end, REG_EH_REGION, 0);
1293 rtx n2 = find_reg_note (bb2->end, REG_EH_REGION, 0);
1295 if (XEXP (n1, 0) != XEXP (n2, 0))
1296 return false;
1299 /* We don't need to match the rest of edges as above checks should be enought
1300 to ensure that they are equivalent. */
1301 return true;
1304 /* E1 and E2 are edges with the same destination block. Search their
1305 predecessors for common code. If found, redirect control flow from
1306 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1308 static bool
1309 try_crossjump_to_edge (mode, e1, e2)
1310 int mode;
1311 edge e1, e2;
1313 int nmatch;
1314 basic_block src1 = e1->src, src2 = e2->src;
1315 basic_block redirect_to, redirect_from, to_remove;
1316 rtx newpos1, newpos2;
1317 edge s;
1319 /* Search backward through forwarder blocks. We don't need to worry
1320 about multiple entry or chained forwarders, as they will be optimized
1321 away. We do this to look past the unconditional jump following a
1322 conditional jump that is required due to the current CFG shape. */
1323 if (src1->pred
1324 && !src1->pred->pred_next
1325 && FORWARDER_BLOCK_P (src1))
1326 e1 = src1->pred, src1 = e1->src;
1328 if (src2->pred
1329 && !src2->pred->pred_next
1330 && FORWARDER_BLOCK_P (src2))
1331 e2 = src2->pred, src2 = e2->src;
1333 /* Nothing to do if we reach ENTRY, or a common source block. */
1334 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1335 return false;
1336 if (src1 == src2)
1337 return false;
1339 /* Seeing more than 1 forwarder blocks would confuse us later... */
1340 if (FORWARDER_BLOCK_P (e1->dest)
1341 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1342 return false;
1344 if (FORWARDER_BLOCK_P (e2->dest)
1345 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1346 return false;
1348 /* Likewise with dead code (possibly newly created by the other optimizations
1349 of cfg_cleanup). */
1350 if (!src1->pred || !src2->pred)
1351 return false;
1353 /* Look for the common insn sequence, part the first ... */
1354 if (!outgoing_edges_match (mode, src1, src2))
1355 return false;
1357 /* ... and part the second. */
1358 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1359 if (!nmatch)
1360 return false;
1362 /* Avoid splitting if possible. */
1363 if (newpos2 == src2->head)
1364 redirect_to = src2;
1365 else
1367 if (rtl_dump_file)
1368 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1369 src2->index, nmatch);
1370 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1373 if (rtl_dump_file)
1374 fprintf (rtl_dump_file,
1375 "Cross jumping from bb %i to bb %i; %i common insns\n",
1376 src1->index, src2->index, nmatch);
1378 redirect_to->count += src1->count;
1379 redirect_to->frequency += src1->frequency;
1380 /* We may have some registers visible trought the block. */
1381 redirect_to->flags |= BB_DIRTY;
1383 /* Recompute the frequencies and counts of outgoing edges. */
1384 for (s = redirect_to->succ; s; s = s->succ_next)
1386 edge s2;
1387 basic_block d = s->dest;
1389 if (FORWARDER_BLOCK_P (d))
1390 d = d->succ->dest;
1392 for (s2 = src1->succ; ; s2 = s2->succ_next)
1394 basic_block d2 = s2->dest;
1395 if (FORWARDER_BLOCK_P (d2))
1396 d2 = d2->succ->dest;
1397 if (d == d2)
1398 break;
1401 s->count += s2->count;
1403 /* Take care to update possible forwarder blocks. We verified
1404 that there is no more than one in the chain, so we can't run
1405 into infinite loop. */
1406 if (FORWARDER_BLOCK_P (s->dest))
1408 s->dest->succ->count += s2->count;
1409 s->dest->count += s2->count;
1410 s->dest->frequency += EDGE_FREQUENCY (s);
1413 if (FORWARDER_BLOCK_P (s2->dest))
1415 s2->dest->succ->count -= s2->count;
1416 if (s2->dest->succ->count < 0)
1417 s2->dest->succ->count = 0;
1418 s2->dest->count -= s2->count;
1419 s2->dest->frequency -= EDGE_FREQUENCY (s);
1420 if (s2->dest->frequency < 0)
1421 s2->dest->frequency = 0;
1422 if (s2->dest->count < 0)
1423 s2->dest->count = 0;
1426 if (!redirect_to->frequency && !src1->frequency)
1427 s->probability = (s->probability + s2->probability) / 2;
1428 else
1429 s->probability
1430 = ((s->probability * redirect_to->frequency +
1431 s2->probability * src1->frequency)
1432 / (redirect_to->frequency + src1->frequency));
1435 update_br_prob_note (redirect_to);
1437 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1439 /* Skip possible basic block header. */
1440 if (GET_CODE (newpos1) == CODE_LABEL)
1441 newpos1 = NEXT_INSN (newpos1);
1443 if (GET_CODE (newpos1) == NOTE)
1444 newpos1 = NEXT_INSN (newpos1);
1446 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1447 to_remove = redirect_from->succ->dest;
1449 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1450 flow_delete_block (to_remove);
1452 update_forwarder_flag (redirect_from);
1454 return true;
1457 /* Search the predecessors of BB for common insn sequences. When found,
1458 share code between them by redirecting control flow. Return true if
1459 any changes made. */
1461 static bool
1462 try_crossjump_bb (mode, bb)
1463 int mode;
1464 basic_block bb;
1466 edge e, e2, nexte2, nexte, fallthru;
1467 bool changed;
1468 int n = 0, max;
1470 /* Nothing to do if there is not at least two incoming edges. */
1471 if (!bb->pred || !bb->pred->pred_next)
1472 return false;
1474 /* It is always cheapest to redirect a block that ends in a branch to
1475 a block that falls through into BB, as that adds no branches to the
1476 program. We'll try that combination first. */
1477 fallthru = NULL;
1478 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1479 for (e = bb->pred; e ; e = e->pred_next, n++)
1481 if (e->flags & EDGE_FALLTHRU)
1482 fallthru = e;
1483 if (n > max)
1484 return false;
1487 changed = false;
1488 for (e = bb->pred; e; e = nexte)
1490 nexte = e->pred_next;
1492 /* As noted above, first try with the fallthru predecessor. */
1493 if (fallthru)
1495 /* Don't combine the fallthru edge into anything else.
1496 If there is a match, we'll do it the other way around. */
1497 if (e == fallthru)
1498 continue;
1500 if (try_crossjump_to_edge (mode, e, fallthru))
1502 changed = true;
1503 nexte = bb->pred;
1504 continue;
1508 /* Non-obvious work limiting check: Recognize that we're going
1509 to call try_crossjump_bb on every basic block. So if we have
1510 two blocks with lots of outgoing edges (a switch) and they
1511 share lots of common destinations, then we would do the
1512 cross-jump check once for each common destination.
1514 Now, if the blocks actually are cross-jump candidates, then
1515 all of their destinations will be shared. Which means that
1516 we only need check them for cross-jump candidacy once. We
1517 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1518 choosing to do the check from the block for which the edge
1519 in question is the first successor of A. */
1520 if (e->src->succ != e)
1521 continue;
1523 for (e2 = bb->pred; e2; e2 = nexte2)
1525 nexte2 = e2->pred_next;
1527 if (e2 == e)
1528 continue;
1530 /* We've already checked the fallthru edge above. */
1531 if (e2 == fallthru)
1532 continue;
1534 /* The "first successor" check above only prevents multiple
1535 checks of crossjump(A,B). In order to prevent redundant
1536 checks of crossjump(B,A), require that A be the block
1537 with the lowest index. */
1538 if (e->src->index > e2->src->index)
1539 continue;
1541 if (try_crossjump_to_edge (mode, e, e2))
1543 changed = true;
1544 nexte = bb->pred;
1545 break;
1550 return changed;
1553 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1554 instructions etc. Return nonzero if changes were made. */
1556 static bool
1557 try_optimize_cfg (mode)
1558 int mode;
1560 bool changed_overall = false;
1561 bool changed;
1562 int iterations = 0;
1563 basic_block bb, b;
1565 if (mode & CLEANUP_CROSSJUMP)
1566 add_noreturn_fake_exit_edges ();
1568 FOR_EACH_BB (bb)
1569 update_forwarder_flag (bb);
1571 if (mode & CLEANUP_UPDATE_LIFE)
1572 clear_bb_flags ();
1574 if (! (* targetm.cannot_modify_jumps_p) ())
1576 /* Attempt to merge blocks as made possible by edge removal. If
1577 a block has only one successor, and the successor has only
1578 one predecessor, they may be combined. */
1581 changed = false;
1582 iterations++;
1584 if (rtl_dump_file)
1585 fprintf (rtl_dump_file,
1586 "\n\ntry_optimize_cfg iteration %i\n\n",
1587 iterations);
1589 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1591 basic_block c;
1592 edge s;
1593 bool changed_here = false;
1595 /* Delete trivially dead basic blocks. */
1596 while (b->pred == NULL)
1598 c = b->prev_bb;
1599 if (rtl_dump_file)
1600 fprintf (rtl_dump_file, "Deleting block %i.\n",
1601 b->index);
1603 flow_delete_block (b);
1604 changed = true;
1605 b = c;
1608 /* Remove code labels no longer used. Don't do this
1609 before CALL_PLACEHOLDER is removed, as some branches
1610 may be hidden within. */
1611 if (b->pred->pred_next == NULL
1612 && (b->pred->flags & EDGE_FALLTHRU)
1613 && !(b->pred->flags & EDGE_COMPLEX)
1614 && GET_CODE (b->head) == CODE_LABEL
1615 && (!(mode & CLEANUP_PRE_SIBCALL)
1616 || !tail_recursion_label_p (b->head))
1617 /* If the previous block ends with a branch to this
1618 block, we can't delete the label. Normally this
1619 is a condjump that is yet to be simplified, but
1620 if CASE_DROPS_THRU, this can be a tablejump with
1621 some element going to the same place as the
1622 default (fallthru). */
1623 && (b->pred->src == ENTRY_BLOCK_PTR
1624 || GET_CODE (b->pred->src->end) != JUMP_INSN
1625 || ! label_is_jump_target_p (b->head,
1626 b->pred->src->end)))
1628 rtx label = b->head;
1630 b->head = NEXT_INSN (b->head);
1631 delete_insn_chain (label, label);
1632 if (rtl_dump_file)
1633 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1634 b->index);
1637 /* If we fall through an empty block, we can remove it. */
1638 if (b->pred->pred_next == NULL
1639 && (b->pred->flags & EDGE_FALLTHRU)
1640 && GET_CODE (b->head) != CODE_LABEL
1641 && FORWARDER_BLOCK_P (b)
1642 /* Note that forwarder_block_p true ensures that
1643 there is a successor for this block. */
1644 && (b->succ->flags & EDGE_FALLTHRU)
1645 && n_basic_blocks > 1)
1647 if (rtl_dump_file)
1648 fprintf (rtl_dump_file,
1649 "Deleting fallthru block %i.\n",
1650 b->index);
1652 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1653 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1654 flow_delete_block (b);
1655 changed = true;
1656 b = c;
1659 /* Merge blocks. Loop because chains of blocks might be
1660 combineable. */
1661 while ((s = b->succ) != NULL
1662 && s->succ_next == NULL
1663 && !(s->flags & EDGE_COMPLEX)
1664 && (c = s->dest) != EXIT_BLOCK_PTR
1665 && c->pred->pred_next == NULL
1666 && b != c
1667 /* If the jump insn has side effects,
1668 we can't kill the edge. */
1669 && (GET_CODE (b->end) != JUMP_INSN
1670 || simplejump_p (b->end))
1671 && merge_blocks (s, b, c, mode))
1672 changed_here = true;
1674 /* Simplify branch over branch. */
1675 if ((mode & CLEANUP_EXPENSIVE) && try_simplify_condjump (b))
1676 changed_here = true;
1678 /* If B has a single outgoing edge, but uses a
1679 non-trivial jump instruction without side-effects, we
1680 can either delete the jump entirely, or replace it
1681 with a simple unconditional jump. Use
1682 redirect_edge_and_branch to do the dirty work. */
1683 if (b->succ
1684 && ! b->succ->succ_next
1685 && b->succ->dest != EXIT_BLOCK_PTR
1686 && onlyjump_p (b->end)
1687 && redirect_edge_and_branch (b->succ, b->succ->dest))
1689 update_forwarder_flag (b);
1690 changed_here = true;
1693 /* Simplify branch to branch. */
1694 if (try_forward_edges (mode, b))
1695 changed_here = true;
1697 /* Look for shared code between blocks. */
1698 if ((mode & CLEANUP_CROSSJUMP)
1699 && try_crossjump_bb (mode, b))
1700 changed_here = true;
1702 /* Don't get confused by the index shift caused by
1703 deleting blocks. */
1704 if (!changed_here)
1705 b = b->next_bb;
1706 else
1707 changed = true;
1710 if ((mode & CLEANUP_CROSSJUMP)
1711 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1712 changed = true;
1714 #ifdef ENABLE_CHECKING
1715 if (changed)
1716 verify_flow_info ();
1717 #endif
1719 changed_overall |= changed;
1721 while (changed);
1724 if (mode & CLEANUP_CROSSJUMP)
1725 remove_fake_edges ();
1727 clear_aux_for_blocks ();
1729 return changed_overall;
1732 /* Delete all unreachable basic blocks. */
1734 bool
1735 delete_unreachable_blocks ()
1737 bool changed = false;
1738 basic_block b, next_bb;
1740 find_unreachable_blocks ();
1742 /* Delete all unreachable basic blocks. */
1744 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1746 next_bb = b->next_bb;
1748 if (!(b->flags & BB_REACHABLE))
1750 flow_delete_block (b);
1751 changed = true;
1755 if (changed)
1756 tidy_fallthru_edges ();
1757 return changed;
1760 /* Tidy the CFG by deleting unreachable code and whatnot. */
1762 bool
1763 cleanup_cfg (mode)
1764 int mode;
1766 bool changed = false;
1768 timevar_push (TV_CLEANUP_CFG);
1769 if (delete_unreachable_blocks ())
1771 changed = true;
1772 /* We've possibly created trivially dead code. Cleanup it right
1773 now to introduce more opportunities for try_optimize_cfg. */
1774 if (!(mode & (CLEANUP_NO_INSN_DEL
1775 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1776 && !reload_completed)
1777 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1780 compact_blocks ();
1782 while (try_optimize_cfg (mode))
1784 delete_unreachable_blocks (), changed = true;
1785 if (mode & CLEANUP_UPDATE_LIFE)
1787 /* Cleaning up CFG introduces more opportunities for dead code
1788 removal that in turn may introduce more opportunities for
1789 cleaning up the CFG. */
1790 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1791 PROP_DEATH_NOTES
1792 | PROP_SCAN_DEAD_CODE
1793 | PROP_KILL_DEAD_CODE
1794 | PROP_LOG_LINKS))
1795 break;
1797 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1798 && (mode & CLEANUP_EXPENSIVE)
1799 && !reload_completed)
1801 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1802 break;
1804 else
1805 break;
1806 delete_dead_jumptables ();
1809 /* Kill the data we won't maintain. */
1810 free_EXPR_LIST_list (&label_value_list);
1811 timevar_pop (TV_CLEANUP_CFG);
1813 return changed;