1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
43 b = base or radix, here always 2
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits. */
70 /* Used to classify two numbers simultaneously. */
71 #define CLASS2(A, B) ((A) << 2 | (B))
73 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
74 #error "Some constant folding done by hand to avoid shift count warnings"
77 static void get_zero (REAL_VALUE_TYPE
*, int);
78 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
79 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
80 static void get_inf (REAL_VALUE_TYPE
*, int);
81 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
82 const REAL_VALUE_TYPE
*, unsigned int);
83 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
85 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
87 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
88 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
89 const REAL_VALUE_TYPE
*);
90 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 const REAL_VALUE_TYPE
*, int);
92 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
93 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
94 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
95 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
96 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
97 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
98 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
99 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
100 const REAL_VALUE_TYPE
*);
101 static void normalize (REAL_VALUE_TYPE
*);
103 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
104 const REAL_VALUE_TYPE
*, int);
105 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
106 const REAL_VALUE_TYPE
*);
107 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
108 const REAL_VALUE_TYPE
*);
109 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
110 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
112 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
114 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
115 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
116 static const REAL_VALUE_TYPE
* real_digit (int);
117 static void times_pten (REAL_VALUE_TYPE
*, int);
119 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
121 /* Initialize R with a positive zero. */
124 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
126 memset (r
, 0, sizeof (*r
));
130 /* Initialize R with the canonical quiet NaN. */
133 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
135 memset (r
, 0, sizeof (*r
));
142 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
144 memset (r
, 0, sizeof (*r
));
152 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
154 memset (r
, 0, sizeof (*r
));
160 /* Right-shift the significand of A by N bits; put the result in the
161 significand of R. If any one bits are shifted out, return true. */
164 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
167 unsigned long sticky
= 0;
168 unsigned int i
, ofs
= 0;
170 if (n
>= HOST_BITS_PER_LONG
)
172 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
174 n
&= HOST_BITS_PER_LONG
- 1;
179 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
180 for (i
= 0; i
< SIGSZ
; ++i
)
183 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
184 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
185 << (HOST_BITS_PER_LONG
- n
)));
190 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
191 r
->sig
[i
] = a
->sig
[ofs
+ i
];
192 for (; i
< SIGSZ
; ++i
)
199 /* Right-shift the significand of A by N bits; put the result in the
203 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
206 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
208 n
&= HOST_BITS_PER_LONG
- 1;
211 for (i
= 0; i
< SIGSZ
; ++i
)
214 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
215 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
216 << (HOST_BITS_PER_LONG
- n
)));
221 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
222 r
->sig
[i
] = a
->sig
[ofs
+ i
];
223 for (; i
< SIGSZ
; ++i
)
228 /* Left-shift the significand of A by N bits; put the result in the
232 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
235 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
237 n
&= HOST_BITS_PER_LONG
- 1;
240 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
241 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
242 for (; i
< SIGSZ
; ++i
)
243 r
->sig
[SIGSZ
-1-i
] = 0;
246 for (i
= 0; i
< SIGSZ
; ++i
)
249 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
250 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
251 >> (HOST_BITS_PER_LONG
- n
)));
255 /* Likewise, but N is specialized to 1. */
258 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
262 for (i
= SIGSZ
- 1; i
> 0; --i
)
263 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
264 r
->sig
[0] = a
->sig
[0] << 1;
267 /* Add the significands of A and B, placing the result in R. Return
268 true if there was carry out of the most significant word. */
271 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
272 const REAL_VALUE_TYPE
*b
)
277 for (i
= 0; i
< SIGSZ
; ++i
)
279 unsigned long ai
= a
->sig
[i
];
280 unsigned long ri
= ai
+ b
->sig
[i
];
296 /* Subtract the significands of A and B, placing the result in R. CARRY is
297 true if there's a borrow incoming to the least significant word.
298 Return true if there was borrow out of the most significant word. */
301 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
302 const REAL_VALUE_TYPE
*b
, int carry
)
306 for (i
= 0; i
< SIGSZ
; ++i
)
308 unsigned long ai
= a
->sig
[i
];
309 unsigned long ri
= ai
- b
->sig
[i
];
325 /* Negate the significand A, placing the result in R. */
328 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
333 for (i
= 0; i
< SIGSZ
; ++i
)
335 unsigned long ri
, ai
= a
->sig
[i
];
354 /* Compare significands. Return tri-state vs zero. */
357 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
361 for (i
= SIGSZ
- 1; i
>= 0; --i
)
363 unsigned long ai
= a
->sig
[i
];
364 unsigned long bi
= b
->sig
[i
];
375 /* Return true if A is nonzero. */
378 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
382 for (i
= SIGSZ
- 1; i
>= 0; --i
)
389 /* Set bit N of the significand of R. */
392 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
394 r
->sig
[n
/ HOST_BITS_PER_LONG
]
395 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
398 /* Clear bit N of the significand of R. */
401 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
403 r
->sig
[n
/ HOST_BITS_PER_LONG
]
404 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
407 /* Test bit N of the significand of R. */
410 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
412 /* ??? Compiler bug here if we return this expression directly.
413 The conversion to bool strips the "&1" and we wind up testing
414 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
415 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
419 /* Clear bits 0..N-1 of the significand of R. */
422 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
424 int i
, w
= n
/ HOST_BITS_PER_LONG
;
426 for (i
= 0; i
< w
; ++i
)
429 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
432 /* Divide the significands of A and B, placing the result in R. Return
433 true if the division was inexact. */
436 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
437 const REAL_VALUE_TYPE
*b
)
440 int i
, bit
= SIGNIFICAND_BITS
- 1;
441 unsigned long msb
, inexact
;
444 memset (r
->sig
, 0, sizeof (r
->sig
));
450 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
451 lshift_significand_1 (&u
, &u
);
453 if (msb
|| cmp_significands (&u
, b
) >= 0)
455 sub_significands (&u
, &u
, b
, 0);
456 set_significand_bit (r
, bit
);
461 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
467 /* Adjust the exponent and significand of R such that the most
468 significant bit is set. We underflow to zero and overflow to
469 infinity here, without denormals. (The intermediate representation
470 exponent is large enough to handle target denormals normalized.) */
473 normalize (REAL_VALUE_TYPE
*r
)
481 /* Find the first word that is nonzero. */
482 for (i
= SIGSZ
- 1; i
>= 0; i
--)
484 shift
+= HOST_BITS_PER_LONG
;
488 /* Zero significand flushes to zero. */
496 /* Find the first bit that is nonzero. */
498 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
504 exp
= REAL_EXP (r
) - shift
;
506 get_inf (r
, r
->sign
);
507 else if (exp
< -MAX_EXP
)
508 get_zero (r
, r
->sign
);
511 SET_REAL_EXP (r
, exp
);
512 lshift_significand (r
, r
, shift
);
517 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
518 result may be inexact due to a loss of precision. */
521 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
522 const REAL_VALUE_TYPE
*b
, int subtract_p
)
526 bool inexact
= false;
528 /* Determine if we need to add or subtract. */
530 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
532 switch (CLASS2 (a
->cl
, b
->cl
))
534 case CLASS2 (rvc_zero
, rvc_zero
):
535 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
536 get_zero (r
, sign
& !subtract_p
);
539 case CLASS2 (rvc_zero
, rvc_normal
):
540 case CLASS2 (rvc_zero
, rvc_inf
):
541 case CLASS2 (rvc_zero
, rvc_nan
):
543 case CLASS2 (rvc_normal
, rvc_nan
):
544 case CLASS2 (rvc_inf
, rvc_nan
):
545 case CLASS2 (rvc_nan
, rvc_nan
):
546 /* ANY + NaN = NaN. */
547 case CLASS2 (rvc_normal
, rvc_inf
):
550 r
->sign
= sign
^ subtract_p
;
553 case CLASS2 (rvc_normal
, rvc_zero
):
554 case CLASS2 (rvc_inf
, rvc_zero
):
555 case CLASS2 (rvc_nan
, rvc_zero
):
557 case CLASS2 (rvc_nan
, rvc_normal
):
558 case CLASS2 (rvc_nan
, rvc_inf
):
559 /* NaN + ANY = NaN. */
560 case CLASS2 (rvc_inf
, rvc_normal
):
565 case CLASS2 (rvc_inf
, rvc_inf
):
567 /* Inf - Inf = NaN. */
568 get_canonical_qnan (r
, 0);
570 /* Inf + Inf = Inf. */
574 case CLASS2 (rvc_normal
, rvc_normal
):
581 /* Swap the arguments such that A has the larger exponent. */
582 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
585 const REAL_VALUE_TYPE
*t
;
592 /* If the exponents are not identical, we need to shift the
593 significand of B down. */
596 /* If the exponents are too far apart, the significands
597 do not overlap, which makes the subtraction a noop. */
598 if (dexp
>= SIGNIFICAND_BITS
)
605 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
611 if (sub_significands (r
, a
, b
, inexact
))
613 /* We got a borrow out of the subtraction. That means that
614 A and B had the same exponent, and B had the larger
615 significand. We need to swap the sign and negate the
618 neg_significand (r
, r
);
623 if (add_significands (r
, a
, b
))
625 /* We got carry out of the addition. This means we need to
626 shift the significand back down one bit and increase the
628 inexact
|= sticky_rshift_significand (r
, r
, 1);
629 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
640 SET_REAL_EXP (r
, exp
);
641 /* Zero out the remaining fields. */
646 /* Re-normalize the result. */
649 /* Special case: if the subtraction results in zero, the result
651 if (r
->cl
== rvc_zero
)
654 r
->sig
[0] |= inexact
;
659 /* Calculate R = A * B. Return true if the result may be inexact. */
662 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
663 const REAL_VALUE_TYPE
*b
)
665 REAL_VALUE_TYPE u
, t
, *rr
;
666 unsigned int i
, j
, k
;
667 int sign
= a
->sign
^ b
->sign
;
668 bool inexact
= false;
670 switch (CLASS2 (a
->cl
, b
->cl
))
672 case CLASS2 (rvc_zero
, rvc_zero
):
673 case CLASS2 (rvc_zero
, rvc_normal
):
674 case CLASS2 (rvc_normal
, rvc_zero
):
675 /* +-0 * ANY = 0 with appropriate sign. */
679 case CLASS2 (rvc_zero
, rvc_nan
):
680 case CLASS2 (rvc_normal
, rvc_nan
):
681 case CLASS2 (rvc_inf
, rvc_nan
):
682 case CLASS2 (rvc_nan
, rvc_nan
):
683 /* ANY * NaN = NaN. */
688 case CLASS2 (rvc_nan
, rvc_zero
):
689 case CLASS2 (rvc_nan
, rvc_normal
):
690 case CLASS2 (rvc_nan
, rvc_inf
):
691 /* NaN * ANY = NaN. */
696 case CLASS2 (rvc_zero
, rvc_inf
):
697 case CLASS2 (rvc_inf
, rvc_zero
):
699 get_canonical_qnan (r
, sign
);
702 case CLASS2 (rvc_inf
, rvc_inf
):
703 case CLASS2 (rvc_normal
, rvc_inf
):
704 case CLASS2 (rvc_inf
, rvc_normal
):
705 /* Inf * Inf = Inf, R * Inf = Inf */
709 case CLASS2 (rvc_normal
, rvc_normal
):
716 if (r
== a
|| r
== b
)
722 /* Collect all the partial products. Since we don't have sure access
723 to a widening multiply, we split each long into two half-words.
725 Consider the long-hand form of a four half-word multiplication:
735 We construct partial products of the widened half-word products
736 that are known to not overlap, e.g. DF+DH. Each such partial
737 product is given its proper exponent, which allows us to sum them
738 and obtain the finished product. */
740 for (i
= 0; i
< SIGSZ
* 2; ++i
)
742 unsigned long ai
= a
->sig
[i
/ 2];
744 ai
>>= HOST_BITS_PER_LONG
/ 2;
746 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
751 for (j
= 0; j
< 2; ++j
)
753 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
754 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
763 /* Would underflow to zero, which we shouldn't bother adding. */
768 memset (&u
, 0, sizeof (u
));
770 SET_REAL_EXP (&u
, exp
);
772 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
774 unsigned long bi
= b
->sig
[k
/ 2];
776 bi
>>= HOST_BITS_PER_LONG
/ 2;
778 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
780 u
.sig
[k
/ 2] = ai
* bi
;
784 inexact
|= do_add (rr
, rr
, &u
, 0);
795 /* Calculate R = A / B. Return true if the result may be inexact. */
798 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
799 const REAL_VALUE_TYPE
*b
)
801 int exp
, sign
= a
->sign
^ b
->sign
;
802 REAL_VALUE_TYPE t
, *rr
;
805 switch (CLASS2 (a
->cl
, b
->cl
))
807 case CLASS2 (rvc_zero
, rvc_zero
):
809 case CLASS2 (rvc_inf
, rvc_inf
):
810 /* Inf / Inf = NaN. */
811 get_canonical_qnan (r
, sign
);
814 case CLASS2 (rvc_zero
, rvc_normal
):
815 case CLASS2 (rvc_zero
, rvc_inf
):
817 case CLASS2 (rvc_normal
, rvc_inf
):
822 case CLASS2 (rvc_normal
, rvc_zero
):
824 case CLASS2 (rvc_inf
, rvc_zero
):
829 case CLASS2 (rvc_zero
, rvc_nan
):
830 case CLASS2 (rvc_normal
, rvc_nan
):
831 case CLASS2 (rvc_inf
, rvc_nan
):
832 case CLASS2 (rvc_nan
, rvc_nan
):
833 /* ANY / NaN = NaN. */
838 case CLASS2 (rvc_nan
, rvc_zero
):
839 case CLASS2 (rvc_nan
, rvc_normal
):
840 case CLASS2 (rvc_nan
, rvc_inf
):
841 /* NaN / ANY = NaN. */
846 case CLASS2 (rvc_inf
, rvc_normal
):
851 case CLASS2 (rvc_normal
, rvc_normal
):
858 if (r
== a
|| r
== b
)
863 /* Make sure all fields in the result are initialized. */
868 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
879 SET_REAL_EXP (rr
, exp
);
881 inexact
= div_significands (rr
, a
, b
);
883 /* Re-normalize the result. */
885 rr
->sig
[0] |= inexact
;
893 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
894 one of the two operands is a NaN. */
897 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
902 switch (CLASS2 (a
->cl
, b
->cl
))
904 case CLASS2 (rvc_zero
, rvc_zero
):
905 /* Sign of zero doesn't matter for compares. */
908 case CLASS2 (rvc_inf
, rvc_zero
):
909 case CLASS2 (rvc_inf
, rvc_normal
):
910 case CLASS2 (rvc_normal
, rvc_zero
):
911 return (a
->sign
? -1 : 1);
913 case CLASS2 (rvc_inf
, rvc_inf
):
914 return -a
->sign
- -b
->sign
;
916 case CLASS2 (rvc_zero
, rvc_normal
):
917 case CLASS2 (rvc_zero
, rvc_inf
):
918 case CLASS2 (rvc_normal
, rvc_inf
):
919 return (b
->sign
? 1 : -1);
921 case CLASS2 (rvc_zero
, rvc_nan
):
922 case CLASS2 (rvc_normal
, rvc_nan
):
923 case CLASS2 (rvc_inf
, rvc_nan
):
924 case CLASS2 (rvc_nan
, rvc_nan
):
925 case CLASS2 (rvc_nan
, rvc_zero
):
926 case CLASS2 (rvc_nan
, rvc_normal
):
927 case CLASS2 (rvc_nan
, rvc_inf
):
930 case CLASS2 (rvc_normal
, rvc_normal
):
937 if (a
->sign
!= b
->sign
)
938 return -a
->sign
- -b
->sign
;
940 if (a
->decimal
|| b
->decimal
)
941 return decimal_do_compare (a
, b
, nan_result
);
943 if (REAL_EXP (a
) > REAL_EXP (b
))
945 else if (REAL_EXP (a
) < REAL_EXP (b
))
948 ret
= cmp_significands (a
, b
);
950 return (a
->sign
? -ret
: ret
);
953 /* Return A truncated to an integral value toward zero. */
956 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
970 decimal_do_fix_trunc (r
, a
);
973 if (REAL_EXP (r
) <= 0)
974 get_zero (r
, r
->sign
);
975 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
976 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
984 /* Perform the binary or unary operation described by CODE.
985 For a unary operation, leave OP1 NULL. This function returns
986 true if the result may be inexact due to loss of precision. */
989 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
990 const REAL_VALUE_TYPE
*op1
)
992 enum tree_code code
= icode
;
994 if (op0
->decimal
|| (op1
&& op1
->decimal
))
995 return decimal_real_arithmetic (r
, icode
, op0
, op1
);
1000 return do_add (r
, op0
, op1
, 0);
1003 return do_add (r
, op0
, op1
, 1);
1006 return do_multiply (r
, op0
, op1
);
1009 return do_divide (r
, op0
, op1
);
1012 if (op1
->cl
== rvc_nan
)
1014 else if (do_compare (op0
, op1
, -1) < 0)
1021 if (op1
->cl
== rvc_nan
)
1023 else if (do_compare (op0
, op1
, 1) < 0)
1039 case FIX_TRUNC_EXPR
:
1040 do_fix_trunc (r
, op0
);
1049 /* Legacy. Similar, but return the result directly. */
1052 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1053 const REAL_VALUE_TYPE
*op1
)
1056 real_arithmetic (&r
, icode
, op0
, op1
);
1061 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1062 const REAL_VALUE_TYPE
*op1
)
1064 enum tree_code code
= icode
;
1069 return do_compare (op0
, op1
, 1) < 0;
1071 return do_compare (op0
, op1
, 1) <= 0;
1073 return do_compare (op0
, op1
, -1) > 0;
1075 return do_compare (op0
, op1
, -1) >= 0;
1077 return do_compare (op0
, op1
, -1) == 0;
1079 return do_compare (op0
, op1
, -1) != 0;
1080 case UNORDERED_EXPR
:
1081 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1083 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1085 return do_compare (op0
, op1
, -1) < 0;
1087 return do_compare (op0
, op1
, -1) <= 0;
1089 return do_compare (op0
, op1
, 1) > 0;
1091 return do_compare (op0
, op1
, 1) >= 0;
1093 return do_compare (op0
, op1
, 0) == 0;
1095 return do_compare (op0
, op1
, 0) != 0;
1102 /* Return floor log2(R). */
1105 real_exponent (const REAL_VALUE_TYPE
*r
)
1113 return (unsigned int)-1 >> 1;
1115 return REAL_EXP (r
);
1121 /* R = OP0 * 2**EXP. */
1124 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1135 exp
+= REAL_EXP (op0
);
1137 get_inf (r
, r
->sign
);
1138 else if (exp
< -MAX_EXP
)
1139 get_zero (r
, r
->sign
);
1141 SET_REAL_EXP (r
, exp
);
1149 /* Determine whether a floating-point value X is infinite. */
1152 real_isinf (const REAL_VALUE_TYPE
*r
)
1154 return (r
->cl
== rvc_inf
);
1157 /* Determine whether a floating-point value X is a NaN. */
1160 real_isnan (const REAL_VALUE_TYPE
*r
)
1162 return (r
->cl
== rvc_nan
);
1165 /* Determine whether a floating-point value X is finite. */
1168 real_isfinite (const REAL_VALUE_TYPE
*r
)
1170 return (r
->cl
!= rvc_nan
) && (r
->cl
!= rvc_inf
);
1173 /* Determine whether a floating-point value X is negative. */
1176 real_isneg (const REAL_VALUE_TYPE
*r
)
1181 /* Determine whether a floating-point value X is minus zero. */
1184 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1186 return r
->sign
&& r
->cl
== rvc_zero
;
1189 /* Compare two floating-point objects for bitwise identity. */
1192 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1198 if (a
->sign
!= b
->sign
)
1208 if (a
->decimal
!= b
->decimal
)
1210 if (REAL_EXP (a
) != REAL_EXP (b
))
1215 if (a
->signalling
!= b
->signalling
)
1217 /* The significand is ignored for canonical NaNs. */
1218 if (a
->canonical
|| b
->canonical
)
1219 return a
->canonical
== b
->canonical
;
1226 for (i
= 0; i
< SIGSZ
; ++i
)
1227 if (a
->sig
[i
] != b
->sig
[i
])
1233 /* Try to change R into its exact multiplicative inverse in machine
1234 mode MODE. Return true if successful. */
1237 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1239 const REAL_VALUE_TYPE
*one
= real_digit (1);
1243 if (r
->cl
!= rvc_normal
)
1246 /* Check for a power of two: all significand bits zero except the MSB. */
1247 for (i
= 0; i
< SIGSZ
-1; ++i
)
1250 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1253 /* Find the inverse and truncate to the required mode. */
1254 do_divide (&u
, one
, r
);
1255 real_convert (&u
, mode
, &u
);
1257 /* The rounding may have overflowed. */
1258 if (u
.cl
!= rvc_normal
)
1260 for (i
= 0; i
< SIGSZ
-1; ++i
)
1263 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1270 /* Render R as an integer. */
1273 real_to_integer (const REAL_VALUE_TYPE
*r
)
1275 unsigned HOST_WIDE_INT i
;
1286 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1293 return decimal_real_to_integer (r
);
1295 if (REAL_EXP (r
) <= 0)
1297 /* Only force overflow for unsigned overflow. Signed overflow is
1298 undefined, so it doesn't matter what we return, and some callers
1299 expect to be able to use this routine for both signed and
1300 unsigned conversions. */
1301 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1304 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1305 i
= r
->sig
[SIGSZ
-1];
1308 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1309 i
= r
->sig
[SIGSZ
-1];
1310 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1311 i
|= r
->sig
[SIGSZ
-2];
1314 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1325 /* Likewise, but to an integer pair, HI+LOW. */
1328 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1329 const REAL_VALUE_TYPE
*r
)
1332 HOST_WIDE_INT low
, high
;
1345 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1358 decimal_real_to_integer2 (plow
, phigh
, r
);
1365 /* Only force overflow for unsigned overflow. Signed overflow is
1366 undefined, so it doesn't matter what we return, and some callers
1367 expect to be able to use this routine for both signed and
1368 unsigned conversions. */
1369 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1372 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1373 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1375 high
= t
.sig
[SIGSZ
-1];
1376 low
= t
.sig
[SIGSZ
-2];
1380 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1381 high
= t
.sig
[SIGSZ
-1];
1382 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1383 high
|= t
.sig
[SIGSZ
-2];
1385 low
= t
.sig
[SIGSZ
-3];
1386 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1387 low
|= t
.sig
[SIGSZ
-4];
1395 low
= -low
, high
= ~high
;
1407 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1408 of NUM / DEN. Return the quotient and place the remainder in NUM.
1409 It is expected that NUM / DEN are close enough that the quotient is
1412 static unsigned long
1413 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1415 unsigned long q
, msb
;
1416 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1425 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1427 lshift_significand_1 (num
, num
);
1429 if (msb
|| cmp_significands (num
, den
) >= 0)
1431 sub_significands (num
, num
, den
, 0);
1435 while (--expn
>= expd
);
1437 SET_REAL_EXP (num
, expd
);
1443 /* Render R as a decimal floating point constant. Emit DIGITS significant
1444 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1445 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1448 #define M_LOG10_2 0.30102999566398119521
1451 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1452 size_t digits
, int crop_trailing_zeros
)
1454 const REAL_VALUE_TYPE
*one
, *ten
;
1455 REAL_VALUE_TYPE r
, pten
, u
, v
;
1456 int dec_exp
, cmp_one
, digit
;
1458 char *p
, *first
, *last
;
1465 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1470 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1473 /* ??? Print the significand as well, if not canonical? */
1474 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1482 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1486 /* Bound the number of digits printed by the size of the representation. */
1487 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1488 if (digits
== 0 || digits
> max_digits
)
1489 digits
= max_digits
;
1491 /* Estimate the decimal exponent, and compute the length of the string it
1492 will print as. Be conservative and add one to account for possible
1493 overflow or rounding error. */
1494 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1495 for (max_digits
= 1; dec_exp
; max_digits
++)
1498 /* Bound the number of digits printed by the size of the output buffer. */
1499 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1500 gcc_assert (max_digits
<= buf_size
);
1501 if (digits
> max_digits
)
1502 digits
= max_digits
;
1504 one
= real_digit (1);
1505 ten
= ten_to_ptwo (0);
1513 cmp_one
= do_compare (&r
, one
, 0);
1518 /* Number is greater than one. Convert significand to an integer
1519 and strip trailing decimal zeros. */
1522 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1524 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1525 m
= floor_log2 (max_digits
);
1527 /* Iterate over the bits of the possible powers of 10 that might
1528 be present in U and eliminate them. That is, if we find that
1529 10**2**M divides U evenly, keep the division and increase
1535 do_divide (&t
, &u
, ten_to_ptwo (m
));
1536 do_fix_trunc (&v
, &t
);
1537 if (cmp_significands (&v
, &t
) == 0)
1545 /* Revert the scaling to integer that we performed earlier. */
1546 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1547 - (SIGNIFICAND_BITS
- 1));
1550 /* Find power of 10. Do this by dividing out 10**2**M when
1551 this is larger than the current remainder. Fill PTEN with
1552 the power of 10 that we compute. */
1553 if (REAL_EXP (&r
) > 0)
1555 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1558 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1559 if (do_compare (&u
, ptentwo
, 0) >= 0)
1561 do_divide (&u
, &u
, ptentwo
);
1562 do_multiply (&pten
, &pten
, ptentwo
);
1569 /* We managed to divide off enough tens in the above reduction
1570 loop that we've now got a negative exponent. Fall into the
1571 less-than-one code to compute the proper value for PTEN. */
1578 /* Number is less than one. Pad significand with leading
1584 /* Stop if we'd shift bits off the bottom. */
1588 do_multiply (&u
, &v
, ten
);
1590 /* Stop if we're now >= 1. */
1591 if (REAL_EXP (&u
) > 0)
1599 /* Find power of 10. Do this by multiplying in P=10**2**M when
1600 the current remainder is smaller than 1/P. Fill PTEN with the
1601 power of 10 that we compute. */
1602 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1605 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1606 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1608 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1610 do_multiply (&v
, &v
, ptentwo
);
1611 do_multiply (&pten
, &pten
, ptentwo
);
1617 /* Invert the positive power of 10 that we've collected so far. */
1618 do_divide (&pten
, one
, &pten
);
1626 /* At this point, PTEN should contain the nearest power of 10 smaller
1627 than R, such that this division produces the first digit.
1629 Using a divide-step primitive that returns the complete integral
1630 remainder avoids the rounding error that would be produced if
1631 we were to use do_divide here and then simply multiply by 10 for
1632 each subsequent digit. */
1634 digit
= rtd_divmod (&r
, &pten
);
1636 /* Be prepared for error in that division via underflow ... */
1637 if (digit
== 0 && cmp_significand_0 (&r
))
1639 /* Multiply by 10 and try again. */
1640 do_multiply (&r
, &r
, ten
);
1641 digit
= rtd_divmod (&r
, &pten
);
1643 gcc_assert (digit
!= 0);
1646 /* ... or overflow. */
1656 gcc_assert (digit
<= 10);
1660 /* Generate subsequent digits. */
1661 while (--digits
> 0)
1663 do_multiply (&r
, &r
, ten
);
1664 digit
= rtd_divmod (&r
, &pten
);
1669 /* Generate one more digit with which to do rounding. */
1670 do_multiply (&r
, &r
, ten
);
1671 digit
= rtd_divmod (&r
, &pten
);
1673 /* Round the result. */
1676 /* Round to nearest. If R is nonzero there are additional
1677 nonzero digits to be extracted. */
1678 if (cmp_significand_0 (&r
))
1680 /* Round to even. */
1681 else if ((p
[-1] - '0') & 1)
1698 /* Carry out of the first digit. This means we had all 9's and
1699 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1707 /* Insert the decimal point. */
1708 first
[0] = first
[1];
1711 /* If requested, drop trailing zeros. Never crop past "1.0". */
1712 if (crop_trailing_zeros
)
1713 while (last
> first
+ 3 && last
[-1] == '0')
1716 /* Append the exponent. */
1717 sprintf (last
, "e%+d", dec_exp
);
1720 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1721 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1722 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1723 strip trailing zeros. */
1726 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1727 size_t digits
, int crop_trailing_zeros
)
1729 int i
, j
, exp
= REAL_EXP (r
);
1742 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1745 /* ??? Print the significand as well, if not canonical? */
1746 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1754 /* Hexadecimal format for decimal floats is not interesting. */
1755 strcpy (str
, "N/A");
1760 digits
= SIGNIFICAND_BITS
/ 4;
1762 /* Bound the number of digits printed by the size of the output buffer. */
1764 sprintf (exp_buf
, "p%+d", exp
);
1765 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1766 gcc_assert (max_digits
<= buf_size
);
1767 if (digits
> max_digits
)
1768 digits
= max_digits
;
1779 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1780 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1782 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1788 if (crop_trailing_zeros
)
1789 while (p
> first
+ 1 && p
[-1] == '0')
1792 sprintf (p
, "p%+d", exp
);
1795 /* Initialize R from a decimal or hexadecimal string. The string is
1796 assumed to have been syntax checked already. Return -1 if the
1797 value underflows, +1 if overflows, and 0 otherwise. */
1800 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1812 else if (*str
== '+')
1815 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1817 /* Hexadecimal floating point. */
1818 int pos
= SIGNIFICAND_BITS
- 4, d
;
1826 d
= hex_value (*str
);
1831 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1832 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1836 /* Ensure correct rounding by setting last bit if there is
1837 a subsequent nonzero digit. */
1845 if (pos
== SIGNIFICAND_BITS
- 4)
1852 d
= hex_value (*str
);
1857 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1858 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1862 /* Ensure correct rounding by setting last bit if there is
1863 a subsequent nonzero digit. */
1869 /* If the mantissa is zero, ignore the exponent. */
1870 if (!cmp_significand_0 (r
))
1873 if (*str
== 'p' || *str
== 'P')
1875 bool exp_neg
= false;
1883 else if (*str
== '+')
1887 while (ISDIGIT (*str
))
1893 /* Overflowed the exponent. */
1908 SET_REAL_EXP (r
, exp
);
1914 /* Decimal floating point. */
1915 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1920 while (ISDIGIT (*str
))
1923 do_multiply (r
, r
, ten
);
1925 do_add (r
, r
, real_digit (d
), 0);
1930 if (r
->cl
== rvc_zero
)
1935 while (ISDIGIT (*str
))
1938 do_multiply (r
, r
, ten
);
1940 do_add (r
, r
, real_digit (d
), 0);
1945 /* If the mantissa is zero, ignore the exponent. */
1946 if (r
->cl
== rvc_zero
)
1949 if (*str
== 'e' || *str
== 'E')
1951 bool exp_neg
= false;
1959 else if (*str
== '+')
1963 while (ISDIGIT (*str
))
1969 /* Overflowed the exponent. */
1983 times_pten (r
, exp
);
2002 /* Legacy. Similar, but return the result directly. */
2005 real_from_string2 (const char *s
, enum machine_mode mode
)
2009 real_from_string (&r
, s
);
2010 if (mode
!= VOIDmode
)
2011 real_convert (&r
, mode
, &r
);
2016 /* Initialize R from string S and desired MODE. */
2019 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, enum machine_mode mode
)
2021 if (DECIMAL_FLOAT_MODE_P (mode
))
2022 decimal_real_from_string (r
, s
);
2024 real_from_string (r
, s
);
2026 if (mode
!= VOIDmode
)
2027 real_convert (r
, mode
, r
);
2030 /* Initialize R from the integer pair HIGH+LOW. */
2033 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2034 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
2037 if (low
== 0 && high
== 0)
2041 memset (r
, 0, sizeof (*r
));
2043 r
->sign
= high
< 0 && !unsigned_p
;
2044 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
2055 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2057 r
->sig
[SIGSZ
-1] = high
;
2058 r
->sig
[SIGSZ
-2] = low
;
2062 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2063 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2064 r
->sig
[SIGSZ
-2] = high
;
2065 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2066 r
->sig
[SIGSZ
-4] = low
;
2072 if (mode
!= VOIDmode
)
2073 real_convert (r
, mode
, r
);
2076 /* Returns 10**2**N. */
2078 static const REAL_VALUE_TYPE
*
2081 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2083 gcc_assert (n
>= 0);
2084 gcc_assert (n
< EXP_BITS
);
2086 if (tens
[n
].cl
== rvc_zero
)
2088 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2090 HOST_WIDE_INT t
= 10;
2093 for (i
= 0; i
< n
; ++i
)
2096 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2100 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2101 do_multiply (&tens
[n
], t
, t
);
2108 /* Returns 10**(-2**N). */
2110 static const REAL_VALUE_TYPE
*
2111 ten_to_mptwo (int n
)
2113 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2115 gcc_assert (n
>= 0);
2116 gcc_assert (n
< EXP_BITS
);
2118 if (tens
[n
].cl
== rvc_zero
)
2119 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2126 static const REAL_VALUE_TYPE
*
2129 static REAL_VALUE_TYPE num
[10];
2131 gcc_assert (n
>= 0);
2132 gcc_assert (n
<= 9);
2134 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2135 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2140 /* Multiply R by 10**EXP. */
2143 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2145 REAL_VALUE_TYPE pten
, *rr
;
2146 bool negative
= (exp
< 0);
2152 pten
= *real_digit (1);
2158 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2160 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2163 do_divide (r
, r
, &pten
);
2166 /* Fills R with +Inf. */
2169 real_inf (REAL_VALUE_TYPE
*r
)
2174 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2175 we force a QNaN, else we force an SNaN. The string, if not empty,
2176 is parsed as a number and placed in the significand. Return true
2177 if the string was successfully parsed. */
2180 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2181 enum machine_mode mode
)
2183 const struct real_format
*fmt
;
2185 fmt
= REAL_MODE_FORMAT (mode
);
2191 get_canonical_qnan (r
, 0);
2193 get_canonical_snan (r
, 0);
2199 memset (r
, 0, sizeof (*r
));
2202 /* Parse akin to strtol into the significand of R. */
2204 while (ISSPACE (*str
))
2208 else if (*str
== '+')
2213 if (*str
== 'x' || *str
== 'X')
2222 while ((d
= hex_value (*str
)) < base
)
2229 lshift_significand (r
, r
, 3);
2232 lshift_significand (r
, r
, 4);
2235 lshift_significand_1 (&u
, r
);
2236 lshift_significand (r
, r
, 3);
2237 add_significands (r
, r
, &u
);
2245 add_significands (r
, r
, &u
);
2250 /* Must have consumed the entire string for success. */
2254 /* Shift the significand into place such that the bits
2255 are in the most significant bits for the format. */
2256 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2258 /* Our MSB is always unset for NaNs. */
2259 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2261 /* Force quiet or signalling NaN. */
2262 r
->signalling
= !quiet
;
2268 /* Fills R with the largest finite value representable in mode MODE.
2269 If SIGN is nonzero, R is set to the most negative finite value. */
2272 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2274 const struct real_format
*fmt
;
2277 fmt
= REAL_MODE_FORMAT (mode
);
2279 memset (r
, 0, sizeof (*r
));
2282 decimal_real_maxval (r
, sign
, mode
);
2287 SET_REAL_EXP (r
, fmt
->emax
);
2289 np2
= SIGNIFICAND_BITS
- fmt
->p
;
2290 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2291 clear_significand_below (r
, np2
);
2293 if (fmt
->pnan
< fmt
->p
)
2294 /* This is an IBM extended double format made up of two IEEE
2295 doubles. The value of the long double is the sum of the
2296 values of the two parts. The most significant part is
2297 required to be the value of the long double rounded to the
2298 nearest double. Rounding means we need a slightly smaller
2299 value for LDBL_MAX. */
2300 clear_significand_bit (r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2304 /* Fills R with 2**N. */
2307 real_2expN (REAL_VALUE_TYPE
*r
, int n
, enum machine_mode fmode
)
2309 memset (r
, 0, sizeof (*r
));
2314 else if (n
< -MAX_EXP
)
2319 SET_REAL_EXP (r
, n
);
2320 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2322 if (DECIMAL_FLOAT_MODE_P (fmode
))
2323 decimal_real_convert (r
, fmode
, r
);
2328 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2331 unsigned long sticky
;
2339 decimal_round_for_format (fmt
, r
);
2342 /* FIXME. We can come here via fp_easy_constant
2343 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2344 investigated whether this convert needs to be here, or
2345 something else is missing. */
2346 decimal_real_convert (r
, DFmode
, r
);
2350 emin2m1
= fmt
->emin
- 1;
2353 np2
= SIGNIFICAND_BITS
- p2
;
2357 get_zero (r
, r
->sign
);
2359 if (!fmt
->has_signed_zero
)
2364 get_inf (r
, r
->sign
);
2369 clear_significand_below (r
, np2
);
2379 /* Check the range of the exponent. If we're out of range,
2380 either underflow or overflow. */
2381 if (REAL_EXP (r
) > emax2
)
2383 else if (REAL_EXP (r
) <= emin2m1
)
2387 if (!fmt
->has_denorm
)
2389 /* Don't underflow completely until we've had a chance to round. */
2390 if (REAL_EXP (r
) < emin2m1
)
2395 diff
= emin2m1
- REAL_EXP (r
) + 1;
2399 /* De-normalize the significand. */
2400 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2401 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2405 /* There are P2 true significand bits, followed by one guard bit,
2406 followed by one sticky bit, followed by stuff. Fold nonzero
2407 stuff into the sticky bit. */
2410 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2411 sticky
|= r
->sig
[i
];
2413 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2415 guard
= test_significand_bit (r
, np2
- 1);
2416 lsb
= test_significand_bit (r
, np2
);
2418 /* Round to even. */
2419 if (guard
&& (sticky
|| lsb
))
2423 set_significand_bit (&u
, np2
);
2425 if (add_significands (r
, r
, &u
))
2427 /* Overflow. Means the significand had been all ones, and
2428 is now all zeros. Need to increase the exponent, and
2429 possibly re-normalize it. */
2430 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2431 if (REAL_EXP (r
) > emax2
)
2433 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2437 /* Catch underflow that we deferred until after rounding. */
2438 if (REAL_EXP (r
) <= emin2m1
)
2441 /* Clear out trailing garbage. */
2442 clear_significand_below (r
, np2
);
2445 /* Extend or truncate to a new mode. */
2448 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2449 const REAL_VALUE_TYPE
*a
)
2451 const struct real_format
*fmt
;
2453 fmt
= REAL_MODE_FORMAT (mode
);
2458 if (a
->decimal
|| fmt
->b
== 10)
2459 decimal_real_convert (r
, mode
, a
);
2461 round_for_format (fmt
, r
);
2463 /* round_for_format de-normalizes denormals. Undo just that part. */
2464 if (r
->cl
== rvc_normal
)
2468 /* Legacy. Likewise, except return the struct directly. */
2471 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2474 real_convert (&r
, mode
, &a
);
2478 /* Return true if truncating to MODE is exact. */
2481 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2483 const struct real_format
*fmt
;
2487 fmt
= REAL_MODE_FORMAT (mode
);
2490 /* Don't allow conversion to denormals. */
2491 emin2m1
= fmt
->emin
- 1;
2492 if (REAL_EXP (a
) <= emin2m1
)
2495 /* After conversion to the new mode, the value must be identical. */
2496 real_convert (&t
, mode
, a
);
2497 return real_identical (&t
, a
);
2500 /* Write R to the given target format. Place the words of the result
2501 in target word order in BUF. There are always 32 bits in each
2502 long, no matter the size of the host long.
2504 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2507 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2508 const struct real_format
*fmt
)
2514 round_for_format (fmt
, &r
);
2518 (*fmt
->encode
) (fmt
, buf
, &r
);
2523 /* Similar, but look up the format from MODE. */
2526 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2528 const struct real_format
*fmt
;
2530 fmt
= REAL_MODE_FORMAT (mode
);
2533 return real_to_target_fmt (buf
, r
, fmt
);
2536 /* Read R from the given target format. Read the words of the result
2537 in target word order in BUF. There are always 32 bits in each
2538 long, no matter the size of the host long. */
2541 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2542 const struct real_format
*fmt
)
2544 (*fmt
->decode
) (fmt
, r
, buf
);
2547 /* Similar, but look up the format from MODE. */
2550 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2552 const struct real_format
*fmt
;
2554 fmt
= REAL_MODE_FORMAT (mode
);
2557 (*fmt
->decode
) (fmt
, r
, buf
);
2560 /* Return the number of bits of the largest binary value that the
2561 significand of MODE will hold. */
2562 /* ??? Legacy. Should get access to real_format directly. */
2565 significand_size (enum machine_mode mode
)
2567 const struct real_format
*fmt
;
2569 fmt
= REAL_MODE_FORMAT (mode
);
2575 /* Return the size in bits of the largest binary value that can be
2576 held by the decimal coefficient for this mode. This is one more
2577 than the number of bits required to hold the largest coefficient
2579 double log2_10
= 3.3219281;
2580 return fmt
->p
* log2_10
;
2585 /* Return a hash value for the given real value. */
2586 /* ??? The "unsigned int" return value is intended to be hashval_t,
2587 but I didn't want to pull hashtab.h into real.h. */
2590 real_hash (const REAL_VALUE_TYPE
*r
)
2595 h
= r
->cl
| (r
->sign
<< 2);
2603 h
|= REAL_EXP (r
) << 3;
2608 h
^= (unsigned int)-1;
2617 if (sizeof(unsigned long) > sizeof(unsigned int))
2618 for (i
= 0; i
< SIGSZ
; ++i
)
2620 unsigned long s
= r
->sig
[i
];
2621 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2624 for (i
= 0; i
< SIGSZ
; ++i
)
2630 /* IEEE single-precision format. */
2632 static void encode_ieee_single (const struct real_format
*fmt
,
2633 long *, const REAL_VALUE_TYPE
*);
2634 static void decode_ieee_single (const struct real_format
*,
2635 REAL_VALUE_TYPE
*, const long *);
2638 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2639 const REAL_VALUE_TYPE
*r
)
2641 unsigned long image
, sig
, exp
;
2642 unsigned long sign
= r
->sign
;
2643 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2646 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2657 image
|= 0x7fffffff;
2664 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 22) - 1 : 0);
2665 if (r
->signalling
== fmt
->qnan_msb_set
)
2676 image
|= 0x7fffffff;
2680 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2681 whereas the intermediate representation is 0.F x 2**exp.
2682 Which means we're off by one. */
2686 exp
= REAL_EXP (r
) + 127 - 1;
2699 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2702 unsigned long image
= buf
[0] & 0xffffffff;
2703 bool sign
= (image
>> 31) & 1;
2704 int exp
= (image
>> 23) & 0xff;
2706 memset (r
, 0, sizeof (*r
));
2707 image
<<= HOST_BITS_PER_LONG
- 24;
2712 if (image
&& fmt
->has_denorm
)
2716 SET_REAL_EXP (r
, -126);
2717 r
->sig
[SIGSZ
-1] = image
<< 1;
2720 else if (fmt
->has_signed_zero
)
2723 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2729 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2730 ^ fmt
->qnan_msb_set
);
2731 r
->sig
[SIGSZ
-1] = image
;
2743 SET_REAL_EXP (r
, exp
- 127 + 1);
2744 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2748 const struct real_format ieee_single_format
=
2767 const struct real_format mips_single_format
=
2786 const struct real_format motorola_single_format
=
2805 /* IEEE double-precision format. */
2807 static void encode_ieee_double (const struct real_format
*fmt
,
2808 long *, const REAL_VALUE_TYPE
*);
2809 static void decode_ieee_double (const struct real_format
*,
2810 REAL_VALUE_TYPE
*, const long *);
2813 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2814 const REAL_VALUE_TYPE
*r
)
2816 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2817 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2819 image_hi
= r
->sign
<< 31;
2822 if (HOST_BITS_PER_LONG
== 64)
2824 sig_hi
= r
->sig
[SIGSZ
-1];
2825 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2826 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2830 sig_hi
= r
->sig
[SIGSZ
-1];
2831 sig_lo
= r
->sig
[SIGSZ
-2];
2832 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2833 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2843 image_hi
|= 2047 << 20;
2846 image_hi
|= 0x7fffffff;
2847 image_lo
= 0xffffffff;
2856 if (fmt
->canonical_nan_lsbs_set
)
2858 sig_hi
= (1 << 19) - 1;
2859 sig_lo
= 0xffffffff;
2867 if (r
->signalling
== fmt
->qnan_msb_set
)
2868 sig_hi
&= ~(1 << 19);
2871 if (sig_hi
== 0 && sig_lo
== 0)
2874 image_hi
|= 2047 << 20;
2880 image_hi
|= 0x7fffffff;
2881 image_lo
= 0xffffffff;
2886 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2887 whereas the intermediate representation is 0.F x 2**exp.
2888 Which means we're off by one. */
2892 exp
= REAL_EXP (r
) + 1023 - 1;
2893 image_hi
|= exp
<< 20;
2902 if (FLOAT_WORDS_BIG_ENDIAN
)
2903 buf
[0] = image_hi
, buf
[1] = image_lo
;
2905 buf
[0] = image_lo
, buf
[1] = image_hi
;
2909 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2912 unsigned long image_hi
, image_lo
;
2916 if (FLOAT_WORDS_BIG_ENDIAN
)
2917 image_hi
= buf
[0], image_lo
= buf
[1];
2919 image_lo
= buf
[0], image_hi
= buf
[1];
2920 image_lo
&= 0xffffffff;
2921 image_hi
&= 0xffffffff;
2923 sign
= (image_hi
>> 31) & 1;
2924 exp
= (image_hi
>> 20) & 0x7ff;
2926 memset (r
, 0, sizeof (*r
));
2928 image_hi
<<= 32 - 21;
2929 image_hi
|= image_lo
>> 21;
2930 image_hi
&= 0x7fffffff;
2931 image_lo
<<= 32 - 21;
2935 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2939 SET_REAL_EXP (r
, -1022);
2940 if (HOST_BITS_PER_LONG
== 32)
2942 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2944 r
->sig
[SIGSZ
-1] = image_hi
;
2945 r
->sig
[SIGSZ
-2] = image_lo
;
2949 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2950 r
->sig
[SIGSZ
-1] = image_hi
;
2954 else if (fmt
->has_signed_zero
)
2957 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
2959 if (image_hi
|| image_lo
)
2963 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
2964 if (HOST_BITS_PER_LONG
== 32)
2966 r
->sig
[SIGSZ
-1] = image_hi
;
2967 r
->sig
[SIGSZ
-2] = image_lo
;
2970 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
2982 SET_REAL_EXP (r
, exp
- 1023 + 1);
2983 if (HOST_BITS_PER_LONG
== 32)
2985 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
2986 r
->sig
[SIGSZ
-2] = image_lo
;
2989 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
2993 const struct real_format ieee_double_format
=
3012 const struct real_format mips_double_format
=
3031 const struct real_format motorola_double_format
=
3050 /* IEEE extended real format. This comes in three flavors: Intel's as
3051 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3052 12- and 16-byte images may be big- or little endian; Motorola's is
3053 always big endian. */
3055 /* Helper subroutine which converts from the internal format to the
3056 12-byte little-endian Intel format. Functions below adjust this
3057 for the other possible formats. */
3059 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3060 const REAL_VALUE_TYPE
*r
)
3062 unsigned long image_hi
, sig_hi
, sig_lo
;
3063 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3065 image_hi
= r
->sign
<< 15;
3066 sig_hi
= sig_lo
= 0;
3078 /* Intel requires the explicit integer bit to be set, otherwise
3079 it considers the value a "pseudo-infinity". Motorola docs
3080 say it doesn't care. */
3081 sig_hi
= 0x80000000;
3086 sig_lo
= sig_hi
= 0xffffffff;
3096 if (fmt
->canonical_nan_lsbs_set
)
3098 sig_hi
= (1 << 30) - 1;
3099 sig_lo
= 0xffffffff;
3102 else if (HOST_BITS_PER_LONG
== 32)
3104 sig_hi
= r
->sig
[SIGSZ
-1];
3105 sig_lo
= r
->sig
[SIGSZ
-2];
3109 sig_lo
= r
->sig
[SIGSZ
-1];
3110 sig_hi
= sig_lo
>> 31 >> 1;
3111 sig_lo
&= 0xffffffff;
3113 if (r
->signalling
== fmt
->qnan_msb_set
)
3114 sig_hi
&= ~(1 << 30);
3117 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3120 /* Intel requires the explicit integer bit to be set, otherwise
3121 it considers the value a "pseudo-nan". Motorola docs say it
3123 sig_hi
|= 0x80000000;
3128 sig_lo
= sig_hi
= 0xffffffff;
3134 int exp
= REAL_EXP (r
);
3136 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3137 whereas the intermediate representation is 0.F x 2**exp.
3138 Which means we're off by one.
3140 Except for Motorola, which consider exp=0 and explicit
3141 integer bit set to continue to be normalized. In theory
3142 this discrepancy has been taken care of by the difference
3143 in fmt->emin in round_for_format. */
3150 gcc_assert (exp
>= 0);
3154 if (HOST_BITS_PER_LONG
== 32)
3156 sig_hi
= r
->sig
[SIGSZ
-1];
3157 sig_lo
= r
->sig
[SIGSZ
-2];
3161 sig_lo
= r
->sig
[SIGSZ
-1];
3162 sig_hi
= sig_lo
>> 31 >> 1;
3163 sig_lo
&= 0xffffffff;
3172 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3175 /* Convert from the internal format to the 12-byte Motorola format
3176 for an IEEE extended real. */
3178 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3179 const REAL_VALUE_TYPE
*r
)
3182 encode_ieee_extended (fmt
, intermed
, r
);
3184 /* Motorola chips are assumed always to be big-endian. Also, the
3185 padding in a Motorola extended real goes between the exponent and
3186 the mantissa. At this point the mantissa is entirely within
3187 elements 0 and 1 of intermed, and the exponent entirely within
3188 element 2, so all we have to do is swap the order around, and
3189 shift element 2 left 16 bits. */
3190 buf
[0] = intermed
[2] << 16;
3191 buf
[1] = intermed
[1];
3192 buf
[2] = intermed
[0];
3195 /* Convert from the internal format to the 12-byte Intel format for
3196 an IEEE extended real. */
3198 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3199 const REAL_VALUE_TYPE
*r
)
3201 if (FLOAT_WORDS_BIG_ENDIAN
)
3203 /* All the padding in an Intel-format extended real goes at the high
3204 end, which in this case is after the mantissa, not the exponent.
3205 Therefore we must shift everything down 16 bits. */
3207 encode_ieee_extended (fmt
, intermed
, r
);
3208 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3209 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3210 buf
[2] = (intermed
[0] << 16);
3213 /* encode_ieee_extended produces what we want directly. */
3214 encode_ieee_extended (fmt
, buf
, r
);
3217 /* Convert from the internal format to the 16-byte Intel format for
3218 an IEEE extended real. */
3220 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3221 const REAL_VALUE_TYPE
*r
)
3223 /* All the padding in an Intel-format extended real goes at the high end. */
3224 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3228 /* As above, we have a helper function which converts from 12-byte
3229 little-endian Intel format to internal format. Functions below
3230 adjust for the other possible formats. */
3232 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3235 unsigned long image_hi
, sig_hi
, sig_lo
;
3239 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3240 sig_lo
&= 0xffffffff;
3241 sig_hi
&= 0xffffffff;
3242 image_hi
&= 0xffffffff;
3244 sign
= (image_hi
>> 15) & 1;
3245 exp
= image_hi
& 0x7fff;
3247 memset (r
, 0, sizeof (*r
));
3251 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3256 /* When the IEEE format contains a hidden bit, we know that
3257 it's zero at this point, and so shift up the significand
3258 and decrease the exponent to match. In this case, Motorola
3259 defines the explicit integer bit to be valid, so we don't
3260 know whether the msb is set or not. */
3261 SET_REAL_EXP (r
, fmt
->emin
);
3262 if (HOST_BITS_PER_LONG
== 32)
3264 r
->sig
[SIGSZ
-1] = sig_hi
;
3265 r
->sig
[SIGSZ
-2] = sig_lo
;
3268 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3272 else if (fmt
->has_signed_zero
)
3275 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3277 /* See above re "pseudo-infinities" and "pseudo-nans".
3278 Short summary is that the MSB will likely always be
3279 set, and that we don't care about it. */
3280 sig_hi
&= 0x7fffffff;
3282 if (sig_hi
|| sig_lo
)
3286 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3287 if (HOST_BITS_PER_LONG
== 32)
3289 r
->sig
[SIGSZ
-1] = sig_hi
;
3290 r
->sig
[SIGSZ
-2] = sig_lo
;
3293 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3305 SET_REAL_EXP (r
, exp
- 16383 + 1);
3306 if (HOST_BITS_PER_LONG
== 32)
3308 r
->sig
[SIGSZ
-1] = sig_hi
;
3309 r
->sig
[SIGSZ
-2] = sig_lo
;
3312 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3316 /* Convert from the internal format to the 12-byte Motorola format
3317 for an IEEE extended real. */
3319 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3324 /* Motorola chips are assumed always to be big-endian. Also, the
3325 padding in a Motorola extended real goes between the exponent and
3326 the mantissa; remove it. */
3327 intermed
[0] = buf
[2];
3328 intermed
[1] = buf
[1];
3329 intermed
[2] = (unsigned long)buf
[0] >> 16;
3331 decode_ieee_extended (fmt
, r
, intermed
);
3334 /* Convert from the internal format to the 12-byte Intel format for
3335 an IEEE extended real. */
3337 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3340 if (FLOAT_WORDS_BIG_ENDIAN
)
3342 /* All the padding in an Intel-format extended real goes at the high
3343 end, which in this case is after the mantissa, not the exponent.
3344 Therefore we must shift everything up 16 bits. */
3347 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3348 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3349 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3351 decode_ieee_extended (fmt
, r
, intermed
);
3354 /* decode_ieee_extended produces what we want directly. */
3355 decode_ieee_extended (fmt
, r
, buf
);
3358 /* Convert from the internal format to the 16-byte Intel format for
3359 an IEEE extended real. */
3361 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3364 /* All the padding in an Intel-format extended real goes at the high end. */
3365 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3368 const struct real_format ieee_extended_motorola_format
=
3370 encode_ieee_extended_motorola
,
3371 decode_ieee_extended_motorola
,
3387 const struct real_format ieee_extended_intel_96_format
=
3389 encode_ieee_extended_intel_96
,
3390 decode_ieee_extended_intel_96
,
3406 const struct real_format ieee_extended_intel_128_format
=
3408 encode_ieee_extended_intel_128
,
3409 decode_ieee_extended_intel_128
,
3425 /* The following caters to i386 systems that set the rounding precision
3426 to 53 bits instead of 64, e.g. FreeBSD. */
3427 const struct real_format ieee_extended_intel_96_round_53_format
=
3429 encode_ieee_extended_intel_96
,
3430 decode_ieee_extended_intel_96
,
3446 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3447 numbers whose sum is equal to the extended precision value. The number
3448 with greater magnitude is first. This format has the same magnitude
3449 range as an IEEE double precision value, but effectively 106 bits of
3450 significand precision. Infinity and NaN are represented by their IEEE
3451 double precision value stored in the first number, the second number is
3452 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3454 static void encode_ibm_extended (const struct real_format
*fmt
,
3455 long *, const REAL_VALUE_TYPE
*);
3456 static void decode_ibm_extended (const struct real_format
*,
3457 REAL_VALUE_TYPE
*, const long *);
3460 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3461 const REAL_VALUE_TYPE
*r
)
3463 REAL_VALUE_TYPE u
, normr
, v
;
3464 const struct real_format
*base_fmt
;
3466 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3468 /* Renormlize R before doing any arithmetic on it. */
3470 if (normr
.cl
== rvc_normal
)
3473 /* u = IEEE double precision portion of significand. */
3475 round_for_format (base_fmt
, &u
);
3476 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3478 if (u
.cl
== rvc_normal
)
3480 do_add (&v
, &normr
, &u
, 1);
3481 /* Call round_for_format since we might need to denormalize. */
3482 round_for_format (base_fmt
, &v
);
3483 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3487 /* Inf, NaN, 0 are all representable as doubles, so the
3488 least-significant part can be 0.0. */
3495 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3498 REAL_VALUE_TYPE u
, v
;
3499 const struct real_format
*base_fmt
;
3501 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3502 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3504 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3506 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3507 do_add (r
, &u
, &v
, 0);
3513 const struct real_format ibm_extended_format
=
3515 encode_ibm_extended
,
3516 decode_ibm_extended
,
3532 const struct real_format mips_extended_format
=
3534 encode_ibm_extended
,
3535 decode_ibm_extended
,
3552 /* IEEE quad precision format. */
3554 static void encode_ieee_quad (const struct real_format
*fmt
,
3555 long *, const REAL_VALUE_TYPE
*);
3556 static void decode_ieee_quad (const struct real_format
*,
3557 REAL_VALUE_TYPE
*, const long *);
3560 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3561 const REAL_VALUE_TYPE
*r
)
3563 unsigned long image3
, image2
, image1
, image0
, exp
;
3564 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3567 image3
= r
->sign
<< 31;
3572 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3581 image3
|= 32767 << 16;
3584 image3
|= 0x7fffffff;
3585 image2
= 0xffffffff;
3586 image1
= 0xffffffff;
3587 image0
= 0xffffffff;
3594 image3
|= 32767 << 16;
3598 if (fmt
->canonical_nan_lsbs_set
)
3601 image2
= image1
= image0
= 0xffffffff;
3604 else if (HOST_BITS_PER_LONG
== 32)
3609 image3
|= u
.sig
[3] & 0xffff;
3614 image1
= image0
>> 31 >> 1;
3616 image3
|= (image2
>> 31 >> 1) & 0xffff;
3617 image0
&= 0xffffffff;
3618 image2
&= 0xffffffff;
3620 if (r
->signalling
== fmt
->qnan_msb_set
)
3624 if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3629 image3
|= 0x7fffffff;
3630 image2
= 0xffffffff;
3631 image1
= 0xffffffff;
3632 image0
= 0xffffffff;
3637 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3638 whereas the intermediate representation is 0.F x 2**exp.
3639 Which means we're off by one. */
3643 exp
= REAL_EXP (r
) + 16383 - 1;
3644 image3
|= exp
<< 16;
3646 if (HOST_BITS_PER_LONG
== 32)
3651 image3
|= u
.sig
[3] & 0xffff;
3656 image1
= image0
>> 31 >> 1;
3658 image3
|= (image2
>> 31 >> 1) & 0xffff;
3659 image0
&= 0xffffffff;
3660 image2
&= 0xffffffff;
3668 if (FLOAT_WORDS_BIG_ENDIAN
)
3685 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3688 unsigned long image3
, image2
, image1
, image0
;
3692 if (FLOAT_WORDS_BIG_ENDIAN
)
3706 image0
&= 0xffffffff;
3707 image1
&= 0xffffffff;
3708 image2
&= 0xffffffff;
3710 sign
= (image3
>> 31) & 1;
3711 exp
= (image3
>> 16) & 0x7fff;
3714 memset (r
, 0, sizeof (*r
));
3718 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3723 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3724 if (HOST_BITS_PER_LONG
== 32)
3733 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3734 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3739 else if (fmt
->has_signed_zero
)
3742 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3744 if (image3
| image2
| image1
| image0
)
3748 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3750 if (HOST_BITS_PER_LONG
== 32)
3759 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3760 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3762 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3774 SET_REAL_EXP (r
, exp
- 16383 + 1);
3776 if (HOST_BITS_PER_LONG
== 32)
3785 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3786 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3788 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3789 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3793 const struct real_format ieee_quad_format
=
3812 const struct real_format mips_quad_format
=
3831 /* Descriptions of VAX floating point formats can be found beginning at
3833 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3835 The thing to remember is that they're almost IEEE, except for word
3836 order, exponent bias, and the lack of infinities, nans, and denormals.
3838 We don't implement the H_floating format here, simply because neither
3839 the VAX or Alpha ports use it. */
3841 static void encode_vax_f (const struct real_format
*fmt
,
3842 long *, const REAL_VALUE_TYPE
*);
3843 static void decode_vax_f (const struct real_format
*,
3844 REAL_VALUE_TYPE
*, const long *);
3845 static void encode_vax_d (const struct real_format
*fmt
,
3846 long *, const REAL_VALUE_TYPE
*);
3847 static void decode_vax_d (const struct real_format
*,
3848 REAL_VALUE_TYPE
*, const long *);
3849 static void encode_vax_g (const struct real_format
*fmt
,
3850 long *, const REAL_VALUE_TYPE
*);
3851 static void decode_vax_g (const struct real_format
*,
3852 REAL_VALUE_TYPE
*, const long *);
3855 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3856 const REAL_VALUE_TYPE
*r
)
3858 unsigned long sign
, exp
, sig
, image
;
3860 sign
= r
->sign
<< 15;
3870 image
= 0xffff7fff | sign
;
3874 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3875 exp
= REAL_EXP (r
) + 128;
3877 image
= (sig
<< 16) & 0xffff0000;
3891 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3892 REAL_VALUE_TYPE
*r
, const long *buf
)
3894 unsigned long image
= buf
[0] & 0xffffffff;
3895 int exp
= (image
>> 7) & 0xff;
3897 memset (r
, 0, sizeof (*r
));
3902 r
->sign
= (image
>> 15) & 1;
3903 SET_REAL_EXP (r
, exp
- 128);
3905 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3906 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3911 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3912 const REAL_VALUE_TYPE
*r
)
3914 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3919 image0
= image1
= 0;
3924 image0
= 0xffff7fff | sign
;
3925 image1
= 0xffffffff;
3929 /* Extract the significand into straight hi:lo. */
3930 if (HOST_BITS_PER_LONG
== 64)
3932 image0
= r
->sig
[SIGSZ
-1];
3933 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3934 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3938 image0
= r
->sig
[SIGSZ
-1];
3939 image1
= r
->sig
[SIGSZ
-2];
3940 image1
= (image0
<< 24) | (image1
>> 8);
3941 image0
= (image0
>> 8) & 0xffffff;
3944 /* Rearrange the half-words of the significand to match the
3946 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3947 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3949 /* Add the sign and exponent. */
3951 image0
|= (REAL_EXP (r
) + 128) << 7;
3958 if (FLOAT_WORDS_BIG_ENDIAN
)
3959 buf
[0] = image1
, buf
[1] = image0
;
3961 buf
[0] = image0
, buf
[1] = image1
;
3965 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3966 REAL_VALUE_TYPE
*r
, const long *buf
)
3968 unsigned long image0
, image1
;
3971 if (FLOAT_WORDS_BIG_ENDIAN
)
3972 image1
= buf
[0], image0
= buf
[1];
3974 image0
= buf
[0], image1
= buf
[1];
3975 image0
&= 0xffffffff;
3976 image1
&= 0xffffffff;
3978 exp
= (image0
>> 7) & 0xff;
3980 memset (r
, 0, sizeof (*r
));
3985 r
->sign
= (image0
>> 15) & 1;
3986 SET_REAL_EXP (r
, exp
- 128);
3988 /* Rearrange the half-words of the external format into
3989 proper ascending order. */
3990 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
3991 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3993 if (HOST_BITS_PER_LONG
== 64)
3995 image0
= (image0
<< 31 << 1) | image1
;
3998 r
->sig
[SIGSZ
-1] = image0
;
4002 r
->sig
[SIGSZ
-1] = image0
;
4003 r
->sig
[SIGSZ
-2] = image1
;
4004 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
4005 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4011 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4012 const REAL_VALUE_TYPE
*r
)
4014 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4019 image0
= image1
= 0;
4024 image0
= 0xffff7fff | sign
;
4025 image1
= 0xffffffff;
4029 /* Extract the significand into straight hi:lo. */
4030 if (HOST_BITS_PER_LONG
== 64)
4032 image0
= r
->sig
[SIGSZ
-1];
4033 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4034 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4038 image0
= r
->sig
[SIGSZ
-1];
4039 image1
= r
->sig
[SIGSZ
-2];
4040 image1
= (image0
<< 21) | (image1
>> 11);
4041 image0
= (image0
>> 11) & 0xfffff;
4044 /* Rearrange the half-words of the significand to match the
4046 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4047 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4049 /* Add the sign and exponent. */
4051 image0
|= (REAL_EXP (r
) + 1024) << 4;
4058 if (FLOAT_WORDS_BIG_ENDIAN
)
4059 buf
[0] = image1
, buf
[1] = image0
;
4061 buf
[0] = image0
, buf
[1] = image1
;
4065 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4066 REAL_VALUE_TYPE
*r
, const long *buf
)
4068 unsigned long image0
, image1
;
4071 if (FLOAT_WORDS_BIG_ENDIAN
)
4072 image1
= buf
[0], image0
= buf
[1];
4074 image0
= buf
[0], image1
= buf
[1];
4075 image0
&= 0xffffffff;
4076 image1
&= 0xffffffff;
4078 exp
= (image0
>> 4) & 0x7ff;
4080 memset (r
, 0, sizeof (*r
));
4085 r
->sign
= (image0
>> 15) & 1;
4086 SET_REAL_EXP (r
, exp
- 1024);
4088 /* Rearrange the half-words of the external format into
4089 proper ascending order. */
4090 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4091 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4093 if (HOST_BITS_PER_LONG
== 64)
4095 image0
= (image0
<< 31 << 1) | image1
;
4098 r
->sig
[SIGSZ
-1] = image0
;
4102 r
->sig
[SIGSZ
-1] = image0
;
4103 r
->sig
[SIGSZ
-2] = image1
;
4104 lshift_significand (r
, r
, 64 - 53);
4105 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4110 const struct real_format vax_f_format
=
4129 const struct real_format vax_d_format
=
4148 const struct real_format vax_g_format
=
4167 /* Encode real R into a single precision DFP value in BUF. */
4169 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4170 long *buf ATTRIBUTE_UNUSED
,
4171 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4173 encode_decimal32 (fmt
, buf
, r
);
4176 /* Decode a single precision DFP value in BUF into a real R. */
4178 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4179 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4180 const long *buf ATTRIBUTE_UNUSED
)
4182 decode_decimal32 (fmt
, r
, buf
);
4185 /* Encode real R into a double precision DFP value in BUF. */
4187 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4188 long *buf ATTRIBUTE_UNUSED
,
4189 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4191 encode_decimal64 (fmt
, buf
, r
);
4194 /* Decode a double precision DFP value in BUF into a real R. */
4196 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4197 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4198 const long *buf ATTRIBUTE_UNUSED
)
4200 decode_decimal64 (fmt
, r
, buf
);
4203 /* Encode real R into a quad precision DFP value in BUF. */
4205 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4206 long *buf ATTRIBUTE_UNUSED
,
4207 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4209 encode_decimal128 (fmt
, buf
, r
);
4212 /* Decode a quad precision DFP value in BUF into a real R. */
4214 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4215 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4216 const long *buf ATTRIBUTE_UNUSED
)
4218 decode_decimal128 (fmt
, r
, buf
);
4221 /* Single precision decimal floating point (IEEE 754R). */
4222 const struct real_format decimal_single_format
=
4224 encode_decimal_single
,
4225 decode_decimal_single
,
4241 /* Double precision decimal floating point (IEEE 754R). */
4242 const struct real_format decimal_double_format
=
4244 encode_decimal_double
,
4245 decode_decimal_double
,
4261 /* Quad precision decimal floating point (IEEE 754R). */
4262 const struct real_format decimal_quad_format
=
4264 encode_decimal_quad
,
4265 decode_decimal_quad
,
4281 /* The "twos-complement" c4x format is officially defined as
4285 This is rather misleading. One must remember that F is signed.
4286 A better description would be
4288 x = -1**s * ((s + 1 + .f) * 2**e
4290 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4291 that's -1 * (1+1+(-.5)) == -1.5. I think.
4293 The constructions here are taken from Tables 5-1 and 5-2 of the
4294 TMS320C4x User's Guide wherein step-by-step instructions for
4295 conversion from IEEE are presented. That's close enough to our
4296 internal representation so as to make things easy.
4298 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4300 static void encode_c4x_single (const struct real_format
*fmt
,
4301 long *, const REAL_VALUE_TYPE
*);
4302 static void decode_c4x_single (const struct real_format
*,
4303 REAL_VALUE_TYPE
*, const long *);
4304 static void encode_c4x_extended (const struct real_format
*fmt
,
4305 long *, const REAL_VALUE_TYPE
*);
4306 static void decode_c4x_extended (const struct real_format
*,
4307 REAL_VALUE_TYPE
*, const long *);
4310 encode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4311 long *buf
, const REAL_VALUE_TYPE
*r
)
4313 unsigned long image
, exp
, sig
;
4325 sig
= 0x800000 - r
->sign
;
4329 exp
= REAL_EXP (r
) - 1;
4330 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4345 image
= ((exp
& 0xff) << 24) | (sig
& 0xffffff);
4350 decode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4351 REAL_VALUE_TYPE
*r
, const long *buf
)
4353 unsigned long image
= buf
[0];
4357 exp
= (((image
>> 24) & 0xff) ^ 0x80) - 0x80;
4358 sf
= ((image
& 0xffffff) ^ 0x800000) - 0x800000;
4360 memset (r
, 0, sizeof (*r
));
4366 sig
= sf
& 0x7fffff;
4375 sig
= (sig
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4377 SET_REAL_EXP (r
, exp
+ 1);
4378 r
->sig
[SIGSZ
-1] = sig
;
4383 encode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4384 long *buf
, const REAL_VALUE_TYPE
*r
)
4386 unsigned long exp
, sig
;
4398 sig
= 0x80000000 - r
->sign
;
4402 exp
= REAL_EXP (r
) - 1;
4404 sig
= r
->sig
[SIGSZ
-1];
4405 if (HOST_BITS_PER_LONG
== 64)
4406 sig
= sig
>> 1 >> 31;
4423 exp
= (exp
& 0xff) << 24;
4426 if (FLOAT_WORDS_BIG_ENDIAN
)
4427 buf
[0] = exp
, buf
[1] = sig
;
4429 buf
[0] = sig
, buf
[0] = exp
;
4433 decode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4434 REAL_VALUE_TYPE
*r
, const long *buf
)
4439 if (FLOAT_WORDS_BIG_ENDIAN
)
4440 exp
= buf
[0], sf
= buf
[1];
4442 sf
= buf
[0], exp
= buf
[1];
4444 exp
= (((exp
>> 24) & 0xff) & 0x80) - 0x80;
4445 sf
= ((sf
& 0xffffffff) ^ 0x80000000) - 0x80000000;
4447 memset (r
, 0, sizeof (*r
));
4453 sig
= sf
& 0x7fffffff;
4462 if (HOST_BITS_PER_LONG
== 64)
4463 sig
= sig
<< 1 << 31;
4466 SET_REAL_EXP (r
, exp
+ 1);
4467 r
->sig
[SIGSZ
-1] = sig
;
4471 const struct real_format c4x_single_format
=
4490 const struct real_format c4x_extended_format
=
4492 encode_c4x_extended
,
4493 decode_c4x_extended
,
4510 /* A synthetic "format" for internal arithmetic. It's the size of the
4511 internal significand minus the two bits needed for proper rounding.
4512 The encode and decode routines exist only to satisfy our paranoia
4515 static void encode_internal (const struct real_format
*fmt
,
4516 long *, const REAL_VALUE_TYPE
*);
4517 static void decode_internal (const struct real_format
*,
4518 REAL_VALUE_TYPE
*, const long *);
4521 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4522 const REAL_VALUE_TYPE
*r
)
4524 memcpy (buf
, r
, sizeof (*r
));
4528 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4529 REAL_VALUE_TYPE
*r
, const long *buf
)
4531 memcpy (r
, buf
, sizeof (*r
));
4534 const struct real_format real_internal_format
=
4539 SIGNIFICAND_BITS
- 2,
4540 SIGNIFICAND_BITS
- 2,
4553 /* Calculate the square root of X in mode MODE, and store the result
4554 in R. Return TRUE if the operation does not raise an exception.
4555 For details see "High Precision Division and Square Root",
4556 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4557 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4560 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4561 const REAL_VALUE_TYPE
*x
)
4563 static REAL_VALUE_TYPE halfthree
;
4564 static bool init
= false;
4565 REAL_VALUE_TYPE h
, t
, i
;
4568 /* sqrt(-0.0) is -0.0. */
4569 if (real_isnegzero (x
))
4575 /* Negative arguments return NaN. */
4578 get_canonical_qnan (r
, 0);
4582 /* Infinity and NaN return themselves. */
4583 if (!real_isfinite (x
))
4591 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4595 /* Initial guess for reciprocal sqrt, i. */
4596 exp
= real_exponent (x
);
4597 real_ldexp (&i
, &dconst1
, -exp
/2);
4599 /* Newton's iteration for reciprocal sqrt, i. */
4600 for (iter
= 0; iter
< 16; iter
++)
4602 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4603 do_multiply (&t
, x
, &i
);
4604 do_multiply (&h
, &t
, &i
);
4605 do_multiply (&t
, &h
, &dconsthalf
);
4606 do_add (&h
, &halfthree
, &t
, 1);
4607 do_multiply (&t
, &i
, &h
);
4609 /* Check for early convergence. */
4610 if (iter
>= 6 && real_identical (&i
, &t
))
4613 /* ??? Unroll loop to avoid copying. */
4617 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4618 do_multiply (&t
, x
, &i
);
4619 do_multiply (&h
, &t
, &i
);
4620 do_add (&i
, &dconst1
, &h
, 1);
4621 do_multiply (&h
, &t
, &i
);
4622 do_multiply (&i
, &dconsthalf
, &h
);
4623 do_add (&h
, &t
, &i
, 0);
4625 /* ??? We need a Tuckerman test to get the last bit. */
4627 real_convert (r
, mode
, &h
);
4631 /* Calculate X raised to the integer exponent N in mode MODE and store
4632 the result in R. Return true if the result may be inexact due to
4633 loss of precision. The algorithm is the classic "left-to-right binary
4634 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4635 Algorithms", "The Art of Computer Programming", Volume 2. */
4638 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4639 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4641 unsigned HOST_WIDE_INT bit
;
4643 bool inexact
= false;
4655 /* Don't worry about overflow, from now on n is unsigned. */
4663 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4664 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4668 inexact
|= do_multiply (&t
, &t
, &t
);
4670 inexact
|= do_multiply (&t
, &t
, x
);
4678 inexact
|= do_divide (&t
, &dconst1
, &t
);
4680 real_convert (r
, mode
, &t
);
4684 /* Round X to the nearest integer not larger in absolute value, i.e.
4685 towards zero, placing the result in R in mode MODE. */
4688 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4689 const REAL_VALUE_TYPE
*x
)
4691 do_fix_trunc (r
, x
);
4692 if (mode
!= VOIDmode
)
4693 real_convert (r
, mode
, r
);
4696 /* Round X to the largest integer not greater in value, i.e. round
4697 down, placing the result in R in mode MODE. */
4700 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4701 const REAL_VALUE_TYPE
*x
)
4705 do_fix_trunc (&t
, x
);
4706 if (! real_identical (&t
, x
) && x
->sign
)
4707 do_add (&t
, &t
, &dconstm1
, 0);
4708 if (mode
!= VOIDmode
)
4709 real_convert (r
, mode
, &t
);
4714 /* Round X to the smallest integer not less then argument, i.e. round
4715 up, placing the result in R in mode MODE. */
4718 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4719 const REAL_VALUE_TYPE
*x
)
4723 do_fix_trunc (&t
, x
);
4724 if (! real_identical (&t
, x
) && ! x
->sign
)
4725 do_add (&t
, &t
, &dconst1
, 0);
4726 if (mode
!= VOIDmode
)
4727 real_convert (r
, mode
, &t
);
4732 /* Round X to the nearest integer, but round halfway cases away from
4736 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4737 const REAL_VALUE_TYPE
*x
)
4739 do_add (r
, x
, &dconsthalf
, x
->sign
);
4740 do_fix_trunc (r
, r
);
4741 if (mode
!= VOIDmode
)
4742 real_convert (r
, mode
, r
);
4745 /* Set the sign of R to the sign of X. */
4748 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
4753 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4754 for initializing and clearing the MPFR parameter. */
4757 mpfr_from_real (mpfr_ptr m
, const REAL_VALUE_TYPE
*r
, mp_rnd_t rndmode
)
4759 /* We use a string as an intermediate type. */
4763 /* Take care of Infinity and NaN. */
4764 if (r
->cl
== rvc_inf
)
4766 mpfr_set_inf (m
, r
->sign
== 1 ? -1 : 1);
4770 if (r
->cl
== rvc_nan
)
4776 real_to_hexadecimal (buf
, r
, sizeof (buf
), 0, 1);
4777 /* mpfr_set_str() parses hexadecimal floats from strings in the same
4778 format that GCC will output them. Nothing extra is needed. */
4779 ret
= mpfr_set_str (m
, buf
, 16, rndmode
);
4780 gcc_assert (ret
== 0);
4783 /* Convert from MPFR to REAL_VALUE_TYPE, for a given type TYPE and rounding
4784 mode RNDMODE. TYPE is only relevant if M is a NaN. */
4787 real_from_mpfr (REAL_VALUE_TYPE
*r
, mpfr_srcptr m
, tree type
, mp_rnd_t rndmode
)
4789 /* We use a string as an intermediate type. */
4790 char buf
[128], *rstr
;
4793 /* Take care of Infinity and NaN. */
4797 if (mpfr_sgn (m
) < 0)
4798 *r
= REAL_VALUE_NEGATE (*r
);
4804 real_nan (r
, "", 1, TYPE_MODE (type
));
4808 rstr
= mpfr_get_str (NULL
, &exp
, 16, 0, m
, rndmode
);
4810 /* The additional 12 chars add space for the sprintf below. This
4811 leaves 6 digits for the exponent which is supposedly enough. */
4812 gcc_assert (rstr
!= NULL
&& strlen (rstr
) < sizeof (buf
) - 12);
4814 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
4815 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
4820 sprintf (buf
, "-0x.%sp%d", &rstr
[1], (int) exp
);
4822 sprintf (buf
, "0x.%sp%d", rstr
, (int) exp
);
4824 mpfr_free_str (rstr
);
4826 real_from_string (r
, buf
);
4829 /* Check whether the real constant value given is an integer. */
4832 real_isinteger (const REAL_VALUE_TYPE
*c
, enum machine_mode mode
)
4834 REAL_VALUE_TYPE cint
;
4836 real_trunc (&cint
, mode
, c
);
4837 return real_identical (c
, &cint
);
4840 /* Write into BUF the maximum representable finite floating-point
4841 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4842 float string. LEN is the size of BUF, and the buffer must be large
4843 enough to contain the resulting string. */
4846 get_max_float (const struct real_format
*fmt
, char *buf
, size_t len
)
4851 strcpy (buf
, "0x0.");
4853 for (i
= 0, p
= buf
+ 4; i
+ 3 < n
; i
+= 4)
4856 *p
++ = "08ce"[n
- i
];
4857 sprintf (p
, "p%d", fmt
->emax
);
4858 if (fmt
->pnan
< fmt
->p
)
4860 /* This is an IBM extended double format made up of two IEEE
4861 doubles. The value of the long double is the sum of the
4862 values of the two parts. The most significant part is
4863 required to be the value of the long double rounded to the
4864 nearest double. Rounding means we need a slightly smaller
4865 value for LDBL_MAX. */
4866 buf
[4 + fmt
->pnan
/ 4] = "7bde"[fmt
->pnan
% 4];
4869 gcc_assert (strlen (buf
) < len
);