1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- As a special exception, if other files instantiate generics from this --
22 -- unit, or you link this unit with other files to produce an executable, --
23 -- this unit does not by itself cause the resulting executable to be --
24 -- covered by the GNU General Public License. This exception does not --
25 -- however invalidate any other reasons why the executable file might be --
26 -- covered by the GNU Public License. --
28 -- GNAT was originally developed by the GNAT team at New York University. --
29 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 ------------------------------------------------------------------------------
33 with Atree
; use Atree
;
34 with Einfo
; use Einfo
;
35 with Snames
; use Snames
;
36 with Stand
; use Stand
;
37 with Uintp
; use Uintp
;
39 package body Sem_Aux
is
41 ----------------------
42 -- Ancestor_Subtype --
43 ----------------------
45 function Ancestor_Subtype
(Typ
: Entity_Id
) return Entity_Id
is
47 -- If this is first subtype, or is a base type, then there is no
48 -- ancestor subtype, so we return Empty to indicate this fact.
50 if Is_First_Subtype
(Typ
) or else Is_Base_Type
(Typ
) then
55 D
: constant Node_Id
:= Declaration_Node
(Typ
);
58 -- If we have a subtype declaration, get the ancestor subtype
60 if Nkind
(D
) = N_Subtype_Declaration
then
61 if Nkind
(Subtype_Indication
(D
)) = N_Subtype_Indication
then
62 return Entity
(Subtype_Mark
(Subtype_Indication
(D
)));
64 return Entity
(Subtype_Indication
(D
));
67 -- If not, then no subtype indication is available
79 function Available_View
(Ent
: Entity_Id
) return Entity_Id
is
81 -- Obtain the non-limited view (if available)
83 if Has_Non_Limited_View
(Ent
) then
84 return Get_Full_View
(Non_Limited_View
(Ent
));
86 -- In all other cases, return entity unchanged
97 function Constant_Value
(Ent
: Entity_Id
) return Node_Id
is
98 D
: constant Node_Id
:= Declaration_Node
(Ent
);
102 -- If we have no declaration node, then return no constant value. Not
103 -- clear how this can happen, but it does sometimes and this is the
109 -- Normal case where a declaration node is present
111 elsif Nkind
(D
) = N_Object_Renaming_Declaration
then
112 return Renamed_Object
(Ent
);
114 -- If this is a component declaration whose entity is a constant, it is
115 -- a prival within a protected function (and so has no constant value).
117 elsif Nkind
(D
) = N_Component_Declaration
then
120 -- If there is an expression, return it
122 elsif Present
(Expression
(D
)) then
123 return Expression
(D
);
125 -- For a constant, see if we have a full view
127 elsif Ekind
(Ent
) = E_Constant
128 and then Present
(Full_View
(Ent
))
130 Full_D
:= Parent
(Full_View
(Ent
));
132 -- The full view may have been rewritten as an object renaming
134 if Nkind
(Full_D
) = N_Object_Renaming_Declaration
then
135 return Name
(Full_D
);
137 return Expression
(Full_D
);
140 -- Otherwise we have no expression to return
147 ---------------------------------
148 -- Corresponding_Unsigned_Type --
149 ---------------------------------
151 function Corresponding_Unsigned_Type
(Typ
: Entity_Id
) return Entity_Id
is
152 pragma Assert
(Is_Signed_Integer_Type
(Typ
));
153 Siz
: constant Uint
:= Esize
(Base_Type
(Typ
));
155 if Siz
= Esize
(Standard_Short_Short_Integer
) then
156 return Standard_Short_Short_Unsigned
;
157 elsif Siz
= Esize
(Standard_Short_Integer
) then
158 return Standard_Short_Unsigned
;
159 elsif Siz
= Esize
(Standard_Unsigned
) then
160 return Standard_Unsigned
;
161 elsif Siz
= Esize
(Standard_Long_Integer
) then
162 return Standard_Long_Unsigned
;
163 elsif Siz
= Esize
(Standard_Long_Long_Integer
) then
164 return Standard_Long_Long_Unsigned
;
168 end Corresponding_Unsigned_Type
;
170 -----------------------------
171 -- Enclosing_Dynamic_Scope --
172 -----------------------------
174 function Enclosing_Dynamic_Scope
(Ent
: Entity_Id
) return Entity_Id
is
178 -- The following test is an error defense against some syntax errors
179 -- that can leave scopes very messed up.
181 if Ent
= Standard_Standard
then
185 -- Normal case, search enclosing scopes
187 -- Note: the test for Present (S) should not be required, it defends
188 -- against an ill-formed tree.
192 -- If we somehow got an empty value for Scope, the tree must be
193 -- malformed. Rather than blow up we return Standard in this case.
196 return Standard_Standard
;
198 -- Quit if we get to standard or a dynamic scope. We must also
199 -- handle enclosing scopes that have a full view; required to
200 -- locate enclosing scopes that are synchronized private types
201 -- whose full view is a task type.
203 elsif S
= Standard_Standard
204 or else Is_Dynamic_Scope
(S
)
205 or else (Is_Private_Type
(S
)
206 and then Present
(Full_View
(S
))
207 and then Is_Dynamic_Scope
(Full_View
(S
)))
211 -- Otherwise keep climbing
217 end Enclosing_Dynamic_Scope
;
219 ------------------------
220 -- First_Discriminant --
221 ------------------------
223 function First_Discriminant
(Typ
: Entity_Id
) return Entity_Id
is
228 (Has_Discriminants
(Typ
) or else Has_Unknown_Discriminants
(Typ
));
230 Ent
:= First_Entity
(Typ
);
232 -- The discriminants are not necessarily contiguous, because access
233 -- discriminants will generate itypes. They are not the first entities
234 -- either because the tag must be ahead of them.
236 if Chars
(Ent
) = Name_uTag
then
237 Ent
:= Next_Entity
(Ent
);
240 -- Skip all hidden stored discriminants if any
242 while Present
(Ent
) loop
243 exit when Ekind
(Ent
) = E_Discriminant
244 and then not Is_Completely_Hidden
(Ent
);
246 Ent
:= Next_Entity
(Ent
);
249 -- Call may be on a private type with unknown discriminants, in which
250 -- case Ent is Empty, and as per the spec, we return Empty in this case.
252 -- Historical note: The assertion in previous versions that Ent is a
253 -- discriminant was overly cautious and prevented convenient application
254 -- of this function in the gnatprove context.
257 end First_Discriminant
;
259 -------------------------------
260 -- First_Stored_Discriminant --
261 -------------------------------
263 function First_Stored_Discriminant
(Typ
: Entity_Id
) return Entity_Id
is
266 function Has_Completely_Hidden_Discriminant
267 (Typ
: Entity_Id
) return Boolean;
268 -- Scans the Discriminants to see whether any are Completely_Hidden
269 -- (the mechanism for describing non-specified stored discriminants)
270 -- Note that the entity list for the type may contain anonymous access
271 -- types created by expressions that constrain access discriminants.
273 ----------------------------------------
274 -- Has_Completely_Hidden_Discriminant --
275 ----------------------------------------
277 function Has_Completely_Hidden_Discriminant
278 (Typ
: Entity_Id
) return Boolean
283 pragma Assert
(Ekind
(Typ
) = E_Discriminant
);
286 while Present
(Ent
) loop
288 -- Skip anonymous types that may be created by expressions
289 -- used as discriminant constraints on inherited discriminants.
291 if Is_Itype
(Ent
) then
294 elsif Ekind
(Ent
) = E_Discriminant
295 and then Is_Completely_Hidden
(Ent
)
300 Ent
:= Next_Entity
(Ent
);
304 end Has_Completely_Hidden_Discriminant
;
306 -- Start of processing for First_Stored_Discriminant
310 (Has_Discriminants
(Typ
)
311 or else Has_Unknown_Discriminants
(Typ
));
313 Ent
:= First_Entity
(Typ
);
315 if Chars
(Ent
) = Name_uTag
then
316 Ent
:= Next_Entity
(Ent
);
319 if Has_Completely_Hidden_Discriminant
(Ent
) then
320 while Present
(Ent
) loop
321 exit when Ekind
(Ent
) = E_Discriminant
322 and then Is_Completely_Hidden
(Ent
);
323 Ent
:= Next_Entity
(Ent
);
327 pragma Assert
(Ekind
(Ent
) = E_Discriminant
);
330 end First_Stored_Discriminant
;
336 function First_Subtype
(Typ
: Entity_Id
) return Entity_Id
is
337 B
: constant Entity_Id
:= Base_Type
(Typ
);
338 F
: constant Node_Id
:= Freeze_Node
(B
);
342 -- If the base type has no freeze node, it is a type in Standard, and
343 -- always acts as its own first subtype, except where it is one of the
344 -- predefined integer types. If the type is formal, it is also a first
345 -- subtype, and its base type has no freeze node. On the other hand, a
346 -- subtype of a generic formal is not its own first subtype. Its base
347 -- type, if anonymous, is attached to the formal type decl. from which
348 -- the first subtype is obtained.
351 if B
= Base_Type
(Standard_Integer
) then
352 return Standard_Integer
;
354 elsif B
= Base_Type
(Standard_Long_Integer
) then
355 return Standard_Long_Integer
;
357 elsif B
= Base_Type
(Standard_Short_Short_Integer
) then
358 return Standard_Short_Short_Integer
;
360 elsif B
= Base_Type
(Standard_Short_Integer
) then
361 return Standard_Short_Integer
;
363 elsif B
= Base_Type
(Standard_Long_Long_Integer
) then
364 return Standard_Long_Long_Integer
;
366 elsif Is_Generic_Type
(Typ
) then
367 if Present
(Parent
(B
)) then
368 return Defining_Identifier
(Parent
(B
));
370 return Defining_Identifier
(Associated_Node_For_Itype
(B
));
377 -- Otherwise we check the freeze node, if it has a First_Subtype_Link
378 -- then we use that link, otherwise (happens with some Itypes), we use
379 -- the base type itself.
382 Ent
:= First_Subtype_Link
(F
);
384 if Present
(Ent
) then
392 -------------------------
393 -- First_Tag_Component --
394 -------------------------
396 function First_Tag_Component
(Typ
: Entity_Id
) return Entity_Id
is
402 pragma Assert
(Is_Tagged_Type
(Ctyp
));
404 if Is_Class_Wide_Type
(Ctyp
) then
405 Ctyp
:= Root_Type
(Ctyp
);
408 if Is_Private_Type
(Ctyp
) then
409 Ctyp
:= Underlying_Type
(Ctyp
);
411 -- If the underlying type is missing then the source program has
412 -- errors and there is nothing else to do (the full-type declaration
413 -- associated with the private type declaration is missing).
420 Comp
:= First_Entity
(Ctyp
);
421 while Present
(Comp
) loop
422 if Is_Tag
(Comp
) then
426 Comp
:= Next_Entity
(Comp
);
429 -- No tag component found
432 end First_Tag_Component
;
434 ---------------------
435 -- Get_Binary_Nkind --
436 ---------------------
438 function Get_Binary_Nkind
(Op
: Entity_Id
) return Node_Kind
is
443 when Name_Op_Concat
=>
445 when Name_Op_Expon
=>
447 when Name_Op_Subtract
=>
448 return N_Op_Subtract
;
451 when Name_Op_Multiply
=>
452 return N_Op_Multiply
;
453 when Name_Op_Divide
=>
478 end Get_Binary_Nkind
;
484 function Get_Low_Bound
(E
: Entity_Id
) return Node_Id
is
486 if Ekind
(E
) = E_String_Literal_Subtype
then
487 return String_Literal_Low_Bound
(E
);
489 return Type_Low_Bound
(E
);
497 function Get_Rep_Item
500 Check_Parents
: Boolean := True) return Node_Id
505 N
:= First_Rep_Item
(E
);
506 while Present
(N
) loop
508 -- Only one of Priority / Interrupt_Priority can be specified, so
509 -- return whichever one is present to catch illegal duplication.
511 if Nkind
(N
) = N_Pragma
513 (Pragma_Name
(N
) = Nam
514 or else (Nam
= Name_Priority
515 and then Pragma_Name
(N
) = Name_Interrupt_Priority
)
516 or else (Nam
= Name_Interrupt_Priority
517 and then Pragma_Name
(N
) = Name_Priority
))
519 if Check_Parents
then
522 -- If Check_Parents is False, return N if the pragma doesn't
523 -- appear in the Rep_Item chain of the parent.
527 Par
: constant Entity_Id
:= Nearest_Ancestor
(E
);
528 -- This node represents the parent type of type E (if any)
534 elsif not Present_In_Rep_Item
(Par
, N
) then
540 elsif Nkind
(N
) = N_Attribute_Definition_Clause
543 or else (Nam
= Name_Priority
544 and then Chars
(N
) = Name_Interrupt_Priority
))
546 if Check_Parents
or else Entity
(N
) = E
then
550 elsif Nkind
(N
) = N_Aspect_Specification
552 (Chars
(Identifier
(N
)) = Nam
555 and then Chars
(Identifier
(N
)) = Name_Interrupt_Priority
))
557 if Check_Parents
then
560 elsif Entity
(N
) = E
then
571 function Get_Rep_Item
575 Check_Parents
: Boolean := True) return Node_Id
577 Nam1_Item
: constant Node_Id
:= Get_Rep_Item
(E
, Nam1
, Check_Parents
);
578 Nam2_Item
: constant Node_Id
:= Get_Rep_Item
(E
, Nam2
, Check_Parents
);
583 -- Check both Nam1_Item and Nam2_Item are present
585 if No
(Nam1_Item
) then
587 elsif No
(Nam2_Item
) then
591 -- Return the first node encountered in the list
593 N
:= First_Rep_Item
(E
);
594 while Present
(N
) loop
595 if N
= Nam1_Item
or else N
= Nam2_Item
then
609 function Get_Rep_Pragma
612 Check_Parents
: Boolean := True) return Node_Id
614 N
: constant Node_Id
:= Get_Rep_Item
(E
, Nam
, Check_Parents
);
617 if Present
(N
) and then Nkind
(N
) = N_Pragma
then
624 function Get_Rep_Pragma
628 Check_Parents
: Boolean := True) return Node_Id
630 Nam1_Item
: constant Node_Id
:= Get_Rep_Pragma
(E
, Nam1
, Check_Parents
);
631 Nam2_Item
: constant Node_Id
:= Get_Rep_Pragma
(E
, Nam2
, Check_Parents
);
636 -- Check both Nam1_Item and Nam2_Item are present
638 if No
(Nam1_Item
) then
640 elsif No
(Nam2_Item
) then
644 -- Return the first node encountered in the list
646 N
:= First_Rep_Item
(E
);
647 while Present
(N
) loop
648 if N
= Nam1_Item
or else N
= Nam2_Item
then
658 ---------------------
659 -- Get_Unary_Nkind --
660 ---------------------
662 function Get_Unary_Nkind
(Op
: Entity_Id
) return Node_Kind
is
667 when Name_Op_Subtract
=>
678 ---------------------------------
679 -- Has_External_Tag_Rep_Clause --
680 ---------------------------------
682 function Has_External_Tag_Rep_Clause
(T
: Entity_Id
) return Boolean is
684 pragma Assert
(Is_Tagged_Type
(T
));
685 return Has_Rep_Item
(T
, Name_External_Tag
, Check_Parents
=> False);
686 end Has_External_Tag_Rep_Clause
;
692 function Has_Rep_Item
695 Check_Parents
: Boolean := True) return Boolean
698 return Present
(Get_Rep_Item
(E
, Nam
, Check_Parents
));
701 function Has_Rep_Item
705 Check_Parents
: Boolean := True) return Boolean
708 return Present
(Get_Rep_Item
(E
, Nam1
, Nam2
, Check_Parents
));
711 function Has_Rep_Item
(E
: Entity_Id
; N
: Node_Id
) return Boolean is
716 (Nkind_In
(N
, N_Aspect_Specification
,
717 N_Attribute_Definition_Clause
,
718 N_Enumeration_Representation_Clause
,
720 N_Record_Representation_Clause
));
722 Item
:= First_Rep_Item
(E
);
723 while Present
(Item
) loop
728 Item
:= Next_Rep_Item
(Item
);
738 function Has_Rep_Pragma
741 Check_Parents
: Boolean := True) return Boolean
744 return Present
(Get_Rep_Pragma
(E
, Nam
, Check_Parents
));
747 function Has_Rep_Pragma
751 Check_Parents
: Boolean := True) return Boolean
754 return Present
(Get_Rep_Pragma
(E
, Nam1
, Nam2
, Check_Parents
));
757 --------------------------------
758 -- Has_Unconstrained_Elements --
759 --------------------------------
761 function Has_Unconstrained_Elements
(T
: Entity_Id
) return Boolean is
762 U_T
: constant Entity_Id
:= Underlying_Type
(T
);
766 elsif Is_Record_Type
(U_T
) then
767 return Has_Discriminants
(U_T
) and then not Is_Constrained
(U_T
);
768 elsif Is_Array_Type
(U_T
) then
769 return Has_Unconstrained_Elements
(Component_Type
(U_T
));
773 end Has_Unconstrained_Elements
;
775 ----------------------
776 -- Has_Variant_Part --
777 ----------------------
779 function Has_Variant_Part
(Typ
: Entity_Id
) return Boolean is
786 if not Is_Type
(Typ
) then
790 FSTyp
:= First_Subtype
(Typ
);
792 if not Has_Discriminants
(FSTyp
) then
796 -- Proceed with cautious checks here, return False if tree is not
797 -- as expected (may be caused by prior errors).
799 Decl
:= Declaration_Node
(FSTyp
);
801 if Nkind
(Decl
) /= N_Full_Type_Declaration
then
805 TDef
:= Type_Definition
(Decl
);
807 if Nkind
(TDef
) /= N_Record_Definition
then
811 CList
:= Component_List
(TDef
);
813 if Nkind
(CList
) /= N_Component_List
then
816 return Present
(Variant_Part
(CList
));
818 end Has_Variant_Part
;
820 ---------------------
821 -- In_Generic_Body --
822 ---------------------
824 function In_Generic_Body
(Id
: Entity_Id
) return Boolean is
828 -- Climb scopes looking for generic body
831 while Present
(S
) and then S
/= Standard_Standard
loop
833 -- Generic package body
835 if Ekind
(S
) = E_Generic_Package
836 and then In_Package_Body
(S
)
840 -- Generic subprogram body
842 elsif Is_Subprogram
(S
)
843 and then Nkind
(Unit_Declaration_Node
(S
)) =
844 N_Generic_Subprogram_Declaration
852 -- False if top of scope stack without finding a generic body
857 -------------------------------
858 -- Initialization_Suppressed --
859 -------------------------------
861 function Initialization_Suppressed
(Typ
: Entity_Id
) return Boolean is
863 return Suppress_Initialization
(Typ
)
864 or else Suppress_Initialization
(Base_Type
(Typ
));
865 end Initialization_Suppressed
;
871 procedure Initialize
is
873 Obsolescent_Warnings
.Init
;
880 function Is_Body
(N
: Node_Id
) return Boolean is
883 Nkind
(N
) in N_Body_Stub
884 or else Nkind_In
(N
, N_Entry_Body
,
891 ---------------------
892 -- Is_By_Copy_Type --
893 ---------------------
895 function Is_By_Copy_Type
(Ent
: Entity_Id
) return Boolean is
897 -- If Id is a private type whose full declaration has not been seen,
898 -- we assume for now that it is not a By_Copy type. Clearly this
899 -- attribute should not be used before the type is frozen, but it is
900 -- needed to build the associated record of a protected type. Another
901 -- place where some lookahead for a full view is needed ???
904 Is_Elementary_Type
(Ent
)
905 or else (Is_Private_Type
(Ent
)
906 and then Present
(Underlying_Type
(Ent
))
907 and then Is_Elementary_Type
(Underlying_Type
(Ent
)));
910 --------------------------
911 -- Is_By_Reference_Type --
912 --------------------------
914 function Is_By_Reference_Type
(Ent
: Entity_Id
) return Boolean is
915 Btype
: constant Entity_Id
:= Base_Type
(Ent
);
918 if Error_Posted
(Ent
) or else Error_Posted
(Btype
) then
921 elsif Is_Private_Type
(Btype
) then
923 Utyp
: constant Entity_Id
:= Underlying_Type
(Btype
);
928 return Is_By_Reference_Type
(Utyp
);
932 elsif Is_Incomplete_Type
(Btype
) then
934 Ftyp
: constant Entity_Id
:= Full_View
(Btype
);
939 return Is_By_Reference_Type
(Ftyp
);
943 elsif Is_Concurrent_Type
(Btype
) then
946 elsif Is_Record_Type
(Btype
) then
947 if Is_Limited_Record
(Btype
)
948 or else Is_Tagged_Type
(Btype
)
949 or else Is_Volatile
(Btype
)
958 C
:= First_Component
(Btype
);
959 while Present
(C
) loop
961 -- For each component, test if its type is a by reference
962 -- type and if its type is volatile. Also test the component
963 -- itself for being volatile. This happens for example when
964 -- a Volatile aspect is added to a component.
966 if Is_By_Reference_Type
(Etype
(C
))
967 or else Is_Volatile
(Etype
(C
))
968 or else Is_Volatile
(C
)
973 C
:= Next_Component
(C
);
980 elsif Is_Array_Type
(Btype
) then
983 or else Is_By_Reference_Type
(Component_Type
(Btype
))
984 or else Is_Volatile
(Component_Type
(Btype
))
985 or else Has_Volatile_Components
(Btype
);
990 end Is_By_Reference_Type
;
992 -------------------------
993 -- Is_Definite_Subtype --
994 -------------------------
996 function Is_Definite_Subtype
(T
: Entity_Id
) return Boolean is
997 pragma Assert
(Is_Type
(T
));
998 K
: constant Entity_Kind
:= Ekind
(T
);
1001 if Is_Constrained
(T
) then
1004 elsif K
in Array_Kind
1005 or else K
in Class_Wide_Kind
1006 or else Has_Unknown_Discriminants
(T
)
1010 -- Known discriminants: definite if there are default values. Note that
1011 -- if any discriminant has a default, they all do.
1013 elsif Has_Discriminants
(T
) then
1014 return Present
(Discriminant_Default_Value
(First_Discriminant
(T
)));
1019 end Is_Definite_Subtype
;
1021 ---------------------
1022 -- Is_Derived_Type --
1023 ---------------------
1025 function Is_Derived_Type
(Ent
: E
) return B
is
1030 and then Base_Type
(Ent
) /= Root_Type
(Ent
)
1031 and then not Is_Class_Wide_Type
(Ent
)
1033 -- An access_to_subprogram whose result type is a limited view can
1034 -- appear in a return statement, without the full view of the result
1035 -- type being available. Do not interpret this as a derived type.
1037 and then Ekind
(Ent
) /= E_Subprogram_Type
1039 if not Is_Numeric_Type
(Root_Type
(Ent
)) then
1043 Par
:= Parent
(First_Subtype
(Ent
));
1045 return Present
(Par
)
1046 and then Nkind
(Par
) = N_Full_Type_Declaration
1047 and then Nkind
(Type_Definition
(Par
)) =
1048 N_Derived_Type_Definition
;
1054 end Is_Derived_Type
;
1056 -----------------------
1057 -- Is_Generic_Formal --
1058 -----------------------
1060 function Is_Generic_Formal
(E
: Entity_Id
) return Boolean is
1066 Kind
:= Nkind
(Parent
(E
));
1068 Nkind_In
(Kind
, N_Formal_Object_Declaration
,
1069 N_Formal_Package_Declaration
,
1070 N_Formal_Type_Declaration
)
1071 or else Is_Formal_Subprogram
(E
);
1073 end Is_Generic_Formal
;
1075 -------------------------------
1076 -- Is_Immutably_Limited_Type --
1077 -------------------------------
1079 function Is_Immutably_Limited_Type
(Ent
: Entity_Id
) return Boolean is
1080 Btype
: constant Entity_Id
:= Available_View
(Base_Type
(Ent
));
1083 if Is_Limited_Record
(Btype
) then
1086 elsif Ekind
(Btype
) = E_Limited_Private_Type
1087 and then Nkind
(Parent
(Btype
)) = N_Formal_Type_Declaration
1089 return not In_Package_Body
(Scope
((Btype
)));
1091 elsif Is_Private_Type
(Btype
) then
1093 -- AI05-0063: A type derived from a limited private formal type is
1094 -- not immutably limited in a generic body.
1096 if Is_Derived_Type
(Btype
)
1097 and then Is_Generic_Type
(Etype
(Btype
))
1099 if not Is_Limited_Type
(Etype
(Btype
)) then
1102 -- A descendant of a limited formal type is not immutably limited
1103 -- in the generic body, or in the body of a generic child.
1105 elsif Ekind
(Scope
(Etype
(Btype
))) = E_Generic_Package
then
1106 return not In_Package_Body
(Scope
(Btype
));
1114 Utyp
: constant Entity_Id
:= Underlying_Type
(Btype
);
1119 return Is_Immutably_Limited_Type
(Utyp
);
1124 elsif Is_Concurrent_Type
(Btype
) then
1130 end Is_Immutably_Limited_Type
;
1132 ---------------------
1133 -- Is_Limited_Type --
1134 ---------------------
1136 function Is_Limited_Type
(Ent
: Entity_Id
) return Boolean is
1137 Btype
: constant E
:= Base_Type
(Ent
);
1138 Rtype
: constant E
:= Root_Type
(Btype
);
1141 if not Is_Type
(Ent
) then
1144 elsif Ekind
(Btype
) = E_Limited_Private_Type
1145 or else Is_Limited_Composite
(Btype
)
1149 elsif Is_Concurrent_Type
(Btype
) then
1152 -- The Is_Limited_Record flag normally indicates that the type is
1153 -- limited. The exception is that a type does not inherit limitedness
1154 -- from its interface ancestor. So the type may be derived from a
1155 -- limited interface, but is not limited.
1157 elsif Is_Limited_Record
(Ent
)
1158 and then not Is_Interface
(Ent
)
1162 -- Otherwise we will look around to see if there is some other reason
1163 -- for it to be limited, except that if an error was posted on the
1164 -- entity, then just assume it is non-limited, because it can cause
1165 -- trouble to recurse into a murky entity resulting from other errors.
1167 elsif Error_Posted
(Ent
) then
1170 elsif Is_Record_Type
(Btype
) then
1172 if Is_Limited_Interface
(Ent
) then
1175 -- AI-419: limitedness is not inherited from a limited interface
1177 elsif Is_Limited_Record
(Rtype
) then
1178 return not Is_Interface
(Rtype
)
1179 or else Is_Protected_Interface
(Rtype
)
1180 or else Is_Synchronized_Interface
(Rtype
)
1181 or else Is_Task_Interface
(Rtype
);
1183 elsif Is_Class_Wide_Type
(Btype
) then
1184 return Is_Limited_Type
(Rtype
);
1191 C
:= First_Component
(Btype
);
1192 while Present
(C
) loop
1193 if Is_Limited_Type
(Etype
(C
)) then
1197 C
:= Next_Component
(C
);
1204 elsif Is_Array_Type
(Btype
) then
1205 return Is_Limited_Type
(Component_Type
(Btype
));
1210 end Is_Limited_Type
;
1212 ---------------------
1213 -- Is_Limited_View --
1214 ---------------------
1216 function Is_Limited_View
(Ent
: Entity_Id
) return Boolean is
1217 Btype
: constant Entity_Id
:= Available_View
(Base_Type
(Ent
));
1220 if Is_Limited_Record
(Btype
) then
1223 elsif Ekind
(Btype
) = E_Limited_Private_Type
1224 and then Nkind
(Parent
(Btype
)) = N_Formal_Type_Declaration
1226 return not In_Package_Body
(Scope
((Btype
)));
1228 elsif Is_Private_Type
(Btype
) then
1230 -- AI05-0063: A type derived from a limited private formal type is
1231 -- not immutably limited in a generic body.
1233 if Is_Derived_Type
(Btype
)
1234 and then Is_Generic_Type
(Etype
(Btype
))
1236 if not Is_Limited_Type
(Etype
(Btype
)) then
1239 -- A descendant of a limited formal type is not immutably limited
1240 -- in the generic body, or in the body of a generic child.
1242 elsif Ekind
(Scope
(Etype
(Btype
))) = E_Generic_Package
then
1243 return not In_Package_Body
(Scope
(Btype
));
1251 Utyp
: constant Entity_Id
:= Underlying_Type
(Btype
);
1256 return Is_Limited_View
(Utyp
);
1261 elsif Is_Concurrent_Type
(Btype
) then
1264 elsif Is_Record_Type
(Btype
) then
1266 -- Note that we return True for all limited interfaces, even though
1267 -- (unsynchronized) limited interfaces can have descendants that are
1268 -- nonlimited, because this is a predicate on the type itself, and
1269 -- things like functions with limited interface results need to be
1270 -- handled as build in place even though they might return objects
1271 -- of a type that is not inherently limited.
1273 if Is_Class_Wide_Type
(Btype
) then
1274 return Is_Limited_View
(Root_Type
(Btype
));
1281 C
:= First_Component
(Btype
);
1282 while Present
(C
) loop
1284 -- Don't consider components with interface types (which can
1285 -- only occur in the case of a _parent component anyway).
1286 -- They don't have any components, plus it would cause this
1287 -- function to return true for nonlimited types derived from
1288 -- limited interfaces.
1290 if not Is_Interface
(Etype
(C
))
1291 and then Is_Limited_View
(Etype
(C
))
1296 C
:= Next_Component
(C
);
1303 elsif Is_Array_Type
(Btype
) then
1304 return Is_Limited_View
(Component_Type
(Btype
));
1309 end Is_Limited_View
;
1311 ----------------------
1312 -- Nearest_Ancestor --
1313 ----------------------
1315 function Nearest_Ancestor
(Typ
: Entity_Id
) return Entity_Id
is
1316 D
: constant Node_Id
:= Declaration_Node
(Typ
);
1319 -- If we have a subtype declaration, get the ancestor subtype
1321 if Nkind
(D
) = N_Subtype_Declaration
then
1322 if Nkind
(Subtype_Indication
(D
)) = N_Subtype_Indication
then
1323 return Entity
(Subtype_Mark
(Subtype_Indication
(D
)));
1325 return Entity
(Subtype_Indication
(D
));
1328 -- If derived type declaration, find who we are derived from
1330 elsif Nkind
(D
) = N_Full_Type_Declaration
1331 and then Nkind
(Type_Definition
(D
)) = N_Derived_Type_Definition
1334 DTD
: constant Entity_Id
:= Type_Definition
(D
);
1335 SI
: constant Entity_Id
:= Subtype_Indication
(DTD
);
1337 if Is_Entity_Name
(SI
) then
1340 return Entity
(Subtype_Mark
(SI
));
1344 -- If derived type and private type, get the full view to find who we
1345 -- are derived from.
1347 elsif Is_Derived_Type
(Typ
)
1348 and then Is_Private_Type
(Typ
)
1349 and then Present
(Full_View
(Typ
))
1351 return Nearest_Ancestor
(Full_View
(Typ
));
1353 -- Otherwise, nothing useful to return, return Empty
1358 end Nearest_Ancestor
;
1360 ---------------------------
1361 -- Nearest_Dynamic_Scope --
1362 ---------------------------
1364 function Nearest_Dynamic_Scope
(Ent
: Entity_Id
) return Entity_Id
is
1366 if Is_Dynamic_Scope
(Ent
) then
1369 return Enclosing_Dynamic_Scope
(Ent
);
1371 end Nearest_Dynamic_Scope
;
1373 ------------------------
1374 -- Next_Tag_Component --
1375 ------------------------
1377 function Next_Tag_Component
(Tag
: Entity_Id
) return Entity_Id
is
1381 pragma Assert
(Is_Tag
(Tag
));
1383 -- Loop to look for next tag component
1385 Comp
:= Next_Entity
(Tag
);
1386 while Present
(Comp
) loop
1387 if Is_Tag
(Comp
) then
1388 pragma Assert
(Chars
(Comp
) /= Name_uTag
);
1392 Comp
:= Next_Entity
(Comp
);
1395 -- No tag component found
1398 end Next_Tag_Component
;
1400 -----------------------
1401 -- Number_Components --
1402 -----------------------
1404 function Number_Components
(Typ
: Entity_Id
) return Nat
is
1409 -- We do not call Einfo.First_Component_Or_Discriminant, as this
1410 -- function does not skip completely hidden discriminants, which we
1411 -- want to skip here.
1413 if Has_Discriminants
(Typ
) then
1414 Comp
:= First_Discriminant
(Typ
);
1416 Comp
:= First_Component
(Typ
);
1419 while Present
(Comp
) loop
1421 Comp
:= Next_Component_Or_Discriminant
(Comp
);
1425 end Number_Components
;
1427 --------------------------
1428 -- Number_Discriminants --
1429 --------------------------
1431 function Number_Discriminants
(Typ
: Entity_Id
) return Pos
is
1433 Discr
: Entity_Id
:= First_Discriminant
(Typ
);
1436 while Present
(Discr
) loop
1438 Discr
:= Next_Discriminant
(Discr
);
1442 end Number_Discriminants
;
1444 ----------------------------------------------
1445 -- Object_Type_Has_Constrained_Partial_View --
1446 ----------------------------------------------
1448 function Object_Type_Has_Constrained_Partial_View
1450 Scop
: Entity_Id
) return Boolean
1453 return Has_Constrained_Partial_View
(Typ
)
1454 or else (In_Generic_Body
(Scop
)
1455 and then Is_Generic_Type
(Base_Type
(Typ
))
1456 and then Is_Private_Type
(Base_Type
(Typ
))
1457 and then not Is_Tagged_Type
(Typ
)
1458 and then not (Is_Array_Type
(Typ
)
1459 and then not Is_Constrained
(Typ
))
1460 and then Has_Discriminants
(Typ
));
1461 end Object_Type_Has_Constrained_Partial_View
;
1467 function Package_Body
(E
: Entity_Id
) return Node_Id
is
1471 if Ekind
(E
) = E_Package_Body
then
1474 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
1479 N
:= Package_Spec
(E
);
1481 if Present
(Corresponding_Body
(N
)) then
1482 N
:= Parent
(Corresponding_Body
(N
));
1484 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
1499 function Package_Spec
(E
: Entity_Id
) return Node_Id
is
1501 return Parent
(Package_Specification
(E
));
1504 ---------------------------
1505 -- Package_Specification --
1506 ---------------------------
1508 function Package_Specification
(E
: Entity_Id
) return Node_Id
is
1514 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
1519 end Package_Specification
;
1521 ---------------------
1522 -- Subprogram_Body --
1523 ---------------------
1525 function Subprogram_Body
(E
: Entity_Id
) return Node_Id
is
1526 Body_E
: constant Entity_Id
:= Subprogram_Body_Entity
(E
);
1532 return Parent
(Subprogram_Specification
(Body_E
));
1534 end Subprogram_Body
;
1536 ----------------------------
1537 -- Subprogram_Body_Entity --
1538 ----------------------------
1540 function Subprogram_Body_Entity
(E
: Entity_Id
) return Entity_Id
is
1541 N
: constant Node_Id
:= Parent
(Subprogram_Specification
(E
));
1542 -- Declaration for E
1545 -- If this declaration is not a subprogram body, then it must be a
1546 -- subprogram declaration or body stub, from which we can retrieve the
1547 -- entity for the corresponding subprogram body if any, or an abstract
1548 -- subprogram declaration, for which we return Empty.
1551 when N_Subprogram_Body
=>
1554 when N_Subprogram_Declaration | N_Subprogram_Body_Stub
=>
1555 return Corresponding_Body
(N
);
1560 end Subprogram_Body_Entity
;
1562 ---------------------
1563 -- Subprogram_Spec --
1564 ---------------------
1566 function Subprogram_Spec
(E
: Entity_Id
) return Node_Id
is
1567 N
: constant Node_Id
:= Parent
(Subprogram_Specification
(E
));
1568 -- Declaration for E
1571 -- This declaration is either subprogram declaration or a subprogram
1572 -- body, in which case return Empty.
1574 if Nkind
(N
) = N_Subprogram_Declaration
then
1579 end Subprogram_Spec
;
1581 ------------------------------
1582 -- Subprogram_Specification --
1583 ------------------------------
1585 function Subprogram_Specification
(E
: Entity_Id
) return Node_Id
is
1591 if Nkind
(N
) = N_Defining_Program_Unit_Name
then
1595 -- If the Parent pointer of E is not a subprogram specification node
1596 -- (going through an intermediate N_Defining_Program_Unit_Name node
1597 -- for subprogram units), then E is an inherited operation. Its parent
1598 -- points to the type derivation that produces the inheritance: that's
1599 -- the node that generates the subprogram specification. Its alias
1600 -- is the parent subprogram, and that one points to a subprogram
1601 -- declaration, or to another type declaration if this is a hierarchy
1604 if Nkind
(N
) not in N_Subprogram_Specification
then
1605 pragma Assert
(Present
(Alias
(E
)));
1606 N
:= Subprogram_Specification
(Alias
(E
));
1610 end Subprogram_Specification
;
1616 procedure Tree_Read
is
1618 Obsolescent_Warnings
.Tree_Read
;
1625 procedure Tree_Write
is
1627 Obsolescent_Warnings
.Tree_Write
;
1630 --------------------
1631 -- Ultimate_Alias --
1632 --------------------
1634 function Ultimate_Alias
(Prim
: Entity_Id
) return Entity_Id
is
1635 E
: Entity_Id
:= Prim
;
1638 while Present
(Alias
(E
)) loop
1639 pragma Assert
(Alias
(E
) /= E
);
1646 --------------------------
1647 -- Unit_Declaration_Node --
1648 --------------------------
1650 function Unit_Declaration_Node
(Unit_Id
: Entity_Id
) return Node_Id
is
1651 N
: Node_Id
:= Parent
(Unit_Id
);
1654 -- Predefined operators do not have a full function declaration
1656 if Ekind
(Unit_Id
) = E_Operator
then
1660 -- Isn't there some better way to express the following ???
1662 while Nkind
(N
) /= N_Abstract_Subprogram_Declaration
1663 and then Nkind
(N
) /= N_Entry_Body
1664 and then Nkind
(N
) /= N_Entry_Declaration
1665 and then Nkind
(N
) /= N_Formal_Package_Declaration
1666 and then Nkind
(N
) /= N_Function_Instantiation
1667 and then Nkind
(N
) /= N_Generic_Package_Declaration
1668 and then Nkind
(N
) /= N_Generic_Subprogram_Declaration
1669 and then Nkind
(N
) /= N_Package_Declaration
1670 and then Nkind
(N
) /= N_Package_Body
1671 and then Nkind
(N
) /= N_Package_Instantiation
1672 and then Nkind
(N
) /= N_Package_Renaming_Declaration
1673 and then Nkind
(N
) /= N_Procedure_Instantiation
1674 and then Nkind
(N
) /= N_Protected_Body
1675 and then Nkind
(N
) /= N_Subprogram_Declaration
1676 and then Nkind
(N
) /= N_Subprogram_Body
1677 and then Nkind
(N
) /= N_Subprogram_Body_Stub
1678 and then Nkind
(N
) /= N_Subprogram_Renaming_Declaration
1679 and then Nkind
(N
) /= N_Task_Body
1680 and then Nkind
(N
) /= N_Task_Type_Declaration
1681 and then Nkind
(N
) not in N_Formal_Subprogram_Declaration
1682 and then Nkind
(N
) not in N_Generic_Renaming_Declaration
1686 -- We don't use Assert here, because that causes an infinite loop
1687 -- when assertions are turned off. Better to crash.
1690 raise Program_Error
;
1695 end Unit_Declaration_Node
;