1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
38 #include "coretypes.h"
41 #include "hard-reg-set.h"
43 #include "basic-block.h"
45 #include "et-forest.h"
48 /* Whether the dominators and the postdominators are available. */
49 enum dom_state dom_computed
[2];
51 /* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55 support multiple entry points. Its dfs number is of course 1. */
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB
;
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
67 /* The parent of a node in the DFS tree. */
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
78 /* And next_bucket[x] points to the next node. */
80 /* After the algorithm is done, dom[x] contains the immediate dominator
84 /* The following few fields implement the structures needed for disjoint
86 /* set_chain[x] is the next node on the path from x to the representant
87 of the set containing x. If set_chain[x]==0 then x is a root. */
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size
;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
99 /* If x is the DFS-index of a node which corresponds with a basic block,
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block
*dfs_to_bb
;
105 /* This is the next free DFS number when creating the DFS tree. */
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge
;
115 static void init_dom_info (struct dom_info
*, enum cdi_direction
);
116 static void free_dom_info (struct dom_info
*);
117 static void calc_dfs_tree_nonrec (struct dom_info
*, basic_block
,
119 static void calc_dfs_tree (struct dom_info
*, enum cdi_direction
);
120 static void compress (struct dom_info
*, TBB
);
121 static TBB
eval (struct dom_info
*, TBB
);
122 static void link_roots (struct dom_info
*, TBB
, TBB
);
123 static void calc_idoms (struct dom_info
*, enum cdi_direction
);
124 void debug_dominance_info (enum cdi_direction
);
126 /* Keeps track of the*/
127 static unsigned n_bbs_in_dom_tree
[2];
129 /* Helper macro for allocating and initializing an array,
130 for aesthetic reasons. */
131 #define init_ar(var, type, num, content) \
134 unsigned int i = 1; /* Catch content == i. */ \
136 (var) = XCNEWVEC (type, num); \
139 (var) = XNEWVEC (type, (num)); \
140 for (i = 0; i < num; i++) \
141 (var)[i] = (content); \
146 /* Allocate all needed memory in a pessimistic fashion (so we round up).
147 This initializes the contents of DI, which already must be allocated. */
150 init_dom_info (struct dom_info
*di
, enum cdi_direction dir
)
152 unsigned int num
= n_basic_blocks
;
153 init_ar (di
->dfs_parent
, TBB
, num
, 0);
154 init_ar (di
->path_min
, TBB
, num
, i
);
155 init_ar (di
->key
, TBB
, num
, i
);
156 init_ar (di
->dom
, TBB
, num
, 0);
158 init_ar (di
->bucket
, TBB
, num
, 0);
159 init_ar (di
->next_bucket
, TBB
, num
, 0);
161 init_ar (di
->set_chain
, TBB
, num
, 0);
162 init_ar (di
->set_size
, unsigned int, num
, 1);
163 init_ar (di
->set_child
, TBB
, num
, 0);
165 init_ar (di
->dfs_order
, TBB
, (unsigned int) last_basic_block
+ 1, 0);
166 init_ar (di
->dfs_to_bb
, basic_block
, num
, 0);
171 di
->fake_exit_edge
= dir
? BITMAP_ALLOC (NULL
) : NULL
;
176 /* Free all allocated memory in DI, but not DI itself. */
179 free_dom_info (struct dom_info
*di
)
181 free (di
->dfs_parent
);
186 free (di
->next_bucket
);
187 free (di
->set_chain
);
189 free (di
->set_child
);
190 free (di
->dfs_order
);
191 free (di
->dfs_to_bb
);
192 BITMAP_FREE (di
->fake_exit_edge
);
195 /* The nonrecursive variant of creating a DFS tree. DI is our working
196 structure, BB the starting basic block for this tree and REVERSE
197 is true, if predecessors should be visited instead of successors of a
198 node. After this is done all nodes reachable from BB were visited, have
199 assigned their dfs number and are linked together to form a tree. */
202 calc_dfs_tree_nonrec (struct dom_info
*di
, basic_block bb
,
203 enum cdi_direction reverse
)
205 /* We call this _only_ if bb is not already visited. */
207 TBB child_i
, my_i
= 0;
208 edge_iterator
*stack
;
209 edge_iterator ei
, einext
;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
213 basic_block en_block
;
215 basic_block ex_block
;
217 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
220 /* Initialize our border blocks, and the first edge. */
223 ei
= ei_start (bb
->preds
);
224 en_block
= EXIT_BLOCK_PTR
;
225 ex_block
= ENTRY_BLOCK_PTR
;
229 ei
= ei_start (bb
->succs
);
230 en_block
= ENTRY_BLOCK_PTR
;
231 ex_block
= EXIT_BLOCK_PTR
;
234 /* When the stack is empty we break out of this loop. */
239 /* This loop traverses edges e in depth first manner, and fills the
241 while (!ei_end_p (ei
))
245 /* Deduce from E the current and the next block (BB and BN), and the
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
254 if (bn
== ex_block
|| di
->dfs_order
[bn
->index
])
260 einext
= ei_start (bn
->preds
);
265 if (bn
== ex_block
|| di
->dfs_order
[bn
->index
])
271 einext
= ei_start (bn
->succs
);
274 gcc_assert (bn
!= en_block
);
276 /* Fill the DFS tree info calculatable _before_ recursing. */
278 my_i
= di
->dfs_order
[bb
->index
];
280 my_i
= di
->dfs_order
[last_basic_block
];
281 child_i
= di
->dfs_order
[bn
->index
] = di
->dfsnum
++;
282 di
->dfs_to_bb
[child_i
] = bn
;
283 di
->dfs_parent
[child_i
] = my_i
;
285 /* Save the current point in the CFG on the stack, and recurse. */
294 /* OK. The edge-list was exhausted, meaning normally we would
295 end the recursion. After returning from the recursive call,
296 there were (may be) other statements which were run after a
297 child node was completely considered by DFS. Here is the
298 point to do it in the non-recursive variant.
299 E.g. The block just completed is in e->dest for forward DFS,
300 the block not yet completed (the parent of the one above)
301 in e->src. This could be used e.g. for computing the number of
302 descendants or the tree depth. */
308 /* The main entry for calculating the DFS tree or forest. DI is our working
309 structure and REVERSE is true, if we are interested in the reverse flow
310 graph. In that case the result is not necessarily a tree but a forest,
311 because there may be nodes from which the EXIT_BLOCK is unreachable. */
314 calc_dfs_tree (struct dom_info
*di
, enum cdi_direction reverse
)
316 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
317 basic_block begin
= reverse
? EXIT_BLOCK_PTR
: ENTRY_BLOCK_PTR
;
318 di
->dfs_order
[last_basic_block
] = di
->dfsnum
;
319 di
->dfs_to_bb
[di
->dfsnum
] = begin
;
322 calc_dfs_tree_nonrec (di
, begin
, reverse
);
326 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
327 They are reverse-unreachable. In the dom-case we disallow such
328 nodes, but in post-dom we have to deal with them.
330 There are two situations in which this occurs. First, noreturn
331 functions. Second, infinite loops. In the first case we need to
332 pretend that there is an edge to the exit block. In the second
333 case, we wind up with a forest. We need to process all noreturn
334 blocks before we know if we've got any infinite loops. */
337 bool saw_unconnected
= false;
339 FOR_EACH_BB_REVERSE (b
)
341 if (EDGE_COUNT (b
->succs
) > 0)
343 if (di
->dfs_order
[b
->index
] == 0)
344 saw_unconnected
= true;
347 bitmap_set_bit (di
->fake_exit_edge
, b
->index
);
348 di
->dfs_order
[b
->index
] = di
->dfsnum
;
349 di
->dfs_to_bb
[di
->dfsnum
] = b
;
350 di
->dfs_parent
[di
->dfsnum
] = di
->dfs_order
[last_basic_block
];
352 calc_dfs_tree_nonrec (di
, b
, reverse
);
357 FOR_EACH_BB_REVERSE (b
)
359 if (di
->dfs_order
[b
->index
])
361 bitmap_set_bit (di
->fake_exit_edge
, b
->index
);
362 di
->dfs_order
[b
->index
] = di
->dfsnum
;
363 di
->dfs_to_bb
[di
->dfsnum
] = b
;
364 di
->dfs_parent
[di
->dfsnum
] = di
->dfs_order
[last_basic_block
];
366 calc_dfs_tree_nonrec (di
, b
, reverse
);
371 di
->nodes
= di
->dfsnum
- 1;
373 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
374 gcc_assert (di
->nodes
== (unsigned int) n_basic_blocks
- 1);
377 /* Compress the path from V to the root of its set and update path_min at the
378 same time. After compress(di, V) set_chain[V] is the root of the set V is
379 in and path_min[V] is the node with the smallest key[] value on the path
380 from V to that root. */
383 compress (struct dom_info
*di
, TBB v
)
385 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
386 greater than 5 even for huge graphs (I've not seen call depth > 4).
387 Also performance wise compress() ranges _far_ behind eval(). */
388 TBB parent
= di
->set_chain
[v
];
389 if (di
->set_chain
[parent
])
391 compress (di
, parent
);
392 if (di
->key
[di
->path_min
[parent
]] < di
->key
[di
->path_min
[v
]])
393 di
->path_min
[v
] = di
->path_min
[parent
];
394 di
->set_chain
[v
] = di
->set_chain
[parent
];
398 /* Compress the path from V to the set root of V if needed (when the root has
399 changed since the last call). Returns the node with the smallest key[]
400 value on the path from V to the root. */
403 eval (struct dom_info
*di
, TBB v
)
405 /* The representant of the set V is in, also called root (as the set
406 representation is a tree). */
407 TBB rep
= di
->set_chain
[v
];
409 /* V itself is the root. */
411 return di
->path_min
[v
];
413 /* Compress only if necessary. */
414 if (di
->set_chain
[rep
])
417 rep
= di
->set_chain
[v
];
420 if (di
->key
[di
->path_min
[rep
]] >= di
->key
[di
->path_min
[v
]])
421 return di
->path_min
[v
];
423 return di
->path_min
[rep
];
426 /* This essentially merges the two sets of V and W, giving a single set with
427 the new root V. The internal representation of these disjoint sets is a
428 balanced tree. Currently link(V,W) is only used with V being the parent
432 link_roots (struct dom_info
*di
, TBB v
, TBB w
)
436 /* Rebalance the tree. */
437 while (di
->key
[di
->path_min
[w
]] < di
->key
[di
->path_min
[di
->set_child
[s
]]])
439 if (di
->set_size
[s
] + di
->set_size
[di
->set_child
[di
->set_child
[s
]]]
440 >= 2 * di
->set_size
[di
->set_child
[s
]])
442 di
->set_chain
[di
->set_child
[s
]] = s
;
443 di
->set_child
[s
] = di
->set_child
[di
->set_child
[s
]];
447 di
->set_size
[di
->set_child
[s
]] = di
->set_size
[s
];
448 s
= di
->set_chain
[s
] = di
->set_child
[s
];
452 di
->path_min
[s
] = di
->path_min
[w
];
453 di
->set_size
[v
] += di
->set_size
[w
];
454 if (di
->set_size
[v
] < 2 * di
->set_size
[w
])
457 s
= di
->set_child
[v
];
458 di
->set_child
[v
] = tmp
;
461 /* Merge all subtrees. */
464 di
->set_chain
[s
] = v
;
465 s
= di
->set_child
[s
];
469 /* This calculates the immediate dominators (or post-dominators if REVERSE is
470 true). DI is our working structure and should hold the DFS forest.
471 On return the immediate dominator to node V is in di->dom[V]. */
474 calc_idoms (struct dom_info
*di
, enum cdi_direction reverse
)
477 basic_block en_block
;
478 edge_iterator ei
, einext
;
481 en_block
= EXIT_BLOCK_PTR
;
483 en_block
= ENTRY_BLOCK_PTR
;
485 /* Go backwards in DFS order, to first look at the leafs. */
489 basic_block bb
= di
->dfs_to_bb
[v
];
492 par
= di
->dfs_parent
[v
];
495 ei
= (reverse
) ? ei_start (bb
->succs
) : ei_start (bb
->preds
);
499 /* If this block has a fake edge to exit, process that first. */
500 if (bitmap_bit_p (di
->fake_exit_edge
, bb
->index
))
504 goto do_fake_exit_edge
;
508 /* Search all direct predecessors for the smallest node with a path
509 to them. That way we have the smallest node with also a path to
510 us only over nodes behind us. In effect we search for our
512 while (!ei_end_p (ei
))
518 b
= (reverse
) ? e
->dest
: e
->src
;
525 k1
= di
->dfs_order
[last_basic_block
];
528 k1
= di
->dfs_order
[b
->index
];
530 /* Call eval() only if really needed. If k1 is above V in DFS tree,
531 then we know, that eval(k1) == k1 and key[k1] == k1. */
533 k1
= di
->key
[eval (di
, k1
)];
541 link_roots (di
, par
, v
);
542 di
->next_bucket
[v
] = di
->bucket
[k
];
545 /* Transform semidominators into dominators. */
546 for (w
= di
->bucket
[par
]; w
; w
= di
->next_bucket
[w
])
549 if (di
->key
[k
] < di
->key
[w
])
554 /* We don't need to cleanup next_bucket[]. */
559 /* Explicitly define the dominators. */
561 for (v
= 2; v
<= di
->nodes
; v
++)
562 if (di
->dom
[v
] != di
->key
[v
])
563 di
->dom
[v
] = di
->dom
[di
->dom
[v
]];
566 /* Assign dfs numbers starting from NUM to NODE and its sons. */
569 assign_dfs_numbers (struct et_node
*node
, int *num
)
573 node
->dfs_num_in
= (*num
)++;
577 assign_dfs_numbers (node
->son
, num
);
578 for (son
= node
->son
->right
; son
!= node
->son
; son
= son
->right
)
579 assign_dfs_numbers (son
, num
);
582 node
->dfs_num_out
= (*num
)++;
585 /* Compute the data necessary for fast resolving of dominator queries in a
586 static dominator tree. */
589 compute_dom_fast_query (enum cdi_direction dir
)
594 gcc_assert (dom_info_available_p (dir
));
596 if (dom_computed
[dir
] == DOM_OK
)
601 if (!bb
->dom
[dir
]->father
)
602 assign_dfs_numbers (bb
->dom
[dir
], &num
);
605 dom_computed
[dir
] = DOM_OK
;
608 /* The main entry point into this module. DIR is set depending on whether
609 we want to compute dominators or postdominators. */
612 calculate_dominance_info (enum cdi_direction dir
)
617 if (dom_computed
[dir
] == DOM_OK
)
620 timevar_push (TV_DOMINANCE
);
621 if (!dom_info_available_p (dir
))
623 gcc_assert (!n_bbs_in_dom_tree
[dir
]);
627 b
->dom
[dir
] = et_new_tree (b
);
629 n_bbs_in_dom_tree
[dir
] = n_basic_blocks
;
631 init_dom_info (&di
, dir
);
632 calc_dfs_tree (&di
, dir
);
633 calc_idoms (&di
, dir
);
637 TBB d
= di
.dom
[di
.dfs_order
[b
->index
]];
640 et_set_father (b
->dom
[dir
], di
.dfs_to_bb
[d
]->dom
[dir
]);
644 dom_computed
[dir
] = DOM_NO_FAST_QUERY
;
647 compute_dom_fast_query (dir
);
649 timevar_pop (TV_DOMINANCE
);
652 /* Free dominance information for direction DIR. */
654 free_dominance_info (enum cdi_direction dir
)
658 if (!dom_info_available_p (dir
))
663 et_free_tree_force (bb
->dom
[dir
]);
668 n_bbs_in_dom_tree
[dir
] = 0;
670 dom_computed
[dir
] = DOM_NONE
;
673 /* Return the immediate dominator of basic block BB. */
675 get_immediate_dominator (enum cdi_direction dir
, basic_block bb
)
677 struct et_node
*node
= bb
->dom
[dir
];
679 gcc_assert (dom_computed
[dir
]);
684 return node
->father
->data
;
687 /* Set the immediate dominator of the block possibly removing
688 existing edge. NULL can be used to remove any edge. */
690 set_immediate_dominator (enum cdi_direction dir
, basic_block bb
,
691 basic_block dominated_by
)
693 struct et_node
*node
= bb
->dom
[dir
];
695 gcc_assert (dom_computed
[dir
]);
699 if (node
->father
->data
== dominated_by
)
705 et_set_father (node
, dominated_by
->dom
[dir
]);
707 if (dom_computed
[dir
] == DOM_OK
)
708 dom_computed
[dir
] = DOM_NO_FAST_QUERY
;
711 /* Store all basic blocks immediately dominated by BB into BBS and return
714 get_dominated_by (enum cdi_direction dir
, basic_block bb
, basic_block
**bbs
)
717 struct et_node
*node
= bb
->dom
[dir
], *son
= node
->son
, *ason
;
719 gcc_assert (dom_computed
[dir
]);
727 for (ason
= son
->right
, n
= 1; ason
!= son
; ason
= ason
->right
)
730 *bbs
= XNEWVEC (basic_block
, n
);
731 (*bbs
)[0] = son
->data
;
732 for (ason
= son
->right
, n
= 1; ason
!= son
; ason
= ason
->right
)
733 (*bbs
)[n
++] = ason
->data
;
738 /* Find all basic blocks that are immediately dominated (in direction DIR)
739 by some block between N_REGION ones stored in REGION, except for blocks
740 in the REGION itself. The found blocks are stored to DOMS and their number
744 get_dominated_by_region (enum cdi_direction dir
, basic_block
*region
,
745 unsigned n_region
, basic_block
*doms
)
747 unsigned n_doms
= 0, i
;
750 for (i
= 0; i
< n_region
; i
++)
751 region
[i
]->flags
|= BB_DUPLICATED
;
752 for (i
= 0; i
< n_region
; i
++)
753 for (dom
= first_dom_son (dir
, region
[i
]);
755 dom
= next_dom_son (dir
, dom
))
756 if (!(dom
->flags
& BB_DUPLICATED
))
757 doms
[n_doms
++] = dom
;
758 for (i
= 0; i
< n_region
; i
++)
759 region
[i
]->flags
&= ~BB_DUPLICATED
;
764 /* Redirect all edges pointing to BB to TO. */
766 redirect_immediate_dominators (enum cdi_direction dir
, basic_block bb
,
769 struct et_node
*bb_node
= bb
->dom
[dir
], *to_node
= to
->dom
[dir
], *son
;
771 gcc_assert (dom_computed
[dir
]);
781 et_set_father (son
, to_node
);
784 if (dom_computed
[dir
] == DOM_OK
)
785 dom_computed
[dir
] = DOM_NO_FAST_QUERY
;
788 /* Find first basic block in the tree dominating both BB1 and BB2. */
790 nearest_common_dominator (enum cdi_direction dir
, basic_block bb1
, basic_block bb2
)
792 gcc_assert (dom_computed
[dir
]);
799 return et_nca (bb1
->dom
[dir
], bb2
->dom
[dir
])->data
;
803 /* Find the nearest common dominator for the basic blocks in BLOCKS,
804 using dominance direction DIR. */
807 nearest_common_dominator_for_set (enum cdi_direction dir
, bitmap blocks
)
813 first
= bitmap_first_set_bit (blocks
);
814 dom
= BASIC_BLOCK (first
);
815 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
816 if (dom
!= BASIC_BLOCK (i
))
817 dom
= nearest_common_dominator (dir
, dom
, BASIC_BLOCK (i
));
822 /* Given a dominator tree, we can determine whether one thing
823 dominates another in constant time by using two DFS numbers:
825 1. The number for when we visit a node on the way down the tree
826 2. The number for when we visit a node on the way back up the tree
828 You can view these as bounds for the range of dfs numbers the
829 nodes in the subtree of the dominator tree rooted at that node
832 The dominator tree is always a simple acyclic tree, so there are
833 only three possible relations two nodes in the dominator tree have
836 1. Node A is above Node B (and thus, Node A dominates node B)
845 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
846 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
847 because we must hit A in the dominator tree *before* B on the walk
848 down, and we will hit A *after* B on the walk back up
850 2. Node A is below node B (and thus, node B dominates node A)
859 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
860 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
862 This is because we must hit A in the dominator tree *after* B on
863 the walk down, and we will hit A *before* B on the walk back up
865 3. Node A and B are siblings (and thus, neither dominates the other)
873 In the above case, DFS_Number_In of A will *always* be <=
874 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
875 DFS_Number_Out of B. This is because we will always finish the dfs
876 walk of one of the subtrees before the other, and thus, the dfs
877 numbers for one subtree can't intersect with the range of dfs
878 numbers for the other subtree. If you swap A and B's position in
879 the dominator tree, the comparison changes direction, but the point
880 is that both comparisons will always go the same way if there is no
881 dominance relationship.
883 Thus, it is sufficient to write
885 A_Dominates_B (node A, node B)
887 return DFS_Number_In(A) <= DFS_Number_In(B)
888 && DFS_Number_Out (A) >= DFS_Number_Out(B);
891 A_Dominated_by_B (node A, node B)
893 return DFS_Number_In(A) >= DFS_Number_In(A)
894 && DFS_Number_Out (A) <= DFS_Number_Out(B);
897 /* Return TRUE in case BB1 is dominated by BB2. */
899 dominated_by_p (enum cdi_direction dir
, basic_block bb1
, basic_block bb2
)
901 struct et_node
*n1
= bb1
->dom
[dir
], *n2
= bb2
->dom
[dir
];
903 gcc_assert (dom_computed
[dir
]);
905 if (dom_computed
[dir
] == DOM_OK
)
906 return (n1
->dfs_num_in
>= n2
->dfs_num_in
907 && n1
->dfs_num_out
<= n2
->dfs_num_out
);
909 return et_below (n1
, n2
);
912 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
915 bb_dom_dfs_in (enum cdi_direction dir
, basic_block bb
)
917 struct et_node
*n
= bb
->dom
[dir
];
919 gcc_assert (dom_computed
[dir
] == DOM_OK
);
920 return n
->dfs_num_in
;
923 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
926 bb_dom_dfs_out (enum cdi_direction dir
, basic_block bb
)
928 struct et_node
*n
= bb
->dom
[dir
];
930 gcc_assert (dom_computed
[dir
] == DOM_OK
);
931 return n
->dfs_num_out
;
934 /* Verify invariants of dominator structure. */
936 verify_dominators (enum cdi_direction dir
)
941 gcc_assert (dom_info_available_p (dir
));
948 dom_bb
= recount_dominator (dir
, bb
);
949 imm_bb
= get_immediate_dominator (dir
, bb
);
950 if (dom_bb
!= imm_bb
)
952 if ((dom_bb
== NULL
) || (imm_bb
== NULL
))
953 error ("dominator of %d status unknown", bb
->index
);
955 error ("dominator of %d should be %d, not %d",
956 bb
->index
, dom_bb
->index
, imm_bb
->index
);
961 if (dir
== CDI_DOMINATORS
)
965 if (!dominated_by_p (dir
, bb
, ENTRY_BLOCK_PTR
))
967 error ("ENTRY does not dominate bb %d", bb
->index
);
976 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
977 assuming that dominators of other blocks are correct. We also use it to
978 recompute the dominators in a restricted area, by iterating it until it
979 reaches a fixed point. */
982 recount_dominator (enum cdi_direction dir
, basic_block bb
)
984 basic_block dom_bb
= NULL
;
988 gcc_assert (dom_computed
[dir
]);
990 if (dir
== CDI_DOMINATORS
)
992 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
994 /* Ignore the predecessors that either are not reachable from
995 the entry block, or whose dominator was not determined yet. */
996 if (!dominated_by_p (dir
, e
->src
, ENTRY_BLOCK_PTR
))
999 if (!dominated_by_p (dir
, e
->src
, bb
))
1000 dom_bb
= nearest_common_dominator (dir
, dom_bb
, e
->src
);
1005 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1007 if (!dominated_by_p (dir
, e
->dest
, bb
))
1008 dom_bb
= nearest_common_dominator (dir
, dom_bb
, e
->dest
);
1015 /* Iteratively recount dominators of BBS. The change is supposed to be local
1016 and not to grow further. */
1018 iterate_fix_dominators (enum cdi_direction dir
, basic_block
*bbs
, int n
)
1021 basic_block old_dom
, new_dom
;
1023 gcc_assert (dom_computed
[dir
]);
1025 for (i
= 0; i
< n
; i
++)
1026 set_immediate_dominator (dir
, bbs
[i
], NULL
);
1031 for (i
= 0; i
< n
; i
++)
1033 old_dom
= get_immediate_dominator (dir
, bbs
[i
]);
1034 new_dom
= recount_dominator (dir
, bbs
[i
]);
1035 if (old_dom
!= new_dom
)
1038 set_immediate_dominator (dir
, bbs
[i
], new_dom
);
1043 for (i
= 0; i
< n
; i
++)
1044 gcc_assert (get_immediate_dominator (dir
, bbs
[i
]));
1048 add_to_dominance_info (enum cdi_direction dir
, basic_block bb
)
1050 gcc_assert (dom_computed
[dir
]);
1051 gcc_assert (!bb
->dom
[dir
]);
1053 n_bbs_in_dom_tree
[dir
]++;
1055 bb
->dom
[dir
] = et_new_tree (bb
);
1057 if (dom_computed
[dir
] == DOM_OK
)
1058 dom_computed
[dir
] = DOM_NO_FAST_QUERY
;
1062 delete_from_dominance_info (enum cdi_direction dir
, basic_block bb
)
1064 gcc_assert (dom_computed
[dir
]);
1066 et_free_tree (bb
->dom
[dir
]);
1067 bb
->dom
[dir
] = NULL
;
1068 n_bbs_in_dom_tree
[dir
]--;
1070 if (dom_computed
[dir
] == DOM_OK
)
1071 dom_computed
[dir
] = DOM_NO_FAST_QUERY
;
1074 /* Returns the first son of BB in the dominator or postdominator tree
1075 as determined by DIR. */
1078 first_dom_son (enum cdi_direction dir
, basic_block bb
)
1080 struct et_node
*son
= bb
->dom
[dir
]->son
;
1082 return son
? son
->data
: NULL
;
1085 /* Returns the next dominance son after BB in the dominator or postdominator
1086 tree as determined by DIR, or NULL if it was the last one. */
1089 next_dom_son (enum cdi_direction dir
, basic_block bb
)
1091 struct et_node
*next
= bb
->dom
[dir
]->right
;
1093 return next
->father
->son
== next
? NULL
: next
->data
;
1096 /* Returns true if dominance information for direction DIR is available. */
1099 dom_info_available_p (enum cdi_direction dir
)
1101 return dom_computed
[dir
] != DOM_NONE
;
1105 debug_dominance_info (enum cdi_direction dir
)
1107 basic_block bb
, bb2
;
1109 if ((bb2
= get_immediate_dominator (dir
, bb
)))
1110 fprintf (stderr
, "%i %i\n", bb
->index
, bb2
->index
);