1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Contracts
; use Contracts
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Fname
; use Fname
;
35 with Fname
.UF
; use Fname
.UF
;
36 with Freeze
; use Freeze
;
37 with Ghost
; use Ghost
;
38 with Itypes
; use Itypes
;
40 with Lib
.Load
; use Lib
.Load
;
41 with Lib
.Xref
; use Lib
.Xref
;
42 with Nlists
; use Nlists
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
46 with Rident
; use Rident
;
47 with Restrict
; use Restrict
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch10
; use Sem_Ch10
;
57 with Sem_Ch13
; use Sem_Ch13
;
58 with Sem_Dim
; use Sem_Dim
;
59 with Sem_Disp
; use Sem_Disp
;
60 with Sem_Elab
; use Sem_Elab
;
61 with Sem_Elim
; use Sem_Elim
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Prag
; use Sem_Prag
;
64 with Sem_Res
; use Sem_Res
;
65 with Sem_Type
; use Sem_Type
;
66 with Sem_Util
; use Sem_Util
;
67 with Sem_Warn
; use Sem_Warn
;
68 with Stand
; use Stand
;
69 with Sinfo
; use Sinfo
;
70 with Sinfo
.CN
; use Sinfo
.CN
;
71 with Sinput
; use Sinput
;
72 with Sinput
.L
; use Sinput
.L
;
73 with Snames
; use Snames
;
74 with Stringt
; use Stringt
;
75 with Uname
; use Uname
;
77 with Tbuild
; use Tbuild
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
80 with Warnsw
; use Warnsw
;
84 package body Sem_Ch12
is
86 ----------------------------------------------------------
87 -- Implementation of Generic Analysis and Instantiation --
88 ----------------------------------------------------------
90 -- GNAT implements generics by macro expansion. No attempt is made to share
91 -- generic instantiations (for now). Analysis of a generic definition does
92 -- not perform any expansion action, but the expander must be called on the
93 -- tree for each instantiation, because the expansion may of course depend
94 -- on the generic actuals. All of this is best achieved as follows:
96 -- a) Semantic analysis of a generic unit is performed on a copy of the
97 -- tree for the generic unit. All tree modifications that follow analysis
98 -- do not affect the original tree. Links are kept between the original
99 -- tree and the copy, in order to recognize non-local references within
100 -- the generic, and propagate them to each instance (recall that name
101 -- resolution is done on the generic declaration: generics are not really
102 -- macros). This is summarized in the following diagram:
104 -- .-----------. .----------.
105 -- | semantic |<--------------| generic |
107 -- | |==============>| |
108 -- |___________| global |__________|
119 -- b) Each instantiation copies the original tree, and inserts into it a
120 -- series of declarations that describe the mapping between generic formals
121 -- and actuals. For example, a generic In OUT parameter is an object
122 -- renaming of the corresponding actual, etc. Generic IN parameters are
123 -- constant declarations.
125 -- c) In order to give the right visibility for these renamings, we use
126 -- a different scheme for package and subprogram instantiations. For
127 -- packages, the list of renamings is inserted into the package
128 -- specification, before the visible declarations of the package. The
129 -- renamings are analyzed before any of the text of the instance, and are
130 -- thus visible at the right place. Furthermore, outside of the instance,
131 -- the generic parameters are visible and denote their corresponding
134 -- For subprograms, we create a container package to hold the renamings
135 -- and the subprogram instance itself. Analysis of the package makes the
136 -- renaming declarations visible to the subprogram. After analyzing the
137 -- package, the defining entity for the subprogram is touched-up so that
138 -- it appears declared in the current scope, and not inside the container
141 -- If the instantiation is a compilation unit, the container package is
142 -- given the same name as the subprogram instance. This ensures that
143 -- the elaboration procedure called by the binder, using the compilation
144 -- unit name, calls in fact the elaboration procedure for the package.
146 -- Not surprisingly, private types complicate this approach. By saving in
147 -- the original generic object the non-local references, we guarantee that
148 -- the proper entities are referenced at the point of instantiation.
149 -- However, for private types, this by itself does not insure that the
150 -- proper VIEW of the entity is used (the full type may be visible at the
151 -- point of generic definition, but not at instantiation, or vice-versa).
152 -- In order to reference the proper view, we special-case any reference
153 -- to private types in the generic object, by saving both views, one in
154 -- the generic and one in the semantic copy. At time of instantiation, we
155 -- check whether the two views are consistent, and exchange declarations if
156 -- necessary, in order to restore the correct visibility. Similarly, if
157 -- the instance view is private when the generic view was not, we perform
158 -- the exchange. After completing the instantiation, we restore the
159 -- current visibility. The flag Has_Private_View marks identifiers in the
160 -- the generic unit that require checking.
162 -- Visibility within nested generic units requires special handling.
163 -- Consider the following scheme:
165 -- type Global is ... -- outside of generic unit.
169 -- type Semi_Global is ... -- global to inner.
172 -- procedure inner (X1 : Global; X2 : Semi_Global);
174 -- procedure in2 is new inner (...); -- 4
177 -- package New_Outer is new Outer (...); -- 2
178 -- procedure New_Inner is new New_Outer.Inner (...); -- 3
180 -- The semantic analysis of Outer captures all occurrences of Global.
181 -- The semantic analysis of Inner (at 1) captures both occurrences of
182 -- Global and Semi_Global.
184 -- At point 2 (instantiation of Outer), we also produce a generic copy
185 -- of Inner, even though Inner is, at that point, not being instantiated.
186 -- (This is just part of the semantic analysis of New_Outer).
188 -- Critically, references to Global within Inner must be preserved, while
189 -- references to Semi_Global should not preserved, because they must now
190 -- resolve to an entity within New_Outer. To distinguish between these, we
191 -- use a global variable, Current_Instantiated_Parent, which is set when
192 -- performing a generic copy during instantiation (at 2). This variable is
193 -- used when performing a generic copy that is not an instantiation, but
194 -- that is nested within one, as the occurrence of 1 within 2. The analysis
195 -- of a nested generic only preserves references that are global to the
196 -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
197 -- determine whether a reference is external to the given parent.
199 -- The instantiation at point 3 requires no special treatment. The method
200 -- works as well for further nestings of generic units, but of course the
201 -- variable Current_Instantiated_Parent must be stacked because nested
202 -- instantiations can occur, e.g. the occurrence of 4 within 2.
204 -- The instantiation of package and subprogram bodies is handled in a
205 -- similar manner, except that it is delayed until after semantic
206 -- analysis is complete. In this fashion complex cross-dependencies
207 -- between several package declarations and bodies containing generics
208 -- can be compiled which otherwise would diagnose spurious circularities.
210 -- For example, it is possible to compile two packages A and B that
211 -- have the following structure:
213 -- package A is package B is
214 -- generic ... generic ...
215 -- package G_A is package G_B is
218 -- package body A is package body B is
219 -- package N_B is new G_B (..) package N_A is new G_A (..)
221 -- The table Pending_Instantiations in package Inline is used to keep
222 -- track of body instantiations that are delayed in this manner. Inline
223 -- handles the actual calls to do the body instantiations. This activity
224 -- is part of Inline, since the processing occurs at the same point, and
225 -- for essentially the same reason, as the handling of inlined routines.
227 ----------------------------------------------
228 -- Detection of Instantiation Circularities --
229 ----------------------------------------------
231 -- If we have a chain of instantiations that is circular, this is static
232 -- error which must be detected at compile time. The detection of these
233 -- circularities is carried out at the point that we insert a generic
234 -- instance spec or body. If there is a circularity, then the analysis of
235 -- the offending spec or body will eventually result in trying to load the
236 -- same unit again, and we detect this problem as we analyze the package
237 -- instantiation for the second time.
239 -- At least in some cases after we have detected the circularity, we get
240 -- into trouble if we try to keep going. The following flag is set if a
241 -- circularity is detected, and used to abandon compilation after the
242 -- messages have been posted.
244 -----------------------------------------
245 -- Implementation of Generic Contracts --
246 -----------------------------------------
248 -- A "contract" is a collection of aspects and pragmas that either verify a
249 -- property of a construct at runtime or classify the data flow to and from
250 -- the construct in some fashion.
252 -- Generic packages, subprograms and their respective bodies may be subject
253 -- to the following contract-related aspects or pragmas collectively known
256 -- package subprogram [body]
257 -- Abstract_State Contract_Cases
258 -- Initial_Condition Depends
259 -- Initializes Extensions_Visible
262 -- Refined_State Post_Class
272 -- Most package contract annotations utilize forward references to classify
273 -- data declared within the package [body]. Subprogram annotations then use
274 -- the classifications to further refine them. These inter dependencies are
275 -- problematic with respect to the implementation of generics because their
276 -- analysis, capture of global references and instantiation does not mesh
277 -- well with the existing mechanism.
279 -- 1) Analysis of generic contracts is carried out the same way non-generic
280 -- contracts are analyzed:
282 -- 1.1) General rule - a contract is analyzed after all related aspects
283 -- and pragmas are analyzed. This is done by routines
285 -- Analyze_Package_Body_Contract
286 -- Analyze_Package_Contract
287 -- Analyze_Subprogram_Body_Contract
288 -- Analyze_Subprogram_Contract
290 -- 1.2) Compilation unit - the contract is analyzed after Pragmas_After
293 -- 1.3) Compilation unit body - the contract is analyzed at the end of
294 -- the body declaration list.
296 -- 1.4) Package - the contract is analyzed at the end of the private or
297 -- visible declarations, prior to analyzing the contracts of any nested
298 -- packages or subprograms.
300 -- 1.5) Package body - the contract is analyzed at the end of the body
301 -- declaration list, prior to analyzing the contracts of any nested
302 -- packages or subprograms.
304 -- 1.6) Subprogram - if the subprogram is declared inside a block, a
305 -- package or a subprogram, then its contract is analyzed at the end of
306 -- the enclosing declarations, otherwise the subprogram is a compilation
309 -- 1.7) Subprogram body - if the subprogram body is declared inside a
310 -- block, a package body or a subprogram body, then its contract is
311 -- analyzed at the end of the enclosing declarations, otherwise the
312 -- subprogram is a compilation unit 1.3).
314 -- 2) Capture of global references within contracts is done after capturing
315 -- global references within the generic template. There are two reasons for
316 -- this delay - pragma annotations are not part of the generic template in
317 -- the case of a generic subprogram declaration, and analysis of contracts
320 -- Contract-related source pragmas within generic templates are prepared
321 -- for delayed capture of global references by routine
323 -- Create_Generic_Contract
325 -- The routine associates these pragmas with the contract of the template.
326 -- In the case of a generic subprogram declaration, the routine creates
327 -- generic templates for the pragmas declared after the subprogram because
328 -- they are not part of the template.
330 -- generic -- template starts
331 -- procedure Gen_Proc (Input : Integer); -- template ends
332 -- pragma Precondition (Input > 0); -- requires own template
334 -- 2.1) The capture of global references with aspect specifications and
335 -- source pragmas that apply to a generic unit must be suppressed when
336 -- the generic template is being processed because the contracts have not
337 -- been analyzed yet. Any attempts to capture global references at that
338 -- point will destroy the Associated_Node linkages and leave the template
339 -- undecorated. This delay is controlled by routine
341 -- Requires_Delayed_Save
343 -- 2.2) The real capture of global references within a contract is done
344 -- after the contract has been analyzed, by routine
346 -- Save_Global_References_In_Contract
348 -- 3) The instantiation of a generic contract occurs as part of the
349 -- instantiation of the contract owner. Generic subprogram declarations
350 -- require additional processing when the contract is specified by pragmas
351 -- because the pragmas are not part of the generic template. This is done
354 -- Instantiate_Subprogram_Contract
356 Circularity_Detected
: Boolean := False;
357 -- This should really be reset on encountering a new main unit, but in
358 -- practice we are not using multiple main units so it is not critical.
360 --------------------------------------------------
361 -- Formal packages and partial parameterization --
362 --------------------------------------------------
364 -- When compiling a generic, a formal package is a local instantiation. If
365 -- declared with a box, its generic formals are visible in the enclosing
366 -- generic. If declared with a partial list of actuals, those actuals that
367 -- are defaulted (covered by an Others clause, or given an explicit box
368 -- initialization) are also visible in the enclosing generic, while those
369 -- that have a corresponding actual are not.
371 -- In our source model of instantiation, the same visibility must be
372 -- present in the spec and body of an instance: the names of the formals
373 -- that are defaulted must be made visible within the instance, and made
374 -- invisible (hidden) after the instantiation is complete, so that they
375 -- are not accessible outside of the instance.
377 -- In a generic, a formal package is treated like a special instantiation.
378 -- Our Ada 95 compiler handled formals with and without box in different
379 -- ways. With partial parameterization, we use a single model for both.
380 -- We create a package declaration that consists of the specification of
381 -- the generic package, and a set of declarations that map the actuals
382 -- into local renamings, just as we do for bona fide instantiations. For
383 -- defaulted parameters and formals with a box, we copy directly the
384 -- declarations of the formal into this local package. The result is a
385 -- a package whose visible declarations may include generic formals. This
386 -- package is only used for type checking and visibility analysis, and
387 -- never reaches the back-end, so it can freely violate the placement
388 -- rules for generic formal declarations.
390 -- The list of declarations (renamings and copies of formals) is built
391 -- by Analyze_Associations, just as for regular instantiations.
393 -- At the point of instantiation, conformance checking must be applied only
394 -- to those parameters that were specified in the formal. We perform this
395 -- checking by creating another internal instantiation, this one including
396 -- only the renamings and the formals (the rest of the package spec is not
397 -- relevant to conformance checking). We can then traverse two lists: the
398 -- list of actuals in the instance that corresponds to the formal package,
399 -- and the list of actuals produced for this bogus instantiation. We apply
400 -- the conformance rules to those actuals that are not defaulted (i.e.
401 -- which still appear as generic formals.
403 -- When we compile an instance body we must make the right parameters
404 -- visible again. The predicate Is_Generic_Formal indicates which of the
405 -- formals should have its Is_Hidden flag reset.
407 -----------------------
408 -- Local subprograms --
409 -----------------------
411 procedure Abandon_Instantiation
(N
: Node_Id
);
412 pragma No_Return
(Abandon_Instantiation
);
413 -- Posts an error message "instantiation abandoned" at the indicated node
414 -- and then raises the exception Instantiation_Error to do it.
416 procedure Analyze_Formal_Array_Type
417 (T
: in out Entity_Id
;
419 -- A formal array type is treated like an array type declaration, and
420 -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
421 -- in-out, because in the case of an anonymous type the entity is
422 -- actually created in the procedure.
424 -- The following procedures treat other kinds of formal parameters
426 procedure Analyze_Formal_Derived_Interface_Type
431 procedure Analyze_Formal_Derived_Type
436 procedure Analyze_Formal_Interface_Type
441 -- The following subprograms create abbreviated declarations for formal
442 -- scalar types. We introduce an anonymous base of the proper class for
443 -- each of them, and define the formals as constrained first subtypes of
444 -- their bases. The bounds are expressions that are non-static in the
447 procedure Analyze_Formal_Decimal_Fixed_Point_Type
448 (T
: Entity_Id
; Def
: Node_Id
);
449 procedure Analyze_Formal_Discrete_Type
(T
: Entity_Id
; Def
: Node_Id
);
450 procedure Analyze_Formal_Floating_Type
(T
: Entity_Id
; Def
: Node_Id
);
451 procedure Analyze_Formal_Signed_Integer_Type
(T
: Entity_Id
; Def
: Node_Id
);
452 procedure Analyze_Formal_Modular_Type
(T
: Entity_Id
; Def
: Node_Id
);
453 procedure Analyze_Formal_Ordinary_Fixed_Point_Type
454 (T
: Entity_Id
; Def
: Node_Id
);
456 procedure Analyze_Formal_Private_Type
460 -- Creates a new private type, which does not require completion
462 procedure Analyze_Formal_Incomplete_Type
(T
: Entity_Id
; Def
: Node_Id
);
463 -- Ada 2012: Creates a new incomplete type whose actual does not freeze
465 procedure Analyze_Generic_Formal_Part
(N
: Node_Id
);
466 -- Analyze generic formal part
468 procedure Analyze_Generic_Access_Type
(T
: Entity_Id
; Def
: Node_Id
);
469 -- Create a new access type with the given designated type
471 function Analyze_Associations
474 F_Copy
: List_Id
) return List_Id
;
475 -- At instantiation time, build the list of associations between formals
476 -- and actuals. Each association becomes a renaming declaration for the
477 -- formal entity. F_Copy is the analyzed list of formals in the generic
478 -- copy. It is used to apply legality checks to the actuals. I_Node is the
479 -- instantiation node itself.
481 procedure Analyze_Subprogram_Instantiation
485 procedure Build_Instance_Compilation_Unit_Nodes
489 -- This procedure is used in the case where the generic instance of a
490 -- subprogram body or package body is a library unit. In this case, the
491 -- original library unit node for the generic instantiation must be
492 -- replaced by the resulting generic body, and a link made to a new
493 -- compilation unit node for the generic declaration. The argument N is
494 -- the original generic instantiation. Act_Body and Act_Decl are the body
495 -- and declaration of the instance (either package body and declaration
496 -- nodes or subprogram body and declaration nodes depending on the case).
497 -- On return, the node N has been rewritten with the actual body.
499 procedure Check_Access_Definition
(N
: Node_Id
);
500 -- Subsidiary routine to null exclusion processing. Perform an assertion
501 -- check on Ada version and the presence of an access definition in N.
503 procedure Check_Formal_Packages
(P_Id
: Entity_Id
);
504 -- Apply the following to all formal packages in generic associations
506 procedure Check_Formal_Package_Instance
507 (Formal_Pack
: Entity_Id
;
508 Actual_Pack
: Entity_Id
);
509 -- Verify that the actuals of the actual instance match the actuals of
510 -- the template for a formal package that is not declared with a box.
512 procedure Check_Forward_Instantiation
(Decl
: Node_Id
);
513 -- If the generic is a local entity and the corresponding body has not
514 -- been seen yet, flag enclosing packages to indicate that it will be
515 -- elaborated after the generic body. Subprograms declared in the same
516 -- package cannot be inlined by the front-end because front-end inlining
517 -- requires a strict linear order of elaboration.
519 function Check_Hidden_Primitives
(Assoc_List
: List_Id
) return Elist_Id
;
520 -- Check if some association between formals and actuals requires to make
521 -- visible primitives of a tagged type, and make those primitives visible.
522 -- Return the list of primitives whose visibility is modified (to restore
523 -- their visibility later through Restore_Hidden_Primitives). If no
524 -- candidate is found then return No_Elist.
526 procedure Check_Hidden_Child_Unit
528 Gen_Unit
: Entity_Id
;
529 Act_Decl_Id
: Entity_Id
);
530 -- If the generic unit is an implicit child instance within a parent
531 -- instance, we need to make an explicit test that it is not hidden by
532 -- a child instance of the same name and parent.
534 procedure Check_Generic_Actuals
535 (Instance
: Entity_Id
;
536 Is_Formal_Box
: Boolean);
537 -- Similar to previous one. Check the actuals in the instantiation,
538 -- whose views can change between the point of instantiation and the point
539 -- of instantiation of the body. In addition, mark the generic renamings
540 -- as generic actuals, so that they are not compatible with other actuals.
541 -- Recurse on an actual that is a formal package whose declaration has
544 function Contains_Instance_Of
547 N
: Node_Id
) return Boolean;
548 -- Inner is instantiated within the generic Outer. Check whether Inner
549 -- directly or indirectly contains an instance of Outer or of one of its
550 -- parents, in the case of a subunit. Each generic unit holds a list of
551 -- the entities instantiated within (at any depth). This procedure
552 -- determines whether the set of such lists contains a cycle, i.e. an
553 -- illegal circular instantiation.
555 function Denotes_Formal_Package
557 On_Exit
: Boolean := False;
558 Instance
: Entity_Id
:= Empty
) return Boolean;
559 -- Returns True if E is a formal package of an enclosing generic, or
560 -- the actual for such a formal in an enclosing instantiation. If such
561 -- a package is used as a formal in an nested generic, or as an actual
562 -- in a nested instantiation, the visibility of ITS formals should not
563 -- be modified. When called from within Restore_Private_Views, the flag
564 -- On_Exit is true, to indicate that the search for a possible enclosing
565 -- instance should ignore the current one. In that case Instance denotes
566 -- the declaration for which this is an actual. This declaration may be
567 -- an instantiation in the source, or the internal instantiation that
568 -- corresponds to the actual for a formal package.
570 function Earlier
(N1
, N2
: Node_Id
) return Boolean;
571 -- Yields True if N1 and N2 appear in the same compilation unit,
572 -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
573 -- traversal of the tree for the unit. Used to determine the placement
574 -- of freeze nodes for instance bodies that may depend on other instances.
576 function Find_Actual_Type
578 Gen_Type
: Entity_Id
) return Entity_Id
;
579 -- When validating the actual types of a child instance, check whether
580 -- the formal is a formal type of the parent unit, and retrieve the current
581 -- actual for it. Typ is the entity in the analyzed formal type declaration
582 -- (component or index type of an array type, or designated type of an
583 -- access formal) and Gen_Type is the enclosing analyzed formal array
584 -- or access type. The desired actual may be a formal of a parent, or may
585 -- be declared in a formal package of a parent. In both cases it is a
586 -- generic actual type because it appears within a visible instance.
587 -- Finally, it may be declared in a parent unit without being a formal
588 -- of that unit, in which case it must be retrieved by visibility.
589 -- Ambiguities may still arise if two homonyms are declared in two formal
590 -- packages, and the prefix of the formal type may be needed to resolve
591 -- the ambiguity in the instance ???
593 procedure Freeze_Subprogram_Body
594 (Inst_Node
: Node_Id
;
596 Pack_Id
: Entity_Id
);
597 -- The generic body may appear textually after the instance, including
598 -- in the proper body of a stub, or within a different package instance.
599 -- Given that the instance can only be elaborated after the generic, we
600 -- place freeze_nodes for the instance and/or for packages that may enclose
601 -- the instance and the generic, so that the back-end can establish the
602 -- proper order of elaboration.
604 function Get_Associated_Node
(N
: Node_Id
) return Node_Id
;
605 -- In order to propagate semantic information back from the analyzed copy
606 -- to the original generic, we maintain links between selected nodes in the
607 -- generic and their corresponding copies. At the end of generic analysis,
608 -- the routine Save_Global_References traverses the generic tree, examines
609 -- the semantic information, and preserves the links to those nodes that
610 -- contain global information. At instantiation, the information from the
611 -- associated node is placed on the new copy, so that name resolution is
614 -- Three kinds of source nodes have associated nodes:
616 -- a) those that can reference (denote) entities, that is identifiers,
617 -- character literals, expanded_names, operator symbols, operators,
618 -- and attribute reference nodes. These nodes have an Entity field
619 -- and are the set of nodes that are in N_Has_Entity.
621 -- b) aggregates (N_Aggregate and N_Extension_Aggregate)
623 -- c) selected components (N_Selected_Component)
625 -- For the first class, the associated node preserves the entity if it is
626 -- global. If the generic contains nested instantiations, the associated
627 -- node itself has been recopied, and a chain of them must be followed.
629 -- For aggregates, the associated node allows retrieval of the type, which
630 -- may otherwise not appear in the generic. The view of this type may be
631 -- different between generic and instantiation, and the full view can be
632 -- installed before the instantiation is analyzed. For aggregates of type
633 -- extensions, the same view exchange may have to be performed for some of
634 -- the ancestor types, if their view is private at the point of
637 -- Nodes that are selected components in the parse tree may be rewritten
638 -- as expanded names after resolution, and must be treated as potential
639 -- entity holders, which is why they also have an Associated_Node.
641 -- Nodes that do not come from source, such as freeze nodes, do not appear
642 -- in the generic tree, and need not have an associated node.
644 -- The associated node is stored in the Associated_Node field. Note that
645 -- this field overlaps Entity, which is fine, because the whole point is
646 -- that we don't need or want the normal Entity field in this situation.
648 function Has_Been_Exchanged
(E
: Entity_Id
) return Boolean;
649 -- Traverse the Exchanged_Views list to see if a type was private
650 -- and has already been flipped during this phase of instantiation.
652 procedure Hide_Current_Scope
;
653 -- When instantiating a generic child unit, the parent context must be
654 -- present, but the instance and all entities that may be generated
655 -- must be inserted in the current scope. We leave the current scope
656 -- on the stack, but make its entities invisible to avoid visibility
657 -- problems. This is reversed at the end of the instantiation. This is
658 -- not done for the instantiation of the bodies, which only require the
659 -- instances of the generic parents to be in scope.
661 function In_Same_Declarative_Part
663 Inst
: Node_Id
) return Boolean;
664 -- True if the instantiation Inst and the given freeze_node F_Node appear
665 -- within the same declarative part, ignoring subunits, but with no inter-
666 -- vening subprograms or concurrent units. Used to find the proper plave
667 -- for the freeze node of an instance, when the generic is declared in a
668 -- previous instance. If predicate is true, the freeze node of the instance
669 -- can be placed after the freeze node of the previous instance, Otherwise
670 -- it has to be placed at the end of the current declarative part.
672 function In_Main_Context
(E
: Entity_Id
) return Boolean;
673 -- Check whether an instantiation is in the context of the main unit.
674 -- Used to determine whether its body should be elaborated to allow
675 -- front-end inlining.
677 procedure Inherit_Context
(Gen_Decl
: Node_Id
; Inst
: Node_Id
);
678 -- Add the context clause of the unit containing a generic unit to a
679 -- compilation unit that is, or contains, an instantiation.
682 -- Establish environment for subsequent instantiation. Separated from
683 -- Save_Env because data-structures for visibility handling must be
684 -- initialized before call to Check_Generic_Child_Unit.
686 procedure Inline_Instance_Body
688 Gen_Unit
: Entity_Id
;
690 -- If front-end inlining is requested, instantiate the package body,
691 -- and preserve the visibility of its compilation unit, to insure
692 -- that successive instantiations succeed.
694 procedure Insert_Freeze_Node_For_Instance
697 -- N denotes a package or a subprogram instantiation and F_Node is the
698 -- associated freeze node. Insert the freeze node before the first source
699 -- body which follows immediately after N. If no such body is found, the
700 -- freeze node is inserted at the end of the declarative region which
703 procedure Install_Body
708 -- If the instantiation happens textually before the body of the generic,
709 -- the instantiation of the body must be analyzed after the generic body,
710 -- and not at the point of instantiation. Such early instantiations can
711 -- happen if the generic and the instance appear in a package declaration
712 -- because the generic body can only appear in the corresponding package
713 -- body. Early instantiations can also appear if generic, instance and
714 -- body are all in the declarative part of a subprogram or entry. Entities
715 -- of packages that are early instantiations are delayed, and their freeze
716 -- node appears after the generic body.
718 procedure Install_Formal_Packages
(Par
: Entity_Id
);
719 -- Install the visible part of any formal of the parent that is a formal
720 -- package. Note that for the case of a formal package with a box, this
721 -- includes the formal part of the formal package (12.7(10/2)).
723 procedure Install_Hidden_Primitives
724 (Prims_List
: in out Elist_Id
;
727 -- Remove suffix 'P' from hidden primitives of Act_T to match the
728 -- visibility of primitives of Gen_T. The list of primitives to which
729 -- the suffix is removed is added to Prims_List to restore them later.
731 procedure Install_Parent
(P
: Entity_Id
; In_Body
: Boolean := False);
732 -- When compiling an instance of a child unit the parent (which is
733 -- itself an instance) is an enclosing scope that must be made
734 -- immediately visible. This procedure is also used to install the non-
735 -- generic parent of a generic child unit when compiling its body, so
736 -- that full views of types in the parent are made visible.
738 -- The functions Instantiate_XXX perform various legality checks and build
739 -- the declarations for instantiated generic parameters. In all of these
740 -- Formal is the entity in the generic unit, Actual is the entity of
741 -- expression in the generic associations, and Analyzed_Formal is the
742 -- formal in the generic copy, which contains the semantic information to
743 -- be used to validate the actual.
745 function Instantiate_Object
748 Analyzed_Formal
: Node_Id
) return List_Id
;
750 function Instantiate_Type
753 Analyzed_Formal
: Node_Id
;
754 Actual_Decls
: List_Id
) return List_Id
;
756 function Instantiate_Formal_Subprogram
759 Analyzed_Formal
: Node_Id
) return Node_Id
;
761 function Instantiate_Formal_Package
764 Analyzed_Formal
: Node_Id
) return List_Id
;
765 -- If the formal package is declared with a box, special visibility rules
766 -- apply to its formals: they are in the visible part of the package. This
767 -- is true in the declarative region of the formal package, that is to say
768 -- in the enclosing generic or instantiation. For an instantiation, the
769 -- parameters of the formal package are made visible in an explicit step.
770 -- Furthermore, if the actual has a visible USE clause, these formals must
771 -- be made potentially use-visible as well. On exit from the enclosing
772 -- instantiation, the reverse must be done.
774 -- For a formal package declared without a box, there are conformance rules
775 -- that apply to the actuals in the generic declaration and the actuals of
776 -- the actual package in the enclosing instantiation. The simplest way to
777 -- apply these rules is to repeat the instantiation of the formal package
778 -- in the context of the enclosing instance, and compare the generic
779 -- associations of this instantiation with those of the actual package.
780 -- This internal instantiation only needs to contain the renamings of the
781 -- formals: the visible and private declarations themselves need not be
784 -- In Ada 2005, the formal package may be only partially parameterized.
785 -- In that case the visibility step must make visible those actuals whose
786 -- corresponding formals were given with a box. A final complication
787 -- involves inherited operations from formal derived types, which must
788 -- be visible if the type is.
790 function Is_In_Main_Unit
(N
: Node_Id
) return Boolean;
791 -- Test if given node is in the main unit
793 procedure Load_Parent_Of_Generic
796 Body_Optional
: Boolean := False);
797 -- If the generic appears in a separate non-generic library unit, load the
798 -- corresponding body to retrieve the body of the generic. N is the node
799 -- for the generic instantiation, Spec is the generic package declaration.
801 -- Body_Optional is a flag that indicates that the body is being loaded to
802 -- ensure that temporaries are generated consistently when there are other
803 -- instances in the current declarative part that precede the one being
804 -- loaded. In that case a missing body is acceptable.
806 procedure Map_Formal_Package_Entities
(Form
: Entity_Id
; Act
: Entity_Id
);
807 -- Within the generic part, entities in the formal package are
808 -- visible. To validate subsequent type declarations, indicate
809 -- the correspondence between the entities in the analyzed formal,
810 -- and the entities in the actual package. There are three packages
811 -- involved in the instantiation of a formal package: the parent
812 -- generic P1 which appears in the generic declaration, the fake
813 -- instantiation P2 which appears in the analyzed generic, and whose
814 -- visible entities may be used in subsequent formals, and the actual
815 -- P3 in the instance. To validate subsequent formals, me indicate
816 -- that the entities in P2 are mapped into those of P3. The mapping of
817 -- entities has to be done recursively for nested packages.
819 procedure Move_Freeze_Nodes
823 -- Freeze nodes can be generated in the analysis of a generic unit, but
824 -- will not be seen by the back-end. It is necessary to move those nodes
825 -- to the enclosing scope if they freeze an outer entity. We place them
826 -- at the end of the enclosing generic package, which is semantically
829 procedure Preanalyze_Actuals
(N
: Node_Id
; Inst
: Entity_Id
:= Empty
);
830 -- Analyze actuals to perform name resolution. Full resolution is done
831 -- later, when the expected types are known, but names have to be captured
832 -- before installing parents of generics, that are not visible for the
833 -- actuals themselves.
835 -- If Inst is present, it is the entity of the package instance. This
836 -- entity is marked as having a limited_view actual when some actual is
837 -- a limited view. This is used to place the instance body properly.
839 procedure Remove_Parent
(In_Body
: Boolean := False);
840 -- Reverse effect after instantiation of child is complete
842 procedure Restore_Hidden_Primitives
(Prims_List
: in out Elist_Id
);
843 -- Restore suffix 'P' to primitives of Prims_List and leave Prims_List
846 procedure Set_Instance_Env
847 (Gen_Unit
: Entity_Id
;
848 Act_Unit
: Entity_Id
);
849 -- Save current instance on saved environment, to be used to determine
850 -- the global status of entities in nested instances. Part of Save_Env.
851 -- called after verifying that the generic unit is legal for the instance,
852 -- The procedure also examines whether the generic unit is a predefined
853 -- unit, in order to set configuration switches accordingly. As a result
854 -- the procedure must be called after analyzing and freezing the actuals.
856 procedure Set_Instance_Of
(A
: Entity_Id
; B
: Entity_Id
);
857 -- Associate analyzed generic parameter with corresponding instance. Used
858 -- for semantic checks at instantiation time.
860 function True_Parent
(N
: Node_Id
) return Node_Id
;
861 -- For a subunit, return parent of corresponding stub, else return
864 procedure Valid_Default_Attribute
(Nam
: Entity_Id
; Def
: Node_Id
);
865 -- Verify that an attribute that appears as the default for a formal
866 -- subprogram is a function or procedure with the correct profile.
868 -------------------------------------------
869 -- Data Structures for Generic Renamings --
870 -------------------------------------------
872 -- The map Generic_Renamings associates generic entities with their
873 -- corresponding actuals. Currently used to validate type instances. It
874 -- will eventually be used for all generic parameters to eliminate the
875 -- need for overload resolution in the instance.
877 type Assoc_Ptr
is new Int
;
879 Assoc_Null
: constant Assoc_Ptr
:= -1;
884 Next_In_HTable
: Assoc_Ptr
;
887 package Generic_Renamings
is new Table
.Table
888 (Table_Component_Type
=> Assoc
,
889 Table_Index_Type
=> Assoc_Ptr
,
890 Table_Low_Bound
=> 0,
892 Table_Increment
=> 100,
893 Table_Name
=> "Generic_Renamings");
895 -- Variable to hold enclosing instantiation. When the environment is
896 -- saved for a subprogram inlining, the corresponding Act_Id is empty.
898 Current_Instantiated_Parent
: Assoc
:= (Empty
, Empty
, Assoc_Null
);
900 -- Hash table for associations
902 HTable_Size
: constant := 37;
903 type HTable_Range
is range 0 .. HTable_Size
- 1;
905 procedure Set_Next_Assoc
(E
: Assoc_Ptr
; Next
: Assoc_Ptr
);
906 function Next_Assoc
(E
: Assoc_Ptr
) return Assoc_Ptr
;
907 function Get_Gen_Id
(E
: Assoc_Ptr
) return Entity_Id
;
908 function Hash
(F
: Entity_Id
) return HTable_Range
;
910 package Generic_Renamings_HTable
is new GNAT
.HTable
.Static_HTable
(
911 Header_Num
=> HTable_Range
,
913 Elmt_Ptr
=> Assoc_Ptr
,
914 Null_Ptr
=> Assoc_Null
,
915 Set_Next
=> Set_Next_Assoc
,
918 Get_Key
=> Get_Gen_Id
,
922 Exchanged_Views
: Elist_Id
;
923 -- This list holds the private views that have been exchanged during
924 -- instantiation to restore the visibility of the generic declaration.
925 -- (see comments above). After instantiation, the current visibility is
926 -- reestablished by means of a traversal of this list.
928 Hidden_Entities
: Elist_Id
;
929 -- This list holds the entities of the current scope that are removed
930 -- from immediate visibility when instantiating a child unit. Their
931 -- visibility is restored in Remove_Parent.
933 -- Because instantiations can be recursive, the following must be saved
934 -- on entry and restored on exit from an instantiation (spec or body).
935 -- This is done by the two procedures Save_Env and Restore_Env. For
936 -- package and subprogram instantiations (but not for the body instances)
937 -- the action of Save_Env is done in two steps: Init_Env is called before
938 -- Check_Generic_Child_Unit, because setting the parent instances requires
939 -- that the visibility data structures be properly initialized. Once the
940 -- generic is unit is validated, Set_Instance_Env completes Save_Env.
942 Parent_Unit_Visible
: Boolean := False;
943 -- Parent_Unit_Visible is used when the generic is a child unit, and
944 -- indicates whether the ultimate parent of the generic is visible in the
945 -- instantiation environment. It is used to reset the visibility of the
946 -- parent at the end of the instantiation (see Remove_Parent).
948 Instance_Parent_Unit
: Entity_Id
:= Empty
;
949 -- This records the ultimate parent unit of an instance of a generic
950 -- child unit and is used in conjunction with Parent_Unit_Visible to
951 -- indicate the unit to which the Parent_Unit_Visible flag corresponds.
953 type Instance_Env
is record
954 Instantiated_Parent
: Assoc
;
955 Exchanged_Views
: Elist_Id
;
956 Hidden_Entities
: Elist_Id
;
957 Current_Sem_Unit
: Unit_Number_Type
;
958 Parent_Unit_Visible
: Boolean := False;
959 Instance_Parent_Unit
: Entity_Id
:= Empty
;
960 Switches
: Config_Switches_Type
;
963 package Instance_Envs
is new Table
.Table
(
964 Table_Component_Type
=> Instance_Env
,
965 Table_Index_Type
=> Int
,
966 Table_Low_Bound
=> 0,
968 Table_Increment
=> 100,
969 Table_Name
=> "Instance_Envs");
971 procedure Restore_Private_Views
972 (Pack_Id
: Entity_Id
;
973 Is_Package
: Boolean := True);
974 -- Restore the private views of external types, and unmark the generic
975 -- renamings of actuals, so that they become compatible subtypes again.
976 -- For subprograms, Pack_Id is the package constructed to hold the
979 procedure Switch_View
(T
: Entity_Id
);
980 -- Switch the partial and full views of a type and its private
981 -- dependents (i.e. its subtypes and derived types).
983 ------------------------------------
984 -- Structures for Error Reporting --
985 ------------------------------------
987 Instantiation_Node
: Node_Id
;
988 -- Used by subprograms that validate instantiation of formal parameters
989 -- where there might be no actual on which to place the error message.
990 -- Also used to locate the instantiation node for generic subunits.
992 Instantiation_Error
: exception;
993 -- When there is a semantic error in the generic parameter matching,
994 -- there is no point in continuing the instantiation, because the
995 -- number of cascaded errors is unpredictable. This exception aborts
996 -- the instantiation process altogether.
998 S_Adjustment
: Sloc_Adjustment
;
999 -- Offset created for each node in an instantiation, in order to keep
1000 -- track of the source position of the instantiation in each of its nodes.
1001 -- A subsequent semantic error or warning on a construct of the instance
1002 -- points to both places: the original generic node, and the point of
1003 -- instantiation. See Sinput and Sinput.L for additional details.
1005 ------------------------------------------------------------
1006 -- Data structure for keeping track when inside a Generic --
1007 ------------------------------------------------------------
1009 -- The following table is used to save values of the Inside_A_Generic
1010 -- flag (see spec of Sem) when they are saved by Start_Generic.
1012 package Generic_Flags
is new Table
.Table
(
1013 Table_Component_Type
=> Boolean,
1014 Table_Index_Type
=> Int
,
1015 Table_Low_Bound
=> 0,
1016 Table_Initial
=> 32,
1017 Table_Increment
=> 200,
1018 Table_Name
=> "Generic_Flags");
1020 ---------------------------
1021 -- Abandon_Instantiation --
1022 ---------------------------
1024 procedure Abandon_Instantiation
(N
: Node_Id
) is
1026 Error_Msg_N
("\instantiation abandoned!", N
);
1027 raise Instantiation_Error
;
1028 end Abandon_Instantiation
;
1030 --------------------------------
1031 -- Add_Pending_Instantiation --
1032 --------------------------------
1034 procedure Add_Pending_Instantiation
(Inst
: Node_Id
; Act_Decl
: Node_Id
) is
1037 -- Add to the instantiation node and the corresponding unit declaration
1038 -- the current values of global flags to be used when analyzing the
1041 Pending_Instantiations
.Append
1042 ((Inst_Node
=> Inst
,
1043 Act_Decl
=> Act_Decl
,
1044 Expander_Status
=> Expander_Active
,
1045 Current_Sem_Unit
=> Current_Sem_Unit
,
1046 Scope_Suppress
=> Scope_Suppress
,
1047 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
1048 Version
=> Ada_Version
,
1049 Version_Pragma
=> Ada_Version_Pragma
,
1050 Warnings
=> Save_Warnings
,
1051 SPARK_Mode
=> SPARK_Mode
,
1052 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
));
1053 end Add_Pending_Instantiation
;
1055 --------------------------
1056 -- Analyze_Associations --
1057 --------------------------
1059 function Analyze_Associations
1062 F_Copy
: List_Id
) return List_Id
1064 Actuals_To_Freeze
: constant Elist_Id
:= New_Elmt_List
;
1065 Assoc
: constant List_Id
:= New_List
;
1066 Default_Actuals
: constant List_Id
:= New_List
;
1067 Gen_Unit
: constant Entity_Id
:=
1068 Defining_Entity
(Parent
(F_Copy
));
1072 Analyzed_Formal
: Node_Id
;
1073 First_Named
: Node_Id
:= Empty
;
1077 Saved_Formal
: Node_Id
;
1079 Default_Formals
: constant List_Id
:= New_List
;
1080 -- If an Others_Choice is present, some of the formals may be defaulted.
1081 -- To simplify the treatment of visibility in an instance, we introduce
1082 -- individual defaults for each such formal. These defaults are
1083 -- appended to the list of associations and replace the Others_Choice.
1085 Found_Assoc
: Node_Id
;
1086 -- Association for the current formal being match. Empty if there are
1087 -- no remaining actuals, or if there is no named association with the
1088 -- name of the formal.
1090 Is_Named_Assoc
: Boolean;
1091 Num_Matched
: Nat
:= 0;
1092 Num_Actuals
: Nat
:= 0;
1094 Others_Present
: Boolean := False;
1095 Others_Choice
: Node_Id
:= Empty
;
1096 -- In Ada 2005, indicates partial parameterization of a formal
1097 -- package. As usual an other association must be last in the list.
1099 procedure Check_Overloaded_Formal_Subprogram
(Formal
: Entity_Id
);
1100 -- Apply RM 12.3(9): if a formal subprogram is overloaded, the instance
1101 -- cannot have a named association for it. AI05-0025 extends this rule
1102 -- to formals of formal packages by AI05-0025, and it also applies to
1103 -- box-initialized formals.
1105 function Has_Fully_Defined_Profile
(Subp
: Entity_Id
) return Boolean;
1106 -- Determine whether the parameter types and the return type of Subp
1107 -- are fully defined at the point of instantiation.
1109 function Matching_Actual
1111 A_F
: Entity_Id
) return Node_Id
;
1112 -- Find actual that corresponds to a given a formal parameter. If the
1113 -- actuals are positional, return the next one, if any. If the actuals
1114 -- are named, scan the parameter associations to find the right one.
1115 -- A_F is the corresponding entity in the analyzed generic,which is
1116 -- placed on the selector name for ASIS use.
1118 -- In Ada 2005, a named association may be given with a box, in which
1119 -- case Matching_Actual sets Found_Assoc to the generic association,
1120 -- but return Empty for the actual itself. In this case the code below
1121 -- creates a corresponding declaration for the formal.
1123 function Partial_Parameterization
return Boolean;
1124 -- Ada 2005: if no match is found for a given formal, check if the
1125 -- association for it includes a box, or whether the associations
1126 -- include an Others clause.
1128 procedure Process_Default
(F
: Entity_Id
);
1129 -- Add a copy of the declaration of generic formal F to the list of
1130 -- associations, and add an explicit box association for F if there
1131 -- is none yet, and the default comes from an Others_Choice.
1133 function Renames_Standard_Subprogram
(Subp
: Entity_Id
) return Boolean;
1134 -- Determine whether Subp renames one of the subprograms defined in the
1135 -- generated package Standard.
1137 procedure Set_Analyzed_Formal
;
1138 -- Find the node in the generic copy that corresponds to a given formal.
1139 -- The semantic information on this node is used to perform legality
1140 -- checks on the actuals. Because semantic analysis can introduce some
1141 -- anonymous entities or modify the declaration node itself, the
1142 -- correspondence between the two lists is not one-one. In addition to
1143 -- anonymous types, the presence a formal equality will introduce an
1144 -- implicit declaration for the corresponding inequality.
1146 ----------------------------------------
1147 -- Check_Overloaded_Formal_Subprogram --
1148 ----------------------------------------
1150 procedure Check_Overloaded_Formal_Subprogram
(Formal
: Entity_Id
) is
1151 Temp_Formal
: Entity_Id
;
1154 Temp_Formal
:= First
(Formals
);
1155 while Present
(Temp_Formal
) loop
1156 if Nkind
(Temp_Formal
) in N_Formal_Subprogram_Declaration
1157 and then Temp_Formal
/= Formal
1159 Chars
(Defining_Unit_Name
(Specification
(Formal
))) =
1160 Chars
(Defining_Unit_Name
(Specification
(Temp_Formal
)))
1162 if Present
(Found_Assoc
) then
1164 ("named association not allowed for overloaded formal",
1169 ("named association not allowed for overloaded formal",
1173 Abandon_Instantiation
(Instantiation_Node
);
1178 end Check_Overloaded_Formal_Subprogram
;
1180 -------------------------------
1181 -- Has_Fully_Defined_Profile --
1182 -------------------------------
1184 function Has_Fully_Defined_Profile
(Subp
: Entity_Id
) return Boolean is
1185 function Is_Fully_Defined_Type
(Typ
: Entity_Id
) return Boolean;
1186 -- Determine whethet type Typ is fully defined
1188 ---------------------------
1189 -- Is_Fully_Defined_Type --
1190 ---------------------------
1192 function Is_Fully_Defined_Type
(Typ
: Entity_Id
) return Boolean is
1194 -- A private type without a full view is not fully defined
1196 if Is_Private_Type
(Typ
)
1197 and then No
(Full_View
(Typ
))
1201 -- An incomplete type is never fully defined
1203 elsif Is_Incomplete_Type
(Typ
) then
1206 -- All other types are fully defined
1211 end Is_Fully_Defined_Type
;
1213 -- Local declarations
1217 -- Start of processing for Has_Fully_Defined_Profile
1220 -- Check the parameters
1222 Param
:= First_Formal
(Subp
);
1223 while Present
(Param
) loop
1224 if not Is_Fully_Defined_Type
(Etype
(Param
)) then
1228 Next_Formal
(Param
);
1231 -- Check the return type
1233 return Is_Fully_Defined_Type
(Etype
(Subp
));
1234 end Has_Fully_Defined_Profile
;
1236 ---------------------
1237 -- Matching_Actual --
1238 ---------------------
1240 function Matching_Actual
1242 A_F
: Entity_Id
) return Node_Id
1248 Is_Named_Assoc
:= False;
1250 -- End of list of purely positional parameters
1252 if No
(Actual
) or else Nkind
(Actual
) = N_Others_Choice
then
1253 Found_Assoc
:= Empty
;
1256 -- Case of positional parameter corresponding to current formal
1258 elsif No
(Selector_Name
(Actual
)) then
1259 Found_Assoc
:= Actual
;
1260 Act
:= Explicit_Generic_Actual_Parameter
(Actual
);
1261 Num_Matched
:= Num_Matched
+ 1;
1264 -- Otherwise scan list of named actuals to find the one with the
1265 -- desired name. All remaining actuals have explicit names.
1268 Is_Named_Assoc
:= True;
1269 Found_Assoc
:= Empty
;
1273 while Present
(Actual
) loop
1274 if Chars
(Selector_Name
(Actual
)) = Chars
(F
) then
1275 Set_Entity
(Selector_Name
(Actual
), A_F
);
1276 Set_Etype
(Selector_Name
(Actual
), Etype
(A_F
));
1277 Generate_Reference
(A_F
, Selector_Name
(Actual
));
1278 Found_Assoc
:= Actual
;
1279 Act
:= Explicit_Generic_Actual_Parameter
(Actual
);
1280 Num_Matched
:= Num_Matched
+ 1;
1288 -- Reset for subsequent searches. In most cases the named
1289 -- associations are in order. If they are not, we reorder them
1290 -- to avoid scanning twice the same actual. This is not just a
1291 -- question of efficiency: there may be multiple defaults with
1292 -- boxes that have the same name. In a nested instantiation we
1293 -- insert actuals for those defaults, and cannot rely on their
1294 -- names to disambiguate them.
1296 if Actual
= First_Named
then
1299 elsif Present
(Actual
) then
1300 Insert_Before
(First_Named
, Remove_Next
(Prev
));
1303 Actual
:= First_Named
;
1306 if Is_Entity_Name
(Act
) and then Present
(Entity
(Act
)) then
1307 Set_Used_As_Generic_Actual
(Entity
(Act
));
1311 end Matching_Actual
;
1313 ------------------------------
1314 -- Partial_Parameterization --
1315 ------------------------------
1317 function Partial_Parameterization
return Boolean is
1319 return Others_Present
1320 or else (Present
(Found_Assoc
) and then Box_Present
(Found_Assoc
));
1321 end Partial_Parameterization
;
1323 ---------------------
1324 -- Process_Default --
1325 ---------------------
1327 procedure Process_Default
(F
: Entity_Id
) is
1328 Loc
: constant Source_Ptr
:= Sloc
(I_Node
);
1329 F_Id
: constant Entity_Id
:= Defining_Entity
(F
);
1335 -- Append copy of formal declaration to associations, and create new
1336 -- defining identifier for it.
1338 Decl
:= New_Copy_Tree
(F
);
1339 Id
:= Make_Defining_Identifier
(Sloc
(F_Id
), Chars
(F_Id
));
1341 if Nkind
(F
) in N_Formal_Subprogram_Declaration
then
1342 Set_Defining_Unit_Name
(Specification
(Decl
), Id
);
1345 Set_Defining_Identifier
(Decl
, Id
);
1348 Append
(Decl
, Assoc
);
1350 if No
(Found_Assoc
) then
1352 Make_Generic_Association
(Loc
,
1354 New_Occurrence_Of
(Id
, Loc
),
1355 Explicit_Generic_Actual_Parameter
=> Empty
);
1356 Set_Box_Present
(Default
);
1357 Append
(Default
, Default_Formals
);
1359 end Process_Default
;
1361 ---------------------------------
1362 -- Renames_Standard_Subprogram --
1363 ---------------------------------
1365 function Renames_Standard_Subprogram
(Subp
: Entity_Id
) return Boolean is
1370 while Present
(Id
) loop
1371 if Scope
(Id
) = Standard_Standard
then
1379 end Renames_Standard_Subprogram
;
1381 -------------------------
1382 -- Set_Analyzed_Formal --
1383 -------------------------
1385 procedure Set_Analyzed_Formal
is
1389 while Present
(Analyzed_Formal
) loop
1390 Kind
:= Nkind
(Analyzed_Formal
);
1392 case Nkind
(Formal
) is
1394 when N_Formal_Subprogram_Declaration
=>
1395 exit when Kind
in N_Formal_Subprogram_Declaration
1398 (Defining_Unit_Name
(Specification
(Formal
))) =
1400 (Defining_Unit_Name
(Specification
(Analyzed_Formal
)));
1402 when N_Formal_Package_Declaration
=>
1403 exit when Nkind_In
(Kind
, N_Formal_Package_Declaration
,
1404 N_Generic_Package_Declaration
,
1405 N_Package_Declaration
);
1407 when N_Use_Package_Clause | N_Use_Type_Clause
=> exit;
1411 -- Skip freeze nodes, and nodes inserted to replace
1412 -- unrecognized pragmas.
1415 Kind
not in N_Formal_Subprogram_Declaration
1416 and then not Nkind_In
(Kind
, N_Subprogram_Declaration
,
1420 and then Chars
(Defining_Identifier
(Formal
)) =
1421 Chars
(Defining_Identifier
(Analyzed_Formal
));
1424 Next
(Analyzed_Formal
);
1426 end Set_Analyzed_Formal
;
1428 -- Start of processing for Analyze_Associations
1431 Actuals
:= Generic_Associations
(I_Node
);
1433 if Present
(Actuals
) then
1435 -- Check for an Others choice, indicating a partial parameterization
1436 -- for a formal package.
1438 Actual
:= First
(Actuals
);
1439 while Present
(Actual
) loop
1440 if Nkind
(Actual
) = N_Others_Choice
then
1441 Others_Present
:= True;
1442 Others_Choice
:= Actual
;
1444 if Present
(Next
(Actual
)) then
1445 Error_Msg_N
("others must be last association", Actual
);
1448 -- This subprogram is used both for formal packages and for
1449 -- instantiations. For the latter, associations must all be
1452 if Nkind
(I_Node
) /= N_Formal_Package_Declaration
1453 and then Comes_From_Source
(I_Node
)
1456 ("others association not allowed in an instance",
1460 -- In any case, nothing to do after the others association
1464 elsif Box_Present
(Actual
)
1465 and then Comes_From_Source
(I_Node
)
1466 and then Nkind
(I_Node
) /= N_Formal_Package_Declaration
1469 ("box association not allowed in an instance", Actual
);
1475 -- If named associations are present, save first named association
1476 -- (it may of course be Empty) to facilitate subsequent name search.
1478 First_Named
:= First
(Actuals
);
1479 while Present
(First_Named
)
1480 and then Nkind
(First_Named
) /= N_Others_Choice
1481 and then No
(Selector_Name
(First_Named
))
1483 Num_Actuals
:= Num_Actuals
+ 1;
1488 Named
:= First_Named
;
1489 while Present
(Named
) loop
1490 if Nkind
(Named
) /= N_Others_Choice
1491 and then No
(Selector_Name
(Named
))
1493 Error_Msg_N
("invalid positional actual after named one", Named
);
1494 Abandon_Instantiation
(Named
);
1497 -- A named association may lack an actual parameter, if it was
1498 -- introduced for a default subprogram that turns out to be local
1499 -- to the outer instantiation.
1501 if Nkind
(Named
) /= N_Others_Choice
1502 and then Present
(Explicit_Generic_Actual_Parameter
(Named
))
1504 Num_Actuals
:= Num_Actuals
+ 1;
1510 if Present
(Formals
) then
1511 Formal
:= First_Non_Pragma
(Formals
);
1512 Analyzed_Formal
:= First_Non_Pragma
(F_Copy
);
1514 if Present
(Actuals
) then
1515 Actual
:= First
(Actuals
);
1517 -- All formals should have default values
1523 while Present
(Formal
) loop
1524 Set_Analyzed_Formal
;
1525 Saved_Formal
:= Next_Non_Pragma
(Formal
);
1527 case Nkind
(Formal
) is
1528 when N_Formal_Object_Declaration
=>
1531 (Defining_Identifier
(Formal
),
1532 Defining_Identifier
(Analyzed_Formal
));
1534 if No
(Match
) and then Partial_Parameterization
then
1535 Process_Default
(Formal
);
1539 (Instantiate_Object
(Formal
, Match
, Analyzed_Formal
),
1542 -- For a defaulted in_parameter, create an entry in the
1543 -- the list of defaulted actuals, for GNATProve use. Do
1544 -- not included these defaults for an instance nested
1545 -- within a generic, because the defaults are also used
1546 -- in the analysis of the enclosing generic, and only
1547 -- defaulted subprograms are relevant there.
1549 if No
(Match
) and then not Inside_A_Generic
then
1550 Append_To
(Default_Actuals
,
1551 Make_Generic_Association
(Sloc
(I_Node
),
1554 (Defining_Identifier
(Formal
), Sloc
(I_Node
)),
1555 Explicit_Generic_Actual_Parameter
=>
1556 New_Copy_Tree
(Default_Expression
(Formal
))));
1560 -- If the object is a call to an expression function, this
1561 -- is a freezing point for it.
1563 if Is_Entity_Name
(Match
)
1564 and then Present
(Entity
(Match
))
1566 (Original_Node
(Unit_Declaration_Node
(Entity
(Match
))))
1567 = N_Expression_Function
1569 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1572 when N_Formal_Type_Declaration
=>
1575 (Defining_Identifier
(Formal
),
1576 Defining_Identifier
(Analyzed_Formal
));
1579 if Partial_Parameterization
then
1580 Process_Default
(Formal
);
1583 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1586 Instantiation_Node
, Defining_Identifier
(Formal
));
1588 ("\in instantiation of & declared#",
1589 Instantiation_Node
, Gen_Unit
);
1590 Abandon_Instantiation
(Instantiation_Node
);
1597 (Formal
, Match
, Analyzed_Formal
, Assoc
),
1600 -- An instantiation is a freeze point for the actuals,
1601 -- unless this is a rewritten formal package, or the
1602 -- formal is an Ada 2012 formal incomplete type.
1604 if Nkind
(I_Node
) = N_Formal_Package_Declaration
1606 (Ada_Version
>= Ada_2012
1608 Ekind
(Defining_Identifier
(Analyzed_Formal
)) =
1614 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1618 -- A remote access-to-class-wide type is not a legal actual
1619 -- for a generic formal of an access type (E.2.2(17/2)).
1620 -- In GNAT an exception to this rule is introduced when
1621 -- the formal is marked as remote using implementation
1622 -- defined aspect/pragma Remote_Access_Type. In that case
1623 -- the actual must be remote as well.
1625 -- If the current instantiation is the construction of a
1626 -- local copy for a formal package the actuals may be
1627 -- defaulted, and there is no matching actual to check.
1629 if Nkind
(Analyzed_Formal
) = N_Formal_Type_Declaration
1631 Nkind
(Formal_Type_Definition
(Analyzed_Formal
)) =
1632 N_Access_To_Object_Definition
1633 and then Present
(Match
)
1636 Formal_Ent
: constant Entity_Id
:=
1637 Defining_Identifier
(Analyzed_Formal
);
1639 if Is_Remote_Access_To_Class_Wide_Type
(Entity
(Match
))
1640 = Is_Remote_Types
(Formal_Ent
)
1642 -- Remoteness of formal and actual match
1646 elsif Is_Remote_Types
(Formal_Ent
) then
1648 -- Remote formal, non-remote actual
1651 ("actual for& must be remote", Match
, Formal_Ent
);
1654 -- Non-remote formal, remote actual
1657 ("actual for& may not be remote",
1663 when N_Formal_Subprogram_Declaration
=>
1666 (Defining_Unit_Name
(Specification
(Formal
)),
1667 Defining_Unit_Name
(Specification
(Analyzed_Formal
)));
1669 -- If the formal subprogram has the same name as another
1670 -- formal subprogram of the generic, then a named
1671 -- association is illegal (12.3(9)). Exclude named
1672 -- associations that are generated for a nested instance.
1675 and then Is_Named_Assoc
1676 and then Comes_From_Source
(Found_Assoc
)
1678 Check_Overloaded_Formal_Subprogram
(Formal
);
1681 -- If there is no corresponding actual, this may be case
1682 -- of partial parameterization, or else the formal has a
1683 -- default or a box.
1685 if No
(Match
) and then Partial_Parameterization
then
1686 Process_Default
(Formal
);
1688 if Nkind
(I_Node
) = N_Formal_Package_Declaration
then
1689 Check_Overloaded_Formal_Subprogram
(Formal
);
1694 Instantiate_Formal_Subprogram
1695 (Formal
, Match
, Analyzed_Formal
));
1697 -- An instantiation is a freeze point for the actuals,
1698 -- unless this is a rewritten formal package.
1700 if Nkind
(I_Node
) /= N_Formal_Package_Declaration
1701 and then Nkind
(Match
) = N_Identifier
1702 and then Is_Subprogram
(Entity
(Match
))
1704 -- The actual subprogram may rename a routine defined
1705 -- in Standard. Avoid freezing such renamings because
1706 -- subprograms coming from Standard cannot be frozen.
1709 not Renames_Standard_Subprogram
(Entity
(Match
))
1711 -- If the actual subprogram comes from a different
1712 -- unit, it is already frozen, either by a body in
1713 -- that unit or by the end of the declarative part
1714 -- of the unit. This check avoids the freezing of
1715 -- subprograms defined in Standard which are used
1716 -- as generic actuals.
1718 and then In_Same_Code_Unit
(Entity
(Match
), I_Node
)
1719 and then Has_Fully_Defined_Profile
(Entity
(Match
))
1721 -- Mark the subprogram as having a delayed freeze
1722 -- since this may be an out-of-order action.
1724 Set_Has_Delayed_Freeze
(Entity
(Match
));
1725 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1729 -- If this is a nested generic, preserve default for later
1730 -- instantiations. We do this as well for GNATProve use,
1731 -- so that the list of generic associations is complete.
1733 if No
(Match
) and then Box_Present
(Formal
) then
1735 Subp
: constant Entity_Id
:=
1736 Defining_Unit_Name
(Specification
(Last
(Assoc
)));
1739 Append_To
(Default_Actuals
,
1740 Make_Generic_Association
(Sloc
(I_Node
),
1742 New_Occurrence_Of
(Subp
, Sloc
(I_Node
)),
1743 Explicit_Generic_Actual_Parameter
=>
1744 New_Occurrence_Of
(Subp
, Sloc
(I_Node
))));
1748 when N_Formal_Package_Declaration
=>
1751 (Defining_Identifier
(Formal
),
1752 Defining_Identifier
(Original_Node
(Analyzed_Formal
)));
1755 if Partial_Parameterization
then
1756 Process_Default
(Formal
);
1759 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1762 Instantiation_Node
, Defining_Identifier
(Formal
));
1764 ("\in instantiation of & declared#",
1765 Instantiation_Node
, Gen_Unit
);
1767 Abandon_Instantiation
(Instantiation_Node
);
1773 (Instantiate_Formal_Package
1774 (Formal
, Match
, Analyzed_Formal
),
1778 -- For use type and use package appearing in the generic part,
1779 -- we have already copied them, so we can just move them where
1780 -- they belong (we mustn't recopy them since this would mess up
1781 -- the Sloc values).
1783 when N_Use_Package_Clause |
1784 N_Use_Type_Clause
=>
1785 if Nkind
(Original_Node
(I_Node
)) =
1786 N_Formal_Package_Declaration
1788 Append
(New_Copy_Tree
(Formal
), Assoc
);
1791 Append
(Formal
, Assoc
);
1795 raise Program_Error
;
1799 Formal
:= Saved_Formal
;
1800 Next_Non_Pragma
(Analyzed_Formal
);
1803 if Num_Actuals
> Num_Matched
then
1804 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1806 if Present
(Selector_Name
(Actual
)) then
1808 ("unmatched actual &", Actual
, Selector_Name
(Actual
));
1810 ("\in instantiation of & declared#", Actual
, Gen_Unit
);
1813 ("unmatched actual in instantiation of & declared#",
1818 elsif Present
(Actuals
) then
1820 ("too many actuals in generic instantiation", Instantiation_Node
);
1823 -- An instantiation freezes all generic actuals. The only exceptions
1824 -- to this are incomplete types and subprograms which are not fully
1825 -- defined at the point of instantiation.
1828 Elmt
: Elmt_Id
:= First_Elmt
(Actuals_To_Freeze
);
1830 while Present
(Elmt
) loop
1831 Freeze_Before
(I_Node
, Node
(Elmt
));
1836 -- If there are default subprograms, normalize the tree by adding
1837 -- explicit associations for them. This is required if the instance
1838 -- appears within a generic.
1840 if not Is_Empty_List
(Default_Actuals
) then
1845 Default
:= First
(Default_Actuals
);
1846 while Present
(Default
) loop
1847 Mark_Rewrite_Insertion
(Default
);
1851 if No
(Actuals
) then
1852 Set_Generic_Associations
(I_Node
, Default_Actuals
);
1854 Append_List_To
(Actuals
, Default_Actuals
);
1859 -- If this is a formal package, normalize the parameter list by adding
1860 -- explicit box associations for the formals that are covered by an
1863 if not Is_Empty_List
(Default_Formals
) then
1864 Append_List
(Default_Formals
, Formals
);
1868 end Analyze_Associations
;
1870 -------------------------------
1871 -- Analyze_Formal_Array_Type --
1872 -------------------------------
1874 procedure Analyze_Formal_Array_Type
1875 (T
: in out Entity_Id
;
1881 -- Treated like a non-generic array declaration, with additional
1886 if Nkind
(Def
) = N_Constrained_Array_Definition
then
1887 DSS
:= First
(Discrete_Subtype_Definitions
(Def
));
1888 while Present
(DSS
) loop
1889 if Nkind_In
(DSS
, N_Subtype_Indication
,
1891 N_Attribute_Reference
)
1893 Error_Msg_N
("only a subtype mark is allowed in a formal", DSS
);
1900 Array_Type_Declaration
(T
, Def
);
1901 Set_Is_Generic_Type
(Base_Type
(T
));
1903 if Ekind
(Component_Type
(T
)) = E_Incomplete_Type
1904 and then No
(Full_View
(Component_Type
(T
)))
1906 Error_Msg_N
("premature usage of incomplete type", Def
);
1908 -- Check that range constraint is not allowed on the component type
1909 -- of a generic formal array type (AARM 12.5.3(3))
1911 elsif Is_Internal
(Component_Type
(T
))
1912 and then Present
(Subtype_Indication
(Component_Definition
(Def
)))
1913 and then Nkind
(Original_Node
1914 (Subtype_Indication
(Component_Definition
(Def
)))) =
1915 N_Subtype_Indication
1918 ("in a formal, a subtype indication can only be "
1919 & "a subtype mark (RM 12.5.3(3))",
1920 Subtype_Indication
(Component_Definition
(Def
)));
1923 end Analyze_Formal_Array_Type
;
1925 ---------------------------------------------
1926 -- Analyze_Formal_Decimal_Fixed_Point_Type --
1927 ---------------------------------------------
1929 -- As for other generic types, we create a valid type representation with
1930 -- legal but arbitrary attributes, whose values are never considered
1931 -- static. For all scalar types we introduce an anonymous base type, with
1932 -- the same attributes. We choose the corresponding integer type to be
1933 -- Standard_Integer.
1934 -- Here and in other similar routines, the Sloc of the generated internal
1935 -- type must be the same as the sloc of the defining identifier of the
1936 -- formal type declaration, to provide proper source navigation.
1938 procedure Analyze_Formal_Decimal_Fixed_Point_Type
1942 Loc
: constant Source_Ptr
:= Sloc
(Def
);
1944 Base
: constant Entity_Id
:=
1946 (E_Decimal_Fixed_Point_Type
,
1948 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
1950 Int_Base
: constant Entity_Id
:= Standard_Integer
;
1951 Delta_Val
: constant Ureal
:= Ureal_1
;
1952 Digs_Val
: constant Uint
:= Uint_6
;
1954 function Make_Dummy_Bound
return Node_Id
;
1955 -- Return a properly typed universal real literal to use as a bound
1957 ----------------------
1958 -- Make_Dummy_Bound --
1959 ----------------------
1961 function Make_Dummy_Bound
return Node_Id
is
1962 Bound
: constant Node_Id
:= Make_Real_Literal
(Loc
, Ureal_1
);
1964 Set_Etype
(Bound
, Universal_Real
);
1966 end Make_Dummy_Bound
;
1968 -- Start of processing for Analyze_Formal_Decimal_Fixed_Point_Type
1973 Set_Etype
(Base
, Base
);
1974 Set_Size_Info
(Base
, Int_Base
);
1975 Set_RM_Size
(Base
, RM_Size
(Int_Base
));
1976 Set_First_Rep_Item
(Base
, First_Rep_Item
(Int_Base
));
1977 Set_Digits_Value
(Base
, Digs_Val
);
1978 Set_Delta_Value
(Base
, Delta_Val
);
1979 Set_Small_Value
(Base
, Delta_Val
);
1980 Set_Scalar_Range
(Base
,
1982 Low_Bound
=> Make_Dummy_Bound
,
1983 High_Bound
=> Make_Dummy_Bound
));
1985 Set_Is_Generic_Type
(Base
);
1986 Set_Parent
(Base
, Parent
(Def
));
1988 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
1989 Set_Etype
(T
, Base
);
1990 Set_Size_Info
(T
, Int_Base
);
1991 Set_RM_Size
(T
, RM_Size
(Int_Base
));
1992 Set_First_Rep_Item
(T
, First_Rep_Item
(Int_Base
));
1993 Set_Digits_Value
(T
, Digs_Val
);
1994 Set_Delta_Value
(T
, Delta_Val
);
1995 Set_Small_Value
(T
, Delta_Val
);
1996 Set_Scalar_Range
(T
, Scalar_Range
(Base
));
1997 Set_Is_Constrained
(T
);
1999 Check_Restriction
(No_Fixed_Point
, Def
);
2000 end Analyze_Formal_Decimal_Fixed_Point_Type
;
2002 -------------------------------------------
2003 -- Analyze_Formal_Derived_Interface_Type --
2004 -------------------------------------------
2006 procedure Analyze_Formal_Derived_Interface_Type
2011 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2014 -- Rewrite as a type declaration of a derived type. This ensures that
2015 -- the interface list and primitive operations are properly captured.
2018 Make_Full_Type_Declaration
(Loc
,
2019 Defining_Identifier
=> T
,
2020 Type_Definition
=> Def
));
2022 Set_Is_Generic_Type
(T
);
2023 end Analyze_Formal_Derived_Interface_Type
;
2025 ---------------------------------
2026 -- Analyze_Formal_Derived_Type --
2027 ---------------------------------
2029 procedure Analyze_Formal_Derived_Type
2034 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2035 Unk_Disc
: constant Boolean := Unknown_Discriminants_Present
(N
);
2039 Set_Is_Generic_Type
(T
);
2041 if Private_Present
(Def
) then
2043 Make_Private_Extension_Declaration
(Loc
,
2044 Defining_Identifier
=> T
,
2045 Discriminant_Specifications
=> Discriminant_Specifications
(N
),
2046 Unknown_Discriminants_Present
=> Unk_Disc
,
2047 Subtype_Indication
=> Subtype_Mark
(Def
),
2048 Interface_List
=> Interface_List
(Def
));
2050 Set_Abstract_Present
(New_N
, Abstract_Present
(Def
));
2051 Set_Limited_Present
(New_N
, Limited_Present
(Def
));
2052 Set_Synchronized_Present
(New_N
, Synchronized_Present
(Def
));
2056 Make_Full_Type_Declaration
(Loc
,
2057 Defining_Identifier
=> T
,
2058 Discriminant_Specifications
=>
2059 Discriminant_Specifications
(Parent
(T
)),
2061 Make_Derived_Type_Definition
(Loc
,
2062 Subtype_Indication
=> Subtype_Mark
(Def
)));
2064 Set_Abstract_Present
2065 (Type_Definition
(New_N
), Abstract_Present
(Def
));
2067 (Type_Definition
(New_N
), Limited_Present
(Def
));
2074 if not Is_Composite_Type
(T
) then
2076 ("unknown discriminants not allowed for elementary types", N
);
2078 Set_Has_Unknown_Discriminants
(T
);
2079 Set_Is_Constrained
(T
, False);
2083 -- If the parent type has a known size, so does the formal, which makes
2084 -- legal representation clauses that involve the formal.
2086 Set_Size_Known_At_Compile_Time
2087 (T
, Size_Known_At_Compile_Time
(Entity
(Subtype_Mark
(Def
))));
2088 end Analyze_Formal_Derived_Type
;
2090 ----------------------------------
2091 -- Analyze_Formal_Discrete_Type --
2092 ----------------------------------
2094 -- The operations defined for a discrete types are those of an enumeration
2095 -- type. The size is set to an arbitrary value, for use in analyzing the
2098 procedure Analyze_Formal_Discrete_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2099 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2103 Base
: constant Entity_Id
:=
2105 (E_Floating_Point_Type
, Current_Scope
,
2106 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2110 Set_Ekind
(T
, E_Enumeration_Subtype
);
2111 Set_Etype
(T
, Base
);
2114 Set_Is_Generic_Type
(T
);
2115 Set_Is_Constrained
(T
);
2117 -- For semantic analysis, the bounds of the type must be set to some
2118 -- non-static value. The simplest is to create attribute nodes for those
2119 -- bounds, that refer to the type itself. These bounds are never
2120 -- analyzed but serve as place-holders.
2123 Make_Attribute_Reference
(Loc
,
2124 Attribute_Name
=> Name_First
,
2125 Prefix
=> New_Occurrence_Of
(T
, Loc
));
2129 Make_Attribute_Reference
(Loc
,
2130 Attribute_Name
=> Name_Last
,
2131 Prefix
=> New_Occurrence_Of
(T
, Loc
));
2134 Set_Scalar_Range
(T
,
2139 Set_Ekind
(Base
, E_Enumeration_Type
);
2140 Set_Etype
(Base
, Base
);
2141 Init_Size
(Base
, 8);
2142 Init_Alignment
(Base
);
2143 Set_Is_Generic_Type
(Base
);
2144 Set_Scalar_Range
(Base
, Scalar_Range
(T
));
2145 Set_Parent
(Base
, Parent
(Def
));
2146 end Analyze_Formal_Discrete_Type
;
2148 ----------------------------------
2149 -- Analyze_Formal_Floating_Type --
2150 ---------------------------------
2152 procedure Analyze_Formal_Floating_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2153 Base
: constant Entity_Id
:=
2155 (E_Floating_Point_Type
, Current_Scope
,
2156 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2159 -- The various semantic attributes are taken from the predefined type
2160 -- Float, just so that all of them are initialized. Their values are
2161 -- never used because no constant folding or expansion takes place in
2162 -- the generic itself.
2165 Set_Ekind
(T
, E_Floating_Point_Subtype
);
2166 Set_Etype
(T
, Base
);
2167 Set_Size_Info
(T
, (Standard_Float
));
2168 Set_RM_Size
(T
, RM_Size
(Standard_Float
));
2169 Set_Digits_Value
(T
, Digits_Value
(Standard_Float
));
2170 Set_Scalar_Range
(T
, Scalar_Range
(Standard_Float
));
2171 Set_Is_Constrained
(T
);
2173 Set_Is_Generic_Type
(Base
);
2174 Set_Etype
(Base
, Base
);
2175 Set_Size_Info
(Base
, (Standard_Float
));
2176 Set_RM_Size
(Base
, RM_Size
(Standard_Float
));
2177 Set_Digits_Value
(Base
, Digits_Value
(Standard_Float
));
2178 Set_Scalar_Range
(Base
, Scalar_Range
(Standard_Float
));
2179 Set_Parent
(Base
, Parent
(Def
));
2181 Check_Restriction
(No_Floating_Point
, Def
);
2182 end Analyze_Formal_Floating_Type
;
2184 -----------------------------------
2185 -- Analyze_Formal_Interface_Type;--
2186 -----------------------------------
2188 procedure Analyze_Formal_Interface_Type
2193 Loc
: constant Source_Ptr
:= Sloc
(N
);
2198 Make_Full_Type_Declaration
(Loc
,
2199 Defining_Identifier
=> T
,
2200 Type_Definition
=> Def
);
2204 Set_Is_Generic_Type
(T
);
2205 end Analyze_Formal_Interface_Type
;
2207 ---------------------------------
2208 -- Analyze_Formal_Modular_Type --
2209 ---------------------------------
2211 procedure Analyze_Formal_Modular_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2213 -- Apart from their entity kind, generic modular types are treated like
2214 -- signed integer types, and have the same attributes.
2216 Analyze_Formal_Signed_Integer_Type
(T
, Def
);
2217 Set_Ekind
(T
, E_Modular_Integer_Subtype
);
2218 Set_Ekind
(Etype
(T
), E_Modular_Integer_Type
);
2220 end Analyze_Formal_Modular_Type
;
2222 ---------------------------------------
2223 -- Analyze_Formal_Object_Declaration --
2224 ---------------------------------------
2226 procedure Analyze_Formal_Object_Declaration
(N
: Node_Id
) is
2227 E
: constant Node_Id
:= Default_Expression
(N
);
2228 Id
: constant Node_Id
:= Defining_Identifier
(N
);
2235 -- Determine the mode of the formal object
2237 if Out_Present
(N
) then
2238 K
:= E_Generic_In_Out_Parameter
;
2240 if not In_Present
(N
) then
2241 Error_Msg_N
("formal generic objects cannot have mode OUT", N
);
2245 K
:= E_Generic_In_Parameter
;
2248 if Present
(Subtype_Mark
(N
)) then
2249 Find_Type
(Subtype_Mark
(N
));
2250 T
:= Entity
(Subtype_Mark
(N
));
2252 -- Verify that there is no redundant null exclusion
2254 if Null_Exclusion_Present
(N
) then
2255 if not Is_Access_Type
(T
) then
2257 ("null exclusion can only apply to an access type", N
);
2259 elsif Can_Never_Be_Null
(T
) then
2261 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
2265 -- Ada 2005 (AI-423): Formal object with an access definition
2268 Check_Access_Definition
(N
);
2269 T
:= Access_Definition
2271 N
=> Access_Definition
(N
));
2274 if Ekind
(T
) = E_Incomplete_Type
then
2276 Error_Node
: Node_Id
;
2279 if Present
(Subtype_Mark
(N
)) then
2280 Error_Node
:= Subtype_Mark
(N
);
2282 Check_Access_Definition
(N
);
2283 Error_Node
:= Access_Definition
(N
);
2286 Error_Msg_N
("premature usage of incomplete type", Error_Node
);
2290 if K
= E_Generic_In_Parameter
then
2292 -- Ada 2005 (AI-287): Limited aggregates allowed in generic formals
2294 if Ada_Version
< Ada_2005
and then Is_Limited_Type
(T
) then
2296 ("generic formal of mode IN must not be of limited type", N
);
2297 Explain_Limited_Type
(T
, N
);
2300 if Is_Abstract_Type
(T
) then
2302 ("generic formal of mode IN must not be of abstract type", N
);
2306 Preanalyze_Spec_Expression
(E
, T
);
2308 if Is_Limited_Type
(T
) and then not OK_For_Limited_Init
(T
, E
) then
2310 ("initialization not allowed for limited types", E
);
2311 Explain_Limited_Type
(T
, E
);
2318 -- Case of generic IN OUT parameter
2321 -- If the formal has an unconstrained type, construct its actual
2322 -- subtype, as is done for subprogram formals. In this fashion, all
2323 -- its uses can refer to specific bounds.
2328 if (Is_Array_Type
(T
) and then not Is_Constrained
(T
))
2329 or else (Ekind
(T
) = E_Record_Type
and then Has_Discriminants
(T
))
2332 Non_Freezing_Ref
: constant Node_Id
:=
2333 New_Occurrence_Of
(Id
, Sloc
(Id
));
2337 -- Make sure the actual subtype doesn't generate bogus freezing
2339 Set_Must_Not_Freeze
(Non_Freezing_Ref
);
2340 Decl
:= Build_Actual_Subtype
(T
, Non_Freezing_Ref
);
2341 Insert_Before_And_Analyze
(N
, Decl
);
2342 Set_Actual_Subtype
(Id
, Defining_Identifier
(Decl
));
2345 Set_Actual_Subtype
(Id
, T
);
2350 ("initialization not allowed for `IN OUT` formals", N
);
2354 if Has_Aspects
(N
) then
2355 Analyze_Aspect_Specifications
(N
, Id
);
2357 end Analyze_Formal_Object_Declaration
;
2359 ----------------------------------------------
2360 -- Analyze_Formal_Ordinary_Fixed_Point_Type --
2361 ----------------------------------------------
2363 procedure Analyze_Formal_Ordinary_Fixed_Point_Type
2367 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2368 Base
: constant Entity_Id
:=
2370 (E_Ordinary_Fixed_Point_Type
, Current_Scope
,
2371 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2374 -- The semantic attributes are set for completeness only, their values
2375 -- will never be used, since all properties of the type are non-static.
2378 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
2379 Set_Etype
(T
, Base
);
2380 Set_Size_Info
(T
, Standard_Integer
);
2381 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2382 Set_Small_Value
(T
, Ureal_1
);
2383 Set_Delta_Value
(T
, Ureal_1
);
2384 Set_Scalar_Range
(T
,
2386 Low_Bound
=> Make_Real_Literal
(Loc
, Ureal_1
),
2387 High_Bound
=> Make_Real_Literal
(Loc
, Ureal_1
)));
2388 Set_Is_Constrained
(T
);
2390 Set_Is_Generic_Type
(Base
);
2391 Set_Etype
(Base
, Base
);
2392 Set_Size_Info
(Base
, Standard_Integer
);
2393 Set_RM_Size
(Base
, RM_Size
(Standard_Integer
));
2394 Set_Small_Value
(Base
, Ureal_1
);
2395 Set_Delta_Value
(Base
, Ureal_1
);
2396 Set_Scalar_Range
(Base
, Scalar_Range
(T
));
2397 Set_Parent
(Base
, Parent
(Def
));
2399 Check_Restriction
(No_Fixed_Point
, Def
);
2400 end Analyze_Formal_Ordinary_Fixed_Point_Type
;
2402 ----------------------------------------
2403 -- Analyze_Formal_Package_Declaration --
2404 ----------------------------------------
2406 procedure Analyze_Formal_Package_Declaration
(N
: Node_Id
) is
2407 Gen_Id
: constant Node_Id
:= Name
(N
);
2408 Loc
: constant Source_Ptr
:= Sloc
(N
);
2409 Pack_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2412 Gen_Unit
: Entity_Id
;
2415 Vis_Prims_List
: Elist_Id
:= No_Elist
;
2416 -- List of primitives made temporarily visible in the instantiation
2417 -- to match the visibility of the formal type.
2419 function Build_Local_Package
return Node_Id
;
2420 -- The formal package is rewritten so that its parameters are replaced
2421 -- with corresponding declarations. For parameters with bona fide
2422 -- associations these declarations are created by Analyze_Associations
2423 -- as for a regular instantiation. For boxed parameters, we preserve
2424 -- the formal declarations and analyze them, in order to introduce
2425 -- entities of the right kind in the environment of the formal.
2427 -------------------------
2428 -- Build_Local_Package --
2429 -------------------------
2431 function Build_Local_Package
return Node_Id
is
2433 Pack_Decl
: Node_Id
;
2436 -- Within the formal, the name of the generic package is a renaming
2437 -- of the formal (as for a regular instantiation).
2440 Make_Package_Declaration
(Loc
,
2443 (Specification
(Original_Node
(Gen_Decl
)),
2444 Empty
, Instantiating
=> True));
2447 Make_Package_Renaming_Declaration
(Loc
,
2448 Defining_Unit_Name
=>
2449 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)),
2450 Name
=> New_Occurrence_Of
(Formal
, Loc
));
2452 if Nkind
(Gen_Id
) = N_Identifier
2453 and then Chars
(Gen_Id
) = Chars
(Pack_Id
)
2456 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
2459 -- If the formal is declared with a box, or with an others choice,
2460 -- create corresponding declarations for all entities in the formal
2461 -- part, so that names with the proper types are available in the
2462 -- specification of the formal package.
2464 -- On the other hand, if there are no associations, then all the
2465 -- formals must have defaults, and this will be checked by the
2466 -- call to Analyze_Associations.
2469 or else Nkind
(First
(Generic_Associations
(N
))) = N_Others_Choice
2472 Formal_Decl
: Node_Id
;
2475 -- TBA : for a formal package, need to recurse ???
2480 (Generic_Formal_Declarations
(Original_Node
(Gen_Decl
)));
2481 while Present
(Formal_Decl
) loop
2483 (Decls
, Copy_Generic_Node
(Formal_Decl
, Empty
, True));
2488 -- If generic associations are present, use Analyze_Associations to
2489 -- create the proper renaming declarations.
2493 Act_Tree
: constant Node_Id
:=
2495 (Original_Node
(Gen_Decl
), Empty
,
2496 Instantiating
=> True);
2499 Generic_Renamings
.Set_Last
(0);
2500 Generic_Renamings_HTable
.Reset
;
2501 Instantiation_Node
:= N
;
2504 Analyze_Associations
2505 (I_Node
=> Original_Node
(N
),
2506 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
2507 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
2509 Vis_Prims_List
:= Check_Hidden_Primitives
(Decls
);
2513 Append
(Renaming
, To
=> Decls
);
2515 -- Add generated declarations ahead of local declarations in
2518 if No
(Visible_Declarations
(Specification
(Pack_Decl
))) then
2519 Set_Visible_Declarations
(Specification
(Pack_Decl
), Decls
);
2522 (First
(Visible_Declarations
(Specification
(Pack_Decl
))),
2527 end Build_Local_Package
;
2531 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
2532 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
2534 Associations
: Boolean := True;
2536 Parent_Installed
: Boolean := False;
2537 Parent_Instance
: Entity_Id
;
2538 Renaming_In_Par
: Entity_Id
;
2540 -- Start of processing for Analyze_Formal_Package_Declaration
2543 Check_Text_IO_Special_Unit
(Gen_Id
);
2546 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
2547 Gen_Unit
:= Entity
(Gen_Id
);
2549 -- Check for a formal package that is a package renaming
2551 if Present
(Renamed_Object
(Gen_Unit
)) then
2553 -- Indicate that unit is used, before replacing it with renamed
2554 -- entity for use below.
2556 if In_Extended_Main_Source_Unit
(N
) then
2557 Set_Is_Instantiated
(Gen_Unit
);
2558 Generate_Reference
(Gen_Unit
, N
);
2561 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
2564 if Ekind
(Gen_Unit
) /= E_Generic_Package
then
2565 Error_Msg_N
("expect generic package name", Gen_Id
);
2569 elsif Gen_Unit
= Current_Scope
then
2571 ("generic package cannot be used as a formal package of itself",
2576 elsif In_Open_Scopes
(Gen_Unit
) then
2577 if Is_Compilation_Unit
(Gen_Unit
)
2578 and then Is_Child_Unit
(Current_Scope
)
2580 -- Special-case the error when the formal is a parent, and
2581 -- continue analysis to minimize cascaded errors.
2584 ("generic parent cannot be used as formal package "
2585 & "of a child unit", Gen_Id
);
2589 ("generic package cannot be used as a formal package "
2590 & "within itself", Gen_Id
);
2596 -- Check that name of formal package does not hide name of generic,
2597 -- or its leading prefix. This check must be done separately because
2598 -- the name of the generic has already been analyzed.
2601 Gen_Name
: Entity_Id
;
2605 while Nkind
(Gen_Name
) = N_Expanded_Name
loop
2606 Gen_Name
:= Prefix
(Gen_Name
);
2609 if Chars
(Gen_Name
) = Chars
(Pack_Id
) then
2611 ("& is hidden within declaration of formal package",
2617 or else No
(Generic_Associations
(N
))
2618 or else Nkind
(First
(Generic_Associations
(N
))) = N_Others_Choice
2620 Associations
:= False;
2623 -- If there are no generic associations, the generic parameters appear
2624 -- as local entities and are instantiated like them. We copy the generic
2625 -- package declaration as if it were an instantiation, and analyze it
2626 -- like a regular package, except that we treat the formals as
2627 -- additional visible components.
2629 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
2631 if In_Extended_Main_Source_Unit
(N
) then
2632 Set_Is_Instantiated
(Gen_Unit
);
2633 Generate_Reference
(Gen_Unit
, N
);
2636 Formal
:= New_Copy
(Pack_Id
);
2637 Create_Instantiation_Source
(N
, Gen_Unit
, False, S_Adjustment
);
2639 -- Make local generic without formals. The formals will be replaced with
2640 -- internal declarations.
2643 New_N
:= Build_Local_Package
;
2645 -- If there are errors in the parameter list, Analyze_Associations
2646 -- raises Instantiation_Error. Patch the declaration to prevent further
2647 -- exception propagation.
2650 when Instantiation_Error
=>
2651 Enter_Name
(Formal
);
2652 Set_Ekind
(Formal
, E_Variable
);
2653 Set_Etype
(Formal
, Any_Type
);
2654 Restore_Hidden_Primitives
(Vis_Prims_List
);
2656 if Parent_Installed
then
2664 Set_Defining_Unit_Name
(Specification
(New_N
), Formal
);
2665 Set_Generic_Parent
(Specification
(N
), Gen_Unit
);
2666 Set_Instance_Env
(Gen_Unit
, Formal
);
2667 Set_Is_Generic_Instance
(Formal
);
2669 Enter_Name
(Formal
);
2670 Set_Ekind
(Formal
, E_Package
);
2671 Set_Etype
(Formal
, Standard_Void_Type
);
2672 Set_Inner_Instances
(Formal
, New_Elmt_List
);
2673 Push_Scope
(Formal
);
2675 -- Manually set the SPARK_Mode from the context because the package
2676 -- declaration is never analyzed.
2678 Set_SPARK_Pragma
(Formal
, SPARK_Mode_Pragma
);
2679 Set_SPARK_Aux_Pragma
(Formal
, SPARK_Mode_Pragma
);
2680 Set_SPARK_Pragma_Inherited
(Formal
);
2681 Set_SPARK_Aux_Pragma_Inherited
(Formal
);
2683 if Is_Child_Unit
(Gen_Unit
) and then Parent_Installed
then
2685 -- Similarly, we have to make the name of the formal visible in the
2686 -- parent instance, to resolve properly fully qualified names that
2687 -- may appear in the generic unit. The parent instance has been
2688 -- placed on the scope stack ahead of the current scope.
2690 Parent_Instance
:= Scope_Stack
.Table
(Scope_Stack
.Last
- 1).Entity
;
2693 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
));
2694 Set_Ekind
(Renaming_In_Par
, E_Package
);
2695 Set_Etype
(Renaming_In_Par
, Standard_Void_Type
);
2696 Set_Scope
(Renaming_In_Par
, Parent_Instance
);
2697 Set_Parent
(Renaming_In_Par
, Parent
(Formal
));
2698 Set_Renamed_Object
(Renaming_In_Par
, Formal
);
2699 Append_Entity
(Renaming_In_Par
, Parent_Instance
);
2702 -- A formal package declaration behaves as a package instantiation with
2703 -- respect to SPARK_Mode "off". If the annotation is "off" or altogether
2704 -- missing, set the global flag which signals Analyze_Pragma to ingnore
2705 -- all SPARK_Mode pragmas within the generic_package_name.
2707 if SPARK_Mode
/= On
then
2708 Ignore_Pragma_SPARK_Mode
:= True;
2711 Analyze
(Specification
(N
));
2713 -- The formals for which associations are provided are not visible
2714 -- outside of the formal package. The others are still declared by a
2715 -- formal parameter declaration.
2717 -- If there are no associations, the only local entity to hide is the
2718 -- generated package renaming itself.
2724 E
:= First_Entity
(Formal
);
2725 while Present
(E
) loop
2726 if Associations
and then not Is_Generic_Formal
(E
) then
2730 if Ekind
(E
) = E_Package
and then Renamed_Entity
(E
) = Formal
then
2739 End_Package_Scope
(Formal
);
2740 Restore_Hidden_Primitives
(Vis_Prims_List
);
2742 if Parent_Installed
then
2748 -- Inside the generic unit, the formal package is a regular package, but
2749 -- no body is needed for it. Note that after instantiation, the defining
2750 -- unit name we need is in the new tree and not in the original (see
2751 -- Package_Instantiation). A generic formal package is an instance, and
2752 -- can be used as an actual for an inner instance.
2754 Set_Has_Completion
(Formal
, True);
2756 -- Add semantic information to the original defining identifier for ASIS
2759 Set_Ekind
(Pack_Id
, E_Package
);
2760 Set_Etype
(Pack_Id
, Standard_Void_Type
);
2761 Set_Scope
(Pack_Id
, Scope
(Formal
));
2762 Set_Has_Completion
(Pack_Id
, True);
2765 if Has_Aspects
(N
) then
2766 Analyze_Aspect_Specifications
(N
, Pack_Id
);
2769 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
2770 end Analyze_Formal_Package_Declaration
;
2772 ---------------------------------
2773 -- Analyze_Formal_Private_Type --
2774 ---------------------------------
2776 procedure Analyze_Formal_Private_Type
2782 New_Private_Type
(N
, T
, Def
);
2784 -- Set the size to an arbitrary but legal value
2786 Set_Size_Info
(T
, Standard_Integer
);
2787 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2788 end Analyze_Formal_Private_Type
;
2790 ------------------------------------
2791 -- Analyze_Formal_Incomplete_Type --
2792 ------------------------------------
2794 procedure Analyze_Formal_Incomplete_Type
2800 Set_Ekind
(T
, E_Incomplete_Type
);
2802 Set_Private_Dependents
(T
, New_Elmt_List
);
2804 if Tagged_Present
(Def
) then
2805 Set_Is_Tagged_Type
(T
);
2806 Make_Class_Wide_Type
(T
);
2807 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2809 end Analyze_Formal_Incomplete_Type
;
2811 ----------------------------------------
2812 -- Analyze_Formal_Signed_Integer_Type --
2813 ----------------------------------------
2815 procedure Analyze_Formal_Signed_Integer_Type
2819 Base
: constant Entity_Id
:=
2821 (E_Signed_Integer_Type
,
2823 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2828 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
2829 Set_Etype
(T
, Base
);
2830 Set_Size_Info
(T
, Standard_Integer
);
2831 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2832 Set_Scalar_Range
(T
, Scalar_Range
(Standard_Integer
));
2833 Set_Is_Constrained
(T
);
2835 Set_Is_Generic_Type
(Base
);
2836 Set_Size_Info
(Base
, Standard_Integer
);
2837 Set_RM_Size
(Base
, RM_Size
(Standard_Integer
));
2838 Set_Etype
(Base
, Base
);
2839 Set_Scalar_Range
(Base
, Scalar_Range
(Standard_Integer
));
2840 Set_Parent
(Base
, Parent
(Def
));
2841 end Analyze_Formal_Signed_Integer_Type
;
2843 -------------------------------------------
2844 -- Analyze_Formal_Subprogram_Declaration --
2845 -------------------------------------------
2847 procedure Analyze_Formal_Subprogram_Declaration
(N
: Node_Id
) is
2848 Spec
: constant Node_Id
:= Specification
(N
);
2849 Def
: constant Node_Id
:= Default_Name
(N
);
2850 Nam
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
2858 if Nkind
(Nam
) = N_Defining_Program_Unit_Name
then
2859 Error_Msg_N
("name of formal subprogram must be a direct name", Nam
);
2863 Analyze_Subprogram_Declaration
(N
);
2864 Set_Is_Formal_Subprogram
(Nam
);
2865 Set_Has_Completion
(Nam
);
2867 if Nkind
(N
) = N_Formal_Abstract_Subprogram_Declaration
then
2868 Set_Is_Abstract_Subprogram
(Nam
);
2870 Set_Is_Dispatching_Operation
(Nam
);
2872 -- A formal abstract procedure cannot have a null default
2873 -- (RM 12.6(4.1/2)).
2875 if Nkind
(Spec
) = N_Procedure_Specification
2876 and then Null_Present
(Spec
)
2879 ("a formal abstract subprogram cannot default to null", Spec
);
2883 Ctrl_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Nam
);
2885 if No
(Ctrl_Type
) then
2887 ("abstract formal subprogram must have a controlling type",
2890 elsif Ada_Version
>= Ada_2012
2891 and then Is_Incomplete_Type
(Ctrl_Type
)
2894 ("controlling type of abstract formal subprogram cannot "
2895 & "be incomplete type", N
, Ctrl_Type
);
2898 Check_Controlling_Formals
(Ctrl_Type
, Nam
);
2903 -- Default name is resolved at the point of instantiation
2905 if Box_Present
(N
) then
2908 -- Else default is bound at the point of generic declaration
2910 elsif Present
(Def
) then
2911 if Nkind
(Def
) = N_Operator_Symbol
then
2912 Find_Direct_Name
(Def
);
2914 elsif Nkind
(Def
) /= N_Attribute_Reference
then
2918 -- For an attribute reference, analyze the prefix and verify
2919 -- that it has the proper profile for the subprogram.
2921 Analyze
(Prefix
(Def
));
2922 Valid_Default_Attribute
(Nam
, Def
);
2926 -- Default name may be overloaded, in which case the interpretation
2927 -- with the correct profile must be selected, as for a renaming.
2928 -- If the definition is an indexed component, it must denote a
2929 -- member of an entry family. If it is a selected component, it
2930 -- can be a protected operation.
2932 if Etype
(Def
) = Any_Type
then
2935 elsif Nkind
(Def
) = N_Selected_Component
then
2936 if not Is_Overloadable
(Entity
(Selector_Name
(Def
))) then
2937 Error_Msg_N
("expect valid subprogram name as default", Def
);
2940 elsif Nkind
(Def
) = N_Indexed_Component
then
2941 if Is_Entity_Name
(Prefix
(Def
)) then
2942 if Ekind
(Entity
(Prefix
(Def
))) /= E_Entry_Family
then
2943 Error_Msg_N
("expect valid subprogram name as default", Def
);
2946 elsif Nkind
(Prefix
(Def
)) = N_Selected_Component
then
2947 if Ekind
(Entity
(Selector_Name
(Prefix
(Def
)))) /=
2950 Error_Msg_N
("expect valid subprogram name as default", Def
);
2954 Error_Msg_N
("expect valid subprogram name as default", Def
);
2958 elsif Nkind
(Def
) = N_Character_Literal
then
2960 -- Needs some type checks: subprogram should be parameterless???
2962 Resolve
(Def
, (Etype
(Nam
)));
2964 elsif not Is_Entity_Name
(Def
)
2965 or else not Is_Overloadable
(Entity
(Def
))
2967 Error_Msg_N
("expect valid subprogram name as default", Def
);
2970 elsif not Is_Overloaded
(Def
) then
2971 Subp
:= Entity
(Def
);
2974 Error_Msg_N
("premature usage of formal subprogram", Def
);
2976 elsif not Entity_Matches_Spec
(Subp
, Nam
) then
2977 Error_Msg_N
("no visible entity matches specification", Def
);
2980 -- More than one interpretation, so disambiguate as for a renaming
2985 I1
: Interp_Index
:= 0;
2991 Get_First_Interp
(Def
, I
, It
);
2992 while Present
(It
.Nam
) loop
2993 if Entity_Matches_Spec
(It
.Nam
, Nam
) then
2994 if Subp
/= Any_Id
then
2995 It1
:= Disambiguate
(Def
, I1
, I
, Etype
(Subp
));
2997 if It1
= No_Interp
then
2998 Error_Msg_N
("ambiguous default subprogram", Def
);
3011 Get_Next_Interp
(I
, It
);
3015 if Subp
/= Any_Id
then
3017 -- Subprogram found, generate reference to it
3019 Set_Entity
(Def
, Subp
);
3020 Generate_Reference
(Subp
, Def
);
3023 Error_Msg_N
("premature usage of formal subprogram", Def
);
3025 elsif Ekind
(Subp
) /= E_Operator
then
3026 Check_Mode_Conformant
(Subp
, Nam
);
3030 Error_Msg_N
("no visible subprogram matches specification", N
);
3036 if Has_Aspects
(N
) then
3037 Analyze_Aspect_Specifications
(N
, Nam
);
3040 end Analyze_Formal_Subprogram_Declaration
;
3042 -------------------------------------
3043 -- Analyze_Formal_Type_Declaration --
3044 -------------------------------------
3046 procedure Analyze_Formal_Type_Declaration
(N
: Node_Id
) is
3047 Def
: constant Node_Id
:= Formal_Type_Definition
(N
);
3051 T
:= Defining_Identifier
(N
);
3053 if Present
(Discriminant_Specifications
(N
))
3054 and then Nkind
(Def
) /= N_Formal_Private_Type_Definition
3057 ("discriminants not allowed for this formal type", T
);
3060 -- Enter the new name, and branch to specific routine
3063 when N_Formal_Private_Type_Definition
=>
3064 Analyze_Formal_Private_Type
(N
, T
, Def
);
3066 when N_Formal_Derived_Type_Definition
=>
3067 Analyze_Formal_Derived_Type
(N
, T
, Def
);
3069 when N_Formal_Incomplete_Type_Definition
=>
3070 Analyze_Formal_Incomplete_Type
(T
, Def
);
3072 when N_Formal_Discrete_Type_Definition
=>
3073 Analyze_Formal_Discrete_Type
(T
, Def
);
3075 when N_Formal_Signed_Integer_Type_Definition
=>
3076 Analyze_Formal_Signed_Integer_Type
(T
, Def
);
3078 when N_Formal_Modular_Type_Definition
=>
3079 Analyze_Formal_Modular_Type
(T
, Def
);
3081 when N_Formal_Floating_Point_Definition
=>
3082 Analyze_Formal_Floating_Type
(T
, Def
);
3084 when N_Formal_Ordinary_Fixed_Point_Definition
=>
3085 Analyze_Formal_Ordinary_Fixed_Point_Type
(T
, Def
);
3087 when N_Formal_Decimal_Fixed_Point_Definition
=>
3088 Analyze_Formal_Decimal_Fixed_Point_Type
(T
, Def
);
3090 when N_Array_Type_Definition
=>
3091 Analyze_Formal_Array_Type
(T
, Def
);
3093 when N_Access_To_Object_Definition |
3094 N_Access_Function_Definition |
3095 N_Access_Procedure_Definition
=>
3096 Analyze_Generic_Access_Type
(T
, Def
);
3098 -- Ada 2005: a interface declaration is encoded as an abstract
3099 -- record declaration or a abstract type derivation.
3101 when N_Record_Definition
=>
3102 Analyze_Formal_Interface_Type
(N
, T
, Def
);
3104 when N_Derived_Type_Definition
=>
3105 Analyze_Formal_Derived_Interface_Type
(N
, T
, Def
);
3111 raise Program_Error
;
3115 Set_Is_Generic_Type
(T
);
3117 if Has_Aspects
(N
) then
3118 Analyze_Aspect_Specifications
(N
, T
);
3120 end Analyze_Formal_Type_Declaration
;
3122 ------------------------------------
3123 -- Analyze_Function_Instantiation --
3124 ------------------------------------
3126 procedure Analyze_Function_Instantiation
(N
: Node_Id
) is
3128 Analyze_Subprogram_Instantiation
(N
, E_Function
);
3129 end Analyze_Function_Instantiation
;
3131 ---------------------------------
3132 -- Analyze_Generic_Access_Type --
3133 ---------------------------------
3135 procedure Analyze_Generic_Access_Type
(T
: Entity_Id
; Def
: Node_Id
) is
3139 if Nkind
(Def
) = N_Access_To_Object_Definition
then
3140 Access_Type_Declaration
(T
, Def
);
3142 if Is_Incomplete_Or_Private_Type
(Designated_Type
(T
))
3143 and then No
(Full_View
(Designated_Type
(T
)))
3144 and then not Is_Generic_Type
(Designated_Type
(T
))
3146 Error_Msg_N
("premature usage of incomplete type", Def
);
3148 elsif not Is_Entity_Name
(Subtype_Indication
(Def
)) then
3150 ("only a subtype mark is allowed in a formal", Def
);
3154 Access_Subprogram_Declaration
(T
, Def
);
3156 end Analyze_Generic_Access_Type
;
3158 ---------------------------------
3159 -- Analyze_Generic_Formal_Part --
3160 ---------------------------------
3162 procedure Analyze_Generic_Formal_Part
(N
: Node_Id
) is
3163 Gen_Parm_Decl
: Node_Id
;
3166 -- The generic formals are processed in the scope of the generic unit,
3167 -- where they are immediately visible. The scope is installed by the
3170 Gen_Parm_Decl
:= First
(Generic_Formal_Declarations
(N
));
3171 while Present
(Gen_Parm_Decl
) loop
3172 Analyze
(Gen_Parm_Decl
);
3173 Next
(Gen_Parm_Decl
);
3176 Generate_Reference_To_Generic_Formals
(Current_Scope
);
3177 end Analyze_Generic_Formal_Part
;
3179 ------------------------------------------
3180 -- Analyze_Generic_Package_Declaration --
3181 ------------------------------------------
3183 procedure Analyze_Generic_Package_Declaration
(N
: Node_Id
) is
3184 Loc
: constant Source_Ptr
:= Sloc
(N
);
3185 Decls
: constant List_Id
:=
3186 Visible_Declarations
(Specification
(N
));
3191 Save_Parent
: Node_Id
;
3194 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3196 -- We introduce a renaming of the enclosing package, to have a usable
3197 -- entity as the prefix of an expanded name for a local entity of the
3198 -- form Par.P.Q, where P is the generic package. This is because a local
3199 -- entity named P may hide it, so that the usual visibility rules in
3200 -- the instance will not resolve properly.
3203 Make_Package_Renaming_Declaration
(Loc
,
3204 Defining_Unit_Name
=>
3205 Make_Defining_Identifier
(Loc
,
3206 Chars
=> New_External_Name
(Chars
(Defining_Entity
(N
)), "GH")),
3208 Make_Identifier
(Loc
, Chars
(Defining_Entity
(N
))));
3210 if Present
(Decls
) then
3211 Decl
:= First
(Decls
);
3212 while Present
(Decl
) and then Nkind
(Decl
) = N_Pragma
loop
3216 if Present
(Decl
) then
3217 Insert_Before
(Decl
, Renaming
);
3219 Append
(Renaming
, Visible_Declarations
(Specification
(N
)));
3223 Set_Visible_Declarations
(Specification
(N
), New_List
(Renaming
));
3226 -- Create copy of generic unit, and save for instantiation. If the unit
3227 -- is a child unit, do not copy the specifications for the parent, which
3228 -- are not part of the generic tree.
3230 Save_Parent
:= Parent_Spec
(N
);
3231 Set_Parent_Spec
(N
, Empty
);
3233 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
3234 Set_Parent_Spec
(New_N
, Save_Parent
);
3237 -- Once the contents of the generic copy and the template are swapped,
3238 -- do the same for their respective aspect specifications.
3240 Exchange_Aspects
(N
, New_N
);
3242 -- Collect all contract-related source pragmas found within the template
3243 -- and attach them to the contract of the package spec. This contract is
3244 -- used in the capture of global references within annotations.
3246 Create_Generic_Contract
(N
);
3248 Id
:= Defining_Entity
(N
);
3249 Generate_Definition
(Id
);
3251 -- Expansion is not applied to generic units
3256 Set_Ekind
(Id
, E_Generic_Package
);
3257 Set_Etype
(Id
, Standard_Void_Type
);
3259 -- A generic package declared within a Ghost region is rendered Ghost
3260 -- (SPARK RM 6.9(2)).
3262 if Ghost_Mode
> None
then
3263 Set_Is_Ghost_Entity
(Id
);
3266 -- Analyze aspects now, so that generated pragmas appear in the
3267 -- declarations before building and analyzing the generic copy.
3269 if Has_Aspects
(N
) then
3270 Analyze_Aspect_Specifications
(N
, Id
);
3274 Enter_Generic_Scope
(Id
);
3275 Set_Inner_Instances
(Id
, New_Elmt_List
);
3277 Set_Categorization_From_Pragmas
(N
);
3278 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3280 -- Link the declaration of the generic homonym in the generic copy to
3281 -- the package it renames, so that it is always resolved properly.
3283 Set_Generic_Homonym
(Id
, Defining_Unit_Name
(Renaming
));
3284 Set_Entity
(Associated_Node
(Name
(Renaming
)), Id
);
3286 -- For a library unit, we have reconstructed the entity for the unit,
3287 -- and must reset it in the library tables.
3289 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3290 Set_Cunit_Entity
(Current_Sem_Unit
, Id
);
3293 Analyze_Generic_Formal_Part
(N
);
3295 -- After processing the generic formals, analysis proceeds as for a
3296 -- non-generic package.
3298 Analyze
(Specification
(N
));
3300 Validate_Categorization_Dependency
(N
, Id
);
3304 End_Package_Scope
(Id
);
3305 Exit_Generic_Scope
(Id
);
3307 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3308 Move_Freeze_Nodes
(Id
, N
, Visible_Declarations
(Specification
(N
)));
3309 Move_Freeze_Nodes
(Id
, N
, Private_Declarations
(Specification
(N
)));
3310 Move_Freeze_Nodes
(Id
, N
, Generic_Formal_Declarations
(N
));
3313 Set_Body_Required
(Parent
(N
), Unit_Requires_Body
(Id
));
3314 Validate_RT_RAT_Component
(N
);
3316 -- If this is a spec without a body, check that generic parameters
3319 if not Body_Required
(Parent
(N
)) then
3320 Check_References
(Id
);
3324 -- If there is a specified storage pool in the context, create an
3325 -- aspect on the package declaration, so that it is used in any
3326 -- instance that does not override it.
3328 if Present
(Default_Pool
) then
3334 Make_Aspect_Specification
(Loc
,
3335 Identifier
=> Make_Identifier
(Loc
, Name_Default_Storage_Pool
),
3336 Expression
=> New_Copy
(Default_Pool
));
3338 if No
(Aspect_Specifications
(Specification
(N
))) then
3339 Set_Aspect_Specifications
(Specification
(N
), New_List
(ASN
));
3341 Append
(ASN
, Aspect_Specifications
(Specification
(N
)));
3345 end Analyze_Generic_Package_Declaration
;
3347 --------------------------------------------
3348 -- Analyze_Generic_Subprogram_Declaration --
3349 --------------------------------------------
3351 procedure Analyze_Generic_Subprogram_Declaration
(N
: Node_Id
) is
3355 Result_Type
: Entity_Id
;
3356 Save_Parent
: Node_Id
;
3361 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3363 -- Create copy of generic unit, and save for instantiation. If the unit
3364 -- is a child unit, do not copy the specifications for the parent, which
3365 -- are not part of the generic tree.
3367 Save_Parent
:= Parent_Spec
(N
);
3368 Set_Parent_Spec
(N
, Empty
);
3370 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
3371 Set_Parent_Spec
(New_N
, Save_Parent
);
3374 -- Once the contents of the generic copy and the template are swapped,
3375 -- do the same for their respective aspect specifications.
3377 Exchange_Aspects
(N
, New_N
);
3379 -- Collect all contract-related source pragmas found within the template
3380 -- and attach them to the contract of the subprogram spec. This contract
3381 -- is used in the capture of global references within annotations.
3383 Create_Generic_Contract
(N
);
3385 Spec
:= Specification
(N
);
3386 Id
:= Defining_Entity
(Spec
);
3387 Generate_Definition
(Id
);
3389 if Nkind
(Id
) = N_Defining_Operator_Symbol
then
3391 ("operator symbol not allowed for generic subprogram", Id
);
3397 Set_Scope_Depth_Value
(Id
, Scope_Depth
(Current_Scope
) + 1);
3399 -- Analyze the aspects of the generic copy to ensure that all generated
3400 -- pragmas (if any) perform their semantic effects.
3402 if Has_Aspects
(N
) then
3403 Analyze_Aspect_Specifications
(N
, Id
);
3407 Enter_Generic_Scope
(Id
);
3408 Set_Inner_Instances
(Id
, New_Elmt_List
);
3409 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3411 Analyze_Generic_Formal_Part
(N
);
3413 Formals
:= Parameter_Specifications
(Spec
);
3415 if Nkind
(Spec
) = N_Function_Specification
then
3416 Set_Ekind
(Id
, E_Generic_Function
);
3418 Set_Ekind
(Id
, E_Generic_Procedure
);
3421 if Present
(Formals
) then
3422 Process_Formals
(Formals
, Spec
);
3425 if Nkind
(Spec
) = N_Function_Specification
then
3426 if Nkind
(Result_Definition
(Spec
)) = N_Access_Definition
then
3427 Result_Type
:= Access_Definition
(Spec
, Result_Definition
(Spec
));
3428 Set_Etype
(Id
, Result_Type
);
3430 -- Check restriction imposed by AI05-073: a generic function
3431 -- cannot return an abstract type or an access to such.
3433 -- This is a binding interpretation should it apply to earlier
3434 -- versions of Ada as well as Ada 2012???
3436 if Is_Abstract_Type
(Designated_Type
(Result_Type
))
3437 and then Ada_Version
>= Ada_2012
3440 ("generic function cannot have an access result "
3441 & "that designates an abstract type", Spec
);
3445 Find_Type
(Result_Definition
(Spec
));
3446 Typ
:= Entity
(Result_Definition
(Spec
));
3448 if Is_Abstract_Type
(Typ
)
3449 and then Ada_Version
>= Ada_2012
3452 ("generic function cannot have abstract result type", Spec
);
3455 -- If a null exclusion is imposed on the result type, then create
3456 -- a null-excluding itype (an access subtype) and use it as the
3457 -- function's Etype.
3459 if Is_Access_Type
(Typ
)
3460 and then Null_Exclusion_Present
(Spec
)
3463 Create_Null_Excluding_Itype
3465 Related_Nod
=> Spec
,
3466 Scope_Id
=> Defining_Unit_Name
(Spec
)));
3468 Set_Etype
(Id
, Typ
);
3473 Set_Etype
(Id
, Standard_Void_Type
);
3476 -- A generic subprogram declared within a Ghost region is rendered Ghost
3477 -- (SPARK RM 6.9(2)).
3479 if Ghost_Mode
> None
then
3480 Set_Is_Ghost_Entity
(Id
);
3483 -- For a library unit, we have reconstructed the entity for the unit,
3484 -- and must reset it in the library tables. We also make sure that
3485 -- Body_Required is set properly in the original compilation unit node.
3487 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3488 Set_Cunit_Entity
(Current_Sem_Unit
, Id
);
3489 Set_Body_Required
(Parent
(N
), Unit_Requires_Body
(Id
));
3492 Set_Categorization_From_Pragmas
(N
);
3493 Validate_Categorization_Dependency
(N
, Id
);
3495 -- Capture all global references that occur within the profile of the
3496 -- generic subprogram. Aspects are not part of this processing because
3497 -- they must be delayed. If processed now, Save_Global_References will
3498 -- destroy the Associated_Node links and prevent the capture of global
3499 -- references when the contract of the generic subprogram is analyzed.
3501 Save_Global_References
(Original_Node
(N
));
3505 Exit_Generic_Scope
(Id
);
3506 Generate_Reference_To_Formals
(Id
);
3508 List_Inherited_Pre_Post_Aspects
(Id
);
3509 end Analyze_Generic_Subprogram_Declaration
;
3511 -----------------------------------
3512 -- Analyze_Package_Instantiation --
3513 -----------------------------------
3515 procedure Analyze_Package_Instantiation
(N
: Node_Id
) is
3516 Loc
: constant Source_Ptr
:= Sloc
(N
);
3517 Gen_Id
: constant Node_Id
:= Name
(N
);
3520 Act_Decl_Name
: Node_Id
;
3521 Act_Decl_Id
: Entity_Id
;
3527 Gen_Unit
: Entity_Id
;
3529 Is_Actual_Pack
: constant Boolean :=
3530 Is_Internal
(Defining_Entity
(N
));
3532 Env_Installed
: Boolean := False;
3533 Parent_Installed
: Boolean := False;
3534 Renaming_List
: List_Id
;
3535 Unit_Renaming
: Node_Id
;
3536 Needs_Body
: Boolean;
3537 Inline_Now
: Boolean := False;
3538 Has_Inline_Always
: Boolean := False;
3540 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
3541 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
3543 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
3544 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
3545 -- Save the SPARK_Mode-related data for restore on exit
3547 Save_Style_Check
: constant Boolean := Style_Check
;
3548 -- Save style check mode for restore on exit
3550 procedure Delay_Descriptors
(E
: Entity_Id
);
3551 -- Delay generation of subprogram descriptors for given entity
3553 function Might_Inline_Subp
return Boolean;
3554 -- If inlining is active and the generic contains inlined subprograms,
3555 -- we instantiate the body. This may cause superfluous instantiations,
3556 -- but it is simpler than detecting the need for the body at the point
3557 -- of inlining, when the context of the instance is not available.
3559 -----------------------
3560 -- Delay_Descriptors --
3561 -----------------------
3563 procedure Delay_Descriptors
(E
: Entity_Id
) is
3565 if not Delay_Subprogram_Descriptors
(E
) then
3566 Set_Delay_Subprogram_Descriptors
(E
);
3567 Pending_Descriptor
.Append
(E
);
3569 end Delay_Descriptors
;
3571 -----------------------
3572 -- Might_Inline_Subp --
3573 -----------------------
3575 function Might_Inline_Subp
return Boolean is
3579 if not Inline_Processing_Required
then
3583 E
:= First_Entity
(Gen_Unit
);
3584 while Present
(E
) loop
3585 if Is_Subprogram
(E
) and then Is_Inlined
(E
) then
3586 -- Remember if there are any subprograms with Inline_Always
3588 if Has_Pragma_Inline_Always
(E
) then
3589 Has_Inline_Always
:= True;
3600 end Might_Inline_Subp
;
3602 -- Local declarations
3604 Vis_Prims_List
: Elist_Id
:= No_Elist
;
3605 -- List of primitives made temporarily visible in the instantiation
3606 -- to match the visibility of the formal type
3608 -- Start of processing for Analyze_Package_Instantiation
3611 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3613 -- Very first thing: check for Text_IO special unit in case we are
3614 -- instantiating one of the children of [[Wide_]Wide_]Text_IO.
3616 Check_Text_IO_Special_Unit
(Name
(N
));
3618 -- Make node global for error reporting
3620 Instantiation_Node
:= N
;
3622 -- Turn off style checking in instances. If the check is enabled on the
3623 -- generic unit, a warning in an instance would just be noise. If not
3624 -- enabled on the generic, then a warning in an instance is just wrong.
3626 Style_Check
:= False;
3628 -- Case of instantiation of a generic package
3630 if Nkind
(N
) = N_Package_Instantiation
then
3631 Act_Decl_Id
:= New_Copy
(Defining_Entity
(N
));
3632 Set_Comes_From_Source
(Act_Decl_Id
, True);
3634 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Program_Unit_Name
then
3636 Make_Defining_Program_Unit_Name
(Loc
,
3638 New_Copy_Tree
(Name
(Defining_Unit_Name
(N
))),
3639 Defining_Identifier
=> Act_Decl_Id
);
3641 Act_Decl_Name
:= Act_Decl_Id
;
3644 -- Case of instantiation of a formal package
3647 Act_Decl_Id
:= Defining_Identifier
(N
);
3648 Act_Decl_Name
:= Act_Decl_Id
;
3651 Generate_Definition
(Act_Decl_Id
);
3652 Set_Ekind
(Act_Decl_Id
, E_Package
);
3654 -- Initialize list of incomplete actuals before analysis
3656 Set_Incomplete_Actuals
(Act_Decl_Id
, New_Elmt_List
);
3658 Preanalyze_Actuals
(N
, Act_Decl_Id
);
3661 Env_Installed
:= True;
3663 -- Reset renaming map for formal types. The mapping is established
3664 -- when analyzing the generic associations, but some mappings are
3665 -- inherited from formal packages of parent units, and these are
3666 -- constructed when the parents are installed.
3668 Generic_Renamings
.Set_Last
(0);
3669 Generic_Renamings_HTable
.Reset
;
3671 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
3672 Gen_Unit
:= Entity
(Gen_Id
);
3674 -- Verify that it is the name of a generic package
3676 -- A visibility glitch: if the instance is a child unit and the generic
3677 -- is the generic unit of a parent instance (i.e. both the parent and
3678 -- the child units are instances of the same package) the name now
3679 -- denotes the renaming within the parent, not the intended generic
3680 -- unit. See if there is a homonym that is the desired generic. The
3681 -- renaming declaration must be visible inside the instance of the
3682 -- child, but not when analyzing the name in the instantiation itself.
3684 if Ekind
(Gen_Unit
) = E_Package
3685 and then Present
(Renamed_Entity
(Gen_Unit
))
3686 and then In_Open_Scopes
(Renamed_Entity
(Gen_Unit
))
3687 and then Is_Generic_Instance
(Renamed_Entity
(Gen_Unit
))
3688 and then Present
(Homonym
(Gen_Unit
))
3690 Gen_Unit
:= Homonym
(Gen_Unit
);
3693 if Etype
(Gen_Unit
) = Any_Type
then
3697 elsif Ekind
(Gen_Unit
) /= E_Generic_Package
then
3699 -- Ada 2005 (AI-50217): Cannot use instance in limited with_clause
3701 if From_Limited_With
(Gen_Unit
) then
3703 ("cannot instantiate a limited withed package", Gen_Id
);
3706 ("& is not the name of a generic package", Gen_Id
, Gen_Unit
);
3713 if In_Extended_Main_Source_Unit
(N
) then
3714 Set_Is_Instantiated
(Gen_Unit
);
3715 Generate_Reference
(Gen_Unit
, N
);
3717 if Present
(Renamed_Object
(Gen_Unit
)) then
3718 Set_Is_Instantiated
(Renamed_Object
(Gen_Unit
));
3719 Generate_Reference
(Renamed_Object
(Gen_Unit
), N
);
3723 if Nkind
(Gen_Id
) = N_Identifier
3724 and then Chars
(Gen_Unit
) = Chars
(Defining_Entity
(N
))
3727 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
3729 elsif Nkind
(Gen_Id
) = N_Expanded_Name
3730 and then Is_Child_Unit
(Gen_Unit
)
3731 and then Nkind
(Prefix
(Gen_Id
)) = N_Identifier
3732 and then Chars
(Act_Decl_Id
) = Chars
(Prefix
(Gen_Id
))
3735 ("& is hidden within declaration of instance ", Prefix
(Gen_Id
));
3738 Set_Entity
(Gen_Id
, Gen_Unit
);
3740 -- If generic is a renaming, get original generic unit
3742 if Present
(Renamed_Object
(Gen_Unit
))
3743 and then Ekind
(Renamed_Object
(Gen_Unit
)) = E_Generic_Package
3745 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
3748 -- Verify that there are no circular instantiations
3750 if In_Open_Scopes
(Gen_Unit
) then
3751 Error_Msg_NE
("instantiation of & within itself", N
, Gen_Unit
);
3755 elsif Contains_Instance_Of
(Gen_Unit
, Current_Scope
, Gen_Id
) then
3756 Error_Msg_Node_2
:= Current_Scope
;
3758 ("circular Instantiation: & instantiated in &!", N
, Gen_Unit
);
3759 Circularity_Detected
:= True;
3764 -- If the context of the instance is subject to SPARK_Mode "off" or
3765 -- the annotation is altogether missing, set the global flag which
3766 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
3769 if SPARK_Mode
/= On
then
3770 Ignore_Pragma_SPARK_Mode
:= True;
3773 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
3774 Gen_Spec
:= Specification
(Gen_Decl
);
3776 -- Initialize renamings map, for error checking, and the list that
3777 -- holds private entities whose views have changed between generic
3778 -- definition and instantiation. If this is the instance created to
3779 -- validate an actual package, the instantiation environment is that
3780 -- of the enclosing instance.
3782 Create_Instantiation_Source
(N
, Gen_Unit
, False, S_Adjustment
);
3784 -- Copy original generic tree, to produce text for instantiation
3788 (Original_Node
(Gen_Decl
), Empty
, Instantiating
=> True);
3790 Act_Spec
:= Specification
(Act_Tree
);
3792 -- If this is the instance created to validate an actual package,
3793 -- only the formals matter, do not examine the package spec itself.
3795 if Is_Actual_Pack
then
3796 Set_Visible_Declarations
(Act_Spec
, New_List
);
3797 Set_Private_Declarations
(Act_Spec
, New_List
);
3801 Analyze_Associations
3803 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
3804 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
3806 Vis_Prims_List
:= Check_Hidden_Primitives
(Renaming_List
);
3808 Set_Instance_Env
(Gen_Unit
, Act_Decl_Id
);
3809 Set_Defining_Unit_Name
(Act_Spec
, Act_Decl_Name
);
3810 Set_Is_Generic_Instance
(Act_Decl_Id
);
3811 Set_Generic_Parent
(Act_Spec
, Gen_Unit
);
3813 -- References to the generic in its own declaration or its body are
3814 -- references to the instance. Add a renaming declaration for the
3815 -- generic unit itself. This declaration, as well as the renaming
3816 -- declarations for the generic formals, must remain private to the
3817 -- unit: the formals, because this is the language semantics, and
3818 -- the unit because its use is an artifact of the implementation.
3821 Make_Package_Renaming_Declaration
(Loc
,
3822 Defining_Unit_Name
=>
3823 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)),
3824 Name
=> New_Occurrence_Of
(Act_Decl_Id
, Loc
));
3826 Append
(Unit_Renaming
, Renaming_List
);
3828 -- The renaming declarations are the first local declarations of the
3831 if Is_Non_Empty_List
(Visible_Declarations
(Act_Spec
)) then
3833 (First
(Visible_Declarations
(Act_Spec
)), Renaming_List
);
3835 Set_Visible_Declarations
(Act_Spec
, Renaming_List
);
3838 Act_Decl
:= Make_Package_Declaration
(Loc
, Specification
=> Act_Spec
);
3840 -- Propagate the aspect specifications from the package declaration
3841 -- template to the instantiated version of the package declaration.
3843 if Has_Aspects
(Act_Tree
) then
3844 Set_Aspect_Specifications
(Act_Decl
,
3845 New_Copy_List_Tree
(Aspect_Specifications
(Act_Tree
)));
3848 -- The generic may have a generated Default_Storage_Pool aspect,
3849 -- set at the point of generic declaration. If the instance has
3850 -- that aspect, it overrides the one inherited from the generic.
3852 if Has_Aspects
(Gen_Spec
) then
3853 if No
(Aspect_Specifications
(N
)) then
3854 Set_Aspect_Specifications
(N
,
3856 (Aspect_Specifications
(Gen_Spec
))));
3860 ASN1
, ASN2
: Node_Id
;
3863 ASN1
:= First
(Aspect_Specifications
(N
));
3864 while Present
(ASN1
) loop
3865 if Chars
(Identifier
(ASN1
)) = Name_Default_Storage_Pool
3867 -- If generic carries a default storage pool, remove
3868 -- it in favor of the instance one.
3870 ASN2
:= First
(Aspect_Specifications
(Gen_Spec
));
3871 while Present
(ASN2
) loop
3872 if Chars
(Identifier
(ASN2
)) =
3873 Name_Default_Storage_Pool
3886 Prepend_List_To
(Aspect_Specifications
(N
),
3888 (Aspect_Specifications
(Gen_Spec
))));
3893 -- Save the instantiation node, for subsequent instantiation of the
3894 -- body, if there is one and we are generating code for the current
3895 -- unit. Mark unit as having a body (avoids premature error message).
3897 -- We instantiate the body if we are generating code, if we are
3898 -- generating cross-reference information, or if we are building
3899 -- trees for ASIS use or GNATprove use.
3902 Enclosing_Body_Present
: Boolean := False;
3903 -- If the generic unit is not a compilation unit, then a body may
3904 -- be present in its parent even if none is required. We create a
3905 -- tentative pending instantiation for the body, which will be
3906 -- discarded if none is actually present.
3911 if Scope
(Gen_Unit
) /= Standard_Standard
3912 and then not Is_Child_Unit
(Gen_Unit
)
3914 Scop
:= Scope
(Gen_Unit
);
3915 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
3916 if Unit_Requires_Body
(Scop
) then
3917 Enclosing_Body_Present
:= True;
3920 elsif In_Open_Scopes
(Scop
)
3921 and then In_Package_Body
(Scop
)
3923 Enclosing_Body_Present
:= True;
3927 exit when Is_Compilation_Unit
(Scop
);
3928 Scop
:= Scope
(Scop
);
3932 -- If front-end inlining is enabled or there are any subprograms
3933 -- marked with Inline_Always, and this is a unit for which code
3934 -- will be generated, we instantiate the body at once.
3936 -- This is done if the instance is not the main unit, and if the
3937 -- generic is not a child unit of another generic, to avoid scope
3938 -- problems and the reinstallation of parent instances.
3941 and then (not Is_Child_Unit
(Gen_Unit
)
3942 or else not Is_Generic_Unit
(Scope
(Gen_Unit
)))
3943 and then Might_Inline_Subp
3944 and then not Is_Actual_Pack
3946 if not Back_End_Inlining
3947 and then (Front_End_Inlining
or else Has_Inline_Always
)
3948 and then (Is_In_Main_Unit
(N
)
3949 or else In_Main_Context
(Current_Scope
))
3950 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3954 -- In configurable_run_time mode we force the inlining of
3955 -- predefined subprograms marked Inline_Always, to minimize
3956 -- the use of the run-time library.
3958 elsif Is_Predefined_File_Name
3959 (Unit_File_Name
(Get_Source_Unit
(Gen_Decl
)))
3960 and then Configurable_Run_Time_Mode
3961 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3966 -- If the current scope is itself an instance within a child
3967 -- unit, there will be duplications in the scope stack, and the
3968 -- unstacking mechanism in Inline_Instance_Body will fail.
3969 -- This loses some rare cases of optimization, and might be
3970 -- improved some day, if we can find a proper abstraction for
3971 -- "the complete compilation context" that can be saved and
3974 if Is_Generic_Instance
(Current_Scope
) then
3976 Curr_Unit
: constant Entity_Id
:=
3977 Cunit_Entity
(Current_Sem_Unit
);
3979 if Curr_Unit
/= Current_Scope
3980 and then Is_Child_Unit
(Curr_Unit
)
3982 Inline_Now
:= False;
3989 (Unit_Requires_Body
(Gen_Unit
)
3990 or else Enclosing_Body_Present
3991 or else Present
(Corresponding_Body
(Gen_Decl
)))
3992 and then (Is_In_Main_Unit
(N
) or else Might_Inline_Subp
)
3993 and then not Is_Actual_Pack
3994 and then not Inline_Now
3995 and then (Operating_Mode
= Generate_Code
3997 -- Need comment for this check ???
3999 or else (Operating_Mode
= Check_Semantics
4000 and then (ASIS_Mode
or GNATprove_Mode
)));
4002 -- If front-end inlining is enabled or there are any subprograms
4003 -- marked with Inline_Always, do not instantiate body when within
4004 -- a generic context.
4006 if ((Front_End_Inlining
or else Has_Inline_Always
)
4007 and then not Expander_Active
)
4008 or else Is_Generic_Unit
(Cunit_Entity
(Main_Unit
))
4010 Needs_Body
:= False;
4013 -- If the current context is generic, and the package being
4014 -- instantiated is declared within a formal package, there is no
4015 -- body to instantiate until the enclosing generic is instantiated
4016 -- and there is an actual for the formal package. If the formal
4017 -- package has parameters, we build a regular package instance for
4018 -- it, that precedes the original formal package declaration.
4020 if In_Open_Scopes
(Scope
(Scope
(Gen_Unit
))) then
4022 Decl
: constant Node_Id
:=
4024 (Unit_Declaration_Node
(Scope
(Gen_Unit
)));
4026 if Nkind
(Decl
) = N_Formal_Package_Declaration
4027 or else (Nkind
(Decl
) = N_Package_Declaration
4028 and then Is_List_Member
(Decl
)
4029 and then Present
(Next
(Decl
))
4031 Nkind
(Next
(Decl
)) =
4032 N_Formal_Package_Declaration
)
4034 Needs_Body
:= False;
4040 -- For RCI unit calling stubs, we omit the instance body if the
4041 -- instance is the RCI library unit itself.
4043 -- However there is a special case for nested instances: in this case
4044 -- we do generate the instance body, as it might be required, e.g.
4045 -- because it provides stream attributes for some type used in the
4046 -- profile of a remote subprogram. This is consistent with 12.3(12),
4047 -- which indicates that the instance body occurs at the place of the
4048 -- instantiation, and thus is part of the RCI declaration, which is
4049 -- present on all client partitions (this is E.2.3(18)).
4051 -- Note that AI12-0002 may make it illegal at some point to have
4052 -- stream attributes defined in an RCI unit, in which case this
4053 -- special case will become unnecessary. In the meantime, there
4054 -- is known application code in production that depends on this
4055 -- being possible, so we definitely cannot eliminate the body in
4056 -- the case of nested instances for the time being.
4058 -- When we generate a nested instance body, calling stubs for any
4059 -- relevant subprogram will be be inserted immediately after the
4060 -- subprogram declarations, and will take precedence over the
4061 -- subsequent (original) body. (The stub and original body will be
4062 -- complete homographs, but this is permitted in an instance).
4063 -- (Could we do better and remove the original body???)
4065 if Distribution_Stub_Mode
= Generate_Caller_Stub_Body
4066 and then Comes_From_Source
(N
)
4067 and then Nkind
(Parent
(N
)) = N_Compilation_Unit
4069 Needs_Body
:= False;
4074 -- Here is a defence against a ludicrous number of instantiations
4075 -- caused by a circular set of instantiation attempts.
4077 if Pending_Instantiations
.Last
> Maximum_Instantiations
then
4078 Error_Msg_Uint_1
:= UI_From_Int
(Maximum_Instantiations
);
4079 Error_Msg_N
("too many instantiations, exceeds max of^", N
);
4080 Error_Msg_N
("\limit can be changed using -gnateinn switch", N
);
4081 raise Unrecoverable_Error
;
4084 -- Indicate that the enclosing scopes contain an instantiation,
4085 -- and that cleanup actions should be delayed until after the
4086 -- instance body is expanded.
4088 Check_Forward_Instantiation
(Gen_Decl
);
4089 if Nkind
(N
) = N_Package_Instantiation
then
4091 Enclosing_Master
: Entity_Id
;
4094 -- Loop to search enclosing masters
4096 Enclosing_Master
:= Current_Scope
;
4097 Scope_Loop
: while Enclosing_Master
/= Standard_Standard
loop
4098 if Ekind
(Enclosing_Master
) = E_Package
then
4099 if Is_Compilation_Unit
(Enclosing_Master
) then
4100 if In_Package_Body
(Enclosing_Master
) then
4102 (Body_Entity
(Enclosing_Master
));
4111 Enclosing_Master
:= Scope
(Enclosing_Master
);
4114 elsif Is_Generic_Unit
(Enclosing_Master
)
4115 or else Ekind
(Enclosing_Master
) = E_Void
4117 -- Cleanup actions will eventually be performed on the
4118 -- enclosing subprogram or package instance, if any.
4119 -- Enclosing scope is void in the formal part of a
4120 -- generic subprogram.
4125 if Ekind
(Enclosing_Master
) = E_Entry
4127 Ekind
(Scope
(Enclosing_Master
)) = E_Protected_Type
4129 if not Expander_Active
then
4133 Protected_Body_Subprogram
(Enclosing_Master
);
4137 Set_Delay_Cleanups
(Enclosing_Master
);
4139 while Ekind
(Enclosing_Master
) = E_Block
loop
4140 Enclosing_Master
:= Scope
(Enclosing_Master
);
4143 if Is_Subprogram
(Enclosing_Master
) then
4144 Delay_Descriptors
(Enclosing_Master
);
4146 elsif Is_Task_Type
(Enclosing_Master
) then
4148 TBP
: constant Node_Id
:=
4149 Get_Task_Body_Procedure
4152 if Present
(TBP
) then
4153 Delay_Descriptors
(TBP
);
4154 Set_Delay_Cleanups
(TBP
);
4161 end loop Scope_Loop
;
4164 -- Make entry in table
4166 Add_Pending_Instantiation
(N
, Act_Decl
);
4170 Set_Categorization_From_Pragmas
(Act_Decl
);
4172 if Parent_Installed
then
4176 Set_Instance_Spec
(N
, Act_Decl
);
4178 -- If not a compilation unit, insert the package declaration before
4179 -- the original instantiation node.
4181 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4182 Mark_Rewrite_Insertion
(Act_Decl
);
4183 Insert_Before
(N
, Act_Decl
);
4185 if Has_Aspects
(N
) then
4186 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4188 -- The pragma created for a Default_Storage_Pool aspect must
4189 -- appear ahead of the declarations in the instance spec.
4190 -- Analysis has placed it after the instance node, so remove
4191 -- it and reinsert it properly now.
4194 ASN
: constant Node_Id
:= First
(Aspect_Specifications
(N
));
4195 A_Name
: constant Name_Id
:= Chars
(Identifier
(ASN
));
4199 if A_Name
= Name_Default_Storage_Pool
then
4200 if No
(Visible_Declarations
(Act_Spec
)) then
4201 Set_Visible_Declarations
(Act_Spec
, New_List
);
4205 while Present
(Decl
) loop
4206 if Nkind
(Decl
) = N_Pragma
then
4208 Prepend
(Decl
, Visible_Declarations
(Act_Spec
));
4220 -- For an instantiation that is a compilation unit, place
4221 -- declaration on current node so context is complete for analysis
4222 -- (including nested instantiations). If this is the main unit,
4223 -- the declaration eventually replaces the instantiation node.
4224 -- If the instance body is created later, it replaces the
4225 -- instance node, and the declaration is attached to it
4226 -- (see Build_Instance_Compilation_Unit_Nodes).
4229 if Cunit_Entity
(Current_Sem_Unit
) = Defining_Entity
(N
) then
4231 -- The entity for the current unit is the newly created one,
4232 -- and all semantic information is attached to it.
4234 Set_Cunit_Entity
(Current_Sem_Unit
, Act_Decl_Id
);
4236 -- If this is the main unit, replace the main entity as well
4238 if Current_Sem_Unit
= Main_Unit
then
4239 Main_Unit_Entity
:= Act_Decl_Id
;
4243 Set_Unit
(Parent
(N
), Act_Decl
);
4244 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(N
));
4245 Set_Package_Instantiation
(Act_Decl_Id
, N
);
4247 -- Process aspect specifications of the instance node, if any, to
4248 -- take into account categorization pragmas before analyzing the
4251 if Has_Aspects
(N
) then
4252 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4256 Set_Unit
(Parent
(N
), N
);
4257 Set_Body_Required
(Parent
(N
), False);
4259 -- We never need elaboration checks on instantiations, since by
4260 -- definition, the body instantiation is elaborated at the same
4261 -- time as the spec instantiation.
4263 Set_Suppress_Elaboration_Warnings
(Act_Decl_Id
);
4264 Set_Kill_Elaboration_Checks
(Act_Decl_Id
);
4267 Check_Elab_Instantiation
(N
);
4269 if ABE_Is_Certain
(N
) and then Needs_Body
then
4270 Pending_Instantiations
.Decrement_Last
;
4273 Check_Hidden_Child_Unit
(N
, Gen_Unit
, Act_Decl_Id
);
4275 Set_First_Private_Entity
(Defining_Unit_Name
(Unit_Renaming
),
4276 First_Private_Entity
(Act_Decl_Id
));
4278 -- If the instantiation will receive a body, the unit will be
4279 -- transformed into a package body, and receive its own elaboration
4280 -- entity. Otherwise, the nature of the unit is now a package
4283 if Nkind
(Parent
(N
)) = N_Compilation_Unit
4284 and then not Needs_Body
4286 Rewrite
(N
, Act_Decl
);
4289 if Present
(Corresponding_Body
(Gen_Decl
))
4290 or else Unit_Requires_Body
(Gen_Unit
)
4292 Set_Has_Completion
(Act_Decl_Id
);
4295 Check_Formal_Packages
(Act_Decl_Id
);
4297 Restore_Hidden_Primitives
(Vis_Prims_List
);
4298 Restore_Private_Views
(Act_Decl_Id
);
4300 Inherit_Context
(Gen_Decl
, N
);
4302 if Parent_Installed
then
4307 Env_Installed
:= False;
4310 Validate_Categorization_Dependency
(N
, Act_Decl_Id
);
4312 -- There used to be a check here to prevent instantiations in local
4313 -- contexts if the No_Local_Allocators restriction was active. This
4314 -- check was removed by a binding interpretation in AI-95-00130/07,
4315 -- but we retain the code for documentation purposes.
4317 -- if Ekind (Act_Decl_Id) /= E_Void
4318 -- and then not Is_Library_Level_Entity (Act_Decl_Id)
4320 -- Check_Restriction (No_Local_Allocators, N);
4324 Inline_Instance_Body
(N
, Gen_Unit
, Act_Decl
);
4327 -- The following is a tree patch for ASIS: ASIS needs separate nodes to
4328 -- be used as defining identifiers for a formal package and for the
4329 -- corresponding expanded package.
4331 if Nkind
(N
) = N_Formal_Package_Declaration
then
4332 Act_Decl_Id
:= New_Copy
(Defining_Entity
(N
));
4333 Set_Comes_From_Source
(Act_Decl_Id
, True);
4334 Set_Is_Generic_Instance
(Act_Decl_Id
, False);
4335 Set_Defining_Identifier
(N
, Act_Decl_Id
);
4338 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
4339 SPARK_Mode
:= Save_SM
;
4340 SPARK_Mode_Pragma
:= Save_SMP
;
4341 Style_Check
:= Save_Style_Check
;
4343 if SPARK_Mode
= On
then
4344 Dynamic_Elaboration_Checks
:= False;
4347 -- Check that if N is an instantiation of System.Dim_Float_IO or
4348 -- System.Dim_Integer_IO, the formal type has a dimension system.
4350 if Nkind
(N
) = N_Package_Instantiation
4351 and then Is_Dim_IO_Package_Instantiation
(N
)
4354 Assoc
: constant Node_Id
:= First
(Generic_Associations
(N
));
4356 if not Has_Dimension_System
4357 (Etype
(Explicit_Generic_Actual_Parameter
(Assoc
)))
4359 Error_Msg_N
("type with a dimension system expected", Assoc
);
4365 if Has_Aspects
(N
) and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4366 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4370 when Instantiation_Error
=>
4371 if Parent_Installed
then
4375 if Env_Installed
then
4379 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
4380 SPARK_Mode
:= Save_SM
;
4381 SPARK_Mode_Pragma
:= Save_SMP
;
4382 Style_Check
:= Save_Style_Check
;
4384 if SPARK_Mode
= On
then
4385 Dynamic_Elaboration_Checks
:= False;
4387 end Analyze_Package_Instantiation
;
4389 --------------------------
4390 -- Inline_Instance_Body --
4391 --------------------------
4393 procedure Inline_Instance_Body
4395 Gen_Unit
: Entity_Id
;
4398 Curr_Comp
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
4399 Curr_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
4400 Gen_Comp
: constant Entity_Id
:=
4401 Cunit_Entity
(Get_Source_Unit
(Gen_Unit
));
4403 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
4404 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
4405 -- Save all SPARK_Mode-related attributes as removing enclosing scopes
4406 -- to provide a clean environment for analysis of the inlined body will
4407 -- eliminate any previously set SPARK_Mode.
4409 Scope_Stack_Depth
: constant Pos
:=
4410 Scope_Stack
.Last
- Scope_Stack
.First
+ 1;
4412 Use_Clauses
: array (1 .. Scope_Stack_Depth
) of Node_Id
;
4413 Instances
: array (1 .. Scope_Stack_Depth
) of Entity_Id
;
4414 Inner_Scopes
: array (1 .. Scope_Stack_Depth
) of Entity_Id
;
4415 Curr_Scope
: Entity_Id
:= Empty
;
4417 Num_Inner
: Nat
:= 0;
4418 Num_Scopes
: Nat
:= 0;
4419 N_Instances
: Nat
:= 0;
4420 Removed
: Boolean := False;
4425 -- Case of generic unit defined in another unit. We must remove the
4426 -- complete context of the current unit to install that of the generic.
4428 if Gen_Comp
/= Cunit_Entity
(Current_Sem_Unit
) then
4430 -- Add some comments for the following two loops ???
4433 while Present
(S
) and then S
/= Standard_Standard
loop
4435 Num_Scopes
:= Num_Scopes
+ 1;
4437 Use_Clauses
(Num_Scopes
) :=
4439 (Scope_Stack
.Last
- Num_Scopes
+ 1).
4441 End_Use_Clauses
(Use_Clauses
(Num_Scopes
));
4443 exit when Scope_Stack
.Last
- Num_Scopes
+ 1 = Scope_Stack
.First
4444 or else Scope_Stack
.Table
4445 (Scope_Stack
.Last
- Num_Scopes
).Entity
= Scope
(S
);
4448 exit when Is_Generic_Instance
(S
)
4449 and then (In_Package_Body
(S
)
4450 or else Ekind
(S
) = E_Procedure
4451 or else Ekind
(S
) = E_Function
);
4455 Vis
:= Is_Immediately_Visible
(Gen_Comp
);
4457 -- Find and save all enclosing instances
4462 and then S
/= Standard_Standard
4464 if Is_Generic_Instance
(S
) then
4465 N_Instances
:= N_Instances
+ 1;
4466 Instances
(N_Instances
) := S
;
4468 exit when In_Package_Body
(S
);
4474 -- Remove context of current compilation unit, unless we are within a
4475 -- nested package instantiation, in which case the context has been
4476 -- removed previously.
4478 -- If current scope is the body of a child unit, remove context of
4479 -- spec as well. If an enclosing scope is an instance body, the
4480 -- context has already been removed, but the entities in the body
4481 -- must be made invisible as well.
4484 while Present
(S
) and then S
/= Standard_Standard
loop
4485 if Is_Generic_Instance
(S
)
4486 and then (In_Package_Body
(S
)
4487 or else Ekind_In
(S
, E_Procedure
, E_Function
))
4489 -- We still have to remove the entities of the enclosing
4490 -- instance from direct visibility.
4495 E
:= First_Entity
(S
);
4496 while Present
(E
) loop
4497 Set_Is_Immediately_Visible
(E
, False);
4506 or else (Ekind
(Curr_Unit
) = E_Package_Body
4507 and then S
= Spec_Entity
(Curr_Unit
))
4508 or else (Ekind
(Curr_Unit
) = E_Subprogram_Body
4509 and then S
= Corresponding_Spec
4510 (Unit_Declaration_Node
(Curr_Unit
)))
4514 -- Remove entities in current scopes from visibility, so that
4515 -- instance body is compiled in a clean environment.
4517 List
:= Save_Scope_Stack
(Handle_Use
=> False);
4519 if Is_Child_Unit
(S
) then
4521 -- Remove child unit from stack, as well as inner scopes.
4522 -- Removing the context of a child unit removes parent units
4525 while Current_Scope
/= S
loop
4526 Num_Inner
:= Num_Inner
+ 1;
4527 Inner_Scopes
(Num_Inner
) := Current_Scope
;
4532 Remove_Context
(Curr_Comp
);
4536 Remove_Context
(Curr_Comp
);
4539 if Ekind
(Curr_Unit
) = E_Package_Body
then
4540 Remove_Context
(Library_Unit
(Curr_Comp
));
4547 pragma Assert
(Num_Inner
< Num_Scopes
);
4549 -- The inlined package body must be analyzed with the SPARK_Mode of
4550 -- the enclosing context, otherwise the body may cause bogus errors
4551 -- if a configuration SPARK_Mode pragma in in effect.
4553 Push_Scope
(Standard_Standard
);
4554 Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Active_Stack_Base
:= True;
4555 Instantiate_Package_Body
4558 Act_Decl
=> Act_Decl
,
4559 Expander_Status
=> Expander_Active
,
4560 Current_Sem_Unit
=> Current_Sem_Unit
,
4561 Scope_Suppress
=> Scope_Suppress
,
4562 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4563 Version
=> Ada_Version
,
4564 Version_Pragma
=> Ada_Version_Pragma
,
4565 Warnings
=> Save_Warnings
,
4566 SPARK_Mode
=> Save_SM
,
4567 SPARK_Mode_Pragma
=> Save_SMP
)),
4568 Inlined_Body
=> True);
4574 Set_Is_Immediately_Visible
(Gen_Comp
, Vis
);
4576 -- Reset Generic_Instance flag so that use clauses can be installed
4577 -- in the proper order. (See Use_One_Package for effect of enclosing
4578 -- instances on processing of use clauses).
4580 for J
in 1 .. N_Instances
loop
4581 Set_Is_Generic_Instance
(Instances
(J
), False);
4585 Install_Context
(Curr_Comp
);
4587 if Present
(Curr_Scope
)
4588 and then Is_Child_Unit
(Curr_Scope
)
4590 Push_Scope
(Curr_Scope
);
4591 Set_Is_Immediately_Visible
(Curr_Scope
);
4593 -- Finally, restore inner scopes as well
4595 for J
in reverse 1 .. Num_Inner
loop
4596 Push_Scope
(Inner_Scopes
(J
));
4600 Restore_Scope_Stack
(List
, Handle_Use
=> False);
4602 if Present
(Curr_Scope
)
4604 (In_Private_Part
(Curr_Scope
)
4605 or else In_Package_Body
(Curr_Scope
))
4607 -- Install private declaration of ancestor units, which are
4608 -- currently available. Restore_Scope_Stack and Install_Context
4609 -- only install the visible part of parents.
4614 Par
:= Scope
(Curr_Scope
);
4615 while (Present
(Par
)) and then Par
/= Standard_Standard
loop
4616 Install_Private_Declarations
(Par
);
4623 -- Restore use clauses. For a child unit, use clauses in the parents
4624 -- are restored when installing the context, so only those in inner
4625 -- scopes (and those local to the child unit itself) need to be
4626 -- installed explicitly.
4628 if Is_Child_Unit
(Curr_Unit
) and then Removed
then
4629 for J
in reverse 1 .. Num_Inner
+ 1 loop
4630 Scope_Stack
.Table
(Scope_Stack
.Last
- J
+ 1).First_Use_Clause
:=
4632 Install_Use_Clauses
(Use_Clauses
(J
));
4636 for J
in reverse 1 .. Num_Scopes
loop
4637 Scope_Stack
.Table
(Scope_Stack
.Last
- J
+ 1).First_Use_Clause
:=
4639 Install_Use_Clauses
(Use_Clauses
(J
));
4643 -- Restore status of instances. If one of them is a body, make its
4644 -- local entities visible again.
4651 for J
in 1 .. N_Instances
loop
4652 Inst
:= Instances
(J
);
4653 Set_Is_Generic_Instance
(Inst
, True);
4655 if In_Package_Body
(Inst
)
4656 or else Ekind_In
(S
, E_Procedure
, E_Function
)
4658 E
:= First_Entity
(Instances
(J
));
4659 while Present
(E
) loop
4660 Set_Is_Immediately_Visible
(E
);
4667 -- If generic unit is in current unit, current context is correct. Note
4668 -- that the context is guaranteed to carry the correct SPARK_Mode as no
4669 -- enclosing scopes were removed.
4672 Instantiate_Package_Body
4675 Act_Decl
=> Act_Decl
,
4676 Expander_Status
=> Expander_Active
,
4677 Current_Sem_Unit
=> Current_Sem_Unit
,
4678 Scope_Suppress
=> Scope_Suppress
,
4679 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4680 Version
=> Ada_Version
,
4681 Version_Pragma
=> Ada_Version_Pragma
,
4682 Warnings
=> Save_Warnings
,
4683 SPARK_Mode
=> SPARK_Mode
,
4684 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
)),
4685 Inlined_Body
=> True);
4687 end Inline_Instance_Body
;
4689 -------------------------------------
4690 -- Analyze_Procedure_Instantiation --
4691 -------------------------------------
4693 procedure Analyze_Procedure_Instantiation
(N
: Node_Id
) is
4695 Analyze_Subprogram_Instantiation
(N
, E_Procedure
);
4696 end Analyze_Procedure_Instantiation
;
4698 -----------------------------------
4699 -- Need_Subprogram_Instance_Body --
4700 -----------------------------------
4702 function Need_Subprogram_Instance_Body
4704 Subp
: Entity_Id
) return Boolean
4707 function Is_Inlined_Or_Child_Of_Inlined
(E
: Entity_Id
) return Boolean;
4708 -- Return True if E is an inlined subprogram, an inlined renaming or a
4709 -- subprogram nested in an inlined subprogram. The inlining machinery
4710 -- totally disregards nested subprograms since it considers that they
4711 -- will always be compiled if the parent is (see Inline.Is_Nested).
4713 ------------------------------------
4714 -- Is_Inlined_Or_Child_Of_Inlined --
4715 ------------------------------------
4717 function Is_Inlined_Or_Child_Of_Inlined
(E
: Entity_Id
) return Boolean is
4721 if Is_Inlined
(E
) or else Is_Inlined
(Alias
(E
)) then
4726 while Scop
/= Standard_Standard
loop
4727 if Ekind
(Scop
) in Subprogram_Kind
and then Is_Inlined
(Scop
) then
4731 Scop
:= Scope
(Scop
);
4735 end Is_Inlined_Or_Child_Of_Inlined
;
4738 -- Must be in the main unit or inlined (or child of inlined)
4740 if (Is_In_Main_Unit
(N
) or else Is_Inlined_Or_Child_Of_Inlined
(Subp
))
4742 -- Must be generating code or analyzing code in ASIS/GNATprove mode
4744 and then (Operating_Mode
= Generate_Code
4745 or else (Operating_Mode
= Check_Semantics
4746 and then (ASIS_Mode
or GNATprove_Mode
)))
4748 -- The body is needed when generating code (full expansion), in ASIS
4749 -- mode for other tools, and in GNATprove mode (special expansion) for
4750 -- formal verification of the body itself.
4752 and then (Expander_Active
or ASIS_Mode
or GNATprove_Mode
)
4754 -- No point in inlining if ABE is inevitable
4756 and then not ABE_Is_Certain
(N
)
4758 -- Or if subprogram is eliminated
4760 and then not Is_Eliminated
(Subp
)
4762 Add_Pending_Instantiation
(N
, Unit_Declaration_Node
(Subp
));
4765 -- Here if not inlined, or we ignore the inlining
4770 end Need_Subprogram_Instance_Body
;
4772 --------------------------------------
4773 -- Analyze_Subprogram_Instantiation --
4774 --------------------------------------
4776 procedure Analyze_Subprogram_Instantiation
4780 Loc
: constant Source_Ptr
:= Sloc
(N
);
4781 Gen_Id
: constant Node_Id
:= Name
(N
);
4783 Anon_Id
: constant Entity_Id
:=
4784 Make_Defining_Identifier
(Sloc
(Defining_Entity
(N
)),
4785 Chars
=> New_External_Name
4786 (Chars
(Defining_Entity
(N
)), 'R'));
4788 Act_Decl_Id
: Entity_Id
;
4793 Env_Installed
: Boolean := False;
4794 Gen_Unit
: Entity_Id
;
4796 Pack_Id
: Entity_Id
;
4797 Parent_Installed
: Boolean := False;
4799 Renaming_List
: List_Id
;
4800 -- The list of declarations that link formals and actuals of the
4801 -- instance. These are subtype declarations for formal types, and
4802 -- renaming declarations for other formals. The subprogram declaration
4803 -- for the instance is then appended to the list, and the last item on
4804 -- the list is the renaming declaration for the instance.
4806 procedure Analyze_Instance_And_Renamings
;
4807 -- The instance must be analyzed in a context that includes the mappings
4808 -- of generic parameters into actuals. We create a package declaration
4809 -- for this purpose, and a subprogram with an internal name within the
4810 -- package. The subprogram instance is simply an alias for the internal
4811 -- subprogram, declared in the current scope.
4813 procedure Build_Subprogram_Renaming
;
4814 -- If the subprogram is recursive, there are occurrences of the name of
4815 -- the generic within the body, which must resolve to the current
4816 -- instance. We add a renaming declaration after the declaration, which
4817 -- is available in the instance body, as well as in the analysis of
4818 -- aspects that appear in the generic. This renaming declaration is
4819 -- inserted after the instance declaration which it renames.
4821 ------------------------------------
4822 -- Analyze_Instance_And_Renamings --
4823 ------------------------------------
4825 procedure Analyze_Instance_And_Renamings
is
4826 Def_Ent
: constant Entity_Id
:= Defining_Entity
(N
);
4827 Pack_Decl
: Node_Id
;
4830 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4832 -- For the case of a compilation unit, the container package has
4833 -- the same name as the instantiation, to insure that the binder
4834 -- calls the elaboration procedure with the right name. Copy the
4835 -- entity of the instance, which may have compilation level flags
4836 -- (e.g. Is_Child_Unit) set.
4838 Pack_Id
:= New_Copy
(Def_Ent
);
4841 -- Otherwise we use the name of the instantiation concatenated
4842 -- with its source position to ensure uniqueness if there are
4843 -- several instantiations with the same name.
4846 Make_Defining_Identifier
(Loc
,
4847 Chars
=> New_External_Name
4848 (Related_Id
=> Chars
(Def_Ent
),
4850 Suffix_Index
=> Source_Offset
(Sloc
(Def_Ent
))));
4854 Make_Package_Declaration
(Loc
,
4855 Specification
=> Make_Package_Specification
(Loc
,
4856 Defining_Unit_Name
=> Pack_Id
,
4857 Visible_Declarations
=> Renaming_List
,
4858 End_Label
=> Empty
));
4860 Set_Instance_Spec
(N
, Pack_Decl
);
4861 Set_Is_Generic_Instance
(Pack_Id
);
4862 Set_Debug_Info_Needed
(Pack_Id
);
4864 -- Case of not a compilation unit
4866 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4867 Mark_Rewrite_Insertion
(Pack_Decl
);
4868 Insert_Before
(N
, Pack_Decl
);
4869 Set_Has_Completion
(Pack_Id
);
4871 -- Case of an instantiation that is a compilation unit
4873 -- Place declaration on current node so context is complete for
4874 -- analysis (including nested instantiations), and for use in a
4875 -- context_clause (see Analyze_With_Clause).
4878 Set_Unit
(Parent
(N
), Pack_Decl
);
4879 Set_Parent_Spec
(Pack_Decl
, Parent_Spec
(N
));
4882 Analyze
(Pack_Decl
);
4883 Check_Formal_Packages
(Pack_Id
);
4884 Set_Is_Generic_Instance
(Pack_Id
, False);
4886 -- Why do we clear Is_Generic_Instance??? We set it 20 lines
4889 -- Body of the enclosing package is supplied when instantiating the
4890 -- subprogram body, after semantic analysis is completed.
4892 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4894 -- Remove package itself from visibility, so it does not
4895 -- conflict with subprogram.
4897 Set_Name_Entity_Id
(Chars
(Pack_Id
), Homonym
(Pack_Id
));
4899 -- Set name and scope of internal subprogram so that the proper
4900 -- external name will be generated. The proper scope is the scope
4901 -- of the wrapper package. We need to generate debugging info for
4902 -- the internal subprogram, so set flag accordingly.
4904 Set_Chars
(Anon_Id
, Chars
(Defining_Entity
(N
)));
4905 Set_Scope
(Anon_Id
, Scope
(Pack_Id
));
4907 -- Mark wrapper package as referenced, to avoid spurious warnings
4908 -- if the instantiation appears in various with_ clauses of
4909 -- subunits of the main unit.
4911 Set_Referenced
(Pack_Id
);
4914 Set_Is_Generic_Instance
(Anon_Id
);
4915 Set_Debug_Info_Needed
(Anon_Id
);
4916 Act_Decl_Id
:= New_Copy
(Anon_Id
);
4918 Set_Parent
(Act_Decl_Id
, Parent
(Anon_Id
));
4919 Set_Chars
(Act_Decl_Id
, Chars
(Defining_Entity
(N
)));
4920 Set_Sloc
(Act_Decl_Id
, Sloc
(Defining_Entity
(N
)));
4922 -- Subprogram instance comes from source only if generic does
4924 Set_Comes_From_Source
(Act_Decl_Id
, Comes_From_Source
(Gen_Unit
));
4926 -- If the instance is a child unit, mark the Id accordingly. Mark
4927 -- the anonymous entity as well, which is the real subprogram and
4928 -- which is used when the instance appears in a context clause.
4929 -- Similarly, propagate the Is_Eliminated flag to handle properly
4930 -- nested eliminated subprograms.
4932 Set_Is_Child_Unit
(Act_Decl_Id
, Is_Child_Unit
(Defining_Entity
(N
)));
4933 Set_Is_Child_Unit
(Anon_Id
, Is_Child_Unit
(Defining_Entity
(N
)));
4934 New_Overloaded_Entity
(Act_Decl_Id
);
4935 Check_Eliminated
(Act_Decl_Id
);
4936 Set_Is_Eliminated
(Anon_Id
, Is_Eliminated
(Act_Decl_Id
));
4938 -- In compilation unit case, kill elaboration checks on the
4939 -- instantiation, since they are never needed -- the body is
4940 -- instantiated at the same point as the spec.
4942 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4943 Set_Suppress_Elaboration_Warnings
(Act_Decl_Id
);
4944 Set_Kill_Elaboration_Checks
(Act_Decl_Id
);
4945 Set_Is_Compilation_Unit
(Anon_Id
);
4947 Set_Cunit_Entity
(Current_Sem_Unit
, Pack_Id
);
4950 -- The instance is not a freezing point for the new subprogram.
4951 -- The anonymous subprogram may have a freeze node, created for
4952 -- some delayed aspects. This freeze node must not be inherited
4953 -- by the visible subprogram entity.
4955 Set_Is_Frozen
(Act_Decl_Id
, False);
4956 Set_Freeze_Node
(Act_Decl_Id
, Empty
);
4958 if Nkind
(Defining_Entity
(N
)) = N_Defining_Operator_Symbol
then
4959 Valid_Operator_Definition
(Act_Decl_Id
);
4962 Set_Alias
(Act_Decl_Id
, Anon_Id
);
4963 Set_Parent
(Act_Decl_Id
, Parent
(Anon_Id
));
4964 Set_Has_Completion
(Act_Decl_Id
);
4965 Set_Related_Instance
(Pack_Id
, Act_Decl_Id
);
4967 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4968 Set_Body_Required
(Parent
(N
), False);
4970 end Analyze_Instance_And_Renamings
;
4972 -------------------------------
4973 -- Build_Subprogram_Renaming --
4974 -------------------------------
4976 procedure Build_Subprogram_Renaming
is
4977 Renaming_Decl
: Node_Id
;
4978 Unit_Renaming
: Node_Id
;
4982 Make_Subprogram_Renaming_Declaration
(Loc
,
4985 (Specification
(Original_Node
(Gen_Decl
)),
4987 Instantiating
=> True),
4988 Name
=> New_Occurrence_Of
(Anon_Id
, Loc
));
4990 -- The generic may be a a child unit. The renaming needs an
4991 -- identifier with the proper name.
4993 Set_Defining_Unit_Name
(Specification
(Unit_Renaming
),
4994 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)));
4996 -- If there is a formal subprogram with the same name as the unit
4997 -- itself, do not add this renaming declaration, to prevent
4998 -- ambiguities when there is a call with that name in the body.
4999 -- This is a partial and ugly fix for one ACATS test. ???
5001 Renaming_Decl
:= First
(Renaming_List
);
5002 while Present
(Renaming_Decl
) loop
5003 if Nkind
(Renaming_Decl
) = N_Subprogram_Renaming_Declaration
5005 Chars
(Defining_Entity
(Renaming_Decl
)) = Chars
(Gen_Unit
)
5010 Next
(Renaming_Decl
);
5013 if No
(Renaming_Decl
) then
5014 Append
(Unit_Renaming
, Renaming_List
);
5016 end Build_Subprogram_Renaming
;
5020 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
5021 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
5023 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
5024 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
5025 -- Save the SPARK_Mode-related data for restore on exit
5027 Vis_Prims_List
: Elist_Id
:= No_Elist
;
5028 -- List of primitives made temporarily visible in the instantiation
5029 -- to match the visibility of the formal type
5031 -- Start of processing for Analyze_Subprogram_Instantiation
5034 Check_SPARK_05_Restriction
("generic is not allowed", N
);
5036 -- Very first thing: check for special Text_IO unit in case we are
5037 -- instantiating one of the children of [[Wide_]Wide_]Text_IO. Of course
5038 -- such an instantiation is bogus (these are packages, not subprograms),
5039 -- but we get a better error message if we do this.
5041 Check_Text_IO_Special_Unit
(Gen_Id
);
5043 -- Make node global for error reporting
5045 Instantiation_Node
:= N
;
5047 -- For package instantiations we turn off style checks, because they
5048 -- will have been emitted in the generic. For subprogram instantiations
5049 -- we want to apply at least the check on overriding indicators so we
5050 -- do not modify the style check status.
5052 -- The renaming declarations for the actuals do not come from source and
5053 -- will not generate spurious warnings.
5055 Preanalyze_Actuals
(N
);
5058 Env_Installed
:= True;
5059 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
5060 Gen_Unit
:= Entity
(Gen_Id
);
5062 Generate_Reference
(Gen_Unit
, Gen_Id
);
5064 if Nkind
(Gen_Id
) = N_Identifier
5065 and then Chars
(Gen_Unit
) = Chars
(Defining_Entity
(N
))
5068 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
5071 if Etype
(Gen_Unit
) = Any_Type
then
5076 -- Verify that it is a generic subprogram of the right kind, and that
5077 -- it does not lead to a circular instantiation.
5079 if K
= E_Procedure
and then Ekind
(Gen_Unit
) /= E_Generic_Procedure
then
5081 ("& is not the name of a generic procedure", Gen_Id
, Gen_Unit
);
5083 elsif K
= E_Function
and then Ekind
(Gen_Unit
) /= E_Generic_Function
then
5085 ("& is not the name of a generic function", Gen_Id
, Gen_Unit
);
5087 elsif In_Open_Scopes
(Gen_Unit
) then
5088 Error_Msg_NE
("instantiation of & within itself", N
, Gen_Unit
);
5091 -- If the context of the instance is subject to SPARK_Mode "off" or
5092 -- the annotation is altogether missing, set the global flag which
5093 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
5096 if SPARK_Mode
/= On
then
5097 Ignore_Pragma_SPARK_Mode
:= True;
5100 Set_Entity
(Gen_Id
, Gen_Unit
);
5101 Set_Is_Instantiated
(Gen_Unit
);
5103 if In_Extended_Main_Source_Unit
(N
) then
5104 Generate_Reference
(Gen_Unit
, N
);
5107 -- If renaming, get original unit
5109 if Present
(Renamed_Object
(Gen_Unit
))
5110 and then Ekind_In
(Renamed_Object
(Gen_Unit
), E_Generic_Procedure
,
5113 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
5114 Set_Is_Instantiated
(Gen_Unit
);
5115 Generate_Reference
(Gen_Unit
, N
);
5118 if Contains_Instance_Of
(Gen_Unit
, Current_Scope
, Gen_Id
) then
5119 Error_Msg_Node_2
:= Current_Scope
;
5121 ("circular Instantiation: & instantiated in &!", N
, Gen_Unit
);
5122 Circularity_Detected
:= True;
5123 Restore_Hidden_Primitives
(Vis_Prims_List
);
5127 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
5129 -- Initialize renamings map, for error checking
5131 Generic_Renamings
.Set_Last
(0);
5132 Generic_Renamings_HTable
.Reset
;
5134 Create_Instantiation_Source
(N
, Gen_Unit
, False, S_Adjustment
);
5136 -- Copy original generic tree, to produce text for instantiation
5140 (Original_Node
(Gen_Decl
), Empty
, Instantiating
=> True);
5142 -- Inherit overriding indicator from instance node
5144 Act_Spec
:= Specification
(Act_Tree
);
5145 Set_Must_Override
(Act_Spec
, Must_Override
(N
));
5146 Set_Must_Not_Override
(Act_Spec
, Must_Not_Override
(N
));
5149 Analyze_Associations
5151 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
5152 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
5154 Vis_Prims_List
:= Check_Hidden_Primitives
(Renaming_List
);
5156 -- The subprogram itself cannot contain a nested instance, so the
5157 -- current parent is left empty.
5159 Set_Instance_Env
(Gen_Unit
, Empty
);
5161 -- Build the subprogram declaration, which does not appear in the
5162 -- generic template, and give it a sloc consistent with that of the
5165 Set_Defining_Unit_Name
(Act_Spec
, Anon_Id
);
5166 Set_Generic_Parent
(Act_Spec
, Gen_Unit
);
5168 Make_Subprogram_Declaration
(Sloc
(Act_Spec
),
5169 Specification
=> Act_Spec
);
5171 -- The aspects have been copied previously, but they have to be
5172 -- linked explicitly to the new subprogram declaration. Explicit
5173 -- pre/postconditions on the instance are analyzed below, in a
5176 Move_Aspects
(Act_Tree
, To
=> Act_Decl
);
5177 Set_Categorization_From_Pragmas
(Act_Decl
);
5179 if Parent_Installed
then
5183 Append
(Act_Decl
, Renaming_List
);
5185 -- Contract-related source pragmas that follow a generic subprogram
5186 -- must be instantiated explicitly because they are not part of the
5187 -- subprogram template.
5189 Instantiate_Subprogram_Contract
5190 (Original_Node
(Gen_Decl
), Renaming_List
);
5192 Build_Subprogram_Renaming
;
5193 Analyze_Instance_And_Renamings
;
5195 -- If the generic is marked Import (Intrinsic), then so is the
5196 -- instance. This indicates that there is no body to instantiate. If
5197 -- generic is marked inline, so it the instance, and the anonymous
5198 -- subprogram it renames. If inlined, or else if inlining is enabled
5199 -- for the compilation, we generate the instance body even if it is
5200 -- not within the main unit.
5202 if Is_Intrinsic_Subprogram
(Gen_Unit
) then
5203 Set_Is_Intrinsic_Subprogram
(Anon_Id
);
5204 Set_Is_Intrinsic_Subprogram
(Act_Decl_Id
);
5206 if Chars
(Gen_Unit
) = Name_Unchecked_Conversion
then
5207 Validate_Unchecked_Conversion
(N
, Act_Decl_Id
);
5211 -- Inherit convention from generic unit. Intrinsic convention, as for
5212 -- an instance of unchecked conversion, is not inherited because an
5213 -- explicit Ada instance has been created.
5215 if Has_Convention_Pragma
(Gen_Unit
)
5216 and then Convention
(Gen_Unit
) /= Convention_Intrinsic
5218 Set_Convention
(Act_Decl_Id
, Convention
(Gen_Unit
));
5219 Set_Is_Exported
(Act_Decl_Id
, Is_Exported
(Gen_Unit
));
5222 Generate_Definition
(Act_Decl_Id
);
5224 -- Inherit all inlining-related flags which apply to the generic in
5225 -- the subprogram and its declaration.
5227 Set_Is_Inlined
(Act_Decl_Id
, Is_Inlined
(Gen_Unit
));
5228 Set_Is_Inlined
(Anon_Id
, Is_Inlined
(Gen_Unit
));
5230 Set_Has_Pragma_Inline
(Act_Decl_Id
, Has_Pragma_Inline
(Gen_Unit
));
5231 Set_Has_Pragma_Inline
(Anon_Id
, Has_Pragma_Inline
(Gen_Unit
));
5233 Set_Has_Pragma_Inline_Always
5234 (Act_Decl_Id
, Has_Pragma_Inline_Always
(Gen_Unit
));
5235 Set_Has_Pragma_Inline_Always
5236 (Anon_Id
, Has_Pragma_Inline_Always
(Gen_Unit
));
5238 if not Is_Intrinsic_Subprogram
(Gen_Unit
) then
5239 Check_Elab_Instantiation
(N
);
5242 if Is_Dispatching_Operation
(Act_Decl_Id
)
5243 and then Ada_Version
>= Ada_2005
5249 Formal
:= First_Formal
(Act_Decl_Id
);
5250 while Present
(Formal
) loop
5251 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
5252 and then Is_Controlling_Formal
(Formal
)
5253 and then not Can_Never_Be_Null
(Formal
)
5256 ("access parameter& is controlling,", N
, Formal
);
5258 ("\corresponding parameter of & must be "
5259 & "explicitly null-excluding", N
, Gen_Id
);
5262 Next_Formal
(Formal
);
5267 Check_Hidden_Child_Unit
(N
, Gen_Unit
, Act_Decl_Id
);
5269 Validate_Categorization_Dependency
(N
, Act_Decl_Id
);
5271 if not Is_Intrinsic_Subprogram
(Act_Decl_Id
) then
5272 Inherit_Context
(Gen_Decl
, N
);
5274 Restore_Private_Views
(Pack_Id
, False);
5276 -- If the context requires a full instantiation, mark node for
5277 -- subsequent construction of the body.
5279 if Need_Subprogram_Instance_Body
(N
, Act_Decl_Id
) then
5280 Check_Forward_Instantiation
(Gen_Decl
);
5282 -- The wrapper package is always delayed, because it does not
5283 -- constitute a freeze point, but to insure that the freeze node
5284 -- is placed properly, it is created directly when instantiating
5285 -- the body (otherwise the freeze node might appear to early for
5286 -- nested instantiations). For ASIS purposes, indicate that the
5287 -- wrapper package has replaced the instantiation node.
5289 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5290 Rewrite
(N
, Unit
(Parent
(N
)));
5291 Set_Unit
(Parent
(N
), N
);
5294 -- Replace instance node for library-level instantiations of
5295 -- intrinsic subprograms, for ASIS use.
5297 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5298 Rewrite
(N
, Unit
(Parent
(N
)));
5299 Set_Unit
(Parent
(N
), N
);
5302 if Parent_Installed
then
5306 Restore_Hidden_Primitives
(Vis_Prims_List
);
5308 Env_Installed
:= False;
5309 Generic_Renamings
.Set_Last
(0);
5310 Generic_Renamings_HTable
.Reset
;
5312 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
5313 SPARK_Mode
:= Save_SM
;
5314 SPARK_Mode_Pragma
:= Save_SMP
;
5316 if SPARK_Mode
= On
then
5317 Dynamic_Elaboration_Checks
:= False;
5322 if Has_Aspects
(N
) then
5323 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
5327 when Instantiation_Error
=>
5328 if Parent_Installed
then
5332 if Env_Installed
then
5336 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
5337 SPARK_Mode
:= Save_SM
;
5338 SPARK_Mode_Pragma
:= Save_SMP
;
5340 if SPARK_Mode
= On
then
5341 Dynamic_Elaboration_Checks
:= False;
5343 end Analyze_Subprogram_Instantiation
;
5345 -------------------------
5346 -- Get_Associated_Node --
5347 -------------------------
5349 function Get_Associated_Node
(N
: Node_Id
) return Node_Id
is
5353 Assoc
:= Associated_Node
(N
);
5355 if Nkind
(Assoc
) /= Nkind
(N
) then
5358 elsif Nkind_In
(Assoc
, N_Aggregate
, N_Extension_Aggregate
) then
5362 -- If the node is part of an inner generic, it may itself have been
5363 -- remapped into a further generic copy. Associated_Node is otherwise
5364 -- used for the entity of the node, and will be of a different node
5365 -- kind, or else N has been rewritten as a literal or function call.
5367 while Present
(Associated_Node
(Assoc
))
5368 and then Nkind
(Associated_Node
(Assoc
)) = Nkind
(Assoc
)
5370 Assoc
:= Associated_Node
(Assoc
);
5373 -- Follow and additional link in case the final node was rewritten.
5374 -- This can only happen with nested generic units.
5376 if (Nkind
(Assoc
) = N_Identifier
or else Nkind
(Assoc
) in N_Op
)
5377 and then Present
(Associated_Node
(Assoc
))
5378 and then (Nkind_In
(Associated_Node
(Assoc
), N_Function_Call
,
5379 N_Explicit_Dereference
,
5384 Assoc
:= Associated_Node
(Assoc
);
5387 -- An additional special case: an unconstrained type in an object
5388 -- declaration may have been rewritten as a local subtype constrained
5389 -- by the expression in the declaration. We need to recover the
5390 -- original entity which may be global.
5392 if Present
(Original_Node
(Assoc
))
5393 and then Nkind
(Parent
(N
)) = N_Object_Declaration
5395 Assoc
:= Original_Node
(Assoc
);
5400 end Get_Associated_Node
;
5402 ----------------------------
5403 -- Build_Function_Wrapper --
5404 ----------------------------
5406 function Build_Function_Wrapper
5407 (Formal_Subp
: Entity_Id
;
5408 Actual_Subp
: Entity_Id
) return Node_Id
5410 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
5411 Ret_Type
: constant Entity_Id
:= Get_Instance_Of
(Etype
(Formal_Subp
));
5414 Func_Name
: Node_Id
;
5416 Parm_Type
: Node_Id
;
5417 Profile
: List_Id
:= New_List
;
5424 Func_Name
:= New_Occurrence_Of
(Actual_Subp
, Loc
);
5426 Func
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Subp
));
5427 Set_Ekind
(Func
, E_Function
);
5428 Set_Is_Generic_Actual_Subprogram
(Func
);
5430 Actuals
:= New_List
;
5431 Profile
:= New_List
;
5433 Act_F
:= First_Formal
(Actual_Subp
);
5434 Form_F
:= First_Formal
(Formal_Subp
);
5435 while Present
(Form_F
) loop
5437 -- Create new formal for profile of wrapper, and add a reference
5438 -- to it in the list of actuals for the enclosing call. The name
5439 -- must be that of the formal in the formal subprogram, because
5440 -- calls to it in the generic body may use named associations.
5442 New_F
:= Make_Defining_Identifier
(Loc
, Chars
(Form_F
));
5445 New_Occurrence_Of
(Get_Instance_Of
(Etype
(Form_F
)), Loc
);
5448 Make_Parameter_Specification
(Loc
,
5449 Defining_Identifier
=> New_F
,
5450 Parameter_Type
=> Parm_Type
));
5452 Append_To
(Actuals
, New_Occurrence_Of
(New_F
, Loc
));
5453 Next_Formal
(Form_F
);
5455 if Present
(Act_F
) then
5456 Next_Formal
(Act_F
);
5461 Make_Function_Specification
(Loc
,
5462 Defining_Unit_Name
=> Func
,
5463 Parameter_Specifications
=> Profile
,
5464 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
5467 Make_Expression_Function
(Loc
,
5468 Specification
=> Spec
,
5470 Make_Function_Call
(Loc
,
5472 Parameter_Associations
=> Actuals
));
5475 end Build_Function_Wrapper
;
5477 ----------------------------
5478 -- Build_Operator_Wrapper --
5479 ----------------------------
5481 function Build_Operator_Wrapper
5482 (Formal_Subp
: Entity_Id
;
5483 Actual_Subp
: Entity_Id
) return Node_Id
5485 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
5486 Ret_Type
: constant Entity_Id
:=
5487 Get_Instance_Of
(Etype
(Formal_Subp
));
5488 Op_Type
: constant Entity_Id
:=
5489 Get_Instance_Of
(Etype
(First_Formal
(Formal_Subp
)));
5490 Is_Binary
: constant Boolean :=
5491 Present
(Next_Formal
(First_Formal
(Formal_Subp
)));
5502 Op_Name
:= Chars
(Actual_Subp
);
5504 -- Create entities for wrapper function and its formals
5506 F1
:= Make_Temporary
(Loc
, 'A');
5507 F2
:= Make_Temporary
(Loc
, 'B');
5508 L
:= New_Occurrence_Of
(F1
, Loc
);
5509 R
:= New_Occurrence_Of
(F2
, Loc
);
5511 Func
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Subp
));
5512 Set_Ekind
(Func
, E_Function
);
5513 Set_Is_Generic_Actual_Subprogram
(Func
);
5516 Make_Function_Specification
(Loc
,
5517 Defining_Unit_Name
=> Func
,
5518 Parameter_Specifications
=> New_List
(
5519 Make_Parameter_Specification
(Loc
,
5520 Defining_Identifier
=> F1
,
5521 Parameter_Type
=> New_Occurrence_Of
(Op_Type
, Loc
))),
5522 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
5525 Append_To
(Parameter_Specifications
(Spec
),
5526 Make_Parameter_Specification
(Loc
,
5527 Defining_Identifier
=> F2
,
5528 Parameter_Type
=> New_Occurrence_Of
(Op_Type
, Loc
)));
5531 -- Build expression as a function call, or as an operator node
5532 -- that corresponds to the name of the actual, starting with
5533 -- binary operators.
5535 if Op_Name
not in Any_Operator_Name
then
5537 Make_Function_Call
(Loc
,
5539 New_Occurrence_Of
(Actual_Subp
, Loc
),
5540 Parameter_Associations
=> New_List
(L
));
5543 Append_To
(Parameter_Associations
(Expr
), R
);
5548 elsif Is_Binary
then
5549 if Op_Name
= Name_Op_And
then
5550 Expr
:= Make_Op_And
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5551 elsif Op_Name
= Name_Op_Or
then
5552 Expr
:= Make_Op_Or
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5553 elsif Op_Name
= Name_Op_Xor
then
5554 Expr
:= Make_Op_Xor
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5555 elsif Op_Name
= Name_Op_Eq
then
5556 Expr
:= Make_Op_Eq
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5557 elsif Op_Name
= Name_Op_Ne
then
5558 Expr
:= Make_Op_Ne
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5559 elsif Op_Name
= Name_Op_Le
then
5560 Expr
:= Make_Op_Le
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5561 elsif Op_Name
= Name_Op_Gt
then
5562 Expr
:= Make_Op_Gt
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5563 elsif Op_Name
= Name_Op_Ge
then
5564 Expr
:= Make_Op_Ge
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5565 elsif Op_Name
= Name_Op_Lt
then
5566 Expr
:= Make_Op_Lt
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5567 elsif Op_Name
= Name_Op_Add
then
5568 Expr
:= Make_Op_Add
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5569 elsif Op_Name
= Name_Op_Subtract
then
5570 Expr
:= Make_Op_Subtract
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5571 elsif Op_Name
= Name_Op_Concat
then
5572 Expr
:= Make_Op_Concat
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5573 elsif Op_Name
= Name_Op_Multiply
then
5574 Expr
:= Make_Op_Multiply
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5575 elsif Op_Name
= Name_Op_Divide
then
5576 Expr
:= Make_Op_Divide
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5577 elsif Op_Name
= Name_Op_Mod
then
5578 Expr
:= Make_Op_Mod
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5579 elsif Op_Name
= Name_Op_Rem
then
5580 Expr
:= Make_Op_Rem
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5581 elsif Op_Name
= Name_Op_Expon
then
5582 Expr
:= Make_Op_Expon
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5588 if Op_Name
= Name_Op_Add
then
5589 Expr
:= Make_Op_Plus
(Loc
, Right_Opnd
=> L
);
5590 elsif Op_Name
= Name_Op_Subtract
then
5591 Expr
:= Make_Op_Minus
(Loc
, Right_Opnd
=> L
);
5592 elsif Op_Name
= Name_Op_Abs
then
5593 Expr
:= Make_Op_Abs
(Loc
, Right_Opnd
=> L
);
5594 elsif Op_Name
= Name_Op_Not
then
5595 Expr
:= Make_Op_Not
(Loc
, Right_Opnd
=> L
);
5600 Make_Expression_Function
(Loc
,
5601 Specification
=> Spec
,
5602 Expression
=> Expr
);
5605 end Build_Operator_Wrapper
;
5607 -------------------------------------------
5608 -- Build_Instance_Compilation_Unit_Nodes --
5609 -------------------------------------------
5611 procedure Build_Instance_Compilation_Unit_Nodes
5616 Decl_Cunit
: Node_Id
;
5617 Body_Cunit
: Node_Id
;
5619 New_Main
: constant Entity_Id
:= Defining_Entity
(Act_Decl
);
5620 Old_Main
: constant Entity_Id
:= Cunit_Entity
(Main_Unit
);
5623 -- A new compilation unit node is built for the instance declaration
5626 Make_Compilation_Unit
(Sloc
(N
),
5627 Context_Items
=> Empty_List
,
5629 Aux_Decls_Node
=> Make_Compilation_Unit_Aux
(Sloc
(N
)));
5631 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(N
));
5633 -- The new compilation unit is linked to its body, but both share the
5634 -- same file, so we do not set Body_Required on the new unit so as not
5635 -- to create a spurious dependency on a non-existent body in the ali.
5636 -- This simplifies CodePeer unit traversal.
5638 -- We use the original instantiation compilation unit as the resulting
5639 -- compilation unit of the instance, since this is the main unit.
5641 Rewrite
(N
, Act_Body
);
5643 -- Propagate the aspect specifications from the package body template to
5644 -- the instantiated version of the package body.
5646 if Has_Aspects
(Act_Body
) then
5647 Set_Aspect_Specifications
5648 (N
, New_Copy_List_Tree
(Aspect_Specifications
(Act_Body
)));
5651 Body_Cunit
:= Parent
(N
);
5653 -- The two compilation unit nodes are linked by the Library_Unit field
5655 Set_Library_Unit
(Decl_Cunit
, Body_Cunit
);
5656 Set_Library_Unit
(Body_Cunit
, Decl_Cunit
);
5658 -- Preserve the private nature of the package if needed
5660 Set_Private_Present
(Decl_Cunit
, Private_Present
(Body_Cunit
));
5662 -- If the instance is not the main unit, its context, categorization
5663 -- and elaboration entity are not relevant to the compilation.
5665 if Body_Cunit
/= Cunit
(Main_Unit
) then
5666 Make_Instance_Unit
(Body_Cunit
, In_Main
=> False);
5670 -- The context clause items on the instantiation, which are now attached
5671 -- to the body compilation unit (since the body overwrote the original
5672 -- instantiation node), semantically belong on the spec, so copy them
5673 -- there. It's harmless to leave them on the body as well. In fact one
5674 -- could argue that they belong in both places.
5676 Citem
:= First
(Context_Items
(Body_Cunit
));
5677 while Present
(Citem
) loop
5678 Append
(New_Copy
(Citem
), Context_Items
(Decl_Cunit
));
5682 -- Propagate categorization flags on packages, so that they appear in
5683 -- the ali file for the spec of the unit.
5685 if Ekind
(New_Main
) = E_Package
then
5686 Set_Is_Pure
(Old_Main
, Is_Pure
(New_Main
));
5687 Set_Is_Preelaborated
(Old_Main
, Is_Preelaborated
(New_Main
));
5688 Set_Is_Remote_Types
(Old_Main
, Is_Remote_Types
(New_Main
));
5689 Set_Is_Shared_Passive
(Old_Main
, Is_Shared_Passive
(New_Main
));
5690 Set_Is_Remote_Call_Interface
5691 (Old_Main
, Is_Remote_Call_Interface
(New_Main
));
5694 -- Make entry in Units table, so that binder can generate call to
5695 -- elaboration procedure for body, if any.
5697 Make_Instance_Unit
(Body_Cunit
, In_Main
=> True);
5698 Main_Unit_Entity
:= New_Main
;
5699 Set_Cunit_Entity
(Main_Unit
, Main_Unit_Entity
);
5701 -- Build elaboration entity, since the instance may certainly generate
5702 -- elaboration code requiring a flag for protection.
5704 Build_Elaboration_Entity
(Decl_Cunit
, New_Main
);
5705 end Build_Instance_Compilation_Unit_Nodes
;
5707 -----------------------------
5708 -- Check_Access_Definition --
5709 -----------------------------
5711 procedure Check_Access_Definition
(N
: Node_Id
) is
5714 (Ada_Version
>= Ada_2005
and then Present
(Access_Definition
(N
)));
5716 end Check_Access_Definition
;
5718 -----------------------------------
5719 -- Check_Formal_Package_Instance --
5720 -----------------------------------
5722 -- If the formal has specific parameters, they must match those of the
5723 -- actual. Both of them are instances, and the renaming declarations for
5724 -- their formal parameters appear in the same order in both. The analyzed
5725 -- formal has been analyzed in the context of the current instance.
5727 procedure Check_Formal_Package_Instance
5728 (Formal_Pack
: Entity_Id
;
5729 Actual_Pack
: Entity_Id
)
5731 E1
: Entity_Id
:= First_Entity
(Actual_Pack
);
5732 E2
: Entity_Id
:= First_Entity
(Formal_Pack
);
5737 procedure Check_Mismatch
(B
: Boolean);
5738 -- Common error routine for mismatch between the parameters of the
5739 -- actual instance and those of the formal package.
5741 function Same_Instantiated_Constant
(E1
, E2
: Entity_Id
) return Boolean;
5742 -- The formal may come from a nested formal package, and the actual may
5743 -- have been constant-folded. To determine whether the two denote the
5744 -- same entity we may have to traverse several definitions to recover
5745 -- the ultimate entity that they refer to.
5747 function Same_Instantiated_Function
(E1
, E2
: Entity_Id
) return Boolean;
5748 -- The formal and the actual must be identical, but if both are
5749 -- given by attributes they end up renaming different generated bodies,
5750 -- and we must verify that the attributes themselves match.
5752 function Same_Instantiated_Variable
(E1
, E2
: Entity_Id
) return Boolean;
5753 -- Similarly, if the formal comes from a nested formal package, the
5754 -- actual may designate the formal through multiple renamings, which
5755 -- have to be followed to determine the original variable in question.
5757 --------------------
5758 -- Check_Mismatch --
5759 --------------------
5761 procedure Check_Mismatch
(B
: Boolean) is
5762 Kind
: constant Node_Kind
:= Nkind
(Parent
(E2
));
5765 if Kind
= N_Formal_Type_Declaration
then
5768 elsif Nkind_In
(Kind
, N_Formal_Object_Declaration
,
5769 N_Formal_Package_Declaration
)
5770 or else Kind
in N_Formal_Subprogram_Declaration
5774 -- Ada 2012: If both formal and actual are incomplete types they
5777 elsif Is_Incomplete_Type
(E1
) and then Is_Incomplete_Type
(E2
) then
5782 ("actual for & in actual instance does not match formal",
5783 Parent
(Actual_Pack
), E1
);
5787 --------------------------------
5788 -- Same_Instantiated_Constant --
5789 --------------------------------
5791 function Same_Instantiated_Constant
5792 (E1
, E2
: Entity_Id
) return Boolean
5798 while Present
(Ent
) loop
5802 elsif Ekind
(Ent
) /= E_Constant
then
5805 elsif Is_Entity_Name
(Constant_Value
(Ent
)) then
5806 if Entity
(Constant_Value
(Ent
)) = E1
then
5809 Ent
:= Entity
(Constant_Value
(Ent
));
5812 -- The actual may be a constant that has been folded. Recover
5815 elsif Is_Entity_Name
(Original_Node
(Constant_Value
(Ent
))) then
5816 Ent
:= Entity
(Original_Node
(Constant_Value
(Ent
)));
5824 end Same_Instantiated_Constant
;
5826 --------------------------------
5827 -- Same_Instantiated_Function --
5828 --------------------------------
5830 function Same_Instantiated_Function
5831 (E1
, E2
: Entity_Id
) return Boolean
5835 if Alias
(E1
) = Alias
(E2
) then
5838 elsif Present
(Alias
(E2
)) then
5839 U1
:= Original_Node
(Unit_Declaration_Node
(E1
));
5840 U2
:= Original_Node
(Unit_Declaration_Node
(Alias
(E2
)));
5842 return Nkind
(U1
) = N_Subprogram_Renaming_Declaration
5843 and then Nkind
(Name
(U1
)) = N_Attribute_Reference
5845 and then Nkind
(U2
) = N_Subprogram_Renaming_Declaration
5846 and then Nkind
(Name
(U2
)) = N_Attribute_Reference
5849 Attribute_Name
(Name
(U1
)) = Attribute_Name
(Name
(U2
));
5853 end Same_Instantiated_Function
;
5855 --------------------------------
5856 -- Same_Instantiated_Variable --
5857 --------------------------------
5859 function Same_Instantiated_Variable
5860 (E1
, E2
: Entity_Id
) return Boolean
5862 function Original_Entity
(E
: Entity_Id
) return Entity_Id
;
5863 -- Follow chain of renamings to the ultimate ancestor
5865 ---------------------
5866 -- Original_Entity --
5867 ---------------------
5869 function Original_Entity
(E
: Entity_Id
) return Entity_Id
is
5874 while Nkind
(Parent
(Orig
)) = N_Object_Renaming_Declaration
5875 and then Present
(Renamed_Object
(Orig
))
5876 and then Is_Entity_Name
(Renamed_Object
(Orig
))
5878 Orig
:= Entity
(Renamed_Object
(Orig
));
5882 end Original_Entity
;
5884 -- Start of processing for Same_Instantiated_Variable
5887 return Ekind
(E1
) = Ekind
(E2
)
5888 and then Original_Entity
(E1
) = Original_Entity
(E2
);
5889 end Same_Instantiated_Variable
;
5891 -- Start of processing for Check_Formal_Package_Instance
5894 while Present
(E1
) and then Present
(E2
) loop
5895 exit when Ekind
(E1
) = E_Package
5896 and then Renamed_Entity
(E1
) = Renamed_Entity
(Actual_Pack
);
5898 -- If the formal is the renaming of the formal package, this
5899 -- is the end of its formal part, which may occur before the
5900 -- end of the formal part in the actual in the presence of
5901 -- defaulted parameters in the formal package.
5903 exit when Nkind
(Parent
(E2
)) = N_Package_Renaming_Declaration
5904 and then Renamed_Entity
(E2
) = Scope
(E2
);
5906 -- The analysis of the actual may generate additional internal
5907 -- entities. If the formal is defaulted, there is no corresponding
5908 -- analysis and the internal entities must be skipped, until we
5909 -- find corresponding entities again.
5911 if Comes_From_Source
(E2
)
5912 and then not Comes_From_Source
(E1
)
5913 and then Chars
(E1
) /= Chars
(E2
)
5915 while Present
(E1
) and then Chars
(E1
) /= Chars
(E2
) loop
5923 -- If the formal entity comes from a formal declaration, it was
5924 -- defaulted in the formal package, and no check is needed on it.
5926 elsif Nkind
(Parent
(E2
)) = N_Formal_Object_Declaration
then
5929 -- Ditto for defaulted formal subprograms.
5931 elsif Is_Overloadable
(E1
)
5932 and then Nkind
(Unit_Declaration_Node
(E2
)) in
5933 N_Formal_Subprogram_Declaration
5937 elsif Is_Type
(E1
) then
5939 -- Subtypes must statically match. E1, E2 are the local entities
5940 -- that are subtypes of the actuals. Itypes generated for other
5941 -- parameters need not be checked, the check will be performed
5942 -- on the parameters themselves.
5944 -- If E2 is a formal type declaration, it is a defaulted parameter
5945 -- and needs no checking.
5947 if not Is_Itype
(E1
) and then not Is_Itype
(E2
) then
5950 or else Etype
(E1
) /= Etype
(E2
)
5951 or else not Subtypes_Statically_Match
(E1
, E2
));
5954 elsif Ekind
(E1
) = E_Constant
then
5956 -- IN parameters must denote the same static value, or the same
5957 -- constant, or the literal null.
5959 Expr1
:= Expression
(Parent
(E1
));
5961 if Ekind
(E2
) /= E_Constant
then
5962 Check_Mismatch
(True);
5965 Expr2
:= Expression
(Parent
(E2
));
5968 if Is_OK_Static_Expression
(Expr1
) then
5969 if not Is_OK_Static_Expression
(Expr2
) then
5970 Check_Mismatch
(True);
5972 elsif Is_Discrete_Type
(Etype
(E1
)) then
5974 V1
: constant Uint
:= Expr_Value
(Expr1
);
5975 V2
: constant Uint
:= Expr_Value
(Expr2
);
5977 Check_Mismatch
(V1
/= V2
);
5980 elsif Is_Real_Type
(Etype
(E1
)) then
5982 V1
: constant Ureal
:= Expr_Value_R
(Expr1
);
5983 V2
: constant Ureal
:= Expr_Value_R
(Expr2
);
5985 Check_Mismatch
(V1
/= V2
);
5988 elsif Is_String_Type
(Etype
(E1
))
5989 and then Nkind
(Expr1
) = N_String_Literal
5991 if Nkind
(Expr2
) /= N_String_Literal
then
5992 Check_Mismatch
(True);
5995 (not String_Equal
(Strval
(Expr1
), Strval
(Expr2
)));
5999 elsif Is_Entity_Name
(Expr1
) then
6000 if Is_Entity_Name
(Expr2
) then
6001 if Entity
(Expr1
) = Entity
(Expr2
) then
6005 (not Same_Instantiated_Constant
6006 (Entity
(Expr1
), Entity
(Expr2
)));
6010 Check_Mismatch
(True);
6013 elsif Is_Entity_Name
(Original_Node
(Expr1
))
6014 and then Is_Entity_Name
(Expr2
)
6015 and then Same_Instantiated_Constant
6016 (Entity
(Original_Node
(Expr1
)), Entity
(Expr2
))
6020 elsif Nkind
(Expr1
) = N_Null
then
6021 Check_Mismatch
(Nkind
(Expr1
) /= N_Null
);
6024 Check_Mismatch
(True);
6027 elsif Ekind
(E1
) = E_Variable
then
6028 Check_Mismatch
(not Same_Instantiated_Variable
(E1
, E2
));
6030 elsif Ekind
(E1
) = E_Package
then
6032 (Ekind
(E1
) /= Ekind
(E2
)
6033 or else Renamed_Object
(E1
) /= Renamed_Object
(E2
));
6035 elsif Is_Overloadable
(E1
) then
6037 -- Verify that the actual subprograms match. Note that actuals
6038 -- that are attributes are rewritten as subprograms. If the
6039 -- subprogram in the formal package is defaulted, no check is
6040 -- needed. Note that this can only happen in Ada 2005 when the
6041 -- formal package can be partially parameterized.
6043 if Nkind
(Unit_Declaration_Node
(E1
)) =
6044 N_Subprogram_Renaming_Declaration
6045 and then From_Default
(Unit_Declaration_Node
(E1
))
6049 -- If the formal package has an "others" box association that
6050 -- covers this formal, there is no need for a check either.
6052 elsif Nkind
(Unit_Declaration_Node
(E2
)) in
6053 N_Formal_Subprogram_Declaration
6054 and then Box_Present
(Unit_Declaration_Node
(E2
))
6058 -- No check needed if subprogram is a defaulted null procedure
6060 elsif No
(Alias
(E2
))
6061 and then Ekind
(E2
) = E_Procedure
6063 Null_Present
(Specification
(Unit_Declaration_Node
(E2
)))
6067 -- Otherwise the actual in the formal and the actual in the
6068 -- instantiation of the formal must match, up to renamings.
6072 (Ekind
(E2
) /= Ekind
(E1
)
6073 or else not Same_Instantiated_Function
(E1
, E2
));
6077 raise Program_Error
;
6084 end Check_Formal_Package_Instance
;
6086 ---------------------------
6087 -- Check_Formal_Packages --
6088 ---------------------------
6090 procedure Check_Formal_Packages
(P_Id
: Entity_Id
) is
6092 Formal_P
: Entity_Id
;
6093 Formal_Decl
: Node_Id
;
6096 -- Iterate through the declarations in the instance, looking for package
6097 -- renaming declarations that denote instances of formal packages. Stop
6098 -- when we find the renaming of the current package itself. The
6099 -- declaration for a formal package without a box is followed by an
6100 -- internal entity that repeats the instantiation.
6102 E
:= First_Entity
(P_Id
);
6103 while Present
(E
) loop
6104 if Ekind
(E
) = E_Package
then
6105 if Renamed_Object
(E
) = P_Id
then
6108 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
6112 Formal_Decl
:= Parent
(Associated_Formal_Package
(E
));
6114 -- Nothing to check if the formal has a box or an others_clause
6115 -- (necessarily with a box).
6117 if Box_Present
(Formal_Decl
) then
6120 elsif Nkind
(First
(Generic_Associations
(Formal_Decl
))) =
6123 -- The internal validating package was generated but formal
6124 -- and instance are known to be compatible.
6126 Formal_P
:= Next_Entity
(E
);
6127 Remove
(Unit_Declaration_Node
(Formal_P
));
6130 Formal_P
:= Next_Entity
(E
);
6131 Check_Formal_Package_Instance
(Formal_P
, E
);
6133 -- After checking, remove the internal validating package.
6134 -- It is only needed for semantic checks, and as it may
6135 -- contain generic formal declarations it should not reach
6138 Remove
(Unit_Declaration_Node
(Formal_P
));
6145 end Check_Formal_Packages
;
6147 ---------------------------------
6148 -- Check_Forward_Instantiation --
6149 ---------------------------------
6151 procedure Check_Forward_Instantiation
(Decl
: Node_Id
) is
6153 Gen_Comp
: Entity_Id
:= Cunit_Entity
(Get_Source_Unit
(Decl
));
6156 -- The instantiation appears before the generic body if we are in the
6157 -- scope of the unit containing the generic, either in its spec or in
6158 -- the package body, and before the generic body.
6160 if Ekind
(Gen_Comp
) = E_Package_Body
then
6161 Gen_Comp
:= Spec_Entity
(Gen_Comp
);
6164 if In_Open_Scopes
(Gen_Comp
)
6165 and then No
(Corresponding_Body
(Decl
))
6170 and then not Is_Compilation_Unit
(S
)
6171 and then not Is_Child_Unit
(S
)
6173 if Ekind
(S
) = E_Package
then
6174 Set_Has_Forward_Instantiation
(S
);
6180 end Check_Forward_Instantiation
;
6182 ---------------------------
6183 -- Check_Generic_Actuals --
6184 ---------------------------
6186 -- The visibility of the actuals may be different between the point of
6187 -- generic instantiation and the instantiation of the body.
6189 procedure Check_Generic_Actuals
6190 (Instance
: Entity_Id
;
6191 Is_Formal_Box
: Boolean)
6196 function Denotes_Previous_Actual
(Typ
: Entity_Id
) return Boolean;
6197 -- For a formal that is an array type, the component type is often a
6198 -- previous formal in the same unit. The privacy status of the component
6199 -- type will have been examined earlier in the traversal of the
6200 -- corresponding actuals, and this status should not be modified for
6201 -- the array (sub)type itself. However, if the base type of the array
6202 -- (sub)type is private, its full view must be restored in the body to
6203 -- be consistent with subsequent index subtypes, etc.
6205 -- To detect this case we have to rescan the list of formals, which is
6206 -- usually short enough to ignore the resulting inefficiency.
6208 -----------------------------
6209 -- Denotes_Previous_Actual --
6210 -----------------------------
6212 function Denotes_Previous_Actual
(Typ
: Entity_Id
) return Boolean is
6216 Prev
:= First_Entity
(Instance
);
6217 while Present
(Prev
) loop
6219 and then Nkind
(Parent
(Prev
)) = N_Subtype_Declaration
6220 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Prev
)))
6221 and then Entity
(Subtype_Indication
(Parent
(Prev
))) = Typ
6234 end Denotes_Previous_Actual
;
6236 -- Start of processing for Check_Generic_Actuals
6239 E
:= First_Entity
(Instance
);
6240 while Present
(E
) loop
6242 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
6243 and then Scope
(Etype
(E
)) /= Instance
6244 and then Is_Entity_Name
(Subtype_Indication
(Parent
(E
)))
6246 if Is_Array_Type
(E
)
6247 and then not Is_Private_Type
(Etype
(E
))
6248 and then Denotes_Previous_Actual
(Component_Type
(E
))
6252 Check_Private_View
(Subtype_Indication
(Parent
(E
)));
6255 Set_Is_Generic_Actual_Type
(E
, True);
6256 Set_Is_Hidden
(E
, False);
6257 Set_Is_Potentially_Use_Visible
(E
,
6260 -- We constructed the generic actual type as a subtype of the
6261 -- supplied type. This means that it normally would not inherit
6262 -- subtype specific attributes of the actual, which is wrong for
6263 -- the generic case.
6265 Astype
:= Ancestor_Subtype
(E
);
6269 -- This can happen when E is an itype that is the full view of
6270 -- a private type completed, e.g. with a constrained array. In
6271 -- that case, use the first subtype, which will carry size
6272 -- information. The base type itself is unconstrained and will
6275 Astype
:= First_Subtype
(E
);
6278 Set_Size_Info
(E
, (Astype
));
6279 Set_RM_Size
(E
, RM_Size
(Astype
));
6280 Set_First_Rep_Item
(E
, First_Rep_Item
(Astype
));
6282 if Is_Discrete_Or_Fixed_Point_Type
(E
) then
6283 Set_RM_Size
(E
, RM_Size
(Astype
));
6285 -- In nested instances, the base type of an access actual may
6286 -- itself be private, and need to be exchanged.
6288 elsif Is_Access_Type
(E
)
6289 and then Is_Private_Type
(Etype
(E
))
6292 (New_Occurrence_Of
(Etype
(E
), Sloc
(Instance
)));
6295 elsif Ekind
(E
) = E_Package
then
6297 -- If this is the renaming for the current instance, we're done.
6298 -- Otherwise it is a formal package. If the corresponding formal
6299 -- was declared with a box, the (instantiations of the) generic
6300 -- formal part are also visible. Otherwise, ignore the entity
6301 -- created to validate the actuals.
6303 if Renamed_Object
(E
) = Instance
then
6306 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
6309 -- The visibility of a formal of an enclosing generic is already
6312 elsif Denotes_Formal_Package
(E
) then
6315 elsif Present
(Associated_Formal_Package
(E
))
6316 and then not Is_Generic_Formal
(E
)
6318 if Box_Present
(Parent
(Associated_Formal_Package
(E
))) then
6319 Check_Generic_Actuals
(Renamed_Object
(E
), True);
6322 Check_Generic_Actuals
(Renamed_Object
(E
), False);
6325 Set_Is_Hidden
(E
, False);
6328 -- If this is a subprogram instance (in a wrapper package) the
6329 -- actual is fully visible.
6331 elsif Is_Wrapper_Package
(Instance
) then
6332 Set_Is_Hidden
(E
, False);
6334 -- If the formal package is declared with a box, or if the formal
6335 -- parameter is defaulted, it is visible in the body.
6337 elsif Is_Formal_Box
or else Is_Visible_Formal
(E
) then
6338 Set_Is_Hidden
(E
, False);
6341 if Ekind
(E
) = E_Constant
then
6343 -- If the type of the actual is a private type declared in the
6344 -- enclosing scope of the generic unit, the body of the generic
6345 -- sees the full view of the type (because it has to appear in
6346 -- the corresponding package body). If the type is private now,
6347 -- exchange views to restore the proper visiblity in the instance.
6350 Typ
: constant Entity_Id
:= Base_Type
(Etype
(E
));
6351 -- The type of the actual
6356 Parent_Scope
: Entity_Id
;
6357 -- The enclosing scope of the generic unit
6360 if Is_Wrapper_Package
(Instance
) then
6364 (Unit_Declaration_Node
6365 (Related_Instance
(Instance
))));
6368 Generic_Parent
(Package_Specification
(Instance
));
6371 Parent_Scope
:= Scope
(Gen_Id
);
6373 -- The exchange is only needed if the generic is defined
6374 -- within a package which is not a common ancestor of the
6375 -- scope of the instance, and is not already in scope.
6377 if Is_Private_Type
(Typ
)
6378 and then Scope
(Typ
) = Parent_Scope
6379 and then Scope
(Instance
) /= Parent_Scope
6380 and then Ekind
(Parent_Scope
) = E_Package
6381 and then not Is_Child_Unit
(Gen_Id
)
6385 -- If the type of the entity is a subtype, it may also have
6386 -- to be made visible, together with the base type of its
6387 -- full view, after exchange.
6389 if Is_Private_Type
(Etype
(E
)) then
6390 Switch_View
(Etype
(E
));
6391 Switch_View
(Base_Type
(Etype
(E
)));
6399 end Check_Generic_Actuals
;
6401 ------------------------------
6402 -- Check_Generic_Child_Unit --
6403 ------------------------------
6405 procedure Check_Generic_Child_Unit
6407 Parent_Installed
: in out Boolean)
6409 Loc
: constant Source_Ptr
:= Sloc
(Gen_Id
);
6410 Gen_Par
: Entity_Id
:= Empty
;
6412 Inst_Par
: Entity_Id
;
6415 function Find_Generic_Child
6417 Id
: Node_Id
) return Entity_Id
;
6418 -- Search generic parent for possible child unit with the given name
6420 function In_Enclosing_Instance
return Boolean;
6421 -- Within an instance of the parent, the child unit may be denoted by
6422 -- a simple name, or an abbreviated expanded name. Examine enclosing
6423 -- scopes to locate a possible parent instantiation.
6425 ------------------------
6426 -- Find_Generic_Child --
6427 ------------------------
6429 function Find_Generic_Child
6431 Id
: Node_Id
) return Entity_Id
6436 -- If entity of name is already set, instance has already been
6437 -- resolved, e.g. in an enclosing instantiation.
6439 if Present
(Entity
(Id
)) then
6440 if Scope
(Entity
(Id
)) = Scop
then
6447 E
:= First_Entity
(Scop
);
6448 while Present
(E
) loop
6449 if Chars
(E
) = Chars
(Id
)
6450 and then Is_Child_Unit
(E
)
6452 if Is_Child_Unit
(E
)
6453 and then not Is_Visible_Lib_Unit
(E
)
6456 ("generic child unit& is not visible", Gen_Id
, E
);
6468 end Find_Generic_Child
;
6470 ---------------------------
6471 -- In_Enclosing_Instance --
6472 ---------------------------
6474 function In_Enclosing_Instance
return Boolean is
6475 Enclosing_Instance
: Node_Id
;
6476 Instance_Decl
: Node_Id
;
6479 -- We do not inline any call that contains instantiations, except
6480 -- for instantiations of Unchecked_Conversion, so if we are within
6481 -- an inlined body the current instance does not require parents.
6483 if In_Inlined_Body
then
6484 pragma Assert
(Chars
(Gen_Id
) = Name_Unchecked_Conversion
);
6488 -- Loop to check enclosing scopes
6490 Enclosing_Instance
:= Current_Scope
;
6491 while Present
(Enclosing_Instance
) loop
6492 Instance_Decl
:= Unit_Declaration_Node
(Enclosing_Instance
);
6494 if Ekind
(Enclosing_Instance
) = E_Package
6495 and then Is_Generic_Instance
(Enclosing_Instance
)
6497 (Generic_Parent
(Specification
(Instance_Decl
)))
6499 -- Check whether the generic we are looking for is a child of
6502 E
:= Find_Generic_Child
6503 (Generic_Parent
(Specification
(Instance_Decl
)), Gen_Id
);
6504 exit when Present
(E
);
6510 Enclosing_Instance
:= Scope
(Enclosing_Instance
);
6522 Make_Expanded_Name
(Loc
,
6524 Prefix
=> New_Occurrence_Of
(Enclosing_Instance
, Loc
),
6525 Selector_Name
=> New_Occurrence_Of
(E
, Loc
)));
6527 Set_Entity
(Gen_Id
, E
);
6528 Set_Etype
(Gen_Id
, Etype
(E
));
6529 Parent_Installed
:= False; -- Already in scope.
6532 end In_Enclosing_Instance
;
6534 -- Start of processing for Check_Generic_Child_Unit
6537 -- If the name of the generic is given by a selected component, it may
6538 -- be the name of a generic child unit, and the prefix is the name of an
6539 -- instance of the parent, in which case the child unit must be visible.
6540 -- If this instance is not in scope, it must be placed there and removed
6541 -- after instantiation, because what is being instantiated is not the
6542 -- original child, but the corresponding child present in the instance
6545 -- If the child is instantiated within the parent, it can be given by
6546 -- a simple name. In this case the instance is already in scope, but
6547 -- the child generic must be recovered from the generic parent as well.
6549 if Nkind
(Gen_Id
) = N_Selected_Component
then
6550 S
:= Selector_Name
(Gen_Id
);
6551 Analyze
(Prefix
(Gen_Id
));
6552 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6554 if Ekind
(Inst_Par
) = E_Package
6555 and then Present
(Renamed_Object
(Inst_Par
))
6557 Inst_Par
:= Renamed_Object
(Inst_Par
);
6560 if Ekind
(Inst_Par
) = E_Package
then
6561 if Nkind
(Parent
(Inst_Par
)) = N_Package_Specification
then
6562 Gen_Par
:= Generic_Parent
(Parent
(Inst_Par
));
6564 elsif Nkind
(Parent
(Inst_Par
)) = N_Defining_Program_Unit_Name
6566 Nkind
(Parent
(Parent
(Inst_Par
))) = N_Package_Specification
6568 Gen_Par
:= Generic_Parent
(Parent
(Parent
(Inst_Par
)));
6571 elsif Ekind
(Inst_Par
) = E_Generic_Package
6572 and then Nkind
(Parent
(Gen_Id
)) = N_Formal_Package_Declaration
6574 -- A formal package may be a real child package, and not the
6575 -- implicit instance within a parent. In this case the child is
6576 -- not visible and has to be retrieved explicitly as well.
6578 Gen_Par
:= Inst_Par
;
6581 if Present
(Gen_Par
) then
6583 -- The prefix denotes an instantiation. The entity itself may be a
6584 -- nested generic, or a child unit.
6586 E
:= Find_Generic_Child
(Gen_Par
, S
);
6589 Change_Selected_Component_To_Expanded_Name
(Gen_Id
);
6590 Set_Entity
(Gen_Id
, E
);
6591 Set_Etype
(Gen_Id
, Etype
(E
));
6593 Set_Etype
(S
, Etype
(E
));
6595 -- Indicate that this is a reference to the parent
6597 if In_Extended_Main_Source_Unit
(Gen_Id
) then
6598 Set_Is_Instantiated
(Inst_Par
);
6601 -- A common mistake is to replicate the naming scheme of a
6602 -- hierarchy by instantiating a generic child directly, rather
6603 -- than the implicit child in a parent instance:
6605 -- generic .. package Gpar is ..
6606 -- generic .. package Gpar.Child is ..
6607 -- package Par is new Gpar ();
6610 -- package Par.Child is new Gpar.Child ();
6611 -- rather than Par.Child
6613 -- In this case the instantiation is within Par, which is an
6614 -- instance, but Gpar does not denote Par because we are not IN
6615 -- the instance of Gpar, so this is illegal. The test below
6616 -- recognizes this particular case.
6618 if Is_Child_Unit
(E
)
6619 and then not Comes_From_Source
(Entity
(Prefix
(Gen_Id
)))
6620 and then (not In_Instance
6621 or else Nkind
(Parent
(Parent
(Gen_Id
))) =
6625 ("prefix of generic child unit must be instance of parent",
6629 if not In_Open_Scopes
(Inst_Par
)
6630 and then Nkind
(Parent
(Gen_Id
)) not in
6631 N_Generic_Renaming_Declaration
6633 Install_Parent
(Inst_Par
);
6634 Parent_Installed
:= True;
6636 elsif In_Open_Scopes
(Inst_Par
) then
6638 -- If the parent is already installed, install the actuals
6639 -- for its formal packages. This is necessary when the child
6640 -- instance is a child of the parent instance: in this case,
6641 -- the parent is placed on the scope stack but the formal
6642 -- packages are not made visible.
6644 Install_Formal_Packages
(Inst_Par
);
6648 -- If the generic parent does not contain an entity that
6649 -- corresponds to the selector, the instance doesn't either.
6650 -- Analyzing the node will yield the appropriate error message.
6651 -- If the entity is not a child unit, then it is an inner
6652 -- generic in the parent.
6660 if Is_Child_Unit
(Entity
(Gen_Id
))
6662 Nkind
(Parent
(Gen_Id
)) not in N_Generic_Renaming_Declaration
6663 and then not In_Open_Scopes
(Inst_Par
)
6665 Install_Parent
(Inst_Par
);
6666 Parent_Installed
:= True;
6668 -- The generic unit may be the renaming of the implicit child
6669 -- present in an instance. In that case the parent instance is
6670 -- obtained from the name of the renamed entity.
6672 elsif Ekind
(Entity
(Gen_Id
)) = E_Generic_Package
6673 and then Present
(Renamed_Entity
(Entity
(Gen_Id
)))
6674 and then Is_Child_Unit
(Renamed_Entity
(Entity
(Gen_Id
)))
6677 Renamed_Package
: constant Node_Id
:=
6678 Name
(Parent
(Entity
(Gen_Id
)));
6680 if Nkind
(Renamed_Package
) = N_Expanded_Name
then
6681 Inst_Par
:= Entity
(Prefix
(Renamed_Package
));
6682 Install_Parent
(Inst_Par
);
6683 Parent_Installed
:= True;
6689 elsif Nkind
(Gen_Id
) = N_Expanded_Name
then
6691 -- Entity already present, analyze prefix, whose meaning may be
6692 -- an instance in the current context. If it is an instance of
6693 -- a relative within another, the proper parent may still have
6694 -- to be installed, if they are not of the same generation.
6696 Analyze
(Prefix
(Gen_Id
));
6698 -- In the unlikely case that a local declaration hides the name
6699 -- of the parent package, locate it on the homonym chain. If the
6700 -- context is an instance of the parent, the renaming entity is
6703 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6704 while Present
(Inst_Par
)
6705 and then not Is_Package_Or_Generic_Package
(Inst_Par
)
6707 Inst_Par
:= Homonym
(Inst_Par
);
6710 pragma Assert
(Present
(Inst_Par
));
6711 Set_Entity
(Prefix
(Gen_Id
), Inst_Par
);
6713 if In_Enclosing_Instance
then
6716 elsif Present
(Entity
(Gen_Id
))
6717 and then Is_Child_Unit
(Entity
(Gen_Id
))
6718 and then not In_Open_Scopes
(Inst_Par
)
6720 Install_Parent
(Inst_Par
);
6721 Parent_Installed
:= True;
6724 elsif In_Enclosing_Instance
then
6726 -- The child unit is found in some enclosing scope
6733 -- If this is the renaming of the implicit child in a parent
6734 -- instance, recover the parent name and install it.
6736 if Is_Entity_Name
(Gen_Id
) then
6737 E
:= Entity
(Gen_Id
);
6739 if Is_Generic_Unit
(E
)
6740 and then Nkind
(Parent
(E
)) in N_Generic_Renaming_Declaration
6741 and then Is_Child_Unit
(Renamed_Object
(E
))
6742 and then Is_Generic_Unit
(Scope
(Renamed_Object
(E
)))
6743 and then Nkind
(Name
(Parent
(E
))) = N_Expanded_Name
6745 Rewrite
(Gen_Id
, New_Copy_Tree
(Name
(Parent
(E
))));
6746 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6748 if not In_Open_Scopes
(Inst_Par
) then
6749 Install_Parent
(Inst_Par
);
6750 Parent_Installed
:= True;
6753 -- If it is a child unit of a non-generic parent, it may be
6754 -- use-visible and given by a direct name. Install parent as
6757 elsif Is_Generic_Unit
(E
)
6758 and then Is_Child_Unit
(E
)
6760 Nkind
(Parent
(Gen_Id
)) not in N_Generic_Renaming_Declaration
6761 and then not Is_Generic_Unit
(Scope
(E
))
6763 if not In_Open_Scopes
(Scope
(E
)) then
6764 Install_Parent
(Scope
(E
));
6765 Parent_Installed
:= True;
6770 end Check_Generic_Child_Unit
;
6772 -----------------------------
6773 -- Check_Hidden_Child_Unit --
6774 -----------------------------
6776 procedure Check_Hidden_Child_Unit
6778 Gen_Unit
: Entity_Id
;
6779 Act_Decl_Id
: Entity_Id
)
6781 Gen_Id
: constant Node_Id
:= Name
(N
);
6784 if Is_Child_Unit
(Gen_Unit
)
6785 and then Is_Child_Unit
(Act_Decl_Id
)
6786 and then Nkind
(Gen_Id
) = N_Expanded_Name
6787 and then Entity
(Prefix
(Gen_Id
)) = Scope
(Act_Decl_Id
)
6788 and then Chars
(Gen_Unit
) = Chars
(Act_Decl_Id
)
6790 Error_Msg_Node_2
:= Scope
(Act_Decl_Id
);
6792 ("generic unit & is implicitly declared in &",
6793 Defining_Unit_Name
(N
), Gen_Unit
);
6794 Error_Msg_N
("\instance must have different name",
6795 Defining_Unit_Name
(N
));
6797 end Check_Hidden_Child_Unit
;
6799 ------------------------
6800 -- Check_Private_View --
6801 ------------------------
6803 procedure Check_Private_View
(N
: Node_Id
) is
6804 T
: constant Entity_Id
:= Etype
(N
);
6808 -- Exchange views if the type was not private in the generic but is
6809 -- private at the point of instantiation. Do not exchange views if
6810 -- the scope of the type is in scope. This can happen if both generic
6811 -- and instance are sibling units, or if type is defined in a parent.
6812 -- In this case the visibility of the type will be correct for all
6816 BT
:= Base_Type
(T
);
6818 if Is_Private_Type
(T
)
6819 and then not Has_Private_View
(N
)
6820 and then Present
(Full_View
(T
))
6821 and then not In_Open_Scopes
(Scope
(T
))
6823 -- In the generic, the full type was visible. Save the private
6824 -- entity, for subsequent exchange.
6828 elsif Has_Private_View
(N
)
6829 and then not Is_Private_Type
(T
)
6830 and then not Has_Been_Exchanged
(T
)
6831 and then Etype
(Get_Associated_Node
(N
)) /= T
6833 -- Only the private declaration was visible in the generic. If
6834 -- the type appears in a subtype declaration, the subtype in the
6835 -- instance must have a view compatible with that of its parent,
6836 -- which must be exchanged (see corresponding code in Restore_
6837 -- Private_Views). Otherwise, if the type is defined in a parent
6838 -- unit, leave full visibility within instance, which is safe.
6840 if In_Open_Scopes
(Scope
(Base_Type
(T
)))
6841 and then not Is_Private_Type
(Base_Type
(T
))
6842 and then Comes_From_Source
(Base_Type
(T
))
6846 elsif Nkind
(Parent
(N
)) = N_Subtype_Declaration
6847 or else not In_Private_Part
(Scope
(Base_Type
(T
)))
6849 Prepend_Elmt
(T
, Exchanged_Views
);
6850 Exchange_Declarations
(Etype
(Get_Associated_Node
(N
)));
6853 -- For composite types with inconsistent representation exchange
6854 -- component types accordingly.
6856 elsif Is_Access_Type
(T
)
6857 and then Is_Private_Type
(Designated_Type
(T
))
6858 and then not Has_Private_View
(N
)
6859 and then Present
(Full_View
(Designated_Type
(T
)))
6861 Switch_View
(Designated_Type
(T
));
6863 elsif Is_Array_Type
(T
) then
6864 if Is_Private_Type
(Component_Type
(T
))
6865 and then not Has_Private_View
(N
)
6866 and then Present
(Full_View
(Component_Type
(T
)))
6868 Switch_View
(Component_Type
(T
));
6871 -- The normal exchange mechanism relies on the setting of a
6872 -- flag on the reference in the generic. However, an additional
6873 -- mechanism is needed for types that are not explicitly
6874 -- mentioned in the generic, but may be needed in expanded code
6875 -- in the instance. This includes component types of arrays and
6876 -- designated types of access types. This processing must also
6877 -- include the index types of arrays which we take care of here.
6884 Indx
:= First_Index
(T
);
6885 while Present
(Indx
) loop
6886 Typ
:= Base_Type
(Etype
(Indx
));
6888 if Is_Private_Type
(Typ
)
6889 and then Present
(Full_View
(Typ
))
6898 elsif Is_Private_Type
(T
)
6899 and then Present
(Full_View
(T
))
6900 and then Is_Array_Type
(Full_View
(T
))
6901 and then Is_Private_Type
(Component_Type
(Full_View
(T
)))
6905 -- Finally, a non-private subtype may have a private base type, which
6906 -- must be exchanged for consistency. This can happen when a package
6907 -- body is instantiated, when the scope stack is empty but in fact
6908 -- the subtype and the base type are declared in an enclosing scope.
6910 -- Note that in this case we introduce an inconsistency in the view
6911 -- set, because we switch the base type BT, but there could be some
6912 -- private dependent subtypes of BT which remain unswitched. Such
6913 -- subtypes might need to be switched at a later point (see specific
6914 -- provision for that case in Switch_View).
6916 elsif not Is_Private_Type
(T
)
6917 and then not Has_Private_View
(N
)
6918 and then Is_Private_Type
(BT
)
6919 and then Present
(Full_View
(BT
))
6920 and then not Is_Generic_Type
(BT
)
6921 and then not In_Open_Scopes
(BT
)
6923 Prepend_Elmt
(Full_View
(BT
), Exchanged_Views
);
6924 Exchange_Declarations
(BT
);
6927 end Check_Private_View
;
6929 -----------------------------
6930 -- Check_Hidden_Primitives --
6931 -----------------------------
6933 function Check_Hidden_Primitives
(Assoc_List
: List_Id
) return Elist_Id
is
6936 Result
: Elist_Id
:= No_Elist
;
6939 if No
(Assoc_List
) then
6943 -- Traverse the list of associations between formals and actuals
6944 -- searching for renamings of tagged types
6946 Actual
:= First
(Assoc_List
);
6947 while Present
(Actual
) loop
6948 if Nkind
(Actual
) = N_Subtype_Declaration
then
6949 Gen_T
:= Generic_Parent_Type
(Actual
);
6951 if Present
(Gen_T
) and then Is_Tagged_Type
(Gen_T
) then
6953 -- Traverse the list of primitives of the actual types
6954 -- searching for hidden primitives that are visible in the
6955 -- corresponding generic formal; leave them visible and
6956 -- append them to Result to restore their decoration later.
6958 Install_Hidden_Primitives
6959 (Prims_List
=> Result
,
6961 Act_T
=> Entity
(Subtype_Indication
(Actual
)));
6969 end Check_Hidden_Primitives
;
6971 --------------------------
6972 -- Contains_Instance_Of --
6973 --------------------------
6975 function Contains_Instance_Of
6978 N
: Node_Id
) return Boolean
6986 -- Verify that there are no circular instantiations. We check whether
6987 -- the unit contains an instance of the current scope or some enclosing
6988 -- scope (in case one of the instances appears in a subunit). Longer
6989 -- circularities involving subunits might seem too pathological to
6990 -- consider, but they were not too pathological for the authors of
6991 -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
6992 -- enclosing generic scopes as containing an instance.
6995 -- Within a generic subprogram body, the scope is not generic, to
6996 -- allow for recursive subprograms. Use the declaration to determine
6997 -- whether this is a generic unit.
6999 if Ekind
(Scop
) = E_Generic_Package
7000 or else (Is_Subprogram
(Scop
)
7001 and then Nkind
(Unit_Declaration_Node
(Scop
)) =
7002 N_Generic_Subprogram_Declaration
)
7004 Elmt
:= First_Elmt
(Inner_Instances
(Inner
));
7006 while Present
(Elmt
) loop
7007 if Node
(Elmt
) = Scop
then
7008 Error_Msg_Node_2
:= Inner
;
7010 ("circular Instantiation: & instantiated within &!",
7014 elsif Node
(Elmt
) = Inner
then
7017 elsif Contains_Instance_Of
(Node
(Elmt
), Scop
, N
) then
7018 Error_Msg_Node_2
:= Inner
;
7020 ("circular Instantiation: & instantiated within &!",
7028 -- Indicate that Inner is being instantiated within Scop
7030 Append_Elmt
(Inner
, Inner_Instances
(Scop
));
7033 if Scop
= Standard_Standard
then
7036 Scop
:= Scope
(Scop
);
7041 end Contains_Instance_Of
;
7043 -----------------------
7044 -- Copy_Generic_Node --
7045 -----------------------
7047 function Copy_Generic_Node
7049 Parent_Id
: Node_Id
;
7050 Instantiating
: Boolean) return Node_Id
7055 function Copy_Generic_Descendant
(D
: Union_Id
) return Union_Id
;
7056 -- Check the given value of one of the Fields referenced by the current
7057 -- node to determine whether to copy it recursively. The field may hold
7058 -- a Node_Id, a List_Id, or an Elist_Id, or a plain value (Sloc, Uint,
7059 -- Char) in which case it need not be copied.
7061 procedure Copy_Descendants
;
7062 -- Common utility for various nodes
7064 function Copy_Generic_Elist
(E
: Elist_Id
) return Elist_Id
;
7065 -- Make copy of element list
7067 function Copy_Generic_List
7069 Parent_Id
: Node_Id
) return List_Id
;
7070 -- Apply Copy_Node recursively to the members of a node list
7072 function In_Defining_Unit_Name
(Nam
: Node_Id
) return Boolean;
7073 -- True if an identifier is part of the defining program unit name of
7074 -- a child unit. The entity of such an identifier must be kept (for
7075 -- ASIS use) even though as the name of an enclosing generic it would
7076 -- otherwise not be preserved in the generic tree.
7078 ----------------------
7079 -- Copy_Descendants --
7080 ----------------------
7082 procedure Copy_Descendants
is
7083 use Atree
.Unchecked_Access
;
7084 -- This code section is part of the implementation of an untyped
7085 -- tree traversal, so it needs direct access to node fields.
7088 Set_Field1
(New_N
, Copy_Generic_Descendant
(Field1
(N
)));
7089 Set_Field2
(New_N
, Copy_Generic_Descendant
(Field2
(N
)));
7090 Set_Field3
(New_N
, Copy_Generic_Descendant
(Field3
(N
)));
7091 Set_Field4
(New_N
, Copy_Generic_Descendant
(Field4
(N
)));
7092 Set_Field5
(New_N
, Copy_Generic_Descendant
(Field5
(N
)));
7093 end Copy_Descendants
;
7095 -----------------------------
7096 -- Copy_Generic_Descendant --
7097 -----------------------------
7099 function Copy_Generic_Descendant
(D
: Union_Id
) return Union_Id
is
7101 if D
= Union_Id
(Empty
) then
7104 elsif D
in Node_Range
then
7106 (Copy_Generic_Node
(Node_Id
(D
), New_N
, Instantiating
));
7108 elsif D
in List_Range
then
7109 return Union_Id
(Copy_Generic_List
(List_Id
(D
), New_N
));
7111 elsif D
in Elist_Range
then
7112 return Union_Id
(Copy_Generic_Elist
(Elist_Id
(D
)));
7114 -- Nothing else is copyable (e.g. Uint values), return as is
7119 end Copy_Generic_Descendant
;
7121 ------------------------
7122 -- Copy_Generic_Elist --
7123 ------------------------
7125 function Copy_Generic_Elist
(E
: Elist_Id
) return Elist_Id
is
7132 M
:= First_Elmt
(E
);
7133 while Present
(M
) loop
7135 (Copy_Generic_Node
(Node
(M
), Empty
, Instantiating
), L
);
7144 end Copy_Generic_Elist
;
7146 -----------------------
7147 -- Copy_Generic_List --
7148 -----------------------
7150 function Copy_Generic_List
7152 Parent_Id
: Node_Id
) return List_Id
7160 Set_Parent
(New_L
, Parent_Id
);
7163 while Present
(N
) loop
7164 Append
(Copy_Generic_Node
(N
, Empty
, Instantiating
), New_L
);
7173 end Copy_Generic_List
;
7175 ---------------------------
7176 -- In_Defining_Unit_Name --
7177 ---------------------------
7179 function In_Defining_Unit_Name
(Nam
: Node_Id
) return Boolean is
7182 Present
(Parent
(Nam
))
7183 and then (Nkind
(Parent
(Nam
)) = N_Defining_Program_Unit_Name
7185 (Nkind
(Parent
(Nam
)) = N_Expanded_Name
7186 and then In_Defining_Unit_Name
(Parent
(Nam
))));
7187 end In_Defining_Unit_Name
;
7189 -- Start of processing for Copy_Generic_Node
7196 New_N
:= New_Copy
(N
);
7198 -- Copy aspects if present
7200 if Has_Aspects
(N
) then
7201 Set_Has_Aspects
(New_N
, False);
7202 Set_Aspect_Specifications
7203 (New_N
, Copy_Generic_List
(Aspect_Specifications
(N
), Parent_Id
));
7206 if Instantiating
then
7207 Adjust_Instantiation_Sloc
(New_N
, S_Adjustment
);
7210 if not Is_List_Member
(N
) then
7211 Set_Parent
(New_N
, Parent_Id
);
7214 -- Special casing for identifiers and other entity names and operators
7216 if Nkind_In
(New_N
, N_Character_Literal
,
7220 or else Nkind
(New_N
) in N_Op
7222 if not Instantiating
then
7224 -- Link both nodes in order to assign subsequently the entity of
7225 -- the copy to the original node, in case this is a global
7228 Set_Associated_Node
(N
, New_N
);
7230 -- If we are within an instantiation, this is a nested generic
7231 -- that has already been analyzed at the point of definition.
7232 -- We must preserve references that were global to the enclosing
7233 -- parent at that point. Other occurrences, whether global or
7234 -- local to the current generic, must be resolved anew, so we
7235 -- reset the entity in the generic copy. A global reference has a
7236 -- smaller depth than the parent, or else the same depth in case
7237 -- both are distinct compilation units.
7239 -- A child unit is implicitly declared within the enclosing parent
7240 -- but is in fact global to it, and must be preserved.
7242 -- It is also possible for Current_Instantiated_Parent to be
7243 -- defined, and for this not to be a nested generic, namely if
7244 -- the unit is loaded through Rtsfind. In that case, the entity of
7245 -- New_N is only a link to the associated node, and not a defining
7248 -- The entities for parent units in the defining_program_unit of a
7249 -- generic child unit are established when the context of the unit
7250 -- is first analyzed, before the generic copy is made. They are
7251 -- preserved in the copy for use in ASIS queries.
7253 Ent
:= Entity
(New_N
);
7255 if No
(Current_Instantiated_Parent
.Gen_Id
) then
7257 or else Nkind
(Ent
) /= N_Defining_Identifier
7258 or else not In_Defining_Unit_Name
(N
)
7260 Set_Associated_Node
(New_N
, Empty
);
7265 not Nkind_In
(Ent
, N_Defining_Identifier
,
7266 N_Defining_Character_Literal
,
7267 N_Defining_Operator_Symbol
)
7268 or else No
(Scope
(Ent
))
7270 (Scope
(Ent
) = Current_Instantiated_Parent
.Gen_Id
7271 and then not Is_Child_Unit
(Ent
))
7273 (Scope_Depth
(Scope
(Ent
)) >
7274 Scope_Depth
(Current_Instantiated_Parent
.Gen_Id
)
7276 Get_Source_Unit
(Ent
) =
7277 Get_Source_Unit
(Current_Instantiated_Parent
.Gen_Id
))
7279 Set_Associated_Node
(New_N
, Empty
);
7282 -- Case of instantiating identifier or some other name or operator
7285 -- If the associated node is still defined, the entity in it
7286 -- is global, and must be copied to the instance. If this copy
7287 -- is being made for a body to inline, it is applied to an
7288 -- instantiated tree, and the entity is already present and
7289 -- must be also preserved.
7292 Assoc
: constant Node_Id
:= Get_Associated_Node
(N
);
7295 if Present
(Assoc
) then
7296 if Nkind
(Assoc
) = Nkind
(N
) then
7297 Set_Entity
(New_N
, Entity
(Assoc
));
7298 Check_Private_View
(N
);
7300 -- The node is a reference to a global type and acts as the
7301 -- subtype mark of a qualified expression created in order
7302 -- to aid resolution of accidental overloading in instances.
7303 -- Since N is a reference to a type, the Associated_Node of
7304 -- N denotes an entity rather than another identifier. See
7305 -- Qualify_Universal_Operands for details.
7307 elsif Nkind
(N
) = N_Identifier
7308 and then Nkind
(Parent
(N
)) = N_Qualified_Expression
7309 and then Subtype_Mark
(Parent
(N
)) = N
7310 and then Is_Qualified_Universal_Literal
(Parent
(N
))
7312 Set_Entity
(New_N
, Assoc
);
7314 -- The name in the call may be a selected component if the
7315 -- call has not been analyzed yet, as may be the case for
7316 -- pre/post conditions in a generic unit.
7318 elsif Nkind
(Assoc
) = N_Function_Call
7319 and then Is_Entity_Name
(Name
(Assoc
))
7321 Set_Entity
(New_N
, Entity
(Name
(Assoc
)));
7323 elsif Nkind_In
(Assoc
, N_Defining_Identifier
,
7324 N_Defining_Character_Literal
,
7325 N_Defining_Operator_Symbol
)
7326 and then Expander_Active
7328 -- Inlining case: we are copying a tree that contains
7329 -- global entities, which are preserved in the copy to be
7330 -- used for subsequent inlining.
7335 Set_Entity
(New_N
, Empty
);
7341 -- For expanded name, we must copy the Prefix and Selector_Name
7343 if Nkind
(N
) = N_Expanded_Name
then
7345 (New_N
, Copy_Generic_Node
(Prefix
(N
), New_N
, Instantiating
));
7347 Set_Selector_Name
(New_N
,
7348 Copy_Generic_Node
(Selector_Name
(N
), New_N
, Instantiating
));
7350 -- For operators, we must copy the right operand
7352 elsif Nkind
(N
) in N_Op
then
7353 Set_Right_Opnd
(New_N
,
7354 Copy_Generic_Node
(Right_Opnd
(N
), New_N
, Instantiating
));
7356 -- And for binary operators, the left operand as well
7358 if Nkind
(N
) in N_Binary_Op
then
7359 Set_Left_Opnd
(New_N
,
7360 Copy_Generic_Node
(Left_Opnd
(N
), New_N
, Instantiating
));
7364 -- Establish a link between an entity from the generic template and the
7365 -- corresponding entity in the generic copy to be analyzed.
7367 elsif Nkind
(N
) in N_Entity
then
7368 if not Instantiating
then
7369 Set_Associated_Entity
(N
, New_N
);
7372 -- Clear any existing link the copy may inherit from the replicated
7373 -- generic template entity.
7375 Set_Associated_Entity
(New_N
, Empty
);
7377 -- Special casing for stubs
7379 elsif Nkind
(N
) in N_Body_Stub
then
7381 -- In any case, we must copy the specification or defining
7382 -- identifier as appropriate.
7384 if Nkind
(N
) = N_Subprogram_Body_Stub
then
7385 Set_Specification
(New_N
,
7386 Copy_Generic_Node
(Specification
(N
), New_N
, Instantiating
));
7389 Set_Defining_Identifier
(New_N
,
7391 (Defining_Identifier
(N
), New_N
, Instantiating
));
7394 -- If we are not instantiating, then this is where we load and
7395 -- analyze subunits, i.e. at the point where the stub occurs. A
7396 -- more permissive system might defer this analysis to the point
7397 -- of instantiation, but this seems too complicated for now.
7399 if not Instantiating
then
7401 Subunit_Name
: constant Unit_Name_Type
:= Get_Unit_Name
(N
);
7403 Unum
: Unit_Number_Type
;
7407 -- Make sure that, if it is a subunit of the main unit that is
7408 -- preprocessed and if -gnateG is specified, the preprocessed
7409 -- file will be written.
7411 Lib
.Analysing_Subunit_Of_Main
:=
7412 Lib
.In_Extended_Main_Source_Unit
(N
);
7415 (Load_Name
=> Subunit_Name
,
7419 Lib
.Analysing_Subunit_Of_Main
:= False;
7421 -- If the proper body is not found, a warning message will be
7422 -- emitted when analyzing the stub, or later at the point of
7423 -- instantiation. Here we just leave the stub as is.
7425 if Unum
= No_Unit
then
7426 Subunits_Missing
:= True;
7427 goto Subunit_Not_Found
;
7430 Subunit
:= Cunit
(Unum
);
7432 if Nkind
(Unit
(Subunit
)) /= N_Subunit
then
7434 ("found child unit instead of expected SEPARATE subunit",
7436 Error_Msg_Sloc
:= Sloc
(N
);
7437 Error_Msg_N
("\to complete stub #", Subunit
);
7438 goto Subunit_Not_Found
;
7441 -- We must create a generic copy of the subunit, in order to
7442 -- perform semantic analysis on it, and we must replace the
7443 -- stub in the original generic unit with the subunit, in order
7444 -- to preserve non-local references within.
7446 -- Only the proper body needs to be copied. Library_Unit and
7447 -- context clause are simply inherited by the generic copy.
7448 -- Note that the copy (which may be recursive if there are
7449 -- nested subunits) must be done first, before attaching it to
7450 -- the enclosing generic.
7454 (Proper_Body
(Unit
(Subunit
)),
7455 Empty
, Instantiating
=> False);
7457 -- Now place the original proper body in the original generic
7458 -- unit. This is a body, not a compilation unit.
7460 Rewrite
(N
, Proper_Body
(Unit
(Subunit
)));
7461 Set_Is_Compilation_Unit
(Defining_Entity
(N
), False);
7462 Set_Was_Originally_Stub
(N
);
7464 -- Finally replace the body of the subunit with its copy, and
7465 -- make this new subunit into the library unit of the generic
7466 -- copy, which does not have stubs any longer.
7468 Set_Proper_Body
(Unit
(Subunit
), New_Body
);
7469 Set_Library_Unit
(New_N
, Subunit
);
7470 Inherit_Context
(Unit
(Subunit
), N
);
7473 -- If we are instantiating, this must be an error case, since
7474 -- otherwise we would have replaced the stub node by the proper body
7475 -- that corresponds. So just ignore it in the copy (i.e. we have
7476 -- copied it, and that is good enough).
7482 <<Subunit_Not_Found
>> null;
7484 -- If the node is a compilation unit, it is the subunit of a stub, which
7485 -- has been loaded already (see code below). In this case, the library
7486 -- unit field of N points to the parent unit (which is a compilation
7487 -- unit) and need not (and cannot) be copied.
7489 -- When the proper body of the stub is analyzed, the library_unit link
7490 -- is used to establish the proper context (see sem_ch10).
7492 -- The other fields of a compilation unit are copied as usual
7494 elsif Nkind
(N
) = N_Compilation_Unit
then
7496 -- This code can only be executed when not instantiating, because in
7497 -- the copy made for an instantiation, the compilation unit node has
7498 -- disappeared at the point that a stub is replaced by its proper
7501 pragma Assert
(not Instantiating
);
7503 Set_Context_Items
(New_N
,
7504 Copy_Generic_List
(Context_Items
(N
), New_N
));
7507 Copy_Generic_Node
(Unit
(N
), New_N
, False));
7509 Set_First_Inlined_Subprogram
(New_N
,
7511 (First_Inlined_Subprogram
(N
), New_N
, False));
7513 Set_Aux_Decls_Node
(New_N
,
7514 Copy_Generic_Node
(Aux_Decls_Node
(N
), New_N
, False));
7516 -- For an assignment node, the assignment is known to be semantically
7517 -- legal if we are instantiating the template. This avoids incorrect
7518 -- diagnostics in generated code.
7520 elsif Nkind
(N
) = N_Assignment_Statement
then
7522 -- Copy name and expression fields in usual manner
7525 Copy_Generic_Node
(Name
(N
), New_N
, Instantiating
));
7527 Set_Expression
(New_N
,
7528 Copy_Generic_Node
(Expression
(N
), New_N
, Instantiating
));
7530 if Instantiating
then
7531 Set_Assignment_OK
(Name
(New_N
), True);
7534 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
7535 if not Instantiating
then
7536 Set_Associated_Node
(N
, New_N
);
7539 if Present
(Get_Associated_Node
(N
))
7540 and then Nkind
(Get_Associated_Node
(N
)) = Nkind
(N
)
7542 -- In the generic the aggregate has some composite type. If at
7543 -- the point of instantiation the type has a private view,
7544 -- install the full view (and that of its ancestors, if any).
7547 T
: Entity_Id
:= (Etype
(Get_Associated_Node
(New_N
)));
7551 if Present
(T
) and then Is_Private_Type
(T
) then
7556 and then Is_Tagged_Type
(T
)
7557 and then Is_Derived_Type
(T
)
7559 Rt
:= Root_Type
(T
);
7564 if Is_Private_Type
(T
) then
7575 -- Do not copy the associated node, which points to the generic copy
7576 -- of the aggregate.
7579 use Atree
.Unchecked_Access
;
7580 -- This code section is part of the implementation of an untyped
7581 -- tree traversal, so it needs direct access to node fields.
7584 Set_Field1
(New_N
, Copy_Generic_Descendant
(Field1
(N
)));
7585 Set_Field2
(New_N
, Copy_Generic_Descendant
(Field2
(N
)));
7586 Set_Field3
(New_N
, Copy_Generic_Descendant
(Field3
(N
)));
7587 Set_Field5
(New_N
, Copy_Generic_Descendant
(Field5
(N
)));
7590 -- Allocators do not have an identifier denoting the access type, so we
7591 -- must locate it through the expression to check whether the views are
7594 elsif Nkind
(N
) = N_Allocator
7595 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
7596 and then Is_Entity_Name
(Subtype_Mark
(Expression
(N
)))
7597 and then Instantiating
7600 T
: constant Node_Id
:=
7601 Get_Associated_Node
(Subtype_Mark
(Expression
(N
)));
7607 -- Retrieve the allocator node in the generic copy
7609 Acc_T
:= Etype
(Parent
(Parent
(T
)));
7611 if Present
(Acc_T
) and then Is_Private_Type
(Acc_T
) then
7612 Switch_View
(Acc_T
);
7619 -- For a proper body, we must catch the case of a proper body that
7620 -- replaces a stub. This represents the point at which a separate
7621 -- compilation unit, and hence template file, may be referenced, so we
7622 -- must make a new source instantiation entry for the template of the
7623 -- subunit, and ensure that all nodes in the subunit are adjusted using
7624 -- this new source instantiation entry.
7626 elsif Nkind
(N
) in N_Proper_Body
then
7628 Save_Adjustment
: constant Sloc_Adjustment
:= S_Adjustment
;
7631 if Instantiating
and then Was_Originally_Stub
(N
) then
7632 Create_Instantiation_Source
7633 (Instantiation_Node
,
7634 Defining_Entity
(N
),
7639 -- Now copy the fields of the proper body, using the new
7640 -- adjustment factor if one was needed as per test above.
7644 -- Restore the original adjustment factor in case changed
7646 S_Adjustment
:= Save_Adjustment
;
7649 elsif Nkind
(N
) = N_Pragma
and then Instantiating
then
7651 -- Do not copy Comment or Ident pragmas their content is relevant to
7652 -- the generic unit, not to the instantiating unit.
7654 if Nam_In
(Pragma_Name
(N
), Name_Comment
, Name_Ident
) then
7655 New_N
:= Make_Null_Statement
(Sloc
(N
));
7657 -- Do not copy pragmas generated from aspects because the pragmas do
7658 -- not carry any semantic information, plus they will be regenerated
7661 elsif From_Aspect_Specification
(N
) then
7662 New_N
:= Make_Null_Statement
(Sloc
(N
));
7668 elsif Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
) then
7670 -- No descendant fields need traversing
7674 elsif Nkind
(N
) = N_String_Literal
7675 and then Present
(Etype
(N
))
7676 and then Instantiating
7678 -- If the string is declared in an outer scope, the string_literal
7679 -- subtype created for it may have the wrong scope. Force reanalysis
7680 -- of the constant to generate a new itype in the proper context.
7682 Set_Etype
(New_N
, Empty
);
7683 Set_Analyzed
(New_N
, False);
7685 -- For the remaining nodes, copy their descendants recursively
7690 if Instantiating
and then Nkind
(N
) = N_Subprogram_Body
then
7691 Set_Generic_Parent
(Specification
(New_N
), N
);
7693 -- Should preserve Corresponding_Spec??? (12.3(14))
7697 -- Propagate dimensions if present, so that they are reflected in the
7700 if Nkind
(N
) in N_Has_Etype
7701 and then (Nkind
(N
) in N_Op
or else Is_Entity_Name
(N
))
7702 and then Present
(Etype
(N
))
7703 and then Is_Floating_Point_Type
(Etype
(N
))
7704 and then Has_Dimension_System
(Etype
(N
))
7706 Copy_Dimensions
(N
, New_N
);
7710 end Copy_Generic_Node
;
7712 ----------------------------
7713 -- Denotes_Formal_Package --
7714 ----------------------------
7716 function Denotes_Formal_Package
7718 On_Exit
: Boolean := False;
7719 Instance
: Entity_Id
:= Empty
) return Boolean
7722 Scop
: constant Entity_Id
:= Scope
(Pack
);
7725 function Is_Actual_Of_Previous_Formal
(P
: Entity_Id
) return Boolean;
7726 -- The package in question may be an actual for a previous formal
7727 -- package P of the current instance, so examine its actuals as well.
7728 -- This must be recursive over other formal packages.
7730 ----------------------------------
7731 -- Is_Actual_Of_Previous_Formal --
7732 ----------------------------------
7734 function Is_Actual_Of_Previous_Formal
(P
: Entity_Id
) return Boolean is
7738 E1
:= First_Entity
(P
);
7739 while Present
(E1
) and then E1
/= Instance
loop
7740 if Ekind
(E1
) = E_Package
7741 and then Nkind
(Parent
(E1
)) = N_Package_Renaming_Declaration
7743 if Renamed_Object
(E1
) = Pack
then
7746 elsif E1
= P
or else Renamed_Object
(E1
) = P
then
7749 elsif Is_Actual_Of_Previous_Formal
(E1
) then
7758 end Is_Actual_Of_Previous_Formal
;
7760 -- Start of processing for Denotes_Formal_Package
7766 (Instance_Envs
.Last
).Instantiated_Parent
.Act_Id
;
7768 Par
:= Current_Instantiated_Parent
.Act_Id
;
7771 if Ekind
(Scop
) = E_Generic_Package
7772 or else Nkind
(Unit_Declaration_Node
(Scop
)) =
7773 N_Generic_Subprogram_Declaration
7777 elsif Nkind
(Original_Node
(Unit_Declaration_Node
(Pack
))) =
7778 N_Formal_Package_Declaration
7786 -- Check whether this package is associated with a formal package of
7787 -- the enclosing instantiation. Iterate over the list of renamings.
7789 E
:= First_Entity
(Par
);
7790 while Present
(E
) loop
7791 if Ekind
(E
) /= E_Package
7792 or else Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
7796 elsif Renamed_Object
(E
) = Par
then
7799 elsif Renamed_Object
(E
) = Pack
then
7802 elsif Is_Actual_Of_Previous_Formal
(E
) then
7812 end Denotes_Formal_Package
;
7818 procedure End_Generic
is
7820 -- ??? More things could be factored out in this routine. Should
7821 -- probably be done at a later stage.
7823 Inside_A_Generic
:= Generic_Flags
.Table
(Generic_Flags
.Last
);
7824 Generic_Flags
.Decrement_Last
;
7826 Expander_Mode_Restore
;
7833 function Earlier
(N1
, N2
: Node_Id
) return Boolean is
7834 procedure Find_Depth
(P
: in out Node_Id
; D
: in out Integer);
7835 -- Find distance from given node to enclosing compilation unit
7841 procedure Find_Depth
(P
: in out Node_Id
; D
: in out Integer) is
7844 and then Nkind
(P
) /= N_Compilation_Unit
7846 P
:= True_Parent
(P
);
7851 -- Local declarations
7860 -- Start of processing for Earlier
7863 Find_Depth
(P1
, D1
);
7864 Find_Depth
(P2
, D2
);
7874 P1
:= True_Parent
(P1
);
7879 P2
:= True_Parent
(P2
);
7883 -- At this point P1 and P2 are at the same distance from the root.
7884 -- We examine their parents until we find a common declarative list.
7885 -- If we reach the root, N1 and N2 do not descend from the same
7886 -- declarative list (e.g. one is nested in the declarative part and
7887 -- the other is in a block in the statement part) and the earlier
7888 -- one is already frozen.
7890 while not Is_List_Member
(P1
)
7891 or else not Is_List_Member
(P2
)
7892 or else List_Containing
(P1
) /= List_Containing
(P2
)
7894 P1
:= True_Parent
(P1
);
7895 P2
:= True_Parent
(P2
);
7897 if Nkind
(Parent
(P1
)) = N_Subunit
then
7898 P1
:= Corresponding_Stub
(Parent
(P1
));
7901 if Nkind
(Parent
(P2
)) = N_Subunit
then
7902 P2
:= Corresponding_Stub
(Parent
(P2
));
7910 -- Expanded code usually shares the source location of the original
7911 -- construct it was generated for. This however may not necessarely
7912 -- reflect the true location of the code within the tree.
7914 -- Before comparing the slocs of the two nodes, make sure that we are
7915 -- working with correct source locations. Assume that P1 is to the left
7916 -- of P2. If either one does not come from source, traverse the common
7917 -- list heading towards the other node and locate the first source
7921 -- ----+===+===+--------------+===+===+----
7922 -- expanded code expanded code
7924 if not Comes_From_Source
(P1
) then
7925 while Present
(P1
) loop
7927 -- Neither P2 nor a source statement were located during the
7928 -- search. If we reach the end of the list, then P1 does not
7929 -- occur earlier than P2.
7932 -- start --- P2 ----- P1 --- end
7934 if No
(Next
(P1
)) then
7937 -- We encounter P2 while going to the right of the list. This
7938 -- means that P1 does indeed appear earlier.
7941 -- start --- P1 ===== P2 --- end
7942 -- expanded code in between
7947 -- No need to look any further since we have located a source
7950 elsif Comes_From_Source
(P1
) then
7960 if not Comes_From_Source
(P2
) then
7961 while Present
(P2
) loop
7963 -- Neither P1 nor a source statement were located during the
7964 -- search. If we reach the start of the list, then P1 does not
7965 -- occur earlier than P2.
7968 -- start --- P2 --- P1 --- end
7970 if No
(Prev
(P2
)) then
7973 -- We encounter P1 while going to the left of the list. This
7974 -- means that P1 does indeed appear earlier.
7977 -- start --- P1 ===== P2 --- end
7978 -- expanded code in between
7983 -- No need to look any further since we have located a source
7986 elsif Comes_From_Source
(P2
) then
7996 -- At this point either both nodes came from source or we approximated
7997 -- their source locations through neighboring source statements.
7999 T1
:= Top_Level_Location
(Sloc
(P1
));
8000 T2
:= Top_Level_Location
(Sloc
(P2
));
8002 -- When two nodes come from the same instance, they have identical top
8003 -- level locations. To determine proper relation within the tree, check
8004 -- their locations within the template.
8007 return Sloc
(P1
) < Sloc
(P2
);
8009 -- The two nodes either come from unrelated instances or do not come
8010 -- from instantiated code at all.
8017 ----------------------
8018 -- Find_Actual_Type --
8019 ----------------------
8021 function Find_Actual_Type
8023 Gen_Type
: Entity_Id
) return Entity_Id
8025 Gen_Scope
: constant Entity_Id
:= Scope
(Gen_Type
);
8029 -- Special processing only applies to child units
8031 if not Is_Child_Unit
(Gen_Scope
) then
8032 return Get_Instance_Of
(Typ
);
8034 -- If designated or component type is itself a formal of the child unit,
8035 -- its instance is available.
8037 elsif Scope
(Typ
) = Gen_Scope
then
8038 return Get_Instance_Of
(Typ
);
8040 -- If the array or access type is not declared in the parent unit,
8041 -- no special processing needed.
8043 elsif not Is_Generic_Type
(Typ
)
8044 and then Scope
(Gen_Scope
) /= Scope
(Typ
)
8046 return Get_Instance_Of
(Typ
);
8048 -- Otherwise, retrieve designated or component type by visibility
8051 T
:= Current_Entity
(Typ
);
8052 while Present
(T
) loop
8053 if In_Open_Scopes
(Scope
(T
)) then
8055 elsif Is_Generic_Actual_Type
(T
) then
8064 end Find_Actual_Type
;
8066 ----------------------------
8067 -- Freeze_Subprogram_Body --
8068 ----------------------------
8070 procedure Freeze_Subprogram_Body
8071 (Inst_Node
: Node_Id
;
8073 Pack_Id
: Entity_Id
)
8075 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
8076 Par
: constant Entity_Id
:= Scope
(Gen_Unit
);
8082 function Enclosing_Package_Body
(N
: Node_Id
) return Node_Id
;
8083 -- Find innermost package body that encloses the given node, and which
8084 -- is not a compilation unit. Freeze nodes for the instance, or for its
8085 -- enclosing body, may be inserted after the enclosing_body of the
8086 -- generic unit. Used to determine proper placement of freeze node for
8087 -- both package and subprogram instances.
8089 function Package_Freeze_Node
(B
: Node_Id
) return Node_Id
;
8090 -- Find entity for given package body, and locate or create a freeze
8093 ----------------------------
8094 -- Enclosing_Package_Body --
8095 ----------------------------
8097 function Enclosing_Package_Body
(N
: Node_Id
) return Node_Id
is
8103 and then Nkind
(Parent
(P
)) /= N_Compilation_Unit
8105 if Nkind
(P
) = N_Package_Body
then
8106 if Nkind
(Parent
(P
)) = N_Subunit
then
8107 return Corresponding_Stub
(Parent
(P
));
8113 P
:= True_Parent
(P
);
8117 end Enclosing_Package_Body
;
8119 -------------------------
8120 -- Package_Freeze_Node --
8121 -------------------------
8123 function Package_Freeze_Node
(B
: Node_Id
) return Node_Id
is
8127 if Nkind
(B
) = N_Package_Body
then
8128 Id
:= Corresponding_Spec
(B
);
8129 else pragma Assert
(Nkind
(B
) = N_Package_Body_Stub
);
8130 Id
:= Corresponding_Spec
(Proper_Body
(Unit
(Library_Unit
(B
))));
8133 Ensure_Freeze_Node
(Id
);
8134 return Freeze_Node
(Id
);
8135 end Package_Freeze_Node
;
8137 -- Start of processing for Freeze_Subprogram_Body
8140 -- If the instance and the generic body appear within the same unit, and
8141 -- the instance precedes the generic, the freeze node for the instance
8142 -- must appear after that of the generic. If the generic is nested
8143 -- within another instance I2, then current instance must be frozen
8144 -- after I2. In both cases, the freeze nodes are those of enclosing
8145 -- packages. Otherwise, the freeze node is placed at the end of the
8146 -- current declarative part.
8148 Enc_G
:= Enclosing_Package_Body
(Gen_Body
);
8149 Enc_I
:= Enclosing_Package_Body
(Inst_Node
);
8150 Ensure_Freeze_Node
(Pack_Id
);
8151 F_Node
:= Freeze_Node
(Pack_Id
);
8153 if Is_Generic_Instance
(Par
)
8154 and then Present
(Freeze_Node
(Par
))
8155 and then In_Same_Declarative_Part
(Freeze_Node
(Par
), Inst_Node
)
8157 -- The parent was a premature instantiation. Insert freeze node at
8158 -- the end the current declarative part.
8160 if ABE_Is_Certain
(Get_Package_Instantiation_Node
(Par
)) then
8161 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8163 -- Handle the following case:
8165 -- package Parent_Inst is new ...
8168 -- procedure P ... -- this body freezes Parent_Inst
8170 -- package Inst is new ...
8172 -- In this particular scenario, the freeze node for Inst must be
8173 -- inserted in the same manner as that of Parent_Inst - before the
8174 -- next source body or at the end of the declarative list (body not
8175 -- available). If body P did not exist and Parent_Inst was frozen
8176 -- after Inst, either by a body following Inst or at the end of the
8177 -- declarative region, the freeze node for Inst must be inserted
8178 -- after that of Parent_Inst. This relation is established by
8179 -- comparing the Slocs of Parent_Inst freeze node and Inst.
8181 elsif List_Containing
(Get_Package_Instantiation_Node
(Par
)) =
8182 List_Containing
(Inst_Node
)
8183 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(Inst_Node
)
8185 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8188 Insert_After
(Freeze_Node
(Par
), F_Node
);
8191 -- The body enclosing the instance should be frozen after the body that
8192 -- includes the generic, because the body of the instance may make
8193 -- references to entities therein. If the two are not in the same
8194 -- declarative part, or if the one enclosing the instance is frozen
8195 -- already, freeze the instance at the end of the current declarative
8198 elsif Is_Generic_Instance
(Par
)
8199 and then Present
(Freeze_Node
(Par
))
8200 and then Present
(Enc_I
)
8202 if In_Same_Declarative_Part
(Freeze_Node
(Par
), Enc_I
)
8204 (Nkind
(Enc_I
) = N_Package_Body
8206 In_Same_Declarative_Part
(Freeze_Node
(Par
), Parent
(Enc_I
)))
8208 -- The enclosing package may contain several instances. Rather
8209 -- than computing the earliest point at which to insert its freeze
8210 -- node, we place it at the end of the declarative part of the
8211 -- parent of the generic.
8213 Insert_Freeze_Node_For_Instance
8214 (Freeze_Node
(Par
), Package_Freeze_Node
(Enc_I
));
8217 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8219 elsif Present
(Enc_G
)
8220 and then Present
(Enc_I
)
8221 and then Enc_G
/= Enc_I
8222 and then Earlier
(Inst_Node
, Gen_Body
)
8224 if Nkind
(Enc_G
) = N_Package_Body
then
8226 Corresponding_Spec
(Enc_G
);
8227 else pragma Assert
(Nkind
(Enc_G
) = N_Package_Body_Stub
);
8229 Corresponding_Spec
(Proper_Body
(Unit
(Library_Unit
(Enc_G
))));
8232 -- Freeze package that encloses instance, and place node after the
8233 -- package that encloses generic. If enclosing package is already
8234 -- frozen we have to assume it is at the proper place. This may be a
8235 -- potential ABE that requires dynamic checking. Do not add a freeze
8236 -- node if the package that encloses the generic is inside the body
8237 -- that encloses the instance, because the freeze node would be in
8238 -- the wrong scope. Additional contortions needed if the bodies are
8239 -- within a subunit.
8242 Enclosing_Body
: Node_Id
;
8245 if Nkind
(Enc_I
) = N_Package_Body_Stub
then
8246 Enclosing_Body
:= Proper_Body
(Unit
(Library_Unit
(Enc_I
)));
8248 Enclosing_Body
:= Enc_I
;
8251 if Parent
(List_Containing
(Enc_G
)) /= Enclosing_Body
then
8252 Insert_Freeze_Node_For_Instance
8253 (Enc_G
, Package_Freeze_Node
(Enc_I
));
8257 -- Freeze enclosing subunit before instance
8259 Ensure_Freeze_Node
(E_G_Id
);
8261 if not Is_List_Member
(Freeze_Node
(E_G_Id
)) then
8262 Insert_After
(Enc_G
, Freeze_Node
(E_G_Id
));
8265 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8268 -- If none of the above, insert freeze node at the end of the current
8269 -- declarative part.
8271 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8273 end Freeze_Subprogram_Body
;
8279 function Get_Gen_Id
(E
: Assoc_Ptr
) return Entity_Id
is
8281 return Generic_Renamings
.Table
(E
).Gen_Id
;
8284 ---------------------
8285 -- Get_Instance_Of --
8286 ---------------------
8288 function Get_Instance_Of
(A
: Entity_Id
) return Entity_Id
is
8289 Res
: constant Assoc_Ptr
:= Generic_Renamings_HTable
.Get
(A
);
8292 if Res
/= Assoc_Null
then
8293 return Generic_Renamings
.Table
(Res
).Act_Id
;
8296 -- On exit, entity is not instantiated: not a generic parameter, or
8297 -- else parameter of an inner generic unit.
8301 end Get_Instance_Of
;
8303 ------------------------------------
8304 -- Get_Package_Instantiation_Node --
8305 ------------------------------------
8307 function Get_Package_Instantiation_Node
(A
: Entity_Id
) return Node_Id
is
8308 Decl
: Node_Id
:= Unit_Declaration_Node
(A
);
8312 -- If the Package_Instantiation attribute has been set on the package
8313 -- entity, then use it directly when it (or its Original_Node) refers
8314 -- to an N_Package_Instantiation node. In principle it should be
8315 -- possible to have this field set in all cases, which should be
8316 -- investigated, and would allow this function to be significantly
8319 Inst
:= Package_Instantiation
(A
);
8321 if Present
(Inst
) then
8322 if Nkind
(Inst
) = N_Package_Instantiation
then
8325 elsif Nkind
(Original_Node
(Inst
)) = N_Package_Instantiation
then
8326 return Original_Node
(Inst
);
8330 -- If the instantiation is a compilation unit that does not need body
8331 -- then the instantiation node has been rewritten as a package
8332 -- declaration for the instance, and we return the original node.
8334 -- If it is a compilation unit and the instance node has not been
8335 -- rewritten, then it is still the unit of the compilation. Finally, if
8336 -- a body is present, this is a parent of the main unit whose body has
8337 -- been compiled for inlining purposes, and the instantiation node has
8338 -- been rewritten with the instance body.
8340 -- Otherwise the instantiation node appears after the declaration. If
8341 -- the entity is a formal package, the declaration may have been
8342 -- rewritten as a generic declaration (in the case of a formal with box)
8343 -- or left as a formal package declaration if it has actuals, and is
8344 -- found with a forward search.
8346 if Nkind
(Parent
(Decl
)) = N_Compilation_Unit
then
8347 if Nkind
(Decl
) = N_Package_Declaration
8348 and then Present
(Corresponding_Body
(Decl
))
8350 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
8353 if Nkind
(Original_Node
(Decl
)) = N_Package_Instantiation
then
8354 return Original_Node
(Decl
);
8356 return Unit
(Parent
(Decl
));
8359 elsif Nkind
(Decl
) = N_Package_Declaration
8360 and then Nkind
(Original_Node
(Decl
)) = N_Formal_Package_Declaration
8362 return Original_Node
(Decl
);
8365 Inst
:= Next
(Decl
);
8366 while not Nkind_In
(Inst
, N_Package_Instantiation
,
8367 N_Formal_Package_Declaration
)
8374 end Get_Package_Instantiation_Node
;
8376 ------------------------
8377 -- Has_Been_Exchanged --
8378 ------------------------
8380 function Has_Been_Exchanged
(E
: Entity_Id
) return Boolean is
8384 Next
:= First_Elmt
(Exchanged_Views
);
8385 while Present
(Next
) loop
8386 if Full_View
(Node
(Next
)) = E
then
8394 end Has_Been_Exchanged
;
8400 function Hash
(F
: Entity_Id
) return HTable_Range
is
8402 return HTable_Range
(F
mod HTable_Size
);
8405 ------------------------
8406 -- Hide_Current_Scope --
8407 ------------------------
8409 procedure Hide_Current_Scope
is
8410 C
: constant Entity_Id
:= Current_Scope
;
8414 Set_Is_Hidden_Open_Scope
(C
);
8416 E
:= First_Entity
(C
);
8417 while Present
(E
) loop
8418 if Is_Immediately_Visible
(E
) then
8419 Set_Is_Immediately_Visible
(E
, False);
8420 Append_Elmt
(E
, Hidden_Entities
);
8426 -- Make the scope name invisible as well. This is necessary, but might
8427 -- conflict with calls to Rtsfind later on, in case the scope is a
8428 -- predefined one. There is no clean solution to this problem, so for
8429 -- now we depend on the user not redefining Standard itself in one of
8430 -- the parent units.
8432 if Is_Immediately_Visible
(C
) and then C
/= Standard_Standard
then
8433 Set_Is_Immediately_Visible
(C
, False);
8434 Append_Elmt
(C
, Hidden_Entities
);
8437 end Hide_Current_Scope
;
8443 procedure Init_Env
is
8444 Saved
: Instance_Env
;
8447 Saved
.Instantiated_Parent
:= Current_Instantiated_Parent
;
8448 Saved
.Exchanged_Views
:= Exchanged_Views
;
8449 Saved
.Hidden_Entities
:= Hidden_Entities
;
8450 Saved
.Current_Sem_Unit
:= Current_Sem_Unit
;
8451 Saved
.Parent_Unit_Visible
:= Parent_Unit_Visible
;
8452 Saved
.Instance_Parent_Unit
:= Instance_Parent_Unit
;
8454 -- Save configuration switches. These may be reset if the unit is a
8455 -- predefined unit, and the current mode is not Ada 2005.
8457 Save_Opt_Config_Switches
(Saved
.Switches
);
8459 Instance_Envs
.Append
(Saved
);
8461 Exchanged_Views
:= New_Elmt_List
;
8462 Hidden_Entities
:= New_Elmt_List
;
8464 -- Make dummy entry for Instantiated parent. If generic unit is legal,
8465 -- this is set properly in Set_Instance_Env.
8467 Current_Instantiated_Parent
:=
8468 (Current_Scope
, Current_Scope
, Assoc_Null
);
8471 ------------------------------
8472 -- In_Same_Declarative_Part --
8473 ------------------------------
8475 function In_Same_Declarative_Part
8477 Inst
: Node_Id
) return Boolean
8479 Decls
: constant Node_Id
:= Parent
(F_Node
);
8483 Nod
:= Parent
(Inst
);
8484 while Present
(Nod
) loop
8488 elsif Nkind_In
(Nod
, N_Subprogram_Body
,
8490 N_Package_Declaration
,
8497 elsif Nkind
(Nod
) = N_Subunit
then
8498 Nod
:= Corresponding_Stub
(Nod
);
8500 elsif Nkind
(Nod
) = N_Compilation_Unit
then
8504 Nod
:= Parent
(Nod
);
8509 end In_Same_Declarative_Part
;
8511 ---------------------
8512 -- In_Main_Context --
8513 ---------------------
8515 function In_Main_Context
(E
: Entity_Id
) return Boolean is
8521 if not Is_Compilation_Unit
(E
)
8522 or else Ekind
(E
) /= E_Package
8523 or else In_Private_Part
(E
)
8528 Context
:= Context_Items
(Cunit
(Main_Unit
));
8530 Clause
:= First
(Context
);
8531 while Present
(Clause
) loop
8532 if Nkind
(Clause
) = N_With_Clause
then
8533 Nam
:= Name
(Clause
);
8535 -- If the current scope is part of the context of the main unit,
8536 -- analysis of the corresponding with_clause is not complete, and
8537 -- the entity is not set. We use the Chars field directly, which
8538 -- might produce false positives in rare cases, but guarantees
8539 -- that we produce all the instance bodies we will need.
8541 if (Is_Entity_Name
(Nam
) and then Chars
(Nam
) = Chars
(E
))
8542 or else (Nkind
(Nam
) = N_Selected_Component
8543 and then Chars
(Selector_Name
(Nam
)) = Chars
(E
))
8553 end In_Main_Context
;
8555 ---------------------
8556 -- Inherit_Context --
8557 ---------------------
8559 procedure Inherit_Context
(Gen_Decl
: Node_Id
; Inst
: Node_Id
) is
8560 Current_Context
: List_Id
;
8561 Current_Unit
: Node_Id
;
8570 if Nkind
(Parent
(Gen_Decl
)) = N_Compilation_Unit
then
8572 -- The inherited context is attached to the enclosing compilation
8573 -- unit. This is either the main unit, or the declaration for the
8574 -- main unit (in case the instantiation appears within the package
8575 -- declaration and the main unit is its body).
8577 Current_Unit
:= Parent
(Inst
);
8578 while Present
(Current_Unit
)
8579 and then Nkind
(Current_Unit
) /= N_Compilation_Unit
8581 Current_Unit
:= Parent
(Current_Unit
);
8584 Current_Context
:= Context_Items
(Current_Unit
);
8586 Item
:= First
(Context_Items
(Parent
(Gen_Decl
)));
8587 while Present
(Item
) loop
8588 if Nkind
(Item
) = N_With_Clause
then
8589 Lib_Unit
:= Library_Unit
(Item
);
8591 -- Take care to prevent direct cyclic with's
8593 if Lib_Unit
/= Current_Unit
then
8595 -- Do not add a unit if it is already in the context
8597 Clause
:= First
(Current_Context
);
8599 while Present
(Clause
) loop
8600 if Nkind
(Clause
) = N_With_Clause
and then
8601 Library_Unit
(Clause
) = Lib_Unit
8611 New_I
:= New_Copy
(Item
);
8612 Set_Implicit_With
(New_I
, True);
8613 Set_Implicit_With_From_Instantiation
(New_I
, True);
8614 Append
(New_I
, Current_Context
);
8622 end Inherit_Context
;
8628 procedure Initialize
is
8630 Generic_Renamings
.Init
;
8633 Generic_Renamings_HTable
.Reset
;
8634 Circularity_Detected
:= False;
8635 Exchanged_Views
:= No_Elist
;
8636 Hidden_Entities
:= No_Elist
;
8639 -------------------------------------
8640 -- Insert_Freeze_Node_For_Instance --
8641 -------------------------------------
8643 procedure Insert_Freeze_Node_For_Instance
8652 function Enclosing_Body
(N
: Node_Id
) return Node_Id
;
8653 -- Find enclosing package or subprogram body, if any. Freeze node may
8654 -- be placed at end of current declarative list if previous instance
8655 -- and current one have different enclosing bodies.
8657 function Previous_Instance
(Gen
: Entity_Id
) return Entity_Id
;
8658 -- Find the local instance, if any, that declares the generic that is
8659 -- being instantiated. If present, the freeze node for this instance
8660 -- must follow the freeze node for the previous instance.
8662 --------------------
8663 -- Enclosing_Body --
8664 --------------------
8666 function Enclosing_Body
(N
: Node_Id
) return Node_Id
is
8672 and then Nkind
(Parent
(P
)) /= N_Compilation_Unit
8674 if Nkind_In
(P
, N_Package_Body
, N_Subprogram_Body
) then
8675 if Nkind
(Parent
(P
)) = N_Subunit
then
8676 return Corresponding_Stub
(Parent
(P
));
8682 P
:= True_Parent
(P
);
8688 -----------------------
8689 -- Previous_Instance --
8690 -----------------------
8692 function Previous_Instance
(Gen
: Entity_Id
) return Entity_Id
is
8697 while Present
(S
) and then S
/= Standard_Standard
loop
8698 if Is_Generic_Instance
(S
)
8699 and then In_Same_Source_Unit
(S
, N
)
8708 end Previous_Instance
;
8710 -- Start of processing for Insert_Freeze_Node_For_Instance
8713 if not Is_List_Member
(F_Node
) then
8715 Decls
:= List_Containing
(N
);
8716 Inst
:= Entity
(F_Node
);
8717 Par_N
:= Parent
(Decls
);
8719 -- When processing a subprogram instantiation, utilize the actual
8720 -- subprogram instantiation rather than its package wrapper as it
8721 -- carries all the context information.
8723 if Is_Wrapper_Package
(Inst
) then
8724 Inst
:= Related_Instance
(Inst
);
8727 -- If this is a package instance, check whether the generic is
8728 -- declared in a previous instance and the current instance is
8729 -- not within the previous one.
8731 if Present
(Generic_Parent
(Parent
(Inst
)))
8732 and then Is_In_Main_Unit
(N
)
8735 Enclosing_N
: constant Node_Id
:= Enclosing_Body
(N
);
8736 Par_I
: constant Entity_Id
:=
8738 (Generic_Parent
(Parent
(Inst
)));
8743 and then Earlier
(N
, Freeze_Node
(Par_I
))
8745 Scop
:= Scope
(Inst
);
8747 -- If the current instance is within the one that contains
8748 -- the generic, the freeze node for the current one must
8749 -- appear in the current declarative part. Ditto, if the
8750 -- current instance is within another package instance or
8751 -- within a body that does not enclose the current instance.
8752 -- In these three cases the freeze node of the previous
8753 -- instance is not relevant.
8755 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
8756 exit when Scop
= Par_I
8758 (Is_Generic_Instance
(Scop
)
8759 and then Scope_Depth
(Scop
) > Scope_Depth
(Par_I
));
8760 Scop
:= Scope
(Scop
);
8763 -- Previous instance encloses current instance
8765 if Scop
= Par_I
then
8768 -- If the next node is a source body we must freeze in
8769 -- the current scope as well.
8771 elsif Present
(Next
(N
))
8772 and then Nkind_In
(Next
(N
), N_Subprogram_Body
,
8774 and then Comes_From_Source
(Next
(N
))
8778 -- Current instance is within an unrelated instance
8780 elsif Is_Generic_Instance
(Scop
) then
8783 -- Current instance is within an unrelated body
8785 elsif Present
(Enclosing_N
)
8786 and then Enclosing_N
/= Enclosing_Body
(Par_I
)
8791 Insert_After
(Freeze_Node
(Par_I
), F_Node
);
8798 -- When the instantiation occurs in a package declaration, append the
8799 -- freeze node to the private declarations (if any).
8801 if Nkind
(Par_N
) = N_Package_Specification
8802 and then Decls
= Visible_Declarations
(Par_N
)
8803 and then Present
(Private_Declarations
(Par_N
))
8804 and then not Is_Empty_List
(Private_Declarations
(Par_N
))
8806 Decls
:= Private_Declarations
(Par_N
);
8807 Decl
:= First
(Decls
);
8810 -- Determine the proper freeze point of a package instantiation. We
8811 -- adhere to the general rule of a package or subprogram body causing
8812 -- freezing of anything before it in the same declarative region. In
8813 -- this case, the proper freeze point of a package instantiation is
8814 -- before the first source body which follows, or before a stub. This
8815 -- ensures that entities coming from the instance are already frozen
8816 -- and usable in source bodies.
8818 if Nkind
(Par_N
) /= N_Package_Declaration
8819 and then Ekind
(Inst
) = E_Package
8820 and then Is_Generic_Instance
(Inst
)
8822 not In_Same_Source_Unit
(Generic_Parent
(Parent
(Inst
)), Inst
)
8824 while Present
(Decl
) loop
8825 if (Nkind
(Decl
) in N_Unit_Body
8827 Nkind
(Decl
) in N_Body_Stub
)
8828 and then Comes_From_Source
(Decl
)
8830 Insert_Before
(Decl
, F_Node
);
8838 -- In a package declaration, or if no previous body, insert at end
8841 Set_Sloc
(F_Node
, Sloc
(Last
(Decls
)));
8842 Insert_After
(Last
(Decls
), F_Node
);
8844 end Insert_Freeze_Node_For_Instance
;
8850 procedure Install_Body
8851 (Act_Body
: Node_Id
;
8856 Act_Id
: constant Entity_Id
:= Corresponding_Spec
(Act_Body
);
8857 Act_Unit
: constant Node_Id
:= Unit
(Cunit
(Get_Source_Unit
(N
)));
8858 Gen_Id
: constant Entity_Id
:= Corresponding_Spec
(Gen_Body
);
8859 Par
: constant Entity_Id
:= Scope
(Gen_Id
);
8860 Gen_Unit
: constant Node_Id
:=
8861 Unit
(Cunit
(Get_Source_Unit
(Gen_Decl
)));
8862 Orig_Body
: Node_Id
:= Gen_Body
;
8864 Body_Unit
: Node_Id
;
8866 Must_Delay
: Boolean;
8868 function In_Same_Enclosing_Subp
return Boolean;
8869 -- Check whether instance and generic body are within same subprogram.
8871 function True_Sloc
(N
: Node_Id
) return Source_Ptr
;
8872 -- If the instance is nested inside a generic unit, the Sloc of the
8873 -- instance indicates the place of the original definition, not the
8874 -- point of the current enclosing instance. Pending a better usage of
8875 -- Slocs to indicate instantiation places, we determine the place of
8876 -- origin of a node by finding the maximum sloc of any ancestor node.
8877 -- Why is this not equivalent to Top_Level_Location ???
8879 ----------------------------
8880 -- In_Same_Enclosing_Subp --
8881 ----------------------------
8883 function In_Same_Enclosing_Subp
return Boolean is
8888 Scop
:= Scope
(Act_Id
);
8889 while Scop
/= Standard_Standard
8890 and then not Is_Overloadable
(Scop
)
8892 Scop
:= Scope
(Scop
);
8895 if Scop
= Standard_Standard
then
8901 Scop
:= Scope
(Gen_Id
);
8902 while Scop
/= Standard_Standard
loop
8906 Scop
:= Scope
(Scop
);
8911 end In_Same_Enclosing_Subp
;
8917 function True_Sloc
(N
: Node_Id
) return Source_Ptr
is
8924 while Present
(N1
) and then N1
/= Act_Unit
loop
8925 if Sloc
(N1
) > Res
then
8935 -- Start of processing for Install_Body
8938 -- Handle first the case of an instance with incomplete actual types.
8939 -- The instance body cannot be placed after the declaration because
8940 -- full views have not been seen yet. Any use of the non-limited views
8941 -- in the instance body requires the presence of a regular with_clause
8942 -- in the enclosing unit, and will fail if this with_clause is missing.
8943 -- We place the instance body at the beginning of the enclosing body,
8944 -- which is the unit being compiled. The freeze node for the instance
8945 -- is then placed after the instance body.
8947 if not Is_Empty_Elmt_List
(Incomplete_Actuals
(Act_Id
))
8948 and then Expander_Active
8949 and then Ekind
(Scope
(Act_Id
)) = E_Package
8952 Scop
: constant Entity_Id
:= Scope
(Act_Id
);
8953 Body_Id
: constant Node_Id
:=
8954 Corresponding_Body
(Unit_Declaration_Node
(Scop
));
8957 Ensure_Freeze_Node
(Act_Id
);
8958 F_Node
:= Freeze_Node
(Act_Id
);
8959 if Present
(Body_Id
) then
8960 Set_Is_Frozen
(Act_Id
, False);
8961 Prepend
(Act_Body
, Declarations
(Parent
(Body_Id
)));
8962 if Is_List_Member
(F_Node
) then
8966 Insert_After
(Act_Body
, F_Node
);
8972 -- If the body is a subunit, the freeze point is the corresponding stub
8973 -- in the current compilation, not the subunit itself.
8975 if Nkind
(Parent
(Gen_Body
)) = N_Subunit
then
8976 Orig_Body
:= Corresponding_Stub
(Parent
(Gen_Body
));
8978 Orig_Body
:= Gen_Body
;
8981 Body_Unit
:= Unit
(Cunit
(Get_Source_Unit
(Orig_Body
)));
8983 -- If the instantiation and the generic definition appear in the same
8984 -- package declaration, this is an early instantiation. If they appear
8985 -- in the same declarative part, it is an early instantiation only if
8986 -- the generic body appears textually later, and the generic body is
8987 -- also in the main unit.
8989 -- If instance is nested within a subprogram, and the generic body
8990 -- is not, the instance is delayed because the enclosing body is. If
8991 -- instance and body are within the same scope, or the same subprogram
8992 -- body, indicate explicitly that the instance is delayed.
8995 (Gen_Unit
= Act_Unit
8996 and then (Nkind_In
(Gen_Unit
, N_Package_Declaration
,
8997 N_Generic_Package_Declaration
)
8998 or else (Gen_Unit
= Body_Unit
8999 and then True_Sloc
(N
) < Sloc
(Orig_Body
)))
9000 and then Is_In_Main_Unit
(Gen_Unit
)
9001 and then (Scope
(Act_Id
) = Scope
(Gen_Id
)
9002 or else In_Same_Enclosing_Subp
));
9004 -- If this is an early instantiation, the freeze node is placed after
9005 -- the generic body. Otherwise, if the generic appears in an instance,
9006 -- we cannot freeze the current instance until the outer one is frozen.
9007 -- This is only relevant if the current instance is nested within some
9008 -- inner scope not itself within the outer instance. If this scope is
9009 -- a package body in the same declarative part as the outer instance,
9010 -- then that body needs to be frozen after the outer instance. Finally,
9011 -- if no delay is needed, we place the freeze node at the end of the
9012 -- current declarative part.
9014 if Expander_Active
then
9015 Ensure_Freeze_Node
(Act_Id
);
9016 F_Node
:= Freeze_Node
(Act_Id
);
9019 Insert_After
(Orig_Body
, F_Node
);
9021 elsif Is_Generic_Instance
(Par
)
9022 and then Present
(Freeze_Node
(Par
))
9023 and then Scope
(Act_Id
) /= Par
9025 -- Freeze instance of inner generic after instance of enclosing
9028 if In_Same_Declarative_Part
(Freeze_Node
(Par
), N
) then
9030 -- Handle the following case:
9032 -- package Parent_Inst is new ...
9035 -- procedure P ... -- this body freezes Parent_Inst
9037 -- package Inst is new ...
9039 -- In this particular scenario, the freeze node for Inst must
9040 -- be inserted in the same manner as that of Parent_Inst,
9041 -- before the next source body or at the end of the declarative
9042 -- list (body not available). If body P did not exist and
9043 -- Parent_Inst was frozen after Inst, either by a body
9044 -- following Inst or at the end of the declarative region,
9045 -- the freeze node for Inst must be inserted after that of
9046 -- Parent_Inst. This relation is established by comparing
9047 -- the Slocs of Parent_Inst freeze node and Inst.
9049 if List_Containing
(Get_Package_Instantiation_Node
(Par
)) =
9051 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(N
)
9053 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9055 Insert_After
(Freeze_Node
(Par
), F_Node
);
9058 -- Freeze package enclosing instance of inner generic after
9059 -- instance of enclosing generic.
9061 elsif Nkind_In
(Parent
(N
), N_Package_Body
, N_Subprogram_Body
)
9062 and then In_Same_Declarative_Part
(Freeze_Node
(Par
), Parent
(N
))
9065 Enclosing
: Entity_Id
;
9068 Enclosing
:= Corresponding_Spec
(Parent
(N
));
9070 if No
(Enclosing
) then
9071 Enclosing
:= Defining_Entity
(Parent
(N
));
9074 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9075 Ensure_Freeze_Node
(Enclosing
);
9077 if not Is_List_Member
(Freeze_Node
(Enclosing
)) then
9079 -- The enclosing context is a subunit, insert the freeze
9080 -- node after the stub.
9082 if Nkind
(Parent
(Parent
(N
))) = N_Subunit
then
9083 Insert_Freeze_Node_For_Instance
9084 (Corresponding_Stub
(Parent
(Parent
(N
))),
9085 Freeze_Node
(Enclosing
));
9087 -- The enclosing context is a package with a stub body
9088 -- which has already been replaced by the real body.
9089 -- Insert the freeze node after the actual body.
9091 elsif Ekind
(Enclosing
) = E_Package
9092 and then Present
(Body_Entity
(Enclosing
))
9093 and then Was_Originally_Stub
9094 (Parent
(Body_Entity
(Enclosing
)))
9096 Insert_Freeze_Node_For_Instance
9097 (Parent
(Body_Entity
(Enclosing
)),
9098 Freeze_Node
(Enclosing
));
9100 -- The parent instance has been frozen before the body of
9101 -- the enclosing package, insert the freeze node after
9104 elsif List_Containing
(Freeze_Node
(Par
)) =
9105 List_Containing
(Parent
(N
))
9106 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(Parent
(N
))
9108 Insert_Freeze_Node_For_Instance
9109 (Parent
(N
), Freeze_Node
(Enclosing
));
9113 (Freeze_Node
(Par
), Freeze_Node
(Enclosing
));
9119 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9123 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9127 Set_Is_Frozen
(Act_Id
);
9128 Insert_Before
(N
, Act_Body
);
9129 Mark_Rewrite_Insertion
(Act_Body
);
9132 -----------------------------
9133 -- Install_Formal_Packages --
9134 -----------------------------
9136 procedure Install_Formal_Packages
(Par
: Entity_Id
) is
9139 Gen_E
: Entity_Id
:= Empty
;
9142 E
:= First_Entity
(Par
);
9144 -- If we are installing an instance parent, locate the formal packages
9145 -- of its generic parent.
9147 if Is_Generic_Instance
(Par
) then
9148 Gen
:= Generic_Parent
(Package_Specification
(Par
));
9149 Gen_E
:= First_Entity
(Gen
);
9152 while Present
(E
) loop
9153 if Ekind
(E
) = E_Package
9154 and then Nkind
(Parent
(E
)) = N_Package_Renaming_Declaration
9156 -- If this is the renaming for the parent instance, done
9158 if Renamed_Object
(E
) = Par
then
9161 -- The visibility of a formal of an enclosing generic is already
9164 elsif Denotes_Formal_Package
(E
) then
9167 elsif Present
(Associated_Formal_Package
(E
)) then
9168 Check_Generic_Actuals
(Renamed_Object
(E
), True);
9169 Set_Is_Hidden
(E
, False);
9171 -- Find formal package in generic unit that corresponds to
9172 -- (instance of) formal package in instance.
9174 while Present
(Gen_E
) and then Chars
(Gen_E
) /= Chars
(E
) loop
9175 Next_Entity
(Gen_E
);
9178 if Present
(Gen_E
) then
9179 Map_Formal_Package_Entities
(Gen_E
, E
);
9186 if Present
(Gen_E
) then
9187 Next_Entity
(Gen_E
);
9190 end Install_Formal_Packages
;
9192 --------------------
9193 -- Install_Parent --
9194 --------------------
9196 procedure Install_Parent
(P
: Entity_Id
; In_Body
: Boolean := False) is
9197 Ancestors
: constant Elist_Id
:= New_Elmt_List
;
9198 S
: constant Entity_Id
:= Current_Scope
;
9199 Inst_Par
: Entity_Id
;
9200 First_Par
: Entity_Id
;
9201 Inst_Node
: Node_Id
;
9202 Gen_Par
: Entity_Id
;
9203 First_Gen
: Entity_Id
;
9206 procedure Install_Noninstance_Specs
(Par
: Entity_Id
);
9207 -- Install the scopes of noninstance parent units ending with Par
9209 procedure Install_Spec
(Par
: Entity_Id
);
9210 -- The child unit is within the declarative part of the parent, so the
9211 -- declarations within the parent are immediately visible.
9213 -------------------------------
9214 -- Install_Noninstance_Specs --
9215 -------------------------------
9217 procedure Install_Noninstance_Specs
(Par
: Entity_Id
) is
9220 and then Par
/= Standard_Standard
9221 and then not In_Open_Scopes
(Par
)
9223 Install_Noninstance_Specs
(Scope
(Par
));
9226 end Install_Noninstance_Specs
;
9232 procedure Install_Spec
(Par
: Entity_Id
) is
9233 Spec
: constant Node_Id
:= Package_Specification
(Par
);
9236 -- If this parent of the child instance is a top-level unit,
9237 -- then record the unit and its visibility for later resetting in
9238 -- Remove_Parent. We exclude units that are generic instances, as we
9239 -- only want to record this information for the ultimate top-level
9240 -- noninstance parent (is that always correct???).
9242 if Scope
(Par
) = Standard_Standard
9243 and then not Is_Generic_Instance
(Par
)
9245 Parent_Unit_Visible
:= Is_Immediately_Visible
(Par
);
9246 Instance_Parent_Unit
:= Par
;
9249 -- Open the parent scope and make it and its declarations visible.
9250 -- If this point is not within a body, then only the visible
9251 -- declarations should be made visible, and installation of the
9252 -- private declarations is deferred until the appropriate point
9253 -- within analysis of the spec being instantiated (see the handling
9254 -- of parent visibility in Analyze_Package_Specification). This is
9255 -- relaxed in the case where the parent unit is Ada.Tags, to avoid
9256 -- private view problems that occur when compiling instantiations of
9257 -- a generic child of that package (Generic_Dispatching_Constructor).
9258 -- If the instance freezes a tagged type, inlinings of operations
9259 -- from Ada.Tags may need the full view of type Tag. If inlining took
9260 -- proper account of establishing visibility of inlined subprograms'
9261 -- parents then it should be possible to remove this
9262 -- special check. ???
9265 Set_Is_Immediately_Visible
(Par
);
9266 Install_Visible_Declarations
(Par
);
9267 Set_Use
(Visible_Declarations
(Spec
));
9269 if In_Body
or else Is_RTU
(Par
, Ada_Tags
) then
9270 Install_Private_Declarations
(Par
);
9271 Set_Use
(Private_Declarations
(Spec
));
9275 -- Start of processing for Install_Parent
9278 -- We need to install the parent instance to compile the instantiation
9279 -- of the child, but the child instance must appear in the current
9280 -- scope. Given that we cannot place the parent above the current scope
9281 -- in the scope stack, we duplicate the current scope and unstack both
9282 -- after the instantiation is complete.
9284 -- If the parent is itself the instantiation of a child unit, we must
9285 -- also stack the instantiation of its parent, and so on. Each such
9286 -- ancestor is the prefix of the name in a prior instantiation.
9288 -- If this is a nested instance, the parent unit itself resolves to
9289 -- a renaming of the parent instance, whose declaration we need.
9291 -- Finally, the parent may be a generic (not an instance) when the
9292 -- child unit appears as a formal package.
9296 if Present
(Renamed_Entity
(Inst_Par
)) then
9297 Inst_Par
:= Renamed_Entity
(Inst_Par
);
9300 First_Par
:= Inst_Par
;
9302 Gen_Par
:= Generic_Parent
(Package_Specification
(Inst_Par
));
9304 First_Gen
:= Gen_Par
;
9306 while Present
(Gen_Par
) and then Is_Child_Unit
(Gen_Par
) loop
9308 -- Load grandparent instance as well
9310 Inst_Node
:= Get_Package_Instantiation_Node
(Inst_Par
);
9312 if Nkind
(Name
(Inst_Node
)) = N_Expanded_Name
then
9313 Inst_Par
:= Entity
(Prefix
(Name
(Inst_Node
)));
9315 if Present
(Renamed_Entity
(Inst_Par
)) then
9316 Inst_Par
:= Renamed_Entity
(Inst_Par
);
9319 Gen_Par
:= Generic_Parent
(Package_Specification
(Inst_Par
));
9321 if Present
(Gen_Par
) then
9322 Prepend_Elmt
(Inst_Par
, Ancestors
);
9325 -- Parent is not the name of an instantiation
9327 Install_Noninstance_Specs
(Inst_Par
);
9338 if Present
(First_Gen
) then
9339 Append_Elmt
(First_Par
, Ancestors
);
9341 Install_Noninstance_Specs
(First_Par
);
9344 if not Is_Empty_Elmt_List
(Ancestors
) then
9345 Elmt
:= First_Elmt
(Ancestors
);
9346 while Present
(Elmt
) loop
9347 Install_Spec
(Node
(Elmt
));
9348 Install_Formal_Packages
(Node
(Elmt
));
9358 -------------------------------
9359 -- Install_Hidden_Primitives --
9360 -------------------------------
9362 procedure Install_Hidden_Primitives
9363 (Prims_List
: in out Elist_Id
;
9368 List
: Elist_Id
:= No_Elist
;
9369 Prim_G_Elmt
: Elmt_Id
;
9370 Prim_A_Elmt
: Elmt_Id
;
9375 -- No action needed in case of serious errors because we cannot trust
9376 -- in the order of primitives
9378 if Serious_Errors_Detected
> 0 then
9381 -- No action possible if we don't have available the list of primitive
9385 or else not Is_Record_Type
(Gen_T
)
9386 or else not Is_Tagged_Type
(Gen_T
)
9387 or else not Is_Record_Type
(Act_T
)
9388 or else not Is_Tagged_Type
(Act_T
)
9392 -- There is no need to handle interface types since their primitives
9395 elsif Is_Interface
(Gen_T
) then
9399 Prim_G_Elmt
:= First_Elmt
(Primitive_Operations
(Gen_T
));
9401 if not Is_Class_Wide_Type
(Act_T
) then
9402 Prim_A_Elmt
:= First_Elmt
(Primitive_Operations
(Act_T
));
9404 Prim_A_Elmt
:= First_Elmt
(Primitive_Operations
(Root_Type
(Act_T
)));
9408 -- Skip predefined primitives in the generic formal
9410 while Present
(Prim_G_Elmt
)
9411 and then Is_Predefined_Dispatching_Operation
(Node
(Prim_G_Elmt
))
9413 Next_Elmt
(Prim_G_Elmt
);
9416 -- Skip predefined primitives in the generic actual
9418 while Present
(Prim_A_Elmt
)
9419 and then Is_Predefined_Dispatching_Operation
(Node
(Prim_A_Elmt
))
9421 Next_Elmt
(Prim_A_Elmt
);
9424 exit when No
(Prim_G_Elmt
) or else No
(Prim_A_Elmt
);
9426 Prim_G
:= Node
(Prim_G_Elmt
);
9427 Prim_A
:= Node
(Prim_A_Elmt
);
9429 -- There is no need to handle interface primitives because their
9430 -- primitives are not hidden
9432 exit when Present
(Interface_Alias
(Prim_G
));
9434 -- Here we install one hidden primitive
9436 if Chars
(Prim_G
) /= Chars
(Prim_A
)
9437 and then Has_Suffix
(Prim_A
, 'P')
9438 and then Remove_Suffix
(Prim_A
, 'P') = Chars
(Prim_G
)
9440 Set_Chars
(Prim_A
, Chars
(Prim_G
));
9441 Append_New_Elmt
(Prim_A
, To
=> List
);
9444 Next_Elmt
(Prim_A_Elmt
);
9445 Next_Elmt
(Prim_G_Elmt
);
9448 -- Append the elements to the list of temporarily visible primitives
9449 -- avoiding duplicates.
9451 if Present
(List
) then
9452 if No
(Prims_List
) then
9453 Prims_List
:= New_Elmt_List
;
9456 Elmt
:= First_Elmt
(List
);
9457 while Present
(Elmt
) loop
9458 Append_Unique_Elmt
(Node
(Elmt
), Prims_List
);
9462 end Install_Hidden_Primitives
;
9464 -------------------------------
9465 -- Restore_Hidden_Primitives --
9466 -------------------------------
9468 procedure Restore_Hidden_Primitives
(Prims_List
: in out Elist_Id
) is
9469 Prim_Elmt
: Elmt_Id
;
9473 if Prims_List
/= No_Elist
then
9474 Prim_Elmt
:= First_Elmt
(Prims_List
);
9475 while Present
(Prim_Elmt
) loop
9476 Prim
:= Node
(Prim_Elmt
);
9477 Set_Chars
(Prim
, Add_Suffix
(Prim
, 'P'));
9478 Next_Elmt
(Prim_Elmt
);
9481 Prims_List
:= No_Elist
;
9483 end Restore_Hidden_Primitives
;
9485 --------------------------------
9486 -- Instantiate_Formal_Package --
9487 --------------------------------
9489 function Instantiate_Formal_Package
9492 Analyzed_Formal
: Node_Id
) return List_Id
9494 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
9495 Actual_Pack
: Entity_Id
;
9496 Formal_Pack
: Entity_Id
;
9497 Gen_Parent
: Entity_Id
;
9500 Parent_Spec
: Node_Id
;
9502 procedure Find_Matching_Actual
9504 Act
: in out Entity_Id
);
9505 -- We need to associate each formal entity in the formal package with
9506 -- the corresponding entity in the actual package. The actual package
9507 -- has been analyzed and possibly expanded, and as a result there is
9508 -- no one-to-one correspondence between the two lists (for example,
9509 -- the actual may include subtypes, itypes, and inherited primitive
9510 -- operations, interspersed among the renaming declarations for the
9511 -- actuals). We retrieve the corresponding actual by name because each
9512 -- actual has the same name as the formal, and they do appear in the
9515 function Get_Formal_Entity
(N
: Node_Id
) return Entity_Id
;
9516 -- Retrieve entity of defining entity of generic formal parameter.
9517 -- Only the declarations of formals need to be considered when
9518 -- linking them to actuals, but the declarative list may include
9519 -- internal entities generated during analysis, and those are ignored.
9521 procedure Match_Formal_Entity
9522 (Formal_Node
: Node_Id
;
9523 Formal_Ent
: Entity_Id
;
9524 Actual_Ent
: Entity_Id
);
9525 -- Associates the formal entity with the actual. In the case where
9526 -- Formal_Ent is a formal package, this procedure iterates through all
9527 -- of its formals and enters associations between the actuals occurring
9528 -- in the formal package's corresponding actual package (given by
9529 -- Actual_Ent) and the formal package's formal parameters. This
9530 -- procedure recurses if any of the parameters is itself a package.
9532 function Is_Instance_Of
9533 (Act_Spec
: Entity_Id
;
9534 Gen_Anc
: Entity_Id
) return Boolean;
9535 -- The actual can be an instantiation of a generic within another
9536 -- instance, in which case there is no direct link from it to the
9537 -- original generic ancestor. In that case, we recognize that the
9538 -- ultimate ancestor is the same by examining names and scopes.
9540 procedure Process_Nested_Formal
(Formal
: Entity_Id
);
9541 -- If the current formal is declared with a box, its own formals are
9542 -- visible in the instance, as they were in the generic, and their
9543 -- Hidden flag must be reset. If some of these formals are themselves
9544 -- packages declared with a box, the processing must be recursive.
9546 --------------------------
9547 -- Find_Matching_Actual --
9548 --------------------------
9550 procedure Find_Matching_Actual
9552 Act
: in out Entity_Id
)
9554 Formal_Ent
: Entity_Id
;
9557 case Nkind
(Original_Node
(F
)) is
9558 when N_Formal_Object_Declaration |
9559 N_Formal_Type_Declaration
=>
9560 Formal_Ent
:= Defining_Identifier
(F
);
9562 while Chars
(Act
) /= Chars
(Formal_Ent
) loop
9566 when N_Formal_Subprogram_Declaration |
9567 N_Formal_Package_Declaration |
9568 N_Package_Declaration |
9569 N_Generic_Package_Declaration
=>
9570 Formal_Ent
:= Defining_Entity
(F
);
9572 while Chars
(Act
) /= Chars
(Formal_Ent
) loop
9577 raise Program_Error
;
9579 end Find_Matching_Actual
;
9581 -------------------------
9582 -- Match_Formal_Entity --
9583 -------------------------
9585 procedure Match_Formal_Entity
9586 (Formal_Node
: Node_Id
;
9587 Formal_Ent
: Entity_Id
;
9588 Actual_Ent
: Entity_Id
)
9590 Act_Pkg
: Entity_Id
;
9593 Set_Instance_Of
(Formal_Ent
, Actual_Ent
);
9595 if Ekind
(Actual_Ent
) = E_Package
then
9597 -- Record associations for each parameter
9599 Act_Pkg
:= Actual_Ent
;
9602 A_Ent
: Entity_Id
:= First_Entity
(Act_Pkg
);
9611 -- Retrieve the actual given in the formal package declaration
9613 Actual
:= Entity
(Name
(Original_Node
(Formal_Node
)));
9615 -- The actual in the formal package declaration may be a
9616 -- renamed generic package, in which case we want to retrieve
9617 -- the original generic in order to traverse its formal part.
9619 if Present
(Renamed_Entity
(Actual
)) then
9620 Gen_Decl
:= Unit_Declaration_Node
(Renamed_Entity
(Actual
));
9622 Gen_Decl
:= Unit_Declaration_Node
(Actual
);
9625 Formals
:= Generic_Formal_Declarations
(Gen_Decl
);
9627 if Present
(Formals
) then
9628 F_Node
:= First_Non_Pragma
(Formals
);
9633 while Present
(A_Ent
)
9634 and then Present
(F_Node
)
9635 and then A_Ent
/= First_Private_Entity
(Act_Pkg
)
9637 F_Ent
:= Get_Formal_Entity
(F_Node
);
9639 if Present
(F_Ent
) then
9641 -- This is a formal of the original package. Record
9642 -- association and recurse.
9644 Find_Matching_Actual
(F_Node
, A_Ent
);
9645 Match_Formal_Entity
(F_Node
, F_Ent
, A_Ent
);
9646 Next_Entity
(A_Ent
);
9649 Next_Non_Pragma
(F_Node
);
9653 end Match_Formal_Entity
;
9655 -----------------------
9656 -- Get_Formal_Entity --
9657 -----------------------
9659 function Get_Formal_Entity
(N
: Node_Id
) return Entity_Id
is
9660 Kind
: constant Node_Kind
:= Nkind
(Original_Node
(N
));
9663 when N_Formal_Object_Declaration
=>
9664 return Defining_Identifier
(N
);
9666 when N_Formal_Type_Declaration
=>
9667 return Defining_Identifier
(N
);
9669 when N_Formal_Subprogram_Declaration
=>
9670 return Defining_Unit_Name
(Specification
(N
));
9672 when N_Formal_Package_Declaration
=>
9673 return Defining_Identifier
(Original_Node
(N
));
9675 when N_Generic_Package_Declaration
=>
9676 return Defining_Identifier
(Original_Node
(N
));
9678 -- All other declarations are introduced by semantic analysis and
9679 -- have no match in the actual.
9684 end Get_Formal_Entity
;
9686 --------------------
9687 -- Is_Instance_Of --
9688 --------------------
9690 function Is_Instance_Of
9691 (Act_Spec
: Entity_Id
;
9692 Gen_Anc
: Entity_Id
) return Boolean
9694 Gen_Par
: constant Entity_Id
:= Generic_Parent
(Act_Spec
);
9697 if No
(Gen_Par
) then
9700 -- Simplest case: the generic parent of the actual is the formal
9702 elsif Gen_Par
= Gen_Anc
then
9705 elsif Chars
(Gen_Par
) /= Chars
(Gen_Anc
) then
9708 -- The actual may be obtained through several instantiations. Its
9709 -- scope must itself be an instance of a generic declared in the
9710 -- same scope as the formal. Any other case is detected above.
9712 elsif not Is_Generic_Instance
(Scope
(Gen_Par
)) then
9716 return Generic_Parent
(Parent
(Scope
(Gen_Par
))) = Scope
(Gen_Anc
);
9720 ---------------------------
9721 -- Process_Nested_Formal --
9722 ---------------------------
9724 procedure Process_Nested_Formal
(Formal
: Entity_Id
) is
9728 if Present
(Associated_Formal_Package
(Formal
))
9729 and then Box_Present
(Parent
(Associated_Formal_Package
(Formal
)))
9731 Ent
:= First_Entity
(Formal
);
9732 while Present
(Ent
) loop
9733 Set_Is_Hidden
(Ent
, False);
9734 Set_Is_Visible_Formal
(Ent
);
9735 Set_Is_Potentially_Use_Visible
9736 (Ent
, Is_Potentially_Use_Visible
(Formal
));
9738 if Ekind
(Ent
) = E_Package
then
9739 exit when Renamed_Entity
(Ent
) = Renamed_Entity
(Formal
);
9740 Process_Nested_Formal
(Ent
);
9746 end Process_Nested_Formal
;
9748 -- Start of processing for Instantiate_Formal_Package
9753 if not Is_Entity_Name
(Actual
)
9754 or else Ekind
(Entity
(Actual
)) /= E_Package
9757 ("expect package instance to instantiate formal", Actual
);
9758 Abandon_Instantiation
(Actual
);
9759 raise Program_Error
;
9762 Actual_Pack
:= Entity
(Actual
);
9763 Set_Is_Instantiated
(Actual_Pack
);
9765 -- The actual may be a renamed package, or an outer generic formal
9766 -- package whose instantiation is converted into a renaming.
9768 if Present
(Renamed_Object
(Actual_Pack
)) then
9769 Actual_Pack
:= Renamed_Object
(Actual_Pack
);
9772 if Nkind
(Analyzed_Formal
) = N_Formal_Package_Declaration
then
9773 Gen_Parent
:= Get_Instance_Of
(Entity
(Name
(Analyzed_Formal
)));
9774 Formal_Pack
:= Defining_Identifier
(Analyzed_Formal
);
9777 Generic_Parent
(Specification
(Analyzed_Formal
));
9779 Defining_Unit_Name
(Specification
(Analyzed_Formal
));
9782 if Nkind
(Parent
(Actual_Pack
)) = N_Defining_Program_Unit_Name
then
9783 Parent_Spec
:= Package_Specification
(Actual_Pack
);
9785 Parent_Spec
:= Parent
(Actual_Pack
);
9788 if Gen_Parent
= Any_Id
then
9790 ("previous error in declaration of formal package", Actual
);
9791 Abandon_Instantiation
(Actual
);
9794 Is_Instance_Of
(Parent_Spec
, Get_Instance_Of
(Gen_Parent
))
9800 ("actual parameter must be instance of&", Actual
, Gen_Parent
);
9801 Abandon_Instantiation
(Actual
);
9804 Set_Instance_Of
(Defining_Identifier
(Formal
), Actual_Pack
);
9805 Map_Formal_Package_Entities
(Formal_Pack
, Actual_Pack
);
9808 Make_Package_Renaming_Declaration
(Loc
,
9809 Defining_Unit_Name
=> New_Copy
(Defining_Identifier
(Formal
)),
9810 Name
=> New_Occurrence_Of
(Actual_Pack
, Loc
));
9812 Set_Associated_Formal_Package
9813 (Defining_Unit_Name
(Nod
), Defining_Identifier
(Formal
));
9814 Decls
:= New_List
(Nod
);
9816 -- If the formal F has a box, then the generic declarations are
9817 -- visible in the generic G. In an instance of G, the corresponding
9818 -- entities in the actual for F (which are the actuals for the
9819 -- instantiation of the generic that F denotes) must also be made
9820 -- visible for analysis of the current instance. On exit from the
9821 -- current instance, those entities are made private again. If the
9822 -- actual is currently in use, these entities are also use-visible.
9824 -- The loop through the actual entities also steps through the formal
9825 -- entities and enters associations from formals to actuals into the
9826 -- renaming map. This is necessary to properly handle checking of
9827 -- actual parameter associations for later formals that depend on
9828 -- actuals declared in the formal package.
9830 -- In Ada 2005, partial parameterization requires that we make
9831 -- visible the actuals corresponding to formals that were defaulted
9832 -- in the formal package. There formals are identified because they
9833 -- remain formal generics within the formal package, rather than
9834 -- being renamings of the actuals supplied.
9837 Gen_Decl
: constant Node_Id
:=
9838 Unit_Declaration_Node
(Gen_Parent
);
9839 Formals
: constant List_Id
:=
9840 Generic_Formal_Declarations
(Gen_Decl
);
9842 Actual_Ent
: Entity_Id
;
9843 Actual_Of_Formal
: Node_Id
;
9844 Formal_Node
: Node_Id
;
9845 Formal_Ent
: Entity_Id
;
9848 if Present
(Formals
) then
9849 Formal_Node
:= First_Non_Pragma
(Formals
);
9851 Formal_Node
:= Empty
;
9854 Actual_Ent
:= First_Entity
(Actual_Pack
);
9856 First
(Visible_Declarations
(Specification
(Analyzed_Formal
)));
9857 while Present
(Actual_Ent
)
9858 and then Actual_Ent
/= First_Private_Entity
(Actual_Pack
)
9860 if Present
(Formal_Node
) then
9861 Formal_Ent
:= Get_Formal_Entity
(Formal_Node
);
9863 if Present
(Formal_Ent
) then
9864 Find_Matching_Actual
(Formal_Node
, Actual_Ent
);
9865 Match_Formal_Entity
(Formal_Node
, Formal_Ent
, Actual_Ent
);
9867 -- We iterate at the same time over the actuals of the
9868 -- local package created for the formal, to determine
9869 -- which one of the formals of the original generic were
9870 -- defaulted in the formal. The corresponding actual
9871 -- entities are visible in the enclosing instance.
9873 if Box_Present
(Formal
)
9875 (Present
(Actual_Of_Formal
)
9878 (Get_Formal_Entity
(Actual_Of_Formal
)))
9880 Set_Is_Hidden
(Actual_Ent
, False);
9881 Set_Is_Visible_Formal
(Actual_Ent
);
9882 Set_Is_Potentially_Use_Visible
9883 (Actual_Ent
, In_Use
(Actual_Pack
));
9885 if Ekind
(Actual_Ent
) = E_Package
then
9886 Process_Nested_Formal
(Actual_Ent
);
9890 Set_Is_Hidden
(Actual_Ent
);
9891 Set_Is_Potentially_Use_Visible
(Actual_Ent
, False);
9895 Next_Non_Pragma
(Formal_Node
);
9896 Next
(Actual_Of_Formal
);
9899 -- No further formals to match, but the generic part may
9900 -- contain inherited operation that are not hidden in the
9901 -- enclosing instance.
9903 Next_Entity
(Actual_Ent
);
9907 -- Inherited subprograms generated by formal derived types are
9908 -- also visible if the types are.
9910 Actual_Ent
:= First_Entity
(Actual_Pack
);
9911 while Present
(Actual_Ent
)
9912 and then Actual_Ent
/= First_Private_Entity
(Actual_Pack
)
9914 if Is_Overloadable
(Actual_Ent
)
9916 Nkind
(Parent
(Actual_Ent
)) = N_Subtype_Declaration
9918 not Is_Hidden
(Defining_Identifier
(Parent
(Actual_Ent
)))
9920 Set_Is_Hidden
(Actual_Ent
, False);
9921 Set_Is_Potentially_Use_Visible
9922 (Actual_Ent
, In_Use
(Actual_Pack
));
9925 Next_Entity
(Actual_Ent
);
9929 -- If the formal is not declared with a box, reanalyze it as an
9930 -- abbreviated instantiation, to verify the matching rules of 12.7.
9931 -- The actual checks are performed after the generic associations
9932 -- have been analyzed, to guarantee the same visibility for this
9933 -- instantiation and for the actuals.
9935 -- In Ada 2005, the generic associations for the formal can include
9936 -- defaulted parameters. These are ignored during check. This
9937 -- internal instantiation is removed from the tree after conformance
9938 -- checking, because it contains formal declarations for those
9939 -- defaulted parameters, and those should not reach the back-end.
9941 if not Box_Present
(Formal
) then
9943 I_Pack
: constant Entity_Id
:=
9944 Make_Temporary
(Sloc
(Actual
), 'P');
9947 Set_Is_Internal
(I_Pack
);
9950 Make_Package_Instantiation
(Sloc
(Actual
),
9951 Defining_Unit_Name
=> I_Pack
,
9954 (Get_Instance_Of
(Gen_Parent
), Sloc
(Actual
)),
9955 Generic_Associations
=> Generic_Associations
(Formal
)));
9961 end Instantiate_Formal_Package
;
9963 -----------------------------------
9964 -- Instantiate_Formal_Subprogram --
9965 -----------------------------------
9967 function Instantiate_Formal_Subprogram
9970 Analyzed_Formal
: Node_Id
) return Node_Id
9972 Analyzed_S
: constant Entity_Id
:=
9973 Defining_Unit_Name
(Specification
(Analyzed_Formal
));
9974 Formal_Sub
: constant Entity_Id
:=
9975 Defining_Unit_Name
(Specification
(Formal
));
9977 function From_Parent_Scope
(Subp
: Entity_Id
) return Boolean;
9978 -- If the generic is a child unit, the parent has been installed on the
9979 -- scope stack, but a default subprogram cannot resolve to something
9980 -- on the parent because that parent is not really part of the visible
9981 -- context (it is there to resolve explicit local entities). If the
9982 -- default has resolved in this way, we remove the entity from immediate
9983 -- visibility and analyze the node again to emit an error message or
9984 -- find another visible candidate.
9986 procedure Valid_Actual_Subprogram
(Act
: Node_Id
);
9987 -- Perform legality check and raise exception on failure
9989 -----------------------
9990 -- From_Parent_Scope --
9991 -----------------------
9993 function From_Parent_Scope
(Subp
: Entity_Id
) return Boolean is
9994 Gen_Scope
: Node_Id
;
9997 Gen_Scope
:= Scope
(Analyzed_S
);
9998 while Present
(Gen_Scope
) and then Is_Child_Unit
(Gen_Scope
) loop
9999 if Scope
(Subp
) = Scope
(Gen_Scope
) then
10003 Gen_Scope
:= Scope
(Gen_Scope
);
10007 end From_Parent_Scope
;
10009 -----------------------------
10010 -- Valid_Actual_Subprogram --
10011 -----------------------------
10013 procedure Valid_Actual_Subprogram
(Act
: Node_Id
) is
10017 if Is_Entity_Name
(Act
) then
10018 Act_E
:= Entity
(Act
);
10020 elsif Nkind
(Act
) = N_Selected_Component
10021 and then Is_Entity_Name
(Selector_Name
(Act
))
10023 Act_E
:= Entity
(Selector_Name
(Act
));
10029 if (Present
(Act_E
) and then Is_Overloadable
(Act_E
))
10030 or else Nkind_In
(Act
, N_Attribute_Reference
,
10031 N_Indexed_Component
,
10032 N_Character_Literal
,
10033 N_Explicit_Dereference
)
10039 ("expect subprogram or entry name in instantiation of &",
10040 Instantiation_Node
, Formal_Sub
);
10041 Abandon_Instantiation
(Instantiation_Node
);
10042 end Valid_Actual_Subprogram
;
10046 Decl_Node
: Node_Id
;
10049 New_Spec
: Node_Id
;
10050 New_Subp
: Entity_Id
;
10052 -- Start of processing for Instantiate_Formal_Subprogram
10055 New_Spec
:= New_Copy_Tree
(Specification
(Formal
));
10057 -- The tree copy has created the proper instantiation sloc for the
10058 -- new specification. Use this location for all other constructed
10061 Loc
:= Sloc
(Defining_Unit_Name
(New_Spec
));
10063 -- Create new entity for the actual (New_Copy_Tree does not), and
10064 -- indicate that it is an actual.
10066 New_Subp
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Sub
));
10067 Set_Ekind
(New_Subp
, Ekind
(Analyzed_S
));
10068 Set_Is_Generic_Actual_Subprogram
(New_Subp
);
10069 Set_Defining_Unit_Name
(New_Spec
, New_Subp
);
10071 -- Create new entities for the each of the formals in the specification
10072 -- of the renaming declaration built for the actual.
10074 if Present
(Parameter_Specifications
(New_Spec
)) then
10080 F
:= First
(Parameter_Specifications
(New_Spec
));
10081 while Present
(F
) loop
10082 F_Id
:= Defining_Identifier
(F
);
10084 Set_Defining_Identifier
(F
,
10085 Make_Defining_Identifier
(Sloc
(F_Id
), Chars
(F_Id
)));
10091 -- Find entity of actual. If the actual is an attribute reference, it
10092 -- cannot be resolved here (its formal is missing) but is handled
10093 -- instead in Attribute_Renaming. If the actual is overloaded, it is
10094 -- fully resolved subsequently, when the renaming declaration for the
10095 -- formal is analyzed. If it is an explicit dereference, resolve the
10096 -- prefix but not the actual itself, to prevent interpretation as call.
10098 if Present
(Actual
) then
10099 Loc
:= Sloc
(Actual
);
10100 Set_Sloc
(New_Spec
, Loc
);
10102 if Nkind
(Actual
) = N_Operator_Symbol
then
10103 Find_Direct_Name
(Actual
);
10105 elsif Nkind
(Actual
) = N_Explicit_Dereference
then
10106 Analyze
(Prefix
(Actual
));
10108 elsif Nkind
(Actual
) /= N_Attribute_Reference
then
10112 Valid_Actual_Subprogram
(Actual
);
10115 elsif Present
(Default_Name
(Formal
)) then
10116 if not Nkind_In
(Default_Name
(Formal
), N_Attribute_Reference
,
10117 N_Selected_Component
,
10118 N_Indexed_Component
,
10119 N_Character_Literal
)
10120 and then Present
(Entity
(Default_Name
(Formal
)))
10122 Nam
:= New_Occurrence_Of
(Entity
(Default_Name
(Formal
)), Loc
);
10124 Nam
:= New_Copy
(Default_Name
(Formal
));
10125 Set_Sloc
(Nam
, Loc
);
10128 elsif Box_Present
(Formal
) then
10130 -- Actual is resolved at the point of instantiation. Create an
10131 -- identifier or operator with the same name as the formal.
10133 if Nkind
(Formal_Sub
) = N_Defining_Operator_Symbol
then
10135 Make_Operator_Symbol
(Loc
,
10136 Chars
=> Chars
(Formal_Sub
),
10137 Strval
=> No_String
);
10139 Nam
:= Make_Identifier
(Loc
, Chars
(Formal_Sub
));
10142 elsif Nkind
(Specification
(Formal
)) = N_Procedure_Specification
10143 and then Null_Present
(Specification
(Formal
))
10145 -- Generate null body for procedure, for use in the instance
10148 Make_Subprogram_Body
(Loc
,
10149 Specification
=> New_Spec
,
10150 Declarations
=> New_List
,
10151 Handled_Statement_Sequence
=>
10152 Make_Handled_Sequence_Of_Statements
(Loc
,
10153 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
10155 Set_Is_Intrinsic_Subprogram
(Defining_Unit_Name
(New_Spec
));
10159 Error_Msg_Sloc
:= Sloc
(Scope
(Analyzed_S
));
10161 ("missing actual&", Instantiation_Node
, Formal_Sub
);
10163 ("\in instantiation of & declared#",
10164 Instantiation_Node
, Scope
(Analyzed_S
));
10165 Abandon_Instantiation
(Instantiation_Node
);
10169 Make_Subprogram_Renaming_Declaration
(Loc
,
10170 Specification
=> New_Spec
,
10173 -- If we do not have an actual and the formal specified <> then set to
10174 -- get proper default.
10176 if No
(Actual
) and then Box_Present
(Formal
) then
10177 Set_From_Default
(Decl_Node
);
10180 -- Gather possible interpretations for the actual before analyzing the
10181 -- instance. If overloaded, it will be resolved when analyzing the
10182 -- renaming declaration.
10184 if Box_Present
(Formal
) and then No
(Actual
) then
10187 if Is_Child_Unit
(Scope
(Analyzed_S
))
10188 and then Present
(Entity
(Nam
))
10190 if not Is_Overloaded
(Nam
) then
10191 if From_Parent_Scope
(Entity
(Nam
)) then
10192 Set_Is_Immediately_Visible
(Entity
(Nam
), False);
10193 Set_Entity
(Nam
, Empty
);
10194 Set_Etype
(Nam
, Empty
);
10197 Set_Is_Immediately_Visible
(Entity
(Nam
));
10206 Get_First_Interp
(Nam
, I
, It
);
10207 while Present
(It
.Nam
) loop
10208 if From_Parent_Scope
(It
.Nam
) then
10212 Get_Next_Interp
(I
, It
);
10219 -- The generic instantiation freezes the actual. This can only be done
10220 -- once the actual is resolved, in the analysis of the renaming
10221 -- declaration. To make the formal subprogram entity available, we set
10222 -- Corresponding_Formal_Spec to point to the formal subprogram entity.
10223 -- This is also needed in Analyze_Subprogram_Renaming for the processing
10224 -- of formal abstract subprograms.
10226 Set_Corresponding_Formal_Spec
(Decl_Node
, Analyzed_S
);
10228 -- We cannot analyze the renaming declaration, and thus find the actual,
10229 -- until all the actuals are assembled in the instance. For subsequent
10230 -- checks of other actuals, indicate the node that will hold the
10231 -- instance of this formal.
10233 Set_Instance_Of
(Analyzed_S
, Nam
);
10235 if Nkind
(Actual
) = N_Selected_Component
10236 and then Is_Task_Type
(Etype
(Prefix
(Actual
)))
10237 and then not Is_Frozen
(Etype
(Prefix
(Actual
)))
10239 -- The renaming declaration will create a body, which must appear
10240 -- outside of the instantiation, We move the renaming declaration
10241 -- out of the instance, and create an additional renaming inside,
10242 -- to prevent freezing anomalies.
10245 Anon_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E');
10248 Set_Defining_Unit_Name
(New_Spec
, Anon_Id
);
10249 Insert_Before
(Instantiation_Node
, Decl_Node
);
10250 Analyze
(Decl_Node
);
10252 -- Now create renaming within the instance
10255 Make_Subprogram_Renaming_Declaration
(Loc
,
10256 Specification
=> New_Copy_Tree
(New_Spec
),
10257 Name
=> New_Occurrence_Of
(Anon_Id
, Loc
));
10259 Set_Defining_Unit_Name
(Specification
(Decl_Node
),
10260 Make_Defining_Identifier
(Loc
, Chars
(Formal_Sub
)));
10265 end Instantiate_Formal_Subprogram
;
10267 ------------------------
10268 -- Instantiate_Object --
10269 ------------------------
10271 function Instantiate_Object
10274 Analyzed_Formal
: Node_Id
) return List_Id
10276 Gen_Obj
: constant Entity_Id
:= Defining_Identifier
(Formal
);
10277 A_Gen_Obj
: constant Entity_Id
:=
10278 Defining_Identifier
(Analyzed_Formal
);
10279 Acc_Def
: Node_Id
:= Empty
;
10280 Act_Assoc
: constant Node_Id
:= Parent
(Actual
);
10281 Actual_Decl
: Node_Id
:= Empty
;
10282 Decl_Node
: Node_Id
;
10285 List
: constant List_Id
:= New_List
;
10286 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
10287 Orig_Ftyp
: constant Entity_Id
:= Etype
(A_Gen_Obj
);
10288 Subt_Decl
: Node_Id
:= Empty
;
10289 Subt_Mark
: Node_Id
:= Empty
;
10291 function Copy_Access_Def
return Node_Id
;
10292 -- If formal is an anonymous access, copy access definition of formal
10293 -- for generated object declaration.
10295 ---------------------
10296 -- Copy_Access_Def --
10297 ---------------------
10299 function Copy_Access_Def
return Node_Id
is
10301 Def
:= New_Copy_Tree
(Acc_Def
);
10303 -- In addition, if formal is an access to subprogram we need to
10304 -- generate new formals for the signature of the default, so that
10305 -- the tree is properly formatted for ASIS use.
10307 if Present
(Access_To_Subprogram_Definition
(Acc_Def
)) then
10309 Par_Spec
: Node_Id
;
10312 First
(Parameter_Specifications
10313 (Access_To_Subprogram_Definition
(Def
)));
10314 while Present
(Par_Spec
) loop
10315 Set_Defining_Identifier
(Par_Spec
,
10316 Make_Defining_Identifier
(Sloc
(Acc_Def
),
10317 Chars
=> Chars
(Defining_Identifier
(Par_Spec
))));
10324 end Copy_Access_Def
;
10326 -- Start of processing for Instantiate_Object
10329 -- Formal may be an anonymous access
10331 if Present
(Subtype_Mark
(Formal
)) then
10332 Subt_Mark
:= Subtype_Mark
(Formal
);
10334 Check_Access_Definition
(Formal
);
10335 Acc_Def
:= Access_Definition
(Formal
);
10338 -- Sloc for error message on missing actual
10340 Error_Msg_Sloc
:= Sloc
(Scope
(A_Gen_Obj
));
10342 if Get_Instance_Of
(Gen_Obj
) /= Gen_Obj
then
10343 Error_Msg_N
("duplicate instantiation of generic parameter", Actual
);
10346 Set_Parent
(List
, Parent
(Actual
));
10350 if Out_Present
(Formal
) then
10352 -- An IN OUT generic actual must be a name. The instantiation is a
10353 -- renaming declaration. The actual is the name being renamed. We
10354 -- use the actual directly, rather than a copy, because it is not
10355 -- used further in the list of actuals, and because a copy or a use
10356 -- of relocate_node is incorrect if the instance is nested within a
10357 -- generic. In order to simplify ASIS searches, the Generic_Parent
10358 -- field links the declaration to the generic association.
10360 if No
(Actual
) then
10362 ("missing actual &",
10363 Instantiation_Node
, Gen_Obj
);
10365 ("\in instantiation of & declared#",
10366 Instantiation_Node
, Scope
(A_Gen_Obj
));
10367 Abandon_Instantiation
(Instantiation_Node
);
10370 if Present
(Subt_Mark
) then
10372 Make_Object_Renaming_Declaration
(Loc
,
10373 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10374 Subtype_Mark
=> New_Copy_Tree
(Subt_Mark
),
10377 else pragma Assert
(Present
(Acc_Def
));
10379 Make_Object_Renaming_Declaration
(Loc
,
10380 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10381 Access_Definition
=> New_Copy_Tree
(Acc_Def
),
10385 Set_Corresponding_Generic_Association
(Decl_Node
, Act_Assoc
);
10387 -- The analysis of the actual may produce Insert_Action nodes, so
10388 -- the declaration must have a context in which to attach them.
10390 Append
(Decl_Node
, List
);
10393 -- Return if the analysis of the actual reported some error
10395 if Etype
(Actual
) = Any_Type
then
10399 -- This check is performed here because Analyze_Object_Renaming will
10400 -- not check it when Comes_From_Source is False. Note though that the
10401 -- check for the actual being the name of an object will be performed
10402 -- in Analyze_Object_Renaming.
10404 if Is_Object_Reference
(Actual
)
10405 and then Is_Dependent_Component_Of_Mutable_Object
(Actual
)
10408 ("illegal discriminant-dependent component for in out parameter",
10412 -- The actual has to be resolved in order to check that it is a
10413 -- variable (due to cases such as F (1), where F returns access to
10414 -- an array, and for overloaded prefixes).
10416 Ftyp
:= Get_Instance_Of
(Etype
(A_Gen_Obj
));
10418 -- If the type of the formal is not itself a formal, and the current
10419 -- unit is a child unit, the formal type must be declared in a
10420 -- parent, and must be retrieved by visibility.
10422 if Ftyp
= Orig_Ftyp
10423 and then Is_Generic_Unit
(Scope
(Ftyp
))
10424 and then Is_Child_Unit
(Scope
(A_Gen_Obj
))
10427 Temp
: constant Node_Id
:=
10428 New_Copy_Tree
(Subtype_Mark
(Analyzed_Formal
));
10430 Set_Entity
(Temp
, Empty
);
10432 Ftyp
:= Entity
(Temp
);
10436 if Is_Private_Type
(Ftyp
)
10437 and then not Is_Private_Type
(Etype
(Actual
))
10438 and then (Base_Type
(Full_View
(Ftyp
)) = Base_Type
(Etype
(Actual
))
10439 or else Base_Type
(Etype
(Actual
)) = Ftyp
)
10441 -- If the actual has the type of the full view of the formal, or
10442 -- else a non-private subtype of the formal, then the visibility
10443 -- of the formal type has changed. Add to the actuals a subtype
10444 -- declaration that will force the exchange of views in the body
10445 -- of the instance as well.
10448 Make_Subtype_Declaration
(Loc
,
10449 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
10450 Subtype_Indication
=> New_Occurrence_Of
(Ftyp
, Loc
));
10452 Prepend
(Subt_Decl
, List
);
10454 Prepend_Elmt
(Full_View
(Ftyp
), Exchanged_Views
);
10455 Exchange_Declarations
(Ftyp
);
10458 Resolve
(Actual
, Ftyp
);
10460 if not Denotes_Variable
(Actual
) then
10461 Error_Msg_NE
("actual for& must be a variable", Actual
, Gen_Obj
);
10463 elsif Base_Type
(Ftyp
) /= Base_Type
(Etype
(Actual
)) then
10465 -- Ada 2005 (AI-423): For a generic formal object of mode in out,
10466 -- the type of the actual shall resolve to a specific anonymous
10469 if Ada_Version
< Ada_2005
10470 or else Ekind
(Base_Type
(Ftyp
)) /=
10471 E_Anonymous_Access_Type
10472 or else Ekind
(Base_Type
(Etype
(Actual
))) /=
10473 E_Anonymous_Access_Type
10476 ("type of actual does not match type of&", Actual
, Gen_Obj
);
10480 Note_Possible_Modification
(Actual
, Sure
=> True);
10482 -- Check for instantiation of atomic/volatile actual for
10483 -- non-atomic/volatile formal (RM C.6 (12)).
10485 if Is_Atomic_Object
(Actual
) and then not Is_Atomic
(Orig_Ftyp
) then
10487 ("cannot instantiate non-atomic formal object "
10488 & "with atomic actual", Actual
);
10490 elsif Is_Volatile_Object
(Actual
) and then not Is_Volatile
(Orig_Ftyp
)
10493 ("cannot instantiate non-volatile formal object "
10494 & "with volatile actual", Actual
);
10497 -- Formal in-parameter
10500 -- The instantiation of a generic formal in-parameter is constant
10501 -- declaration. The actual is the expression for that declaration.
10502 -- Its type is a full copy of the type of the formal. This may be
10503 -- an access to subprogram, for which we need to generate entities
10504 -- for the formals in the new signature.
10506 if Present
(Actual
) then
10507 if Present
(Subt_Mark
) then
10508 Def
:= New_Copy_Tree
(Subt_Mark
);
10509 else pragma Assert
(Present
(Acc_Def
));
10510 Def
:= Copy_Access_Def
;
10514 Make_Object_Declaration
(Loc
,
10515 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10516 Constant_Present
=> True,
10517 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10518 Object_Definition
=> Def
,
10519 Expression
=> Actual
);
10521 Set_Corresponding_Generic_Association
(Decl_Node
, Act_Assoc
);
10523 -- A generic formal object of a tagged type is defined to be
10524 -- aliased so the new constant must also be treated as aliased.
10526 if Is_Tagged_Type
(Etype
(A_Gen_Obj
)) then
10527 Set_Aliased_Present
(Decl_Node
);
10530 Append
(Decl_Node
, List
);
10532 -- No need to repeat (pre-)analysis of some expression nodes
10533 -- already handled in Preanalyze_Actuals.
10535 if Nkind
(Actual
) /= N_Allocator
then
10538 -- Return if the analysis of the actual reported some error
10540 if Etype
(Actual
) = Any_Type
then
10546 Formal_Type
: constant Entity_Id
:= Etype
(A_Gen_Obj
);
10550 Typ
:= Get_Instance_Of
(Formal_Type
);
10552 -- If the actual appears in the current or an enclosing scope,
10553 -- use its type directly. This is relevant if it has an actual
10554 -- subtype that is distinct from its nominal one. This cannot
10555 -- be done in general because the type of the actual may
10556 -- depend on other actuals, and only be fully determined when
10557 -- the enclosing instance is analyzed.
10559 if Present
(Etype
(Actual
))
10560 and then Is_Constr_Subt_For_U_Nominal
(Etype
(Actual
))
10562 Freeze_Before
(Instantiation_Node
, Etype
(Actual
));
10564 Freeze_Before
(Instantiation_Node
, Typ
);
10567 -- If the actual is an aggregate, perform name resolution on
10568 -- its components (the analysis of an aggregate does not do it)
10569 -- to capture local names that may be hidden if the generic is
10572 if Nkind
(Actual
) = N_Aggregate
then
10573 Preanalyze_And_Resolve
(Actual
, Typ
);
10576 if Is_Limited_Type
(Typ
)
10577 and then not OK_For_Limited_Init
(Typ
, Actual
)
10580 ("initialization not allowed for limited types", Actual
);
10581 Explain_Limited_Type
(Typ
, Actual
);
10585 elsif Present
(Default_Expression
(Formal
)) then
10587 -- Use default to construct declaration
10589 if Present
(Subt_Mark
) then
10590 Def
:= New_Copy
(Subt_Mark
);
10591 else pragma Assert
(Present
(Acc_Def
));
10592 Def
:= Copy_Access_Def
;
10596 Make_Object_Declaration
(Sloc
(Formal
),
10597 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10598 Constant_Present
=> True,
10599 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10600 Object_Definition
=> Def
,
10601 Expression
=> New_Copy_Tree
10602 (Default_Expression
(Formal
)));
10604 Append
(Decl_Node
, List
);
10605 Set_Analyzed
(Expression
(Decl_Node
), False);
10608 Error_Msg_NE
("missing actual&", Instantiation_Node
, Gen_Obj
);
10609 Error_Msg_NE
("\in instantiation of & declared#",
10610 Instantiation_Node
, Scope
(A_Gen_Obj
));
10612 if Is_Scalar_Type
(Etype
(A_Gen_Obj
)) then
10614 -- Create dummy constant declaration so that instance can be
10615 -- analyzed, to minimize cascaded visibility errors.
10617 if Present
(Subt_Mark
) then
10619 else pragma Assert
(Present
(Acc_Def
));
10624 Make_Object_Declaration
(Loc
,
10625 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10626 Constant_Present
=> True,
10627 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10628 Object_Definition
=> New_Copy
(Def
),
10630 Make_Attribute_Reference
(Sloc
(Gen_Obj
),
10631 Attribute_Name
=> Name_First
,
10632 Prefix
=> New_Copy
(Def
)));
10634 Append
(Decl_Node
, List
);
10637 Abandon_Instantiation
(Instantiation_Node
);
10642 if Nkind
(Actual
) in N_Has_Entity
then
10643 Actual_Decl
:= Parent
(Entity
(Actual
));
10646 -- Ada 2005 (AI-423): For a formal object declaration with a null
10647 -- exclusion or an access definition that has a null exclusion: If the
10648 -- actual matching the formal object declaration denotes a generic
10649 -- formal object of another generic unit G, and the instantiation
10650 -- containing the actual occurs within the body of G or within the body
10651 -- of a generic unit declared within the declarative region of G, then
10652 -- the declaration of the formal object of G must have a null exclusion.
10653 -- Otherwise, the subtype of the actual matching the formal object
10654 -- declaration shall exclude null.
10656 if Ada_Version
>= Ada_2005
10657 and then Present
(Actual_Decl
)
10658 and then Nkind_In
(Actual_Decl
, N_Formal_Object_Declaration
,
10659 N_Object_Declaration
)
10660 and then Nkind
(Analyzed_Formal
) = N_Formal_Object_Declaration
10661 and then not Has_Null_Exclusion
(Actual_Decl
)
10662 and then Has_Null_Exclusion
(Analyzed_Formal
)
10664 Error_Msg_Sloc
:= Sloc
(Analyzed_Formal
);
10666 ("actual must exclude null to match generic formal#", Actual
);
10669 -- An effectively volatile object cannot be used as an actual in a
10670 -- generic instantiation (SPARK RM 7.1.3(7)). The following check is
10671 -- relevant only when SPARK_Mode is on as it is not a standard Ada
10675 and then Present
(Actual
)
10676 and then Is_Effectively_Volatile_Object
(Actual
)
10679 ("volatile object cannot act as actual in generic instantiation",
10684 end Instantiate_Object
;
10686 ------------------------------
10687 -- Instantiate_Package_Body --
10688 ------------------------------
10690 procedure Instantiate_Package_Body
10691 (Body_Info
: Pending_Body_Info
;
10692 Inlined_Body
: Boolean := False;
10693 Body_Optional
: Boolean := False)
10695 Act_Decl
: constant Node_Id
:= Body_Info
.Act_Decl
;
10696 Inst_Node
: constant Node_Id
:= Body_Info
.Inst_Node
;
10697 Loc
: constant Source_Ptr
:= Sloc
(Inst_Node
);
10699 Gen_Id
: constant Node_Id
:= Name
(Inst_Node
);
10700 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
10701 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Unit
);
10702 Act_Spec
: constant Node_Id
:= Specification
(Act_Decl
);
10703 Act_Decl_Id
: constant Entity_Id
:= Defining_Entity
(Act_Spec
);
10705 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
10706 Save_Style_Check
: constant Boolean := Style_Check
;
10708 Act_Body
: Node_Id
;
10709 Act_Body_Id
: Entity_Id
;
10710 Act_Body_Name
: Node_Id
;
10711 Gen_Body
: Node_Id
;
10712 Gen_Body_Id
: Node_Id
;
10713 Par_Ent
: Entity_Id
:= Empty
;
10714 Par_Vis
: Boolean := False;
10716 Parent_Installed
: Boolean := False;
10718 Vis_Prims_List
: Elist_Id
:= No_Elist
;
10719 -- List of primitives made temporarily visible in the instantiation
10720 -- to match the visibility of the formal type
10722 procedure Check_Initialized_Types
;
10723 -- In a generic package body, an entity of a generic private type may
10724 -- appear uninitialized. This is suspicious, unless the actual is a
10725 -- fully initialized type.
10727 -----------------------------
10728 -- Check_Initialized_Types --
10729 -----------------------------
10731 procedure Check_Initialized_Types
is
10733 Formal
: Entity_Id
;
10734 Actual
: Entity_Id
;
10735 Uninit_Var
: Entity_Id
;
10738 Decl
:= First
(Generic_Formal_Declarations
(Gen_Decl
));
10739 while Present
(Decl
) loop
10740 Uninit_Var
:= Empty
;
10742 if Nkind
(Decl
) = N_Private_Extension_Declaration
then
10743 Uninit_Var
:= Uninitialized_Variable
(Decl
);
10745 elsif Nkind
(Decl
) = N_Formal_Type_Declaration
10746 and then Nkind
(Formal_Type_Definition
(Decl
)) =
10747 N_Formal_Private_Type_Definition
10750 Uninitialized_Variable
(Formal_Type_Definition
(Decl
));
10753 if Present
(Uninit_Var
) then
10754 Formal
:= Defining_Identifier
(Decl
);
10755 Actual
:= First_Entity
(Act_Decl_Id
);
10757 -- For each formal there is a subtype declaration that renames
10758 -- the actual and has the same name as the formal. Locate the
10759 -- formal for warning message about uninitialized variables
10760 -- in the generic, for which the actual type should be a fully
10761 -- initialized type.
10763 while Present
(Actual
) loop
10764 exit when Ekind
(Actual
) = E_Package
10765 and then Present
(Renamed_Object
(Actual
));
10767 if Chars
(Actual
) = Chars
(Formal
)
10768 and then not Is_Scalar_Type
(Actual
)
10769 and then not Is_Fully_Initialized_Type
(Actual
)
10770 and then Warn_On_No_Value_Assigned
10772 Error_Msg_Node_2
:= Formal
;
10774 ("generic unit has uninitialized variable& of "
10775 & "formal private type &?v?", Actual
, Uninit_Var
);
10777 ("actual type for& should be fully initialized type?v?",
10782 Next_Entity
(Actual
);
10788 end Check_Initialized_Types
;
10790 -- Start of processing for Instantiate_Package_Body
10793 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10795 -- The instance body may already have been processed, as the parent of
10796 -- another instance that is inlined (Load_Parent_Of_Generic).
10798 if Present
(Corresponding_Body
(Instance_Spec
(Inst_Node
))) then
10802 Expander_Mode_Save_And_Set
(Body_Info
.Expander_Status
);
10804 -- Re-establish the state of information on which checks are suppressed.
10805 -- This information was set in Body_Info at the point of instantiation,
10806 -- and now we restore it so that the instance is compiled using the
10807 -- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01).
10809 Local_Suppress_Stack_Top
:= Body_Info
.Local_Suppress_Stack_Top
;
10810 Scope_Suppress
:= Body_Info
.Scope_Suppress
;
10811 Opt
.Ada_Version
:= Body_Info
.Version
;
10812 Opt
.Ada_Version_Pragma
:= Body_Info
.Version_Pragma
;
10813 Restore_Warnings
(Body_Info
.Warnings
);
10814 Opt
.SPARK_Mode
:= Body_Info
.SPARK_Mode
;
10815 Opt
.SPARK_Mode_Pragma
:= Body_Info
.SPARK_Mode_Pragma
;
10817 if No
(Gen_Body_Id
) then
10819 -- Do not look for parent of generic body if none is required.
10820 -- This may happen when the routine is called as part of the
10821 -- Pending_Instantiations processing, when nested instances
10822 -- may precede the one generated from the main unit.
10824 if not Unit_Requires_Body
(Defining_Entity
(Gen_Decl
))
10825 and then Body_Optional
10829 Load_Parent_Of_Generic
10830 (Inst_Node
, Specification
(Gen_Decl
), Body_Optional
);
10831 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10835 -- Establish global variable for sloc adjustment and for error recovery
10836 -- In the case of an instance body for an instantiation with actuals
10837 -- from a limited view, the instance body is placed at the beginning
10838 -- of the enclosing package body: use the body entity as the source
10839 -- location for nodes of the instance body.
10841 if not Is_Empty_Elmt_List
(Incomplete_Actuals
(Act_Decl_Id
)) then
10843 Scop
: constant Entity_Id
:= Scope
(Act_Decl_Id
);
10844 Body_Id
: constant Node_Id
:=
10845 Corresponding_Body
(Unit_Declaration_Node
(Scop
));
10848 Instantiation_Node
:= Body_Id
;
10851 Instantiation_Node
:= Inst_Node
;
10854 if Present
(Gen_Body_Id
) then
10855 Save_Env
(Gen_Unit
, Act_Decl_Id
);
10856 Style_Check
:= False;
10858 -- If the context of the instance is subject to SPARK_Mode "off" or
10859 -- the annotation is altogether missing, set the global flag which
10860 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
10863 if SPARK_Mode
/= On
then
10864 Ignore_Pragma_SPARK_Mode
:= True;
10867 Current_Sem_Unit
:= Body_Info
.Current_Sem_Unit
;
10868 Gen_Body
:= Unit_Declaration_Node
(Gen_Body_Id
);
10870 Create_Instantiation_Source
10871 (Inst_Node
, Gen_Body_Id
, False, S_Adjustment
);
10875 (Original_Node
(Gen_Body
), Empty
, Instantiating
=> True);
10877 -- Create proper (possibly qualified) defining name for the body, to
10878 -- correspond to the one in the spec.
10881 Make_Defining_Identifier
(Sloc
(Act_Decl_Id
), Chars
(Act_Decl_Id
));
10882 Set_Comes_From_Source
(Act_Body_Id
, Comes_From_Source
(Act_Decl_Id
));
10884 -- Some attributes of spec entity are not inherited by body entity
10886 Set_Handler_Records
(Act_Body_Id
, No_List
);
10888 if Nkind
(Defining_Unit_Name
(Act_Spec
)) =
10889 N_Defining_Program_Unit_Name
10892 Make_Defining_Program_Unit_Name
(Loc
,
10894 New_Copy_Tree
(Name
(Defining_Unit_Name
(Act_Spec
))),
10895 Defining_Identifier
=> Act_Body_Id
);
10897 Act_Body_Name
:= Act_Body_Id
;
10900 Set_Defining_Unit_Name
(Act_Body
, Act_Body_Name
);
10902 Set_Corresponding_Spec
(Act_Body
, Act_Decl_Id
);
10903 Check_Generic_Actuals
(Act_Decl_Id
, False);
10904 Check_Initialized_Types
;
10906 -- Install primitives hidden at the point of the instantiation but
10907 -- visible when processing the generic formals
10913 E
:= First_Entity
(Act_Decl_Id
);
10914 while Present
(E
) loop
10916 and then Is_Generic_Actual_Type
(E
)
10917 and then Is_Tagged_Type
(E
)
10919 Install_Hidden_Primitives
10920 (Prims_List
=> Vis_Prims_List
,
10921 Gen_T
=> Generic_Parent_Type
(Parent
(E
)),
10929 -- If it is a child unit, make the parent instance (which is an
10930 -- instance of the parent of the generic) visible. The parent
10931 -- instance is the prefix of the name of the generic unit.
10933 if Ekind
(Scope
(Gen_Unit
)) = E_Generic_Package
10934 and then Nkind
(Gen_Id
) = N_Expanded_Name
10936 Par_Ent
:= Entity
(Prefix
(Gen_Id
));
10937 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
10938 Install_Parent
(Par_Ent
, In_Body
=> True);
10939 Parent_Installed
:= True;
10941 elsif Is_Child_Unit
(Gen_Unit
) then
10942 Par_Ent
:= Scope
(Gen_Unit
);
10943 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
10944 Install_Parent
(Par_Ent
, In_Body
=> True);
10945 Parent_Installed
:= True;
10948 -- If the instantiation is a library unit, and this is the main unit,
10949 -- then build the resulting compilation unit nodes for the instance.
10950 -- If this is a compilation unit but it is not the main unit, then it
10951 -- is the body of a unit in the context, that is being compiled
10952 -- because it is encloses some inlined unit or another generic unit
10953 -- being instantiated. In that case, this body is not part of the
10954 -- current compilation, and is not attached to the tree, but its
10955 -- parent must be set for analysis.
10957 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
10959 -- Replace instance node with body of instance, and create new
10960 -- node for corresponding instance declaration.
10962 Build_Instance_Compilation_Unit_Nodes
10963 (Inst_Node
, Act_Body
, Act_Decl
);
10964 Analyze
(Inst_Node
);
10966 if Parent
(Inst_Node
) = Cunit
(Main_Unit
) then
10968 -- If the instance is a child unit itself, then set the scope
10969 -- of the expanded body to be the parent of the instantiation
10970 -- (ensuring that the fully qualified name will be generated
10971 -- for the elaboration subprogram).
10973 if Nkind
(Defining_Unit_Name
(Act_Spec
)) =
10974 N_Defining_Program_Unit_Name
10976 Set_Scope
(Defining_Entity
(Inst_Node
), Scope
(Act_Decl_Id
));
10980 -- Case where instantiation is not a library unit
10983 -- If this is an early instantiation, i.e. appears textually
10984 -- before the corresponding body and must be elaborated first,
10985 -- indicate that the body instance is to be delayed.
10987 Install_Body
(Act_Body
, Inst_Node
, Gen_Body
, Gen_Decl
);
10989 -- Now analyze the body. We turn off all checks if this is an
10990 -- internal unit, since there is no reason to have checks on for
10991 -- any predefined run-time library code. All such code is designed
10992 -- to be compiled with checks off.
10994 -- Note that we do NOT apply this criterion to children of GNAT
10995 -- The latter units must suppress checks explicitly if needed.
10997 if Is_Predefined_File_Name
10998 (Unit_File_Name
(Get_Source_Unit
(Gen_Decl
)))
11000 Analyze
(Act_Body
, Suppress
=> All_Checks
);
11002 Analyze
(Act_Body
);
11006 Inherit_Context
(Gen_Body
, Inst_Node
);
11008 -- Remove the parent instances if they have been placed on the scope
11009 -- stack to compile the body.
11011 if Parent_Installed
then
11012 Remove_Parent
(In_Body
=> True);
11014 -- Restore the previous visibility of the parent
11016 Set_Is_Immediately_Visible
(Par_Ent
, Par_Vis
);
11019 Restore_Hidden_Primitives
(Vis_Prims_List
);
11020 Restore_Private_Views
(Act_Decl_Id
);
11022 -- Remove the current unit from visibility if this is an instance
11023 -- that is not elaborated on the fly for inlining purposes.
11025 if not Inlined_Body
then
11026 Set_Is_Immediately_Visible
(Act_Decl_Id
, False);
11030 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
11031 Style_Check
:= Save_Style_Check
;
11033 -- If we have no body, and the unit requires a body, then complain. This
11034 -- complaint is suppressed if we have detected other errors (since a
11035 -- common reason for missing the body is that it had errors).
11036 -- In CodePeer mode, a warning has been emitted already, no need for
11037 -- further messages.
11039 elsif Unit_Requires_Body
(Gen_Unit
)
11040 and then not Body_Optional
11042 if CodePeer_Mode
then
11045 elsif Serious_Errors_Detected
= 0 then
11047 ("cannot find body of generic package &", Inst_Node
, Gen_Unit
);
11049 -- Don't attempt to perform any cleanup actions if some other error
11050 -- was already detected, since this can cause blowups.
11056 -- Case of package that does not need a body
11059 -- If the instantiation of the declaration is a library unit, rewrite
11060 -- the original package instantiation as a package declaration in the
11061 -- compilation unit node.
11063 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
11064 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(Inst_Node
));
11065 Rewrite
(Inst_Node
, Act_Decl
);
11067 -- Generate elaboration entity, in case spec has elaboration code.
11068 -- This cannot be done when the instance is analyzed, because it
11069 -- is not known yet whether the body exists.
11071 Set_Elaboration_Entity_Required
(Act_Decl_Id
, False);
11072 Build_Elaboration_Entity
(Parent
(Inst_Node
), Act_Decl_Id
);
11074 -- If the instantiation is not a library unit, then append the
11075 -- declaration to the list of implicitly generated entities, unless
11076 -- it is already a list member which means that it was already
11079 elsif not Is_List_Member
(Act_Decl
) then
11080 Mark_Rewrite_Insertion
(Act_Decl
);
11081 Insert_Before
(Inst_Node
, Act_Decl
);
11085 Expander_Mode_Restore
;
11086 end Instantiate_Package_Body
;
11088 ---------------------------------
11089 -- Instantiate_Subprogram_Body --
11090 ---------------------------------
11092 procedure Instantiate_Subprogram_Body
11093 (Body_Info
: Pending_Body_Info
;
11094 Body_Optional
: Boolean := False)
11096 Act_Decl
: constant Node_Id
:= Body_Info
.Act_Decl
;
11097 Inst_Node
: constant Node_Id
:= Body_Info
.Inst_Node
;
11098 Loc
: constant Source_Ptr
:= Sloc
(Inst_Node
);
11099 Gen_Id
: constant Node_Id
:= Name
(Inst_Node
);
11100 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
11101 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Unit
);
11102 Act_Decl_Id
: constant Entity_Id
:=
11103 Defining_Unit_Name
(Specification
(Act_Decl
));
11104 Pack_Id
: constant Entity_Id
:=
11105 Defining_Unit_Name
(Parent
(Act_Decl
));
11107 Saved_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
11108 Saved_Style_Check
: constant Boolean := Style_Check
;
11109 Saved_Warnings
: constant Warning_Record
:= Save_Warnings
;
11111 Act_Body
: Node_Id
;
11112 Act_Body_Id
: Entity_Id
;
11113 Gen_Body
: Node_Id
;
11114 Gen_Body_Id
: Node_Id
;
11115 Pack_Body
: Node_Id
;
11116 Par_Ent
: Entity_Id
:= Empty
;
11117 Par_Vis
: Boolean := False;
11118 Ret_Expr
: Node_Id
;
11120 Parent_Installed
: Boolean := False;
11123 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
11125 -- Subprogram body may have been created already because of an inline
11126 -- pragma, or because of multiple elaborations of the enclosing package
11127 -- when several instances of the subprogram appear in the main unit.
11129 if Present
(Corresponding_Body
(Act_Decl
)) then
11133 Expander_Mode_Save_And_Set
(Body_Info
.Expander_Status
);
11135 -- Re-establish the state of information on which checks are suppressed.
11136 -- This information was set in Body_Info at the point of instantiation,
11137 -- and now we restore it so that the instance is compiled using the
11138 -- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01).
11140 Local_Suppress_Stack_Top
:= Body_Info
.Local_Suppress_Stack_Top
;
11141 Scope_Suppress
:= Body_Info
.Scope_Suppress
;
11142 Opt
.Ada_Version
:= Body_Info
.Version
;
11143 Opt
.Ada_Version_Pragma
:= Body_Info
.Version_Pragma
;
11144 Restore_Warnings
(Body_Info
.Warnings
);
11145 Opt
.SPARK_Mode
:= Body_Info
.SPARK_Mode
;
11146 Opt
.SPARK_Mode_Pragma
:= Body_Info
.SPARK_Mode_Pragma
;
11148 if No
(Gen_Body_Id
) then
11150 -- For imported generic subprogram, no body to compile, complete
11151 -- the spec entity appropriately.
11153 if Is_Imported
(Gen_Unit
) then
11154 Set_Is_Imported
(Act_Decl_Id
);
11155 Set_First_Rep_Item
(Act_Decl_Id
, First_Rep_Item
(Gen_Unit
));
11156 Set_Interface_Name
(Act_Decl_Id
, Interface_Name
(Gen_Unit
));
11157 Set_Convention
(Act_Decl_Id
, Convention
(Gen_Unit
));
11158 Set_Has_Completion
(Act_Decl_Id
);
11161 -- For other cases, compile the body
11164 Load_Parent_Of_Generic
11165 (Inst_Node
, Specification
(Gen_Decl
), Body_Optional
);
11166 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
11170 Instantiation_Node
:= Inst_Node
;
11172 if Present
(Gen_Body_Id
) then
11173 Gen_Body
:= Unit_Declaration_Node
(Gen_Body_Id
);
11175 if Nkind
(Gen_Body
) = N_Subprogram_Body_Stub
then
11177 -- Either body is not present, or context is non-expanding, as
11178 -- when compiling a subunit. Mark the instance as completed, and
11179 -- diagnose a missing body when needed.
11182 and then Operating_Mode
= Generate_Code
11185 ("missing proper body for instantiation", Gen_Body
);
11188 Set_Has_Completion
(Act_Decl_Id
);
11192 Save_Env
(Gen_Unit
, Act_Decl_Id
);
11193 Style_Check
:= False;
11195 -- If the context of the instance is subject to SPARK_Mode "off" or
11196 -- the annotation is altogether missing, set the global flag which
11197 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
11200 if SPARK_Mode
/= On
then
11201 Ignore_Pragma_SPARK_Mode
:= True;
11204 Current_Sem_Unit
:= Body_Info
.Current_Sem_Unit
;
11205 Create_Instantiation_Source
11213 (Original_Node
(Gen_Body
), Empty
, Instantiating
=> True);
11215 -- Create proper defining name for the body, to correspond to the one
11219 Make_Defining_Identifier
(Sloc
(Act_Decl_Id
), Chars
(Act_Decl_Id
));
11221 Set_Comes_From_Source
(Act_Body_Id
, Comes_From_Source
(Act_Decl_Id
));
11222 Set_Defining_Unit_Name
(Specification
(Act_Body
), Act_Body_Id
);
11224 Set_Corresponding_Spec
(Act_Body
, Act_Decl_Id
);
11225 Set_Has_Completion
(Act_Decl_Id
);
11226 Check_Generic_Actuals
(Pack_Id
, False);
11228 -- Generate a reference to link the visible subprogram instance to
11229 -- the generic body, which for navigation purposes is the only
11230 -- available source for the instance.
11233 (Related_Instance
(Pack_Id
),
11234 Gen_Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
11236 -- If it is a child unit, make the parent instance (which is an
11237 -- instance of the parent of the generic) visible. The parent
11238 -- instance is the prefix of the name of the generic unit.
11240 if Ekind
(Scope
(Gen_Unit
)) = E_Generic_Package
11241 and then Nkind
(Gen_Id
) = N_Expanded_Name
11243 Par_Ent
:= Entity
(Prefix
(Gen_Id
));
11244 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
11245 Install_Parent
(Par_Ent
, In_Body
=> True);
11246 Parent_Installed
:= True;
11248 elsif Is_Child_Unit
(Gen_Unit
) then
11249 Par_Ent
:= Scope
(Gen_Unit
);
11250 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
11251 Install_Parent
(Par_Ent
, In_Body
=> True);
11252 Parent_Installed
:= True;
11255 -- Subprogram body is placed in the body of wrapper package,
11256 -- whose spec contains the subprogram declaration as well as
11257 -- the renaming declarations for the generic parameters.
11260 Make_Package_Body
(Loc
,
11261 Defining_Unit_Name
=> New_Copy
(Pack_Id
),
11262 Declarations
=> New_List
(Act_Body
));
11264 Set_Corresponding_Spec
(Pack_Body
, Pack_Id
);
11266 -- If the instantiation is a library unit, then build resulting
11267 -- compilation unit nodes for the instance. The declaration of
11268 -- the enclosing package is the grandparent of the subprogram
11269 -- declaration. First replace the instantiation node as the unit
11270 -- of the corresponding compilation.
11272 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
11273 if Parent
(Inst_Node
) = Cunit
(Main_Unit
) then
11274 Set_Unit
(Parent
(Inst_Node
), Inst_Node
);
11275 Build_Instance_Compilation_Unit_Nodes
11276 (Inst_Node
, Pack_Body
, Parent
(Parent
(Act_Decl
)));
11277 Analyze
(Inst_Node
);
11279 Set_Parent
(Pack_Body
, Parent
(Inst_Node
));
11280 Analyze
(Pack_Body
);
11284 Insert_Before
(Inst_Node
, Pack_Body
);
11285 Mark_Rewrite_Insertion
(Pack_Body
);
11286 Analyze
(Pack_Body
);
11288 if Expander_Active
then
11289 Freeze_Subprogram_Body
(Inst_Node
, Gen_Body
, Pack_Id
);
11293 Inherit_Context
(Gen_Body
, Inst_Node
);
11295 Restore_Private_Views
(Pack_Id
, False);
11297 if Parent_Installed
then
11298 Remove_Parent
(In_Body
=> True);
11300 -- Restore the previous visibility of the parent
11302 Set_Is_Immediately_Visible
(Par_Ent
, Par_Vis
);
11306 Ignore_Pragma_SPARK_Mode
:= Saved_IPSM
;
11307 Style_Check
:= Saved_Style_Check
;
11308 Restore_Warnings
(Saved_Warnings
);
11310 -- Body not found. Error was emitted already. If there were no previous
11311 -- errors, this may be an instance whose scope is a premature instance.
11312 -- In that case we must insure that the (legal) program does raise
11313 -- program error if executed. We generate a subprogram body for this
11314 -- purpose. See DEC ac30vso.
11316 -- Should not reference proprietary DEC tests in comments ???
11318 elsif Serious_Errors_Detected
= 0
11319 and then Nkind
(Parent
(Inst_Node
)) /= N_Compilation_Unit
11321 if Body_Optional
then
11324 elsif Ekind
(Act_Decl_Id
) = E_Procedure
then
11326 Make_Subprogram_Body
(Loc
,
11328 Make_Procedure_Specification
(Loc
,
11329 Defining_Unit_Name
=>
11330 Make_Defining_Identifier
(Loc
, Chars
(Act_Decl_Id
)),
11331 Parameter_Specifications
=>
11333 (Parameter_Specifications
(Parent
(Act_Decl_Id
)))),
11335 Declarations
=> Empty_List
,
11336 Handled_Statement_Sequence
=>
11337 Make_Handled_Sequence_Of_Statements
(Loc
,
11340 Make_Raise_Program_Error
(Loc
,
11342 PE_Access_Before_Elaboration
))));
11346 Make_Raise_Program_Error
(Loc
,
11347 Reason
=> PE_Access_Before_Elaboration
);
11349 Set_Etype
(Ret_Expr
, (Etype
(Act_Decl_Id
)));
11350 Set_Analyzed
(Ret_Expr
);
11353 Make_Subprogram_Body
(Loc
,
11355 Make_Function_Specification
(Loc
,
11356 Defining_Unit_Name
=>
11357 Make_Defining_Identifier
(Loc
, Chars
(Act_Decl_Id
)),
11358 Parameter_Specifications
=>
11360 (Parameter_Specifications
(Parent
(Act_Decl_Id
))),
11361 Result_Definition
=>
11362 New_Occurrence_Of
(Etype
(Act_Decl_Id
), Loc
)),
11364 Declarations
=> Empty_List
,
11365 Handled_Statement_Sequence
=>
11366 Make_Handled_Sequence_Of_Statements
(Loc
,
11369 (Make_Simple_Return_Statement
(Loc
, Ret_Expr
))));
11373 Make_Package_Body
(Loc
,
11374 Defining_Unit_Name
=> New_Copy
(Pack_Id
),
11375 Declarations
=> New_List
(Act_Body
));
11377 Insert_After
(Inst_Node
, Pack_Body
);
11378 Set_Corresponding_Spec
(Pack_Body
, Pack_Id
);
11379 Analyze
(Pack_Body
);
11382 Expander_Mode_Restore
;
11383 end Instantiate_Subprogram_Body
;
11385 ----------------------
11386 -- Instantiate_Type --
11387 ----------------------
11389 function Instantiate_Type
11392 Analyzed_Formal
: Node_Id
;
11393 Actual_Decls
: List_Id
) return List_Id
11395 Gen_T
: constant Entity_Id
:= Defining_Identifier
(Formal
);
11396 A_Gen_T
: constant Entity_Id
:=
11397 Defining_Identifier
(Analyzed_Formal
);
11398 Ancestor
: Entity_Id
:= Empty
;
11399 Def
: constant Node_Id
:= Formal_Type_Definition
(Formal
);
11401 Decl_Node
: Node_Id
;
11402 Decl_Nodes
: List_Id
;
11406 procedure Diagnose_Predicated_Actual
;
11407 -- There are a number of constructs in which a discrete type with
11408 -- predicates is illegal, e.g. as an index in an array type declaration.
11409 -- If a generic type is used is such a construct in a generic package
11410 -- declaration, it carries the flag No_Predicate_On_Actual. it is part
11411 -- of the generic contract that the actual cannot have predicates.
11413 procedure Validate_Array_Type_Instance
;
11414 procedure Validate_Access_Subprogram_Instance
;
11415 procedure Validate_Access_Type_Instance
;
11416 procedure Validate_Derived_Type_Instance
;
11417 procedure Validate_Derived_Interface_Type_Instance
;
11418 procedure Validate_Discriminated_Formal_Type
;
11419 procedure Validate_Interface_Type_Instance
;
11420 procedure Validate_Private_Type_Instance
;
11421 procedure Validate_Incomplete_Type_Instance
;
11422 -- These procedures perform validation tests for the named case.
11423 -- Validate_Discriminated_Formal_Type is shared by formal private
11424 -- types and Ada 2012 formal incomplete types.
11426 function Subtypes_Match
(Gen_T
, Act_T
: Entity_Id
) return Boolean;
11427 -- Check that base types are the same and that the subtypes match
11428 -- statically. Used in several of the above.
11430 ---------------------------------
11431 -- Diagnose_Predicated_Actual --
11432 ---------------------------------
11434 procedure Diagnose_Predicated_Actual
is
11436 if No_Predicate_On_Actual
(A_Gen_T
)
11437 and then Has_Predicates
(Act_T
)
11440 ("actual for& cannot be a type with predicate",
11441 Instantiation_Node
, A_Gen_T
);
11443 elsif No_Dynamic_Predicate_On_Actual
(A_Gen_T
)
11444 and then Has_Predicates
(Act_T
)
11445 and then not Has_Static_Predicate_Aspect
(Act_T
)
11448 ("actual for& cannot be a type with a dynamic predicate",
11449 Instantiation_Node
, A_Gen_T
);
11451 end Diagnose_Predicated_Actual
;
11453 --------------------
11454 -- Subtypes_Match --
11455 --------------------
11457 function Subtypes_Match
(Gen_T
, Act_T
: Entity_Id
) return Boolean is
11458 T
: constant Entity_Id
:= Get_Instance_Of
(Gen_T
);
11461 -- Some detailed comments would be useful here ???
11463 return ((Base_Type
(T
) = Act_T
11464 or else Base_Type
(T
) = Base_Type
(Act_T
))
11465 and then Subtypes_Statically_Match
(T
, Act_T
))
11467 or else (Is_Class_Wide_Type
(Gen_T
)
11468 and then Is_Class_Wide_Type
(Act_T
)
11469 and then Subtypes_Match
11470 (Get_Instance_Of
(Root_Type
(Gen_T
)),
11471 Root_Type
(Act_T
)))
11474 (Ekind_In
(Gen_T
, E_Anonymous_Access_Subprogram_Type
,
11475 E_Anonymous_Access_Type
)
11476 and then Ekind
(Act_T
) = Ekind
(Gen_T
)
11477 and then Subtypes_Statically_Match
11478 (Designated_Type
(Gen_T
), Designated_Type
(Act_T
)));
11479 end Subtypes_Match
;
11481 -----------------------------------------
11482 -- Validate_Access_Subprogram_Instance --
11483 -----------------------------------------
11485 procedure Validate_Access_Subprogram_Instance
is
11487 if not Is_Access_Type
(Act_T
)
11488 or else Ekind
(Designated_Type
(Act_T
)) /= E_Subprogram_Type
11491 ("expect access type in instantiation of &", Actual
, Gen_T
);
11492 Abandon_Instantiation
(Actual
);
11495 -- According to AI05-288, actuals for access_to_subprograms must be
11496 -- subtype conformant with the generic formal. Previous to AI05-288
11497 -- only mode conformance was required.
11499 -- This is a binding interpretation that applies to previous versions
11500 -- of the language, no need to maintain previous weaker checks.
11502 Check_Subtype_Conformant
11503 (Designated_Type
(Act_T
),
11504 Designated_Type
(A_Gen_T
),
11508 if Ekind
(Base_Type
(Act_T
)) = E_Access_Protected_Subprogram_Type
then
11509 if Ekind
(A_Gen_T
) = E_Access_Subprogram_Type
then
11511 ("protected access type not allowed for formal &",
11515 elsif Ekind
(A_Gen_T
) = E_Access_Protected_Subprogram_Type
then
11517 ("expect protected access type for formal &",
11521 -- If the formal has a specified convention (which in most cases
11522 -- will be StdCall) verify that the actual has the same convention.
11524 if Has_Convention_Pragma
(A_Gen_T
)
11525 and then Convention
(A_Gen_T
) /= Convention
(Act_T
)
11527 Error_Msg_Name_1
:= Get_Convention_Name
(Convention
(A_Gen_T
));
11529 ("actual for formal & must have convention %", Actual
, Gen_T
);
11531 end Validate_Access_Subprogram_Instance
;
11533 -----------------------------------
11534 -- Validate_Access_Type_Instance --
11535 -----------------------------------
11537 procedure Validate_Access_Type_Instance
is
11538 Desig_Type
: constant Entity_Id
:=
11539 Find_Actual_Type
(Designated_Type
(A_Gen_T
), A_Gen_T
);
11540 Desig_Act
: Entity_Id
;
11543 if not Is_Access_Type
(Act_T
) then
11545 ("expect access type in instantiation of &", Actual
, Gen_T
);
11546 Abandon_Instantiation
(Actual
);
11549 if Is_Access_Constant
(A_Gen_T
) then
11550 if not Is_Access_Constant
(Act_T
) then
11552 ("actual type must be access-to-constant type", Actual
);
11553 Abandon_Instantiation
(Actual
);
11556 if Is_Access_Constant
(Act_T
) then
11558 ("actual type must be access-to-variable type", Actual
);
11559 Abandon_Instantiation
(Actual
);
11561 elsif Ekind
(A_Gen_T
) = E_General_Access_Type
11562 and then Ekind
(Base_Type
(Act_T
)) /= E_General_Access_Type
11564 Error_Msg_N
-- CODEFIX
11565 ("actual must be general access type!", Actual
);
11566 Error_Msg_NE
-- CODEFIX
11567 ("add ALL to }!", Actual
, Act_T
);
11568 Abandon_Instantiation
(Actual
);
11572 -- The designated subtypes, that is to say the subtypes introduced
11573 -- by an access type declaration (and not by a subtype declaration)
11576 Desig_Act
:= Designated_Type
(Base_Type
(Act_T
));
11578 -- The designated type may have been introduced through a limited_
11579 -- with clause, in which case retrieve the non-limited view. This
11580 -- applies to incomplete types as well as to class-wide types.
11582 if From_Limited_With
(Desig_Act
) then
11583 Desig_Act
:= Available_View
(Desig_Act
);
11586 if not Subtypes_Match
(Desig_Type
, Desig_Act
) then
11588 ("designated type of actual does not match that of formal &",
11591 if not Predicates_Match
(Desig_Type
, Desig_Act
) then
11592 Error_Msg_N
("\predicates do not match", Actual
);
11595 Abandon_Instantiation
(Actual
);
11597 elsif Is_Access_Type
(Designated_Type
(Act_T
))
11598 and then Is_Constrained
(Designated_Type
(Designated_Type
(Act_T
)))
11600 Is_Constrained
(Designated_Type
(Desig_Type
))
11603 ("designated type of actual does not match that of formal &",
11606 if not Predicates_Match
(Desig_Type
, Desig_Act
) then
11607 Error_Msg_N
("\predicates do not match", Actual
);
11610 Abandon_Instantiation
(Actual
);
11613 -- Ada 2005: null-exclusion indicators of the two types must agree
11615 if Can_Never_Be_Null
(A_Gen_T
) /= Can_Never_Be_Null
(Act_T
) then
11617 ("non null exclusion of actual and formal & do not match",
11620 end Validate_Access_Type_Instance
;
11622 ----------------------------------
11623 -- Validate_Array_Type_Instance --
11624 ----------------------------------
11626 procedure Validate_Array_Type_Instance
is
11631 function Formal_Dimensions
return Nat
;
11632 -- Count number of dimensions in array type formal
11634 -----------------------
11635 -- Formal_Dimensions --
11636 -----------------------
11638 function Formal_Dimensions
return Nat
is
11643 if Nkind
(Def
) = N_Constrained_Array_Definition
then
11644 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
11646 Index
:= First
(Subtype_Marks
(Def
));
11649 while Present
(Index
) loop
11651 Next_Index
(Index
);
11655 end Formal_Dimensions
;
11657 -- Start of processing for Validate_Array_Type_Instance
11660 if not Is_Array_Type
(Act_T
) then
11662 ("expect array type in instantiation of &", Actual
, Gen_T
);
11663 Abandon_Instantiation
(Actual
);
11665 elsif Nkind
(Def
) = N_Constrained_Array_Definition
then
11666 if not (Is_Constrained
(Act_T
)) then
11668 ("expect constrained array in instantiation of &",
11670 Abandon_Instantiation
(Actual
);
11674 if Is_Constrained
(Act_T
) then
11676 ("expect unconstrained array in instantiation of &",
11678 Abandon_Instantiation
(Actual
);
11682 if Formal_Dimensions
/= Number_Dimensions
(Act_T
) then
11684 ("dimensions of actual do not match formal &", Actual
, Gen_T
);
11685 Abandon_Instantiation
(Actual
);
11688 I1
:= First_Index
(A_Gen_T
);
11689 I2
:= First_Index
(Act_T
);
11690 for J
in 1 .. Formal_Dimensions
loop
11692 -- If the indexes of the actual were given by a subtype_mark,
11693 -- the index was transformed into a range attribute. Retrieve
11694 -- the original type mark for checking.
11696 if Is_Entity_Name
(Original_Node
(I2
)) then
11697 T2
:= Entity
(Original_Node
(I2
));
11702 if not Subtypes_Match
11703 (Find_Actual_Type
(Etype
(I1
), A_Gen_T
), T2
)
11706 ("index types of actual do not match those of formal &",
11708 Abandon_Instantiation
(Actual
);
11715 -- Check matching subtypes. Note that there are complex visibility
11716 -- issues when the generic is a child unit and some aspect of the
11717 -- generic type is declared in a parent unit of the generic. We do
11718 -- the test to handle this special case only after a direct check
11719 -- for static matching has failed. The case where both the component
11720 -- type and the array type are separate formals, and the component
11721 -- type is a private view may also require special checking in
11725 (Component_Type
(A_Gen_T
), Component_Type
(Act_T
))
11728 (Find_Actual_Type
(Component_Type
(A_Gen_T
), A_Gen_T
),
11729 Component_Type
(Act_T
))
11734 ("component subtype of actual does not match that of formal &",
11736 Abandon_Instantiation
(Actual
);
11739 if Has_Aliased_Components
(A_Gen_T
)
11740 and then not Has_Aliased_Components
(Act_T
)
11743 ("actual must have aliased components to match formal type &",
11746 end Validate_Array_Type_Instance
;
11748 -----------------------------------------------
11749 -- Validate_Derived_Interface_Type_Instance --
11750 -----------------------------------------------
11752 procedure Validate_Derived_Interface_Type_Instance
is
11753 Par
: constant Entity_Id
:= Entity
(Subtype_Indication
(Def
));
11757 -- First apply interface instance checks
11759 Validate_Interface_Type_Instance
;
11761 -- Verify that immediate parent interface is an ancestor of
11765 and then not Interface_Present_In_Ancestor
(Act_T
, Par
)
11768 ("interface actual must include progenitor&", Actual
, Par
);
11771 -- Now verify that the actual includes all other ancestors of
11774 Elmt
:= First_Elmt
(Interfaces
(A_Gen_T
));
11775 while Present
(Elmt
) loop
11776 if not Interface_Present_In_Ancestor
11777 (Act_T
, Get_Instance_Of
(Node
(Elmt
)))
11780 ("interface actual must include progenitor&",
11781 Actual
, Node
(Elmt
));
11786 end Validate_Derived_Interface_Type_Instance
;
11788 ------------------------------------
11789 -- Validate_Derived_Type_Instance --
11790 ------------------------------------
11792 procedure Validate_Derived_Type_Instance
is
11793 Actual_Discr
: Entity_Id
;
11794 Ancestor_Discr
: Entity_Id
;
11797 -- If the parent type in the generic declaration is itself a previous
11798 -- formal type, then it is local to the generic and absent from the
11799 -- analyzed generic definition. In that case the ancestor is the
11800 -- instance of the formal (which must have been instantiated
11801 -- previously), unless the ancestor is itself a formal derived type.
11802 -- In this latter case (which is the subject of Corrigendum 8652/0038
11803 -- (AI-202) the ancestor of the formals is the ancestor of its
11804 -- parent. Otherwise, the analyzed generic carries the parent type.
11805 -- If the parent type is defined in a previous formal package, then
11806 -- the scope of that formal package is that of the generic type
11807 -- itself, and it has already been mapped into the corresponding type
11808 -- in the actual package.
11810 -- Common case: parent type defined outside of the generic
11812 if Is_Entity_Name
(Subtype_Mark
(Def
))
11813 and then Present
(Entity
(Subtype_Mark
(Def
)))
11815 Ancestor
:= Get_Instance_Of
(Entity
(Subtype_Mark
(Def
)));
11817 -- Check whether parent is defined in a previous formal package
11820 Scope
(Scope
(Base_Type
(Etype
(A_Gen_T
)))) = Scope
(A_Gen_T
)
11823 Get_Instance_Of
(Base_Type
(Etype
(A_Gen_T
)));
11825 -- The type may be a local derivation, or a type extension of a
11826 -- previous formal, or of a formal of a parent package.
11828 elsif Is_Derived_Type
(Get_Instance_Of
(A_Gen_T
))
11830 Ekind
(Get_Instance_Of
(A_Gen_T
)) = E_Record_Type_With_Private
11832 -- Check whether the parent is another derived formal type in the
11833 -- same generic unit.
11835 if Etype
(A_Gen_T
) /= A_Gen_T
11836 and then Is_Generic_Type
(Etype
(A_Gen_T
))
11837 and then Scope
(Etype
(A_Gen_T
)) = Scope
(A_Gen_T
)
11838 and then Etype
(Etype
(A_Gen_T
)) /= Etype
(A_Gen_T
)
11840 -- Locate ancestor of parent from the subtype declaration
11841 -- created for the actual.
11847 Decl
:= First
(Actual_Decls
);
11848 while Present
(Decl
) loop
11849 if Nkind
(Decl
) = N_Subtype_Declaration
11850 and then Chars
(Defining_Identifier
(Decl
)) =
11851 Chars
(Etype
(A_Gen_T
))
11853 Ancestor
:= Generic_Parent_Type
(Decl
);
11861 pragma Assert
(Present
(Ancestor
));
11863 -- The ancestor itself may be a previous formal that has been
11866 Ancestor
:= Get_Instance_Of
(Ancestor
);
11870 Get_Instance_Of
(Base_Type
(Get_Instance_Of
(A_Gen_T
)));
11873 -- Check whether parent is a previous formal of the current generic
11875 elsif Is_Derived_Type
(A_Gen_T
)
11876 and then Is_Generic_Type
(Etype
(A_Gen_T
))
11877 and then Scope
(A_Gen_T
) = Scope
(Etype
(A_Gen_T
))
11879 Ancestor
:= Get_Instance_Of
(First_Subtype
(Etype
(A_Gen_T
)));
11881 -- An unusual case: the actual is a type declared in a parent unit,
11882 -- but is not a formal type so there is no instance_of for it.
11883 -- Retrieve it by analyzing the record extension.
11885 elsif Is_Child_Unit
(Scope
(A_Gen_T
))
11886 and then In_Open_Scopes
(Scope
(Act_T
))
11887 and then Is_Generic_Instance
(Scope
(Act_T
))
11889 Analyze
(Subtype_Mark
(Def
));
11890 Ancestor
:= Entity
(Subtype_Mark
(Def
));
11893 Ancestor
:= Get_Instance_Of
(Etype
(Base_Type
(A_Gen_T
)));
11896 -- If the formal derived type has pragma Preelaborable_Initialization
11897 -- then the actual type must have preelaborable initialization.
11899 if Known_To_Have_Preelab_Init
(A_Gen_T
)
11900 and then not Has_Preelaborable_Initialization
(Act_T
)
11903 ("actual for & must have preelaborable initialization",
11907 -- Ada 2005 (AI-251)
11909 if Ada_Version
>= Ada_2005
and then Is_Interface
(Ancestor
) then
11910 if not Interface_Present_In_Ancestor
(Act_T
, Ancestor
) then
11912 ("(Ada 2005) expected type implementing & in instantiation",
11916 -- Finally verify that the (instance of) the ancestor is an ancestor
11919 elsif not Is_Ancestor
(Base_Type
(Ancestor
), Act_T
) then
11921 ("expect type derived from & in instantiation",
11922 Actual
, First_Subtype
(Ancestor
));
11923 Abandon_Instantiation
(Actual
);
11926 -- Ada 2005 (AI-443): Synchronized formal derived type checks. Note
11927 -- that the formal type declaration has been rewritten as a private
11930 if Ada_Version
>= Ada_2005
11931 and then Nkind
(Parent
(A_Gen_T
)) = N_Private_Extension_Declaration
11932 and then Synchronized_Present
(Parent
(A_Gen_T
))
11934 -- The actual must be a synchronized tagged type
11936 if not Is_Tagged_Type
(Act_T
) then
11938 ("actual of synchronized type must be tagged", Actual
);
11939 Abandon_Instantiation
(Actual
);
11941 elsif Nkind
(Parent
(Act_T
)) = N_Full_Type_Declaration
11942 and then Nkind
(Type_Definition
(Parent
(Act_T
))) =
11943 N_Derived_Type_Definition
11944 and then not Synchronized_Present
11945 (Type_Definition
(Parent
(Act_T
)))
11948 ("actual of synchronized type must be synchronized", Actual
);
11949 Abandon_Instantiation
(Actual
);
11953 -- Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1
11954 -- removes the second instance of the phrase "or allow pass by copy".
11956 if Is_Atomic
(Act_T
) and then not Is_Atomic
(Ancestor
) then
11958 ("cannot have atomic actual type for non-atomic formal type",
11961 elsif Is_Volatile
(Act_T
) and then not Is_Volatile
(Ancestor
) then
11963 ("cannot have volatile actual type for non-volatile formal type",
11967 -- It should not be necessary to check for unknown discriminants on
11968 -- Formal, but for some reason Has_Unknown_Discriminants is false for
11969 -- A_Gen_T, so Is_Definite_Subtype incorrectly returns True. This
11970 -- needs fixing. ???
11972 if Is_Definite_Subtype
(A_Gen_T
)
11973 and then not Unknown_Discriminants_Present
(Formal
)
11974 and then not Is_Definite_Subtype
(Act_T
)
11976 Error_Msg_N
("actual subtype must be constrained", Actual
);
11977 Abandon_Instantiation
(Actual
);
11980 if not Unknown_Discriminants_Present
(Formal
) then
11981 if Is_Constrained
(Ancestor
) then
11982 if not Is_Constrained
(Act_T
) then
11983 Error_Msg_N
("actual subtype must be constrained", Actual
);
11984 Abandon_Instantiation
(Actual
);
11987 -- Ancestor is unconstrained, Check if generic formal and actual
11988 -- agree on constrainedness. The check only applies to array types
11989 -- and discriminated types.
11991 elsif Is_Constrained
(Act_T
) then
11992 if Ekind
(Ancestor
) = E_Access_Type
11993 or else (not Is_Constrained
(A_Gen_T
)
11994 and then Is_Composite_Type
(A_Gen_T
))
11996 Error_Msg_N
("actual subtype must be unconstrained", Actual
);
11997 Abandon_Instantiation
(Actual
);
12000 -- A class-wide type is only allowed if the formal has unknown
12003 elsif Is_Class_Wide_Type
(Act_T
)
12004 and then not Has_Unknown_Discriminants
(Ancestor
)
12007 ("actual for & cannot be a class-wide type", Actual
, Gen_T
);
12008 Abandon_Instantiation
(Actual
);
12010 -- Otherwise, the formal and actual must have the same number
12011 -- of discriminants and each discriminant of the actual must
12012 -- correspond to a discriminant of the formal.
12014 elsif Has_Discriminants
(Act_T
)
12015 and then not Has_Unknown_Discriminants
(Act_T
)
12016 and then Has_Discriminants
(Ancestor
)
12018 Actual_Discr
:= First_Discriminant
(Act_T
);
12019 Ancestor_Discr
:= First_Discriminant
(Ancestor
);
12020 while Present
(Actual_Discr
)
12021 and then Present
(Ancestor_Discr
)
12023 if Base_Type
(Act_T
) /= Base_Type
(Ancestor
) and then
12024 No
(Corresponding_Discriminant
(Actual_Discr
))
12027 ("discriminant & does not correspond "
12028 & "to ancestor discriminant", Actual
, Actual_Discr
);
12029 Abandon_Instantiation
(Actual
);
12032 Next_Discriminant
(Actual_Discr
);
12033 Next_Discriminant
(Ancestor_Discr
);
12036 if Present
(Actual_Discr
) or else Present
(Ancestor_Discr
) then
12038 ("actual for & must have same number of discriminants",
12040 Abandon_Instantiation
(Actual
);
12043 -- This case should be caught by the earlier check for
12044 -- constrainedness, but the check here is added for completeness.
12046 elsif Has_Discriminants
(Act_T
)
12047 and then not Has_Unknown_Discriminants
(Act_T
)
12050 ("actual for & must not have discriminants", Actual
, Gen_T
);
12051 Abandon_Instantiation
(Actual
);
12053 elsif Has_Discriminants
(Ancestor
) then
12055 ("actual for & must have known discriminants", Actual
, Gen_T
);
12056 Abandon_Instantiation
(Actual
);
12059 if not Subtypes_Statically_Compatible
12060 (Act_T
, Ancestor
, Formal_Derived_Matching
=> True)
12063 ("constraint on actual is incompatible with formal", Actual
);
12064 Abandon_Instantiation
(Actual
);
12068 -- If the formal and actual types are abstract, check that there
12069 -- are no abstract primitives of the actual type that correspond to
12070 -- nonabstract primitives of the formal type (second sentence of
12073 if Is_Abstract_Type
(A_Gen_T
) and then Is_Abstract_Type
(Act_T
) then
12074 Check_Abstract_Primitives
: declare
12075 Gen_Prims
: constant Elist_Id
:=
12076 Primitive_Operations
(A_Gen_T
);
12077 Gen_Elmt
: Elmt_Id
;
12078 Gen_Subp
: Entity_Id
;
12079 Anc_Subp
: Entity_Id
;
12080 Anc_Formal
: Entity_Id
;
12081 Anc_F_Type
: Entity_Id
;
12083 Act_Prims
: constant Elist_Id
:= Primitive_Operations
(Act_T
);
12084 Act_Elmt
: Elmt_Id
;
12085 Act_Subp
: Entity_Id
;
12086 Act_Formal
: Entity_Id
;
12087 Act_F_Type
: Entity_Id
;
12089 Subprograms_Correspond
: Boolean;
12091 function Is_Tagged_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
12092 -- Returns true if T2 is derived directly or indirectly from
12093 -- T1, including derivations from interfaces. T1 and T2 are
12094 -- required to be specific tagged base types.
12096 ------------------------
12097 -- Is_Tagged_Ancestor --
12098 ------------------------
12100 function Is_Tagged_Ancestor
(T1
, T2
: Entity_Id
) return Boolean
12102 Intfc_Elmt
: Elmt_Id
;
12105 -- The predicate is satisfied if the types are the same
12110 -- If we've reached the top of the derivation chain then
12111 -- we know that T1 is not an ancestor of T2.
12113 elsif Etype
(T2
) = T2
then
12116 -- Proceed to check T2's immediate parent
12118 elsif Is_Ancestor
(T1
, Base_Type
(Etype
(T2
))) then
12121 -- Finally, check to see if T1 is an ancestor of any of T2's
12125 Intfc_Elmt
:= First_Elmt
(Interfaces
(T2
));
12126 while Present
(Intfc_Elmt
) loop
12127 if Is_Ancestor
(T1
, Node
(Intfc_Elmt
)) then
12131 Next_Elmt
(Intfc_Elmt
);
12136 end Is_Tagged_Ancestor
;
12138 -- Start of processing for Check_Abstract_Primitives
12141 -- Loop over all of the formal derived type's primitives
12143 Gen_Elmt
:= First_Elmt
(Gen_Prims
);
12144 while Present
(Gen_Elmt
) loop
12145 Gen_Subp
:= Node
(Gen_Elmt
);
12147 -- If the primitive of the formal is not abstract, then
12148 -- determine whether there is a corresponding primitive of
12149 -- the actual type that's abstract.
12151 if not Is_Abstract_Subprogram
(Gen_Subp
) then
12152 Act_Elmt
:= First_Elmt
(Act_Prims
);
12153 while Present
(Act_Elmt
) loop
12154 Act_Subp
:= Node
(Act_Elmt
);
12156 -- If we find an abstract primitive of the actual,
12157 -- then we need to test whether it corresponds to the
12158 -- subprogram from which the generic formal primitive
12161 if Is_Abstract_Subprogram
(Act_Subp
) then
12162 Anc_Subp
:= Alias
(Gen_Subp
);
12164 -- Test whether we have a corresponding primitive
12165 -- by comparing names, kinds, formal types, and
12168 if Chars
(Anc_Subp
) = Chars
(Act_Subp
)
12169 and then Ekind
(Anc_Subp
) = Ekind
(Act_Subp
)
12171 Anc_Formal
:= First_Formal
(Anc_Subp
);
12172 Act_Formal
:= First_Formal
(Act_Subp
);
12173 while Present
(Anc_Formal
)
12174 and then Present
(Act_Formal
)
12176 Anc_F_Type
:= Etype
(Anc_Formal
);
12177 Act_F_Type
:= Etype
(Act_Formal
);
12179 if Ekind
(Anc_F_Type
) =
12180 E_Anonymous_Access_Type
12182 Anc_F_Type
:= Designated_Type
(Anc_F_Type
);
12184 if Ekind
(Act_F_Type
) =
12185 E_Anonymous_Access_Type
12188 Designated_Type
(Act_F_Type
);
12194 Ekind
(Act_F_Type
) = E_Anonymous_Access_Type
12199 Anc_F_Type
:= Base_Type
(Anc_F_Type
);
12200 Act_F_Type
:= Base_Type
(Act_F_Type
);
12202 -- If the formal is controlling, then the
12203 -- the type of the actual primitive's formal
12204 -- must be derived directly or indirectly
12205 -- from the type of the ancestor primitive's
12208 if Is_Controlling_Formal
(Anc_Formal
) then
12209 if not Is_Tagged_Ancestor
12210 (Anc_F_Type
, Act_F_Type
)
12215 -- Otherwise the types of the formals must
12218 elsif Anc_F_Type
/= Act_F_Type
then
12222 Next_Entity
(Anc_Formal
);
12223 Next_Entity
(Act_Formal
);
12226 -- If we traversed through all of the formals
12227 -- then so far the subprograms correspond, so
12228 -- now check that any result types correspond.
12230 if No
(Anc_Formal
) and then No
(Act_Formal
) then
12231 Subprograms_Correspond
:= True;
12233 if Ekind
(Act_Subp
) = E_Function
then
12234 Anc_F_Type
:= Etype
(Anc_Subp
);
12235 Act_F_Type
:= Etype
(Act_Subp
);
12237 if Ekind
(Anc_F_Type
) =
12238 E_Anonymous_Access_Type
12241 Designated_Type
(Anc_F_Type
);
12243 if Ekind
(Act_F_Type
) =
12244 E_Anonymous_Access_Type
12247 Designated_Type
(Act_F_Type
);
12249 Subprograms_Correspond
:= False;
12254 = E_Anonymous_Access_Type
12256 Subprograms_Correspond
:= False;
12259 Anc_F_Type
:= Base_Type
(Anc_F_Type
);
12260 Act_F_Type
:= Base_Type
(Act_F_Type
);
12262 -- Now either the result types must be
12263 -- the same or, if the result type is
12264 -- controlling, the result type of the
12265 -- actual primitive must descend from the
12266 -- result type of the ancestor primitive.
12268 if Subprograms_Correspond
12269 and then Anc_F_Type
/= Act_F_Type
12271 Has_Controlling_Result
(Anc_Subp
)
12272 and then not Is_Tagged_Ancestor
12273 (Anc_F_Type
, Act_F_Type
)
12275 Subprograms_Correspond
:= False;
12279 -- Found a matching subprogram belonging to
12280 -- formal ancestor type, so actual subprogram
12281 -- corresponds and this violates 3.9.3(9).
12283 if Subprograms_Correspond
then
12285 ("abstract subprogram & overrides "
12286 & "nonabstract subprogram of ancestor",
12293 Next_Elmt
(Act_Elmt
);
12297 Next_Elmt
(Gen_Elmt
);
12299 end Check_Abstract_Primitives
;
12302 -- Verify that limitedness matches. If parent is a limited
12303 -- interface then the generic formal is not unless declared
12304 -- explicitly so. If not declared limited, the actual cannot be
12305 -- limited (see AI05-0087).
12307 -- Even though this AI is a binding interpretation, we enable the
12308 -- check only in Ada 2012 mode, because this improper construct
12309 -- shows up in user code and in existing B-tests.
12311 if Is_Limited_Type
(Act_T
)
12312 and then not Is_Limited_Type
(A_Gen_T
)
12313 and then Ada_Version
>= Ada_2012
12315 if In_Instance
then
12319 ("actual for non-limited & cannot be a limited type",
12321 Explain_Limited_Type
(Act_T
, Actual
);
12322 Abandon_Instantiation
(Actual
);
12325 end Validate_Derived_Type_Instance
;
12327 ----------------------------------------
12328 -- Validate_Discriminated_Formal_Type --
12329 ----------------------------------------
12331 procedure Validate_Discriminated_Formal_Type
is
12332 Formal_Discr
: Entity_Id
;
12333 Actual_Discr
: Entity_Id
;
12334 Formal_Subt
: Entity_Id
;
12337 if Has_Discriminants
(A_Gen_T
) then
12338 if not Has_Discriminants
(Act_T
) then
12340 ("actual for & must have discriminants", Actual
, Gen_T
);
12341 Abandon_Instantiation
(Actual
);
12343 elsif Is_Constrained
(Act_T
) then
12345 ("actual for & must be unconstrained", Actual
, Gen_T
);
12346 Abandon_Instantiation
(Actual
);
12349 Formal_Discr
:= First_Discriminant
(A_Gen_T
);
12350 Actual_Discr
:= First_Discriminant
(Act_T
);
12351 while Formal_Discr
/= Empty
loop
12352 if Actual_Discr
= Empty
then
12354 ("discriminants on actual do not match formal",
12356 Abandon_Instantiation
(Actual
);
12359 Formal_Subt
:= Get_Instance_Of
(Etype
(Formal_Discr
));
12361 -- Access discriminants match if designated types do
12363 if Ekind
(Base_Type
(Formal_Subt
)) = E_Anonymous_Access_Type
12364 and then (Ekind
(Base_Type
(Etype
(Actual_Discr
)))) =
12365 E_Anonymous_Access_Type
12368 (Designated_Type
(Base_Type
(Formal_Subt
))) =
12369 Designated_Type
(Base_Type
(Etype
(Actual_Discr
)))
12373 elsif Base_Type
(Formal_Subt
) /=
12374 Base_Type
(Etype
(Actual_Discr
))
12377 ("types of actual discriminants must match formal",
12379 Abandon_Instantiation
(Actual
);
12381 elsif not Subtypes_Statically_Match
12382 (Formal_Subt
, Etype
(Actual_Discr
))
12383 and then Ada_Version
>= Ada_95
12386 ("subtypes of actual discriminants must match formal",
12388 Abandon_Instantiation
(Actual
);
12391 Next_Discriminant
(Formal_Discr
);
12392 Next_Discriminant
(Actual_Discr
);
12395 if Actual_Discr
/= Empty
then
12397 ("discriminants on actual do not match formal",
12399 Abandon_Instantiation
(Actual
);
12403 end Validate_Discriminated_Formal_Type
;
12405 ---------------------------------------
12406 -- Validate_Incomplete_Type_Instance --
12407 ---------------------------------------
12409 procedure Validate_Incomplete_Type_Instance
is
12411 if not Is_Tagged_Type
(Act_T
)
12412 and then Is_Tagged_Type
(A_Gen_T
)
12415 ("actual for & must be a tagged type", Actual
, Gen_T
);
12418 Validate_Discriminated_Formal_Type
;
12419 end Validate_Incomplete_Type_Instance
;
12421 --------------------------------------
12422 -- Validate_Interface_Type_Instance --
12423 --------------------------------------
12425 procedure Validate_Interface_Type_Instance
is
12427 if not Is_Interface
(Act_T
) then
12429 ("actual for formal interface type must be an interface",
12432 elsif Is_Limited_Type
(Act_T
) /= Is_Limited_Type
(A_Gen_T
)
12433 or else Is_Task_Interface
(A_Gen_T
) /= Is_Task_Interface
(Act_T
)
12434 or else Is_Protected_Interface
(A_Gen_T
) /=
12435 Is_Protected_Interface
(Act_T
)
12436 or else Is_Synchronized_Interface
(A_Gen_T
) /=
12437 Is_Synchronized_Interface
(Act_T
)
12440 ("actual for interface& does not match (RM 12.5.5(4))",
12443 end Validate_Interface_Type_Instance
;
12445 ------------------------------------
12446 -- Validate_Private_Type_Instance --
12447 ------------------------------------
12449 procedure Validate_Private_Type_Instance
is
12451 if Is_Limited_Type
(Act_T
)
12452 and then not Is_Limited_Type
(A_Gen_T
)
12454 if In_Instance
then
12458 ("actual for non-limited & cannot be a limited type", Actual
,
12460 Explain_Limited_Type
(Act_T
, Actual
);
12461 Abandon_Instantiation
(Actual
);
12464 elsif Known_To_Have_Preelab_Init
(A_Gen_T
)
12465 and then not Has_Preelaborable_Initialization
(Act_T
)
12468 ("actual for & must have preelaborable initialization", Actual
,
12471 elsif not Is_Definite_Subtype
(Act_T
)
12472 and then Is_Definite_Subtype
(A_Gen_T
)
12473 and then Ada_Version
>= Ada_95
12476 ("actual for & must be a definite subtype", Actual
, Gen_T
);
12478 elsif not Is_Tagged_Type
(Act_T
)
12479 and then Is_Tagged_Type
(A_Gen_T
)
12482 ("actual for & must be a tagged type", Actual
, Gen_T
);
12485 Validate_Discriminated_Formal_Type
;
12487 end Validate_Private_Type_Instance
;
12489 -- Start of processing for Instantiate_Type
12492 if Get_Instance_Of
(A_Gen_T
) /= A_Gen_T
then
12493 Error_Msg_N
("duplicate instantiation of generic type", Actual
);
12494 return New_List
(Error
);
12496 elsif not Is_Entity_Name
(Actual
)
12497 or else not Is_Type
(Entity
(Actual
))
12500 ("expect valid subtype mark to instantiate &", Actual
, Gen_T
);
12501 Abandon_Instantiation
(Actual
);
12504 Act_T
:= Entity
(Actual
);
12506 -- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
12507 -- as a generic actual parameter if the corresponding formal type
12508 -- does not have a known_discriminant_part, or is a formal derived
12509 -- type that is an Unchecked_Union type.
12511 if Is_Unchecked_Union
(Base_Type
(Act_T
)) then
12512 if not Has_Discriminants
(A_Gen_T
)
12513 or else (Is_Derived_Type
(A_Gen_T
)
12514 and then Is_Unchecked_Union
(A_Gen_T
))
12518 Error_Msg_N
("unchecked union cannot be the actual for a "
12519 & "discriminated formal type", Act_T
);
12524 -- Deal with fixed/floating restrictions
12526 if Is_Floating_Point_Type
(Act_T
) then
12527 Check_Restriction
(No_Floating_Point
, Actual
);
12528 elsif Is_Fixed_Point_Type
(Act_T
) then
12529 Check_Restriction
(No_Fixed_Point
, Actual
);
12532 -- Deal with error of using incomplete type as generic actual.
12533 -- This includes limited views of a type, even if the non-limited
12534 -- view may be available.
12536 if Ekind
(Act_T
) = E_Incomplete_Type
12537 or else (Is_Class_Wide_Type
(Act_T
)
12538 and then Ekind
(Root_Type
(Act_T
)) = E_Incomplete_Type
)
12540 -- If the formal is an incomplete type, the actual can be
12541 -- incomplete as well.
12543 if Ekind
(A_Gen_T
) = E_Incomplete_Type
then
12546 elsif Is_Class_Wide_Type
(Act_T
)
12547 or else No
(Full_View
(Act_T
))
12549 Error_Msg_N
("premature use of incomplete type", Actual
);
12550 Abandon_Instantiation
(Actual
);
12552 Act_T
:= Full_View
(Act_T
);
12553 Set_Entity
(Actual
, Act_T
);
12555 if Has_Private_Component
(Act_T
) then
12557 ("premature use of type with private component", Actual
);
12561 -- Deal with error of premature use of private type as generic actual
12563 elsif Is_Private_Type
(Act_T
)
12564 and then Is_Private_Type
(Base_Type
(Act_T
))
12565 and then not Is_Generic_Type
(Act_T
)
12566 and then not Is_Derived_Type
(Act_T
)
12567 and then No
(Full_View
(Root_Type
(Act_T
)))
12569 -- If the formal is an incomplete type, the actual can be
12570 -- private or incomplete as well.
12572 if Ekind
(A_Gen_T
) = E_Incomplete_Type
then
12575 Error_Msg_N
("premature use of private type", Actual
);
12578 elsif Has_Private_Component
(Act_T
) then
12580 ("premature use of type with private component", Actual
);
12583 Set_Instance_Of
(A_Gen_T
, Act_T
);
12585 -- If the type is generic, the class-wide type may also be used
12587 if Is_Tagged_Type
(A_Gen_T
)
12588 and then Is_Tagged_Type
(Act_T
)
12589 and then not Is_Class_Wide_Type
(A_Gen_T
)
12591 Set_Instance_Of
(Class_Wide_Type
(A_Gen_T
),
12592 Class_Wide_Type
(Act_T
));
12595 if not Is_Abstract_Type
(A_Gen_T
)
12596 and then Is_Abstract_Type
(Act_T
)
12599 ("actual of non-abstract formal cannot be abstract", Actual
);
12602 -- A generic scalar type is a first subtype for which we generate
12603 -- an anonymous base type. Indicate that the instance of this base
12604 -- is the base type of the actual.
12606 if Is_Scalar_Type
(A_Gen_T
) then
12607 Set_Instance_Of
(Etype
(A_Gen_T
), Etype
(Act_T
));
12611 if Error_Posted
(Act_T
) then
12614 case Nkind
(Def
) is
12615 when N_Formal_Private_Type_Definition
=>
12616 Validate_Private_Type_Instance
;
12618 when N_Formal_Incomplete_Type_Definition
=>
12619 Validate_Incomplete_Type_Instance
;
12621 when N_Formal_Derived_Type_Definition
=>
12622 Validate_Derived_Type_Instance
;
12624 when N_Formal_Discrete_Type_Definition
=>
12625 if not Is_Discrete_Type
(Act_T
) then
12627 ("expect discrete type in instantiation of&",
12629 Abandon_Instantiation
(Actual
);
12632 Diagnose_Predicated_Actual
;
12634 when N_Formal_Signed_Integer_Type_Definition
=>
12635 if not Is_Signed_Integer_Type
(Act_T
) then
12637 ("expect signed integer type in instantiation of&",
12639 Abandon_Instantiation
(Actual
);
12642 Diagnose_Predicated_Actual
;
12644 when N_Formal_Modular_Type_Definition
=>
12645 if not Is_Modular_Integer_Type
(Act_T
) then
12647 ("expect modular type in instantiation of &",
12649 Abandon_Instantiation
(Actual
);
12652 Diagnose_Predicated_Actual
;
12654 when N_Formal_Floating_Point_Definition
=>
12655 if not Is_Floating_Point_Type
(Act_T
) then
12657 ("expect float type in instantiation of &", Actual
, Gen_T
);
12658 Abandon_Instantiation
(Actual
);
12661 when N_Formal_Ordinary_Fixed_Point_Definition
=>
12662 if not Is_Ordinary_Fixed_Point_Type
(Act_T
) then
12664 ("expect ordinary fixed point type in instantiation of &",
12666 Abandon_Instantiation
(Actual
);
12669 when N_Formal_Decimal_Fixed_Point_Definition
=>
12670 if not Is_Decimal_Fixed_Point_Type
(Act_T
) then
12672 ("expect decimal type in instantiation of &",
12674 Abandon_Instantiation
(Actual
);
12677 when N_Array_Type_Definition
=>
12678 Validate_Array_Type_Instance
;
12680 when N_Access_To_Object_Definition
=>
12681 Validate_Access_Type_Instance
;
12683 when N_Access_Function_Definition |
12684 N_Access_Procedure_Definition
=>
12685 Validate_Access_Subprogram_Instance
;
12687 when N_Record_Definition
=>
12688 Validate_Interface_Type_Instance
;
12690 when N_Derived_Type_Definition
=>
12691 Validate_Derived_Interface_Type_Instance
;
12694 raise Program_Error
;
12699 Subt
:= New_Copy
(Gen_T
);
12701 -- Use adjusted sloc of subtype name as the location for other nodes in
12702 -- the subtype declaration.
12704 Loc
:= Sloc
(Subt
);
12707 Make_Subtype_Declaration
(Loc
,
12708 Defining_Identifier
=> Subt
,
12709 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
));
12711 if Is_Private_Type
(Act_T
) then
12712 Set_Has_Private_View
(Subtype_Indication
(Decl_Node
));
12714 elsif Is_Access_Type
(Act_T
)
12715 and then Is_Private_Type
(Designated_Type
(Act_T
))
12717 Set_Has_Private_View
(Subtype_Indication
(Decl_Node
));
12720 -- In Ada 2012 the actual may be a limited view. Indicate that
12721 -- the local subtype must be treated as such.
12723 if From_Limited_With
(Act_T
) then
12724 Set_Ekind
(Subt
, E_Incomplete_Subtype
);
12725 Set_From_Limited_With
(Subt
);
12728 Decl_Nodes
:= New_List
(Decl_Node
);
12730 -- Flag actual derived types so their elaboration produces the
12731 -- appropriate renamings for the primitive operations of the ancestor.
12732 -- Flag actual for formal private types as well, to determine whether
12733 -- operations in the private part may override inherited operations.
12734 -- If the formal has an interface list, the ancestor is not the
12735 -- parent, but the analyzed formal that includes the interface
12736 -- operations of all its progenitors.
12738 -- Same treatment for formal private types, so we can check whether the
12739 -- type is tagged limited when validating derivations in the private
12740 -- part. (See AI05-096).
12742 if Nkind
(Def
) = N_Formal_Derived_Type_Definition
then
12743 if Present
(Interface_List
(Def
)) then
12744 Set_Generic_Parent_Type
(Decl_Node
, A_Gen_T
);
12746 Set_Generic_Parent_Type
(Decl_Node
, Ancestor
);
12749 elsif Nkind_In
(Def
, N_Formal_Private_Type_Definition
,
12750 N_Formal_Incomplete_Type_Definition
)
12752 Set_Generic_Parent_Type
(Decl_Node
, A_Gen_T
);
12755 -- If the actual is a synchronized type that implements an interface,
12756 -- the primitive operations are attached to the corresponding record,
12757 -- and we have to treat it as an additional generic actual, so that its
12758 -- primitive operations become visible in the instance. The task or
12759 -- protected type itself does not carry primitive operations.
12761 if Is_Concurrent_Type
(Act_T
)
12762 and then Is_Tagged_Type
(Act_T
)
12763 and then Present
(Corresponding_Record_Type
(Act_T
))
12764 and then Present
(Ancestor
)
12765 and then Is_Interface
(Ancestor
)
12768 Corr_Rec
: constant Entity_Id
:=
12769 Corresponding_Record_Type
(Act_T
);
12770 New_Corr
: Entity_Id
;
12771 Corr_Decl
: Node_Id
;
12774 New_Corr
:= Make_Temporary
(Loc
, 'S');
12776 Make_Subtype_Declaration
(Loc
,
12777 Defining_Identifier
=> New_Corr
,
12778 Subtype_Indication
=>
12779 New_Occurrence_Of
(Corr_Rec
, Loc
));
12780 Append_To
(Decl_Nodes
, Corr_Decl
);
12782 if Ekind
(Act_T
) = E_Task_Type
then
12783 Set_Ekind
(Subt
, E_Task_Subtype
);
12785 Set_Ekind
(Subt
, E_Protected_Subtype
);
12788 Set_Corresponding_Record_Type
(Subt
, Corr_Rec
);
12789 Set_Generic_Parent_Type
(Corr_Decl
, Ancestor
);
12790 Set_Generic_Parent_Type
(Decl_Node
, Empty
);
12794 -- For a floating-point type, capture dimension info if any, because
12795 -- the generated subtype declaration does not come from source and
12796 -- will not process dimensions.
12798 if Is_Floating_Point_Type
(Act_T
) then
12799 Copy_Dimensions
(Act_T
, Subt
);
12803 end Instantiate_Type
;
12805 ---------------------
12806 -- Is_In_Main_Unit --
12807 ---------------------
12809 function Is_In_Main_Unit
(N
: Node_Id
) return Boolean is
12810 Unum
: constant Unit_Number_Type
:= Get_Source_Unit
(N
);
12811 Current_Unit
: Node_Id
;
12814 if Unum
= Main_Unit
then
12817 -- If the current unit is a subunit then it is either the main unit or
12818 -- is being compiled as part of the main unit.
12820 elsif Nkind
(N
) = N_Compilation_Unit
then
12821 return Nkind
(Unit
(N
)) = N_Subunit
;
12824 Current_Unit
:= Parent
(N
);
12825 while Present
(Current_Unit
)
12826 and then Nkind
(Current_Unit
) /= N_Compilation_Unit
12828 Current_Unit
:= Parent
(Current_Unit
);
12831 -- The instantiation node is in the main unit, or else the current node
12832 -- (perhaps as the result of nested instantiations) is in the main unit,
12833 -- or in the declaration of the main unit, which in this last case must
12836 return Unum
= Main_Unit
12837 or else Current_Unit
= Cunit
(Main_Unit
)
12838 or else Current_Unit
= Library_Unit
(Cunit
(Main_Unit
))
12839 or else (Present
(Library_Unit
(Current_Unit
))
12840 and then Is_In_Main_Unit
(Library_Unit
(Current_Unit
)));
12841 end Is_In_Main_Unit
;
12843 ----------------------------
12844 -- Load_Parent_Of_Generic --
12845 ----------------------------
12847 procedure Load_Parent_Of_Generic
12850 Body_Optional
: Boolean := False)
12852 Comp_Unit
: constant Node_Id
:= Cunit
(Get_Source_Unit
(Spec
));
12853 Saved_Style_Check
: constant Boolean := Style_Check
;
12854 Saved_Warnings
: constant Warning_Record
:= Save_Warnings
;
12855 True_Parent
: Node_Id
;
12856 Inst_Node
: Node_Id
;
12858 Previous_Instances
: constant Elist_Id
:= New_Elmt_List
;
12860 procedure Collect_Previous_Instances
(Decls
: List_Id
);
12861 -- Collect all instantiations in the given list of declarations, that
12862 -- precede the generic that we need to load. If the bodies of these
12863 -- instantiations are available, we must analyze them, to ensure that
12864 -- the public symbols generated are the same when the unit is compiled
12865 -- to generate code, and when it is compiled in the context of a unit
12866 -- that needs a particular nested instance. This process is applied to
12867 -- both package and subprogram instances.
12869 --------------------------------
12870 -- Collect_Previous_Instances --
12871 --------------------------------
12873 procedure Collect_Previous_Instances
(Decls
: List_Id
) is
12877 Decl
:= First
(Decls
);
12878 while Present
(Decl
) loop
12879 if Sloc
(Decl
) >= Sloc
(Inst_Node
) then
12882 -- If Decl is an instantiation, then record it as requiring
12883 -- instantiation of the corresponding body, except if it is an
12884 -- abbreviated instantiation generated internally for conformance
12885 -- checking purposes only for the case of a formal package
12886 -- declared without a box (see Instantiate_Formal_Package). Such
12887 -- an instantiation does not generate any code (the actual code
12888 -- comes from actual) and thus does not need to be analyzed here.
12889 -- If the instantiation appears with a generic package body it is
12890 -- not analyzed here either.
12892 elsif Nkind
(Decl
) = N_Package_Instantiation
12893 and then not Is_Internal
(Defining_Entity
(Decl
))
12895 Append_Elmt
(Decl
, Previous_Instances
);
12897 -- For a subprogram instantiation, omit instantiations intrinsic
12898 -- operations (Unchecked_Conversions, etc.) that have no bodies.
12900 elsif Nkind_In
(Decl
, N_Function_Instantiation
,
12901 N_Procedure_Instantiation
)
12902 and then not Is_Intrinsic_Subprogram
(Entity
(Name
(Decl
)))
12904 Append_Elmt
(Decl
, Previous_Instances
);
12906 elsif Nkind
(Decl
) = N_Package_Declaration
then
12907 Collect_Previous_Instances
12908 (Visible_Declarations
(Specification
(Decl
)));
12909 Collect_Previous_Instances
12910 (Private_Declarations
(Specification
(Decl
)));
12912 -- Previous non-generic bodies may contain instances as well
12914 elsif Nkind
(Decl
) = N_Package_Body
12915 and then Ekind
(Corresponding_Spec
(Decl
)) /= E_Generic_Package
12917 Collect_Previous_Instances
(Declarations
(Decl
));
12919 elsif Nkind
(Decl
) = N_Subprogram_Body
12920 and then not Acts_As_Spec
(Decl
)
12921 and then not Is_Generic_Subprogram
(Corresponding_Spec
(Decl
))
12923 Collect_Previous_Instances
(Declarations
(Decl
));
12928 end Collect_Previous_Instances
;
12930 -- Start of processing for Load_Parent_Of_Generic
12933 if not In_Same_Source_Unit
(N
, Spec
)
12934 or else Nkind
(Unit
(Comp_Unit
)) = N_Package_Declaration
12935 or else (Nkind
(Unit
(Comp_Unit
)) = N_Package_Body
12936 and then not Is_In_Main_Unit
(Spec
))
12938 -- Find body of parent of spec, and analyze it. A special case arises
12939 -- when the parent is an instantiation, that is to say when we are
12940 -- currently instantiating a nested generic. In that case, there is
12941 -- no separate file for the body of the enclosing instance. Instead,
12942 -- the enclosing body must be instantiated as if it were a pending
12943 -- instantiation, in order to produce the body for the nested generic
12944 -- we require now. Note that in that case the generic may be defined
12945 -- in a package body, the instance defined in the same package body,
12946 -- and the original enclosing body may not be in the main unit.
12948 Inst_Node
:= Empty
;
12950 True_Parent
:= Parent
(Spec
);
12951 while Present
(True_Parent
)
12952 and then Nkind
(True_Parent
) /= N_Compilation_Unit
12954 if Nkind
(True_Parent
) = N_Package_Declaration
12956 Nkind
(Original_Node
(True_Parent
)) = N_Package_Instantiation
12958 -- Parent is a compilation unit that is an instantiation.
12959 -- Instantiation node has been replaced with package decl.
12961 Inst_Node
:= Original_Node
(True_Parent
);
12964 elsif Nkind
(True_Parent
) = N_Package_Declaration
12965 and then Present
(Generic_Parent
(Specification
(True_Parent
)))
12966 and then Nkind
(Parent
(True_Parent
)) /= N_Compilation_Unit
12968 -- Parent is an instantiation within another specification.
12969 -- Declaration for instance has been inserted before original
12970 -- instantiation node. A direct link would be preferable?
12972 Inst_Node
:= Next
(True_Parent
);
12973 while Present
(Inst_Node
)
12974 and then Nkind
(Inst_Node
) /= N_Package_Instantiation
12979 -- If the instance appears within a generic, and the generic
12980 -- unit is defined within a formal package of the enclosing
12981 -- generic, there is no generic body available, and none
12982 -- needed. A more precise test should be used ???
12984 if No
(Inst_Node
) then
12991 True_Parent
:= Parent
(True_Parent
);
12995 -- Case where we are currently instantiating a nested generic
12997 if Present
(Inst_Node
) then
12998 if Nkind
(Parent
(True_Parent
)) = N_Compilation_Unit
then
13000 -- Instantiation node and declaration of instantiated package
13001 -- were exchanged when only the declaration was needed.
13002 -- Restore instantiation node before proceeding with body.
13004 Set_Unit
(Parent
(True_Parent
), Inst_Node
);
13007 -- Now complete instantiation of enclosing body, if it appears in
13008 -- some other unit. If it appears in the current unit, the body
13009 -- will have been instantiated already.
13011 if No
(Corresponding_Body
(Instance_Spec
(Inst_Node
))) then
13013 -- We need to determine the expander mode to instantiate the
13014 -- enclosing body. Because the generic body we need may use
13015 -- global entities declared in the enclosing package (including
13016 -- aggregates) it is in general necessary to compile this body
13017 -- with expansion enabled, except if we are within a generic
13018 -- package, in which case the usual generic rule applies.
13021 Exp_Status
: Boolean := True;
13025 -- Loop through scopes looking for generic package
13027 Scop
:= Scope
(Defining_Entity
(Instance_Spec
(Inst_Node
)));
13028 while Present
(Scop
)
13029 and then Scop
/= Standard_Standard
13031 if Ekind
(Scop
) = E_Generic_Package
then
13032 Exp_Status
:= False;
13036 Scop
:= Scope
(Scop
);
13039 -- Collect previous instantiations in the unit that contains
13040 -- the desired generic.
13042 if Nkind
(Parent
(True_Parent
)) /= N_Compilation_Unit
13043 and then not Body_Optional
13047 Info
: Pending_Body_Info
;
13051 Par
:= Parent
(Inst_Node
);
13052 while Present
(Par
) loop
13053 exit when Nkind
(Parent
(Par
)) = N_Compilation_Unit
;
13054 Par
:= Parent
(Par
);
13057 pragma Assert
(Present
(Par
));
13059 if Nkind
(Par
) = N_Package_Body
then
13060 Collect_Previous_Instances
(Declarations
(Par
));
13062 elsif Nkind
(Par
) = N_Package_Declaration
then
13063 Collect_Previous_Instances
13064 (Visible_Declarations
(Specification
(Par
)));
13065 Collect_Previous_Instances
13066 (Private_Declarations
(Specification
(Par
)));
13069 -- Enclosing unit is a subprogram body. In this
13070 -- case all instance bodies are processed in order
13071 -- and there is no need to collect them separately.
13076 Decl
:= First_Elmt
(Previous_Instances
);
13077 while Present
(Decl
) loop
13079 (Inst_Node
=> Node
(Decl
),
13081 Instance_Spec
(Node
(Decl
)),
13082 Expander_Status
=> Exp_Status
,
13083 Current_Sem_Unit
=>
13084 Get_Code_Unit
(Sloc
(Node
(Decl
))),
13085 Scope_Suppress
=> Scope_Suppress
,
13086 Local_Suppress_Stack_Top
=>
13087 Local_Suppress_Stack_Top
,
13088 Version
=> Ada_Version
,
13089 Version_Pragma
=> Ada_Version_Pragma
,
13090 Warnings
=> Save_Warnings
,
13091 SPARK_Mode
=> SPARK_Mode
,
13092 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
);
13094 -- Package instance
13097 Nkind
(Node
(Decl
)) = N_Package_Instantiation
13099 Instantiate_Package_Body
13100 (Info
, Body_Optional
=> True);
13102 -- Subprogram instance
13105 -- The instance_spec is in the wrapper package,
13106 -- usually followed by its local renaming
13107 -- declaration. See Build_Subprogram_Renaming
13112 (Last
(Visible_Declarations
13113 (Specification
(Info
.Act_Decl
))));
13116 N_Subprogram_Renaming_Declaration
13118 Decl
:= Prev
(Decl
);
13121 Info
.Act_Decl
:= Decl
;
13124 Instantiate_Subprogram_Body
13125 (Info
, Body_Optional
=> True);
13133 Instantiate_Package_Body
13135 ((Inst_Node
=> Inst_Node
,
13136 Act_Decl
=> True_Parent
,
13137 Expander_Status
=> Exp_Status
,
13138 Current_Sem_Unit
=> Get_Code_Unit
13139 (Sloc
(Inst_Node
)),
13140 Scope_Suppress
=> Scope_Suppress
,
13141 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
13142 Version
=> Ada_Version
,
13143 Version_Pragma
=> Ada_Version_Pragma
,
13144 Warnings
=> Save_Warnings
,
13145 SPARK_Mode
=> SPARK_Mode
,
13146 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
)),
13147 Body_Optional
=> Body_Optional
);
13151 -- Case where we are not instantiating a nested generic
13154 Opt
.Style_Check
:= False;
13155 Expander_Mode_Save_And_Set
(True);
13156 Load_Needed_Body
(Comp_Unit
, OK
);
13157 Opt
.Style_Check
:= Saved_Style_Check
;
13158 Restore_Warnings
(Saved_Warnings
);
13159 Expander_Mode_Restore
;
13162 and then Unit_Requires_Body
(Defining_Entity
(Spec
))
13163 and then not Body_Optional
13166 Bname
: constant Unit_Name_Type
:=
13167 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
13170 -- In CodePeer mode, the missing body may make the analysis
13171 -- incomplete, but we do not treat it as fatal.
13173 if CodePeer_Mode
then
13177 Error_Msg_Unit_1
:= Bname
;
13178 Error_Msg_N
("this instantiation requires$!", N
);
13179 Error_Msg_File_1
:=
13180 Get_File_Name
(Bname
, Subunit
=> False);
13181 Error_Msg_N
("\but file{ was not found!", N
);
13182 raise Unrecoverable_Error
;
13189 -- If loading parent of the generic caused an instantiation circularity,
13190 -- we abandon compilation at this point, because otherwise in some cases
13191 -- we get into trouble with infinite recursions after this point.
13193 if Circularity_Detected
then
13194 raise Unrecoverable_Error
;
13196 end Load_Parent_Of_Generic
;
13198 ---------------------------------
13199 -- Map_Formal_Package_Entities --
13200 ---------------------------------
13202 procedure Map_Formal_Package_Entities
(Form
: Entity_Id
; Act
: Entity_Id
) is
13207 Set_Instance_Of
(Form
, Act
);
13209 -- Traverse formal and actual package to map the corresponding entities.
13210 -- We skip over internal entities that may be generated during semantic
13211 -- analysis, and find the matching entities by name, given that they
13212 -- must appear in the same order.
13214 E1
:= First_Entity
(Form
);
13215 E2
:= First_Entity
(Act
);
13216 while Present
(E1
) and then E1
/= First_Private_Entity
(Form
) loop
13217 -- Could this test be a single condition??? Seems like it could, and
13218 -- isn't FPE (Form) a constant anyway???
13220 if not Is_Internal
(E1
)
13221 and then Present
(Parent
(E1
))
13222 and then not Is_Class_Wide_Type
(E1
)
13223 and then not Is_Internal_Name
(Chars
(E1
))
13225 while Present
(E2
) and then Chars
(E2
) /= Chars
(E1
) loop
13232 Set_Instance_Of
(E1
, E2
);
13234 if Is_Type
(E1
) and then Is_Tagged_Type
(E2
) then
13235 Set_Instance_Of
(Class_Wide_Type
(E1
), Class_Wide_Type
(E2
));
13238 if Is_Constrained
(E1
) then
13239 Set_Instance_Of
(Base_Type
(E1
), Base_Type
(E2
));
13242 if Ekind
(E1
) = E_Package
and then No
(Renamed_Object
(E1
)) then
13243 Map_Formal_Package_Entities
(E1
, E2
);
13250 end Map_Formal_Package_Entities
;
13252 -----------------------
13253 -- Move_Freeze_Nodes --
13254 -----------------------
13256 procedure Move_Freeze_Nodes
13257 (Out_Of
: Entity_Id
;
13262 Next_Decl
: Node_Id
;
13263 Next_Node
: Node_Id
:= After
;
13266 function Is_Outer_Type
(T
: Entity_Id
) return Boolean;
13267 -- Check whether entity is declared in a scope external to that of the
13270 -------------------
13271 -- Is_Outer_Type --
13272 -------------------
13274 function Is_Outer_Type
(T
: Entity_Id
) return Boolean is
13275 Scop
: Entity_Id
:= Scope
(T
);
13278 if Scope_Depth
(Scop
) < Scope_Depth
(Out_Of
) then
13282 while Scop
/= Standard_Standard
loop
13283 if Scop
= Out_Of
then
13286 Scop
:= Scope
(Scop
);
13294 -- Start of processing for Move_Freeze_Nodes
13301 -- First remove the freeze nodes that may appear before all other
13305 while Present
(Decl
)
13306 and then Nkind
(Decl
) = N_Freeze_Entity
13307 and then Is_Outer_Type
(Entity
(Decl
))
13309 Decl
:= Remove_Head
(L
);
13310 Insert_After
(Next_Node
, Decl
);
13311 Set_Analyzed
(Decl
, False);
13316 -- Next scan the list of declarations and remove each freeze node that
13317 -- appears ahead of the current node.
13319 while Present
(Decl
) loop
13320 while Present
(Next
(Decl
))
13321 and then Nkind
(Next
(Decl
)) = N_Freeze_Entity
13322 and then Is_Outer_Type
(Entity
(Next
(Decl
)))
13324 Next_Decl
:= Remove_Next
(Decl
);
13325 Insert_After
(Next_Node
, Next_Decl
);
13326 Set_Analyzed
(Next_Decl
, False);
13327 Next_Node
:= Next_Decl
;
13330 -- If the declaration is a nested package or concurrent type, then
13331 -- recurse. Nested generic packages will have been processed from the
13334 case Nkind
(Decl
) is
13335 when N_Package_Declaration
=>
13336 Spec
:= Specification
(Decl
);
13338 when N_Task_Type_Declaration
=>
13339 Spec
:= Task_Definition
(Decl
);
13341 when N_Protected_Type_Declaration
=>
13342 Spec
:= Protected_Definition
(Decl
);
13348 if Present
(Spec
) then
13349 Move_Freeze_Nodes
(Out_Of
, Next_Node
, Visible_Declarations
(Spec
));
13350 Move_Freeze_Nodes
(Out_Of
, Next_Node
, Private_Declarations
(Spec
));
13355 end Move_Freeze_Nodes
;
13361 function Next_Assoc
(E
: Assoc_Ptr
) return Assoc_Ptr
is
13363 return Generic_Renamings
.Table
(E
).Next_In_HTable
;
13366 ------------------------
13367 -- Preanalyze_Actuals --
13368 ------------------------
13370 procedure Preanalyze_Actuals
(N
: Node_Id
; Inst
: Entity_Id
:= Empty
) is
13373 Errs
: constant Nat
:= Serious_Errors_Detected
;
13375 Cur
: Entity_Id
:= Empty
;
13376 -- Current homograph of the instance name
13379 -- Saved visibility status of the current homograph
13382 Assoc
:= First
(Generic_Associations
(N
));
13384 -- If the instance is a child unit, its name may hide an outer homonym,
13385 -- so make it invisible to perform name resolution on the actuals.
13387 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Program_Unit_Name
13389 (Current_Entity
(Defining_Identifier
(Defining_Unit_Name
(N
))))
13391 Cur
:= Current_Entity
(Defining_Identifier
(Defining_Unit_Name
(N
)));
13393 if Is_Compilation_Unit
(Cur
) then
13394 Vis
:= Is_Immediately_Visible
(Cur
);
13395 Set_Is_Immediately_Visible
(Cur
, False);
13401 while Present
(Assoc
) loop
13402 if Nkind
(Assoc
) /= N_Others_Choice
then
13403 Act
:= Explicit_Generic_Actual_Parameter
(Assoc
);
13405 -- Within a nested instantiation, a defaulted actual is an empty
13406 -- association, so nothing to analyze. If the subprogram actual
13407 -- is an attribute, analyze prefix only, because actual is not a
13408 -- complete attribute reference.
13410 -- If actual is an allocator, analyze expression only. The full
13411 -- analysis can generate code, and if instance is a compilation
13412 -- unit we have to wait until the package instance is installed
13413 -- to have a proper place to insert this code.
13415 -- String literals may be operators, but at this point we do not
13416 -- know whether the actual is a formal subprogram or a string.
13421 elsif Nkind
(Act
) = N_Attribute_Reference
then
13422 Analyze
(Prefix
(Act
));
13424 elsif Nkind
(Act
) = N_Explicit_Dereference
then
13425 Analyze
(Prefix
(Act
));
13427 elsif Nkind
(Act
) = N_Allocator
then
13429 Expr
: constant Node_Id
:= Expression
(Act
);
13432 if Nkind
(Expr
) = N_Subtype_Indication
then
13433 Analyze
(Subtype_Mark
(Expr
));
13435 -- Analyze separately each discriminant constraint, when
13436 -- given with a named association.
13442 Constr
:= First
(Constraints
(Constraint
(Expr
)));
13443 while Present
(Constr
) loop
13444 if Nkind
(Constr
) = N_Discriminant_Association
then
13445 Analyze
(Expression
(Constr
));
13459 elsif Nkind
(Act
) /= N_Operator_Symbol
then
13462 -- Within a package instance, mark actuals that are limited
13463 -- views, so their use can be moved to the body of the
13466 if Is_Entity_Name
(Act
)
13467 and then Is_Type
(Entity
(Act
))
13468 and then From_Limited_With
(Entity
(Act
))
13469 and then Present
(Inst
)
13471 Append_Elmt
(Entity
(Act
), Incomplete_Actuals
(Inst
));
13475 if Errs
/= Serious_Errors_Detected
then
13477 -- Do a minimal analysis of the generic, to prevent spurious
13478 -- warnings complaining about the generic being unreferenced,
13479 -- before abandoning the instantiation.
13481 Analyze
(Name
(N
));
13483 if Is_Entity_Name
(Name
(N
))
13484 and then Etype
(Name
(N
)) /= Any_Type
13486 Generate_Reference
(Entity
(Name
(N
)), Name
(N
));
13487 Set_Is_Instantiated
(Entity
(Name
(N
)));
13490 if Present
(Cur
) then
13492 -- For the case of a child instance hiding an outer homonym,
13493 -- provide additional warning which might explain the error.
13495 Set_Is_Immediately_Visible
(Cur
, Vis
);
13497 ("& hides outer unit with the same name??",
13498 N
, Defining_Unit_Name
(N
));
13501 Abandon_Instantiation
(Act
);
13508 if Present
(Cur
) then
13509 Set_Is_Immediately_Visible
(Cur
, Vis
);
13511 end Preanalyze_Actuals
;
13513 -------------------
13514 -- Remove_Parent --
13515 -------------------
13517 procedure Remove_Parent
(In_Body
: Boolean := False) is
13518 S
: Entity_Id
:= Current_Scope
;
13519 -- S is the scope containing the instantiation just completed. The scope
13520 -- stack contains the parent instances of the instantiation, followed by
13529 -- After child instantiation is complete, remove from scope stack the
13530 -- extra copy of the current scope, and then remove parent instances.
13532 if not In_Body
then
13535 while Current_Scope
/= S
loop
13536 P
:= Current_Scope
;
13537 End_Package_Scope
(Current_Scope
);
13539 if In_Open_Scopes
(P
) then
13540 E
:= First_Entity
(P
);
13541 while Present
(E
) loop
13542 Set_Is_Immediately_Visible
(E
, True);
13546 -- If instantiation is declared in a block, it is the enclosing
13547 -- scope that might be a parent instance. Note that only one
13548 -- block can be involved, because the parent instances have
13549 -- been installed within it.
13551 if Ekind
(P
) = E_Block
then
13552 Cur_P
:= Scope
(P
);
13557 if Is_Generic_Instance
(Cur_P
) and then P
/= Current_Scope
then
13558 -- We are within an instance of some sibling. Retain
13559 -- visibility of parent, for proper subsequent cleanup, and
13560 -- reinstall private declarations as well.
13562 Set_In_Private_Part
(P
);
13563 Install_Private_Declarations
(P
);
13566 -- If the ultimate parent is a top-level unit recorded in
13567 -- Instance_Parent_Unit, then reset its visibility to what it was
13568 -- before instantiation. (It's not clear what the purpose is of
13569 -- testing whether Scope (P) is In_Open_Scopes, but that test was
13570 -- present before the ultimate parent test was added.???)
13572 elsif not In_Open_Scopes
(Scope
(P
))
13573 or else (P
= Instance_Parent_Unit
13574 and then not Parent_Unit_Visible
)
13576 Set_Is_Immediately_Visible
(P
, False);
13578 -- If the current scope is itself an instantiation of a generic
13579 -- nested within P, and we are in the private part of body of this
13580 -- instantiation, restore the full views of P, that were removed
13581 -- in End_Package_Scope above. This obscure case can occur when a
13582 -- subunit of a generic contains an instance of a child unit of
13583 -- its generic parent unit.
13585 elsif S
= Current_Scope
and then Is_Generic_Instance
(S
) then
13587 Par
: constant Entity_Id
:=
13588 Generic_Parent
(Package_Specification
(S
));
13591 and then P
= Scope
(Par
)
13592 and then (In_Package_Body
(S
) or else In_Private_Part
(S
))
13594 Set_In_Private_Part
(P
);
13595 Install_Private_Declarations
(P
);
13601 -- Reset visibility of entities in the enclosing scope
13603 Set_Is_Hidden_Open_Scope
(Current_Scope
, False);
13605 Hidden
:= First_Elmt
(Hidden_Entities
);
13606 while Present
(Hidden
) loop
13607 Set_Is_Immediately_Visible
(Node
(Hidden
), True);
13608 Next_Elmt
(Hidden
);
13612 -- Each body is analyzed separately, and there is no context that
13613 -- needs preserving from one body instance to the next, so remove all
13614 -- parent scopes that have been installed.
13616 while Present
(S
) loop
13617 End_Package_Scope
(S
);
13618 Set_Is_Immediately_Visible
(S
, False);
13619 S
:= Current_Scope
;
13620 exit when S
= Standard_Standard
;
13629 procedure Restore_Env
is
13630 Saved
: Instance_Env
renames Instance_Envs
.Table
(Instance_Envs
.Last
);
13633 if No
(Current_Instantiated_Parent
.Act_Id
) then
13634 -- Restore environment after subprogram inlining
13636 Restore_Private_Views
(Empty
);
13639 Current_Instantiated_Parent
:= Saved
.Instantiated_Parent
;
13640 Exchanged_Views
:= Saved
.Exchanged_Views
;
13641 Hidden_Entities
:= Saved
.Hidden_Entities
;
13642 Current_Sem_Unit
:= Saved
.Current_Sem_Unit
;
13643 Parent_Unit_Visible
:= Saved
.Parent_Unit_Visible
;
13644 Instance_Parent_Unit
:= Saved
.Instance_Parent_Unit
;
13646 Restore_Opt_Config_Switches
(Saved
.Switches
);
13648 Instance_Envs
.Decrement_Last
;
13651 ---------------------------
13652 -- Restore_Private_Views --
13653 ---------------------------
13655 procedure Restore_Private_Views
13656 (Pack_Id
: Entity_Id
;
13657 Is_Package
: Boolean := True)
13662 Dep_Elmt
: Elmt_Id
;
13665 procedure Restore_Nested_Formal
(Formal
: Entity_Id
);
13666 -- Hide the generic formals of formal packages declared with box which
13667 -- were reachable in the current instantiation.
13669 ---------------------------
13670 -- Restore_Nested_Formal --
13671 ---------------------------
13673 procedure Restore_Nested_Formal
(Formal
: Entity_Id
) is
13677 if Present
(Renamed_Object
(Formal
))
13678 and then Denotes_Formal_Package
(Renamed_Object
(Formal
), True)
13682 elsif Present
(Associated_Formal_Package
(Formal
)) then
13683 Ent
:= First_Entity
(Formal
);
13684 while Present
(Ent
) loop
13685 exit when Ekind
(Ent
) = E_Package
13686 and then Renamed_Entity
(Ent
) = Renamed_Entity
(Formal
);
13688 Set_Is_Hidden
(Ent
);
13689 Set_Is_Potentially_Use_Visible
(Ent
, False);
13691 -- If package, then recurse
13693 if Ekind
(Ent
) = E_Package
then
13694 Restore_Nested_Formal
(Ent
);
13700 end Restore_Nested_Formal
;
13702 -- Start of processing for Restore_Private_Views
13705 M
:= First_Elmt
(Exchanged_Views
);
13706 while Present
(M
) loop
13709 -- Subtypes of types whose views have been exchanged, and that are
13710 -- defined within the instance, were not on the Private_Dependents
13711 -- list on entry to the instance, so they have to be exchanged
13712 -- explicitly now, in order to remain consistent with the view of the
13715 if Ekind_In
(Typ
, E_Private_Type
,
13716 E_Limited_Private_Type
,
13717 E_Record_Type_With_Private
)
13719 Dep_Elmt
:= First_Elmt
(Private_Dependents
(Typ
));
13720 while Present
(Dep_Elmt
) loop
13721 Dep_Typ
:= Node
(Dep_Elmt
);
13723 if Scope
(Dep_Typ
) = Pack_Id
13724 and then Present
(Full_View
(Dep_Typ
))
13726 Replace_Elmt
(Dep_Elmt
, Full_View
(Dep_Typ
));
13727 Exchange_Declarations
(Dep_Typ
);
13730 Next_Elmt
(Dep_Elmt
);
13734 Exchange_Declarations
(Node
(M
));
13738 if No
(Pack_Id
) then
13742 -- Make the generic formal parameters private, and make the formal types
13743 -- into subtypes of the actuals again.
13745 E
:= First_Entity
(Pack_Id
);
13746 while Present
(E
) loop
13747 Set_Is_Hidden
(E
, True);
13750 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
13752 -- If the actual for E is itself a generic actual type from
13753 -- an enclosing instance, E is still a generic actual type
13754 -- outside of the current instance. This matter when resolving
13755 -- an overloaded call that may be ambiguous in the enclosing
13756 -- instance, when two of its actuals coincide.
13758 if Is_Entity_Name
(Subtype_Indication
(Parent
(E
)))
13759 and then Is_Generic_Actual_Type
13760 (Entity
(Subtype_Indication
(Parent
(E
))))
13764 Set_Is_Generic_Actual_Type
(E
, False);
13767 -- An unusual case of aliasing: the actual may also be directly
13768 -- visible in the generic, and be private there, while it is fully
13769 -- visible in the context of the instance. The internal subtype
13770 -- is private in the instance but has full visibility like its
13771 -- parent in the enclosing scope. This enforces the invariant that
13772 -- the privacy status of all private dependents of a type coincide
13773 -- with that of the parent type. This can only happen when a
13774 -- generic child unit is instantiated within a sibling.
13776 if Is_Private_Type
(E
)
13777 and then not Is_Private_Type
(Etype
(E
))
13779 Exchange_Declarations
(E
);
13782 elsif Ekind
(E
) = E_Package
then
13784 -- The end of the renaming list is the renaming of the generic
13785 -- package itself. If the instance is a subprogram, all entities
13786 -- in the corresponding package are renamings. If this entity is
13787 -- a formal package, make its own formals private as well. The
13788 -- actual in this case is itself the renaming of an instantiation.
13789 -- If the entity is not a package renaming, it is the entity
13790 -- created to validate formal package actuals: ignore it.
13792 -- If the actual is itself a formal package for the enclosing
13793 -- generic, or the actual for such a formal package, it remains
13794 -- visible on exit from the instance, and therefore nothing needs
13795 -- to be done either, except to keep it accessible.
13797 if Is_Package
and then Renamed_Object
(E
) = Pack_Id
then
13800 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
13804 Denotes_Formal_Package
(Renamed_Object
(E
), True, Pack_Id
)
13806 Set_Is_Hidden
(E
, False);
13810 Act_P
: constant Entity_Id
:= Renamed_Object
(E
);
13814 Id
:= First_Entity
(Act_P
);
13816 and then Id
/= First_Private_Entity
(Act_P
)
13818 exit when Ekind
(Id
) = E_Package
13819 and then Renamed_Object
(Id
) = Act_P
;
13821 Set_Is_Hidden
(Id
, True);
13822 Set_Is_Potentially_Use_Visible
(Id
, In_Use
(Act_P
));
13824 if Ekind
(Id
) = E_Package
then
13825 Restore_Nested_Formal
(Id
);
13836 end Restore_Private_Views
;
13843 (Gen_Unit
: Entity_Id
;
13844 Act_Unit
: Entity_Id
)
13848 Set_Instance_Env
(Gen_Unit
, Act_Unit
);
13851 ----------------------------
13852 -- Save_Global_References --
13853 ----------------------------
13855 procedure Save_Global_References
(Templ
: Node_Id
) is
13857 -- ??? it is horrible to use global variables in highly recursive code
13860 -- The entity of the current associated node
13862 Gen_Scope
: Entity_Id
;
13863 -- The scope of the generic for which references are being saved
13866 -- The current associated node
13868 function Is_Global
(E
: Entity_Id
) return Boolean;
13869 -- Check whether entity is defined outside of generic unit. Examine the
13870 -- scope of an entity, and the scope of the scope, etc, until we find
13871 -- either Standard, in which case the entity is global, or the generic
13872 -- unit itself, which indicates that the entity is local. If the entity
13873 -- is the generic unit itself, as in the case of a recursive call, or
13874 -- the enclosing generic unit, if different from the current scope, then
13875 -- it is local as well, because it will be replaced at the point of
13876 -- instantiation. On the other hand, if it is a reference to a child
13877 -- unit of a common ancestor, which appears in an instantiation, it is
13878 -- global because it is used to denote a specific compilation unit at
13879 -- the time the instantiations will be analyzed.
13881 procedure Qualify_Universal_Operands
13883 Func_Call
: Node_Id
);
13884 -- Op denotes a binary or unary operator in generic template Templ. Node
13885 -- Func_Call is the function call alternative of the operator within the
13886 -- the analyzed copy of the template. Change each operand which yields a
13887 -- universal type by wrapping it into a qualified expression
13889 -- Actual_Typ'(Operand)
13891 -- where Actual_Typ is the type of corresponding actual parameter of
13892 -- Operand in Func_Call.
13894 procedure Reset_Entity
(N
: Node_Id
);
13895 -- Save semantic information on global entity so that it is not resolved
13896 -- again at instantiation time.
13898 procedure Save_Entity_Descendants
(N
: Node_Id
);
13899 -- Apply Save_Global_References to the two syntactic descendants of
13900 -- non-terminal nodes that carry an Associated_Node and are processed
13901 -- through Reset_Entity. Once the global entity (if any) has been
13902 -- captured together with its type, only two syntactic descendants need
13903 -- to be traversed to complete the processing of the tree rooted at N.
13904 -- This applies to Selected_Components, Expanded_Names, and to Operator
13905 -- nodes. N can also be a character literal, identifier, or operator
13906 -- symbol node, but the call has no effect in these cases.
13908 procedure Save_Global_Defaults
(N1
: Node_Id
; N2
: Node_Id
);
13909 -- Default actuals in nested instances must be handled specially
13910 -- because there is no link to them from the original tree. When an
13911 -- actual subprogram is given by a default, we add an explicit generic
13912 -- association for it in the instantiation node. When we save the
13913 -- global references on the name of the instance, we recover the list
13914 -- of generic associations, and add an explicit one to the original
13915 -- generic tree, through which a global actual can be preserved.
13916 -- Similarly, if a child unit is instantiated within a sibling, in the
13917 -- context of the parent, we must preserve the identifier of the parent
13918 -- so that it can be properly resolved in a subsequent instantiation.
13920 procedure Save_Global_Descendant
(D
: Union_Id
);
13921 -- Apply Save_References recursively to the descendants of node D
13923 procedure Save_References
(N
: Node_Id
);
13924 -- This is the recursive procedure that does the work, once the
13925 -- enclosing generic scope has been established.
13931 function Is_Global
(E
: Entity_Id
) return Boolean is
13934 function Is_Instance_Node
(Decl
: Node_Id
) return Boolean;
13935 -- Determine whether the parent node of a reference to a child unit
13936 -- denotes an instantiation or a formal package, in which case the
13937 -- reference to the child unit is global, even if it appears within
13938 -- the current scope (e.g. when the instance appears within the body
13939 -- of an ancestor).
13941 ----------------------
13942 -- Is_Instance_Node --
13943 ----------------------
13945 function Is_Instance_Node
(Decl
: Node_Id
) return Boolean is
13947 return Nkind
(Decl
) in N_Generic_Instantiation
13949 Nkind
(Original_Node
(Decl
)) = N_Formal_Package_Declaration
;
13950 end Is_Instance_Node
;
13952 -- Start of processing for Is_Global
13955 if E
= Gen_Scope
then
13958 elsif E
= Standard_Standard
then
13961 elsif Is_Child_Unit
(E
)
13962 and then (Is_Instance_Node
(Parent
(N2
))
13963 or else (Nkind
(Parent
(N2
)) = N_Expanded_Name
13964 and then N2
= Selector_Name
(Parent
(N2
))
13966 Is_Instance_Node
(Parent
(Parent
(N2
)))))
13972 while Se
/= Gen_Scope
loop
13973 if Se
= Standard_Standard
then
13984 --------------------------------
13985 -- Qualify_Universal_Operands --
13986 --------------------------------
13988 procedure Qualify_Universal_Operands
13990 Func_Call
: Node_Id
)
13992 procedure Qualify_Operand
(Opnd
: Node_Id
; Actual
: Node_Id
);
13993 -- Rewrite operand Opnd as a qualified expression of the form
13995 -- Actual_Typ'(Opnd)
13997 -- where Actual is the corresponding actual parameter of Opnd in
13998 -- function call Func_Call.
14000 function Qualify_Type
14002 Typ
: Entity_Id
) return Node_Id
;
14003 -- Qualify type Typ by creating a selected component of the form
14005 -- Scope_Of_Typ.Typ
14007 ---------------------
14008 -- Qualify_Operand --
14009 ---------------------
14011 procedure Qualify_Operand
(Opnd
: Node_Id
; Actual
: Node_Id
) is
14012 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
14013 Typ
: constant Entity_Id
:= Etype
(Actual
);
14018 -- Qualify the operand when it is of a universal type. Note that
14019 -- the template is unanalyzed and it is not possible to directly
14020 -- query the type. This transformation is not done when the type
14021 -- of the actual is internally generated because the type will be
14022 -- regenerated in the instance.
14024 if Yields_Universal_Type
(Opnd
)
14025 and then Comes_From_Source
(Typ
)
14026 and then not Is_Hidden
(Typ
)
14028 -- The type of the actual may be a global reference. Save this
14029 -- information by creating a reference to it.
14031 if Is_Global
(Typ
) then
14032 Mark
:= New_Occurrence_Of
(Typ
, Loc
);
14034 -- Otherwise rely on resolution to find the proper type within
14038 Mark
:= Qualify_Type
(Loc
, Typ
);
14042 Make_Qualified_Expression
(Loc
,
14043 Subtype_Mark
=> Mark
,
14044 Expression
=> Relocate_Node
(Opnd
));
14046 -- Mark the qualification to distinguish it from other source
14047 -- constructs and signal the instantiation mechanism that this
14048 -- node requires special processing. See Copy_Generic_Node for
14051 Set_Is_Qualified_Universal_Literal
(Qual
);
14053 Rewrite
(Opnd
, Qual
);
14055 end Qualify_Operand
;
14061 function Qualify_Type
14063 Typ
: Entity_Id
) return Node_Id
14065 Scop
: constant Entity_Id
:= Scope
(Typ
);
14069 Result
:= Make_Identifier
(Loc
, Chars
(Typ
));
14071 if Present
(Scop
) and then not Is_Generic_Unit
(Scop
) then
14073 Make_Selected_Component
(Loc
,
14074 Prefix
=> Make_Identifier
(Loc
, Chars
(Scop
)),
14075 Selector_Name
=> Result
);
14083 Actuals
: constant List_Id
:= Parameter_Associations
(Func_Call
);
14085 -- Start of processing for Qualify_Universal_Operands
14088 if Nkind
(Op
) in N_Binary_Op
then
14089 Qualify_Operand
(Left_Opnd
(Op
), First
(Actuals
));
14090 Qualify_Operand
(Right_Opnd
(Op
), Next
(First
(Actuals
)));
14092 elsif Nkind
(Op
) in N_Unary_Op
then
14093 Qualify_Operand
(Right_Opnd
(Op
), First
(Actuals
));
14095 end Qualify_Universal_Operands
;
14101 procedure Reset_Entity
(N
: Node_Id
) is
14102 procedure Set_Global_Type
(N
: Node_Id
; N2
: Node_Id
);
14103 -- If the type of N2 is global to the generic unit, save the type in
14104 -- the generic node. Just as we perform name capture for explicit
14105 -- references within the generic, we must capture the global types
14106 -- of local entities because they may participate in resolution in
14109 function Top_Ancestor
(E
: Entity_Id
) return Entity_Id
;
14110 -- Find the ultimate ancestor of the current unit. If it is not a
14111 -- generic unit, then the name of the current unit in the prefix of
14112 -- an expanded name must be replaced with its generic homonym to
14113 -- ensure that it will be properly resolved in an instance.
14115 ---------------------
14116 -- Set_Global_Type --
14117 ---------------------
14119 procedure Set_Global_Type
(N
: Node_Id
; N2
: Node_Id
) is
14120 Typ
: constant Entity_Id
:= Etype
(N2
);
14123 Set_Etype
(N
, Typ
);
14125 -- If the entity of N is not the associated node, this is a
14126 -- nested generic and it has an associated node as well, whose
14127 -- type is already the full view (see below). Indicate that the
14128 -- original node has a private view.
14130 if Entity
(N
) /= N2
and then Has_Private_View
(Entity
(N
)) then
14131 Set_Has_Private_View
(N
);
14134 -- If not a private type, nothing else to do
14136 if not Is_Private_Type
(Typ
) then
14137 if Is_Array_Type
(Typ
)
14138 and then Is_Private_Type
(Component_Type
(Typ
))
14140 Set_Has_Private_View
(N
);
14143 -- If it is a derivation of a private type in a context where no
14144 -- full view is needed, nothing to do either.
14146 elsif No
(Full_View
(Typ
)) and then Typ
/= Etype
(Typ
) then
14149 -- Otherwise mark the type for flipping and use the full view when
14153 Set_Has_Private_View
(N
);
14155 if Present
(Full_View
(Typ
)) then
14156 Set_Etype
(N2
, Full_View
(Typ
));
14160 if Is_Floating_Point_Type
(Typ
)
14161 and then Has_Dimension_System
(Typ
)
14163 Copy_Dimensions
(N2
, N
);
14166 end Set_Global_Type
;
14172 function Top_Ancestor
(E
: Entity_Id
) return Entity_Id
is
14177 while Is_Child_Unit
(Par
) loop
14178 Par
:= Scope
(Par
);
14184 -- Start of processing for Reset_Entity
14187 N2
:= Get_Associated_Node
(N
);
14190 if Present
(E
) then
14192 -- If the node is an entry call to an entry in an enclosing task,
14193 -- it is rewritten as a selected component. No global entity to
14194 -- preserve in this case, since the expansion will be redone in
14197 if not Nkind_In
(E
, N_Defining_Character_Literal
,
14198 N_Defining_Identifier
,
14199 N_Defining_Operator_Symbol
)
14201 Set_Associated_Node
(N
, Empty
);
14202 Set_Etype
(N
, Empty
);
14206 -- If the entity is an itype created as a subtype of an access
14207 -- type with a null exclusion restore source entity for proper
14208 -- visibility. The itype will be created anew in the instance.
14211 and then Ekind
(E
) = E_Access_Subtype
14212 and then Is_Entity_Name
(N
)
14213 and then Chars
(Etype
(E
)) = Chars
(N
)
14216 Set_Entity
(N2
, E
);
14220 if Is_Global
(E
) then
14222 -- If the entity is a package renaming that is the prefix of
14223 -- an expanded name, it has been rewritten as the renamed
14224 -- package, which is necessary semantically but complicates
14225 -- ASIS tree traversal, so we recover the original entity to
14226 -- expose the renaming. Take into account that the context may
14227 -- be a nested generic, that the original node may itself have
14228 -- an associated node that had better be an entity, and that
14229 -- the current node is still a selected component.
14231 if Ekind
(E
) = E_Package
14232 and then Nkind
(N
) = N_Selected_Component
14233 and then Nkind
(Parent
(N
)) = N_Expanded_Name
14234 and then Present
(Original_Node
(N2
))
14235 and then Is_Entity_Name
(Original_Node
(N2
))
14236 and then Present
(Entity
(Original_Node
(N2
)))
14238 if Is_Global
(Entity
(Original_Node
(N2
))) then
14239 N2
:= Original_Node
(N2
);
14240 Set_Associated_Node
(N
, N2
);
14241 Set_Global_Type
(N
, N2
);
14243 -- Renaming is local, and will be resolved in instance
14246 Set_Associated_Node
(N
, Empty
);
14247 Set_Etype
(N
, Empty
);
14251 Set_Global_Type
(N
, N2
);
14254 elsif Nkind
(N
) = N_Op_Concat
14255 and then Is_Generic_Type
(Etype
(N2
))
14256 and then (Base_Type
(Etype
(Right_Opnd
(N2
))) = Etype
(N2
)
14258 Base_Type
(Etype
(Left_Opnd
(N2
))) = Etype
(N2
))
14259 and then Is_Intrinsic_Subprogram
(E
)
14263 -- Entity is local. Mark generic node as unresolved. Note that now
14264 -- it does not have an entity.
14267 Set_Associated_Node
(N
, Empty
);
14268 Set_Etype
(N
, Empty
);
14271 if Nkind
(Parent
(N
)) in N_Generic_Instantiation
14272 and then N
= Name
(Parent
(N
))
14274 Save_Global_Defaults
(Parent
(N
), Parent
(N2
));
14277 elsif Nkind
(Parent
(N
)) = N_Selected_Component
14278 and then Nkind
(Parent
(N2
)) = N_Expanded_Name
14280 if Is_Global
(Entity
(Parent
(N2
))) then
14281 Change_Selected_Component_To_Expanded_Name
(Parent
(N
));
14282 Set_Associated_Node
(Parent
(N
), Parent
(N2
));
14283 Set_Global_Type
(Parent
(N
), Parent
(N2
));
14284 Save_Entity_Descendants
(N
);
14286 -- If this is a reference to the current generic entity, replace
14287 -- by the name of the generic homonym of the current package. This
14288 -- is because in an instantiation Par.P.Q will not resolve to the
14289 -- name of the instance, whose enclosing scope is not necessarily
14290 -- Par. We use the generic homonym rather that the name of the
14291 -- generic itself because it may be hidden by a local declaration.
14293 elsif In_Open_Scopes
(Entity
(Parent
(N2
)))
14295 Is_Generic_Unit
(Top_Ancestor
(Entity
(Prefix
(Parent
(N2
)))))
14297 if Ekind
(Entity
(Parent
(N2
))) = E_Generic_Package
then
14298 Rewrite
(Parent
(N
),
14299 Make_Identifier
(Sloc
(N
),
14301 Chars
(Generic_Homonym
(Entity
(Parent
(N2
))))));
14303 Rewrite
(Parent
(N
),
14304 Make_Identifier
(Sloc
(N
),
14305 Chars
=> Chars
(Selector_Name
(Parent
(N2
)))));
14309 if Nkind
(Parent
(Parent
(N
))) in N_Generic_Instantiation
14310 and then Parent
(N
) = Name
(Parent
(Parent
(N
)))
14312 Save_Global_Defaults
14313 (Parent
(Parent
(N
)), Parent
(Parent
(N2
)));
14316 -- A selected component may denote a static constant that has been
14317 -- folded. If the static constant is global to the generic, capture
14318 -- its value. Otherwise the folding will happen in any instantiation.
14320 elsif Nkind
(Parent
(N
)) = N_Selected_Component
14321 and then Nkind_In
(Parent
(N2
), N_Integer_Literal
, N_Real_Literal
)
14323 if Present
(Entity
(Original_Node
(Parent
(N2
))))
14324 and then Is_Global
(Entity
(Original_Node
(Parent
(N2
))))
14326 Rewrite
(Parent
(N
), New_Copy
(Parent
(N2
)));
14327 Set_Analyzed
(Parent
(N
), False);
14330 -- A selected component may be transformed into a parameterless
14331 -- function call. If the called entity is global, rewrite the node
14332 -- appropriately, i.e. as an extended name for the global entity.
14334 elsif Nkind
(Parent
(N
)) = N_Selected_Component
14335 and then Nkind
(Parent
(N2
)) = N_Function_Call
14336 and then N
= Selector_Name
(Parent
(N
))
14338 if No
(Parameter_Associations
(Parent
(N2
))) then
14339 if Is_Global
(Entity
(Name
(Parent
(N2
)))) then
14340 Change_Selected_Component_To_Expanded_Name
(Parent
(N
));
14341 Set_Associated_Node
(Parent
(N
), Name
(Parent
(N2
)));
14342 Set_Global_Type
(Parent
(N
), Name
(Parent
(N2
)));
14343 Save_Entity_Descendants
(N
);
14346 Set_Is_Prefixed_Call
(Parent
(N
));
14347 Set_Associated_Node
(N
, Empty
);
14348 Set_Etype
(N
, Empty
);
14351 -- In Ada 2005, X.F may be a call to a primitive operation,
14352 -- rewritten as F (X). This rewriting will be done again in an
14353 -- instance, so keep the original node. Global entities will be
14354 -- captured as for other constructs. Indicate that this must
14355 -- resolve as a call, to prevent accidental overloading in the
14356 -- instance, if both a component and a primitive operation appear
14360 Set_Is_Prefixed_Call
(Parent
(N
));
14363 -- Entity is local. Reset in generic unit, so that node is resolved
14364 -- anew at the point of instantiation.
14367 Set_Associated_Node
(N
, Empty
);
14368 Set_Etype
(N
, Empty
);
14372 -----------------------------
14373 -- Save_Entity_Descendants --
14374 -----------------------------
14376 procedure Save_Entity_Descendants
(N
: Node_Id
) is
14379 when N_Binary_Op
=>
14380 Save_Global_Descendant
(Union_Id
(Left_Opnd
(N
)));
14381 Save_Global_Descendant
(Union_Id
(Right_Opnd
(N
)));
14384 Save_Global_Descendant
(Union_Id
(Right_Opnd
(N
)));
14386 when N_Expanded_Name |
14387 N_Selected_Component
=>
14388 Save_Global_Descendant
(Union_Id
(Prefix
(N
)));
14389 Save_Global_Descendant
(Union_Id
(Selector_Name
(N
)));
14391 when N_Identifier |
14392 N_Character_Literal |
14393 N_Operator_Symbol
=>
14397 raise Program_Error
;
14399 end Save_Entity_Descendants
;
14401 --------------------------
14402 -- Save_Global_Defaults --
14403 --------------------------
14405 procedure Save_Global_Defaults
(N1
: Node_Id
; N2
: Node_Id
) is
14406 Loc
: constant Source_Ptr
:= Sloc
(N1
);
14407 Assoc2
: constant List_Id
:= Generic_Associations
(N2
);
14408 Gen_Id
: constant Entity_Id
:= Get_Generic_Entity
(N2
);
14415 Actual
: Entity_Id
;
14418 Assoc1
:= Generic_Associations
(N1
);
14420 if Present
(Assoc1
) then
14421 Act1
:= First
(Assoc1
);
14424 Set_Generic_Associations
(N1
, New_List
);
14425 Assoc1
:= Generic_Associations
(N1
);
14428 if Present
(Assoc2
) then
14429 Act2
:= First
(Assoc2
);
14434 while Present
(Act1
) and then Present
(Act2
) loop
14439 -- Find the associations added for default subprograms
14441 if Present
(Act2
) then
14442 while Nkind
(Act2
) /= N_Generic_Association
14443 or else No
(Entity
(Selector_Name
(Act2
)))
14444 or else not Is_Overloadable
(Entity
(Selector_Name
(Act2
)))
14449 -- Add a similar association if the default is global. The
14450 -- renaming declaration for the actual has been analyzed, and
14451 -- its alias is the program it renames. Link the actual in the
14452 -- original generic tree with the node in the analyzed tree.
14454 while Present
(Act2
) loop
14455 Subp
:= Entity
(Selector_Name
(Act2
));
14456 Def
:= Explicit_Generic_Actual_Parameter
(Act2
);
14458 -- Following test is defence against rubbish errors
14460 if No
(Alias
(Subp
)) then
14464 -- Retrieve the resolved actual from the renaming declaration
14465 -- created for the instantiated formal.
14467 Actual
:= Entity
(Name
(Parent
(Parent
(Subp
))));
14468 Set_Entity
(Def
, Actual
);
14469 Set_Etype
(Def
, Etype
(Actual
));
14471 if Is_Global
(Actual
) then
14473 Make_Generic_Association
(Loc
,
14475 New_Occurrence_Of
(Subp
, Loc
),
14476 Explicit_Generic_Actual_Parameter
=>
14477 New_Occurrence_Of
(Actual
, Loc
));
14479 Set_Associated_Node
14480 (Explicit_Generic_Actual_Parameter
(Ndec
), Def
);
14482 Append
(Ndec
, Assoc1
);
14484 -- If there are other defaults, add a dummy association in case
14485 -- there are other defaulted formals with the same name.
14487 elsif Present
(Next
(Act2
)) then
14489 Make_Generic_Association
(Loc
,
14491 New_Occurrence_Of
(Subp
, Loc
),
14492 Explicit_Generic_Actual_Parameter
=> Empty
);
14494 Append
(Ndec
, Assoc1
);
14501 if Nkind
(Name
(N1
)) = N_Identifier
14502 and then Is_Child_Unit
(Gen_Id
)
14503 and then Is_Global
(Gen_Id
)
14504 and then Is_Generic_Unit
(Scope
(Gen_Id
))
14505 and then In_Open_Scopes
(Scope
(Gen_Id
))
14507 -- This is an instantiation of a child unit within a sibling, so
14508 -- that the generic parent is in scope. An eventual instance must
14509 -- occur within the scope of an instance of the parent. Make name
14510 -- in instance into an expanded name, to preserve the identifier
14511 -- of the parent, so it can be resolved subsequently.
14513 Rewrite
(Name
(N2
),
14514 Make_Expanded_Name
(Loc
,
14515 Chars
=> Chars
(Gen_Id
),
14516 Prefix
=> New_Occurrence_Of
(Scope
(Gen_Id
), Loc
),
14517 Selector_Name
=> New_Occurrence_Of
(Gen_Id
, Loc
)));
14518 Set_Entity
(Name
(N2
), Gen_Id
);
14520 Rewrite
(Name
(N1
),
14521 Make_Expanded_Name
(Loc
,
14522 Chars
=> Chars
(Gen_Id
),
14523 Prefix
=> New_Occurrence_Of
(Scope
(Gen_Id
), Loc
),
14524 Selector_Name
=> New_Occurrence_Of
(Gen_Id
, Loc
)));
14526 Set_Associated_Node
(Name
(N1
), Name
(N2
));
14527 Set_Associated_Node
(Prefix
(Name
(N1
)), Empty
);
14528 Set_Associated_Node
14529 (Selector_Name
(Name
(N1
)), Selector_Name
(Name
(N2
)));
14530 Set_Etype
(Name
(N1
), Etype
(Gen_Id
));
14532 end Save_Global_Defaults
;
14534 ----------------------------
14535 -- Save_Global_Descendant --
14536 ----------------------------
14538 procedure Save_Global_Descendant
(D
: Union_Id
) is
14542 if D
in Node_Range
then
14543 if D
= Union_Id
(Empty
) then
14546 elsif Nkind
(Node_Id
(D
)) /= N_Compilation_Unit
then
14547 Save_References
(Node_Id
(D
));
14550 elsif D
in List_Range
then
14551 if D
= Union_Id
(No_List
) or else Is_Empty_List
(List_Id
(D
)) then
14555 N1
:= First
(List_Id
(D
));
14556 while Present
(N1
) loop
14557 Save_References
(N1
);
14562 -- Element list or other non-node field, nothing to do
14567 end Save_Global_Descendant
;
14569 ---------------------
14570 -- Save_References --
14571 ---------------------
14573 -- This is the recursive procedure that does the work once the enclosing
14574 -- generic scope has been established. We have to treat specially a
14575 -- number of node rewritings that are required by semantic processing
14576 -- and which change the kind of nodes in the generic copy: typically
14577 -- constant-folding, replacing an operator node by a string literal, or
14578 -- a selected component by an expanded name. In each of those cases, the
14579 -- transformation is propagated to the generic unit.
14581 procedure Save_References
(N
: Node_Id
) is
14582 Loc
: constant Source_Ptr
:= Sloc
(N
);
14584 function Requires_Delayed_Save
(Nod
: Node_Id
) return Boolean;
14585 -- Determine whether arbitrary node Nod requires delayed capture of
14586 -- global references within its aspect specifications.
14588 procedure Save_References_In_Aggregate
(N
: Node_Id
);
14589 -- Save all global references in [extension] aggregate node N
14591 procedure Save_References_In_Char_Lit_Or_Op_Symbol
(N
: Node_Id
);
14592 -- Save all global references in a character literal or operator
14593 -- symbol denoted by N.
14595 procedure Save_References_In_Descendants
(N
: Node_Id
);
14596 -- Save all global references in all descendants of node N
14598 procedure Save_References_In_Identifier
(N
: Node_Id
);
14599 -- Save all global references in identifier node N
14601 procedure Save_References_In_Operator
(N
: Node_Id
);
14602 -- Save all global references in operator node N
14604 procedure Save_References_In_Pragma
(Prag
: Node_Id
);
14605 -- Save all global references found within the expression of pragma
14608 ---------------------------
14609 -- Requires_Delayed_Save --
14610 ---------------------------
14612 function Requires_Delayed_Save
(Nod
: Node_Id
) return Boolean is
14614 -- Generic packages and subprograms require delayed capture of
14615 -- global references within their aspects due to the timing of
14616 -- annotation analysis.
14618 if Nkind_In
(Nod
, N_Generic_Package_Declaration
,
14619 N_Generic_Subprogram_Declaration
,
14621 N_Package_Body_Stub
,
14623 N_Subprogram_Body_Stub
)
14625 -- Since the capture of global references is done on the
14626 -- unanalyzed generic template, there is no information around
14627 -- to infer the context. Use the Associated_Entity linkages to
14628 -- peek into the analyzed generic copy and determine what the
14629 -- template corresponds to.
14631 if Nod
= Templ
then
14633 Is_Generic_Declaration_Or_Body
14634 (Unit_Declaration_Node
14635 (Associated_Entity
(Defining_Entity
(Nod
))));
14637 -- Otherwise the generic unit being processed is not the top
14638 -- level template. It is safe to capture of global references
14639 -- within the generic unit because at this point the top level
14640 -- copy is fully analyzed.
14646 -- Otherwise capture the global references without interference
14651 end Requires_Delayed_Save
;
14653 ----------------------------------
14654 -- Save_References_In_Aggregate --
14655 ----------------------------------
14657 procedure Save_References_In_Aggregate
(N
: Node_Id
) is
14659 Qual
: Node_Id
:= Empty
;
14660 Typ
: Entity_Id
:= Empty
;
14662 use Atree
.Unchecked_Access
;
14663 -- This code section is part of implementing an untyped tree
14664 -- traversal, so it needs direct access to node fields.
14667 N2
:= Get_Associated_Node
(N
);
14669 if Present
(N2
) then
14672 -- In an instance within a generic, use the name of the actual
14673 -- and not the original generic parameter. If the actual is
14674 -- global in the current generic it must be preserved for its
14677 if Nkind
(Parent
(Typ
)) = N_Subtype_Declaration
14678 and then Present
(Generic_Parent_Type
(Parent
(Typ
)))
14680 Typ
:= Base_Type
(Typ
);
14681 Set_Etype
(N2
, Typ
);
14685 if No
(N2
) or else No
(Typ
) or else not Is_Global
(Typ
) then
14686 Set_Associated_Node
(N
, Empty
);
14688 -- If the aggregate is an actual in a call, it has been
14689 -- resolved in the current context, to some local type. The
14690 -- enclosing call may have been disambiguated by the aggregate,
14691 -- and this disambiguation might fail at instantiation time
14692 -- because the type to which the aggregate did resolve is not
14693 -- preserved. In order to preserve some of this information,
14694 -- wrap the aggregate in a qualified expression, using the id
14695 -- of its type. For further disambiguation we qualify the type
14696 -- name with its scope (if visible) because both id's will have
14697 -- corresponding entities in an instance. This resolves most of
14698 -- the problems with missing type information on aggregates in
14702 and then Nkind
(N2
) = Nkind
(N
)
14703 and then Nkind
(Parent
(N2
)) in N_Subprogram_Call
14704 and then Present
(Typ
)
14705 and then Comes_From_Source
(Typ
)
14707 Nam
:= Make_Identifier
(Loc
, Chars
(Typ
));
14709 if Is_Immediately_Visible
(Scope
(Typ
)) then
14711 Make_Selected_Component
(Loc
,
14713 Make_Identifier
(Loc
, Chars
(Scope
(Typ
))),
14714 Selector_Name
=> Nam
);
14718 Make_Qualified_Expression
(Loc
,
14719 Subtype_Mark
=> Nam
,
14720 Expression
=> Relocate_Node
(N
));
14724 Save_Global_Descendant
(Field1
(N
));
14725 Save_Global_Descendant
(Field2
(N
));
14726 Save_Global_Descendant
(Field3
(N
));
14727 Save_Global_Descendant
(Field5
(N
));
14729 if Present
(Qual
) then
14732 end Save_References_In_Aggregate
;
14734 ----------------------------------------------
14735 -- Save_References_In_Char_Lit_Or_Op_Symbol --
14736 ----------------------------------------------
14738 procedure Save_References_In_Char_Lit_Or_Op_Symbol
(N
: Node_Id
) is
14740 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14743 elsif Nkind
(N
) = N_Operator_Symbol
14744 and then Nkind
(Get_Associated_Node
(N
)) = N_String_Literal
14746 Change_Operator_Symbol_To_String_Literal
(N
);
14748 end Save_References_In_Char_Lit_Or_Op_Symbol
;
14750 ------------------------------------
14751 -- Save_References_In_Descendants --
14752 ------------------------------------
14754 procedure Save_References_In_Descendants
(N
: Node_Id
) is
14755 use Atree
.Unchecked_Access
;
14756 -- This code section is part of implementing an untyped tree
14757 -- traversal, so it needs direct access to node fields.
14760 Save_Global_Descendant
(Field1
(N
));
14761 Save_Global_Descendant
(Field2
(N
));
14762 Save_Global_Descendant
(Field3
(N
));
14763 Save_Global_Descendant
(Field4
(N
));
14764 Save_Global_Descendant
(Field5
(N
));
14765 end Save_References_In_Descendants
;
14767 -----------------------------------
14768 -- Save_References_In_Identifier --
14769 -----------------------------------
14771 procedure Save_References_In_Identifier
(N
: Node_Id
) is
14773 -- The node did not undergo a transformation
14775 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14777 -- If this is a discriminant reference, always save it. It is
14778 -- used in the instance to find the corresponding discriminant
14779 -- positionally rather than by name.
14781 Set_Original_Discriminant
14782 (N
, Original_Discriminant
(Get_Associated_Node
(N
)));
14785 -- The analysis of the generic copy transformed the identifier
14786 -- into another construct. Propagate the changes to the template.
14789 N2
:= Get_Associated_Node
(N
);
14791 -- The identifier denotes a call to a parameterless function.
14792 -- Mark the node as resolved when the function is external.
14794 if Nkind
(N2
) = N_Function_Call
then
14795 E
:= Entity
(Name
(N2
));
14797 if Present
(E
) and then Is_Global
(E
) then
14798 Set_Etype
(N
, Etype
(N2
));
14800 Set_Associated_Node
(N
, Empty
);
14801 Set_Etype
(N
, Empty
);
14804 -- The identifier denotes a named number that was constant
14805 -- folded. Preserve the original name for ASIS and undo the
14806 -- constant folding which will be repeated in the instance.
14808 elsif Nkind_In
(N2
, N_Integer_Literal
, N_Real_Literal
)
14809 and then Is_Entity_Name
(Original_Node
(N2
))
14811 Set_Associated_Node
(N
, Original_Node
(N2
));
14814 -- The identifier resolved to a string literal. Propagate this
14815 -- information to the generic template.
14817 elsif Nkind
(N2
) = N_String_Literal
then
14818 Rewrite
(N
, New_Copy
(N2
));
14820 -- The identifier is rewritten as a dereference if it is the
14821 -- prefix of an implicit dereference. Preserve the original
14822 -- tree as the analysis of the instance will expand the node
14823 -- again, but preserve the resolved entity if it is global.
14825 elsif Nkind
(N2
) = N_Explicit_Dereference
then
14826 if Is_Entity_Name
(Prefix
(N2
))
14827 and then Present
(Entity
(Prefix
(N2
)))
14828 and then Is_Global
(Entity
(Prefix
(N2
)))
14830 Set_Associated_Node
(N
, Prefix
(N2
));
14832 elsif Nkind
(Prefix
(N2
)) = N_Function_Call
14833 and then Present
(Entity
(Name
(Prefix
(N2
))))
14834 and then Is_Global
(Entity
(Name
(Prefix
(N2
))))
14837 Make_Explicit_Dereference
(Loc
,
14839 Make_Function_Call
(Loc
,
14842 (Entity
(Name
(Prefix
(N2
))), Loc
))));
14845 Set_Associated_Node
(N
, Empty
);
14846 Set_Etype
(N
, Empty
);
14849 -- The subtype mark of a nominally unconstrained object is
14850 -- rewritten as a subtype indication using the bounds of the
14851 -- expression. Recover the original subtype mark.
14853 elsif Nkind
(N2
) = N_Subtype_Indication
14854 and then Is_Entity_Name
(Original_Node
(N2
))
14856 Set_Associated_Node
(N
, Original_Node
(N2
));
14860 end Save_References_In_Identifier
;
14862 ---------------------------------
14863 -- Save_References_In_Operator --
14864 ---------------------------------
14866 procedure Save_References_In_Operator
(N
: Node_Id
) is
14868 -- The node did not undergo a transformation
14870 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14871 if Nkind
(N
) = N_Op_Concat
then
14872 Set_Is_Component_Left_Opnd
(N
,
14873 Is_Component_Left_Opnd
(Get_Associated_Node
(N
)));
14875 Set_Is_Component_Right_Opnd
(N
,
14876 Is_Component_Right_Opnd
(Get_Associated_Node
(N
)));
14881 -- The analysis of the generic copy transformed the operator into
14882 -- some other construct. Propagate the changes to the template if
14886 N2
:= Get_Associated_Node
(N
);
14888 -- The operator resoved to a function call
14890 if Nkind
(N2
) = N_Function_Call
then
14892 -- Add explicit qualifications in the generic template for
14893 -- all operands of universal type. This aids resolution by
14894 -- preserving the actual type of a literal or an attribute
14895 -- that yields a universal result.
14897 Qualify_Universal_Operands
(N
, N2
);
14899 E
:= Entity
(Name
(N2
));
14901 if Present
(E
) and then Is_Global
(E
) then
14902 Set_Etype
(N
, Etype
(N2
));
14904 Set_Associated_Node
(N
, Empty
);
14905 Set_Etype
(N
, Empty
);
14908 -- The operator was folded into a literal
14910 elsif Nkind_In
(N2
, N_Integer_Literal
,
14914 if Present
(Original_Node
(N2
))
14915 and then Nkind
(Original_Node
(N2
)) = Nkind
(N
)
14917 -- Operation was constant-folded. Whenever possible,
14918 -- recover semantic information from unfolded node,
14921 Set_Associated_Node
(N
, Original_Node
(N2
));
14923 if Nkind
(N
) = N_Op_Concat
then
14924 Set_Is_Component_Left_Opnd
(N
,
14925 Is_Component_Left_Opnd
(Get_Associated_Node
(N
)));
14926 Set_Is_Component_Right_Opnd
(N
,
14927 Is_Component_Right_Opnd
(Get_Associated_Node
(N
)));
14932 -- Propagate the constant folding back to the template
14935 Rewrite
(N
, New_Copy
(N2
));
14936 Set_Analyzed
(N
, False);
14939 -- The operator was folded into an enumeration literal. Retain
14940 -- the entity to avoid spurious ambiguities if it is overloaded
14941 -- at the point of instantiation or inlining.
14943 elsif Nkind
(N2
) = N_Identifier
14944 and then Ekind
(Entity
(N2
)) = E_Enumeration_Literal
14946 Rewrite
(N
, New_Copy
(N2
));
14947 Set_Analyzed
(N
, False);
14951 -- Complete the operands check if node has not been constant
14954 if Nkind
(N
) in N_Op
then
14955 Save_Entity_Descendants
(N
);
14957 end Save_References_In_Operator
;
14959 -------------------------------
14960 -- Save_References_In_Pragma --
14961 -------------------------------
14963 procedure Save_References_In_Pragma
(Prag
: Node_Id
) is
14965 Do_Save
: Boolean := True;
14967 use Atree
.Unchecked_Access
;
14968 -- This code section is part of implementing an untyped tree
14969 -- traversal, so it needs direct access to node fields.
14972 -- Do not save global references in pragmas generated from aspects
14973 -- because the pragmas will be regenerated at instantiation time.
14975 if From_Aspect_Specification
(Prag
) then
14978 -- The capture of global references within contract-related source
14979 -- pragmas associated with generic packages, subprograms or their
14980 -- respective bodies must be delayed due to timing of annotation
14981 -- analysis. Global references are still captured in routine
14982 -- Save_Global_References_In_Contract.
14984 elsif Is_Generic_Contract_Pragma
(Prag
) and then Prag
/= Templ
then
14985 if Is_Package_Contract_Annotation
(Prag
) then
14986 Context
:= Find_Related_Package_Or_Body
(Prag
);
14988 pragma Assert
(Is_Subprogram_Contract_Annotation
(Prag
));
14989 Context
:= Find_Related_Declaration_Or_Body
(Prag
);
14992 -- The use of Original_Node accounts for the case when the
14993 -- related context is generic template.
14995 if Requires_Delayed_Save
(Original_Node
(Context
)) then
15000 -- For all other cases, save all global references within the
15001 -- descendants, but skip the following semantic fields:
15003 -- Field1 - Next_Pragma
15004 -- Field3 - Corresponding_Aspect
15005 -- Field5 - Next_Rep_Item
15008 Save_Global_Descendant
(Field2
(Prag
));
15009 Save_Global_Descendant
(Field4
(Prag
));
15011 end Save_References_In_Pragma
;
15013 -- Start of processing for Save_References
15021 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
15022 Save_References_In_Aggregate
(N
);
15024 -- Character literals, operator symbols
15026 elsif Nkind_In
(N
, N_Character_Literal
, N_Operator_Symbol
) then
15027 Save_References_In_Char_Lit_Or_Op_Symbol
(N
);
15029 -- Defining identifiers
15031 elsif Nkind
(N
) in N_Entity
then
15036 elsif Nkind
(N
) = N_Identifier
then
15037 Save_References_In_Identifier
(N
);
15041 elsif Nkind
(N
) in N_Op
then
15042 Save_References_In_Operator
(N
);
15046 elsif Nkind
(N
) = N_Pragma
then
15047 Save_References_In_Pragma
(N
);
15050 Save_References_In_Descendants
(N
);
15053 -- Save all global references found within the aspect specifications
15054 -- of the related node.
15056 if Permits_Aspect_Specifications
(N
) and then Has_Aspects
(N
) then
15058 -- The capture of global references within aspects associated with
15059 -- generic packages, subprograms or their bodies must be delayed
15060 -- due to timing of annotation analysis. Global references are
15061 -- still captured in routine Save_Global_References_In_Contract.
15063 if Requires_Delayed_Save
(N
) then
15066 -- Otherwise save all global references within the aspects
15069 Save_Global_References_In_Aspects
(N
);
15072 end Save_References
;
15074 -- Start of processing for Save_Global_References
15077 Gen_Scope
:= Current_Scope
;
15079 -- If the generic unit is a child unit, references to entities in the
15080 -- parent are treated as local, because they will be resolved anew in
15081 -- the context of the instance of the parent.
15083 while Is_Child_Unit
(Gen_Scope
)
15084 and then Ekind
(Scope
(Gen_Scope
)) = E_Generic_Package
15086 Gen_Scope
:= Scope
(Gen_Scope
);
15089 Save_References
(Templ
);
15090 end Save_Global_References
;
15092 ---------------------------------------
15093 -- Save_Global_References_In_Aspects --
15094 ---------------------------------------
15096 procedure Save_Global_References_In_Aspects
(N
: Node_Id
) is
15101 Asp
:= First
(Aspect_Specifications
(N
));
15102 while Present
(Asp
) loop
15103 Expr
:= Expression
(Asp
);
15105 if Present
(Expr
) then
15106 Save_Global_References
(Expr
);
15111 end Save_Global_References_In_Aspects
;
15113 --------------------------------------
15114 -- Set_Copied_Sloc_For_Inlined_Body --
15115 --------------------------------------
15117 procedure Set_Copied_Sloc_For_Inlined_Body
(N
: Node_Id
; E
: Entity_Id
) is
15119 Create_Instantiation_Source
(N
, E
, True, S_Adjustment
);
15120 end Set_Copied_Sloc_For_Inlined_Body
;
15122 ---------------------
15123 -- Set_Instance_Of --
15124 ---------------------
15126 procedure Set_Instance_Of
(A
: Entity_Id
; B
: Entity_Id
) is
15128 Generic_Renamings
.Table
(Generic_Renamings
.Last
) := (A
, B
, Assoc_Null
);
15129 Generic_Renamings_HTable
.Set
(Generic_Renamings
.Last
);
15130 Generic_Renamings
.Increment_Last
;
15131 end Set_Instance_Of
;
15133 --------------------
15134 -- Set_Next_Assoc --
15135 --------------------
15137 procedure Set_Next_Assoc
(E
: Assoc_Ptr
; Next
: Assoc_Ptr
) is
15139 Generic_Renamings
.Table
(E
).Next_In_HTable
:= Next
;
15140 end Set_Next_Assoc
;
15142 -------------------
15143 -- Start_Generic --
15144 -------------------
15146 procedure Start_Generic
is
15148 -- ??? More things could be factored out in this routine.
15149 -- Should probably be done at a later stage.
15151 Generic_Flags
.Append
(Inside_A_Generic
);
15152 Inside_A_Generic
:= True;
15154 Expander_Mode_Save_And_Set
(False);
15157 ----------------------
15158 -- Set_Instance_Env --
15159 ----------------------
15161 procedure Set_Instance_Env
15162 (Gen_Unit
: Entity_Id
;
15163 Act_Unit
: Entity_Id
)
15165 Assertion_Status
: constant Boolean := Assertions_Enabled
;
15166 Save_SPARK_Mode
: constant SPARK_Mode_Type
:= SPARK_Mode
;
15167 Save_SPARK_Mode_Pragma
: constant Node_Id
:= SPARK_Mode_Pragma
;
15170 -- Regardless of the current mode, predefined units are analyzed in the
15171 -- most current Ada mode, and earlier version Ada checks do not apply
15172 -- to predefined units. Nothing needs to be done for non-internal units.
15173 -- These are always analyzed in the current mode.
15175 if Is_Internal_File_Name
15176 (Fname
=> Unit_File_Name
(Get_Source_Unit
(Gen_Unit
)),
15177 Renamings_Included
=> True)
15179 Set_Opt_Config_Switches
(True, Current_Sem_Unit
= Main_Unit
);
15181 -- In Ada2012 we may want to enable assertions in an instance of a
15182 -- predefined unit, in which case we need to preserve the current
15183 -- setting for the Assertions_Enabled flag. This will become more
15184 -- critical when pre/postconditions are added to predefined units,
15185 -- as is already the case for some numeric libraries.
15187 if Ada_Version
>= Ada_2012
then
15188 Assertions_Enabled
:= Assertion_Status
;
15191 -- SPARK_Mode for an instance is the one applicable at the point of
15194 SPARK_Mode
:= Save_SPARK_Mode
;
15195 SPARK_Mode_Pragma
:= Save_SPARK_Mode_Pragma
;
15197 -- Make sure dynamic elaboration checks are off in SPARK Mode
15199 if SPARK_Mode
= On
then
15200 Dynamic_Elaboration_Checks
:= False;
15204 Current_Instantiated_Parent
:=
15205 (Gen_Id
=> Gen_Unit
,
15206 Act_Id
=> Act_Unit
,
15207 Next_In_HTable
=> Assoc_Null
);
15208 end Set_Instance_Env
;
15214 procedure Switch_View
(T
: Entity_Id
) is
15215 BT
: constant Entity_Id
:= Base_Type
(T
);
15216 Priv_Elmt
: Elmt_Id
:= No_Elmt
;
15217 Priv_Sub
: Entity_Id
;
15220 -- T may be private but its base type may have been exchanged through
15221 -- some other occurrence, in which case there is nothing to switch
15222 -- besides T itself. Note that a private dependent subtype of a private
15223 -- type might not have been switched even if the base type has been,
15224 -- because of the last branch of Check_Private_View (see comment there).
15226 if not Is_Private_Type
(BT
) then
15227 Prepend_Elmt
(Full_View
(T
), Exchanged_Views
);
15228 Exchange_Declarations
(T
);
15232 Priv_Elmt
:= First_Elmt
(Private_Dependents
(BT
));
15234 if Present
(Full_View
(BT
)) then
15235 Prepend_Elmt
(Full_View
(BT
), Exchanged_Views
);
15236 Exchange_Declarations
(BT
);
15239 while Present
(Priv_Elmt
) loop
15240 Priv_Sub
:= (Node
(Priv_Elmt
));
15242 -- We avoid flipping the subtype if the Etype of its full view is
15243 -- private because this would result in a malformed subtype. This
15244 -- occurs when the Etype of the subtype full view is the full view of
15245 -- the base type (and since the base types were just switched, the
15246 -- subtype is pointing to the wrong view). This is currently the case
15247 -- for tagged record types, access types (maybe more?) and needs to
15248 -- be resolved. ???
15250 if Present
(Full_View
(Priv_Sub
))
15251 and then not Is_Private_Type
(Etype
(Full_View
(Priv_Sub
)))
15253 Prepend_Elmt
(Full_View
(Priv_Sub
), Exchanged_Views
);
15254 Exchange_Declarations
(Priv_Sub
);
15257 Next_Elmt
(Priv_Elmt
);
15265 function True_Parent
(N
: Node_Id
) return Node_Id
is
15267 if Nkind
(Parent
(N
)) = N_Subunit
then
15268 return Parent
(Corresponding_Stub
(Parent
(N
)));
15274 -----------------------------
15275 -- Valid_Default_Attribute --
15276 -----------------------------
15278 procedure Valid_Default_Attribute
(Nam
: Entity_Id
; Def
: Node_Id
) is
15279 Attr_Id
: constant Attribute_Id
:=
15280 Get_Attribute_Id
(Attribute_Name
(Def
));
15281 T
: constant Entity_Id
:= Entity
(Prefix
(Def
));
15282 Is_Fun
: constant Boolean := (Ekind
(Nam
) = E_Function
);
15288 if No
(T
) or else T
= Any_Id
then
15293 F
:= First_Formal
(Nam
);
15294 while Present
(F
) loop
15295 Num_F
:= Num_F
+ 1;
15300 when Attribute_Adjacent | Attribute_Ceiling | Attribute_Copy_Sign |
15301 Attribute_Floor | Attribute_Fraction | Attribute_Machine |
15302 Attribute_Model | Attribute_Remainder | Attribute_Rounding |
15303 Attribute_Unbiased_Rounding
=>
15306 and then Is_Floating_Point_Type
(T
);
15308 when Attribute_Image | Attribute_Pred | Attribute_Succ |
15309 Attribute_Value | Attribute_Wide_Image |
15310 Attribute_Wide_Value
=>
15311 OK
:= (Is_Fun
and then Num_F
= 1 and then Is_Scalar_Type
(T
));
15313 when Attribute_Max | Attribute_Min
=>
15314 OK
:= (Is_Fun
and then Num_F
= 2 and then Is_Scalar_Type
(T
));
15316 when Attribute_Input
=>
15317 OK
:= (Is_Fun
and then Num_F
= 1);
15319 when Attribute_Output | Attribute_Read | Attribute_Write
=>
15320 OK
:= (not Is_Fun
and then Num_F
= 2);
15328 ("attribute reference has wrong profile for subprogram", Def
);
15330 end Valid_Default_Attribute
;