1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2017 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
42 #include "langhooks.h"
43 #include "tree-vector-builder.h"
45 struct target_expmed default_target_expmed
;
47 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
50 static void store_fixed_bit_field (rtx
, opt_scalar_int_mode
,
51 unsigned HOST_WIDE_INT
,
52 unsigned HOST_WIDE_INT
,
53 unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
,
55 rtx
, scalar_int_mode
, bool);
56 static void store_fixed_bit_field_1 (rtx
, scalar_int_mode
,
57 unsigned HOST_WIDE_INT
,
58 unsigned HOST_WIDE_INT
,
59 rtx
, scalar_int_mode
, bool);
60 static void store_split_bit_field (rtx
, opt_scalar_int_mode
,
61 unsigned HOST_WIDE_INT
,
62 unsigned HOST_WIDE_INT
,
63 unsigned HOST_WIDE_INT
,
64 unsigned HOST_WIDE_INT
,
65 rtx
, scalar_int_mode
, bool);
66 static rtx
extract_fixed_bit_field (machine_mode
, rtx
, opt_scalar_int_mode
,
67 unsigned HOST_WIDE_INT
,
68 unsigned HOST_WIDE_INT
, rtx
, int, bool);
69 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
, scalar_int_mode
,
70 unsigned HOST_WIDE_INT
,
71 unsigned HOST_WIDE_INT
, rtx
, int, bool);
72 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
73 static rtx
extract_split_bit_field (rtx
, opt_scalar_int_mode
,
74 unsigned HOST_WIDE_INT
,
75 unsigned HOST_WIDE_INT
, int, bool);
76 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
77 static rtx
expand_smod_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
78 static rtx
expand_sdiv_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
80 /* Return a constant integer mask value of mode MODE with BITSIZE ones
81 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
82 The mask is truncated if necessary to the width of mode MODE. The
83 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
86 mask_rtx (scalar_int_mode mode
, int bitpos
, int bitsize
, bool complement
)
88 return immed_wide_int_const
89 (wi::shifted_mask (bitpos
, bitsize
, complement
,
90 GET_MODE_PRECISION (mode
)), mode
);
93 /* Test whether a value is zero of a power of two. */
94 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
95 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
97 struct init_expmed_rtl
118 rtx pow2
[MAX_BITS_PER_WORD
];
119 rtx cint
[MAX_BITS_PER_WORD
];
123 init_expmed_one_conv (struct init_expmed_rtl
*all
, scalar_int_mode to_mode
,
124 scalar_int_mode from_mode
, bool speed
)
126 int to_size
, from_size
;
129 to_size
= GET_MODE_PRECISION (to_mode
);
130 from_size
= GET_MODE_PRECISION (from_mode
);
132 /* Most partial integers have a precision less than the "full"
133 integer it requires for storage. In case one doesn't, for
134 comparison purposes here, reduce the bit size by one in that
136 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
137 && pow2p_hwi (to_size
))
139 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
140 && pow2p_hwi (from_size
))
143 /* Assume cost of zero-extend and sign-extend is the same. */
144 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
146 PUT_MODE (all
->reg
, from_mode
);
147 set_convert_cost (to_mode
, from_mode
, speed
,
148 set_src_cost (which
, to_mode
, speed
));
152 init_expmed_one_mode (struct init_expmed_rtl
*all
,
153 machine_mode mode
, int speed
)
155 int m
, n
, mode_bitsize
;
156 machine_mode mode_from
;
158 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
160 PUT_MODE (all
->reg
, mode
);
161 PUT_MODE (all
->plus
, mode
);
162 PUT_MODE (all
->neg
, mode
);
163 PUT_MODE (all
->mult
, mode
);
164 PUT_MODE (all
->sdiv
, mode
);
165 PUT_MODE (all
->udiv
, mode
);
166 PUT_MODE (all
->sdiv_32
, mode
);
167 PUT_MODE (all
->smod_32
, mode
);
168 PUT_MODE (all
->wide_trunc
, mode
);
169 PUT_MODE (all
->shift
, mode
);
170 PUT_MODE (all
->shift_mult
, mode
);
171 PUT_MODE (all
->shift_add
, mode
);
172 PUT_MODE (all
->shift_sub0
, mode
);
173 PUT_MODE (all
->shift_sub1
, mode
);
174 PUT_MODE (all
->zext
, mode
);
175 PUT_MODE (all
->trunc
, mode
);
177 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, mode
, speed
));
178 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, mode
, speed
));
179 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, mode
, speed
));
180 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, mode
, speed
));
181 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, mode
, speed
));
183 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, mode
, speed
)
184 <= 2 * add_cost (speed
, mode
)));
185 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, mode
, speed
)
186 <= 4 * add_cost (speed
, mode
)));
188 set_shift_cost (speed
, mode
, 0, 0);
190 int cost
= add_cost (speed
, mode
);
191 set_shiftadd_cost (speed
, mode
, 0, cost
);
192 set_shiftsub0_cost (speed
, mode
, 0, cost
);
193 set_shiftsub1_cost (speed
, mode
, 0, cost
);
196 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
197 for (m
= 1; m
< n
; m
++)
199 XEXP (all
->shift
, 1) = all
->cint
[m
];
200 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
202 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, mode
, speed
));
203 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, mode
,
205 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, mode
,
207 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, mode
,
211 scalar_int_mode int_mode_to
;
212 if (is_a
<scalar_int_mode
> (mode
, &int_mode_to
))
214 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
215 mode_from
= (machine_mode
)(mode_from
+ 1))
216 init_expmed_one_conv (all
, int_mode_to
,
217 as_a
<scalar_int_mode
> (mode_from
), speed
);
219 scalar_int_mode wider_mode
;
220 if (GET_MODE_CLASS (int_mode_to
) == MODE_INT
221 && GET_MODE_WIDER_MODE (int_mode_to
).exists (&wider_mode
))
223 PUT_MODE (all
->zext
, wider_mode
);
224 PUT_MODE (all
->wide_mult
, wider_mode
);
225 PUT_MODE (all
->wide_lshr
, wider_mode
);
226 XEXP (all
->wide_lshr
, 1)
227 = gen_int_shift_amount (wider_mode
, mode_bitsize
);
229 set_mul_widen_cost (speed
, wider_mode
,
230 set_src_cost (all
->wide_mult
, wider_mode
, speed
));
231 set_mul_highpart_cost (speed
, int_mode_to
,
232 set_src_cost (all
->wide_trunc
,
233 int_mode_to
, speed
));
241 struct init_expmed_rtl all
;
242 machine_mode mode
= QImode
;
245 memset (&all
, 0, sizeof all
);
246 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
248 all
.pow2
[m
] = GEN_INT (HOST_WIDE_INT_1
<< m
);
249 all
.cint
[m
] = GEN_INT (m
);
252 /* Avoid using hard regs in ways which may be unsupported. */
253 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
254 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
255 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
256 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
257 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
258 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
259 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
260 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
261 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
262 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
263 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
264 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
265 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
266 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
267 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
268 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
269 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
270 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
272 for (speed
= 0; speed
< 2; speed
++)
274 crtl
->maybe_hot_insn_p
= speed
;
275 set_zero_cost (speed
, set_src_cost (const0_rtx
, mode
, speed
));
277 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
278 mode
= (machine_mode
)(mode
+ 1))
279 init_expmed_one_mode (&all
, mode
, speed
);
281 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
282 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
283 mode
= (machine_mode
)(mode
+ 1))
284 init_expmed_one_mode (&all
, mode
, speed
);
286 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
287 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
288 mode
= (machine_mode
)(mode
+ 1))
289 init_expmed_one_mode (&all
, mode
, speed
);
292 if (alg_hash_used_p ())
294 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
295 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
298 set_alg_hash_used_p (true);
299 default_rtl_profile ();
301 ggc_free (all
.trunc
);
302 ggc_free (all
.shift_sub1
);
303 ggc_free (all
.shift_sub0
);
304 ggc_free (all
.shift_add
);
305 ggc_free (all
.shift_mult
);
306 ggc_free (all
.shift
);
307 ggc_free (all
.wide_trunc
);
308 ggc_free (all
.wide_lshr
);
309 ggc_free (all
.wide_mult
);
311 ggc_free (all
.smod_32
);
312 ggc_free (all
.sdiv_32
);
321 /* Return an rtx representing minus the value of X.
322 MODE is the intended mode of the result,
323 useful if X is a CONST_INT. */
326 negate_rtx (machine_mode mode
, rtx x
)
328 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
331 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
336 /* Whether reverse storage order is supported on the target. */
337 static int reverse_storage_order_supported
= -1;
339 /* Check whether reverse storage order is supported on the target. */
342 check_reverse_storage_order_support (void)
344 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
346 reverse_storage_order_supported
= 0;
347 sorry ("reverse scalar storage order");
350 reverse_storage_order_supported
= 1;
353 /* Whether reverse FP storage order is supported on the target. */
354 static int reverse_float_storage_order_supported
= -1;
356 /* Check whether reverse FP storage order is supported on the target. */
359 check_reverse_float_storage_order_support (void)
361 if (FLOAT_WORDS_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
363 reverse_float_storage_order_supported
= 0;
364 sorry ("reverse floating-point scalar storage order");
367 reverse_float_storage_order_supported
= 1;
370 /* Return an rtx representing value of X with reverse storage order.
371 MODE is the intended mode of the result,
372 useful if X is a CONST_INT. */
375 flip_storage_order (machine_mode mode
, rtx x
)
377 scalar_int_mode int_mode
;
383 if (COMPLEX_MODE_P (mode
))
385 rtx real
= read_complex_part (x
, false);
386 rtx imag
= read_complex_part (x
, true);
388 real
= flip_storage_order (GET_MODE_INNER (mode
), real
);
389 imag
= flip_storage_order (GET_MODE_INNER (mode
), imag
);
391 return gen_rtx_CONCAT (mode
, real
, imag
);
394 if (__builtin_expect (reverse_storage_order_supported
< 0, 0))
395 check_reverse_storage_order_support ();
397 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
399 if (FLOAT_MODE_P (mode
)
400 && __builtin_expect (reverse_float_storage_order_supported
< 0, 0))
401 check_reverse_float_storage_order_support ();
403 if (!int_mode_for_size (GET_MODE_PRECISION (mode
), 0).exists (&int_mode
))
405 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode
));
408 x
= gen_lowpart (int_mode
, x
);
411 result
= simplify_unary_operation (BSWAP
, int_mode
, x
, int_mode
);
413 result
= expand_unop (int_mode
, bswap_optab
, x
, NULL_RTX
, 1);
415 if (int_mode
!= mode
)
416 result
= gen_lowpart (mode
, result
);
421 /* If MODE is set, adjust bitfield memory MEM so that it points to the
422 first unit of mode MODE that contains a bitfield of size BITSIZE at
423 bit position BITNUM. If MODE is not set, return a BLKmode reference
424 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
425 of the field within the new memory. */
428 narrow_bit_field_mem (rtx mem
, opt_scalar_int_mode mode
,
429 unsigned HOST_WIDE_INT bitsize
,
430 unsigned HOST_WIDE_INT bitnum
,
431 unsigned HOST_WIDE_INT
*new_bitnum
)
433 scalar_int_mode imode
;
434 if (mode
.exists (&imode
))
436 unsigned int unit
= GET_MODE_BITSIZE (imode
);
437 *new_bitnum
= bitnum
% unit
;
438 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
439 return adjust_bitfield_address (mem
, imode
, offset
);
443 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
444 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
445 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
447 return adjust_bitfield_address_size (mem
, BLKmode
, offset
, size
);
451 /* The caller wants to perform insertion or extraction PATTERN on a
452 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
453 BITREGION_START and BITREGION_END are as for store_bit_field
454 and FIELDMODE is the natural mode of the field.
456 Search for a mode that is compatible with the memory access
457 restrictions and (where applicable) with a register insertion or
458 extraction. Return the new memory on success, storing the adjusted
459 bit position in *NEW_BITNUM. Return null otherwise. */
462 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
463 rtx op0
, HOST_WIDE_INT bitsize
,
464 HOST_WIDE_INT bitnum
,
465 unsigned HOST_WIDE_INT bitregion_start
,
466 unsigned HOST_WIDE_INT bitregion_end
,
467 machine_mode fieldmode
,
468 unsigned HOST_WIDE_INT
*new_bitnum
)
470 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
471 bitregion_end
, MEM_ALIGN (op0
),
472 MEM_VOLATILE_P (op0
));
473 scalar_int_mode best_mode
;
474 if (iter
.next_mode (&best_mode
))
476 /* We can use a memory in BEST_MODE. See whether this is true for
477 any wider modes. All other things being equal, we prefer to
478 use the widest mode possible because it tends to expose more
479 CSE opportunities. */
480 if (!iter
.prefer_smaller_modes ())
482 /* Limit the search to the mode required by the corresponding
483 register insertion or extraction instruction, if any. */
484 scalar_int_mode limit_mode
= word_mode
;
485 extraction_insn insn
;
486 if (get_best_reg_extraction_insn (&insn
, pattern
,
487 GET_MODE_BITSIZE (best_mode
),
489 limit_mode
= insn
.field_mode
;
491 scalar_int_mode wider_mode
;
492 while (iter
.next_mode (&wider_mode
)
493 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
494 best_mode
= wider_mode
;
496 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
502 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
503 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
504 offset is then BITNUM / BITS_PER_UNIT. */
507 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum
,
508 unsigned HOST_WIDE_INT bitsize
,
509 machine_mode struct_mode
)
511 unsigned HOST_WIDE_INT regsize
= REGMODE_NATURAL_SIZE (struct_mode
);
512 if (BYTES_BIG_ENDIAN
)
513 return (bitnum
% BITS_PER_UNIT
== 0
514 && (bitnum
+ bitsize
== GET_MODE_BITSIZE (struct_mode
)
515 || (bitnum
+ bitsize
) % (regsize
* BITS_PER_UNIT
) == 0));
517 return bitnum
% (regsize
* BITS_PER_UNIT
) == 0;
520 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
521 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
522 Return false if the access would touch memory outside the range
523 BITREGION_START to BITREGION_END for conformance to the C++ memory
527 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
528 unsigned HOST_WIDE_INT bitnum
,
529 scalar_int_mode fieldmode
,
530 unsigned HOST_WIDE_INT bitregion_start
,
531 unsigned HOST_WIDE_INT bitregion_end
)
533 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
535 /* -fstrict-volatile-bitfields must be enabled and we must have a
538 || !MEM_VOLATILE_P (op0
)
539 || flag_strict_volatile_bitfields
<= 0)
542 /* The bit size must not be larger than the field mode, and
543 the field mode must not be larger than a word. */
544 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
547 /* Check for cases of unaligned fields that must be split. */
548 if (bitnum
% modesize
+ bitsize
> modesize
)
551 /* The memory must be sufficiently aligned for a MODESIZE access.
552 This condition guarantees, that the memory access will not
553 touch anything after the end of the structure. */
554 if (MEM_ALIGN (op0
) < modesize
)
557 /* Check for cases where the C++ memory model applies. */
558 if (bitregion_end
!= 0
559 && (bitnum
- bitnum
% modesize
< bitregion_start
560 || bitnum
- bitnum
% modesize
+ modesize
- 1 > bitregion_end
))
566 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
567 bit number BITNUM can be treated as a simple value of mode MODE. */
570 simple_mem_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
571 unsigned HOST_WIDE_INT bitnum
, machine_mode mode
)
574 && bitnum
% BITS_PER_UNIT
== 0
575 && bitsize
== GET_MODE_BITSIZE (mode
)
576 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (op0
))
577 || (bitnum
% GET_MODE_ALIGNMENT (mode
) == 0
578 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
581 /* Try to use instruction INSV to store VALUE into a field of OP0.
582 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
583 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
584 are as for store_bit_field. */
587 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
588 opt_scalar_int_mode op0_mode
,
589 unsigned HOST_WIDE_INT bitsize
,
590 unsigned HOST_WIDE_INT bitnum
,
591 rtx value
, scalar_int_mode value_mode
)
593 struct expand_operand ops
[4];
596 rtx_insn
*last
= get_last_insn ();
597 bool copy_back
= false;
599 scalar_int_mode op_mode
= insv
->field_mode
;
600 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
601 if (bitsize
== 0 || bitsize
> unit
)
605 /* Get a reference to the first byte of the field. */
606 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
610 /* Convert from counting within OP0 to counting in OP_MODE. */
611 if (BYTES_BIG_ENDIAN
)
612 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
614 /* If xop0 is a register, we need it in OP_MODE
615 to make it acceptable to the format of insv. */
616 if (GET_CODE (xop0
) == SUBREG
)
617 /* We can't just change the mode, because this might clobber op0,
618 and we will need the original value of op0 if insv fails. */
619 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
620 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
621 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
624 /* If the destination is a paradoxical subreg such that we need a
625 truncate to the inner mode, perform the insertion on a temporary and
626 truncate the result to the original destination. Note that we can't
627 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
628 X) 0)) is (reg:N X). */
629 if (GET_CODE (xop0
) == SUBREG
630 && REG_P (SUBREG_REG (xop0
))
631 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
634 rtx tem
= gen_reg_rtx (op_mode
);
635 emit_move_insn (tem
, xop0
);
640 /* There are similar overflow check at the start of store_bit_field_1,
641 but that only check the situation where the field lies completely
642 outside the register, while there do have situation where the field
643 lies partialy in the register, we need to adjust bitsize for this
644 partial overflow situation. Without this fix, pr48335-2.c on big-endian
645 will broken on those arch support bit insert instruction, like arm, aarch64
647 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
649 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
650 "destination object, data truncated into %wu-bit",
651 bitsize
, unit
- bitnum
);
652 bitsize
= unit
- bitnum
;
655 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
656 "backwards" from the size of the unit we are inserting into.
657 Otherwise, we count bits from the most significant on a
658 BYTES/BITS_BIG_ENDIAN machine. */
660 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
661 bitnum
= unit
- bitsize
- bitnum
;
663 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
665 if (value_mode
!= op_mode
)
667 if (GET_MODE_BITSIZE (value_mode
) >= bitsize
)
670 /* Optimization: Don't bother really extending VALUE
671 if it has all the bits we will actually use. However,
672 if we must narrow it, be sure we do it correctly. */
674 if (GET_MODE_SIZE (value_mode
) < GET_MODE_SIZE (op_mode
))
676 tmp
= simplify_subreg (op_mode
, value1
, value_mode
, 0);
678 tmp
= simplify_gen_subreg (op_mode
,
679 force_reg (value_mode
, value1
),
684 tmp
= gen_lowpart_if_possible (op_mode
, value1
);
686 tmp
= gen_lowpart (op_mode
, force_reg (value_mode
, value1
));
690 else if (CONST_INT_P (value
))
691 value1
= gen_int_mode (INTVAL (value
), op_mode
);
693 /* Parse phase is supposed to make VALUE's data type
694 match that of the component reference, which is a type
695 at least as wide as the field; so VALUE should have
696 a mode that corresponds to that type. */
697 gcc_assert (CONSTANT_P (value
));
700 create_fixed_operand (&ops
[0], xop0
);
701 create_integer_operand (&ops
[1], bitsize
);
702 create_integer_operand (&ops
[2], bitnum
);
703 create_input_operand (&ops
[3], value1
, op_mode
);
704 if (maybe_expand_insn (insv
->icode
, 4, ops
))
707 convert_move (op0
, xop0
, true);
710 delete_insns_since (last
);
714 /* A subroutine of store_bit_field, with the same arguments. Return true
715 if the operation could be implemented.
717 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
718 no other way of implementing the operation. If FALLBACK_P is false,
719 return false instead. */
722 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
723 unsigned HOST_WIDE_INT bitnum
,
724 unsigned HOST_WIDE_INT bitregion_start
,
725 unsigned HOST_WIDE_INT bitregion_end
,
726 machine_mode fieldmode
,
727 rtx value
, bool reverse
, bool fallback_p
)
732 while (GET_CODE (op0
) == SUBREG
)
734 bitnum
+= subreg_memory_offset (op0
) * BITS_PER_UNIT
;
735 op0
= SUBREG_REG (op0
);
738 /* No action is needed if the target is a register and if the field
739 lies completely outside that register. This can occur if the source
740 code contains an out-of-bounds access to a small array. */
741 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
744 /* Use vec_set patterns for inserting parts of vectors whenever
746 machine_mode outermode
= GET_MODE (op0
);
747 scalar_mode innermode
= GET_MODE_INNER (outermode
);
748 if (VECTOR_MODE_P (outermode
)
750 && optab_handler (vec_set_optab
, outermode
) != CODE_FOR_nothing
751 && fieldmode
== innermode
752 && bitsize
== GET_MODE_BITSIZE (innermode
)
753 && !(bitnum
% GET_MODE_BITSIZE (innermode
)))
755 struct expand_operand ops
[3];
756 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
757 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
759 create_fixed_operand (&ops
[0], op0
);
760 create_input_operand (&ops
[1], value
, innermode
);
761 create_integer_operand (&ops
[2], pos
);
762 if (maybe_expand_insn (icode
, 3, ops
))
766 /* If the target is a register, overwriting the entire object, or storing
767 a full-word or multi-word field can be done with just a SUBREG. */
769 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
770 && ((bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)) && bitnum
== 0)
771 || (bitsize
% BITS_PER_WORD
== 0 && bitnum
% BITS_PER_WORD
== 0)))
773 /* Use the subreg machinery either to narrow OP0 to the required
774 words or to cope with mode punning between equal-sized modes.
775 In the latter case, use subreg on the rhs side, not lhs. */
778 if (bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
780 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
784 sub
= flip_storage_order (GET_MODE (op0
), sub
);
785 emit_move_insn (op0
, sub
);
791 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
792 bitnum
/ BITS_PER_UNIT
);
796 value
= flip_storage_order (fieldmode
, value
);
797 emit_move_insn (sub
, value
);
803 /* If the target is memory, storing any naturally aligned field can be
804 done with a simple store. For targets that support fast unaligned
805 memory, any naturally sized, unit aligned field can be done directly. */
806 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
))
808 op0
= adjust_bitfield_address (op0
, fieldmode
, bitnum
/ BITS_PER_UNIT
);
810 value
= flip_storage_order (fieldmode
, value
);
811 emit_move_insn (op0
, value
);
815 /* Make sure we are playing with integral modes. Pun with subregs
816 if we aren't. This must come after the entire register case above,
817 since that case is valid for any mode. The following cases are only
818 valid for integral modes. */
819 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
820 scalar_int_mode imode
;
821 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
824 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
827 op0
= gen_lowpart (op0_mode
.require (), op0
);
830 /* Storing an lsb-aligned field in a register
831 can be done with a movstrict instruction. */
835 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
836 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
837 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
839 struct expand_operand ops
[2];
840 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
842 unsigned HOST_WIDE_INT subreg_off
;
844 if (GET_CODE (arg0
) == SUBREG
)
846 /* Else we've got some float mode source being extracted into
847 a different float mode destination -- this combination of
848 subregs results in Severe Tire Damage. */
849 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
850 || GET_MODE_CLASS (fieldmode
) == MODE_INT
851 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
852 arg0
= SUBREG_REG (arg0
);
855 subreg_off
= bitnum
/ BITS_PER_UNIT
;
856 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
858 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
860 create_fixed_operand (&ops
[0], arg0
);
861 /* Shrink the source operand to FIELDMODE. */
862 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
863 if (maybe_expand_insn (icode
, 2, ops
))
868 /* Handle fields bigger than a word. */
870 if (bitsize
> BITS_PER_WORD
)
872 /* Here we transfer the words of the field
873 in the order least significant first.
874 This is because the most significant word is the one which may
876 However, only do that if the value is not BLKmode. */
878 const bool backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
879 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
883 /* This is the mode we must force value to, so that there will be enough
884 subwords to extract. Note that fieldmode will often (always?) be
885 VOIDmode, because that is what store_field uses to indicate that this
886 is a bit field, but passing VOIDmode to operand_subword_force
888 fieldmode
= GET_MODE (value
);
889 if (fieldmode
== VOIDmode
)
890 fieldmode
= smallest_int_mode_for_size (nwords
* BITS_PER_WORD
);
892 last
= get_last_insn ();
893 for (i
= 0; i
< nwords
; i
++)
895 /* If I is 0, use the low-order word in both field and target;
896 if I is 1, use the next to lowest word; and so on. */
897 unsigned int wordnum
= (backwards
898 ? GET_MODE_SIZE (fieldmode
) / UNITS_PER_WORD
901 unsigned int bit_offset
= (backwards
^ reverse
902 ? MAX ((int) bitsize
- ((int) i
+ 1)
905 : (int) i
* BITS_PER_WORD
);
906 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
907 unsigned HOST_WIDE_INT new_bitsize
=
908 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
910 /* If the remaining chunk doesn't have full wordsize we have
911 to make sure that for big-endian machines the higher order
913 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
915 int shift
= BITS_PER_WORD
- new_bitsize
;
916 rtx shift_rtx
= gen_int_shift_amount (word_mode
, shift
);
917 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
918 value_word
, shift_rtx
,
923 if (!store_bit_field_1 (op0
, new_bitsize
,
925 bitregion_start
, bitregion_end
,
927 value_word
, reverse
, fallback_p
))
929 delete_insns_since (last
);
936 /* If VALUE has a floating-point or complex mode, access it as an
937 integer of the corresponding size. This can occur on a machine
938 with 64 bit registers that uses SFmode for float. It can also
939 occur for unaligned float or complex fields. */
941 scalar_int_mode value_mode
;
942 if (GET_MODE (value
) == VOIDmode
)
943 /* By this point we've dealt with values that are bigger than a word,
944 so word_mode is a conservatively correct choice. */
945 value_mode
= word_mode
;
946 else if (!is_a
<scalar_int_mode
> (GET_MODE (value
), &value_mode
))
948 value_mode
= int_mode_for_mode (GET_MODE (value
)).require ();
949 value
= gen_reg_rtx (value_mode
);
950 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
953 /* If OP0 is a multi-word register, narrow it to the affected word.
954 If the region spans two words, defer to store_split_bit_field.
955 Don't do this if op0 is a single hard register wider than word
956 such as a float or vector register. */
958 && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
960 || !HARD_REGISTER_P (op0
)
961 || hard_regno_nregs (REGNO (op0
), op0_mode
.require ()) != 1))
963 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
968 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
969 bitregion_start
, bitregion_end
,
970 value
, value_mode
, reverse
);
973 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
974 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
976 op0_mode
= word_mode
;
977 bitnum
%= BITS_PER_WORD
;
980 /* From here on we can assume that the field to be stored in fits
981 within a word. If the destination is a register, it too fits
984 extraction_insn insv
;
987 && get_best_reg_extraction_insn (&insv
, EP_insv
,
988 GET_MODE_BITSIZE (op0_mode
.require ()),
990 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
991 bitsize
, bitnum
, value
, value_mode
))
994 /* If OP0 is a memory, try copying it to a register and seeing if a
995 cheap register alternative is available. */
996 if (MEM_P (op0
) && !reverse
)
998 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
1000 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1001 bitsize
, bitnum
, value
, value_mode
))
1004 rtx_insn
*last
= get_last_insn ();
1006 /* Try loading part of OP0 into a register, inserting the bitfield
1007 into that, and then copying the result back to OP0. */
1008 unsigned HOST_WIDE_INT bitpos
;
1009 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
1010 bitregion_start
, bitregion_end
,
1011 fieldmode
, &bitpos
);
1014 rtx tempreg
= copy_to_reg (xop0
);
1015 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
1016 bitregion_start
, bitregion_end
,
1017 fieldmode
, orig_value
, reverse
, false))
1019 emit_move_insn (xop0
, tempreg
);
1022 delete_insns_since (last
);
1029 store_fixed_bit_field (op0
, op0_mode
, bitsize
, bitnum
, bitregion_start
,
1030 bitregion_end
, value
, value_mode
, reverse
);
1034 /* Generate code to store value from rtx VALUE
1035 into a bit-field within structure STR_RTX
1036 containing BITSIZE bits starting at bit BITNUM.
1038 BITREGION_START is bitpos of the first bitfield in this region.
1039 BITREGION_END is the bitpos of the ending bitfield in this region.
1040 These two fields are 0, if the C++ memory model does not apply,
1041 or we are not interested in keeping track of bitfield regions.
1043 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1045 If REVERSE is true, the store is to be done in reverse order. */
1048 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1049 unsigned HOST_WIDE_INT bitnum
,
1050 unsigned HOST_WIDE_INT bitregion_start
,
1051 unsigned HOST_WIDE_INT bitregion_end
,
1052 machine_mode fieldmode
,
1053 rtx value
, bool reverse
)
1055 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1056 scalar_int_mode int_mode
;
1057 if (is_a
<scalar_int_mode
> (fieldmode
, &int_mode
)
1058 && strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, int_mode
,
1059 bitregion_start
, bitregion_end
))
1061 /* Storing of a full word can be done with a simple store.
1062 We know here that the field can be accessed with one single
1063 instruction. For targets that support unaligned memory,
1064 an unaligned access may be necessary. */
1065 if (bitsize
== GET_MODE_BITSIZE (int_mode
))
1067 str_rtx
= adjust_bitfield_address (str_rtx
, int_mode
,
1068 bitnum
/ BITS_PER_UNIT
);
1070 value
= flip_storage_order (int_mode
, value
);
1071 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1072 emit_move_insn (str_rtx
, value
);
1078 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, bitsize
, bitnum
,
1080 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (int_mode
));
1081 temp
= copy_to_reg (str_rtx
);
1082 if (!store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0,
1083 int_mode
, value
, reverse
, true))
1086 emit_move_insn (str_rtx
, temp
);
1092 /* Under the C++0x memory model, we must not touch bits outside the
1093 bit region. Adjust the address to start at the beginning of the
1095 if (MEM_P (str_rtx
) && bitregion_start
> 0)
1097 scalar_int_mode best_mode
;
1098 machine_mode addr_mode
= VOIDmode
;
1099 HOST_WIDE_INT offset
, size
;
1101 gcc_assert ((bitregion_start
% BITS_PER_UNIT
) == 0);
1103 offset
= bitregion_start
/ BITS_PER_UNIT
;
1104 bitnum
-= bitregion_start
;
1105 size
= (bitnum
+ bitsize
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
1106 bitregion_end
-= bitregion_start
;
1107 bitregion_start
= 0;
1108 if (get_best_mode (bitsize
, bitnum
,
1109 bitregion_start
, bitregion_end
,
1110 MEM_ALIGN (str_rtx
), INT_MAX
,
1111 MEM_VOLATILE_P (str_rtx
), &best_mode
))
1112 addr_mode
= best_mode
;
1113 str_rtx
= adjust_bitfield_address_size (str_rtx
, addr_mode
,
1117 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1118 bitregion_start
, bitregion_end
,
1119 fieldmode
, value
, reverse
, true))
1123 /* Use shifts and boolean operations to store VALUE into a bit field of
1124 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1125 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1128 If REVERSE is true, the store is to be done in reverse order. */
1131 store_fixed_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1132 unsigned HOST_WIDE_INT bitsize
,
1133 unsigned HOST_WIDE_INT bitnum
,
1134 unsigned HOST_WIDE_INT bitregion_start
,
1135 unsigned HOST_WIDE_INT bitregion_end
,
1136 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1138 /* There is a case not handled here:
1139 a structure with a known alignment of just a halfword
1140 and a field split across two aligned halfwords within the structure.
1141 Or likewise a structure with a known alignment of just a byte
1142 and a field split across two bytes.
1143 Such cases are not supposed to be able to occur. */
1145 scalar_int_mode best_mode
;
1148 unsigned int max_bitsize
= BITS_PER_WORD
;
1149 scalar_int_mode imode
;
1150 if (op0_mode
.exists (&imode
) && GET_MODE_BITSIZE (imode
) < max_bitsize
)
1151 max_bitsize
= GET_MODE_BITSIZE (imode
);
1153 if (!get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1154 MEM_ALIGN (op0
), max_bitsize
, MEM_VOLATILE_P (op0
),
1157 /* The only way this should occur is if the field spans word
1159 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1160 bitregion_start
, bitregion_end
,
1161 value
, value_mode
, reverse
);
1165 op0
= narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
, &bitnum
);
1168 best_mode
= op0_mode
.require ();
1170 store_fixed_bit_field_1 (op0
, best_mode
, bitsize
, bitnum
,
1171 value
, value_mode
, reverse
);
1174 /* Helper function for store_fixed_bit_field, stores
1175 the bit field always using MODE, which is the mode of OP0. The other
1176 arguments are as for store_fixed_bit_field. */
1179 store_fixed_bit_field_1 (rtx op0
, scalar_int_mode mode
,
1180 unsigned HOST_WIDE_INT bitsize
,
1181 unsigned HOST_WIDE_INT bitnum
,
1182 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1188 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1189 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1191 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1192 /* BITNUM is the distance between our msb
1193 and that of the containing datum.
1194 Convert it to the distance from the lsb. */
1195 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1197 /* Now BITNUM is always the distance between our lsb
1200 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1201 we must first convert its mode to MODE. */
1203 if (CONST_INT_P (value
))
1205 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1207 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1208 v
&= (HOST_WIDE_INT_1U
<< bitsize
) - 1;
1212 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1213 && v
== (HOST_WIDE_INT_1U
<< bitsize
) - 1)
1214 || (bitsize
== HOST_BITS_PER_WIDE_INT
1215 && v
== HOST_WIDE_INT_M1U
))
1218 value
= lshift_value (mode
, v
, bitnum
);
1222 int must_and
= (GET_MODE_BITSIZE (value_mode
) != bitsize
1223 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1225 if (value_mode
!= mode
)
1226 value
= convert_to_mode (mode
, value
, 1);
1229 value
= expand_binop (mode
, and_optab
, value
,
1230 mask_rtx (mode
, 0, bitsize
, 0),
1231 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1233 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1234 bitnum
, NULL_RTX
, 1);
1238 value
= flip_storage_order (mode
, value
);
1240 /* Now clear the chosen bits in OP0,
1241 except that if VALUE is -1 we need not bother. */
1242 /* We keep the intermediates in registers to allow CSE to combine
1243 consecutive bitfield assignments. */
1245 temp
= force_reg (mode
, op0
);
1249 rtx mask
= mask_rtx (mode
, bitnum
, bitsize
, 1);
1251 mask
= flip_storage_order (mode
, mask
);
1252 temp
= expand_binop (mode
, and_optab
, temp
, mask
,
1253 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1254 temp
= force_reg (mode
, temp
);
1257 /* Now logical-or VALUE into OP0, unless it is zero. */
1261 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1262 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1263 temp
= force_reg (mode
, temp
);
1268 op0
= copy_rtx (op0
);
1269 emit_move_insn (op0
, temp
);
1273 /* Store a bit field that is split across multiple accessible memory objects.
1275 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1276 BITSIZE is the field width; BITPOS the position of its first bit
1278 VALUE is the value to store, which has mode VALUE_MODE.
1279 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1282 If REVERSE is true, the store is to be done in reverse order.
1284 This does not yet handle fields wider than BITS_PER_WORD. */
1287 store_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1288 unsigned HOST_WIDE_INT bitsize
,
1289 unsigned HOST_WIDE_INT bitpos
,
1290 unsigned HOST_WIDE_INT bitregion_start
,
1291 unsigned HOST_WIDE_INT bitregion_end
,
1292 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1294 unsigned int unit
, total_bits
, bitsdone
= 0;
1296 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1298 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1299 unit
= BITS_PER_WORD
;
1301 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1303 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1304 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1305 again, and we will mutually recurse forever. */
1306 if (MEM_P (op0
) && op0_mode
.exists ())
1307 unit
= MIN (unit
, GET_MODE_BITSIZE (op0_mode
.require ()));
1309 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1310 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1311 that VALUE might be a floating-point constant. */
1312 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1314 rtx word
= gen_lowpart_common (word_mode
, value
);
1316 if (word
&& (value
!= word
))
1319 value
= gen_lowpart_common (word_mode
, force_reg (value_mode
, value
));
1320 value_mode
= word_mode
;
1323 total_bits
= GET_MODE_BITSIZE (value_mode
);
1325 while (bitsdone
< bitsize
)
1327 unsigned HOST_WIDE_INT thissize
;
1328 unsigned HOST_WIDE_INT thispos
;
1329 unsigned HOST_WIDE_INT offset
;
1332 offset
= (bitpos
+ bitsdone
) / unit
;
1333 thispos
= (bitpos
+ bitsdone
) % unit
;
1335 /* When region of bytes we can touch is restricted, decrease
1336 UNIT close to the end of the region as needed. If op0 is a REG
1337 or SUBREG of REG, don't do this, as there can't be data races
1338 on a register and we can expand shorter code in some cases. */
1340 && unit
> BITS_PER_UNIT
1341 && bitpos
+ bitsdone
- thispos
+ unit
> bitregion_end
+ 1
1343 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1349 /* THISSIZE must not overrun a word boundary. Otherwise,
1350 store_fixed_bit_field will call us again, and we will mutually
1352 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1353 thissize
= MIN (thissize
, unit
- thispos
);
1355 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1357 /* Fetch successively less significant portions. */
1358 if (CONST_INT_P (value
))
1359 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1360 >> (bitsize
- bitsdone
- thissize
))
1361 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1362 /* Likewise, but the source is little-endian. */
1364 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1366 bitsize
- bitsdone
- thissize
,
1367 NULL_RTX
, 1, false);
1369 /* The args are chosen so that the last part includes the
1370 lsb. Give extract_bit_field the value it needs (with
1371 endianness compensation) to fetch the piece we want. */
1372 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1374 total_bits
- bitsize
+ bitsdone
,
1375 NULL_RTX
, 1, false);
1379 /* Fetch successively more significant portions. */
1380 if (CONST_INT_P (value
))
1381 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1383 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1384 /* Likewise, but the source is big-endian. */
1386 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1388 total_bits
- bitsdone
- thissize
,
1389 NULL_RTX
, 1, false);
1391 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1392 thissize
, bitsdone
, NULL_RTX
,
1396 /* If OP0 is a register, then handle OFFSET here. */
1397 rtx op0_piece
= op0
;
1398 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
1399 if (SUBREG_P (op0
) || REG_P (op0
))
1401 scalar_int_mode imode
;
1402 if (op0_mode
.exists (&imode
)
1403 && GET_MODE_SIZE (imode
) < UNITS_PER_WORD
)
1406 op0_piece
= const0_rtx
;
1410 op0_piece
= operand_subword_force (op0
,
1411 offset
* unit
/ BITS_PER_WORD
,
1413 op0_piece_mode
= word_mode
;
1415 offset
&= BITS_PER_WORD
/ unit
- 1;
1418 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1419 it is just an out-of-bounds access. Ignore it. */
1420 if (op0_piece
!= const0_rtx
)
1421 store_fixed_bit_field (op0_piece
, op0_piece_mode
, thissize
,
1422 offset
* unit
+ thispos
, bitregion_start
,
1423 bitregion_end
, part
, word_mode
, reverse
);
1424 bitsdone
+= thissize
;
1428 /* A subroutine of extract_bit_field_1 that converts return value X
1429 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1430 to extract_bit_field. */
1433 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1434 machine_mode tmode
, bool unsignedp
)
1436 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1439 /* If the x mode is not a scalar integral, first convert to the
1440 integer mode of that size and then access it as a floating-point
1441 value via a SUBREG. */
1442 if (!SCALAR_INT_MODE_P (tmode
))
1444 scalar_int_mode int_mode
= int_mode_for_mode (tmode
).require ();
1445 x
= convert_to_mode (int_mode
, x
, unsignedp
);
1446 x
= force_reg (int_mode
, x
);
1447 return gen_lowpart (tmode
, x
);
1450 return convert_to_mode (tmode
, x
, unsignedp
);
1453 /* Try to use an ext(z)v pattern to extract a field from OP0.
1454 Return the extracted value on success, otherwise return null.
1455 EXTV describes the extraction instruction to use. If OP0_MODE
1456 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1457 The other arguments are as for extract_bit_field. */
1460 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1461 opt_scalar_int_mode op0_mode
,
1462 unsigned HOST_WIDE_INT bitsize
,
1463 unsigned HOST_WIDE_INT bitnum
,
1464 int unsignedp
, rtx target
,
1465 machine_mode mode
, machine_mode tmode
)
1467 struct expand_operand ops
[4];
1468 rtx spec_target
= target
;
1469 rtx spec_target_subreg
= 0;
1470 scalar_int_mode ext_mode
= extv
->field_mode
;
1471 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1473 if (bitsize
== 0 || unit
< bitsize
)
1477 /* Get a reference to the first byte of the field. */
1478 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1482 /* Convert from counting within OP0 to counting in EXT_MODE. */
1483 if (BYTES_BIG_ENDIAN
)
1484 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
1486 /* If op0 is a register, we need it in EXT_MODE to make it
1487 acceptable to the format of ext(z)v. */
1488 if (GET_CODE (op0
) == SUBREG
&& op0_mode
.require () != ext_mode
)
1490 if (REG_P (op0
) && op0_mode
.require () != ext_mode
)
1491 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1494 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1495 "backwards" from the size of the unit we are extracting from.
1496 Otherwise, we count bits from the most significant on a
1497 BYTES/BITS_BIG_ENDIAN machine. */
1499 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1500 bitnum
= unit
- bitsize
- bitnum
;
1503 target
= spec_target
= gen_reg_rtx (tmode
);
1505 if (GET_MODE (target
) != ext_mode
)
1507 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1508 between the mode of the extraction (word_mode) and the target
1509 mode. Instead, create a temporary and use convert_move to set
1512 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1514 target
= gen_lowpart (ext_mode
, target
);
1515 if (partial_subreg_p (GET_MODE (spec_target
), ext_mode
))
1516 spec_target_subreg
= target
;
1519 target
= gen_reg_rtx (ext_mode
);
1522 create_output_operand (&ops
[0], target
, ext_mode
);
1523 create_fixed_operand (&ops
[1], op0
);
1524 create_integer_operand (&ops
[2], bitsize
);
1525 create_integer_operand (&ops
[3], bitnum
);
1526 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1528 target
= ops
[0].value
;
1529 if (target
== spec_target
)
1531 if (target
== spec_target_subreg
)
1533 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1538 /* A subroutine of extract_bit_field, with the same arguments.
1539 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1540 if we can find no other means of implementing the operation.
1541 if FALLBACK_P is false, return NULL instead. */
1544 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1545 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1546 machine_mode mode
, machine_mode tmode
,
1547 bool reverse
, bool fallback_p
, rtx
*alt_rtl
)
1552 if (tmode
== VOIDmode
)
1555 while (GET_CODE (op0
) == SUBREG
)
1557 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1558 op0
= SUBREG_REG (op0
);
1561 /* If we have an out-of-bounds access to a register, just return an
1562 uninitialized register of the required mode. This can occur if the
1563 source code contains an out-of-bounds access to a small array. */
1564 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1565 return gen_reg_rtx (tmode
);
1568 && mode
== GET_MODE (op0
)
1570 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1573 op0
= flip_storage_order (mode
, op0
);
1574 /* We're trying to extract a full register from itself. */
1578 /* First try to check for vector from vector extractions. */
1579 if (VECTOR_MODE_P (GET_MODE (op0
))
1581 && VECTOR_MODE_P (tmode
)
1582 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (tmode
))
1584 machine_mode new_mode
= GET_MODE (op0
);
1585 if (GET_MODE_INNER (new_mode
) != GET_MODE_INNER (tmode
))
1587 scalar_mode inner_mode
= GET_MODE_INNER (tmode
);
1588 unsigned int nunits
= (GET_MODE_BITSIZE (GET_MODE (op0
))
1589 / GET_MODE_UNIT_BITSIZE (tmode
));
1590 if (!mode_for_vector (inner_mode
, nunits
).exists (&new_mode
)
1591 || !VECTOR_MODE_P (new_mode
)
1592 || GET_MODE_SIZE (new_mode
) != GET_MODE_SIZE (GET_MODE (op0
))
1593 || GET_MODE_INNER (new_mode
) != GET_MODE_INNER (tmode
)
1594 || !targetm
.vector_mode_supported_p (new_mode
))
1595 new_mode
= VOIDmode
;
1597 if (new_mode
!= VOIDmode
1598 && (convert_optab_handler (vec_extract_optab
, new_mode
, tmode
)
1599 != CODE_FOR_nothing
)
1600 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (tmode
)
1601 == bitnum
/ GET_MODE_BITSIZE (tmode
)))
1603 struct expand_operand ops
[3];
1604 machine_mode outermode
= new_mode
;
1605 machine_mode innermode
= tmode
;
1606 enum insn_code icode
1607 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1608 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1610 if (new_mode
!= GET_MODE (op0
))
1611 op0
= gen_lowpart (new_mode
, op0
);
1612 create_output_operand (&ops
[0], target
, innermode
);
1614 create_input_operand (&ops
[1], op0
, outermode
);
1615 create_integer_operand (&ops
[2], pos
);
1616 if (maybe_expand_insn (icode
, 3, ops
))
1618 if (alt_rtl
&& ops
[0].target
)
1620 target
= ops
[0].value
;
1621 if (GET_MODE (target
) != mode
)
1622 return gen_lowpart (tmode
, target
);
1628 /* See if we can get a better vector mode before extracting. */
1629 if (VECTOR_MODE_P (GET_MODE (op0
))
1631 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1633 machine_mode new_mode
;
1635 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1636 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1637 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1638 new_mode
= MIN_MODE_VECTOR_FRACT
;
1639 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1640 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1641 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1642 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1643 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1644 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1646 new_mode
= MIN_MODE_VECTOR_INT
;
1648 FOR_EACH_MODE_FROM (new_mode
, new_mode
)
1649 if (GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1650 && GET_MODE_UNIT_SIZE (new_mode
) == GET_MODE_SIZE (tmode
)
1651 && targetm
.vector_mode_supported_p (new_mode
))
1653 if (new_mode
!= VOIDmode
)
1654 op0
= gen_lowpart (new_mode
, op0
);
1657 /* Use vec_extract patterns for extracting parts of vectors whenever
1659 machine_mode outermode
= GET_MODE (op0
);
1660 scalar_mode innermode
= GET_MODE_INNER (outermode
);
1661 if (VECTOR_MODE_P (outermode
)
1663 && (convert_optab_handler (vec_extract_optab
, outermode
, innermode
)
1664 != CODE_FOR_nothing
)
1665 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (innermode
)
1666 == bitnum
/ GET_MODE_BITSIZE (innermode
)))
1668 struct expand_operand ops
[3];
1669 enum insn_code icode
1670 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1671 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1673 create_output_operand (&ops
[0], target
, innermode
);
1675 create_input_operand (&ops
[1], op0
, outermode
);
1676 create_integer_operand (&ops
[2], pos
);
1677 if (maybe_expand_insn (icode
, 3, ops
))
1679 if (alt_rtl
&& ops
[0].target
)
1681 target
= ops
[0].value
;
1682 if (GET_MODE (target
) != mode
)
1683 return gen_lowpart (tmode
, target
);
1688 /* Make sure we are playing with integral modes. Pun with subregs
1690 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
1691 scalar_int_mode imode
;
1692 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
1695 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
1697 else if (op0_mode
.exists (&imode
))
1699 op0
= gen_lowpart (imode
, op0
);
1701 /* If we got a SUBREG, force it into a register since we
1702 aren't going to be able to do another SUBREG on it. */
1703 if (GET_CODE (op0
) == SUBREG
)
1704 op0
= force_reg (imode
, op0
);
1708 HOST_WIDE_INT size
= GET_MODE_SIZE (GET_MODE (op0
));
1709 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1710 emit_move_insn (mem
, op0
);
1711 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1715 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1716 If that's wrong, the solution is to test for it and set TARGET to 0
1719 /* Get the mode of the field to use for atomic access or subreg
1721 if (!SCALAR_INT_MODE_P (tmode
)
1722 || !mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0).exists (&mode1
))
1724 gcc_assert (mode1
!= BLKmode
);
1726 /* Extraction of a full MODE1 value can be done with a subreg as long
1727 as the least significant bit of the value is the least significant
1728 bit of either OP0 or a word of OP0. */
1731 && lowpart_bit_field_p (bitnum
, bitsize
, op0_mode
.require ())
1732 && bitsize
== GET_MODE_BITSIZE (mode1
)
1733 && TRULY_NOOP_TRUNCATION_MODES_P (mode1
, op0_mode
.require ()))
1735 rtx sub
= simplify_gen_subreg (mode1
, op0
, op0_mode
.require (),
1736 bitnum
/ BITS_PER_UNIT
);
1738 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1741 /* Extraction of a full MODE1 value can be done with a load as long as
1742 the field is on a byte boundary and is sufficiently aligned. */
1743 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
))
1745 op0
= adjust_bitfield_address (op0
, mode1
, bitnum
/ BITS_PER_UNIT
);
1747 op0
= flip_storage_order (mode1
, op0
);
1748 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1751 /* Handle fields bigger than a word. */
1753 if (bitsize
> BITS_PER_WORD
)
1755 /* Here we transfer the words of the field
1756 in the order least significant first.
1757 This is because the most significant word is the one which may
1758 be less than full. */
1760 const bool backwards
= WORDS_BIG_ENDIAN
;
1761 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1765 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1766 target
= gen_reg_rtx (mode
);
1768 /* In case we're about to clobber a base register or something
1769 (see gcc.c-torture/execute/20040625-1.c). */
1770 if (reg_mentioned_p (target
, str_rtx
))
1771 target
= gen_reg_rtx (mode
);
1773 /* Indicate for flow that the entire target reg is being set. */
1774 emit_clobber (target
);
1776 last
= get_last_insn ();
1777 for (i
= 0; i
< nwords
; i
++)
1779 /* If I is 0, use the low-order word in both field and target;
1780 if I is 1, use the next to lowest word; and so on. */
1781 /* Word number in TARGET to use. */
1782 unsigned int wordnum
1784 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1786 /* Offset from start of field in OP0. */
1787 unsigned int bit_offset
= (backwards
^ reverse
1788 ? MAX ((int) bitsize
- ((int) i
+ 1)
1791 : (int) i
* BITS_PER_WORD
);
1792 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1794 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1795 bitsize
- i
* BITS_PER_WORD
),
1796 bitnum
+ bit_offset
, 1, target_part
,
1797 mode
, word_mode
, reverse
, fallback_p
, NULL
);
1799 gcc_assert (target_part
);
1802 delete_insns_since (last
);
1806 if (result_part
!= target_part
)
1807 emit_move_insn (target_part
, result_part
);
1812 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1813 need to be zero'd out. */
1814 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1816 unsigned int i
, total_words
;
1818 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1819 for (i
= nwords
; i
< total_words
; i
++)
1821 (operand_subword (target
,
1822 backwards
? total_words
- i
- 1 : i
,
1829 /* Signed bit field: sign-extend with two arithmetic shifts. */
1830 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1831 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1832 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1833 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1836 /* If OP0 is a multi-word register, narrow it to the affected word.
1837 If the region spans two words, defer to extract_split_bit_field. */
1838 if (!MEM_P (op0
) && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
)
1840 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1844 target
= extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1845 unsignedp
, reverse
);
1846 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1848 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
1849 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1850 op0_mode
= word_mode
;
1851 bitnum
%= BITS_PER_WORD
;
1854 /* From here on we know the desired field is smaller than a word.
1855 If OP0 is a register, it too fits within a word. */
1856 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1857 extraction_insn extv
;
1860 /* ??? We could limit the structure size to the part of OP0 that
1861 contains the field, with appropriate checks for endianness
1862 and TARGET_TRULY_NOOP_TRUNCATION. */
1863 && get_best_reg_extraction_insn (&extv
, pattern
,
1864 GET_MODE_BITSIZE (op0_mode
.require ()),
1867 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
1869 unsignedp
, target
, mode
,
1875 /* If OP0 is a memory, try copying it to a register and seeing if a
1876 cheap register alternative is available. */
1877 if (MEM_P (op0
) & !reverse
)
1879 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1882 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
1884 unsignedp
, target
, mode
,
1890 rtx_insn
*last
= get_last_insn ();
1892 /* Try loading part of OP0 into a register and extracting the
1893 bitfield from that. */
1894 unsigned HOST_WIDE_INT bitpos
;
1895 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1896 0, 0, tmode
, &bitpos
);
1899 xop0
= copy_to_reg (xop0
);
1900 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1902 mode
, tmode
, reverse
, false, NULL
);
1905 delete_insns_since (last
);
1912 /* Find a correspondingly-sized integer field, so we can apply
1913 shifts and masks to it. */
1914 scalar_int_mode int_mode
;
1915 if (!int_mode_for_mode (tmode
).exists (&int_mode
))
1916 /* If this fails, we should probably push op0 out to memory and then
1918 int_mode
= int_mode_for_mode (mode
).require ();
1920 target
= extract_fixed_bit_field (int_mode
, op0
, op0_mode
, bitsize
,
1921 bitnum
, target
, unsignedp
, reverse
);
1923 /* Complex values must be reversed piecewise, so we need to undo the global
1924 reversal, convert to the complex mode and reverse again. */
1925 if (reverse
&& COMPLEX_MODE_P (tmode
))
1927 target
= flip_storage_order (int_mode
, target
);
1928 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1929 target
= flip_storage_order (tmode
, target
);
1932 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1937 /* Generate code to extract a byte-field from STR_RTX
1938 containing BITSIZE bits, starting at BITNUM,
1939 and put it in TARGET if possible (if TARGET is nonzero).
1940 Regardless of TARGET, we return the rtx for where the value is placed.
1942 STR_RTX is the structure containing the byte (a REG or MEM).
1943 UNSIGNEDP is nonzero if this is an unsigned bit field.
1944 MODE is the natural mode of the field value once extracted.
1945 TMODE is the mode the caller would like the value to have;
1946 but the value may be returned with type MODE instead.
1948 If REVERSE is true, the extraction is to be done in reverse order.
1950 If a TARGET is specified and we can store in it at no extra cost,
1951 we do so, and return TARGET.
1952 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1953 if they are equally easy. */
1956 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1957 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1958 machine_mode mode
, machine_mode tmode
, bool reverse
,
1963 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1964 if (GET_MODE_BITSIZE (GET_MODE (str_rtx
)) > 0)
1965 mode1
= GET_MODE (str_rtx
);
1966 else if (target
&& GET_MODE_BITSIZE (GET_MODE (target
)) > 0)
1967 mode1
= GET_MODE (target
);
1971 scalar_int_mode int_mode
;
1972 if (is_a
<scalar_int_mode
> (mode1
, &int_mode
)
1973 && strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, int_mode
, 0, 0))
1975 /* Extraction of a full INT_MODE value can be done with a simple load.
1976 We know here that the field can be accessed with one single
1977 instruction. For targets that support unaligned memory,
1978 an unaligned access may be necessary. */
1979 if (bitsize
== GET_MODE_BITSIZE (int_mode
))
1981 rtx result
= adjust_bitfield_address (str_rtx
, int_mode
,
1982 bitnum
/ BITS_PER_UNIT
);
1984 result
= flip_storage_order (int_mode
, result
);
1985 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1986 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
1989 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, bitsize
, bitnum
,
1991 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (int_mode
));
1992 str_rtx
= copy_to_reg (str_rtx
);
1995 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1996 target
, mode
, tmode
, reverse
, true, alt_rtl
);
1999 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2000 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2001 otherwise OP0 is a BLKmode MEM.
2003 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2004 If REVERSE is true, the extraction is to be done in reverse order.
2006 If TARGET is nonzero, attempts to store the value there
2007 and return TARGET, but this is not guaranteed.
2008 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2011 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
2012 opt_scalar_int_mode op0_mode
,
2013 unsigned HOST_WIDE_INT bitsize
,
2014 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2015 int unsignedp
, bool reverse
)
2017 scalar_int_mode mode
;
2020 if (!get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
),
2021 BITS_PER_WORD
, MEM_VOLATILE_P (op0
), &mode
))
2022 /* The only way this should occur is if the field spans word
2024 return extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
2025 unsignedp
, reverse
);
2027 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
2030 mode
= op0_mode
.require ();
2032 return extract_fixed_bit_field_1 (tmode
, op0
, mode
, bitsize
, bitnum
,
2033 target
, unsignedp
, reverse
);
2036 /* Helper function for extract_fixed_bit_field, extracts
2037 the bit field always using MODE, which is the mode of OP0.
2038 The other arguments are as for extract_fixed_bit_field. */
2041 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
, scalar_int_mode mode
,
2042 unsigned HOST_WIDE_INT bitsize
,
2043 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2044 int unsignedp
, bool reverse
)
2046 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2047 for invalid input, such as extract equivalent of f5 from
2048 gcc.dg/pr48335-2.c. */
2050 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2051 /* BITNUM is the distance between our msb and that of OP0.
2052 Convert it to the distance from the lsb. */
2053 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
2055 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2056 We have reduced the big-endian case to the little-endian case. */
2058 op0
= flip_storage_order (mode
, op0
);
2064 /* If the field does not already start at the lsb,
2065 shift it so it does. */
2066 /* Maybe propagate the target for the shift. */
2067 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2070 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
2072 /* Convert the value to the desired mode. TMODE must also be a
2073 scalar integer for this conversion to make sense, since we
2074 shouldn't reinterpret the bits. */
2075 scalar_int_mode new_mode
= as_a
<scalar_int_mode
> (tmode
);
2076 if (mode
!= new_mode
)
2077 op0
= convert_to_mode (new_mode
, op0
, 1);
2079 /* Unless the msb of the field used to be the msb when we shifted,
2080 mask out the upper bits. */
2082 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
2083 return expand_binop (new_mode
, and_optab
, op0
,
2084 mask_rtx (new_mode
, 0, bitsize
, 0),
2085 target
, 1, OPTAB_LIB_WIDEN
);
2089 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2090 then arithmetic-shift its lsb to the lsb of the word. */
2091 op0
= force_reg (mode
, op0
);
2093 /* Find the narrowest integer mode that contains the field. */
2095 opt_scalar_int_mode mode_iter
;
2096 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2097 if (GET_MODE_BITSIZE (mode_iter
.require ()) >= bitsize
+ bitnum
)
2100 mode
= mode_iter
.require ();
2101 op0
= convert_to_mode (mode
, op0
, 0);
2106 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
2108 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
2109 /* Maybe propagate the target for the shift. */
2110 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2111 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
2114 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
2115 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
2118 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2122 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
2125 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
2128 /* Extract a bit field that is split across two words
2129 and return an RTX for the result.
2131 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2132 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2133 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2134 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2137 If REVERSE is true, the extraction is to be done in reverse order. */
2140 extract_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
2141 unsigned HOST_WIDE_INT bitsize
,
2142 unsigned HOST_WIDE_INT bitpos
, int unsignedp
,
2146 unsigned int bitsdone
= 0;
2147 rtx result
= NULL_RTX
;
2150 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2152 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2153 unit
= BITS_PER_WORD
;
2155 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2157 while (bitsdone
< bitsize
)
2159 unsigned HOST_WIDE_INT thissize
;
2161 unsigned HOST_WIDE_INT thispos
;
2162 unsigned HOST_WIDE_INT offset
;
2164 offset
= (bitpos
+ bitsdone
) / unit
;
2165 thispos
= (bitpos
+ bitsdone
) % unit
;
2167 /* THISSIZE must not overrun a word boundary. Otherwise,
2168 extract_fixed_bit_field will call us again, and we will mutually
2170 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2171 thissize
= MIN (thissize
, unit
- thispos
);
2173 /* If OP0 is a register, then handle OFFSET here. */
2174 rtx op0_piece
= op0
;
2175 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
2176 if (SUBREG_P (op0
) || REG_P (op0
))
2178 op0_piece
= operand_subword_force (op0
, offset
, op0_mode
.require ());
2179 op0_piece_mode
= word_mode
;
2183 /* Extract the parts in bit-counting order,
2184 whose meaning is determined by BYTES_PER_UNIT.
2185 OFFSET is in UNITs, and UNIT is in bits. */
2186 part
= extract_fixed_bit_field (word_mode
, op0_piece
, op0_piece_mode
,
2187 thissize
, offset
* unit
+ thispos
,
2189 bitsdone
+= thissize
;
2191 /* Shift this part into place for the result. */
2192 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2194 if (bitsize
!= bitsdone
)
2195 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2196 bitsize
- bitsdone
, 0, 1);
2200 if (bitsdone
!= thissize
)
2201 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2202 bitsdone
- thissize
, 0, 1);
2208 /* Combine the parts with bitwise or. This works
2209 because we extracted each part as an unsigned bit field. */
2210 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2216 /* Unsigned bit field: we are done. */
2219 /* Signed bit field: sign-extend with two arithmetic shifts. */
2220 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2221 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2222 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2223 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2226 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2227 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2228 MODE, fill the upper bits with zeros. Fail if the layout of either
2229 mode is unknown (as for CC modes) or if the extraction would involve
2230 unprofitable mode punning. Return the value on success, otherwise
2233 This is different from gen_lowpart* in these respects:
2235 - the returned value must always be considered an rvalue
2237 - when MODE is wider than SRC_MODE, the extraction involves
2240 - when MODE is smaller than SRC_MODE, the extraction involves
2241 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2243 In other words, this routine performs a computation, whereas the
2244 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2248 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2250 scalar_int_mode int_mode
, src_int_mode
;
2252 if (mode
== src_mode
)
2255 if (CONSTANT_P (src
))
2257 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2258 fails, it will happily create (subreg (symbol_ref)) or similar
2260 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2261 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2265 if (GET_MODE (src
) == VOIDmode
2266 || !validate_subreg (mode
, src_mode
, src
, byte
))
2269 src
= force_reg (GET_MODE (src
), src
);
2270 return gen_rtx_SUBREG (mode
, src
, byte
);
2273 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2276 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2277 && targetm
.modes_tieable_p (mode
, src_mode
))
2279 rtx x
= gen_lowpart_common (mode
, src
);
2284 if (!int_mode_for_mode (src_mode
).exists (&src_int_mode
)
2285 || !int_mode_for_mode (mode
).exists (&int_mode
))
2288 if (!targetm
.modes_tieable_p (src_int_mode
, src_mode
))
2290 if (!targetm
.modes_tieable_p (int_mode
, mode
))
2293 src
= gen_lowpart (src_int_mode
, src
);
2294 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2295 src
= gen_lowpart (mode
, src
);
2299 /* Add INC into TARGET. */
2302 expand_inc (rtx target
, rtx inc
)
2304 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2306 target
, 0, OPTAB_LIB_WIDEN
);
2307 if (value
!= target
)
2308 emit_move_insn (target
, value
);
2311 /* Subtract DEC from TARGET. */
2314 expand_dec (rtx target
, rtx dec
)
2316 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2318 target
, 0, OPTAB_LIB_WIDEN
);
2319 if (value
!= target
)
2320 emit_move_insn (target
, value
);
2323 /* Output a shift instruction for expression code CODE,
2324 with SHIFTED being the rtx for the value to shift,
2325 and AMOUNT the rtx for the amount to shift by.
2326 Store the result in the rtx TARGET, if that is convenient.
2327 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2328 Return the rtx for where the value is.
2329 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2330 in which case 0 is returned. */
2333 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2334 rtx amount
, rtx target
, int unsignedp
, bool may_fail
= false)
2337 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2338 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2339 optab lshift_optab
= ashl_optab
;
2340 optab rshift_arith_optab
= ashr_optab
;
2341 optab rshift_uns_optab
= lshr_optab
;
2342 optab lrotate_optab
= rotl_optab
;
2343 optab rrotate_optab
= rotr_optab
;
2344 machine_mode op1_mode
;
2345 scalar_mode scalar_mode
= GET_MODE_INNER (mode
);
2347 bool speed
= optimize_insn_for_speed_p ();
2350 op1_mode
= GET_MODE (op1
);
2352 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2353 shift amount is a vector, use the vector/vector shift patterns. */
2354 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2356 lshift_optab
= vashl_optab
;
2357 rshift_arith_optab
= vashr_optab
;
2358 rshift_uns_optab
= vlshr_optab
;
2359 lrotate_optab
= vrotl_optab
;
2360 rrotate_optab
= vrotr_optab
;
2363 /* Previously detected shift-counts computed by NEGATE_EXPR
2364 and shifted in the other direction; but that does not work
2367 if (SHIFT_COUNT_TRUNCATED
)
2369 if (CONST_INT_P (op1
)
2370 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2371 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2372 op1
= gen_int_shift_amount (mode
,
2373 (unsigned HOST_WIDE_INT
) INTVAL (op1
)
2374 % GET_MODE_BITSIZE (scalar_mode
));
2375 else if (GET_CODE (op1
) == SUBREG
2376 && subreg_lowpart_p (op1
)
2377 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2378 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2379 op1
= SUBREG_REG (op1
);
2382 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2383 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2384 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2387 && CONST_INT_P (op1
)
2388 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2389 GET_MODE_BITSIZE (scalar_mode
) - 1))
2391 op1
= gen_int_shift_amount (mode
, (GET_MODE_BITSIZE (scalar_mode
)
2394 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2397 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2398 Note that this is not the case for bigger values. For instance a rotation
2399 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2400 0x04030201 (bswapsi). */
2402 && CONST_INT_P (op1
)
2403 && INTVAL (op1
) == BITS_PER_UNIT
2404 && GET_MODE_SIZE (scalar_mode
) == 2
2405 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
)
2406 return expand_unop (HImode
, bswap_optab
, shifted
, NULL_RTX
,
2409 if (op1
== const0_rtx
)
2412 /* Check whether its cheaper to implement a left shift by a constant
2413 bit count by a sequence of additions. */
2414 if (code
== LSHIFT_EXPR
2415 && CONST_INT_P (op1
)
2417 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2418 && INTVAL (op1
) < MAX_BITS_PER_WORD
2419 && (shift_cost (speed
, mode
, INTVAL (op1
))
2420 > INTVAL (op1
) * add_cost (speed
, mode
))
2421 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2424 for (i
= 0; i
< INTVAL (op1
); i
++)
2426 temp
= force_reg (mode
, shifted
);
2427 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2428 unsignedp
, OPTAB_LIB_WIDEN
);
2433 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2435 enum optab_methods methods
;
2438 methods
= OPTAB_DIRECT
;
2439 else if (attempt
== 1)
2440 methods
= OPTAB_WIDEN
;
2442 methods
= OPTAB_LIB_WIDEN
;
2446 /* Widening does not work for rotation. */
2447 if (methods
== OPTAB_WIDEN
)
2449 else if (methods
== OPTAB_LIB_WIDEN
)
2451 /* If we have been unable to open-code this by a rotation,
2452 do it as the IOR of two shifts. I.e., to rotate A
2454 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2455 where C is the bitsize of A.
2457 It is theoretically possible that the target machine might
2458 not be able to perform either shift and hence we would
2459 be making two libcalls rather than just the one for the
2460 shift (similarly if IOR could not be done). We will allow
2461 this extremely unlikely lossage to avoid complicating the
2464 rtx subtarget
= target
== shifted
? 0 : target
;
2465 rtx new_amount
, other_amount
;
2469 if (op1
== const0_rtx
)
2471 else if (CONST_INT_P (op1
))
2472 other_amount
= gen_int_shift_amount
2473 (mode
, GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2477 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2478 op1
, GET_MODE (op1
));
2479 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2481 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2482 gen_int_mode (mask
, GET_MODE (op1
)));
2485 shifted
= force_reg (mode
, shifted
);
2487 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2488 mode
, shifted
, new_amount
, 0, 1);
2489 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2490 mode
, shifted
, other_amount
,
2492 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2493 unsignedp
, methods
);
2496 temp
= expand_binop (mode
,
2497 left
? lrotate_optab
: rrotate_optab
,
2498 shifted
, op1
, target
, unsignedp
, methods
);
2501 temp
= expand_binop (mode
,
2502 left
? lshift_optab
: rshift_uns_optab
,
2503 shifted
, op1
, target
, unsignedp
, methods
);
2505 /* Do arithmetic shifts.
2506 Also, if we are going to widen the operand, we can just as well
2507 use an arithmetic right-shift instead of a logical one. */
2508 if (temp
== 0 && ! rotate
2509 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2511 enum optab_methods methods1
= methods
;
2513 /* If trying to widen a log shift to an arithmetic shift,
2514 don't accept an arithmetic shift of the same size. */
2516 methods1
= OPTAB_MUST_WIDEN
;
2518 /* Arithmetic shift */
2520 temp
= expand_binop (mode
,
2521 left
? lshift_optab
: rshift_arith_optab
,
2522 shifted
, op1
, target
, unsignedp
, methods1
);
2525 /* We used to try extzv here for logical right shifts, but that was
2526 only useful for one machine, the VAX, and caused poor code
2527 generation there for lshrdi3, so the code was deleted and a
2528 define_expand for lshrsi3 was added to vax.md. */
2531 gcc_assert (temp
!= NULL_RTX
|| may_fail
);
2535 /* Output a shift instruction for expression code CODE,
2536 with SHIFTED being the rtx for the value to shift,
2537 and AMOUNT the amount to shift by.
2538 Store the result in the rtx TARGET, if that is convenient.
2539 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2540 Return the rtx for where the value is. */
2543 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2544 int amount
, rtx target
, int unsignedp
)
2546 return expand_shift_1 (code
, mode
, shifted
,
2547 gen_int_shift_amount (mode
, amount
),
2551 /* Likewise, but return 0 if that cannot be done. */
2554 maybe_expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2555 int amount
, rtx target
, int unsignedp
)
2557 return expand_shift_1 (code
, mode
,
2558 shifted
, GEN_INT (amount
), target
, unsignedp
, true);
2561 /* Output a shift instruction for expression code CODE,
2562 with SHIFTED being the rtx for the value to shift,
2563 and AMOUNT the tree for the amount to shift by.
2564 Store the result in the rtx TARGET, if that is convenient.
2565 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2566 Return the rtx for where the value is. */
2569 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2570 tree amount
, rtx target
, int unsignedp
)
2572 return expand_shift_1 (code
, mode
,
2573 shifted
, expand_normal (amount
), target
, unsignedp
);
2577 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2578 const struct mult_cost
*, machine_mode mode
);
2579 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2580 const struct algorithm
*, enum mult_variant
);
2581 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2582 static rtx
extract_high_half (scalar_int_mode
, rtx
);
2583 static rtx
expmed_mult_highpart (scalar_int_mode
, rtx
, rtx
, rtx
, int, int);
2584 static rtx
expmed_mult_highpart_optab (scalar_int_mode
, rtx
, rtx
, rtx
,
2586 /* Compute and return the best algorithm for multiplying by T.
2587 The algorithm must cost less than cost_limit
2588 If retval.cost >= COST_LIMIT, no algorithm was found and all
2589 other field of the returned struct are undefined.
2590 MODE is the machine mode of the multiplication. */
2593 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2594 const struct mult_cost
*cost_limit
, machine_mode mode
)
2597 struct algorithm
*alg_in
, *best_alg
;
2598 struct mult_cost best_cost
;
2599 struct mult_cost new_limit
;
2600 int op_cost
, op_latency
;
2601 unsigned HOST_WIDE_INT orig_t
= t
;
2602 unsigned HOST_WIDE_INT q
;
2603 int maxm
, hash_index
;
2604 bool cache_hit
= false;
2605 enum alg_code cache_alg
= alg_zero
;
2606 bool speed
= optimize_insn_for_speed_p ();
2607 scalar_int_mode imode
;
2608 struct alg_hash_entry
*entry_ptr
;
2610 /* Indicate that no algorithm is yet found. If no algorithm
2611 is found, this value will be returned and indicate failure. */
2612 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2613 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2615 if (cost_limit
->cost
< 0
2616 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2619 /* Be prepared for vector modes. */
2620 imode
= as_a
<scalar_int_mode
> (GET_MODE_INNER (mode
));
2622 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2624 /* Restrict the bits of "t" to the multiplication's mode. */
2625 t
&= GET_MODE_MASK (imode
);
2627 /* t == 1 can be done in zero cost. */
2631 alg_out
->cost
.cost
= 0;
2632 alg_out
->cost
.latency
= 0;
2633 alg_out
->op
[0] = alg_m
;
2637 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2641 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2646 alg_out
->cost
.cost
= zero_cost (speed
);
2647 alg_out
->cost
.latency
= zero_cost (speed
);
2648 alg_out
->op
[0] = alg_zero
;
2653 /* We'll be needing a couple extra algorithm structures now. */
2655 alg_in
= XALLOCA (struct algorithm
);
2656 best_alg
= XALLOCA (struct algorithm
);
2657 best_cost
= *cost_limit
;
2659 /* Compute the hash index. */
2660 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2662 /* See if we already know what to do for T. */
2663 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2664 if (entry_ptr
->t
== t
2665 && entry_ptr
->mode
== mode
2666 && entry_ptr
->speed
== speed
2667 && entry_ptr
->alg
!= alg_unknown
)
2669 cache_alg
= entry_ptr
->alg
;
2671 if (cache_alg
== alg_impossible
)
2673 /* The cache tells us that it's impossible to synthesize
2674 multiplication by T within entry_ptr->cost. */
2675 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2676 /* COST_LIMIT is at least as restrictive as the one
2677 recorded in the hash table, in which case we have no
2678 hope of synthesizing a multiplication. Just
2682 /* If we get here, COST_LIMIT is less restrictive than the
2683 one recorded in the hash table, so we may be able to
2684 synthesize a multiplication. Proceed as if we didn't
2685 have the cache entry. */
2689 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2690 /* The cached algorithm shows that this multiplication
2691 requires more cost than COST_LIMIT. Just return. This
2692 way, we don't clobber this cache entry with
2693 alg_impossible but retain useful information. */
2705 goto do_alg_addsub_t_m2
;
2707 case alg_add_factor
:
2708 case alg_sub_factor
:
2709 goto do_alg_addsub_factor
;
2712 goto do_alg_add_t2_m
;
2715 goto do_alg_sub_t2_m
;
2723 /* If we have a group of zero bits at the low-order part of T, try
2724 multiplying by the remaining bits and then doing a shift. */
2729 m
= ctz_or_zero (t
); /* m = number of low zero bits */
2733 /* The function expand_shift will choose between a shift and
2734 a sequence of additions, so the observed cost is given as
2735 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2736 op_cost
= m
* add_cost (speed
, mode
);
2737 if (shift_cost (speed
, mode
, m
) < op_cost
)
2738 op_cost
= shift_cost (speed
, mode
, m
);
2739 new_limit
.cost
= best_cost
.cost
- op_cost
;
2740 new_limit
.latency
= best_cost
.latency
- op_cost
;
2741 synth_mult (alg_in
, q
, &new_limit
, mode
);
2743 alg_in
->cost
.cost
+= op_cost
;
2744 alg_in
->cost
.latency
+= op_cost
;
2745 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2747 best_cost
= alg_in
->cost
;
2748 std::swap (alg_in
, best_alg
);
2749 best_alg
->log
[best_alg
->ops
] = m
;
2750 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2753 /* See if treating ORIG_T as a signed number yields a better
2754 sequence. Try this sequence only for a negative ORIG_T
2755 as it would be useless for a non-negative ORIG_T. */
2756 if ((HOST_WIDE_INT
) orig_t
< 0)
2758 /* Shift ORIG_T as follows because a right shift of a
2759 negative-valued signed type is implementation
2761 q
= ~(~orig_t
>> m
);
2762 /* The function expand_shift will choose between a shift
2763 and a sequence of additions, so the observed cost is
2764 given as MIN (m * add_cost(speed, mode),
2765 shift_cost(speed, mode, m)). */
2766 op_cost
= m
* add_cost (speed
, mode
);
2767 if (shift_cost (speed
, mode
, m
) < op_cost
)
2768 op_cost
= shift_cost (speed
, mode
, m
);
2769 new_limit
.cost
= best_cost
.cost
- op_cost
;
2770 new_limit
.latency
= best_cost
.latency
- op_cost
;
2771 synth_mult (alg_in
, q
, &new_limit
, mode
);
2773 alg_in
->cost
.cost
+= op_cost
;
2774 alg_in
->cost
.latency
+= op_cost
;
2775 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2777 best_cost
= alg_in
->cost
;
2778 std::swap (alg_in
, best_alg
);
2779 best_alg
->log
[best_alg
->ops
] = m
;
2780 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2788 /* If we have an odd number, add or subtract one. */
2791 unsigned HOST_WIDE_INT w
;
2794 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2796 /* If T was -1, then W will be zero after the loop. This is another
2797 case where T ends with ...111. Handling this with (T + 1) and
2798 subtract 1 produces slightly better code and results in algorithm
2799 selection much faster than treating it like the ...0111 case
2803 /* Reject the case where t is 3.
2804 Thus we prefer addition in that case. */
2807 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2809 op_cost
= add_cost (speed
, mode
);
2810 new_limit
.cost
= best_cost
.cost
- op_cost
;
2811 new_limit
.latency
= best_cost
.latency
- op_cost
;
2812 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2814 alg_in
->cost
.cost
+= op_cost
;
2815 alg_in
->cost
.latency
+= op_cost
;
2816 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2818 best_cost
= alg_in
->cost
;
2819 std::swap (alg_in
, best_alg
);
2820 best_alg
->log
[best_alg
->ops
] = 0;
2821 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2826 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2828 op_cost
= add_cost (speed
, mode
);
2829 new_limit
.cost
= best_cost
.cost
- op_cost
;
2830 new_limit
.latency
= best_cost
.latency
- op_cost
;
2831 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2833 alg_in
->cost
.cost
+= op_cost
;
2834 alg_in
->cost
.latency
+= op_cost
;
2835 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2837 best_cost
= alg_in
->cost
;
2838 std::swap (alg_in
, best_alg
);
2839 best_alg
->log
[best_alg
->ops
] = 0;
2840 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2844 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2845 quickly with a - a * n for some appropriate constant n. */
2846 m
= exact_log2 (-orig_t
+ 1);
2847 if (m
>= 0 && m
< maxm
)
2849 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2850 /* If the target has a cheap shift-and-subtract insn use
2851 that in preference to a shift insn followed by a sub insn.
2852 Assume that the shift-and-sub is "atomic" with a latency
2853 equal to it's cost, otherwise assume that on superscalar
2854 hardware the shift may be executed concurrently with the
2855 earlier steps in the algorithm. */
2856 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2858 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2859 op_latency
= op_cost
;
2862 op_latency
= add_cost (speed
, mode
);
2864 new_limit
.cost
= best_cost
.cost
- op_cost
;
2865 new_limit
.latency
= best_cost
.latency
- op_latency
;
2866 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2869 alg_in
->cost
.cost
+= op_cost
;
2870 alg_in
->cost
.latency
+= op_latency
;
2871 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2873 best_cost
= alg_in
->cost
;
2874 std::swap (alg_in
, best_alg
);
2875 best_alg
->log
[best_alg
->ops
] = m
;
2876 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2884 /* Look for factors of t of the form
2885 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2886 If we find such a factor, we can multiply by t using an algorithm that
2887 multiplies by q, shift the result by m and add/subtract it to itself.
2889 We search for large factors first and loop down, even if large factors
2890 are less probable than small; if we find a large factor we will find a
2891 good sequence quickly, and therefore be able to prune (by decreasing
2892 COST_LIMIT) the search. */
2894 do_alg_addsub_factor
:
2895 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2897 unsigned HOST_WIDE_INT d
;
2899 d
= (HOST_WIDE_INT_1U
<< m
) + 1;
2900 if (t
% d
== 0 && t
> d
&& m
< maxm
2901 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2903 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2904 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
2905 op_cost
= shiftadd_cost (speed
, mode
, m
);
2907 op_latency
= op_cost
;
2910 new_limit
.cost
= best_cost
.cost
- op_cost
;
2911 new_limit
.latency
= best_cost
.latency
- op_latency
;
2912 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2914 alg_in
->cost
.cost
+= op_cost
;
2915 alg_in
->cost
.latency
+= op_latency
;
2916 if (alg_in
->cost
.latency
< op_cost
)
2917 alg_in
->cost
.latency
= op_cost
;
2918 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2920 best_cost
= alg_in
->cost
;
2921 std::swap (alg_in
, best_alg
);
2922 best_alg
->log
[best_alg
->ops
] = m
;
2923 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2925 /* Other factors will have been taken care of in the recursion. */
2929 d
= (HOST_WIDE_INT_1U
<< m
) - 1;
2930 if (t
% d
== 0 && t
> d
&& m
< maxm
2931 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2933 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2934 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
2935 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2937 op_latency
= op_cost
;
2939 new_limit
.cost
= best_cost
.cost
- op_cost
;
2940 new_limit
.latency
= best_cost
.latency
- op_latency
;
2941 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2943 alg_in
->cost
.cost
+= op_cost
;
2944 alg_in
->cost
.latency
+= op_latency
;
2945 if (alg_in
->cost
.latency
< op_cost
)
2946 alg_in
->cost
.latency
= op_cost
;
2947 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2949 best_cost
= alg_in
->cost
;
2950 std::swap (alg_in
, best_alg
);
2951 best_alg
->log
[best_alg
->ops
] = m
;
2952 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2960 /* Try shift-and-add (load effective address) instructions,
2961 i.e. do a*3, a*5, a*9. */
2969 op_cost
= shiftadd_cost (speed
, mode
, m
);
2970 new_limit
.cost
= best_cost
.cost
- op_cost
;
2971 new_limit
.latency
= best_cost
.latency
- op_cost
;
2972 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2974 alg_in
->cost
.cost
+= op_cost
;
2975 alg_in
->cost
.latency
+= op_cost
;
2976 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2978 best_cost
= alg_in
->cost
;
2979 std::swap (alg_in
, best_alg
);
2980 best_alg
->log
[best_alg
->ops
] = m
;
2981 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2992 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2993 new_limit
.cost
= best_cost
.cost
- op_cost
;
2994 new_limit
.latency
= best_cost
.latency
- op_cost
;
2995 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2997 alg_in
->cost
.cost
+= op_cost
;
2998 alg_in
->cost
.latency
+= op_cost
;
2999 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3001 best_cost
= alg_in
->cost
;
3002 std::swap (alg_in
, best_alg
);
3003 best_alg
->log
[best_alg
->ops
] = m
;
3004 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
3012 /* If best_cost has not decreased, we have not found any algorithm. */
3013 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
3015 /* We failed to find an algorithm. Record alg_impossible for
3016 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3017 we are asked to find an algorithm for T within the same or
3018 lower COST_LIMIT, we can immediately return to the
3021 entry_ptr
->mode
= mode
;
3022 entry_ptr
->speed
= speed
;
3023 entry_ptr
->alg
= alg_impossible
;
3024 entry_ptr
->cost
= *cost_limit
;
3028 /* Cache the result. */
3032 entry_ptr
->mode
= mode
;
3033 entry_ptr
->speed
= speed
;
3034 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
3035 entry_ptr
->cost
.cost
= best_cost
.cost
;
3036 entry_ptr
->cost
.latency
= best_cost
.latency
;
3039 /* If we are getting a too long sequence for `struct algorithm'
3040 to record, make this search fail. */
3041 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
3044 /* Copy the algorithm from temporary space to the space at alg_out.
3045 We avoid using structure assignment because the majority of
3046 best_alg is normally undefined, and this is a critical function. */
3047 alg_out
->ops
= best_alg
->ops
+ 1;
3048 alg_out
->cost
= best_cost
;
3049 memcpy (alg_out
->op
, best_alg
->op
,
3050 alg_out
->ops
* sizeof *alg_out
->op
);
3051 memcpy (alg_out
->log
, best_alg
->log
,
3052 alg_out
->ops
* sizeof *alg_out
->log
);
3055 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3056 Try three variations:
3058 - a shift/add sequence based on VAL itself
3059 - a shift/add sequence based on -VAL, followed by a negation
3060 - a shift/add sequence based on VAL - 1, followed by an addition.
3062 Return true if the cheapest of these cost less than MULT_COST,
3063 describing the algorithm in *ALG and final fixup in *VARIANT. */
3066 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
3067 struct algorithm
*alg
, enum mult_variant
*variant
,
3070 struct algorithm alg2
;
3071 struct mult_cost limit
;
3073 bool speed
= optimize_insn_for_speed_p ();
3075 /* Fail quickly for impossible bounds. */
3079 /* Ensure that mult_cost provides a reasonable upper bound.
3080 Any constant multiplication can be performed with less
3081 than 2 * bits additions. */
3082 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
3083 if (mult_cost
> op_cost
)
3084 mult_cost
= op_cost
;
3086 *variant
= basic_variant
;
3087 limit
.cost
= mult_cost
;
3088 limit
.latency
= mult_cost
;
3089 synth_mult (alg
, val
, &limit
, mode
);
3091 /* This works only if the inverted value actually fits in an
3093 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
3095 op_cost
= neg_cost (speed
, mode
);
3096 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3098 limit
.cost
= alg
->cost
.cost
- op_cost
;
3099 limit
.latency
= alg
->cost
.latency
- op_cost
;
3103 limit
.cost
= mult_cost
- op_cost
;
3104 limit
.latency
= mult_cost
- op_cost
;
3107 synth_mult (&alg2
, -val
, &limit
, mode
);
3108 alg2
.cost
.cost
+= op_cost
;
3109 alg2
.cost
.latency
+= op_cost
;
3110 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3111 *alg
= alg2
, *variant
= negate_variant
;
3114 /* This proves very useful for division-by-constant. */
3115 op_cost
= add_cost (speed
, mode
);
3116 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3118 limit
.cost
= alg
->cost
.cost
- op_cost
;
3119 limit
.latency
= alg
->cost
.latency
- op_cost
;
3123 limit
.cost
= mult_cost
- op_cost
;
3124 limit
.latency
= mult_cost
- op_cost
;
3127 synth_mult (&alg2
, val
- 1, &limit
, mode
);
3128 alg2
.cost
.cost
+= op_cost
;
3129 alg2
.cost
.latency
+= op_cost
;
3130 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3131 *alg
= alg2
, *variant
= add_variant
;
3133 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
3136 /* A subroutine of expand_mult, used for constant multiplications.
3137 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3138 convenient. Use the shift/add sequence described by ALG and apply
3139 the final fixup specified by VARIANT. */
3142 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
3143 rtx target
, const struct algorithm
*alg
,
3144 enum mult_variant variant
)
3146 unsigned HOST_WIDE_INT val_so_far
;
3152 /* Avoid referencing memory over and over and invalid sharing
3154 op0
= force_reg (mode
, op0
);
3156 /* ACCUM starts out either as OP0 or as a zero, depending on
3157 the first operation. */
3159 if (alg
->op
[0] == alg_zero
)
3161 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
3164 else if (alg
->op
[0] == alg_m
)
3166 accum
= copy_to_mode_reg (mode
, op0
);
3172 for (opno
= 1; opno
< alg
->ops
; opno
++)
3174 int log
= alg
->log
[opno
];
3175 rtx shift_subtarget
= optimize
? 0 : accum
;
3177 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
3180 rtx accum_target
= optimize
? 0 : accum
;
3183 switch (alg
->op
[opno
])
3186 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3187 /* REG_EQUAL note will be attached to the following insn. */
3188 emit_move_insn (accum
, tem
);
3193 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3194 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3195 add_target
? add_target
: accum_target
);
3196 val_so_far
+= HOST_WIDE_INT_1U
<< log
;
3200 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3201 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3202 add_target
? add_target
: accum_target
);
3203 val_so_far
-= HOST_WIDE_INT_1U
<< log
;
3207 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3208 log
, shift_subtarget
, 0);
3209 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3210 add_target
? add_target
: accum_target
);
3211 val_so_far
= (val_so_far
<< log
) + 1;
3215 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3216 log
, shift_subtarget
, 0);
3217 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3218 add_target
? add_target
: accum_target
);
3219 val_so_far
= (val_so_far
<< log
) - 1;
3222 case alg_add_factor
:
3223 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3224 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3225 add_target
? add_target
: accum_target
);
3226 val_so_far
+= val_so_far
<< log
;
3229 case alg_sub_factor
:
3230 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3231 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3233 ? add_target
: (optimize
? 0 : tem
)));
3234 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3241 if (SCALAR_INT_MODE_P (mode
))
3243 /* Write a REG_EQUAL note on the last insn so that we can cse
3244 multiplication sequences. Note that if ACCUM is a SUBREG,
3245 we've set the inner register and must properly indicate that. */
3246 tem
= op0
, nmode
= mode
;
3247 accum_inner
= accum
;
3248 if (GET_CODE (accum
) == SUBREG
)
3250 accum_inner
= SUBREG_REG (accum
);
3251 nmode
= GET_MODE (accum_inner
);
3252 tem
= gen_lowpart (nmode
, op0
);
3255 insn
= get_last_insn ();
3256 set_dst_reg_note (insn
, REG_EQUAL
,
3257 gen_rtx_MULT (nmode
, tem
,
3258 gen_int_mode (val_so_far
, nmode
)),
3263 if (variant
== negate_variant
)
3265 val_so_far
= -val_so_far
;
3266 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3268 else if (variant
== add_variant
)
3270 val_so_far
= val_so_far
+ 1;
3271 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3274 /* Compare only the bits of val and val_so_far that are significant
3275 in the result mode, to avoid sign-/zero-extension confusion. */
3276 nmode
= GET_MODE_INNER (mode
);
3277 val
&= GET_MODE_MASK (nmode
);
3278 val_so_far
&= GET_MODE_MASK (nmode
);
3279 gcc_assert (val
== (HOST_WIDE_INT
) val_so_far
);
3284 /* Perform a multiplication and return an rtx for the result.
3285 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3286 TARGET is a suggestion for where to store the result (an rtx).
3288 We check specially for a constant integer as OP1.
3289 If you want this check for OP0 as well, then before calling
3290 you should swap the two operands if OP0 would be constant. */
3293 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3294 int unsignedp
, bool no_libcall
)
3296 enum mult_variant variant
;
3297 struct algorithm algorithm
;
3300 bool speed
= optimize_insn_for_speed_p ();
3301 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3303 if (CONSTANT_P (op0
))
3304 std::swap (op0
, op1
);
3306 /* For vectors, there are several simplifications that can be made if
3307 all elements of the vector constant are identical. */
3308 scalar_op1
= unwrap_const_vec_duplicate (op1
);
3310 if (INTEGRAL_MODE_P (mode
))
3313 HOST_WIDE_INT coeff
;
3317 if (op1
== CONST0_RTX (mode
))
3319 if (op1
== CONST1_RTX (mode
))
3321 if (op1
== CONSTM1_RTX (mode
))
3322 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3328 /* If mode is integer vector mode, check if the backend supports
3329 vector lshift (by scalar or vector) at all. If not, we can't use
3330 synthetized multiply. */
3331 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3332 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3333 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3336 /* These are the operations that are potentially turned into
3337 a sequence of shifts and additions. */
3338 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3340 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3341 less than or equal in size to `unsigned int' this doesn't matter.
3342 If the mode is larger than `unsigned int', then synth_mult works
3343 only if the constant value exactly fits in an `unsigned int' without
3344 any truncation. This means that multiplying by negative values does
3345 not work; results are off by 2^32 on a 32 bit machine. */
3346 if (CONST_INT_P (scalar_op1
))
3348 coeff
= INTVAL (scalar_op1
);
3351 #if TARGET_SUPPORTS_WIDE_INT
3352 else if (CONST_WIDE_INT_P (scalar_op1
))
3354 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3357 int shift
= wi::exact_log2 (rtx_mode_t (scalar_op1
, mode
));
3358 /* Perfect power of 2 (other than 1, which is handled above). */
3360 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3361 shift
, target
, unsignedp
);
3368 /* We used to test optimize here, on the grounds that it's better to
3369 produce a smaller program when -O is not used. But this causes
3370 such a terrible slowdown sometimes that it seems better to always
3373 /* Special case powers of two. */
3374 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3375 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3376 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3377 floor_log2 (coeff
), target
, unsignedp
);
3379 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3381 /* Attempt to handle multiplication of DImode values by negative
3382 coefficients, by performing the multiplication by a positive
3383 multiplier and then inverting the result. */
3384 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3386 /* Its safe to use -coeff even for INT_MIN, as the
3387 result is interpreted as an unsigned coefficient.
3388 Exclude cost of op0 from max_cost to match the cost
3389 calculation of the synth_mult. */
3390 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3391 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
),
3393 - neg_cost (speed
, mode
));
3397 /* Special case powers of two. */
3398 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3400 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3401 floor_log2 (coeff
), target
, unsignedp
);
3402 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3405 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3408 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3409 &algorithm
, variant
);
3410 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3415 /* Exclude cost of op0 from max_cost to match the cost
3416 calculation of the synth_mult. */
3417 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), mode
, speed
);
3418 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3419 return expand_mult_const (mode
, op0
, coeff
, target
,
3420 &algorithm
, variant
);
3424 /* Expand x*2.0 as x+x. */
3425 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
)
3426 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1
), &dconst2
))
3428 op0
= force_reg (GET_MODE (op0
), op0
);
3429 return expand_binop (mode
, add_optab
, op0
, op0
,
3431 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3434 /* This used to use umul_optab if unsigned, but for non-widening multiply
3435 there is no difference between signed and unsigned. */
3436 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3437 op0
, op1
, target
, unsignedp
,
3438 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3439 gcc_assert (op0
|| no_libcall
);
3443 /* Return a cost estimate for multiplying a register by the given
3444 COEFFicient in the given MODE and SPEED. */
3447 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3450 struct algorithm algorithm
;
3451 enum mult_variant variant
;
3453 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3454 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
),
3456 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3457 return algorithm
.cost
.cost
;
3462 /* Perform a widening multiplication and return an rtx for the result.
3463 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3464 TARGET is a suggestion for where to store the result (an rtx).
3465 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3466 or smul_widen_optab.
3468 We check specially for a constant integer as OP1, comparing the
3469 cost of a widening multiply against the cost of a sequence of shifts
3473 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3474 int unsignedp
, optab this_optab
)
3476 bool speed
= optimize_insn_for_speed_p ();
3479 if (CONST_INT_P (op1
)
3480 && GET_MODE (op0
) != VOIDmode
3481 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3482 this_optab
== umul_widen_optab
))
3483 && CONST_INT_P (cop1
)
3484 && (INTVAL (cop1
) >= 0
3485 || HWI_COMPUTABLE_MODE_P (mode
)))
3487 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3489 enum mult_variant variant
;
3490 struct algorithm algorithm
;
3493 return CONST0_RTX (mode
);
3495 /* Special case powers of two. */
3496 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3498 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3499 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3500 floor_log2 (coeff
), target
, unsignedp
);
3503 /* Exclude cost of op0 from max_cost to match the cost
3504 calculation of the synth_mult. */
3505 max_cost
= mul_widen_cost (speed
, mode
);
3506 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3509 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3510 return expand_mult_const (mode
, op0
, coeff
, target
,
3511 &algorithm
, variant
);
3514 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3515 unsignedp
, OPTAB_LIB_WIDEN
);
3518 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3519 replace division by D, and put the least significant N bits of the result
3520 in *MULTIPLIER_PTR and return the most significant bit.
3522 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3523 needed precision is in PRECISION (should be <= N).
3525 PRECISION should be as small as possible so this function can choose
3526 multiplier more freely.
3528 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3529 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3531 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3532 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3534 unsigned HOST_WIDE_INT
3535 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3536 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3537 int *post_shift_ptr
, int *lgup_ptr
)
3539 int lgup
, post_shift
;
3542 /* lgup = ceil(log2(divisor)); */
3543 lgup
= ceil_log2 (d
);
3545 gcc_assert (lgup
<= n
);
3548 pow2
= n
+ lgup
- precision
;
3550 /* mlow = 2^(N + lgup)/d */
3551 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3552 wide_int mlow
= wi::udiv_trunc (val
, d
);
3554 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3555 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3556 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3558 /* If precision == N, then mlow, mhigh exceed 2^N
3559 (but they do not exceed 2^(N+1)). */
3561 /* Reduce to lowest terms. */
3562 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3564 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3565 HOST_BITS_PER_WIDE_INT
);
3566 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3567 HOST_BITS_PER_WIDE_INT
);
3571 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3572 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3575 *post_shift_ptr
= post_shift
;
3577 if (n
< HOST_BITS_PER_WIDE_INT
)
3579 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< n
) - 1;
3580 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3581 return mhigh
.to_uhwi () >= mask
;
3585 *multiplier_ptr
= mhigh
.to_uhwi ();
3586 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3590 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3591 congruent to 1 (mod 2**N). */
3593 static unsigned HOST_WIDE_INT
3594 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3596 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3598 /* The algorithm notes that the choice y = x satisfies
3599 x*y == 1 mod 2^3, since x is assumed odd.
3600 Each iteration doubles the number of bits of significance in y. */
3602 unsigned HOST_WIDE_INT mask
;
3603 unsigned HOST_WIDE_INT y
= x
;
3606 mask
= (n
== HOST_BITS_PER_WIDE_INT
3608 : (HOST_WIDE_INT_1U
<< n
) - 1);
3612 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3618 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3619 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3620 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3621 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3624 The result is put in TARGET if that is convenient.
3626 MODE is the mode of operation. */
3629 expand_mult_highpart_adjust (scalar_int_mode mode
, rtx adj_operand
, rtx op0
,
3630 rtx op1
, rtx target
, int unsignedp
)
3633 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3635 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3636 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3637 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3639 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3642 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3643 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3644 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3645 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3651 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3654 extract_high_half (scalar_int_mode mode
, rtx op
)
3656 if (mode
== word_mode
)
3657 return gen_highpart (mode
, op
);
3659 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3661 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3662 GET_MODE_BITSIZE (mode
), 0, 1);
3663 return convert_modes (mode
, wider_mode
, op
, 0);
3666 /* Like expmed_mult_highpart, but only consider using a multiplication
3667 optab. OP1 is an rtx for the constant operand. */
3670 expmed_mult_highpart_optab (scalar_int_mode mode
, rtx op0
, rtx op1
,
3671 rtx target
, int unsignedp
, int max_cost
)
3673 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3677 bool speed
= optimize_insn_for_speed_p ();
3679 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3681 size
= GET_MODE_BITSIZE (mode
);
3683 /* Firstly, try using a multiplication insn that only generates the needed
3684 high part of the product, and in the sign flavor of unsignedp. */
3685 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3687 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3688 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3689 unsignedp
, OPTAB_DIRECT
);
3694 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3695 Need to adjust the result after the multiplication. */
3696 if (size
- 1 < BITS_PER_WORD
3697 && (mul_highpart_cost (speed
, mode
)
3698 + 2 * shift_cost (speed
, mode
, size
-1)
3699 + 4 * add_cost (speed
, mode
) < max_cost
))
3701 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3702 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3703 unsignedp
, OPTAB_DIRECT
);
3705 /* We used the wrong signedness. Adjust the result. */
3706 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3710 /* Try widening multiplication. */
3711 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3712 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3713 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3715 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3716 unsignedp
, OPTAB_WIDEN
);
3718 return extract_high_half (mode
, tem
);
3721 /* Try widening the mode and perform a non-widening multiplication. */
3722 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3723 && size
- 1 < BITS_PER_WORD
3724 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3730 /* We need to widen the operands, for example to ensure the
3731 constant multiplier is correctly sign or zero extended.
3732 Use a sequence to clean-up any instructions emitted by
3733 the conversions if things don't work out. */
3735 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3736 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3737 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3738 unsignedp
, OPTAB_WIDEN
);
3739 insns
= get_insns ();
3745 return extract_high_half (mode
, tem
);
3749 /* Try widening multiplication of opposite signedness, and adjust. */
3750 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3751 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3752 && size
- 1 < BITS_PER_WORD
3753 && (mul_widen_cost (speed
, wider_mode
)
3754 + 2 * shift_cost (speed
, mode
, size
-1)
3755 + 4 * add_cost (speed
, mode
) < max_cost
))
3757 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3758 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3761 tem
= extract_high_half (mode
, tem
);
3762 /* We used the wrong signedness. Adjust the result. */
3763 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3771 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3772 putting the high half of the result in TARGET if that is convenient,
3773 and return where the result is. If the operation can not be performed,
3776 MODE is the mode of operation and result.
3778 UNSIGNEDP nonzero means unsigned multiply.
3780 MAX_COST is the total allowed cost for the expanded RTL. */
3783 expmed_mult_highpart (scalar_int_mode mode
, rtx op0
, rtx op1
,
3784 rtx target
, int unsignedp
, int max_cost
)
3786 unsigned HOST_WIDE_INT cnst1
;
3788 bool sign_adjust
= false;
3789 enum mult_variant variant
;
3790 struct algorithm alg
;
3792 bool speed
= optimize_insn_for_speed_p ();
3794 /* We can't support modes wider than HOST_BITS_PER_INT. */
3795 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3797 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3799 /* We can't optimize modes wider than BITS_PER_WORD.
3800 ??? We might be able to perform double-word arithmetic if
3801 mode == word_mode, however all the cost calculations in
3802 synth_mult etc. assume single-word operations. */
3803 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3804 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3805 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3806 unsignedp
, max_cost
);
3808 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3810 /* Check whether we try to multiply by a negative constant. */
3811 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3814 extra_cost
+= add_cost (speed
, mode
);
3817 /* See whether shift/add multiplication is cheap enough. */
3818 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3819 max_cost
- extra_cost
))
3821 /* See whether the specialized multiplication optabs are
3822 cheaper than the shift/add version. */
3823 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3824 alg
.cost
.cost
+ extra_cost
);
3828 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3829 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3830 tem
= extract_high_half (mode
, tem
);
3832 /* Adjust result for signedness. */
3834 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3838 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3839 unsignedp
, max_cost
);
3843 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3846 expand_smod_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3848 rtx result
, temp
, shift
;
3849 rtx_code_label
*label
;
3851 int prec
= GET_MODE_PRECISION (mode
);
3853 logd
= floor_log2 (d
);
3854 result
= gen_reg_rtx (mode
);
3856 /* Avoid conditional branches when they're expensive. */
3857 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3858 && optimize_insn_for_speed_p ())
3860 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3864 HOST_WIDE_INT masklow
= (HOST_WIDE_INT_1
<< logd
) - 1;
3865 signmask
= force_reg (mode
, signmask
);
3866 shift
= gen_int_shift_amount (mode
, GET_MODE_BITSIZE (mode
) - logd
);
3868 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3869 which instruction sequence to use. If logical right shifts
3870 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3871 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3873 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3874 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3875 || (set_src_cost (temp
, mode
, optimize_insn_for_speed_p ())
3876 > COSTS_N_INSNS (2)))
3878 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3879 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3880 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3881 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3882 temp
= expand_binop (mode
, and_optab
, temp
,
3883 gen_int_mode (masklow
, mode
),
3884 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3885 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3886 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3887 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3888 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3892 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3893 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3894 signmask
= force_reg (mode
, signmask
);
3896 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3897 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3898 temp
= expand_binop (mode
, and_optab
, temp
,
3899 gen_int_mode (masklow
, mode
),
3900 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3901 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3902 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3908 /* Mask contains the mode's signbit and the significant bits of the
3909 modulus. By including the signbit in the operation, many targets
3910 can avoid an explicit compare operation in the following comparison
3912 wide_int mask
= wi::mask (logd
, false, prec
);
3913 mask
= wi::set_bit (mask
, prec
- 1);
3915 temp
= expand_binop (mode
, and_optab
, op0
,
3916 immed_wide_int_const (mask
, mode
),
3917 result
, 1, OPTAB_LIB_WIDEN
);
3919 emit_move_insn (result
, temp
);
3921 label
= gen_label_rtx ();
3922 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3924 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3925 0, OPTAB_LIB_WIDEN
);
3927 mask
= wi::mask (logd
, true, prec
);
3928 temp
= expand_binop (mode
, ior_optab
, temp
,
3929 immed_wide_int_const (mask
, mode
),
3930 result
, 1, OPTAB_LIB_WIDEN
);
3931 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3932 0, OPTAB_LIB_WIDEN
);
3934 emit_move_insn (result
, temp
);
3939 /* Expand signed division of OP0 by a power of two D in mode MODE.
3940 This routine is only called for positive values of D. */
3943 expand_sdiv_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3946 rtx_code_label
*label
;
3949 logd
= floor_log2 (d
);
3952 && BRANCH_COST (optimize_insn_for_speed_p (),
3955 temp
= gen_reg_rtx (mode
);
3956 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3957 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3958 0, OPTAB_LIB_WIDEN
);
3959 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3962 if (HAVE_conditional_move
3963 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3968 temp2
= copy_to_mode_reg (mode
, op0
);
3969 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
3970 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3971 temp
= force_reg (mode
, temp
);
3973 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3974 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3975 mode
, temp
, temp2
, mode
, 0);
3978 rtx_insn
*seq
= get_insns ();
3981 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
3986 if (BRANCH_COST (optimize_insn_for_speed_p (),
3989 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3991 temp
= gen_reg_rtx (mode
);
3992 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3993 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
3994 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
3995 > COSTS_N_INSNS (1))
3996 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
3997 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3999 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
4000 ushift
, NULL_RTX
, 1);
4001 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4002 0, OPTAB_LIB_WIDEN
);
4003 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4006 label
= gen_label_rtx ();
4007 temp
= copy_to_mode_reg (mode
, op0
);
4008 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
4009 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
4011 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4014 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4015 if that is convenient, and returning where the result is.
4016 You may request either the quotient or the remainder as the result;
4017 specify REM_FLAG nonzero to get the remainder.
4019 CODE is the expression code for which kind of division this is;
4020 it controls how rounding is done. MODE is the machine mode to use.
4021 UNSIGNEDP nonzero means do unsigned division. */
4023 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4024 and then correct it by or'ing in missing high bits
4025 if result of ANDI is nonzero.
4026 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4027 This could optimize to a bfexts instruction.
4028 But C doesn't use these operations, so their optimizations are
4030 /* ??? For modulo, we don't actually need the highpart of the first product,
4031 the low part will do nicely. And for small divisors, the second multiply
4032 can also be a low-part only multiply or even be completely left out.
4033 E.g. to calculate the remainder of a division by 3 with a 32 bit
4034 multiply, multiply with 0x55555556 and extract the upper two bits;
4035 the result is exact for inputs up to 0x1fffffff.
4036 The input range can be reduced by using cross-sum rules.
4037 For odd divisors >= 3, the following table gives right shift counts
4038 so that if a number is shifted by an integer multiple of the given
4039 amount, the remainder stays the same:
4040 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4041 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4042 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4043 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4044 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4046 Cross-sum rules for even numbers can be derived by leaving as many bits
4047 to the right alone as the divisor has zeros to the right.
4048 E.g. if x is an unsigned 32 bit number:
4049 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4053 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
4054 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
4056 machine_mode compute_mode
;
4058 rtx quotient
= 0, remainder
= 0;
4061 optab optab1
, optab2
;
4062 int op1_is_constant
, op1_is_pow2
= 0;
4063 int max_cost
, extra_cost
;
4064 static HOST_WIDE_INT last_div_const
= 0;
4065 bool speed
= optimize_insn_for_speed_p ();
4067 op1_is_constant
= CONST_INT_P (op1
);
4068 if (op1_is_constant
)
4070 wide_int ext_op1
= rtx_mode_t (op1
, mode
);
4071 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4073 && wi::popcount (wi::neg (ext_op1
)) == 1));
4077 This is the structure of expand_divmod:
4079 First comes code to fix up the operands so we can perform the operations
4080 correctly and efficiently.
4082 Second comes a switch statement with code specific for each rounding mode.
4083 For some special operands this code emits all RTL for the desired
4084 operation, for other cases, it generates only a quotient and stores it in
4085 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4086 to indicate that it has not done anything.
4088 Last comes code that finishes the operation. If QUOTIENT is set and
4089 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4090 QUOTIENT is not set, it is computed using trunc rounding.
4092 We try to generate special code for division and remainder when OP1 is a
4093 constant. If |OP1| = 2**n we can use shifts and some other fast
4094 operations. For other values of OP1, we compute a carefully selected
4095 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4098 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4099 half of the product. Different strategies for generating the product are
4100 implemented in expmed_mult_highpart.
4102 If what we actually want is the remainder, we generate that by another
4103 by-constant multiplication and a subtraction. */
4105 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4106 code below will malfunction if we are, so check here and handle
4107 the special case if so. */
4108 if (op1
== const1_rtx
)
4109 return rem_flag
? const0_rtx
: op0
;
4111 /* When dividing by -1, we could get an overflow.
4112 negv_optab can handle overflows. */
4113 if (! unsignedp
&& op1
== constm1_rtx
)
4117 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
4118 ? negv_optab
: neg_optab
, op0
, target
, 0);
4122 /* Don't use the function value register as a target
4123 since we have to read it as well as write it,
4124 and function-inlining gets confused by this. */
4125 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
4126 /* Don't clobber an operand while doing a multi-step calculation. */
4127 || ((rem_flag
|| op1_is_constant
)
4128 && (reg_mentioned_p (target
, op0
)
4129 || (MEM_P (op0
) && MEM_P (target
))))
4130 || reg_mentioned_p (target
, op1
)
4131 || (MEM_P (op1
) && MEM_P (target
))))
4134 /* Get the mode in which to perform this computation. Normally it will
4135 be MODE, but sometimes we can't do the desired operation in MODE.
4136 If so, pick a wider mode in which we can do the operation. Convert
4137 to that mode at the start to avoid repeated conversions.
4139 First see what operations we need. These depend on the expression
4140 we are evaluating. (We assume that divxx3 insns exist under the
4141 same conditions that modxx3 insns and that these insns don't normally
4142 fail. If these assumptions are not correct, we may generate less
4143 efficient code in some cases.)
4145 Then see if we find a mode in which we can open-code that operation
4146 (either a division, modulus, or shift). Finally, check for the smallest
4147 mode for which we can do the operation with a library call. */
4149 /* We might want to refine this now that we have division-by-constant
4150 optimization. Since expmed_mult_highpart tries so many variants, it is
4151 not straightforward to generalize this. Maybe we should make an array
4152 of possible modes in init_expmed? Save this for GCC 2.7. */
4154 optab1
= (op1_is_pow2
4155 ? (unsignedp
? lshr_optab
: ashr_optab
)
4156 : (unsignedp
? udiv_optab
: sdiv_optab
));
4157 optab2
= (op1_is_pow2
? optab1
4158 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
4160 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4161 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4162 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4165 if (compute_mode
== VOIDmode
)
4166 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4167 if (optab_libfunc (optab1
, compute_mode
)
4168 || optab_libfunc (optab2
, compute_mode
))
4171 /* If we still couldn't find a mode, use MODE, but expand_binop will
4173 if (compute_mode
== VOIDmode
)
4174 compute_mode
= mode
;
4176 if (target
&& GET_MODE (target
) == compute_mode
)
4179 tquotient
= gen_reg_rtx (compute_mode
);
4182 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4183 (mode), and thereby get better code when OP1 is a constant. Do that
4184 later. It will require going over all usages of SIZE below. */
4185 size
= GET_MODE_BITSIZE (mode
);
4188 /* Only deduct something for a REM if the last divide done was
4189 for a different constant. Then set the constant of the last
4191 max_cost
= (unsignedp
4192 ? udiv_cost (speed
, compute_mode
)
4193 : sdiv_cost (speed
, compute_mode
));
4194 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4195 && INTVAL (op1
) == last_div_const
))
4196 max_cost
-= (mul_cost (speed
, compute_mode
)
4197 + add_cost (speed
, compute_mode
));
4199 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4201 /* Now convert to the best mode to use. */
4202 if (compute_mode
!= mode
)
4204 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4205 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4207 /* convert_modes may have placed op1 into a register, so we
4208 must recompute the following. */
4209 op1_is_constant
= CONST_INT_P (op1
);
4210 if (op1_is_constant
)
4212 wide_int ext_op1
= rtx_mode_t (op1
, compute_mode
);
4213 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4215 && wi::popcount (wi::neg (ext_op1
)) == 1));
4221 /* If one of the operands is a volatile MEM, copy it into a register. */
4223 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4224 op0
= force_reg (compute_mode
, op0
);
4225 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4226 op1
= force_reg (compute_mode
, op1
);
4228 /* If we need the remainder or if OP1 is constant, we need to
4229 put OP0 in a register in case it has any queued subexpressions. */
4230 if (rem_flag
|| op1_is_constant
)
4231 op0
= force_reg (compute_mode
, op0
);
4233 last
= get_last_insn ();
4235 /* Promote floor rounding to trunc rounding for unsigned operations. */
4238 if (code
== FLOOR_DIV_EXPR
)
4239 code
= TRUNC_DIV_EXPR
;
4240 if (code
== FLOOR_MOD_EXPR
)
4241 code
= TRUNC_MOD_EXPR
;
4242 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4243 code
= TRUNC_DIV_EXPR
;
4246 if (op1
!= const0_rtx
)
4249 case TRUNC_MOD_EXPR
:
4250 case TRUNC_DIV_EXPR
:
4251 if (op1_is_constant
)
4253 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4254 int size
= GET_MODE_BITSIZE (int_mode
);
4257 unsigned HOST_WIDE_INT mh
, ml
;
4258 int pre_shift
, post_shift
;
4260 wide_int wd
= rtx_mode_t (op1
, int_mode
);
4261 unsigned HOST_WIDE_INT d
= wd
.to_uhwi ();
4263 if (wi::popcount (wd
) == 1)
4265 pre_shift
= floor_log2 (d
);
4268 unsigned HOST_WIDE_INT mask
4269 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4271 = expand_binop (int_mode
, and_optab
, op0
,
4272 gen_int_mode (mask
, int_mode
),
4276 return gen_lowpart (mode
, remainder
);
4278 quotient
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4279 pre_shift
, tquotient
, 1);
4281 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4283 if (d
>= (HOST_WIDE_INT_1U
<< (size
- 1)))
4285 /* Most significant bit of divisor is set; emit an scc
4287 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4292 /* Find a suitable multiplier and right shift count
4293 instead of multiplying with D. */
4295 mh
= choose_multiplier (d
, size
, size
,
4296 &ml
, &post_shift
, &dummy
);
4298 /* If the suggested multiplier is more than SIZE bits,
4299 we can do better for even divisors, using an
4300 initial right shift. */
4301 if (mh
!= 0 && (d
& 1) == 0)
4303 pre_shift
= ctz_or_zero (d
);
4304 mh
= choose_multiplier (d
>> pre_shift
, size
,
4306 &ml
, &post_shift
, &dummy
);
4316 if (post_shift
- 1 >= BITS_PER_WORD
)
4320 = (shift_cost (speed
, int_mode
, post_shift
- 1)
4321 + shift_cost (speed
, int_mode
, 1)
4322 + 2 * add_cost (speed
, int_mode
));
4323 t1
= expmed_mult_highpart
4324 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4325 NULL_RTX
, 1, max_cost
- extra_cost
);
4328 t2
= force_operand (gen_rtx_MINUS (int_mode
,
4331 t3
= expand_shift (RSHIFT_EXPR
, int_mode
,
4332 t2
, 1, NULL_RTX
, 1);
4333 t4
= force_operand (gen_rtx_PLUS (int_mode
,
4336 quotient
= expand_shift
4337 (RSHIFT_EXPR
, int_mode
, t4
,
4338 post_shift
- 1, tquotient
, 1);
4344 if (pre_shift
>= BITS_PER_WORD
4345 || post_shift
>= BITS_PER_WORD
)
4349 (RSHIFT_EXPR
, int_mode
, op0
,
4350 pre_shift
, NULL_RTX
, 1);
4352 = (shift_cost (speed
, int_mode
, pre_shift
)
4353 + shift_cost (speed
, int_mode
, post_shift
));
4354 t2
= expmed_mult_highpart
4356 gen_int_mode (ml
, int_mode
),
4357 NULL_RTX
, 1, max_cost
- extra_cost
);
4360 quotient
= expand_shift
4361 (RSHIFT_EXPR
, int_mode
, t2
,
4362 post_shift
, tquotient
, 1);
4366 else /* Too wide mode to use tricky code */
4369 insn
= get_last_insn ();
4371 set_dst_reg_note (insn
, REG_EQUAL
,
4372 gen_rtx_UDIV (int_mode
, op0
, op1
),
4375 else /* TRUNC_DIV, signed */
4377 unsigned HOST_WIDE_INT ml
;
4378 int lgup
, post_shift
;
4380 HOST_WIDE_INT d
= INTVAL (op1
);
4381 unsigned HOST_WIDE_INT abs_d
;
4383 /* Since d might be INT_MIN, we have to cast to
4384 unsigned HOST_WIDE_INT before negating to avoid
4385 undefined signed overflow. */
4387 ? (unsigned HOST_WIDE_INT
) d
4388 : - (unsigned HOST_WIDE_INT
) d
);
4390 /* n rem d = n rem -d */
4391 if (rem_flag
&& d
< 0)
4394 op1
= gen_int_mode (abs_d
, int_mode
);
4400 quotient
= expand_unop (int_mode
, neg_optab
, op0
,
4402 else if (size
<= HOST_BITS_PER_WIDE_INT
4403 && abs_d
== HOST_WIDE_INT_1U
<< (size
- 1))
4405 /* This case is not handled correctly below. */
4406 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4411 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4412 && (size
<= HOST_BITS_PER_WIDE_INT
|| d
>= 0)
4414 ? smod_pow2_cheap (speed
, int_mode
)
4415 : sdiv_pow2_cheap (speed
, int_mode
))
4416 /* We assume that cheap metric is true if the
4417 optab has an expander for this mode. */
4418 && ((optab_handler ((rem_flag
? smod_optab
4421 != CODE_FOR_nothing
)
4422 || (optab_handler (sdivmod_optab
, int_mode
)
4423 != CODE_FOR_nothing
)))
4425 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
)
4426 && (size
<= HOST_BITS_PER_WIDE_INT
4427 || abs_d
!= (unsigned HOST_WIDE_INT
) d
))
4431 remainder
= expand_smod_pow2 (int_mode
, op0
, d
);
4433 return gen_lowpart (mode
, remainder
);
4436 if (sdiv_pow2_cheap (speed
, int_mode
)
4437 && ((optab_handler (sdiv_optab
, int_mode
)
4438 != CODE_FOR_nothing
)
4439 || (optab_handler (sdivmod_optab
, int_mode
)
4440 != CODE_FOR_nothing
)))
4441 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4443 gen_int_mode (abs_d
,
4447 quotient
= expand_sdiv_pow2 (int_mode
, op0
, abs_d
);
4449 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4450 negate the quotient. */
4453 insn
= get_last_insn ();
4455 && abs_d
< (HOST_WIDE_INT_1U
4456 << (HOST_BITS_PER_WIDE_INT
- 1)))
4457 set_dst_reg_note (insn
, REG_EQUAL
,
4458 gen_rtx_DIV (int_mode
, op0
,
4464 quotient
= expand_unop (int_mode
, neg_optab
,
4465 quotient
, quotient
, 0);
4468 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4470 choose_multiplier (abs_d
, size
, size
- 1,
4471 &ml
, &post_shift
, &lgup
);
4472 if (ml
< HOST_WIDE_INT_1U
<< (size
- 1))
4476 if (post_shift
>= BITS_PER_WORD
4477 || size
- 1 >= BITS_PER_WORD
)
4480 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4481 + shift_cost (speed
, int_mode
, size
- 1)
4482 + add_cost (speed
, int_mode
));
4483 t1
= expmed_mult_highpart
4484 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4485 NULL_RTX
, 0, max_cost
- extra_cost
);
4489 (RSHIFT_EXPR
, int_mode
, t1
,
4490 post_shift
, NULL_RTX
, 0);
4492 (RSHIFT_EXPR
, int_mode
, op0
,
4493 size
- 1, NULL_RTX
, 0);
4496 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t2
),
4500 = force_operand (gen_rtx_MINUS (int_mode
, t2
, t3
),
4507 if (post_shift
>= BITS_PER_WORD
4508 || size
- 1 >= BITS_PER_WORD
)
4511 ml
|= HOST_WIDE_INT_M1U
<< (size
- 1);
4512 mlr
= gen_int_mode (ml
, int_mode
);
4513 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4514 + shift_cost (speed
, int_mode
, size
- 1)
4515 + 2 * add_cost (speed
, int_mode
));
4516 t1
= expmed_mult_highpart (int_mode
, op0
, mlr
,
4518 max_cost
- extra_cost
);
4521 t2
= force_operand (gen_rtx_PLUS (int_mode
, t1
, op0
),
4524 (RSHIFT_EXPR
, int_mode
, t2
,
4525 post_shift
, NULL_RTX
, 0);
4527 (RSHIFT_EXPR
, int_mode
, op0
,
4528 size
- 1, NULL_RTX
, 0);
4531 = force_operand (gen_rtx_MINUS (int_mode
, t4
, t3
),
4535 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t4
),
4539 else /* Too wide mode to use tricky code */
4542 insn
= get_last_insn ();
4544 set_dst_reg_note (insn
, REG_EQUAL
,
4545 gen_rtx_DIV (int_mode
, op0
, op1
),
4551 delete_insns_since (last
);
4554 case FLOOR_DIV_EXPR
:
4555 case FLOOR_MOD_EXPR
:
4556 /* We will come here only for signed operations. */
4557 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
4559 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4560 int size
= GET_MODE_BITSIZE (int_mode
);
4561 unsigned HOST_WIDE_INT mh
, ml
;
4562 int pre_shift
, lgup
, post_shift
;
4563 HOST_WIDE_INT d
= INTVAL (op1
);
4567 /* We could just as easily deal with negative constants here,
4568 but it does not seem worth the trouble for GCC 2.6. */
4569 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4571 pre_shift
= floor_log2 (d
);
4574 unsigned HOST_WIDE_INT mask
4575 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4576 remainder
= expand_binop
4577 (int_mode
, and_optab
, op0
,
4578 gen_int_mode (mask
, int_mode
),
4579 remainder
, 0, OPTAB_LIB_WIDEN
);
4581 return gen_lowpart (mode
, remainder
);
4583 quotient
= expand_shift
4584 (RSHIFT_EXPR
, int_mode
, op0
,
4585 pre_shift
, tquotient
, 0);
4591 mh
= choose_multiplier (d
, size
, size
- 1,
4592 &ml
, &post_shift
, &lgup
);
4595 if (post_shift
< BITS_PER_WORD
4596 && size
- 1 < BITS_PER_WORD
)
4599 (RSHIFT_EXPR
, int_mode
, op0
,
4600 size
- 1, NULL_RTX
, 0);
4601 t2
= expand_binop (int_mode
, xor_optab
, op0
, t1
,
4602 NULL_RTX
, 0, OPTAB_WIDEN
);
4603 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4604 + shift_cost (speed
, int_mode
, size
- 1)
4605 + 2 * add_cost (speed
, int_mode
));
4606 t3
= expmed_mult_highpart
4607 (int_mode
, t2
, gen_int_mode (ml
, int_mode
),
4608 NULL_RTX
, 1, max_cost
- extra_cost
);
4612 (RSHIFT_EXPR
, int_mode
, t3
,
4613 post_shift
, NULL_RTX
, 1);
4614 quotient
= expand_binop (int_mode
, xor_optab
,
4615 t4
, t1
, tquotient
, 0,
4623 rtx nsign
, t1
, t2
, t3
, t4
;
4624 t1
= force_operand (gen_rtx_PLUS (int_mode
,
4625 op0
, constm1_rtx
), NULL_RTX
);
4626 t2
= expand_binop (int_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4628 nsign
= expand_shift (RSHIFT_EXPR
, int_mode
, t2
,
4629 size
- 1, NULL_RTX
, 0);
4630 t3
= force_operand (gen_rtx_MINUS (int_mode
, t1
, nsign
),
4632 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, int_mode
, t3
, op1
,
4637 t5
= expand_unop (int_mode
, one_cmpl_optab
, nsign
,
4639 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t4
, t5
),
4647 delete_insns_since (last
);
4649 /* Try using an instruction that produces both the quotient and
4650 remainder, using truncation. We can easily compensate the quotient
4651 or remainder to get floor rounding, once we have the remainder.
4652 Notice that we compute also the final remainder value here,
4653 and return the result right away. */
4654 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4655 target
= gen_reg_rtx (compute_mode
);
4660 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4661 quotient
= gen_reg_rtx (compute_mode
);
4666 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4667 remainder
= gen_reg_rtx (compute_mode
);
4670 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4671 quotient
, remainder
, 0))
4673 /* This could be computed with a branch-less sequence.
4674 Save that for later. */
4676 rtx_code_label
*label
= gen_label_rtx ();
4677 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4678 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4679 NULL_RTX
, 0, OPTAB_WIDEN
);
4680 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4681 expand_dec (quotient
, const1_rtx
);
4682 expand_inc (remainder
, op1
);
4684 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4687 /* No luck with division elimination or divmod. Have to do it
4688 by conditionally adjusting op0 *and* the result. */
4690 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4694 quotient
= gen_reg_rtx (compute_mode
);
4695 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4696 label1
= gen_label_rtx ();
4697 label2
= gen_label_rtx ();
4698 label3
= gen_label_rtx ();
4699 label4
= gen_label_rtx ();
4700 label5
= gen_label_rtx ();
4701 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4702 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4703 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4704 quotient
, 0, OPTAB_LIB_WIDEN
);
4705 if (tem
!= quotient
)
4706 emit_move_insn (quotient
, tem
);
4707 emit_jump_insn (targetm
.gen_jump (label5
));
4709 emit_label (label1
);
4710 expand_inc (adjusted_op0
, const1_rtx
);
4711 emit_jump_insn (targetm
.gen_jump (label4
));
4713 emit_label (label2
);
4714 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4715 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4716 quotient
, 0, OPTAB_LIB_WIDEN
);
4717 if (tem
!= quotient
)
4718 emit_move_insn (quotient
, tem
);
4719 emit_jump_insn (targetm
.gen_jump (label5
));
4721 emit_label (label3
);
4722 expand_dec (adjusted_op0
, const1_rtx
);
4723 emit_label (label4
);
4724 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4725 quotient
, 0, OPTAB_LIB_WIDEN
);
4726 if (tem
!= quotient
)
4727 emit_move_insn (quotient
, tem
);
4728 expand_dec (quotient
, const1_rtx
);
4729 emit_label (label5
);
4738 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4739 && (HWI_COMPUTABLE_MODE_P (compute_mode
)
4740 || INTVAL (op1
) >= 0))
4742 scalar_int_mode int_mode
4743 = as_a
<scalar_int_mode
> (compute_mode
);
4745 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4746 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4747 floor_log2 (d
), tquotient
, 1);
4748 t2
= expand_binop (int_mode
, and_optab
, op0
,
4749 gen_int_mode (d
- 1, int_mode
),
4750 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4751 t3
= gen_reg_rtx (int_mode
);
4752 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
, int_mode
, 1, 1);
4755 rtx_code_label
*lab
;
4756 lab
= gen_label_rtx ();
4757 do_cmp_and_jump (t2
, const0_rtx
, EQ
, int_mode
, lab
);
4758 expand_inc (t1
, const1_rtx
);
4763 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t1
, t3
),
4768 /* Try using an instruction that produces both the quotient and
4769 remainder, using truncation. We can easily compensate the
4770 quotient or remainder to get ceiling rounding, once we have the
4771 remainder. Notice that we compute also the final remainder
4772 value here, and return the result right away. */
4773 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4774 target
= gen_reg_rtx (compute_mode
);
4778 remainder
= (REG_P (target
)
4779 ? target
: gen_reg_rtx (compute_mode
));
4780 quotient
= gen_reg_rtx (compute_mode
);
4784 quotient
= (REG_P (target
)
4785 ? target
: gen_reg_rtx (compute_mode
));
4786 remainder
= gen_reg_rtx (compute_mode
);
4789 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4792 /* This could be computed with a branch-less sequence.
4793 Save that for later. */
4794 rtx_code_label
*label
= gen_label_rtx ();
4795 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4796 compute_mode
, label
);
4797 expand_inc (quotient
, const1_rtx
);
4798 expand_dec (remainder
, op1
);
4800 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4803 /* No luck with division elimination or divmod. Have to do it
4804 by conditionally adjusting op0 *and* the result. */
4806 rtx_code_label
*label1
, *label2
;
4807 rtx adjusted_op0
, tem
;
4809 quotient
= gen_reg_rtx (compute_mode
);
4810 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4811 label1
= gen_label_rtx ();
4812 label2
= gen_label_rtx ();
4813 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4814 compute_mode
, label1
);
4815 emit_move_insn (quotient
, const0_rtx
);
4816 emit_jump_insn (targetm
.gen_jump (label2
));
4818 emit_label (label1
);
4819 expand_dec (adjusted_op0
, const1_rtx
);
4820 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4821 quotient
, 1, OPTAB_LIB_WIDEN
);
4822 if (tem
!= quotient
)
4823 emit_move_insn (quotient
, tem
);
4824 expand_inc (quotient
, const1_rtx
);
4825 emit_label (label2
);
4830 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4831 && INTVAL (op1
) >= 0)
4833 /* This is extremely similar to the code for the unsigned case
4834 above. For 2.7 we should merge these variants, but for
4835 2.6.1 I don't want to touch the code for unsigned since that
4836 get used in C. The signed case will only be used by other
4840 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4841 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4842 floor_log2 (d
), tquotient
, 0);
4843 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4844 gen_int_mode (d
- 1, compute_mode
),
4845 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4846 t3
= gen_reg_rtx (compute_mode
);
4847 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4848 compute_mode
, 1, 1);
4851 rtx_code_label
*lab
;
4852 lab
= gen_label_rtx ();
4853 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4854 expand_inc (t1
, const1_rtx
);
4859 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4865 /* Try using an instruction that produces both the quotient and
4866 remainder, using truncation. We can easily compensate the
4867 quotient or remainder to get ceiling rounding, once we have the
4868 remainder. Notice that we compute also the final remainder
4869 value here, and return the result right away. */
4870 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4871 target
= gen_reg_rtx (compute_mode
);
4874 remainder
= (REG_P (target
)
4875 ? target
: gen_reg_rtx (compute_mode
));
4876 quotient
= gen_reg_rtx (compute_mode
);
4880 quotient
= (REG_P (target
)
4881 ? target
: gen_reg_rtx (compute_mode
));
4882 remainder
= gen_reg_rtx (compute_mode
);
4885 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4888 /* This could be computed with a branch-less sequence.
4889 Save that for later. */
4891 rtx_code_label
*label
= gen_label_rtx ();
4892 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4893 compute_mode
, label
);
4894 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4895 NULL_RTX
, 0, OPTAB_WIDEN
);
4896 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4897 expand_inc (quotient
, const1_rtx
);
4898 expand_dec (remainder
, op1
);
4900 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4903 /* No luck with division elimination or divmod. Have to do it
4904 by conditionally adjusting op0 *and* the result. */
4906 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4910 quotient
= gen_reg_rtx (compute_mode
);
4911 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4912 label1
= gen_label_rtx ();
4913 label2
= gen_label_rtx ();
4914 label3
= gen_label_rtx ();
4915 label4
= gen_label_rtx ();
4916 label5
= gen_label_rtx ();
4917 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4918 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4919 compute_mode
, label1
);
4920 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4921 quotient
, 0, OPTAB_LIB_WIDEN
);
4922 if (tem
!= quotient
)
4923 emit_move_insn (quotient
, tem
);
4924 emit_jump_insn (targetm
.gen_jump (label5
));
4926 emit_label (label1
);
4927 expand_dec (adjusted_op0
, const1_rtx
);
4928 emit_jump_insn (targetm
.gen_jump (label4
));
4930 emit_label (label2
);
4931 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4932 compute_mode
, label3
);
4933 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4934 quotient
, 0, OPTAB_LIB_WIDEN
);
4935 if (tem
!= quotient
)
4936 emit_move_insn (quotient
, tem
);
4937 emit_jump_insn (targetm
.gen_jump (label5
));
4939 emit_label (label3
);
4940 expand_inc (adjusted_op0
, const1_rtx
);
4941 emit_label (label4
);
4942 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4943 quotient
, 0, OPTAB_LIB_WIDEN
);
4944 if (tem
!= quotient
)
4945 emit_move_insn (quotient
, tem
);
4946 expand_inc (quotient
, const1_rtx
);
4947 emit_label (label5
);
4952 case EXACT_DIV_EXPR
:
4953 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
4955 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4956 int size
= GET_MODE_BITSIZE (int_mode
);
4957 HOST_WIDE_INT d
= INTVAL (op1
);
4958 unsigned HOST_WIDE_INT ml
;
4962 pre_shift
= ctz_or_zero (d
);
4963 ml
= invert_mod2n (d
>> pre_shift
, size
);
4964 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4965 pre_shift
, NULL_RTX
, unsignedp
);
4966 quotient
= expand_mult (int_mode
, t1
, gen_int_mode (ml
, int_mode
),
4969 insn
= get_last_insn ();
4970 set_dst_reg_note (insn
, REG_EQUAL
,
4971 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4972 int_mode
, op0
, op1
),
4977 case ROUND_DIV_EXPR
:
4978 case ROUND_MOD_EXPR
:
4981 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4983 rtx_code_label
*label
;
4984 label
= gen_label_rtx ();
4985 quotient
= gen_reg_rtx (int_mode
);
4986 remainder
= gen_reg_rtx (int_mode
);
4987 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4990 quotient
= expand_binop (int_mode
, udiv_optab
, op0
, op1
,
4991 quotient
, 1, OPTAB_LIB_WIDEN
);
4992 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 1);
4993 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
4994 remainder
, 1, OPTAB_LIB_WIDEN
);
4996 tem
= plus_constant (int_mode
, op1
, -1);
4997 tem
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
, 1, NULL_RTX
, 1);
4998 do_cmp_and_jump (remainder
, tem
, LEU
, int_mode
, label
);
4999 expand_inc (quotient
, const1_rtx
);
5000 expand_dec (remainder
, op1
);
5005 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5006 int size
= GET_MODE_BITSIZE (int_mode
);
5007 rtx abs_rem
, abs_op1
, tem
, mask
;
5008 rtx_code_label
*label
;
5009 label
= gen_label_rtx ();
5010 quotient
= gen_reg_rtx (int_mode
);
5011 remainder
= gen_reg_rtx (int_mode
);
5012 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
5015 quotient
= expand_binop (int_mode
, sdiv_optab
, op0
, op1
,
5016 quotient
, 0, OPTAB_LIB_WIDEN
);
5017 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 0);
5018 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5019 remainder
, 0, OPTAB_LIB_WIDEN
);
5021 abs_rem
= expand_abs (int_mode
, remainder
, NULL_RTX
, 1, 0);
5022 abs_op1
= expand_abs (int_mode
, op1
, NULL_RTX
, 1, 0);
5023 tem
= expand_shift (LSHIFT_EXPR
, int_mode
, abs_rem
,
5025 do_cmp_and_jump (tem
, abs_op1
, LTU
, int_mode
, label
);
5026 tem
= expand_binop (int_mode
, xor_optab
, op0
, op1
,
5027 NULL_RTX
, 0, OPTAB_WIDEN
);
5028 mask
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
,
5029 size
- 1, NULL_RTX
, 0);
5030 tem
= expand_binop (int_mode
, xor_optab
, mask
, const1_rtx
,
5031 NULL_RTX
, 0, OPTAB_WIDEN
);
5032 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5033 NULL_RTX
, 0, OPTAB_WIDEN
);
5034 expand_inc (quotient
, tem
);
5035 tem
= expand_binop (int_mode
, xor_optab
, mask
, op1
,
5036 NULL_RTX
, 0, OPTAB_WIDEN
);
5037 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5038 NULL_RTX
, 0, OPTAB_WIDEN
);
5039 expand_dec (remainder
, tem
);
5042 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5050 if (target
&& GET_MODE (target
) != compute_mode
)
5055 /* Try to produce the remainder without producing the quotient.
5056 If we seem to have a divmod pattern that does not require widening,
5057 don't try widening here. We should really have a WIDEN argument
5058 to expand_twoval_binop, since what we'd really like to do here is
5059 1) try a mod insn in compute_mode
5060 2) try a divmod insn in compute_mode
5061 3) try a div insn in compute_mode and multiply-subtract to get
5063 4) try the same things with widening allowed. */
5065 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5068 ((optab_handler (optab2
, compute_mode
)
5069 != CODE_FOR_nothing
)
5070 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5073 /* No luck there. Can we do remainder and divide at once
5074 without a library call? */
5075 remainder
= gen_reg_rtx (compute_mode
);
5076 if (! expand_twoval_binop ((unsignedp
5080 NULL_RTX
, remainder
, unsignedp
))
5085 return gen_lowpart (mode
, remainder
);
5088 /* Produce the quotient. Try a quotient insn, but not a library call.
5089 If we have a divmod in this mode, use it in preference to widening
5090 the div (for this test we assume it will not fail). Note that optab2
5091 is set to the one of the two optabs that the call below will use. */
5093 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
5094 op0
, op1
, rem_flag
? NULL_RTX
: target
,
5096 ((optab_handler (optab2
, compute_mode
)
5097 != CODE_FOR_nothing
)
5098 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5102 /* No luck there. Try a quotient-and-remainder insn,
5103 keeping the quotient alone. */
5104 quotient
= gen_reg_rtx (compute_mode
);
5105 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
5107 quotient
, NULL_RTX
, unsignedp
))
5111 /* Still no luck. If we are not computing the remainder,
5112 use a library call for the quotient. */
5113 quotient
= sign_expand_binop (compute_mode
,
5114 udiv_optab
, sdiv_optab
,
5116 unsignedp
, OPTAB_LIB_WIDEN
);
5123 if (target
&& GET_MODE (target
) != compute_mode
)
5128 /* No divide instruction either. Use library for remainder. */
5129 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5131 unsignedp
, OPTAB_LIB_WIDEN
);
5132 /* No remainder function. Try a quotient-and-remainder
5133 function, keeping the remainder. */
5136 remainder
= gen_reg_rtx (compute_mode
);
5137 if (!expand_twoval_binop_libfunc
5138 (unsignedp
? udivmod_optab
: sdivmod_optab
,
5140 NULL_RTX
, remainder
,
5141 unsignedp
? UMOD
: MOD
))
5142 remainder
= NULL_RTX
;
5147 /* We divided. Now finish doing X - Y * (X / Y). */
5148 remainder
= expand_mult (compute_mode
, quotient
, op1
,
5149 NULL_RTX
, unsignedp
);
5150 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
5151 remainder
, target
, unsignedp
,
5156 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5159 /* Return a tree node with data type TYPE, describing the value of X.
5160 Usually this is an VAR_DECL, if there is no obvious better choice.
5161 X may be an expression, however we only support those expressions
5162 generated by loop.c. */
5165 make_tree (tree type
, rtx x
)
5169 switch (GET_CODE (x
))
5172 case CONST_WIDE_INT
:
5173 t
= wide_int_to_tree (type
, rtx_mode_t (x
, TYPE_MODE (type
)));
5177 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5178 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5179 t
= wide_int_to_tree (type
,
5180 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5181 HOST_BITS_PER_WIDE_INT
* 2));
5183 t
= build_real (type
, *CONST_DOUBLE_REAL_VALUE (x
));
5189 int units
= CONST_VECTOR_NUNITS (x
);
5190 tree itype
= TREE_TYPE (type
);
5193 /* Build a tree with vector elements. */
5194 tree_vector_builder
elts (type
, units
, 1);
5195 for (i
= 0; i
< units
; ++i
)
5197 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5198 elts
.quick_push (make_tree (itype
, elt
));
5201 return elts
.build ();
5205 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5206 make_tree (type
, XEXP (x
, 1)));
5209 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5210 make_tree (type
, XEXP (x
, 1)));
5213 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5216 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5217 make_tree (type
, XEXP (x
, 1)));
5220 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5221 make_tree (type
, XEXP (x
, 1)));
5224 t
= unsigned_type_for (type
);
5225 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5226 make_tree (t
, XEXP (x
, 0)),
5227 make_tree (type
, XEXP (x
, 1))));
5230 t
= signed_type_for (type
);
5231 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5232 make_tree (t
, XEXP (x
, 0)),
5233 make_tree (type
, XEXP (x
, 1))));
5236 if (TREE_CODE (type
) != REAL_TYPE
)
5237 t
= signed_type_for (type
);
5241 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5242 make_tree (t
, XEXP (x
, 0)),
5243 make_tree (t
, XEXP (x
, 1))));
5245 t
= unsigned_type_for (type
);
5246 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5247 make_tree (t
, XEXP (x
, 0)),
5248 make_tree (t
, XEXP (x
, 1))));
5252 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5253 GET_CODE (x
) == ZERO_EXTEND
);
5254 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5258 rtx op
= XEXP (x
, 0);
5259 if (GET_CODE (op
) == VEC_DUPLICATE
)
5261 tree elt_tree
= make_tree (TREE_TYPE (type
), XEXP (op
, 0));
5262 return build_vector_from_val (type
, elt_tree
);
5264 if (GET_CODE (op
) == VEC_SERIES
)
5266 tree itype
= TREE_TYPE (type
);
5267 tree base_tree
= make_tree (itype
, XEXP (op
, 0));
5268 tree step_tree
= make_tree (itype
, XEXP (op
, 1));
5269 return build_vec_series (type
, base_tree
, step_tree
);
5271 return make_tree (type
, op
);
5275 t
= SYMBOL_REF_DECL (x
);
5277 return fold_convert (type
, build_fold_addr_expr (t
));
5281 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5283 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5284 address mode to pointer mode. */
5285 if (POINTER_TYPE_P (type
))
5286 x
= convert_memory_address_addr_space
5287 (SCALAR_INT_TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5289 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5290 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5291 t
->decl_with_rtl
.rtl
= x
;
5297 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5298 and returning TARGET.
5300 If TARGET is 0, a pseudo-register or constant is returned. */
5303 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5307 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5308 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5310 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5314 else if (tem
!= target
)
5315 emit_move_insn (target
, tem
);
5319 /* Helper function for emit_store_flag. */
5321 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5322 machine_mode mode
, machine_mode compare_mode
,
5323 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5324 machine_mode target_mode
)
5326 struct expand_operand ops
[4];
5327 rtx op0
, comparison
, subtarget
;
5329 scalar_int_mode result_mode
= targetm
.cstore_mode (icode
);
5330 scalar_int_mode int_target_mode
;
5332 last
= get_last_insn ();
5333 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5334 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5337 delete_insns_since (last
);
5341 if (target_mode
== VOIDmode
)
5342 int_target_mode
= result_mode
;
5344 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5346 target
= gen_reg_rtx (int_target_mode
);
5348 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5350 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5351 create_fixed_operand (&ops
[1], comparison
);
5352 create_fixed_operand (&ops
[2], x
);
5353 create_fixed_operand (&ops
[3], y
);
5354 if (!maybe_expand_insn (icode
, 4, ops
))
5356 delete_insns_since (last
);
5359 subtarget
= ops
[0].value
;
5361 /* If we are converting to a wider mode, first convert to
5362 INT_TARGET_MODE, then normalize. This produces better combining
5363 opportunities on machines that have a SIGN_EXTRACT when we are
5364 testing a single bit. This mostly benefits the 68k.
5366 If STORE_FLAG_VALUE does not have the sign bit set when
5367 interpreted in MODE, we can do this conversion as unsigned, which
5368 is usually more efficient. */
5369 if (GET_MODE_SIZE (int_target_mode
) > GET_MODE_SIZE (result_mode
))
5371 convert_move (target
, subtarget
,
5372 val_signbit_known_clear_p (result_mode
,
5375 result_mode
= int_target_mode
;
5380 /* If we want to keep subexpressions around, don't reuse our last
5385 /* Now normalize to the proper value in MODE. Sometimes we don't
5386 have to do anything. */
5387 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5389 /* STORE_FLAG_VALUE might be the most negative number, so write
5390 the comparison this way to avoid a compiler-time warning. */
5391 else if (- normalizep
== STORE_FLAG_VALUE
)
5392 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5394 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5395 it hard to use a value of just the sign bit due to ANSI integer
5396 constant typing rules. */
5397 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5398 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5399 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5403 gcc_assert (STORE_FLAG_VALUE
& 1);
5405 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5406 if (normalizep
== -1)
5407 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5410 /* If we were converting to a smaller mode, do the conversion now. */
5411 if (int_target_mode
!= result_mode
)
5413 convert_move (target
, op0
, 0);
5421 /* A subroutine of emit_store_flag only including "tricks" that do not
5422 need a recursive call. These are kept separate to avoid infinite
5426 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5427 machine_mode mode
, int unsignedp
, int normalizep
,
5428 machine_mode target_mode
)
5431 enum insn_code icode
;
5432 machine_mode compare_mode
;
5433 enum mode_class mclass
;
5434 enum rtx_code scode
;
5437 code
= unsigned_condition (code
);
5438 scode
= swap_condition (code
);
5440 /* If one operand is constant, make it the second one. Only do this
5441 if the other operand is not constant as well. */
5443 if (swap_commutative_operands_p (op0
, op1
))
5445 std::swap (op0
, op1
);
5446 code
= swap_condition (code
);
5449 if (mode
== VOIDmode
)
5450 mode
= GET_MODE (op0
);
5452 /* For some comparisons with 1 and -1, we can convert this to
5453 comparisons with zero. This will often produce more opportunities for
5454 store-flag insns. */
5459 if (op1
== const1_rtx
)
5460 op1
= const0_rtx
, code
= LE
;
5463 if (op1
== constm1_rtx
)
5464 op1
= const0_rtx
, code
= LT
;
5467 if (op1
== const1_rtx
)
5468 op1
= const0_rtx
, code
= GT
;
5471 if (op1
== constm1_rtx
)
5472 op1
= const0_rtx
, code
= GE
;
5475 if (op1
== const1_rtx
)
5476 op1
= const0_rtx
, code
= NE
;
5479 if (op1
== const1_rtx
)
5480 op1
= const0_rtx
, code
= EQ
;
5486 /* If we are comparing a double-word integer with zero or -1, we can
5487 convert the comparison into one involving a single word. */
5488 scalar_int_mode int_mode
;
5489 if (is_int_mode (mode
, &int_mode
)
5490 && GET_MODE_BITSIZE (int_mode
) == BITS_PER_WORD
* 2
5491 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5494 if ((code
== EQ
|| code
== NE
)
5495 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5499 /* Do a logical OR or AND of the two words and compare the
5501 op00
= simplify_gen_subreg (word_mode
, op0
, int_mode
, 0);
5502 op01
= simplify_gen_subreg (word_mode
, op0
, int_mode
, UNITS_PER_WORD
);
5503 tem
= expand_binop (word_mode
,
5504 op1
== const0_rtx
? ior_optab
: and_optab
,
5505 op00
, op01
, NULL_RTX
, unsignedp
,
5509 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5510 unsignedp
, normalizep
);
5512 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5516 /* If testing the sign bit, can just test on high word. */
5517 op0h
= simplify_gen_subreg (word_mode
, op0
, int_mode
,
5518 subreg_highpart_offset (word_mode
,
5520 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5521 unsignedp
, normalizep
);
5528 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5531 target
= gen_reg_rtx (target_mode
);
5533 convert_move (target
, tem
,
5534 !val_signbit_known_set_p (word_mode
,
5535 (normalizep
? normalizep
5536 : STORE_FLAG_VALUE
)));
5541 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5542 complement of A (for GE) and shifting the sign bit to the low bit. */
5543 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5544 && is_int_mode (mode
, &int_mode
)
5545 && (normalizep
|| STORE_FLAG_VALUE
== 1
5546 || val_signbit_p (int_mode
, STORE_FLAG_VALUE
)))
5548 scalar_int_mode int_target_mode
;
5552 int_target_mode
= int_mode
;
5555 /* If the result is to be wider than OP0, it is best to convert it
5556 first. If it is to be narrower, it is *incorrect* to convert it
5558 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5559 if (GET_MODE_SIZE (int_target_mode
) > GET_MODE_SIZE (int_mode
))
5561 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5562 int_mode
= int_target_mode
;
5566 if (int_target_mode
!= int_mode
)
5570 op0
= expand_unop (int_mode
, one_cmpl_optab
, op0
,
5571 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5572 ? 0 : subtarget
), 0);
5574 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5575 /* If we are supposed to produce a 0/1 value, we want to do
5576 a logical shift from the sign bit to the low-order bit; for
5577 a -1/0 value, we do an arithmetic shift. */
5578 op0
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5579 GET_MODE_BITSIZE (int_mode
) - 1,
5580 subtarget
, normalizep
!= -1);
5582 if (int_mode
!= int_target_mode
)
5583 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5588 mclass
= GET_MODE_CLASS (mode
);
5589 FOR_EACH_MODE_FROM (compare_mode
, mode
)
5591 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5592 icode
= optab_handler (cstore_optab
, optab_mode
);
5593 if (icode
!= CODE_FOR_nothing
)
5595 do_pending_stack_adjust ();
5596 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5597 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5601 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5603 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5604 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5615 /* Subroutine of emit_store_flag that handles cases in which the operands
5616 are scalar integers. SUBTARGET is the target to use for temporary
5617 operations and TRUEVAL is the value to store when the condition is
5618 true. All other arguments are as for emit_store_flag. */
5621 emit_store_flag_int (rtx target
, rtx subtarget
, enum rtx_code code
, rtx op0
,
5622 rtx op1
, scalar_int_mode mode
, int unsignedp
,
5623 int normalizep
, rtx trueval
)
5625 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5626 rtx_insn
*last
= get_last_insn ();
5628 /* If this is an equality comparison of integers, we can try to exclusive-or
5629 (or subtract) the two operands and use a recursive call to try the
5630 comparison with zero. Don't do any of these cases if branches are
5633 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5635 rtx tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5639 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5642 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5643 mode
, unsignedp
, normalizep
);
5647 delete_insns_since (last
);
5650 /* For integer comparisons, try the reverse comparison. However, for
5651 small X and if we'd have anyway to extend, implementing "X != 0"
5652 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5653 rtx_code rcode
= reverse_condition (code
);
5654 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5655 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5657 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5658 && op1
== const0_rtx
))
5660 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5661 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5663 /* Again, for the reverse comparison, use either an addition or a XOR. */
5665 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5666 optimize_insn_for_speed_p ()) == 0)
5668 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5669 STORE_FLAG_VALUE
, target_mode
);
5671 tem
= expand_binop (target_mode
, add_optab
, tem
,
5672 gen_int_mode (normalizep
, target_mode
),
5673 target
, 0, OPTAB_WIDEN
);
5678 && rtx_cost (trueval
, mode
, XOR
, 1,
5679 optimize_insn_for_speed_p ()) == 0)
5681 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5682 normalizep
, target_mode
);
5684 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5685 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5690 delete_insns_since (last
);
5693 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5694 the constant zero. Reject all other comparisons at this point. Only
5695 do LE and GT if branches are expensive since they are expensive on
5696 2-operand machines. */
5698 if (op1
!= const0_rtx
5699 || (code
!= EQ
&& code
!= NE
5700 && (BRANCH_COST (optimize_insn_for_speed_p (),
5701 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5704 /* Try to put the result of the comparison in the sign bit. Assume we can't
5705 do the necessary operation below. */
5709 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5710 the sign bit set. */
5714 /* This is destructive, so SUBTARGET can't be OP0. */
5715 if (rtx_equal_p (subtarget
, op0
))
5718 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5721 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5725 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5726 number of bits in the mode of OP0, minus one. */
5730 if (rtx_equal_p (subtarget
, op0
))
5733 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, op0
,
5734 GET_MODE_BITSIZE (mode
) - 1,
5737 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5741 if (code
== EQ
|| code
== NE
)
5743 /* For EQ or NE, one way to do the comparison is to apply an operation
5744 that converts the operand into a positive number if it is nonzero
5745 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5746 for NE we negate. This puts the result in the sign bit. Then we
5747 normalize with a shift, if needed.
5749 Two operations that can do the above actions are ABS and FFS, so try
5750 them. If that doesn't work, and MODE is smaller than a full word,
5751 we can use zero-extension to the wider mode (an unsigned conversion)
5752 as the operation. */
5754 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5755 that is compensated by the subsequent overflow when subtracting
5758 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5759 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5760 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5761 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5762 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5764 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5771 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5774 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5777 /* If we couldn't do it that way, for NE we can "or" the two's complement
5778 of the value with itself. For EQ, we take the one's complement of
5779 that "or", which is an extra insn, so we only handle EQ if branches
5784 || BRANCH_COST (optimize_insn_for_speed_p (),
5787 if (rtx_equal_p (subtarget
, op0
))
5790 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5791 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5794 if (tem
&& code
== EQ
)
5795 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5799 if (tem
&& normalizep
)
5800 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, tem
,
5801 GET_MODE_BITSIZE (mode
) - 1,
5802 subtarget
, normalizep
== 1);
5808 else if (GET_MODE (tem
) != target_mode
)
5810 convert_move (target
, tem
, 0);
5813 else if (!subtarget
)
5815 emit_move_insn (target
, tem
);
5820 delete_insns_since (last
);
5825 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5826 and storing in TARGET. Normally return TARGET.
5827 Return 0 if that cannot be done.
5829 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5830 it is VOIDmode, they cannot both be CONST_INT.
5832 UNSIGNEDP is for the case where we have to widen the operands
5833 to perform the operation. It says to use zero-extension.
5835 NORMALIZEP is 1 if we should convert the result to be either zero
5836 or one. Normalize is -1 if we should convert the result to be
5837 either zero or -1. If NORMALIZEP is zero, the result will be left
5838 "raw" out of the scc insn. */
5841 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5842 machine_mode mode
, int unsignedp
, int normalizep
)
5844 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5845 enum rtx_code rcode
;
5850 /* If we compare constants, we shouldn't use a store-flag operation,
5851 but a constant load. We can get there via the vanilla route that
5852 usually generates a compare-branch sequence, but will in this case
5853 fold the comparison to a constant, and thus elide the branch. */
5854 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5857 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5862 /* If we reached here, we can't do this with a scc insn, however there
5863 are some comparisons that can be done in other ways. Don't do any
5864 of these cases if branches are very cheap. */
5865 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5868 /* See what we need to return. We can only return a 1, -1, or the
5871 if (normalizep
== 0)
5873 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5874 normalizep
= STORE_FLAG_VALUE
;
5876 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5882 last
= get_last_insn ();
5884 /* If optimizing, use different pseudo registers for each insn, instead
5885 of reusing the same pseudo. This leads to better CSE, but slows
5886 down the compiler, since there are more pseudos. */
5887 subtarget
= (!optimize
5888 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5889 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5891 /* For floating-point comparisons, try the reverse comparison or try
5892 changing the "orderedness" of the comparison. */
5893 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5895 enum rtx_code first_code
;
5898 rcode
= reverse_condition_maybe_unordered (code
);
5899 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5900 && (code
== ORDERED
|| code
== UNORDERED
5901 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5902 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5904 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5905 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5907 /* For the reverse comparison, use either an addition or a XOR. */
5909 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5910 optimize_insn_for_speed_p ()) == 0)
5912 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5913 STORE_FLAG_VALUE
, target_mode
);
5915 return expand_binop (target_mode
, add_optab
, tem
,
5916 gen_int_mode (normalizep
, target_mode
),
5917 target
, 0, OPTAB_WIDEN
);
5920 && rtx_cost (trueval
, mode
, XOR
, 1,
5921 optimize_insn_for_speed_p ()) == 0)
5923 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5924 normalizep
, target_mode
);
5926 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5927 target
, INTVAL (trueval
) >= 0,
5932 delete_insns_since (last
);
5934 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5935 if (code
== ORDERED
|| code
== UNORDERED
)
5938 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5940 /* If there are no NaNs, the first comparison should always fall through.
5941 Effectively change the comparison to the other one. */
5942 if (!HONOR_NANS (mode
))
5944 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5945 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5949 if (!HAVE_conditional_move
)
5952 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5953 conditional move. */
5954 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5955 normalizep
, target_mode
);
5960 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5961 tem
, const0_rtx
, GET_MODE (tem
), 0);
5963 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5964 trueval
, tem
, GET_MODE (tem
), 0);
5967 delete_insns_since (last
);
5971 /* The remaining tricks only apply to integer comparisons. */
5973 scalar_int_mode int_mode
;
5974 if (is_int_mode (mode
, &int_mode
))
5975 return emit_store_flag_int (target
, subtarget
, code
, op0
, op1
, int_mode
,
5976 unsignedp
, normalizep
, trueval
);
5981 /* Like emit_store_flag, but always succeeds. */
5984 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5985 machine_mode mode
, int unsignedp
, int normalizep
)
5988 rtx_code_label
*label
;
5989 rtx trueval
, falseval
;
5991 /* First see if emit_store_flag can do the job. */
5992 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5997 target
= gen_reg_rtx (word_mode
);
5999 /* If this failed, we have to do this with set/compare/jump/set code.
6000 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6001 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
6003 && GET_MODE_CLASS (mode
) == MODE_INT
6006 && op1
== const0_rtx
)
6008 label
= gen_label_rtx ();
6009 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
6010 NULL_RTX
, NULL
, label
,
6011 profile_probability::uninitialized ());
6012 emit_move_insn (target
, trueval
);
6018 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
6019 target
= gen_reg_rtx (GET_MODE (target
));
6021 /* Jump in the right direction if the target cannot implement CODE
6022 but can jump on its reverse condition. */
6023 falseval
= const0_rtx
;
6024 if (! can_compare_p (code
, mode
, ccp_jump
)
6025 && (! FLOAT_MODE_P (mode
)
6026 || code
== ORDERED
|| code
== UNORDERED
6027 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6028 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6030 enum rtx_code rcode
;
6031 if (FLOAT_MODE_P (mode
))
6032 rcode
= reverse_condition_maybe_unordered (code
);
6034 rcode
= reverse_condition (code
);
6036 /* Canonicalize to UNORDERED for the libcall. */
6037 if (can_compare_p (rcode
, mode
, ccp_jump
)
6038 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
6041 trueval
= const0_rtx
;
6046 emit_move_insn (target
, trueval
);
6047 label
= gen_label_rtx ();
6048 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
6049 label
, profile_probability::uninitialized ());
6051 emit_move_insn (target
, falseval
);
6057 /* Perform possibly multi-word comparison and conditional jump to LABEL
6058 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6059 now a thin wrapper around do_compare_rtx_and_jump. */
6062 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
6063 rtx_code_label
*label
)
6065 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
6066 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,
6067 NULL
, label
, profile_probability::uninitialized ());