arm.md (movsi): Add braces.
[official-gcc.git] / gcc / tree-ssa-coalesce.c
blob1b63635881bdec7e584a85b9b48e656b4884351f
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "diagnostic.h"
28 #include "bitmap.h"
29 #include "tree-flow.h"
30 #include "hashtab.h"
31 #include "tree-dump.h"
32 #include "tree-ssa-live.h"
33 #include "toplev.h"
36 /* This set of routines implements a coalesce_list. This is an object which
37 is used to track pairs of ssa_names which are desirable to coalesce
38 together to avoid copies. Costs are associated with each pair, and when
39 all desired information has been collected, the object can be used to
40 order the pairs for processing. */
42 /* This structure defines a pair entry. */
44 typedef struct coalesce_pair
46 int first_element;
47 int second_element;
48 int cost;
49 } * coalesce_pair_p;
50 typedef const struct coalesce_pair *const_coalesce_pair_p;
52 typedef struct cost_one_pair_d
54 int first_element;
55 int second_element;
56 struct cost_one_pair_d *next;
57 } * cost_one_pair_p;
59 /* This structure maintains the list of coalesce pairs. */
61 typedef struct coalesce_list_d
63 htab_t list; /* Hash table. */
64 coalesce_pair_p *sorted; /* List when sorted. */
65 int num_sorted; /* Number in the sorted list. */
66 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
67 } *coalesce_list_p;
69 #define NO_BEST_COALESCE -1
70 #define MUST_COALESCE_COST INT_MAX
73 /* Return cost of execution of copy instruction with FREQUENCY
74 possibly on CRITICAL edge and in HOT basic block. */
76 static inline int
77 coalesce_cost (int frequency, bool hot, bool critical)
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
82 if (!cost)
83 cost = 1;
85 if (optimize_size)
86 cost = 1;
87 else
88 /* It is more important to coalesce in HOT blocks. */
89 if (hot)
90 cost *= 2;
92 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
93 if (critical)
94 cost *= 2;
95 return cost;
99 /* Return the cost of executing a copy instruction in basic block BB. */
101 static inline int
102 coalesce_cost_bb (basic_block bb)
104 return coalesce_cost (bb->frequency, maybe_hot_bb_p (bb), false);
108 /* Return the cost of executing a copy instruction on edge E. */
110 static inline int
111 coalesce_cost_edge (edge e)
113 if (e->flags & EDGE_ABNORMAL)
114 return MUST_COALESCE_COST;
116 return coalesce_cost (EDGE_FREQUENCY (e),
117 maybe_hot_bb_p (e->src),
118 EDGE_CRITICAL_P (e));
122 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
123 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
124 NO_BEST_COALESCE is returned if there aren't any. */
126 static inline int
127 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
129 cost_one_pair_p ptr;
131 ptr = cl->cost_one_list;
132 if (!ptr)
133 return NO_BEST_COALESCE;
135 *p1 = ptr->first_element;
136 *p2 = ptr->second_element;
137 cl->cost_one_list = ptr->next;
139 free (ptr);
141 return 1;
144 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
145 2 elements via P1 and P2. Their calculated cost is returned by the function.
146 NO_BEST_COALESCE is returned if the coalesce list is empty. */
148 static inline int
149 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
151 coalesce_pair_p node;
152 int ret;
154 if (cl->sorted == NULL)
155 return pop_cost_one_pair (cl, p1, p2);
157 if (cl->num_sorted == 0)
158 return pop_cost_one_pair (cl, p1, p2);
160 node = cl->sorted[--(cl->num_sorted)];
161 *p1 = node->first_element;
162 *p2 = node->second_element;
163 ret = node->cost;
164 free (node);
166 return ret;
170 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
172 /* Hash function for coalesce list. Calculate hash for PAIR. */
174 static unsigned int
175 coalesce_pair_map_hash (const void *pair)
177 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
178 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
180 return COALESCE_HASH_FN (a,b);
184 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
185 returning TRUE if the two pairs are equivalent. */
187 static int
188 coalesce_pair_map_eq (const void *pair1, const void *pair2)
190 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
191 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
193 return (p1->first_element == p2->first_element
194 && p1->second_element == p2->second_element);
198 /* Create a new empty coalesce list object and return it. */
200 static inline coalesce_list_p
201 create_coalesce_list (void)
203 coalesce_list_p list;
204 unsigned size = num_ssa_names * 3;
206 if (size < 40)
207 size = 40;
209 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
210 list->list = htab_create (size, coalesce_pair_map_hash,
211 coalesce_pair_map_eq, NULL);
212 list->sorted = NULL;
213 list->num_sorted = 0;
214 list->cost_one_list = NULL;
215 return list;
219 /* Delete coalesce list CL. */
221 static inline void
222 delete_coalesce_list (coalesce_list_p cl)
224 gcc_assert (cl->cost_one_list == NULL);
225 htab_delete (cl->list);
226 if (cl->sorted)
227 free (cl->sorted);
228 gcc_assert (cl->num_sorted == 0);
229 free (cl);
233 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
234 one isn't found, return NULL if CREATE is false, otherwise create a new
235 coalesce pair object and return it. */
237 static coalesce_pair_p
238 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
240 struct coalesce_pair p, *pair;
241 void **slot;
242 unsigned int hash;
244 /* Normalize so that p1 is the smaller value. */
245 if (p2 < p1)
247 p.first_element = p2;
248 p.second_element = p1;
250 else
252 p.first_element = p1;
253 p.second_element = p2;
257 hash = coalesce_pair_map_hash (&p);
258 pair = (struct coalesce_pair *) htab_find_with_hash (cl->list, &p, hash);
260 if (create && !pair)
262 gcc_assert (cl->sorted == NULL);
263 pair = XNEW (struct coalesce_pair);
264 pair->first_element = p.first_element;
265 pair->second_element = p.second_element;
266 pair->cost = 0;
267 slot = htab_find_slot_with_hash (cl->list, pair, hash, INSERT);
268 *(struct coalesce_pair **)slot = pair;
271 return pair;
274 static inline void
275 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
277 cost_one_pair_p pair;
279 pair = XNEW (struct cost_one_pair_d);
280 pair->first_element = p1;
281 pair->second_element = p2;
282 pair->next = cl->cost_one_list;
283 cl->cost_one_list = pair;
287 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
289 static inline void
290 add_coalesce (coalesce_list_p cl, int p1, int p2,
291 int value)
293 coalesce_pair_p node;
295 gcc_assert (cl->sorted == NULL);
296 if (p1 == p2)
297 return;
299 node = find_coalesce_pair (cl, p1, p2, true);
301 /* Once the value is MUST_COALESCE_COST, leave it that way. */
302 if (node->cost != MUST_COALESCE_COST)
304 if (value == MUST_COALESCE_COST)
305 node->cost = value;
306 else
307 node->cost += value;
312 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
314 static int
315 compare_pairs (const void *p1, const void *p2)
317 return (*(const_coalesce_pair_p const*)p1)->cost
318 - (*(const_coalesce_pair_p const*)p2)->cost;
322 /* Return the number of unique coalesce pairs in CL. */
324 static inline int
325 num_coalesce_pairs (coalesce_list_p cl)
327 return htab_elements (cl->list);
331 /* Iterator over hash table pairs. */
332 typedef struct
334 htab_iterator hti;
335 } coalesce_pair_iterator;
338 /* Return first partition pair from list CL, initializing iterator ITER. */
340 static inline coalesce_pair_p
341 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
343 coalesce_pair_p pair;
345 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
346 return pair;
350 /* Return TRUE if there are no more partitions in for ITER to process. */
352 static inline bool
353 end_coalesce_pair_p (coalesce_pair_iterator *iter)
355 return end_htab_p (&(iter->hti));
359 /* Return the next partition pair to be visited by ITER. */
361 static inline coalesce_pair_p
362 next_coalesce_pair (coalesce_pair_iterator *iter)
364 coalesce_pair_p pair;
366 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
367 return pair;
371 /* Iterate over CL using ITER, returning values in PAIR. */
373 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
374 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
375 !end_coalesce_pair_p (&(ITER)); \
376 (PAIR) = next_coalesce_pair (&(ITER)))
379 /* Prepare CL for removal of preferred pairs. When finished they are sorted
380 in order from most important coalesce to least important. */
382 static void
383 sort_coalesce_list (coalesce_list_p cl)
385 unsigned x, num;
386 coalesce_pair_p p;
387 coalesce_pair_iterator ppi;
389 gcc_assert (cl->sorted == NULL);
391 num = num_coalesce_pairs (cl);
392 cl->num_sorted = num;
393 if (num == 0)
394 return;
396 /* Allocate a vector for the pair pointers. */
397 cl->sorted = XNEWVEC (coalesce_pair_p, num);
399 /* Populate the vector with pointers to the pairs. */
400 x = 0;
401 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
402 cl->sorted[x++] = p;
403 gcc_assert (x == num);
405 /* Already sorted. */
406 if (num == 1)
407 return;
409 /* If there are only 2, just pick swap them if the order isn't correct. */
410 if (num == 2)
412 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
414 p = cl->sorted[0];
415 cl->sorted[0] = cl->sorted[1];
416 cl->sorted[1] = p;
418 return;
421 /* Only call qsort if there are more than 2 items. */
422 if (num > 2)
423 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
427 /* Send debug info for coalesce list CL to file F. */
429 static void
430 dump_coalesce_list (FILE *f, coalesce_list_p cl)
432 coalesce_pair_p node;
433 coalesce_pair_iterator ppi;
434 int x;
435 tree var;
437 if (cl->sorted == NULL)
439 fprintf (f, "Coalesce List:\n");
440 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
442 tree var1 = ssa_name (node->first_element);
443 tree var2 = ssa_name (node->second_element);
444 print_generic_expr (f, var1, TDF_SLIM);
445 fprintf (f, " <-> ");
446 print_generic_expr (f, var2, TDF_SLIM);
447 fprintf (f, " (%1d), ", node->cost);
448 fprintf (f, "\n");
451 else
453 fprintf (f, "Sorted Coalesce list:\n");
454 for (x = cl->num_sorted - 1 ; x >=0; x--)
456 node = cl->sorted[x];
457 fprintf (f, "(%d) ", node->cost);
458 var = ssa_name (node->first_element);
459 print_generic_expr (f, var, TDF_SLIM);
460 fprintf (f, " <-> ");
461 var = ssa_name (node->second_element);
462 print_generic_expr (f, var, TDF_SLIM);
463 fprintf (f, "\n");
469 /* This represents a conflict graph. Implemented as an array of bitmaps.
470 A full matrix is used for conflicts rather than just upper triangular form.
471 this make sit much simpler and faster to perform conflict merges. */
473 typedef struct ssa_conflicts_d
475 unsigned size;
476 bitmap *conflicts;
477 } * ssa_conflicts_p;
480 /* Return an empty new conflict graph for SIZE elements. */
482 static inline ssa_conflicts_p
483 ssa_conflicts_new (unsigned size)
485 ssa_conflicts_p ptr;
487 ptr = XNEW (struct ssa_conflicts_d);
488 ptr->conflicts = XCNEWVEC (bitmap, size);
489 ptr->size = size;
490 return ptr;
494 /* Free storage for conflict graph PTR. */
496 static inline void
497 ssa_conflicts_delete (ssa_conflicts_p ptr)
499 unsigned x;
500 for (x = 0; x < ptr->size; x++)
501 if (ptr->conflicts[x])
502 BITMAP_FREE (ptr->conflicts[x]);
504 free (ptr->conflicts);
505 free (ptr);
509 /* Test if elements X and Y conflict in graph PTR. */
511 static inline bool
512 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
514 bitmap b;
516 #ifdef ENABLE_CHECKING
517 gcc_assert (x < ptr->size);
518 gcc_assert (y < ptr->size);
519 gcc_assert (x != y);
520 #endif
522 b = ptr->conflicts[x];
523 if (b)
524 /* Avoid the lookup if Y has no conflicts. */
525 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
526 else
527 return false;
531 /* Add a conflict with Y to the bitmap for X in graph PTR. */
533 static inline void
534 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
536 /* If there are no conflicts yet, allocate the bitmap and set bit. */
537 if (!ptr->conflicts[x])
538 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
539 bitmap_set_bit (ptr->conflicts[x], y);
543 /* Add conflicts between X and Y in graph PTR. */
545 static inline void
546 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
548 #ifdef ENABLE_CHECKING
549 gcc_assert (x < ptr->size);
550 gcc_assert (y < ptr->size);
551 gcc_assert (x != y);
552 #endif
553 ssa_conflicts_add_one (ptr, x, y);
554 ssa_conflicts_add_one (ptr, y, x);
558 /* Merge all Y's conflict into X in graph PTR. */
560 static inline void
561 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
563 unsigned z;
564 bitmap_iterator bi;
566 gcc_assert (x != y);
567 if (!(ptr->conflicts[y]))
568 return;
570 /* Add a conflict between X and every one Y has. If the bitmap doesn't
571 exist, then it has already been coalesced, and we dont need to add a
572 conflict. */
573 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
574 if (ptr->conflicts[z])
575 bitmap_set_bit (ptr->conflicts[z], x);
577 if (ptr->conflicts[x])
579 /* If X has conflicts, add Y's to X. */
580 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
581 BITMAP_FREE (ptr->conflicts[y]);
583 else
585 /* If X has no conflicts, simply use Y's. */
586 ptr->conflicts[x] = ptr->conflicts[y];
587 ptr->conflicts[y] = NULL;
592 /* Dump a conflicts graph. */
594 static void
595 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
597 unsigned x;
599 fprintf (file, "\nConflict graph:\n");
601 for (x = 0; x < ptr->size; x++)
602 if (ptr->conflicts[x])
604 fprintf (dump_file, "%d: ", x);
605 dump_bitmap (file, ptr->conflicts[x]);
610 /* This structure is used to efficiently record the current status of live
611 SSA_NAMES when building a conflict graph.
612 LIVE_BASE_VAR has a bit set for each base variable which has at least one
613 ssa version live.
614 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
615 index, and is used to track what partitions of each base variable are
616 live. This makes it easy to add conflicts between just live partitions
617 with the same base variable.
618 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
619 marked as being live. This delays clearing of these bitmaps until
620 they are actually needed again. */
622 typedef struct live_track_d
624 bitmap live_base_var; /* Indicates if a basevar is live. */
625 bitmap *live_base_partitions; /* Live partitions for each basevar. */
626 var_map map; /* Var_map being used for partition mapping. */
627 } * live_track_p;
630 /* This routine will create a new live track structure based on the partitions
631 in MAP. */
633 static live_track_p
634 new_live_track (var_map map)
636 live_track_p ptr;
637 int lim, x;
639 /* Make sure there is a partition view in place. */
640 gcc_assert (map->partition_to_base_index != NULL);
642 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
643 ptr->map = map;
644 lim = num_basevars (map);
645 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
646 ptr->live_base_var = BITMAP_ALLOC (NULL);
647 for (x = 0; x < lim; x++)
648 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
649 return ptr;
653 /* This routine will free the memory associated with PTR. */
655 static void
656 delete_live_track (live_track_p ptr)
658 int x, lim;
660 lim = num_basevars (ptr->map);
661 for (x = 0; x < lim; x++)
662 BITMAP_FREE (ptr->live_base_partitions[x]);
663 BITMAP_FREE (ptr->live_base_var);
664 free (ptr->live_base_partitions);
665 free (ptr);
669 /* This function will remove PARTITION from the live list in PTR. */
671 static inline void
672 live_track_remove_partition (live_track_p ptr, int partition)
674 int root;
676 root = basevar_index (ptr->map, partition);
677 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
678 /* If the element list is empty, make the base variable not live either. */
679 if (bitmap_empty_p (ptr->live_base_partitions[root]))
680 bitmap_clear_bit (ptr->live_base_var, root);
684 /* This function will adds PARTITION to the live list in PTR. */
686 static inline void
687 live_track_add_partition (live_track_p ptr, int partition)
689 int root;
691 root = basevar_index (ptr->map, partition);
692 /* If this base var wasn't live before, it is now. Clear the element list
693 since it was delayed until needed. */
694 if (!bitmap_bit_p (ptr->live_base_var, root))
696 bitmap_set_bit (ptr->live_base_var, root);
697 bitmap_clear (ptr->live_base_partitions[root]);
699 bitmap_set_bit (ptr->live_base_partitions[root], partition);
704 /* Clear the live bit for VAR in PTR. */
706 static inline void
707 live_track_clear_var (live_track_p ptr, tree var)
709 int p;
711 p = var_to_partition (ptr->map, var);
712 if (p != NO_PARTITION)
713 live_track_remove_partition (ptr, p);
717 /* Return TRUE if VAR is live in PTR. */
719 static inline bool
720 live_track_live_p (live_track_p ptr, tree var)
722 int p, root;
724 p = var_to_partition (ptr->map, var);
725 if (p != NO_PARTITION)
727 root = basevar_index (ptr->map, p);
728 if (bitmap_bit_p (ptr->live_base_var, root))
729 return bitmap_bit_p (ptr->live_base_partitions[root], p);
731 return false;
735 /* This routine will add USE to PTR. USE will be marked as live in both the
736 ssa live map and the live bitmap for the root of USE. */
738 static inline void
739 live_track_process_use (live_track_p ptr, tree use)
741 int p;
743 p = var_to_partition (ptr->map, use);
744 if (p == NO_PARTITION)
745 return;
747 /* Mark as live in the appropriate live list. */
748 live_track_add_partition (ptr, p);
752 /* This routine will process a DEF in PTR. DEF will be removed from the live
753 lists, and if there are any other live partitions with the same base
754 variable, conflicts will be added to GRAPH. */
756 static inline void
757 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
759 int p, root;
760 bitmap b;
761 unsigned x;
762 bitmap_iterator bi;
764 p = var_to_partition (ptr->map, def);
765 if (p == NO_PARTITION)
766 return;
768 /* Clear the liveness bit. */
769 live_track_remove_partition (ptr, p);
771 /* If the bitmap isn't empty now, conflicts need to be added. */
772 root = basevar_index (ptr->map, p);
773 if (bitmap_bit_p (ptr->live_base_var, root))
775 b = ptr->live_base_partitions[root];
776 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
777 ssa_conflicts_add (graph, p, x);
782 /* Initialize PTR with the partitions set in INIT. */
784 static inline void
785 live_track_init (live_track_p ptr, bitmap init)
787 unsigned p;
788 bitmap_iterator bi;
790 /* Mark all live on exit partitions. */
791 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
792 live_track_add_partition (ptr, p);
796 /* This routine will clear all live partitions in PTR. */
798 static inline void
799 live_track_clear_base_vars (live_track_p ptr)
801 /* Simply clear the live base list. Anything marked as live in the element
802 lists will be cleared later if/when the base variable ever comes alive
803 again. */
804 bitmap_clear (ptr->live_base_var);
808 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
809 partition view of the var_map liveinfo is based on get entries in the
810 conflict graph. Only conflicts between ssa_name partitions with the same
811 base variable are added. */
813 static ssa_conflicts_p
814 build_ssa_conflict_graph (tree_live_info_p liveinfo)
816 ssa_conflicts_p graph;
817 var_map map;
818 basic_block bb;
819 ssa_op_iter iter;
820 live_track_p live;
822 map = live_var_map (liveinfo);
823 graph = ssa_conflicts_new (num_var_partitions (map));
825 live = new_live_track (map);
827 FOR_EACH_BB (bb)
829 block_stmt_iterator bsi;
830 tree phi;
832 /* Start with live on exit temporaries. */
833 live_track_init (live, live_on_exit (liveinfo, bb));
835 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
837 tree var;
838 tree stmt = bsi_stmt (bsi);
840 /* A copy between 2 partitions does not introduce an interference
841 by itself. If they did, you would never be able to coalesce
842 two things which are copied. If the two variables really do
843 conflict, they will conflict elsewhere in the program.
845 This is handled by simply removing the SRC of the copy from the
846 live list, and processing the stmt normally. */
847 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
849 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
850 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
851 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
852 live_track_clear_var (live, rhs);
855 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
856 live_track_process_def (live, var, graph);
858 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
859 live_track_process_use (live, var);
862 /* If result of a PHI is unused, looping over the statements will not
863 record any conflicts since the def was never live. Since the PHI node
864 is going to be translated out of SSA form, it will insert a copy.
865 There must be a conflict recorded between the result of the PHI and
866 any variables that are live. Otherwise the out-of-ssa translation
867 may create incorrect code. */
868 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
870 tree result = PHI_RESULT (phi);
871 if (live_track_live_p (live, result))
872 live_track_process_def (live, result, graph);
875 live_track_clear_base_vars (live);
878 delete_live_track (live);
879 return graph;
883 /* Shortcut routine to print messages to file F of the form:
884 "STR1 EXPR1 STR2 EXPR2 STR3." */
886 static inline void
887 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
888 tree expr2, const char *str3)
890 fprintf (f, "%s", str1);
891 print_generic_expr (f, expr1, TDF_SLIM);
892 fprintf (f, "%s", str2);
893 print_generic_expr (f, expr2, TDF_SLIM);
894 fprintf (f, "%s", str3);
898 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
899 the phi node at fault, I is the argument index at fault. A message is
900 printed and compilation is then terminated. */
902 static inline void
903 abnormal_corrupt (tree phi, int i)
905 edge e = PHI_ARG_EDGE (phi, i);
906 tree res = PHI_RESULT (phi);
907 tree arg = PHI_ARG_DEF (phi, i);
909 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
910 e->src->index, e->dest->index);
911 fprintf (stderr, "Argument %d (", i);
912 print_generic_expr (stderr, arg, TDF_SLIM);
913 if (TREE_CODE (arg) != SSA_NAME)
914 fprintf (stderr, ") is not an SSA_NAME.\n");
915 else
917 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
918 fprintf (stderr, ") does not have the same base variable as the result ");
919 print_generic_stmt (stderr, res, TDF_SLIM);
922 internal_error ("SSA corruption");
926 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
928 static inline void
929 fail_abnormal_edge_coalesce (int x, int y)
931 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
932 fprintf (stderr, " which are marked as MUST COALESCE.\n");
933 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
934 fprintf (stderr, " and ");
935 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
937 internal_error ("SSA corruption");
941 /* This function creates a var_map for the current function as well as creating
942 a coalesce list for use later in the out of ssa process. */
944 static var_map
945 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
947 block_stmt_iterator bsi;
948 basic_block bb;
949 tree var;
950 tree stmt;
951 tree first;
952 var_map map;
953 ssa_op_iter iter;
954 int v1, v2, cost;
955 unsigned i;
957 #ifdef ENABLE_CHECKING
958 bitmap used_in_real_ops;
959 bitmap used_in_virtual_ops;
961 used_in_real_ops = BITMAP_ALLOC (NULL);
962 used_in_virtual_ops = BITMAP_ALLOC (NULL);
963 #endif
965 map = init_var_map (num_ssa_names + 1);
967 FOR_EACH_BB (bb)
969 tree phi, arg;
971 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
973 int i;
974 int ver;
975 tree res;
976 bool saw_copy = false;
978 res = PHI_RESULT (phi);
979 ver = SSA_NAME_VERSION (res);
980 register_ssa_partition (map, res);
982 /* Register ssa_names and coalesces between the args and the result
983 of all PHI. */
984 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
986 edge e = PHI_ARG_EDGE (phi, i);
987 arg = PHI_ARG_DEF (phi, i);
988 if (TREE_CODE (arg) == SSA_NAME)
989 register_ssa_partition (map, arg);
990 if (TREE_CODE (arg) == SSA_NAME
991 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
993 saw_copy = true;
994 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
995 if ((e->flags & EDGE_ABNORMAL) == 0)
997 int cost = coalesce_cost_edge (e);
998 if (cost == 1 && has_single_use (arg))
999 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1000 else
1001 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1004 else
1005 if (e->flags & EDGE_ABNORMAL)
1006 abnormal_corrupt (phi, i);
1008 if (saw_copy)
1009 bitmap_set_bit (used_in_copy, ver);
1012 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1014 stmt = bsi_stmt (bsi);
1016 /* Register USE and DEF operands in each statement. */
1017 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1018 register_ssa_partition (map, var);
1020 /* Check for copy coalesces. */
1021 switch (TREE_CODE (stmt))
1023 case GIMPLE_MODIFY_STMT:
1025 tree op1 = GIMPLE_STMT_OPERAND (stmt, 0);
1026 tree op2 = GIMPLE_STMT_OPERAND (stmt, 1);
1027 if (TREE_CODE (op1) == SSA_NAME
1028 && TREE_CODE (op2) == SSA_NAME
1029 && SSA_NAME_VAR (op1) == SSA_NAME_VAR (op2))
1031 v1 = SSA_NAME_VERSION (op1);
1032 v2 = SSA_NAME_VERSION (op2);
1033 cost = coalesce_cost_bb (bb);
1034 add_coalesce (cl, v1, v2, cost);
1035 bitmap_set_bit (used_in_copy, v1);
1036 bitmap_set_bit (used_in_copy, v2);
1039 break;
1041 case ASM_EXPR:
1043 unsigned long noutputs, i;
1044 tree *outputs, link;
1045 noutputs = list_length (ASM_OUTPUTS (stmt));
1046 outputs = (tree *) alloca (noutputs * sizeof (tree));
1047 for (i = 0, link = ASM_OUTPUTS (stmt); link;
1048 ++i, link = TREE_CHAIN (link))
1049 outputs[i] = TREE_VALUE (link);
1051 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1053 const char *constraint
1054 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1055 tree input = TREE_VALUE (link);
1056 char *end;
1057 unsigned long match;
1059 if (TREE_CODE (input) != SSA_NAME)
1060 continue;
1062 match = strtoul (constraint, &end, 10);
1063 if (match >= noutputs || end == constraint)
1064 continue;
1066 if (TREE_CODE (outputs[match]) != SSA_NAME)
1067 continue;
1069 v1 = SSA_NAME_VERSION (outputs[match]);
1070 v2 = SSA_NAME_VERSION (input);
1072 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1074 cost = coalesce_cost (REG_BR_PROB_BASE,
1075 maybe_hot_bb_p (bb),
1076 false);
1077 add_coalesce (cl, v1, v2, cost);
1078 bitmap_set_bit (used_in_copy, v1);
1079 bitmap_set_bit (used_in_copy, v2);
1082 break;
1085 default:
1086 break;
1089 #ifdef ENABLE_CHECKING
1090 /* Mark real uses and defs. */
1091 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1092 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1094 /* Validate that virtual ops don't get used in funny ways. */
1095 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_VIRTUALS)
1097 bitmap_set_bit (used_in_virtual_ops,
1098 DECL_UID (SSA_NAME_VAR (var)));
1101 #endif /* ENABLE_CHECKING */
1105 /* Now process result decls and live on entry variables for entry into
1106 the coalesce list. */
1107 first = NULL_TREE;
1108 for (i = 1; i < num_ssa_names; i++)
1110 var = map->partition_to_var[i];
1111 if (var != NULL_TREE)
1113 /* Add coalesces between all the result decls. */
1114 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1116 if (first == NULL_TREE)
1117 first = var;
1118 else
1120 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1121 v1 = SSA_NAME_VERSION (first);
1122 v2 = SSA_NAME_VERSION (var);
1123 bitmap_set_bit (used_in_copy, v1);
1124 bitmap_set_bit (used_in_copy, v2);
1125 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1126 add_coalesce (cl, v1, v2, cost);
1129 /* Mark any default_def variables as being in the coalesce list
1130 since they will have to be coalesced with the base variable. If
1131 not marked as present, they won't be in the coalesce view. */
1132 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var)
1133 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1137 #if defined ENABLE_CHECKING
1139 unsigned i;
1140 bitmap both = BITMAP_ALLOC (NULL);
1141 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1142 if (!bitmap_empty_p (both))
1144 bitmap_iterator bi;
1146 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1147 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1148 get_name (referenced_var (i)));
1149 internal_error ("SSA corruption");
1152 BITMAP_FREE (used_in_real_ops);
1153 BITMAP_FREE (used_in_virtual_ops);
1154 BITMAP_FREE (both);
1156 #endif
1158 return map;
1162 /* Attempt to coalesce ssa versions X and Y together using the partition
1163 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1164 DEBUG, if it is nun-NULL. */
1166 static inline bool
1167 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1168 FILE *debug)
1170 int z;
1171 tree var1, var2;
1172 int p1, p2;
1174 p1 = var_to_partition (map, ssa_name (x));
1175 p2 = var_to_partition (map, ssa_name (y));
1177 if (debug)
1179 fprintf (debug, "(%d)", x);
1180 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1181 fprintf (debug, " & (%d)", y);
1182 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1185 if (p1 == p2)
1187 if (debug)
1188 fprintf (debug, ": Already Coalesced.\n");
1189 return true;
1192 if (debug)
1193 fprintf (debug, " [map: %d, %d] ", p1, p2);
1196 if (!ssa_conflicts_test_p (graph, p1, p2))
1198 var1 = partition_to_var (map, p1);
1199 var2 = partition_to_var (map, p2);
1200 z = var_union (map, var1, var2);
1201 if (z == NO_PARTITION)
1203 if (debug)
1204 fprintf (debug, ": Unable to perform partition union.\n");
1205 return false;
1208 /* z is the new combined partition. Remove the other partition from
1209 the list, and merge the conflicts. */
1210 if (z == p1)
1211 ssa_conflicts_merge (graph, p1, p2);
1212 else
1213 ssa_conflicts_merge (graph, p2, p1);
1215 if (debug)
1216 fprintf (debug, ": Success -> %d\n", z);
1217 return true;
1220 if (debug)
1221 fprintf (debug, ": Fail due to conflict\n");
1223 return false;
1227 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1228 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1230 static void
1231 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1232 FILE *debug)
1234 int x = 0, y = 0;
1235 tree var1, var2, phi;
1236 int cost;
1237 basic_block bb;
1238 edge e;
1239 edge_iterator ei;
1241 /* First, coalesce all the copies across abnormal edges. These are not placed
1242 in the coalesce list because they do not need to be sorted, and simply
1243 consume extra memory/compilation time in large programs. */
1245 FOR_EACH_BB (bb)
1247 FOR_EACH_EDGE (e, ei, bb->preds)
1248 if (e->flags & EDGE_ABNORMAL)
1250 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1252 tree res = PHI_RESULT (phi);
1253 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1254 int v1 = SSA_NAME_VERSION (res);
1255 int v2 = SSA_NAME_VERSION (arg);
1257 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1258 abnormal_corrupt (phi, e->dest_idx);
1260 if (debug)
1261 fprintf (debug, "Abnormal coalesce: ");
1263 if (!attempt_coalesce (map, graph, v1, v2, debug))
1264 fail_abnormal_edge_coalesce (v1, v2);
1269 /* Now process the items in the coalesce list. */
1271 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1273 var1 = ssa_name (x);
1274 var2 = ssa_name (y);
1276 /* Assert the coalesces have the same base variable. */
1277 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1279 if (debug)
1280 fprintf (debug, "Coalesce list: ");
1281 attempt_coalesce (map, graph, x, y, debug);
1286 /* Reduce the number of copies by coalescing variables in the function. Return
1287 a partition map with the resulting coalesces. */
1289 extern var_map
1290 coalesce_ssa_name (void)
1292 unsigned num, x;
1293 tree_live_info_p liveinfo;
1294 ssa_conflicts_p graph;
1295 coalesce_list_p cl;
1296 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1297 var_map map;
1299 cl = create_coalesce_list ();
1300 map = create_outofssa_var_map (cl, used_in_copies);
1302 /* Don't calculate live ranges for variables not in the coalesce list. */
1303 partition_view_bitmap (map, used_in_copies, true);
1304 BITMAP_FREE (used_in_copies);
1306 if (num_var_partitions (map) < 1)
1308 delete_coalesce_list (cl);
1309 return map;
1312 if (dump_file && (dump_flags & TDF_DETAILS))
1313 dump_var_map (dump_file, map);
1315 liveinfo = calculate_live_ranges (map);
1317 if (dump_file && (dump_flags & TDF_DETAILS))
1318 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1320 /* Build a conflict graph. */
1321 graph = build_ssa_conflict_graph (liveinfo);
1322 delete_tree_live_info (liveinfo);
1323 if (dump_file && (dump_flags & TDF_DETAILS))
1324 ssa_conflicts_dump (dump_file, graph);
1326 sort_coalesce_list (cl);
1328 if (dump_file && (dump_flags & TDF_DETAILS))
1330 fprintf (dump_file, "\nAfter sorting:\n");
1331 dump_coalesce_list (dump_file, cl);
1334 /* First, coalesce all live on entry variables to their base variable.
1335 This will ensure the first use is coming from the correct location. */
1337 num = num_var_partitions (map);
1338 for (x = 0 ; x < num; x++)
1340 tree var = partition_to_var (map, x);
1341 tree root;
1343 if (TREE_CODE (var) != SSA_NAME)
1344 continue;
1346 root = SSA_NAME_VAR (var);
1347 if (gimple_default_def (cfun, root) == var)
1349 /* This root variable should have not already been assigned
1350 to another partition which is not coalesced with this one. */
1351 gcc_assert (!var_ann (root)->out_of_ssa_tag);
1353 if (dump_file && (dump_flags & TDF_DETAILS))
1355 print_exprs (dump_file, "Must coalesce ", var,
1356 " with the root variable ", root, ".\n");
1358 change_partition_var (map, root, x);
1362 if (dump_file && (dump_flags & TDF_DETAILS))
1363 dump_var_map (dump_file, map);
1365 /* Now coalesce everything in the list. */
1366 coalesce_partitions (map, graph, cl,
1367 ((dump_flags & TDF_DETAILS) ? dump_file
1368 : NULL));
1370 delete_coalesce_list (cl);
1371 ssa_conflicts_delete (graph);
1373 return map;