1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
34 /* The floating point model used internally is not exactly IEEE 754
35 compliant, and close to the description in the ISO C99 standard,
36 section 5.2.4.2.2 Characteristics of floating types.
40 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
44 b = base or radix, here always 2
46 p = precision (the number of base-b digits in the significand)
47 f_k = the digits of the significand.
49 We differ from typical IEEE 754 encodings in that the entire
50 significand is fractional. Normalized significands are in the
53 A requirement of the model is that P be larger than the largest
54 supported target floating-point type by at least 2 bits. This gives
55 us proper rounding when we truncate to the target type. In addition,
56 E must be large enough to hold the smallest supported denormal number
59 Both of these requirements are easily satisfied. The largest target
60 significand is 113 bits; we store at least 160. The smallest
61 denormal number fits in 17 exponent bits; we store 27.
63 Note that the decimal string conversion routines are sensitive to
64 rounding errors. Since the raw arithmetic routines do not themselves
65 have guard digits or rounding, the computation of 10**exp can
66 accumulate more than a few digits of error. The previous incarnation
67 of real.c successfully used a 144-bit fraction; given the current
68 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
70 Target floating point models that use base 16 instead of base 2
71 (i.e. IBM 370), are handled during round_for_format, in which we
72 canonicalize the exponent to be a multiple of 4 (log2(16)), and
73 adjust the significand to match. */
76 /* Used to classify two numbers simultaneously. */
77 #define CLASS2(A, B) ((A) << 2 | (B))
79 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
80 #error "Some constant folding done by hand to avoid shift count warnings"
83 static void get_zero (REAL_VALUE_TYPE
*, int);
84 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
85 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
86 static void get_inf (REAL_VALUE_TYPE
*, int);
87 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
88 const REAL_VALUE_TYPE
*, unsigned int);
89 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
91 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
93 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
94 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
95 const REAL_VALUE_TYPE
*);
96 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
97 const REAL_VALUE_TYPE
*, int);
98 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
99 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
100 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
101 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
102 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
103 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
104 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
105 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
106 const REAL_VALUE_TYPE
*);
107 static void normalize (REAL_VALUE_TYPE
*);
109 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
110 const REAL_VALUE_TYPE
*, int);
111 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
112 const REAL_VALUE_TYPE
*);
113 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
114 const REAL_VALUE_TYPE
*);
115 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
116 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
118 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
120 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
121 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
122 static const REAL_VALUE_TYPE
* real_digit (int);
123 static void times_pten (REAL_VALUE_TYPE
*, int);
125 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
127 /* Initialize R with a positive zero. */
130 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
132 memset (r
, 0, sizeof (*r
));
136 /* Initialize R with the canonical quiet NaN. */
139 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
141 memset (r
, 0, sizeof (*r
));
148 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
150 memset (r
, 0, sizeof (*r
));
158 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
160 memset (r
, 0, sizeof (*r
));
166 /* Right-shift the significand of A by N bits; put the result in the
167 significand of R. If any one bits are shifted out, return true. */
170 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
173 unsigned long sticky
= 0;
174 unsigned int i
, ofs
= 0;
176 if (n
>= HOST_BITS_PER_LONG
)
178 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
180 n
&= HOST_BITS_PER_LONG
- 1;
185 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
186 for (i
= 0; i
< SIGSZ
; ++i
)
189 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
190 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
191 << (HOST_BITS_PER_LONG
- n
)));
196 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
197 r
->sig
[i
] = a
->sig
[ofs
+ i
];
198 for (; i
< SIGSZ
; ++i
)
205 /* Right-shift the significand of A by N bits; put the result in the
209 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
212 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
214 n
&= HOST_BITS_PER_LONG
- 1;
217 for (i
= 0; i
< SIGSZ
; ++i
)
220 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
221 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
222 << (HOST_BITS_PER_LONG
- n
)));
227 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
228 r
->sig
[i
] = a
->sig
[ofs
+ i
];
229 for (; i
< SIGSZ
; ++i
)
234 /* Left-shift the significand of A by N bits; put the result in the
238 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
241 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
243 n
&= HOST_BITS_PER_LONG
- 1;
246 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
247 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
248 for (; i
< SIGSZ
; ++i
)
249 r
->sig
[SIGSZ
-1-i
] = 0;
252 for (i
= 0; i
< SIGSZ
; ++i
)
255 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
256 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
257 >> (HOST_BITS_PER_LONG
- n
)));
261 /* Likewise, but N is specialized to 1. */
264 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
268 for (i
= SIGSZ
- 1; i
> 0; --i
)
269 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
270 r
->sig
[0] = a
->sig
[0] << 1;
273 /* Add the significands of A and B, placing the result in R. Return
274 true if there was carry out of the most significant word. */
277 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
278 const REAL_VALUE_TYPE
*b
)
283 for (i
= 0; i
< SIGSZ
; ++i
)
285 unsigned long ai
= a
->sig
[i
];
286 unsigned long ri
= ai
+ b
->sig
[i
];
302 /* Subtract the significands of A and B, placing the result in R. CARRY is
303 true if there's a borrow incoming to the least significant word.
304 Return true if there was borrow out of the most significant word. */
307 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
308 const REAL_VALUE_TYPE
*b
, int carry
)
312 for (i
= 0; i
< SIGSZ
; ++i
)
314 unsigned long ai
= a
->sig
[i
];
315 unsigned long ri
= ai
- b
->sig
[i
];
331 /* Negate the significand A, placing the result in R. */
334 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
339 for (i
= 0; i
< SIGSZ
; ++i
)
341 unsigned long ri
, ai
= a
->sig
[i
];
360 /* Compare significands. Return tri-state vs zero. */
363 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
367 for (i
= SIGSZ
- 1; i
>= 0; --i
)
369 unsigned long ai
= a
->sig
[i
];
370 unsigned long bi
= b
->sig
[i
];
381 /* Return true if A is nonzero. */
384 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
388 for (i
= SIGSZ
- 1; i
>= 0; --i
)
395 /* Set bit N of the significand of R. */
398 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
400 r
->sig
[n
/ HOST_BITS_PER_LONG
]
401 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
404 /* Clear bit N of the significand of R. */
407 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
409 r
->sig
[n
/ HOST_BITS_PER_LONG
]
410 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
413 /* Test bit N of the significand of R. */
416 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
418 /* ??? Compiler bug here if we return this expression directly.
419 The conversion to bool strips the "&1" and we wind up testing
420 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
421 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
425 /* Clear bits 0..N-1 of the significand of R. */
428 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
430 int i
, w
= n
/ HOST_BITS_PER_LONG
;
432 for (i
= 0; i
< w
; ++i
)
435 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
438 /* Divide the significands of A and B, placing the result in R. Return
439 true if the division was inexact. */
442 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
443 const REAL_VALUE_TYPE
*b
)
446 int i
, bit
= SIGNIFICAND_BITS
- 1;
447 unsigned long msb
, inexact
;
450 memset (r
->sig
, 0, sizeof (r
->sig
));
456 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
457 lshift_significand_1 (&u
, &u
);
459 if (msb
|| cmp_significands (&u
, b
) >= 0)
461 sub_significands (&u
, &u
, b
, 0);
462 set_significand_bit (r
, bit
);
467 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
473 /* Adjust the exponent and significand of R such that the most
474 significant bit is set. We underflow to zero and overflow to
475 infinity here, without denormals. (The intermediate representation
476 exponent is large enough to handle target denormals normalized.) */
479 normalize (REAL_VALUE_TYPE
*r
)
487 /* Find the first word that is nonzero. */
488 for (i
= SIGSZ
- 1; i
>= 0; i
--)
490 shift
+= HOST_BITS_PER_LONG
;
494 /* Zero significand flushes to zero. */
502 /* Find the first bit that is nonzero. */
504 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
510 exp
= REAL_EXP (r
) - shift
;
512 get_inf (r
, r
->sign
);
513 else if (exp
< -MAX_EXP
)
514 get_zero (r
, r
->sign
);
517 SET_REAL_EXP (r
, exp
);
518 lshift_significand (r
, r
, shift
);
523 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
524 result may be inexact due to a loss of precision. */
527 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
528 const REAL_VALUE_TYPE
*b
, int subtract_p
)
532 bool inexact
= false;
534 /* Determine if we need to add or subtract. */
536 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
538 switch (CLASS2 (a
->cl
, b
->cl
))
540 case CLASS2 (rvc_zero
, rvc_zero
):
541 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
542 get_zero (r
, sign
& !subtract_p
);
545 case CLASS2 (rvc_zero
, rvc_normal
):
546 case CLASS2 (rvc_zero
, rvc_inf
):
547 case CLASS2 (rvc_zero
, rvc_nan
):
549 case CLASS2 (rvc_normal
, rvc_nan
):
550 case CLASS2 (rvc_inf
, rvc_nan
):
551 case CLASS2 (rvc_nan
, rvc_nan
):
552 /* ANY + NaN = NaN. */
553 case CLASS2 (rvc_normal
, rvc_inf
):
556 r
->sign
= sign
^ subtract_p
;
559 case CLASS2 (rvc_normal
, rvc_zero
):
560 case CLASS2 (rvc_inf
, rvc_zero
):
561 case CLASS2 (rvc_nan
, rvc_zero
):
563 case CLASS2 (rvc_nan
, rvc_normal
):
564 case CLASS2 (rvc_nan
, rvc_inf
):
565 /* NaN + ANY = NaN. */
566 case CLASS2 (rvc_inf
, rvc_normal
):
571 case CLASS2 (rvc_inf
, rvc_inf
):
573 /* Inf - Inf = NaN. */
574 get_canonical_qnan (r
, 0);
576 /* Inf + Inf = Inf. */
580 case CLASS2 (rvc_normal
, rvc_normal
):
587 /* Swap the arguments such that A has the larger exponent. */
588 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
591 const REAL_VALUE_TYPE
*t
;
598 /* If the exponents are not identical, we need to shift the
599 significand of B down. */
602 /* If the exponents are too far apart, the significands
603 do not overlap, which makes the subtraction a noop. */
604 if (dexp
>= SIGNIFICAND_BITS
)
611 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
617 if (sub_significands (r
, a
, b
, inexact
))
619 /* We got a borrow out of the subtraction. That means that
620 A and B had the same exponent, and B had the larger
621 significand. We need to swap the sign and negate the
624 neg_significand (r
, r
);
629 if (add_significands (r
, a
, b
))
631 /* We got carry out of the addition. This means we need to
632 shift the significand back down one bit and increase the
634 inexact
|= sticky_rshift_significand (r
, r
, 1);
635 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
646 SET_REAL_EXP (r
, exp
);
647 /* Zero out the remaining fields. */
652 /* Re-normalize the result. */
655 /* Special case: if the subtraction results in zero, the result
657 if (r
->cl
== rvc_zero
)
660 r
->sig
[0] |= inexact
;
665 /* Calculate R = A * B. Return true if the result may be inexact. */
668 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
669 const REAL_VALUE_TYPE
*b
)
671 REAL_VALUE_TYPE u
, t
, *rr
;
672 unsigned int i
, j
, k
;
673 int sign
= a
->sign
^ b
->sign
;
674 bool inexact
= false;
676 switch (CLASS2 (a
->cl
, b
->cl
))
678 case CLASS2 (rvc_zero
, rvc_zero
):
679 case CLASS2 (rvc_zero
, rvc_normal
):
680 case CLASS2 (rvc_normal
, rvc_zero
):
681 /* +-0 * ANY = 0 with appropriate sign. */
685 case CLASS2 (rvc_zero
, rvc_nan
):
686 case CLASS2 (rvc_normal
, rvc_nan
):
687 case CLASS2 (rvc_inf
, rvc_nan
):
688 case CLASS2 (rvc_nan
, rvc_nan
):
689 /* ANY * NaN = NaN. */
694 case CLASS2 (rvc_nan
, rvc_zero
):
695 case CLASS2 (rvc_nan
, rvc_normal
):
696 case CLASS2 (rvc_nan
, rvc_inf
):
697 /* NaN * ANY = NaN. */
702 case CLASS2 (rvc_zero
, rvc_inf
):
703 case CLASS2 (rvc_inf
, rvc_zero
):
705 get_canonical_qnan (r
, sign
);
708 case CLASS2 (rvc_inf
, rvc_inf
):
709 case CLASS2 (rvc_normal
, rvc_inf
):
710 case CLASS2 (rvc_inf
, rvc_normal
):
711 /* Inf * Inf = Inf, R * Inf = Inf */
715 case CLASS2 (rvc_normal
, rvc_normal
):
722 if (r
== a
|| r
== b
)
728 /* Collect all the partial products. Since we don't have sure access
729 to a widening multiply, we split each long into two half-words.
731 Consider the long-hand form of a four half-word multiplication:
741 We construct partial products of the widened half-word products
742 that are known to not overlap, e.g. DF+DH. Each such partial
743 product is given its proper exponent, which allows us to sum them
744 and obtain the finished product. */
746 for (i
= 0; i
< SIGSZ
* 2; ++i
)
748 unsigned long ai
= a
->sig
[i
/ 2];
750 ai
>>= HOST_BITS_PER_LONG
/ 2;
752 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
757 for (j
= 0; j
< 2; ++j
)
759 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
760 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
769 /* Would underflow to zero, which we shouldn't bother adding. */
774 memset (&u
, 0, sizeof (u
));
776 SET_REAL_EXP (&u
, exp
);
778 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
780 unsigned long bi
= b
->sig
[k
/ 2];
782 bi
>>= HOST_BITS_PER_LONG
/ 2;
784 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
786 u
.sig
[k
/ 2] = ai
* bi
;
790 inexact
|= do_add (rr
, rr
, &u
, 0);
801 /* Calculate R = A / B. Return true if the result may be inexact. */
804 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
805 const REAL_VALUE_TYPE
*b
)
807 int exp
, sign
= a
->sign
^ b
->sign
;
808 REAL_VALUE_TYPE t
, *rr
;
811 switch (CLASS2 (a
->cl
, b
->cl
))
813 case CLASS2 (rvc_zero
, rvc_zero
):
815 case CLASS2 (rvc_inf
, rvc_inf
):
816 /* Inf / Inf = NaN. */
817 get_canonical_qnan (r
, sign
);
820 case CLASS2 (rvc_zero
, rvc_normal
):
821 case CLASS2 (rvc_zero
, rvc_inf
):
823 case CLASS2 (rvc_normal
, rvc_inf
):
828 case CLASS2 (rvc_normal
, rvc_zero
):
830 case CLASS2 (rvc_inf
, rvc_zero
):
835 case CLASS2 (rvc_zero
, rvc_nan
):
836 case CLASS2 (rvc_normal
, rvc_nan
):
837 case CLASS2 (rvc_inf
, rvc_nan
):
838 case CLASS2 (rvc_nan
, rvc_nan
):
839 /* ANY / NaN = NaN. */
844 case CLASS2 (rvc_nan
, rvc_zero
):
845 case CLASS2 (rvc_nan
, rvc_normal
):
846 case CLASS2 (rvc_nan
, rvc_inf
):
847 /* NaN / ANY = NaN. */
852 case CLASS2 (rvc_inf
, rvc_normal
):
857 case CLASS2 (rvc_normal
, rvc_normal
):
864 if (r
== a
|| r
== b
)
869 /* Make sure all fields in the result are initialized. */
874 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
885 SET_REAL_EXP (rr
, exp
);
887 inexact
= div_significands (rr
, a
, b
);
889 /* Re-normalize the result. */
891 rr
->sig
[0] |= inexact
;
899 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
900 one of the two operands is a NaN. */
903 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
908 switch (CLASS2 (a
->cl
, b
->cl
))
910 case CLASS2 (rvc_zero
, rvc_zero
):
911 /* Sign of zero doesn't matter for compares. */
914 case CLASS2 (rvc_inf
, rvc_zero
):
915 case CLASS2 (rvc_inf
, rvc_normal
):
916 case CLASS2 (rvc_normal
, rvc_zero
):
917 return (a
->sign
? -1 : 1);
919 case CLASS2 (rvc_inf
, rvc_inf
):
920 return -a
->sign
- -b
->sign
;
922 case CLASS2 (rvc_zero
, rvc_normal
):
923 case CLASS2 (rvc_zero
, rvc_inf
):
924 case CLASS2 (rvc_normal
, rvc_inf
):
925 return (b
->sign
? 1 : -1);
927 case CLASS2 (rvc_zero
, rvc_nan
):
928 case CLASS2 (rvc_normal
, rvc_nan
):
929 case CLASS2 (rvc_inf
, rvc_nan
):
930 case CLASS2 (rvc_nan
, rvc_nan
):
931 case CLASS2 (rvc_nan
, rvc_zero
):
932 case CLASS2 (rvc_nan
, rvc_normal
):
933 case CLASS2 (rvc_nan
, rvc_inf
):
936 case CLASS2 (rvc_normal
, rvc_normal
):
943 if (a
->sign
!= b
->sign
)
944 return -a
->sign
- -b
->sign
;
946 if (a
->decimal
|| b
->decimal
)
947 return decimal_do_compare (a
, b
, nan_result
);
949 if (REAL_EXP (a
) > REAL_EXP (b
))
951 else if (REAL_EXP (a
) < REAL_EXP (b
))
954 ret
= cmp_significands (a
, b
);
956 return (a
->sign
? -ret
: ret
);
959 /* Return A truncated to an integral value toward zero. */
962 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
976 decimal_do_fix_trunc (r
, a
);
979 if (REAL_EXP (r
) <= 0)
980 get_zero (r
, r
->sign
);
981 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
982 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
990 /* Perform the binary or unary operation described by CODE.
991 For a unary operation, leave OP1 NULL. This function returns
992 true if the result may be inexact due to loss of precision. */
995 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
996 const REAL_VALUE_TYPE
*op1
)
998 enum tree_code code
= icode
;
1000 if (op0
->decimal
|| (op1
&& op1
->decimal
))
1001 return decimal_real_arithmetic (r
, icode
, op0
, op1
);
1006 return do_add (r
, op0
, op1
, 0);
1009 return do_add (r
, op0
, op1
, 1);
1012 return do_multiply (r
, op0
, op1
);
1015 return do_divide (r
, op0
, op1
);
1018 if (op1
->cl
== rvc_nan
)
1020 else if (do_compare (op0
, op1
, -1) < 0)
1027 if (op1
->cl
== rvc_nan
)
1029 else if (do_compare (op0
, op1
, 1) < 0)
1045 case FIX_TRUNC_EXPR
:
1046 do_fix_trunc (r
, op0
);
1055 /* Legacy. Similar, but return the result directly. */
1058 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1059 const REAL_VALUE_TYPE
*op1
)
1062 real_arithmetic (&r
, icode
, op0
, op1
);
1067 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1068 const REAL_VALUE_TYPE
*op1
)
1070 enum tree_code code
= icode
;
1075 return do_compare (op0
, op1
, 1) < 0;
1077 return do_compare (op0
, op1
, 1) <= 0;
1079 return do_compare (op0
, op1
, -1) > 0;
1081 return do_compare (op0
, op1
, -1) >= 0;
1083 return do_compare (op0
, op1
, -1) == 0;
1085 return do_compare (op0
, op1
, -1) != 0;
1086 case UNORDERED_EXPR
:
1087 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1089 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1091 return do_compare (op0
, op1
, -1) < 0;
1093 return do_compare (op0
, op1
, -1) <= 0;
1095 return do_compare (op0
, op1
, 1) > 0;
1097 return do_compare (op0
, op1
, 1) >= 0;
1099 return do_compare (op0
, op1
, 0) == 0;
1101 return do_compare (op0
, op1
, 0) != 0;
1108 /* Return floor log2(R). */
1111 real_exponent (const REAL_VALUE_TYPE
*r
)
1119 return (unsigned int)-1 >> 1;
1121 return REAL_EXP (r
);
1127 /* R = OP0 * 2**EXP. */
1130 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1141 exp
+= REAL_EXP (op0
);
1143 get_inf (r
, r
->sign
);
1144 else if (exp
< -MAX_EXP
)
1145 get_zero (r
, r
->sign
);
1147 SET_REAL_EXP (r
, exp
);
1155 /* Determine whether a floating-point value X is infinite. */
1158 real_isinf (const REAL_VALUE_TYPE
*r
)
1160 return (r
->cl
== rvc_inf
);
1163 /* Determine whether a floating-point value X is a NaN. */
1166 real_isnan (const REAL_VALUE_TYPE
*r
)
1168 return (r
->cl
== rvc_nan
);
1171 /* Determine whether a floating-point value X is negative. */
1174 real_isneg (const REAL_VALUE_TYPE
*r
)
1179 /* Determine whether a floating-point value X is minus zero. */
1182 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1184 return r
->sign
&& r
->cl
== rvc_zero
;
1187 /* Compare two floating-point objects for bitwise identity. */
1190 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1196 if (a
->sign
!= b
->sign
)
1206 if (a
->decimal
!= b
->decimal
)
1208 if (REAL_EXP (a
) != REAL_EXP (b
))
1213 if (a
->signalling
!= b
->signalling
)
1215 /* The significand is ignored for canonical NaNs. */
1216 if (a
->canonical
|| b
->canonical
)
1217 return a
->canonical
== b
->canonical
;
1224 for (i
= 0; i
< SIGSZ
; ++i
)
1225 if (a
->sig
[i
] != b
->sig
[i
])
1231 /* Try to change R into its exact multiplicative inverse in machine
1232 mode MODE. Return true if successful. */
1235 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1237 const REAL_VALUE_TYPE
*one
= real_digit (1);
1241 if (r
->cl
!= rvc_normal
)
1244 /* Check for a power of two: all significand bits zero except the MSB. */
1245 for (i
= 0; i
< SIGSZ
-1; ++i
)
1248 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1251 /* Find the inverse and truncate to the required mode. */
1252 do_divide (&u
, one
, r
);
1253 real_convert (&u
, mode
, &u
);
1255 /* The rounding may have overflowed. */
1256 if (u
.cl
!= rvc_normal
)
1258 for (i
= 0; i
< SIGSZ
-1; ++i
)
1261 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1268 /* Render R as an integer. */
1271 real_to_integer (const REAL_VALUE_TYPE
*r
)
1273 unsigned HOST_WIDE_INT i
;
1284 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1291 return decimal_real_to_integer (r
);
1293 if (REAL_EXP (r
) <= 0)
1295 /* Only force overflow for unsigned overflow. Signed overflow is
1296 undefined, so it doesn't matter what we return, and some callers
1297 expect to be able to use this routine for both signed and
1298 unsigned conversions. */
1299 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1302 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1303 i
= r
->sig
[SIGSZ
-1];
1306 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1307 i
= r
->sig
[SIGSZ
-1];
1308 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1309 i
|= r
->sig
[SIGSZ
-2];
1312 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1323 /* Likewise, but to an integer pair, HI+LOW. */
1326 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1327 const REAL_VALUE_TYPE
*r
)
1330 HOST_WIDE_INT low
, high
;
1343 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1356 decimal_real_to_integer2 (plow
, phigh
, r
);
1363 /* Only force overflow for unsigned overflow. Signed overflow is
1364 undefined, so it doesn't matter what we return, and some callers
1365 expect to be able to use this routine for both signed and
1366 unsigned conversions. */
1367 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1370 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1371 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1373 high
= t
.sig
[SIGSZ
-1];
1374 low
= t
.sig
[SIGSZ
-2];
1378 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1379 high
= t
.sig
[SIGSZ
-1];
1380 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1381 high
|= t
.sig
[SIGSZ
-2];
1383 low
= t
.sig
[SIGSZ
-3];
1384 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1385 low
|= t
.sig
[SIGSZ
-4];
1393 low
= -low
, high
= ~high
;
1405 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1406 of NUM / DEN. Return the quotient and place the remainder in NUM.
1407 It is expected that NUM / DEN are close enough that the quotient is
1410 static unsigned long
1411 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1413 unsigned long q
, msb
;
1414 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1423 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1425 lshift_significand_1 (num
, num
);
1427 if (msb
|| cmp_significands (num
, den
) >= 0)
1429 sub_significands (num
, num
, den
, 0);
1433 while (--expn
>= expd
);
1435 SET_REAL_EXP (num
, expd
);
1441 /* Render R as a decimal floating point constant. Emit DIGITS significant
1442 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1443 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1446 #define M_LOG10_2 0.30102999566398119521
1449 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1450 size_t digits
, int crop_trailing_zeros
)
1452 const REAL_VALUE_TYPE
*one
, *ten
;
1453 REAL_VALUE_TYPE r
, pten
, u
, v
;
1454 int dec_exp
, cmp_one
, digit
;
1456 char *p
, *first
, *last
;
1463 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1468 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1471 /* ??? Print the significand as well, if not canonical? */
1472 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1480 decimal_real_to_decimal (str
, &r
, buf_size
, digits
, crop_trailing_zeros
);
1484 /* Bound the number of digits printed by the size of the representation. */
1485 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1486 if (digits
== 0 || digits
> max_digits
)
1487 digits
= max_digits
;
1489 /* Estimate the decimal exponent, and compute the length of the string it
1490 will print as. Be conservative and add one to account for possible
1491 overflow or rounding error. */
1492 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1493 for (max_digits
= 1; dec_exp
; max_digits
++)
1496 /* Bound the number of digits printed by the size of the output buffer. */
1497 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1498 gcc_assert (max_digits
<= buf_size
);
1499 if (digits
> max_digits
)
1500 digits
= max_digits
;
1502 one
= real_digit (1);
1503 ten
= ten_to_ptwo (0);
1511 cmp_one
= do_compare (&r
, one
, 0);
1516 /* Number is greater than one. Convert significand to an integer
1517 and strip trailing decimal zeros. */
1520 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1522 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1523 m
= floor_log2 (max_digits
);
1525 /* Iterate over the bits of the possible powers of 10 that might
1526 be present in U and eliminate them. That is, if we find that
1527 10**2**M divides U evenly, keep the division and increase
1533 do_divide (&t
, &u
, ten_to_ptwo (m
));
1534 do_fix_trunc (&v
, &t
);
1535 if (cmp_significands (&v
, &t
) == 0)
1543 /* Revert the scaling to integer that we performed earlier. */
1544 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1545 - (SIGNIFICAND_BITS
- 1));
1548 /* Find power of 10. Do this by dividing out 10**2**M when
1549 this is larger than the current remainder. Fill PTEN with
1550 the power of 10 that we compute. */
1551 if (REAL_EXP (&r
) > 0)
1553 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1556 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1557 if (do_compare (&u
, ptentwo
, 0) >= 0)
1559 do_divide (&u
, &u
, ptentwo
);
1560 do_multiply (&pten
, &pten
, ptentwo
);
1567 /* We managed to divide off enough tens in the above reduction
1568 loop that we've now got a negative exponent. Fall into the
1569 less-than-one code to compute the proper value for PTEN. */
1576 /* Number is less than one. Pad significand with leading
1582 /* Stop if we'd shift bits off the bottom. */
1586 do_multiply (&u
, &v
, ten
);
1588 /* Stop if we're now >= 1. */
1589 if (REAL_EXP (&u
) > 0)
1597 /* Find power of 10. Do this by multiplying in P=10**2**M when
1598 the current remainder is smaller than 1/P. Fill PTEN with the
1599 power of 10 that we compute. */
1600 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1603 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1604 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1606 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1608 do_multiply (&v
, &v
, ptentwo
);
1609 do_multiply (&pten
, &pten
, ptentwo
);
1615 /* Invert the positive power of 10 that we've collected so far. */
1616 do_divide (&pten
, one
, &pten
);
1624 /* At this point, PTEN should contain the nearest power of 10 smaller
1625 than R, such that this division produces the first digit.
1627 Using a divide-step primitive that returns the complete integral
1628 remainder avoids the rounding error that would be produced if
1629 we were to use do_divide here and then simply multiply by 10 for
1630 each subsequent digit. */
1632 digit
= rtd_divmod (&r
, &pten
);
1634 /* Be prepared for error in that division via underflow ... */
1635 if (digit
== 0 && cmp_significand_0 (&r
))
1637 /* Multiply by 10 and try again. */
1638 do_multiply (&r
, &r
, ten
);
1639 digit
= rtd_divmod (&r
, &pten
);
1641 gcc_assert (digit
!= 0);
1644 /* ... or overflow. */
1654 gcc_assert (digit
<= 10);
1658 /* Generate subsequent digits. */
1659 while (--digits
> 0)
1661 do_multiply (&r
, &r
, ten
);
1662 digit
= rtd_divmod (&r
, &pten
);
1667 /* Generate one more digit with which to do rounding. */
1668 do_multiply (&r
, &r
, ten
);
1669 digit
= rtd_divmod (&r
, &pten
);
1671 /* Round the result. */
1674 /* Round to nearest. If R is nonzero there are additional
1675 nonzero digits to be extracted. */
1676 if (cmp_significand_0 (&r
))
1678 /* Round to even. */
1679 else if ((p
[-1] - '0') & 1)
1696 /* Carry out of the first digit. This means we had all 9's and
1697 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1705 /* Insert the decimal point. */
1706 first
[0] = first
[1];
1709 /* If requested, drop trailing zeros. Never crop past "1.0". */
1710 if (crop_trailing_zeros
)
1711 while (last
> first
+ 3 && last
[-1] == '0')
1714 /* Append the exponent. */
1715 sprintf (last
, "e%+d", dec_exp
);
1718 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1719 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1720 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1721 strip trailing zeros. */
1724 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1725 size_t digits
, int crop_trailing_zeros
)
1727 int i
, j
, exp
= REAL_EXP (r
);
1740 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1743 /* ??? Print the significand as well, if not canonical? */
1744 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1752 /* Hexadecimal format for decimal floats is not interesting. */
1753 strcpy (str
, "N/A");
1758 digits
= SIGNIFICAND_BITS
/ 4;
1760 /* Bound the number of digits printed by the size of the output buffer. */
1762 sprintf (exp_buf
, "p%+d", exp
);
1763 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1764 gcc_assert (max_digits
<= buf_size
);
1765 if (digits
> max_digits
)
1766 digits
= max_digits
;
1777 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1778 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1780 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1786 if (crop_trailing_zeros
)
1787 while (p
> first
+ 1 && p
[-1] == '0')
1790 sprintf (p
, "p%+d", exp
);
1793 /* Initialize R from a decimal or hexadecimal string. The string is
1794 assumed to have been syntax checked already. Return -1 if the
1795 value underflows, +1 if overflows, and 0 otherwise. */
1798 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1810 else if (*str
== '+')
1813 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1815 /* Hexadecimal floating point. */
1816 int pos
= SIGNIFICAND_BITS
- 4, d
;
1824 d
= hex_value (*str
);
1829 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1830 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1834 /* Ensure correct rounding by setting last bit if there is
1835 a subsequent nonzero digit. */
1843 if (pos
== SIGNIFICAND_BITS
- 4)
1850 d
= hex_value (*str
);
1855 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1856 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1860 /* Ensure correct rounding by setting last bit if there is
1861 a subsequent nonzero digit. */
1867 /* If the mantissa is zero, ignore the exponent. */
1868 if (!cmp_significand_0 (r
))
1871 if (*str
== 'p' || *str
== 'P')
1873 bool exp_neg
= false;
1881 else if (*str
== '+')
1885 while (ISDIGIT (*str
))
1891 /* Overflowed the exponent. */
1906 SET_REAL_EXP (r
, exp
);
1912 /* Decimal floating point. */
1913 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1918 while (ISDIGIT (*str
))
1921 do_multiply (r
, r
, ten
);
1923 do_add (r
, r
, real_digit (d
), 0);
1928 if (r
->cl
== rvc_zero
)
1933 while (ISDIGIT (*str
))
1936 do_multiply (r
, r
, ten
);
1938 do_add (r
, r
, real_digit (d
), 0);
1943 /* If the mantissa is zero, ignore the exponent. */
1944 if (r
->cl
== rvc_zero
)
1947 if (*str
== 'e' || *str
== 'E')
1949 bool exp_neg
= false;
1957 else if (*str
== '+')
1961 while (ISDIGIT (*str
))
1967 /* Overflowed the exponent. */
1981 times_pten (r
, exp
);
2000 /* Legacy. Similar, but return the result directly. */
2003 real_from_string2 (const char *s
, enum machine_mode mode
)
2007 real_from_string (&r
, s
);
2008 if (mode
!= VOIDmode
)
2009 real_convert (&r
, mode
, &r
);
2014 /* Initialize R from string S and desired MODE. */
2017 real_from_string3 (REAL_VALUE_TYPE
*r
, const char *s
, enum machine_mode mode
)
2019 if (DECIMAL_FLOAT_MODE_P (mode
))
2020 decimal_real_from_string (r
, s
);
2022 real_from_string (r
, s
);
2024 if (mode
!= VOIDmode
)
2025 real_convert (r
, mode
, r
);
2028 /* Initialize R from the integer pair HIGH+LOW. */
2031 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2032 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
2035 if (low
== 0 && high
== 0)
2039 memset (r
, 0, sizeof (*r
));
2041 r
->sign
= high
< 0 && !unsigned_p
;
2042 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
2053 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
2055 r
->sig
[SIGSZ
-1] = high
;
2056 r
->sig
[SIGSZ
-2] = low
;
2060 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
2061 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2062 r
->sig
[SIGSZ
-2] = high
;
2063 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
2064 r
->sig
[SIGSZ
-4] = low
;
2070 if (mode
!= VOIDmode
)
2071 real_convert (r
, mode
, r
);
2074 /* Returns 10**2**N. */
2076 static const REAL_VALUE_TYPE
*
2079 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2081 gcc_assert (n
>= 0);
2082 gcc_assert (n
< EXP_BITS
);
2084 if (tens
[n
].cl
== rvc_zero
)
2086 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2088 HOST_WIDE_INT t
= 10;
2091 for (i
= 0; i
< n
; ++i
)
2094 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2098 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2099 do_multiply (&tens
[n
], t
, t
);
2106 /* Returns 10**(-2**N). */
2108 static const REAL_VALUE_TYPE
*
2109 ten_to_mptwo (int n
)
2111 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2113 gcc_assert (n
>= 0);
2114 gcc_assert (n
< EXP_BITS
);
2116 if (tens
[n
].cl
== rvc_zero
)
2117 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2124 static const REAL_VALUE_TYPE
*
2127 static REAL_VALUE_TYPE num
[10];
2129 gcc_assert (n
>= 0);
2130 gcc_assert (n
<= 9);
2132 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2133 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2138 /* Multiply R by 10**EXP. */
2141 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2143 REAL_VALUE_TYPE pten
, *rr
;
2144 bool negative
= (exp
< 0);
2150 pten
= *real_digit (1);
2156 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2158 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2161 do_divide (r
, r
, &pten
);
2164 /* Fills R with +Inf. */
2167 real_inf (REAL_VALUE_TYPE
*r
)
2172 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2173 we force a QNaN, else we force an SNaN. The string, if not empty,
2174 is parsed as a number and placed in the significand. Return true
2175 if the string was successfully parsed. */
2178 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2179 enum machine_mode mode
)
2181 const struct real_format
*fmt
;
2183 fmt
= REAL_MODE_FORMAT (mode
);
2189 get_canonical_qnan (r
, 0);
2191 get_canonical_snan (r
, 0);
2197 memset (r
, 0, sizeof (*r
));
2200 /* Parse akin to strtol into the significand of R. */
2202 while (ISSPACE (*str
))
2206 else if (*str
== '+')
2211 if (*str
== 'x' || *str
== 'X')
2220 while ((d
= hex_value (*str
)) < base
)
2227 lshift_significand (r
, r
, 3);
2230 lshift_significand (r
, r
, 4);
2233 lshift_significand_1 (&u
, r
);
2234 lshift_significand (r
, r
, 3);
2235 add_significands (r
, r
, &u
);
2243 add_significands (r
, r
, &u
);
2248 /* Must have consumed the entire string for success. */
2252 /* Shift the significand into place such that the bits
2253 are in the most significant bits for the format. */
2254 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2256 /* Our MSB is always unset for NaNs. */
2257 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2259 /* Force quiet or signalling NaN. */
2260 r
->signalling
= !quiet
;
2266 /* Fills R with the largest finite value representable in mode MODE.
2267 If SIGN is nonzero, R is set to the most negative finite value. */
2270 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2272 const struct real_format
*fmt
;
2275 fmt
= REAL_MODE_FORMAT (mode
);
2277 memset (r
, 0, sizeof (*r
));
2280 decimal_real_maxval (r
, sign
, mode
);
2285 SET_REAL_EXP (r
, fmt
->emax
* fmt
->log2_b
);
2287 np2
= SIGNIFICAND_BITS
- fmt
->p
* fmt
->log2_b
;
2288 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2289 clear_significand_below (r
, np2
);
2291 if (fmt
->pnan
< fmt
->p
)
2292 /* This is an IBM extended double format made up of two IEEE
2293 doubles. The value of the long double is the sum of the
2294 values of the two parts. The most significant part is
2295 required to be the value of the long double rounded to the
2296 nearest double. Rounding means we need a slightly smaller
2297 value for LDBL_MAX. */
2298 clear_significand_bit (r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2302 /* Fills R with 2**N. */
2305 real_2expN (REAL_VALUE_TYPE
*r
, int n
)
2307 memset (r
, 0, sizeof (*r
));
2312 else if (n
< -MAX_EXP
)
2317 SET_REAL_EXP (r
, n
);
2318 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2324 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2327 unsigned long sticky
;
2335 decimal_round_for_format (fmt
, r
);
2338 /* FIXME. We can come here via fp_easy_constant
2339 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2340 investigated whether this convert needs to be here, or
2341 something else is missing. */
2342 decimal_real_convert (r
, DFmode
, r
);
2345 p2
= fmt
->p
* fmt
->log2_b
;
2346 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2347 emax2
= fmt
->emax
* fmt
->log2_b
;
2349 np2
= SIGNIFICAND_BITS
- p2
;
2353 get_zero (r
, r
->sign
);
2355 if (!fmt
->has_signed_zero
)
2360 get_inf (r
, r
->sign
);
2365 clear_significand_below (r
, np2
);
2375 /* If we're not base2, normalize the exponent to a multiple of
2377 if (fmt
->log2_b
!= 1)
2381 gcc_assert (fmt
->b
!= 10);
2382 shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2385 shift
= fmt
->log2_b
- shift
;
2386 r
->sig
[0] |= sticky_rshift_significand (r
, r
, shift
);
2387 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2391 /* Check the range of the exponent. If we're out of range,
2392 either underflow or overflow. */
2393 if (REAL_EXP (r
) > emax2
)
2395 else if (REAL_EXP (r
) <= emin2m1
)
2399 if (!fmt
->has_denorm
)
2401 /* Don't underflow completely until we've had a chance to round. */
2402 if (REAL_EXP (r
) < emin2m1
)
2407 diff
= emin2m1
- REAL_EXP (r
) + 1;
2411 /* De-normalize the significand. */
2412 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2413 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2417 /* There are P2 true significand bits, followed by one guard bit,
2418 followed by one sticky bit, followed by stuff. Fold nonzero
2419 stuff into the sticky bit. */
2422 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2423 sticky
|= r
->sig
[i
];
2425 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2427 guard
= test_significand_bit (r
, np2
- 1);
2428 lsb
= test_significand_bit (r
, np2
);
2430 /* Round to even. */
2431 if (guard
&& (sticky
|| lsb
))
2435 set_significand_bit (&u
, np2
);
2437 if (add_significands (r
, r
, &u
))
2439 /* Overflow. Means the significand had been all ones, and
2440 is now all zeros. Need to increase the exponent, and
2441 possibly re-normalize it. */
2442 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2443 if (REAL_EXP (r
) > emax2
)
2445 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2447 if (fmt
->log2_b
!= 1)
2449 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2452 shift
= fmt
->log2_b
- shift
;
2453 rshift_significand (r
, r
, shift
);
2454 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2455 if (REAL_EXP (r
) > emax2
)
2462 /* Catch underflow that we deferred until after rounding. */
2463 if (REAL_EXP (r
) <= emin2m1
)
2466 /* Clear out trailing garbage. */
2467 clear_significand_below (r
, np2
);
2470 /* Extend or truncate to a new mode. */
2473 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2474 const REAL_VALUE_TYPE
*a
)
2476 const struct real_format
*fmt
;
2478 fmt
= REAL_MODE_FORMAT (mode
);
2483 if (a
->decimal
|| fmt
->b
== 10)
2484 decimal_real_convert (r
, mode
, a
);
2486 round_for_format (fmt
, r
);
2488 /* round_for_format de-normalizes denormals. Undo just that part. */
2489 if (r
->cl
== rvc_normal
)
2493 /* Legacy. Likewise, except return the struct directly. */
2496 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2499 real_convert (&r
, mode
, &a
);
2503 /* Return true if truncating to MODE is exact. */
2506 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2508 const struct real_format
*fmt
;
2512 fmt
= REAL_MODE_FORMAT (mode
);
2515 /* Don't allow conversion to denormals. */
2516 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2517 if (REAL_EXP (a
) <= emin2m1
)
2520 /* After conversion to the new mode, the value must be identical. */
2521 real_convert (&t
, mode
, a
);
2522 return real_identical (&t
, a
);
2525 /* Write R to the given target format. Place the words of the result
2526 in target word order in BUF. There are always 32 bits in each
2527 long, no matter the size of the host long.
2529 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2532 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2533 const struct real_format
*fmt
)
2539 round_for_format (fmt
, &r
);
2543 (*fmt
->encode
) (fmt
, buf
, &r
);
2548 /* Similar, but look up the format from MODE. */
2551 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2553 const struct real_format
*fmt
;
2555 fmt
= REAL_MODE_FORMAT (mode
);
2558 return real_to_target_fmt (buf
, r
, fmt
);
2561 /* Read R from the given target format. Read the words of the result
2562 in target word order in BUF. There are always 32 bits in each
2563 long, no matter the size of the host long. */
2566 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2567 const struct real_format
*fmt
)
2569 (*fmt
->decode
) (fmt
, r
, buf
);
2572 /* Similar, but look up the format from MODE. */
2575 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2577 const struct real_format
*fmt
;
2579 fmt
= REAL_MODE_FORMAT (mode
);
2582 (*fmt
->decode
) (fmt
, r
, buf
);
2585 /* Return the number of bits of the largest binary value that the
2586 significand of MODE will hold. */
2587 /* ??? Legacy. Should get access to real_format directly. */
2590 significand_size (enum machine_mode mode
)
2592 const struct real_format
*fmt
;
2594 fmt
= REAL_MODE_FORMAT (mode
);
2600 /* Return the size in bits of the largest binary value that can be
2601 held by the decimal coefficient for this mode. This is one more
2602 than the number of bits required to hold the largest coefficient
2604 double log2_10
= 3.3219281;
2605 return fmt
->p
* log2_10
;
2607 return fmt
->p
* fmt
->log2_b
;
2610 /* Return a hash value for the given real value. */
2611 /* ??? The "unsigned int" return value is intended to be hashval_t,
2612 but I didn't want to pull hashtab.h into real.h. */
2615 real_hash (const REAL_VALUE_TYPE
*r
)
2620 h
= r
->cl
| (r
->sign
<< 2);
2628 h
|= REAL_EXP (r
) << 3;
2633 h
^= (unsigned int)-1;
2642 if (sizeof(unsigned long) > sizeof(unsigned int))
2643 for (i
= 0; i
< SIGSZ
; ++i
)
2645 unsigned long s
= r
->sig
[i
];
2646 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2649 for (i
= 0; i
< SIGSZ
; ++i
)
2655 /* IEEE single-precision format. */
2657 static void encode_ieee_single (const struct real_format
*fmt
,
2658 long *, const REAL_VALUE_TYPE
*);
2659 static void decode_ieee_single (const struct real_format
*,
2660 REAL_VALUE_TYPE
*, const long *);
2663 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2664 const REAL_VALUE_TYPE
*r
)
2666 unsigned long image
, sig
, exp
;
2667 unsigned long sign
= r
->sign
;
2668 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2671 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2682 image
|= 0x7fffffff;
2689 sig
= (fmt
->canonical_nan_lsbs_set
? (1 << 22) - 1 : 0);
2690 if (r
->signalling
== fmt
->qnan_msb_set
)
2701 image
|= 0x7fffffff;
2705 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2706 whereas the intermediate representation is 0.F x 2**exp.
2707 Which means we're off by one. */
2711 exp
= REAL_EXP (r
) + 127 - 1;
2724 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2727 unsigned long image
= buf
[0] & 0xffffffff;
2728 bool sign
= (image
>> 31) & 1;
2729 int exp
= (image
>> 23) & 0xff;
2731 memset (r
, 0, sizeof (*r
));
2732 image
<<= HOST_BITS_PER_LONG
- 24;
2737 if (image
&& fmt
->has_denorm
)
2741 SET_REAL_EXP (r
, -126);
2742 r
->sig
[SIGSZ
-1] = image
<< 1;
2745 else if (fmt
->has_signed_zero
)
2748 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2754 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2755 ^ fmt
->qnan_msb_set
);
2756 r
->sig
[SIGSZ
-1] = image
;
2768 SET_REAL_EXP (r
, exp
- 127 + 1);
2769 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2773 const struct real_format ieee_single_format
=
2793 const struct real_format mips_single_format
=
2813 const struct real_format coldfire_single_format
=
2833 /* IEEE double-precision format. */
2835 static void encode_ieee_double (const struct real_format
*fmt
,
2836 long *, const REAL_VALUE_TYPE
*);
2837 static void decode_ieee_double (const struct real_format
*,
2838 REAL_VALUE_TYPE
*, const long *);
2841 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2842 const REAL_VALUE_TYPE
*r
)
2844 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2845 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2847 image_hi
= r
->sign
<< 31;
2850 if (HOST_BITS_PER_LONG
== 64)
2852 sig_hi
= r
->sig
[SIGSZ
-1];
2853 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2854 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2858 sig_hi
= r
->sig
[SIGSZ
-1];
2859 sig_lo
= r
->sig
[SIGSZ
-2];
2860 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2861 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2871 image_hi
|= 2047 << 20;
2874 image_hi
|= 0x7fffffff;
2875 image_lo
= 0xffffffff;
2884 if (fmt
->canonical_nan_lsbs_set
)
2886 sig_hi
= (1 << 19) - 1;
2887 sig_lo
= 0xffffffff;
2895 if (r
->signalling
== fmt
->qnan_msb_set
)
2896 sig_hi
&= ~(1 << 19);
2899 if (sig_hi
== 0 && sig_lo
== 0)
2902 image_hi
|= 2047 << 20;
2908 image_hi
|= 0x7fffffff;
2909 image_lo
= 0xffffffff;
2914 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2915 whereas the intermediate representation is 0.F x 2**exp.
2916 Which means we're off by one. */
2920 exp
= REAL_EXP (r
) + 1023 - 1;
2921 image_hi
|= exp
<< 20;
2930 if (FLOAT_WORDS_BIG_ENDIAN
)
2931 buf
[0] = image_hi
, buf
[1] = image_lo
;
2933 buf
[0] = image_lo
, buf
[1] = image_hi
;
2937 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2940 unsigned long image_hi
, image_lo
;
2944 if (FLOAT_WORDS_BIG_ENDIAN
)
2945 image_hi
= buf
[0], image_lo
= buf
[1];
2947 image_lo
= buf
[0], image_hi
= buf
[1];
2948 image_lo
&= 0xffffffff;
2949 image_hi
&= 0xffffffff;
2951 sign
= (image_hi
>> 31) & 1;
2952 exp
= (image_hi
>> 20) & 0x7ff;
2954 memset (r
, 0, sizeof (*r
));
2956 image_hi
<<= 32 - 21;
2957 image_hi
|= image_lo
>> 21;
2958 image_hi
&= 0x7fffffff;
2959 image_lo
<<= 32 - 21;
2963 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2967 SET_REAL_EXP (r
, -1022);
2968 if (HOST_BITS_PER_LONG
== 32)
2970 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2972 r
->sig
[SIGSZ
-1] = image_hi
;
2973 r
->sig
[SIGSZ
-2] = image_lo
;
2977 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2978 r
->sig
[SIGSZ
-1] = image_hi
;
2982 else if (fmt
->has_signed_zero
)
2985 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
2987 if (image_hi
|| image_lo
)
2991 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
2992 if (HOST_BITS_PER_LONG
== 32)
2994 r
->sig
[SIGSZ
-1] = image_hi
;
2995 r
->sig
[SIGSZ
-2] = image_lo
;
2998 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
3010 SET_REAL_EXP (r
, exp
- 1023 + 1);
3011 if (HOST_BITS_PER_LONG
== 32)
3013 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
3014 r
->sig
[SIGSZ
-2] = image_lo
;
3017 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
3021 const struct real_format ieee_double_format
=
3041 const struct real_format mips_double_format
=
3061 const struct real_format coldfire_double_format
=
3081 /* IEEE extended real format. This comes in three flavors: Intel's as
3082 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3083 12- and 16-byte images may be big- or little endian; Motorola's is
3084 always big endian. */
3086 /* Helper subroutine which converts from the internal format to the
3087 12-byte little-endian Intel format. Functions below adjust this
3088 for the other possible formats. */
3090 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
3091 const REAL_VALUE_TYPE
*r
)
3093 unsigned long image_hi
, sig_hi
, sig_lo
;
3094 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3096 image_hi
= r
->sign
<< 15;
3097 sig_hi
= sig_lo
= 0;
3109 /* Intel requires the explicit integer bit to be set, otherwise
3110 it considers the value a "pseudo-infinity". Motorola docs
3111 say it doesn't care. */
3112 sig_hi
= 0x80000000;
3117 sig_lo
= sig_hi
= 0xffffffff;
3125 if (HOST_BITS_PER_LONG
== 32)
3127 sig_hi
= r
->sig
[SIGSZ
-1];
3128 sig_lo
= r
->sig
[SIGSZ
-2];
3132 sig_lo
= r
->sig
[SIGSZ
-1];
3133 sig_hi
= sig_lo
>> 31 >> 1;
3134 sig_lo
&= 0xffffffff;
3136 if (r
->signalling
== fmt
->qnan_msb_set
)
3137 sig_hi
&= ~(1 << 30);
3140 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
3143 /* Intel requires the explicit integer bit to be set, otherwise
3144 it considers the value a "pseudo-nan". Motorola docs say it
3146 sig_hi
|= 0x80000000;
3151 sig_lo
= sig_hi
= 0xffffffff;
3157 int exp
= REAL_EXP (r
);
3159 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3160 whereas the intermediate representation is 0.F x 2**exp.
3161 Which means we're off by one.
3163 Except for Motorola, which consider exp=0 and explicit
3164 integer bit set to continue to be normalized. In theory
3165 this discrepancy has been taken care of by the difference
3166 in fmt->emin in round_for_format. */
3173 gcc_assert (exp
>= 0);
3177 if (HOST_BITS_PER_LONG
== 32)
3179 sig_hi
= r
->sig
[SIGSZ
-1];
3180 sig_lo
= r
->sig
[SIGSZ
-2];
3184 sig_lo
= r
->sig
[SIGSZ
-1];
3185 sig_hi
= sig_lo
>> 31 >> 1;
3186 sig_lo
&= 0xffffffff;
3195 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3198 /* Convert from the internal format to the 12-byte Motorola format
3199 for an IEEE extended real. */
3201 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3202 const REAL_VALUE_TYPE
*r
)
3205 encode_ieee_extended (fmt
, intermed
, r
);
3207 /* Motorola chips are assumed always to be big-endian. Also, the
3208 padding in a Motorola extended real goes between the exponent and
3209 the mantissa. At this point the mantissa is entirely within
3210 elements 0 and 1 of intermed, and the exponent entirely within
3211 element 2, so all we have to do is swap the order around, and
3212 shift element 2 left 16 bits. */
3213 buf
[0] = intermed
[2] << 16;
3214 buf
[1] = intermed
[1];
3215 buf
[2] = intermed
[0];
3218 /* Convert from the internal format to the 12-byte Intel format for
3219 an IEEE extended real. */
3221 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3222 const REAL_VALUE_TYPE
*r
)
3224 if (FLOAT_WORDS_BIG_ENDIAN
)
3226 /* All the padding in an Intel-format extended real goes at the high
3227 end, which in this case is after the mantissa, not the exponent.
3228 Therefore we must shift everything down 16 bits. */
3230 encode_ieee_extended (fmt
, intermed
, r
);
3231 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3232 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3233 buf
[2] = (intermed
[0] << 16);
3236 /* encode_ieee_extended produces what we want directly. */
3237 encode_ieee_extended (fmt
, buf
, r
);
3240 /* Convert from the internal format to the 16-byte Intel format for
3241 an IEEE extended real. */
3243 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3244 const REAL_VALUE_TYPE
*r
)
3246 /* All the padding in an Intel-format extended real goes at the high end. */
3247 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3251 /* As above, we have a helper function which converts from 12-byte
3252 little-endian Intel format to internal format. Functions below
3253 adjust for the other possible formats. */
3255 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3258 unsigned long image_hi
, sig_hi
, sig_lo
;
3262 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3263 sig_lo
&= 0xffffffff;
3264 sig_hi
&= 0xffffffff;
3265 image_hi
&= 0xffffffff;
3267 sign
= (image_hi
>> 15) & 1;
3268 exp
= image_hi
& 0x7fff;
3270 memset (r
, 0, sizeof (*r
));
3274 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3279 /* When the IEEE format contains a hidden bit, we know that
3280 it's zero at this point, and so shift up the significand
3281 and decrease the exponent to match. In this case, Motorola
3282 defines the explicit integer bit to be valid, so we don't
3283 know whether the msb is set or not. */
3284 SET_REAL_EXP (r
, fmt
->emin
);
3285 if (HOST_BITS_PER_LONG
== 32)
3287 r
->sig
[SIGSZ
-1] = sig_hi
;
3288 r
->sig
[SIGSZ
-2] = sig_lo
;
3291 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3295 else if (fmt
->has_signed_zero
)
3298 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3300 /* See above re "pseudo-infinities" and "pseudo-nans".
3301 Short summary is that the MSB will likely always be
3302 set, and that we don't care about it. */
3303 sig_hi
&= 0x7fffffff;
3305 if (sig_hi
|| sig_lo
)
3309 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3310 if (HOST_BITS_PER_LONG
== 32)
3312 r
->sig
[SIGSZ
-1] = sig_hi
;
3313 r
->sig
[SIGSZ
-2] = sig_lo
;
3316 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3328 SET_REAL_EXP (r
, exp
- 16383 + 1);
3329 if (HOST_BITS_PER_LONG
== 32)
3331 r
->sig
[SIGSZ
-1] = sig_hi
;
3332 r
->sig
[SIGSZ
-2] = sig_lo
;
3335 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3339 /* Convert from the internal format to the 12-byte Motorola format
3340 for an IEEE extended real. */
3342 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3347 /* Motorola chips are assumed always to be big-endian. Also, the
3348 padding in a Motorola extended real goes between the exponent and
3349 the mantissa; remove it. */
3350 intermed
[0] = buf
[2];
3351 intermed
[1] = buf
[1];
3352 intermed
[2] = (unsigned long)buf
[0] >> 16;
3354 decode_ieee_extended (fmt
, r
, intermed
);
3357 /* Convert from the internal format to the 12-byte Intel format for
3358 an IEEE extended real. */
3360 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3363 if (FLOAT_WORDS_BIG_ENDIAN
)
3365 /* All the padding in an Intel-format extended real goes at the high
3366 end, which in this case is after the mantissa, not the exponent.
3367 Therefore we must shift everything up 16 bits. */
3370 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3371 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3372 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3374 decode_ieee_extended (fmt
, r
, intermed
);
3377 /* decode_ieee_extended produces what we want directly. */
3378 decode_ieee_extended (fmt
, r
, buf
);
3381 /* Convert from the internal format to the 16-byte Intel format for
3382 an IEEE extended real. */
3384 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3387 /* All the padding in an Intel-format extended real goes at the high end. */
3388 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3391 const struct real_format ieee_extended_motorola_format
=
3393 encode_ieee_extended_motorola
,
3394 decode_ieee_extended_motorola
,
3411 const struct real_format ieee_extended_intel_96_format
=
3413 encode_ieee_extended_intel_96
,
3414 decode_ieee_extended_intel_96
,
3431 const struct real_format ieee_extended_intel_128_format
=
3433 encode_ieee_extended_intel_128
,
3434 decode_ieee_extended_intel_128
,
3451 /* The following caters to i386 systems that set the rounding precision
3452 to 53 bits instead of 64, e.g. FreeBSD. */
3453 const struct real_format ieee_extended_intel_96_round_53_format
=
3455 encode_ieee_extended_intel_96
,
3456 decode_ieee_extended_intel_96
,
3473 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3474 numbers whose sum is equal to the extended precision value. The number
3475 with greater magnitude is first. This format has the same magnitude
3476 range as an IEEE double precision value, but effectively 106 bits of
3477 significand precision. Infinity and NaN are represented by their IEEE
3478 double precision value stored in the first number, the second number is
3479 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3481 static void encode_ibm_extended (const struct real_format
*fmt
,
3482 long *, const REAL_VALUE_TYPE
*);
3483 static void decode_ibm_extended (const struct real_format
*,
3484 REAL_VALUE_TYPE
*, const long *);
3487 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3488 const REAL_VALUE_TYPE
*r
)
3490 REAL_VALUE_TYPE u
, normr
, v
;
3491 const struct real_format
*base_fmt
;
3493 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3495 /* Renormlize R before doing any arithmetic on it. */
3497 if (normr
.cl
== rvc_normal
)
3500 /* u = IEEE double precision portion of significand. */
3502 round_for_format (base_fmt
, &u
);
3503 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3505 if (u
.cl
== rvc_normal
)
3507 do_add (&v
, &normr
, &u
, 1);
3508 /* Call round_for_format since we might need to denormalize. */
3509 round_for_format (base_fmt
, &v
);
3510 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3514 /* Inf, NaN, 0 are all representable as doubles, so the
3515 least-significant part can be 0.0. */
3522 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3525 REAL_VALUE_TYPE u
, v
;
3526 const struct real_format
*base_fmt
;
3528 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3529 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3531 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3533 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3534 do_add (r
, &u
, &v
, 0);
3540 const struct real_format ibm_extended_format
=
3542 encode_ibm_extended
,
3543 decode_ibm_extended
,
3560 const struct real_format mips_extended_format
=
3562 encode_ibm_extended
,
3563 decode_ibm_extended
,
3581 /* IEEE quad precision format. */
3583 static void encode_ieee_quad (const struct real_format
*fmt
,
3584 long *, const REAL_VALUE_TYPE
*);
3585 static void decode_ieee_quad (const struct real_format
*,
3586 REAL_VALUE_TYPE
*, const long *);
3589 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3590 const REAL_VALUE_TYPE
*r
)
3592 unsigned long image3
, image2
, image1
, image0
, exp
;
3593 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3596 image3
= r
->sign
<< 31;
3601 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3610 image3
|= 32767 << 16;
3613 image3
|= 0x7fffffff;
3614 image2
= 0xffffffff;
3615 image1
= 0xffffffff;
3616 image0
= 0xffffffff;
3623 image3
|= 32767 << 16;
3627 if (fmt
->canonical_nan_lsbs_set
)
3630 image2
= image1
= image0
= 0xffffffff;
3633 else if (HOST_BITS_PER_LONG
== 32)
3638 image3
|= u
.sig
[3] & 0xffff;
3643 image1
= image0
>> 31 >> 1;
3645 image3
|= (image2
>> 31 >> 1) & 0xffff;
3646 image0
&= 0xffffffff;
3647 image2
&= 0xffffffff;
3649 if (r
->signalling
== fmt
->qnan_msb_set
)
3653 if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3658 image3
|= 0x7fffffff;
3659 image2
= 0xffffffff;
3660 image1
= 0xffffffff;
3661 image0
= 0xffffffff;
3666 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3667 whereas the intermediate representation is 0.F x 2**exp.
3668 Which means we're off by one. */
3672 exp
= REAL_EXP (r
) + 16383 - 1;
3673 image3
|= exp
<< 16;
3675 if (HOST_BITS_PER_LONG
== 32)
3680 image3
|= u
.sig
[3] & 0xffff;
3685 image1
= image0
>> 31 >> 1;
3687 image3
|= (image2
>> 31 >> 1) & 0xffff;
3688 image0
&= 0xffffffff;
3689 image2
&= 0xffffffff;
3697 if (FLOAT_WORDS_BIG_ENDIAN
)
3714 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3717 unsigned long image3
, image2
, image1
, image0
;
3721 if (FLOAT_WORDS_BIG_ENDIAN
)
3735 image0
&= 0xffffffff;
3736 image1
&= 0xffffffff;
3737 image2
&= 0xffffffff;
3739 sign
= (image3
>> 31) & 1;
3740 exp
= (image3
>> 16) & 0x7fff;
3743 memset (r
, 0, sizeof (*r
));
3747 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3752 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3753 if (HOST_BITS_PER_LONG
== 32)
3762 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3763 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3768 else if (fmt
->has_signed_zero
)
3771 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3773 if (image3
| image2
| image1
| image0
)
3777 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3779 if (HOST_BITS_PER_LONG
== 32)
3788 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3789 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3791 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3803 SET_REAL_EXP (r
, exp
- 16383 + 1);
3805 if (HOST_BITS_PER_LONG
== 32)
3814 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3815 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3817 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3818 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3822 const struct real_format ieee_quad_format
=
3842 const struct real_format mips_quad_format
=
3862 /* Descriptions of VAX floating point formats can be found beginning at
3864 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3866 The thing to remember is that they're almost IEEE, except for word
3867 order, exponent bias, and the lack of infinities, nans, and denormals.
3869 We don't implement the H_floating format here, simply because neither
3870 the VAX or Alpha ports use it. */
3872 static void encode_vax_f (const struct real_format
*fmt
,
3873 long *, const REAL_VALUE_TYPE
*);
3874 static void decode_vax_f (const struct real_format
*,
3875 REAL_VALUE_TYPE
*, const long *);
3876 static void encode_vax_d (const struct real_format
*fmt
,
3877 long *, const REAL_VALUE_TYPE
*);
3878 static void decode_vax_d (const struct real_format
*,
3879 REAL_VALUE_TYPE
*, const long *);
3880 static void encode_vax_g (const struct real_format
*fmt
,
3881 long *, const REAL_VALUE_TYPE
*);
3882 static void decode_vax_g (const struct real_format
*,
3883 REAL_VALUE_TYPE
*, const long *);
3886 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3887 const REAL_VALUE_TYPE
*r
)
3889 unsigned long sign
, exp
, sig
, image
;
3891 sign
= r
->sign
<< 15;
3901 image
= 0xffff7fff | sign
;
3905 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3906 exp
= REAL_EXP (r
) + 128;
3908 image
= (sig
<< 16) & 0xffff0000;
3922 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3923 REAL_VALUE_TYPE
*r
, const long *buf
)
3925 unsigned long image
= buf
[0] & 0xffffffff;
3926 int exp
= (image
>> 7) & 0xff;
3928 memset (r
, 0, sizeof (*r
));
3933 r
->sign
= (image
>> 15) & 1;
3934 SET_REAL_EXP (r
, exp
- 128);
3936 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3937 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3942 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3943 const REAL_VALUE_TYPE
*r
)
3945 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3950 image0
= image1
= 0;
3955 image0
= 0xffff7fff | sign
;
3956 image1
= 0xffffffff;
3960 /* Extract the significand into straight hi:lo. */
3961 if (HOST_BITS_PER_LONG
== 64)
3963 image0
= r
->sig
[SIGSZ
-1];
3964 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3965 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3969 image0
= r
->sig
[SIGSZ
-1];
3970 image1
= r
->sig
[SIGSZ
-2];
3971 image1
= (image0
<< 24) | (image1
>> 8);
3972 image0
= (image0
>> 8) & 0xffffff;
3975 /* Rearrange the half-words of the significand to match the
3977 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3978 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3980 /* Add the sign and exponent. */
3982 image0
|= (REAL_EXP (r
) + 128) << 7;
3989 if (FLOAT_WORDS_BIG_ENDIAN
)
3990 buf
[0] = image1
, buf
[1] = image0
;
3992 buf
[0] = image0
, buf
[1] = image1
;
3996 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3997 REAL_VALUE_TYPE
*r
, const long *buf
)
3999 unsigned long image0
, image1
;
4002 if (FLOAT_WORDS_BIG_ENDIAN
)
4003 image1
= buf
[0], image0
= buf
[1];
4005 image0
= buf
[0], image1
= buf
[1];
4006 image0
&= 0xffffffff;
4007 image1
&= 0xffffffff;
4009 exp
= (image0
>> 7) & 0xff;
4011 memset (r
, 0, sizeof (*r
));
4016 r
->sign
= (image0
>> 15) & 1;
4017 SET_REAL_EXP (r
, exp
- 128);
4019 /* Rearrange the half-words of the external format into
4020 proper ascending order. */
4021 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
4022 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4024 if (HOST_BITS_PER_LONG
== 64)
4026 image0
= (image0
<< 31 << 1) | image1
;
4029 r
->sig
[SIGSZ
-1] = image0
;
4033 r
->sig
[SIGSZ
-1] = image0
;
4034 r
->sig
[SIGSZ
-2] = image1
;
4035 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
4036 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4042 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4043 const REAL_VALUE_TYPE
*r
)
4045 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
4050 image0
= image1
= 0;
4055 image0
= 0xffff7fff | sign
;
4056 image1
= 0xffffffff;
4060 /* Extract the significand into straight hi:lo. */
4061 if (HOST_BITS_PER_LONG
== 64)
4063 image0
= r
->sig
[SIGSZ
-1];
4064 image1
= (image0
>> (64 - 53)) & 0xffffffff;
4065 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
4069 image0
= r
->sig
[SIGSZ
-1];
4070 image1
= r
->sig
[SIGSZ
-2];
4071 image1
= (image0
<< 21) | (image1
>> 11);
4072 image0
= (image0
>> 11) & 0xfffff;
4075 /* Rearrange the half-words of the significand to match the
4077 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
4078 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
4080 /* Add the sign and exponent. */
4082 image0
|= (REAL_EXP (r
) + 1024) << 4;
4089 if (FLOAT_WORDS_BIG_ENDIAN
)
4090 buf
[0] = image1
, buf
[1] = image0
;
4092 buf
[0] = image0
, buf
[1] = image1
;
4096 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4097 REAL_VALUE_TYPE
*r
, const long *buf
)
4099 unsigned long image0
, image1
;
4102 if (FLOAT_WORDS_BIG_ENDIAN
)
4103 image1
= buf
[0], image0
= buf
[1];
4105 image0
= buf
[0], image1
= buf
[1];
4106 image0
&= 0xffffffff;
4107 image1
&= 0xffffffff;
4109 exp
= (image0
>> 4) & 0x7ff;
4111 memset (r
, 0, sizeof (*r
));
4116 r
->sign
= (image0
>> 15) & 1;
4117 SET_REAL_EXP (r
, exp
- 1024);
4119 /* Rearrange the half-words of the external format into
4120 proper ascending order. */
4121 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
4122 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
4124 if (HOST_BITS_PER_LONG
== 64)
4126 image0
= (image0
<< 31 << 1) | image1
;
4129 r
->sig
[SIGSZ
-1] = image0
;
4133 r
->sig
[SIGSZ
-1] = image0
;
4134 r
->sig
[SIGSZ
-2] = image1
;
4135 lshift_significand (r
, r
, 64 - 53);
4136 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
4141 const struct real_format vax_f_format
=
4161 const struct real_format vax_d_format
=
4181 const struct real_format vax_g_format
=
4201 /* A good reference for these can be found in chapter 9 of
4202 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4203 An on-line version can be found here:
4205 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4208 static void encode_i370_single (const struct real_format
*fmt
,
4209 long *, const REAL_VALUE_TYPE
*);
4210 static void decode_i370_single (const struct real_format
*,
4211 REAL_VALUE_TYPE
*, const long *);
4212 static void encode_i370_double (const struct real_format
*fmt
,
4213 long *, const REAL_VALUE_TYPE
*);
4214 static void decode_i370_double (const struct real_format
*,
4215 REAL_VALUE_TYPE
*, const long *);
4218 encode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4219 long *buf
, const REAL_VALUE_TYPE
*r
)
4221 unsigned long sign
, exp
, sig
, image
;
4223 sign
= r
->sign
<< 31;
4233 image
= 0x7fffffff | sign
;
4237 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0xffffff;
4238 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4239 image
= sign
| exp
| sig
;
4250 decode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4251 REAL_VALUE_TYPE
*r
, const long *buf
)
4253 unsigned long sign
, sig
, image
= buf
[0];
4256 sign
= (image
>> 31) & 1;
4257 exp
= (image
>> 24) & 0x7f;
4258 sig
= image
& 0xffffff;
4260 memset (r
, 0, sizeof (*r
));
4266 SET_REAL_EXP (r
, (exp
- 64) * 4);
4267 r
->sig
[SIGSZ
-1] = sig
<< (HOST_BITS_PER_LONG
- 24);
4273 encode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4274 long *buf
, const REAL_VALUE_TYPE
*r
)
4276 unsigned long sign
, exp
, image_hi
, image_lo
;
4278 sign
= r
->sign
<< 31;
4283 image_hi
= image_lo
= 0;
4288 image_hi
= 0x7fffffff | sign
;
4289 image_lo
= 0xffffffff;
4293 if (HOST_BITS_PER_LONG
== 64)
4295 image_hi
= r
->sig
[SIGSZ
-1];
4296 image_lo
= (image_hi
>> (64 - 56)) & 0xffffffff;
4297 image_hi
= (image_hi
>> (64 - 56 + 1) >> 31) & 0xffffff;
4301 image_hi
= r
->sig
[SIGSZ
-1];
4302 image_lo
= r
->sig
[SIGSZ
-2];
4303 image_lo
= (image_lo
>> 8) | (image_hi
<< 24);
4307 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4308 image_hi
|= sign
| exp
;
4315 if (FLOAT_WORDS_BIG_ENDIAN
)
4316 buf
[0] = image_hi
, buf
[1] = image_lo
;
4318 buf
[0] = image_lo
, buf
[1] = image_hi
;
4322 decode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4323 REAL_VALUE_TYPE
*r
, const long *buf
)
4325 unsigned long sign
, image_hi
, image_lo
;
4328 if (FLOAT_WORDS_BIG_ENDIAN
)
4329 image_hi
= buf
[0], image_lo
= buf
[1];
4331 image_lo
= buf
[0], image_hi
= buf
[1];
4333 sign
= (image_hi
>> 31) & 1;
4334 exp
= (image_hi
>> 24) & 0x7f;
4335 image_hi
&= 0xffffff;
4336 image_lo
&= 0xffffffff;
4338 memset (r
, 0, sizeof (*r
));
4340 if (exp
|| image_hi
|| image_lo
)
4344 SET_REAL_EXP (r
, (exp
- 64) * 4 + (SIGNIFICAND_BITS
- 56));
4346 if (HOST_BITS_PER_LONG
== 32)
4348 r
->sig
[0] = image_lo
;
4349 r
->sig
[1] = image_hi
;
4352 r
->sig
[0] = image_lo
| (image_hi
<< 31 << 1);
4358 const struct real_format i370_single_format
=
4372 false, /* ??? The encoding does allow for "unnormals". */
4373 false, /* ??? The encoding does allow for "unnormals". */
4378 const struct real_format i370_double_format
=
4392 false, /* ??? The encoding does allow for "unnormals". */
4393 false, /* ??? The encoding does allow for "unnormals". */
4398 /* Encode real R into a single precision DFP value in BUF. */
4400 encode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4401 long *buf ATTRIBUTE_UNUSED
,
4402 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4404 encode_decimal32 (fmt
, buf
, r
);
4407 /* Decode a single precision DFP value in BUF into a real R. */
4409 decode_decimal_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4410 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4411 const long *buf ATTRIBUTE_UNUSED
)
4413 decode_decimal32 (fmt
, r
, buf
);
4416 /* Encode real R into a double precision DFP value in BUF. */
4418 encode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4419 long *buf ATTRIBUTE_UNUSED
,
4420 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4422 encode_decimal64 (fmt
, buf
, r
);
4425 /* Decode a double precision DFP value in BUF into a real R. */
4427 decode_decimal_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4428 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4429 const long *buf ATTRIBUTE_UNUSED
)
4431 decode_decimal64 (fmt
, r
, buf
);
4434 /* Encode real R into a quad precision DFP value in BUF. */
4436 encode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4437 long *buf ATTRIBUTE_UNUSED
,
4438 const REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
)
4440 encode_decimal128 (fmt
, buf
, r
);
4443 /* Decode a quad precision DFP value in BUF into a real R. */
4445 decode_decimal_quad (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4446 REAL_VALUE_TYPE
*r ATTRIBUTE_UNUSED
,
4447 const long *buf ATTRIBUTE_UNUSED
)
4449 decode_decimal128 (fmt
, r
, buf
);
4452 /* Single precision decimal floating point (IEEE 754R). */
4453 const struct real_format decimal_single_format
=
4455 encode_decimal_single
,
4456 decode_decimal_single
,
4473 /* Double precision decimal floating point (IEEE 754R). */
4474 const struct real_format decimal_double_format
=
4476 encode_decimal_double
,
4477 decode_decimal_double
,
4494 /* Quad precision decimal floating point (IEEE 754R). */
4495 const struct real_format decimal_quad_format
=
4497 encode_decimal_quad
,
4498 decode_decimal_quad
,
4515 /* The "twos-complement" c4x format is officially defined as
4519 This is rather misleading. One must remember that F is signed.
4520 A better description would be
4522 x = -1**s * ((s + 1 + .f) * 2**e
4524 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4525 that's -1 * (1+1+(-.5)) == -1.5. I think.
4527 The constructions here are taken from Tables 5-1 and 5-2 of the
4528 TMS320C4x User's Guide wherein step-by-step instructions for
4529 conversion from IEEE are presented. That's close enough to our
4530 internal representation so as to make things easy.
4532 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4534 static void encode_c4x_single (const struct real_format
*fmt
,
4535 long *, const REAL_VALUE_TYPE
*);
4536 static void decode_c4x_single (const struct real_format
*,
4537 REAL_VALUE_TYPE
*, const long *);
4538 static void encode_c4x_extended (const struct real_format
*fmt
,
4539 long *, const REAL_VALUE_TYPE
*);
4540 static void decode_c4x_extended (const struct real_format
*,
4541 REAL_VALUE_TYPE
*, const long *);
4544 encode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4545 long *buf
, const REAL_VALUE_TYPE
*r
)
4547 unsigned long image
, exp
, sig
;
4559 sig
= 0x800000 - r
->sign
;
4563 exp
= REAL_EXP (r
) - 1;
4564 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4579 image
= ((exp
& 0xff) << 24) | (sig
& 0xffffff);
4584 decode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4585 REAL_VALUE_TYPE
*r
, const long *buf
)
4587 unsigned long image
= buf
[0];
4591 exp
= (((image
>> 24) & 0xff) ^ 0x80) - 0x80;
4592 sf
= ((image
& 0xffffff) ^ 0x800000) - 0x800000;
4594 memset (r
, 0, sizeof (*r
));
4600 sig
= sf
& 0x7fffff;
4609 sig
= (sig
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4611 SET_REAL_EXP (r
, exp
+ 1);
4612 r
->sig
[SIGSZ
-1] = sig
;
4617 encode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4618 long *buf
, const REAL_VALUE_TYPE
*r
)
4620 unsigned long exp
, sig
;
4632 sig
= 0x80000000 - r
->sign
;
4636 exp
= REAL_EXP (r
) - 1;
4638 sig
= r
->sig
[SIGSZ
-1];
4639 if (HOST_BITS_PER_LONG
== 64)
4640 sig
= sig
>> 1 >> 31;
4657 exp
= (exp
& 0xff) << 24;
4660 if (FLOAT_WORDS_BIG_ENDIAN
)
4661 buf
[0] = exp
, buf
[1] = sig
;
4663 buf
[0] = sig
, buf
[0] = exp
;
4667 decode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4668 REAL_VALUE_TYPE
*r
, const long *buf
)
4673 if (FLOAT_WORDS_BIG_ENDIAN
)
4674 exp
= buf
[0], sf
= buf
[1];
4676 sf
= buf
[0], exp
= buf
[1];
4678 exp
= (((exp
>> 24) & 0xff) & 0x80) - 0x80;
4679 sf
= ((sf
& 0xffffffff) ^ 0x80000000) - 0x80000000;
4681 memset (r
, 0, sizeof (*r
));
4687 sig
= sf
& 0x7fffffff;
4696 if (HOST_BITS_PER_LONG
== 64)
4697 sig
= sig
<< 1 << 31;
4700 SET_REAL_EXP (r
, exp
+ 1);
4701 r
->sig
[SIGSZ
-1] = sig
;
4705 const struct real_format c4x_single_format
=
4725 const struct real_format c4x_extended_format
=
4727 encode_c4x_extended
,
4728 decode_c4x_extended
,
4746 /* A synthetic "format" for internal arithmetic. It's the size of the
4747 internal significand minus the two bits needed for proper rounding.
4748 The encode and decode routines exist only to satisfy our paranoia
4751 static void encode_internal (const struct real_format
*fmt
,
4752 long *, const REAL_VALUE_TYPE
*);
4753 static void decode_internal (const struct real_format
*,
4754 REAL_VALUE_TYPE
*, const long *);
4757 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4758 const REAL_VALUE_TYPE
*r
)
4760 memcpy (buf
, r
, sizeof (*r
));
4764 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4765 REAL_VALUE_TYPE
*r
, const long *buf
)
4767 memcpy (r
, buf
, sizeof (*r
));
4770 const struct real_format real_internal_format
=
4776 SIGNIFICAND_BITS
- 2,
4777 SIGNIFICAND_BITS
- 2,
4790 /* Calculate the square root of X in mode MODE, and store the result
4791 in R. Return TRUE if the operation does not raise an exception.
4792 For details see "High Precision Division and Square Root",
4793 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4794 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4797 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4798 const REAL_VALUE_TYPE
*x
)
4800 static REAL_VALUE_TYPE halfthree
;
4801 static bool init
= false;
4802 REAL_VALUE_TYPE h
, t
, i
;
4805 /* sqrt(-0.0) is -0.0. */
4806 if (real_isnegzero (x
))
4812 /* Negative arguments return NaN. */
4815 get_canonical_qnan (r
, 0);
4819 /* Infinity and NaN return themselves. */
4820 if (real_isinf (x
) || real_isnan (x
))
4828 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4832 /* Initial guess for reciprocal sqrt, i. */
4833 exp
= real_exponent (x
);
4834 real_ldexp (&i
, &dconst1
, -exp
/2);
4836 /* Newton's iteration for reciprocal sqrt, i. */
4837 for (iter
= 0; iter
< 16; iter
++)
4839 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4840 do_multiply (&t
, x
, &i
);
4841 do_multiply (&h
, &t
, &i
);
4842 do_multiply (&t
, &h
, &dconsthalf
);
4843 do_add (&h
, &halfthree
, &t
, 1);
4844 do_multiply (&t
, &i
, &h
);
4846 /* Check for early convergence. */
4847 if (iter
>= 6 && real_identical (&i
, &t
))
4850 /* ??? Unroll loop to avoid copying. */
4854 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4855 do_multiply (&t
, x
, &i
);
4856 do_multiply (&h
, &t
, &i
);
4857 do_add (&i
, &dconst1
, &h
, 1);
4858 do_multiply (&h
, &t
, &i
);
4859 do_multiply (&i
, &dconsthalf
, &h
);
4860 do_add (&h
, &t
, &i
, 0);
4862 /* ??? We need a Tuckerman test to get the last bit. */
4864 real_convert (r
, mode
, &h
);
4868 /* Calculate X raised to the integer exponent N in mode MODE and store
4869 the result in R. Return true if the result may be inexact due to
4870 loss of precision. The algorithm is the classic "left-to-right binary
4871 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4872 Algorithms", "The Art of Computer Programming", Volume 2. */
4875 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4876 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4878 unsigned HOST_WIDE_INT bit
;
4880 bool inexact
= false;
4892 /* Don't worry about overflow, from now on n is unsigned. */
4900 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4901 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4905 inexact
|= do_multiply (&t
, &t
, &t
);
4907 inexact
|= do_multiply (&t
, &t
, x
);
4915 inexact
|= do_divide (&t
, &dconst1
, &t
);
4917 real_convert (r
, mode
, &t
);
4921 /* Round X to the nearest integer not larger in absolute value, i.e.
4922 towards zero, placing the result in R in mode MODE. */
4925 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4926 const REAL_VALUE_TYPE
*x
)
4928 do_fix_trunc (r
, x
);
4929 if (mode
!= VOIDmode
)
4930 real_convert (r
, mode
, r
);
4933 /* Round X to the largest integer not greater in value, i.e. round
4934 down, placing the result in R in mode MODE. */
4937 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4938 const REAL_VALUE_TYPE
*x
)
4942 do_fix_trunc (&t
, x
);
4943 if (! real_identical (&t
, x
) && x
->sign
)
4944 do_add (&t
, &t
, &dconstm1
, 0);
4945 if (mode
!= VOIDmode
)
4946 real_convert (r
, mode
, &t
);
4951 /* Round X to the smallest integer not less then argument, i.e. round
4952 up, placing the result in R in mode MODE. */
4955 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4956 const REAL_VALUE_TYPE
*x
)
4960 do_fix_trunc (&t
, x
);
4961 if (! real_identical (&t
, x
) && ! x
->sign
)
4962 do_add (&t
, &t
, &dconst1
, 0);
4963 if (mode
!= VOIDmode
)
4964 real_convert (r
, mode
, &t
);
4969 /* Round X to the nearest integer, but round halfway cases away from
4973 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4974 const REAL_VALUE_TYPE
*x
)
4976 do_add (r
, x
, &dconsthalf
, x
->sign
);
4977 do_fix_trunc (r
, r
);
4978 if (mode
!= VOIDmode
)
4979 real_convert (r
, mode
, r
);
4982 /* Set the sign of R to the sign of X. */
4985 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)
4990 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4991 for initializing and clearing the MPFR parameter. */
4994 mpfr_from_real (mpfr_ptr m
, const REAL_VALUE_TYPE
*r
)
4996 /* We use a string as an intermediate type. */
5000 real_to_hexadecimal (buf
, r
, sizeof (buf
), 0, 1);
5001 /* mpfr_set_str() parses hexadecimal floats from strings in the same
5002 format that GCC will output them. Nothing extra is needed. */
5003 ret
= mpfr_set_str (m
, buf
, 16, GMP_RNDN
);
5004 gcc_assert (ret
== 0);
5007 /* Convert from MPFR to REAL_VALUE_TYPE. */
5010 real_from_mpfr (REAL_VALUE_TYPE
*r
, mpfr_srcptr m
)
5012 /* We use a string as an intermediate type. */
5013 char buf
[128], *rstr
;
5016 rstr
= mpfr_get_str (NULL
, &exp
, 16, 0, m
, GMP_RNDN
);
5018 /* The additional 12 chars add space for the sprintf below. This
5019 leaves 6 digits for the exponent which is supposedly enough. */
5020 gcc_assert (rstr
!= NULL
&& strlen (rstr
) < sizeof (buf
) - 12);
5022 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
5023 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
5028 sprintf (buf
, "-0x.%sp%d", &rstr
[1], (int) exp
);
5030 sprintf (buf
, "0x.%sp%d", rstr
, (int) exp
);
5032 mpfr_free_str (rstr
);
5034 real_from_string (r
, buf
);
5037 /* Check whether the real constant value given is an integer. */
5040 real_isinteger (const REAL_VALUE_TYPE
*c
, enum machine_mode mode
)
5042 REAL_VALUE_TYPE cint
;
5044 real_trunc (&cint
, mode
, c
);
5045 return real_identical (c
, &cint
);