* fr.po, sv.po: Update.
[official-gcc.git] / gcc / bt-load.c
blobd58dab7a1f008e36e3a0a174cdb84eb752a450a1
1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "fibheap.h"
29 #include "output.h"
30 #include "target.h"
31 #include "expr.h"
32 #include "flags.h"
33 #include "insn-attr.h"
34 #include "function.h"
35 #include "except.h"
36 #include "tm_p.h"
38 /* Target register optimizations - these are performed after reload. */
40 typedef struct btr_def_group_s
42 struct btr_def_group_s *next;
43 rtx src;
44 struct btr_def_s *members;
45 } *btr_def_group;
47 typedef struct btr_user_s
49 struct btr_user_s *next;
50 basic_block bb;
51 int luid;
52 rtx insn;
53 /* If INSN has a single use of a single branch register, then
54 USE points to it within INSN. If there is more than
55 one branch register use, or the use is in some way ambiguous,
56 then USE is NULL. */
57 rtx use;
58 int n_reaching_defs;
59 int first_reaching_def;
60 char other_use_this_block;
61 } *btr_user;
63 /* btr_def structs appear on three lists:
64 1. A list of all btr_def structures (head is
65 ALL_BTR_DEFS, linked by the NEXT field).
66 2. A list of branch reg definitions per basic block (head is
67 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
68 3. A list of all branch reg definitions belonging to the same
69 group (head is in a BTR_DEF_GROUP struct, linked by
70 NEXT_THIS_GROUP field). */
72 typedef struct btr_def_s
74 struct btr_def_s *next_this_bb;
75 struct btr_def_s *next_this_group;
76 basic_block bb;
77 int luid;
78 rtx insn;
79 int btr;
80 int cost;
81 /* For a branch register setting insn that has a constant
82 source (i.e. a label), group links together all the
83 insns with the same source. For other branch register
84 setting insns, group is NULL. */
85 btr_def_group group;
86 btr_user uses;
87 /* If this def has a reaching use which is not a simple use
88 in a branch instruction, then has_ambiguous_use will be true,
89 and we will not attempt to migrate this definition. */
90 char has_ambiguous_use;
91 /* live_range is an approximation to the true live range for this
92 def/use web, because it records the set of blocks that contain
93 the live range. There could be other live ranges for the same
94 branch register in that set of blocks, either in the block
95 containing the def (before the def), or in a block containing
96 a use (after the use). If there are such other live ranges, then
97 other_btr_uses_before_def or other_btr_uses_after_use must be set true
98 as appropriate. */
99 char other_btr_uses_before_def;
100 char other_btr_uses_after_use;
101 /* We set own_end when we have moved a definition into a dominator.
102 Thus, when a later combination removes this definition again, we know
103 to clear out trs_live_at_end again. */
104 char own_end;
105 bitmap live_range;
106 } *btr_def;
108 static int issue_rate;
110 static int basic_block_freq (basic_block);
111 static int insn_sets_btr_p (rtx, int, int *);
112 static rtx *find_btr_use (rtx);
113 static int btr_referenced_p (rtx, rtx *);
114 static int find_btr_reference (rtx *, void *);
115 static void find_btr_def_group (btr_def_group *, btr_def);
116 static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
117 unsigned int, int, btr_def_group *);
118 static btr_user new_btr_user (basic_block, int, rtx);
119 static void dump_hard_reg_set (HARD_REG_SET);
120 static void dump_btrs_live (int);
121 static void note_other_use_this_block (unsigned int, btr_user);
122 static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
123 sbitmap *, sbitmap *, HARD_REG_SET *);
124 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
125 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
126 static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
127 static void build_btr_def_use_webs (fibheap_t);
128 static int block_at_edge_of_live_range_p (int, btr_def);
129 static void clear_btr_from_live_range (btr_def def);
130 static void add_btr_to_live_range (btr_def, int);
131 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
132 basic_block, int);
133 static int choose_btr (HARD_REG_SET);
134 static void combine_btr_defs (btr_def, HARD_REG_SET *);
135 static void btr_def_live_range (btr_def, HARD_REG_SET *);
136 static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
137 static int migrate_btr_def (btr_def, int);
138 static void migrate_btr_defs (enum reg_class, int);
139 static int can_move_up (basic_block, rtx, int);
140 static void note_btr_set (rtx, rtx, void *);
142 /* The following code performs code motion of target load instructions
143 (instructions that set branch target registers), to move them
144 forward away from the branch instructions and out of loops (or,
145 more generally, from a more frequently executed place to a less
146 frequently executed place).
147 Moving target load instructions further in front of the branch
148 instruction that uses the target register value means that the hardware
149 has a better chance of preloading the instructions at the branch
150 target by the time the branch is reached. This avoids bubbles
151 when a taken branch needs to flush out the pipeline.
152 Moving target load instructions out of loops means they are executed
153 less frequently. */
155 /* An obstack to hold the def-use web data structures built up for
156 migrating branch target load instructions. */
157 static struct obstack migrate_btrl_obstack;
159 /* Array indexed by basic block number, giving the set of registers
160 live in that block. */
161 static HARD_REG_SET *btrs_live;
163 /* Array indexed by basic block number, giving the set of registers live at
164 the end of that block, including any uses by a final jump insn, if any. */
165 static HARD_REG_SET *btrs_live_at_end;
167 /* Set of all target registers that we are willing to allocate. */
168 static HARD_REG_SET all_btrs;
170 /* Provide lower and upper bounds for target register numbers, so that
171 we don't need to search through all the hard registers all the time. */
172 static int first_btr, last_btr;
176 /* Return an estimate of the frequency of execution of block bb. */
177 static int
178 basic_block_freq (basic_block bb)
180 return bb->frequency;
183 static rtx *btr_reference_found;
185 /* A subroutine of btr_referenced_p, called through for_each_rtx.
186 PREG is a pointer to an rtx that is to be excluded from the
187 traversal. If we find a reference to a target register anywhere
188 else, return 1, and put a pointer to it into btr_reference_found. */
189 static int
190 find_btr_reference (rtx *px, void *preg)
192 rtx x;
193 int regno, i;
195 if (px == preg)
196 return -1;
197 x = *px;
198 if (!REG_P (x))
199 return 0;
200 regno = REGNO (x);
201 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
202 if (TEST_HARD_REG_BIT (all_btrs, regno+i))
204 btr_reference_found = px;
205 return 1;
207 return -1;
210 /* Return nonzero if X references (sets or reads) any branch target register.
211 If EXCLUDEP is set, disregard any references within the rtx pointed to
212 by it. If returning nonzero, also set btr_reference_found as above. */
213 static int
214 btr_referenced_p (rtx x, rtx *excludep)
216 return for_each_rtx (&x, find_btr_reference, excludep);
219 /* Return true if insn is an instruction that sets a target register.
220 if CHECK_CONST is true, only return true if the source is constant.
221 If such a set is found and REGNO is nonzero, assign the register number
222 of the destination register to *REGNO. */
223 static int
224 insn_sets_btr_p (rtx insn, int check_const, int *regno)
226 rtx set;
228 if (NONJUMP_INSN_P (insn)
229 && (set = single_set (insn)))
231 rtx dest = SET_DEST (set);
232 rtx src = SET_SRC (set);
234 if (GET_CODE (dest) == SUBREG)
235 dest = XEXP (dest, 0);
237 if (REG_P (dest)
238 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
240 gcc_assert (!btr_referenced_p (src, NULL));
242 if (!check_const || CONSTANT_P (src))
244 if (regno)
245 *regno = REGNO (dest);
246 return 1;
250 return 0;
253 /* Find and return a use of a target register within an instruction INSN. */
254 static rtx *
255 find_btr_use (rtx insn)
257 return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
260 /* Find the group that the target register definition DEF belongs
261 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
262 group exists, create one. Add def to the group. */
263 static void
264 find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
266 if (insn_sets_btr_p (def->insn, 1, NULL))
268 btr_def_group this_group;
269 rtx def_src = SET_SRC (single_set (def->insn));
271 /* ?? This linear search is an efficiency concern, particularly
272 as the search will almost always fail to find a match. */
273 for (this_group = *all_btr_def_groups;
274 this_group != NULL;
275 this_group = this_group->next)
276 if (rtx_equal_p (def_src, this_group->src))
277 break;
279 if (!this_group)
281 this_group = obstack_alloc (&migrate_btrl_obstack,
282 sizeof (struct btr_def_group_s));
283 this_group->src = def_src;
284 this_group->members = NULL;
285 this_group->next = *all_btr_def_groups;
286 *all_btr_def_groups = this_group;
288 def->group = this_group;
289 def->next_this_group = this_group->members;
290 this_group->members = def;
292 else
293 def->group = NULL;
296 /* Create a new target register definition structure, for a definition in
297 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
298 the new definition. */
299 static btr_def
300 add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
301 unsigned int dest_reg, int other_btr_uses_before_def,
302 btr_def_group *all_btr_def_groups)
304 btr_def this
305 = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_def_s));
306 this->bb = bb;
307 this->luid = insn_luid;
308 this->insn = insn;
309 this->btr = dest_reg;
310 this->cost = basic_block_freq (bb);
311 this->has_ambiguous_use = 0;
312 this->other_btr_uses_before_def = other_btr_uses_before_def;
313 this->other_btr_uses_after_use = 0;
314 this->next_this_bb = NULL;
315 this->next_this_group = NULL;
316 this->uses = NULL;
317 this->live_range = NULL;
318 find_btr_def_group (all_btr_def_groups, this);
320 fibheap_insert (all_btr_defs, -this->cost, this);
322 if (dump_file)
323 fprintf (dump_file,
324 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
325 dest_reg, bb->index, INSN_UID (insn), (this->group ? "" : ":not const"),
326 this->cost);
328 return this;
331 /* Create a new target register user structure, for a use in block BB,
332 instruction INSN. Return the new user. */
333 static btr_user
334 new_btr_user (basic_block bb, int insn_luid, rtx insn)
336 /* This instruction reads target registers. We need
337 to decide whether we can replace all target register
338 uses easily.
340 rtx *usep = find_btr_use (PATTERN (insn));
341 rtx use;
342 btr_user user = NULL;
344 if (usep)
346 int unambiguous_single_use;
348 /* We want to ensure that USE is the only use of a target
349 register in INSN, so that we know that to rewrite INSN to use
350 a different target register, all we have to do is replace USE. */
351 unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
352 if (!unambiguous_single_use)
353 usep = NULL;
355 use = usep ? *usep : NULL_RTX;
356 user = obstack_alloc (&migrate_btrl_obstack, sizeof (struct btr_user_s));
357 user->bb = bb;
358 user->luid = insn_luid;
359 user->insn = insn;
360 user->use = use;
361 user->other_use_this_block = 0;
362 user->next = NULL;
363 user->n_reaching_defs = 0;
364 user->first_reaching_def = -1;
366 if (dump_file)
368 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
369 bb->index, INSN_UID (insn));
371 if (user->use)
372 fprintf (dump_file, ": unambiguous use of reg %d\n",
373 REGNO (user->use));
376 return user;
379 /* Write the contents of S to the dump file. */
380 static void
381 dump_hard_reg_set (HARD_REG_SET s)
383 int reg;
384 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
385 if (TEST_HARD_REG_BIT (s, reg))
386 fprintf (dump_file, " %d", reg);
389 /* Write the set of target regs live in block BB to the dump file. */
390 static void
391 dump_btrs_live (int bb)
393 fprintf (dump_file, "BB%d live:", bb);
394 dump_hard_reg_set (btrs_live[bb]);
395 fprintf (dump_file, "\n");
398 /* REGNO is the number of a branch target register that is being used or
399 set. USERS_THIS_BB is a list of preceding branch target register users;
400 If any of them use the same register, set their other_use_this_block
401 flag. */
402 static void
403 note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
405 btr_user user;
407 for (user = users_this_bb; user != NULL; user = user->next)
408 if (user->use && REGNO (user->use) == regno)
409 user->other_use_this_block = 1;
412 typedef struct {
413 btr_user users_this_bb;
414 HARD_REG_SET btrs_written_in_block;
415 HARD_REG_SET btrs_live_in_block;
416 sbitmap bb_gen;
417 sbitmap *btr_defset;
418 } defs_uses_info;
420 /* Called via note_stores or directly to register stores into /
421 clobbers of a branch target register DEST that are not recognized as
422 straightforward definitions. DATA points to information about the
423 current basic block that needs updating. */
424 static void
425 note_btr_set (rtx dest, rtx set ATTRIBUTE_UNUSED, void *data)
427 defs_uses_info *info = data;
428 int regno, end_regno;
430 if (!REG_P (dest))
431 return;
432 regno = REGNO (dest);
433 end_regno = regno + hard_regno_nregs[regno][GET_MODE (dest)];
434 for (; regno < end_regno; regno++)
435 if (TEST_HARD_REG_BIT (all_btrs, regno))
437 note_other_use_this_block (regno, info->users_this_bb);
438 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
439 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
440 sbitmap_difference (info->bb_gen, info->bb_gen,
441 info->btr_defset[regno - first_btr]);
445 static void
446 compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
447 btr_user *use_array, sbitmap *btr_defset,
448 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
450 /* Scan the code building up the set of all defs and all uses.
451 For each target register, build the set of defs of that register.
452 For each block, calculate the set of target registers
453 written in that block.
454 Also calculate the set of btrs ever live in that block.
456 int i;
457 int insn_luid = 0;
458 btr_def_group all_btr_def_groups = NULL;
459 defs_uses_info info;
461 sbitmap_vector_zero (bb_gen, n_basic_blocks);
462 for (i = 0; i < n_basic_blocks; i++)
464 basic_block bb = BASIC_BLOCK (i);
465 int reg;
466 btr_def defs_this_bb = NULL;
467 rtx insn;
468 rtx last;
469 int can_throw = 0;
471 info.users_this_bb = NULL;
472 info.bb_gen = bb_gen[i];
473 info.btr_defset = btr_defset;
475 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
476 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
477 for (reg = first_btr; reg <= last_btr; reg++)
478 if (TEST_HARD_REG_BIT (all_btrs, reg)
479 && REGNO_REG_SET_P (bb->global_live_at_start, reg))
480 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
482 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
483 insn != last;
484 insn = NEXT_INSN (insn), insn_luid++)
486 if (INSN_P (insn))
488 int regno;
489 int insn_uid = INSN_UID (insn);
491 if (insn_sets_btr_p (insn, 0, &regno))
493 btr_def def = add_btr_def (
494 all_btr_defs, bb, insn_luid, insn, regno,
495 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
496 &all_btr_def_groups);
498 def_array[insn_uid] = def;
499 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
500 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
501 sbitmap_difference (bb_gen[i], bb_gen[i],
502 btr_defset[regno - first_btr]);
503 SET_BIT (bb_gen[i], insn_uid);
504 def->next_this_bb = defs_this_bb;
505 defs_this_bb = def;
506 SET_BIT (btr_defset[regno - first_btr], insn_uid);
507 note_other_use_this_block (regno, info.users_this_bb);
509 /* Check for the blockage emitted by expand_nl_goto_receiver. */
510 else if (current_function_has_nonlocal_label
511 && GET_CODE (PATTERN (insn)) == ASM_INPUT)
513 btr_user user;
515 /* Do the equivalent of calling note_other_use_this_block
516 for every target register. */
517 for (user = info.users_this_bb; user != NULL;
518 user = user->next)
519 if (user->use)
520 user->other_use_this_block = 1;
521 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
522 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
523 sbitmap_zero (info.bb_gen);
525 else
527 if (btr_referenced_p (PATTERN (insn), NULL))
529 btr_user user = new_btr_user (bb, insn_luid, insn);
531 use_array[insn_uid] = user;
532 if (user->use)
533 SET_HARD_REG_BIT (info.btrs_live_in_block,
534 REGNO (user->use));
535 else
537 int reg;
538 for (reg = first_btr; reg <= last_btr; reg++)
539 if (TEST_HARD_REG_BIT (all_btrs, reg)
540 && refers_to_regno_p (reg, reg + 1, user->insn,
541 NULL))
543 note_other_use_this_block (reg,
544 info.users_this_bb);
545 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
547 note_stores (PATTERN (insn), note_btr_set, &info);
549 user->next = info.users_this_bb;
550 info.users_this_bb = user;
552 if (CALL_P (insn))
554 HARD_REG_SET *clobbered = &call_used_reg_set;
555 HARD_REG_SET call_saved;
556 rtx pat = PATTERN (insn);
557 int i;
559 /* Check for sibcall. */
560 if (GET_CODE (pat) == PARALLEL)
561 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
562 if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
564 COMPL_HARD_REG_SET (call_saved,
565 call_used_reg_set);
566 clobbered = &call_saved;
569 for (regno = first_btr; regno <= last_btr; regno++)
570 if (TEST_HARD_REG_BIT (*clobbered, regno))
571 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
577 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
578 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
580 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], bb->global_live_at_end);
581 /* If this block ends in a jump insn, add any uses or even clobbers
582 of branch target registers that it might have. */
583 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
584 insn = PREV_INSN (insn);
585 /* ??? for the fall-through edge, it would make sense to insert the
586 btr set on the edge, but that would require to split the block
587 early on so that we can distinguish between dominance from the fall
588 through edge - which can use the call-clobbered registers - from
589 dominance by the throw edge. */
590 if (can_throw_internal (insn))
592 HARD_REG_SET tmp;
594 COPY_HARD_REG_SET (tmp, call_used_reg_set);
595 AND_HARD_REG_SET (tmp, all_btrs);
596 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
597 can_throw = 1;
599 if (can_throw || JUMP_P (insn))
601 int regno;
603 for (regno = first_btr; regno <= last_btr; regno++)
604 if (refers_to_regno_p (regno, regno+1, insn, NULL))
605 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
608 if (dump_file)
609 dump_btrs_live(i);
613 static void
614 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
615 HARD_REG_SET *btrs_written)
617 int i;
618 int regno;
620 /* For each basic block, form the set BB_KILL - the set
621 of definitions that the block kills. */
622 sbitmap_vector_zero (bb_kill, n_basic_blocks);
623 for (i = 0; i < n_basic_blocks; i++)
625 for (regno = first_btr; regno <= last_btr; regno++)
626 if (TEST_HARD_REG_BIT (all_btrs, regno)
627 && TEST_HARD_REG_BIT (btrs_written[i], regno))
628 sbitmap_a_or_b (bb_kill[i], bb_kill[i],
629 btr_defset[regno - first_btr]);
633 static void
634 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
636 /* Perform iterative dataflow:
637 Initially, for all blocks, BB_OUT = BB_GEN.
638 For each block,
639 BB_IN = union over predecessors of BB_OUT(pred)
640 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
641 Iterate until the bb_out sets stop growing. */
642 int i;
643 int changed;
644 sbitmap bb_in = sbitmap_alloc (max_uid);
646 for (i = 0; i < n_basic_blocks; i++)
647 sbitmap_copy (bb_out[i], bb_gen[i]);
649 changed = 1;
650 while (changed)
652 changed = 0;
653 for (i = 0; i < n_basic_blocks; i++)
655 sbitmap_union_of_preds (bb_in, bb_out, i);
656 changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
657 bb_in, bb_kill[i]);
660 sbitmap_free (bb_in);
663 static void
664 link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
665 sbitmap *btr_defset, int max_uid)
667 int i;
668 sbitmap reaching_defs = sbitmap_alloc (max_uid);
670 /* Link uses to the uses lists of all of their reaching defs.
671 Count up the number of reaching defs of each use. */
672 for (i = 0; i < n_basic_blocks; i++)
674 basic_block bb = BASIC_BLOCK (i);
675 rtx insn;
676 rtx last;
678 sbitmap_union_of_preds (reaching_defs, bb_out, i);
679 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
680 insn != last;
681 insn = NEXT_INSN (insn))
683 if (INSN_P (insn))
685 int insn_uid = INSN_UID (insn);
687 btr_def def = def_array[insn_uid];
688 btr_user user = use_array[insn_uid];
689 if (def != NULL)
691 /* Remove all reaching defs of regno except
692 for this one. */
693 sbitmap_difference (reaching_defs, reaching_defs,
694 btr_defset[def->btr - first_btr]);
695 SET_BIT(reaching_defs, insn_uid);
698 if (user != NULL)
700 /* Find all the reaching defs for this use. */
701 sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
702 unsigned int uid;
703 sbitmap_iterator sbi;
705 if (user->use)
706 sbitmap_a_and_b (
707 reaching_defs_of_reg,
708 reaching_defs,
709 btr_defset[REGNO (user->use) - first_btr]);
710 else
712 int reg;
714 sbitmap_zero (reaching_defs_of_reg);
715 for (reg = first_btr; reg <= last_btr; reg++)
716 if (TEST_HARD_REG_BIT (all_btrs, reg)
717 && refers_to_regno_p (reg, reg + 1, user->insn,
718 NULL))
719 sbitmap_a_or_b_and_c (reaching_defs_of_reg,
720 reaching_defs_of_reg,
721 reaching_defs,
722 btr_defset[reg - first_btr]);
724 EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
726 btr_def def = def_array[uid];
728 /* We now know that def reaches user. */
730 if (dump_file)
731 fprintf (dump_file,
732 "Def in insn %d reaches use in insn %d\n",
733 uid, insn_uid);
735 user->n_reaching_defs++;
736 if (!user->use)
737 def->has_ambiguous_use = 1;
738 if (user->first_reaching_def != -1)
739 { /* There is more than one reaching def. This is
740 a rare case, so just give up on this def/use
741 web when it occurs. */
742 def->has_ambiguous_use = 1;
743 def_array[user->first_reaching_def]
744 ->has_ambiguous_use = 1;
745 if (dump_file)
746 fprintf (dump_file,
747 "(use %d has multiple reaching defs)\n",
748 insn_uid);
750 else
751 user->first_reaching_def = uid;
752 if (user->other_use_this_block)
753 def->other_btr_uses_after_use = 1;
754 user->next = def->uses;
755 def->uses = user;
757 sbitmap_free (reaching_defs_of_reg);
760 if (CALL_P (insn))
762 int regno;
764 for (regno = first_btr; regno <= last_btr; regno++)
765 if (TEST_HARD_REG_BIT (all_btrs, regno)
766 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
767 sbitmap_difference (reaching_defs, reaching_defs,
768 btr_defset[regno - first_btr]);
773 sbitmap_free (reaching_defs);
776 static void
777 build_btr_def_use_webs (fibheap_t all_btr_defs)
779 const int max_uid = get_max_uid ();
780 btr_def *def_array = xcalloc (max_uid, sizeof (btr_def));
781 btr_user *use_array = xcalloc (max_uid, sizeof (btr_user));
782 sbitmap *btr_defset = sbitmap_vector_alloc (
783 (last_btr - first_btr) + 1, max_uid);
784 sbitmap *bb_gen = sbitmap_vector_alloc (n_basic_blocks, max_uid);
785 HARD_REG_SET *btrs_written = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
786 sbitmap *bb_kill;
787 sbitmap *bb_out;
789 sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
791 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
792 bb_gen, btrs_written);
794 bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
795 compute_kill (bb_kill, btr_defset, btrs_written);
796 free (btrs_written);
798 bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
799 compute_out (bb_out, bb_gen, bb_kill, max_uid);
801 sbitmap_vector_free (bb_gen);
802 sbitmap_vector_free (bb_kill);
804 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
806 sbitmap_vector_free (bb_out);
807 sbitmap_vector_free (btr_defset);
808 free (use_array);
809 free (def_array);
812 /* Return true if basic block BB contains the start or end of the
813 live range of the definition DEF, AND there are other live
814 ranges of the same target register that include BB. */
815 static int
816 block_at_edge_of_live_range_p (int bb, btr_def def)
818 if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
819 return 1;
820 else if (def->other_btr_uses_after_use)
822 btr_user user;
823 for (user = def->uses; user != NULL; user = user->next)
824 if (BASIC_BLOCK (bb) == user->bb)
825 return 1;
827 return 0;
830 /* We are removing the def/use web DEF. The target register
831 used in this web is therefore no longer live in the live range
832 of this web, so remove it from the live set of all basic blocks
833 in the live range of the web.
834 Blocks at the boundary of the live range may contain other live
835 ranges for the same target register, so we have to be careful
836 to remove the target register from the live set of these blocks
837 only if they do not contain other live ranges for the same register. */
838 static void
839 clear_btr_from_live_range (btr_def def)
841 unsigned bb;
842 bitmap_iterator bi;
844 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
846 if ((!def->other_btr_uses_before_def
847 && !def->other_btr_uses_after_use)
848 || !block_at_edge_of_live_range_p (bb, def))
850 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
851 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
852 if (dump_file)
853 dump_btrs_live (bb);
856 if (def->own_end)
857 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
861 /* We are adding the def/use web DEF. Add the target register used
862 in this web to the live set of all of the basic blocks that contain
863 the live range of the web.
864 If OWN_END is set, also show that the register is live from our
865 definitions at the end of the basic block where it is defined. */
866 static void
867 add_btr_to_live_range (btr_def def, int own_end)
869 unsigned bb;
870 bitmap_iterator bi;
872 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
874 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
875 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
876 if (dump_file)
877 dump_btrs_live (bb);
879 if (own_end)
881 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
882 def->own_end = 1;
886 /* Update a live range to contain the basic block NEW_BLOCK, and all
887 blocks on paths between the existing live range and NEW_BLOCK.
888 HEAD is a block contained in the existing live range that dominates
889 all other blocks in the existing live range.
890 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
891 are live in the blocks that we add to the live range.
892 If FULL_RANGE is set, include the full live range of NEW_BB;
893 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
894 are life at the end of NEW_BB for NEW_BB itself.
895 It is a precondition that either NEW_BLOCK dominates HEAD,or
896 HEAD dom NEW_BLOCK. This is used to speed up the
897 implementation of this function. */
898 static void
899 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
900 basic_block head_bb, basic_block new_bb, int full_range)
902 basic_block *worklist, *tos;
904 tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
906 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
908 if (new_bb == head_bb)
910 if (full_range)
911 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
912 return;
914 *tos++ = new_bb;
916 else
918 edge e;
919 edge_iterator ei;
920 int new_block = new_bb->index;
922 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
924 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
925 bitmap_set_bit (live_range, new_block);
926 /* A previous btr migration could have caused a register to be
927 live just at the end of new_block which we need in full, so
928 use trs_live_at_end even if full_range is set. */
929 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
930 if (full_range)
931 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
932 if (dump_file)
934 fprintf (dump_file,
935 "Adding end of block %d and rest of %d to live range\n",
936 new_block, head_bb->index);
937 fprintf (dump_file,"Now live btrs are ");
938 dump_hard_reg_set (*btrs_live_in_range);
939 fprintf (dump_file, "\n");
941 FOR_EACH_EDGE (e, ei, head_bb->preds)
942 *tos++ = e->src;
945 while (tos != worklist)
947 basic_block bb = *--tos;
948 if (!bitmap_bit_p (live_range, bb->index))
950 edge e;
951 edge_iterator ei;
953 bitmap_set_bit (live_range, bb->index);
954 IOR_HARD_REG_SET (*btrs_live_in_range,
955 btrs_live[bb->index]);
956 /* A previous btr migration could have caused a register to be
957 live just at the end of a block which we need in full. */
958 IOR_HARD_REG_SET (*btrs_live_in_range,
959 btrs_live_at_end[bb->index]);
960 if (dump_file)
962 fprintf (dump_file,
963 "Adding block %d to live range\n", bb->index);
964 fprintf (dump_file,"Now live btrs are ");
965 dump_hard_reg_set (*btrs_live_in_range);
966 fprintf (dump_file, "\n");
969 FOR_EACH_EDGE (e, ei, bb->preds)
971 basic_block pred = e->src;
972 if (!bitmap_bit_p (live_range, pred->index))
973 *tos++ = pred;
978 free (worklist);
981 /* Return the most desirable target register that is not in
982 the set USED_BTRS. */
983 static int
984 choose_btr (HARD_REG_SET used_btrs)
986 int i;
987 GO_IF_HARD_REG_SUBSET (all_btrs, used_btrs, give_up);
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
991 #ifdef REG_ALLOC_ORDER
992 int regno = reg_alloc_order[i];
993 #else
994 int regno = i;
995 #endif
996 if (TEST_HARD_REG_BIT (all_btrs, regno)
997 && !TEST_HARD_REG_BIT (used_btrs, regno))
998 return regno;
1000 give_up:
1001 return -1;
1004 /* Calculate the set of basic blocks that contain the live range of
1005 the def/use web DEF.
1006 Also calculate the set of target registers that are live at time
1007 in this live range, but ignore the live range represented by DEF
1008 when calculating this set. */
1009 static void
1010 btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1012 if (!def->live_range)
1014 btr_user user;
1016 def->live_range = BITMAP_ALLOC (NULL);
1018 bitmap_set_bit (def->live_range, def->bb->index);
1019 COPY_HARD_REG_SET (*btrs_live_in_range,
1020 (flag_btr_bb_exclusive
1021 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1023 for (user = def->uses; user != NULL; user = user->next)
1024 augment_live_range (def->live_range, btrs_live_in_range,
1025 def->bb, user->bb,
1026 (flag_btr_bb_exclusive
1027 || user->insn != BB_END (def->bb)
1028 || !JUMP_P (user->insn)));
1030 else
1032 /* def->live_range is accurate, but we need to recompute
1033 the set of target registers live over it, because migration
1034 of other PT instructions may have affected it.
1036 unsigned bb;
1037 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1038 bitmap_iterator bi;
1040 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1041 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1043 IOR_HARD_REG_SET (*btrs_live_in_range,
1044 (def_bb == bb
1045 ? btrs_live_at_end : btrs_live) [bb]);
1048 if (!def->other_btr_uses_before_def &&
1049 !def->other_btr_uses_after_use)
1050 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1053 /* Merge into the def/use web DEF any other def/use webs in the same
1054 group that are dominated by DEF, provided that there is a target
1055 register available to allocate to the merged web. */
1056 static void
1057 combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1059 btr_def other_def;
1061 for (other_def = def->group->members;
1062 other_def != NULL;
1063 other_def = other_def->next_this_group)
1065 if (other_def != def
1066 && other_def->uses != NULL
1067 && ! other_def->has_ambiguous_use
1068 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1070 /* def->bb dominates the other def, so def and other_def could
1071 be combined. */
1072 /* Merge their live ranges, and get the set of
1073 target registers live over the merged range. */
1074 int btr;
1075 HARD_REG_SET combined_btrs_live;
1076 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1077 btr_user user;
1079 if (other_def->live_range == NULL)
1081 HARD_REG_SET dummy_btrs_live_in_range;
1082 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1084 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1085 bitmap_copy (combined_live_range, def->live_range);
1087 for (user = other_def->uses; user != NULL; user = user->next)
1088 augment_live_range (combined_live_range, &combined_btrs_live,
1089 def->bb, user->bb,
1090 (flag_btr_bb_exclusive
1091 || user->insn != BB_END (def->bb)
1092 || !JUMP_P (user->insn)));
1094 btr = choose_btr (combined_btrs_live);
1095 if (btr != -1)
1097 /* We can combine them. */
1098 if (dump_file)
1099 fprintf (dump_file,
1100 "Combining def in insn %d with def in insn %d\n",
1101 INSN_UID (other_def->insn), INSN_UID (def->insn));
1103 def->btr = btr;
1104 user = other_def->uses;
1105 while (user != NULL)
1107 btr_user next = user->next;
1109 user->next = def->uses;
1110 def->uses = user;
1111 user = next;
1113 /* Combining def/use webs can make target registers live
1114 after uses where they previously were not. This means
1115 some REG_DEAD notes may no longer be correct. We could
1116 be more precise about this if we looked at the combined
1117 live range, but here I just delete any REG_DEAD notes
1118 in case they are no longer correct. */
1119 for (user = def->uses; user != NULL; user = user->next)
1120 remove_note (user->insn,
1121 find_regno_note (user->insn, REG_DEAD,
1122 REGNO (user->use)));
1123 clear_btr_from_live_range (other_def);
1124 other_def->uses = NULL;
1125 bitmap_copy (def->live_range, combined_live_range);
1126 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1127 def->other_btr_uses_after_use = 1;
1128 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1130 /* Delete the old target register initialization. */
1131 delete_insn (other_def->insn);
1134 BITMAP_FREE (combined_live_range);
1139 /* Move the definition DEF from its current position to basic
1140 block NEW_DEF_BB, and modify it to use branch target register BTR.
1141 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1142 Update all reaching uses of DEF in the RTL to use BTR.
1143 If this new position means that other defs in the
1144 same group can be combined with DEF then combine them. */
1145 static void
1146 move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1147 HARD_REG_SET *btrs_live_in_range)
1149 /* We can move the instruction.
1150 Set a target register in block NEW_DEF_BB to the value
1151 needed for this target register definition.
1152 Replace all uses of the old target register definition by
1153 uses of the new definition. Delete the old definition. */
1154 basic_block b = new_def_bb;
1155 rtx insp = BB_HEAD (b);
1156 rtx old_insn = def->insn;
1157 rtx src;
1158 rtx btr_rtx;
1159 rtx new_insn;
1160 enum machine_mode btr_mode;
1161 btr_user user;
1162 rtx set;
1164 if (dump_file)
1165 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1166 new_def_bb->index, btr);
1168 clear_btr_from_live_range (def);
1169 def->btr = btr;
1170 def->bb = new_def_bb;
1171 def->luid = 0;
1172 def->cost = basic_block_freq (new_def_bb);
1173 bitmap_copy (def->live_range, live_range);
1174 combine_btr_defs (def, btrs_live_in_range);
1175 btr = def->btr;
1176 def->other_btr_uses_before_def
1177 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1178 add_btr_to_live_range (def, 1);
1179 if (LABEL_P (insp))
1180 insp = NEXT_INSN (insp);
1181 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1182 optimizations can result in insp being both first and last insn of
1183 its basic block. */
1184 /* ?? some assertions to check that insp is sensible? */
1186 if (def->other_btr_uses_before_def)
1188 insp = BB_END (b);
1189 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1190 gcc_assert (insp != BB_HEAD (b));
1192 if (JUMP_P (insp) || can_throw_internal (insp))
1193 insp = PREV_INSN (insp);
1196 set = single_set (old_insn);
1197 src = SET_SRC (set);
1198 btr_mode = GET_MODE (SET_DEST (set));
1199 btr_rtx = gen_rtx_REG (btr_mode, btr);
1201 new_insn = gen_move_insn (btr_rtx, src);
1203 /* Insert target register initialization at head of basic block. */
1204 def->insn = emit_insn_after (new_insn, insp);
1206 regs_ever_live[btr] = 1;
1208 if (dump_file)
1209 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1210 INSN_UID (def->insn), INSN_UID (insp));
1212 /* Delete the old target register initialization. */
1213 delete_insn (old_insn);
1215 /* Replace each use of the old target register by a use of the new target
1216 register. */
1217 for (user = def->uses; user != NULL; user = user->next)
1219 /* Some extra work here to ensure consistent modes, because
1220 it seems that a target register REG rtx can be given a different
1221 mode depending on the context (surely that should not be
1222 the case?). */
1223 rtx replacement_rtx;
1224 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1225 || GET_MODE (user->use) == VOIDmode)
1226 replacement_rtx = btr_rtx;
1227 else
1228 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1229 replace_rtx (user->insn, user->use, replacement_rtx);
1230 user->use = replacement_rtx;
1234 /* We anticipate intra-block scheduling to be done. See if INSN could move
1235 up within BB by N_INSNS. */
1236 static int
1237 can_move_up (basic_block bb, rtx insn, int n_insns)
1239 while (insn != BB_HEAD (bb) && n_insns > 0)
1241 insn = PREV_INSN (insn);
1242 /* ??? What if we have an anti-dependency that actually prevents the
1243 scheduler from doing the move? We'd like to re-allocate the register,
1244 but not necessarily put the load into another basic block. */
1245 if (INSN_P (insn))
1246 n_insns--;
1248 return n_insns <= 0;
1251 /* Attempt to migrate the target register definition DEF to an
1252 earlier point in the flowgraph.
1254 It is a precondition of this function that DEF is migratable:
1255 i.e. it has a constant source, and all uses are unambiguous.
1257 Only migrations that reduce the cost of DEF will be made.
1258 MIN_COST is the lower bound on the cost of the DEF after migration.
1259 If we migrate DEF so that its cost falls below MIN_COST,
1260 then we do not attempt to migrate further. The idea is that
1261 we migrate definitions in a priority order based on their cost,
1262 when the cost of this definition falls below MIN_COST, then
1263 there is another definition with cost == MIN_COST which now
1264 has a higher priority than this definition.
1266 Return nonzero if there may be benefit from attempting to
1267 migrate this DEF further (i.e. we have reduced the cost below
1268 MIN_COST, but we may be able to reduce it further).
1269 Return zero if no further migration is possible. */
1270 static int
1271 migrate_btr_def (btr_def def, int min_cost)
1273 bitmap live_range;
1274 HARD_REG_SET btrs_live_in_range;
1275 int btr_used_near_def = 0;
1276 int def_basic_block_freq;
1277 basic_block try;
1278 int give_up = 0;
1279 int def_moved = 0;
1280 btr_user user;
1281 int def_latency;
1283 if (dump_file)
1284 fprintf (dump_file,
1285 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1286 INSN_UID (def->insn), def->cost, min_cost);
1288 if (!def->group || def->has_ambiguous_use)
1289 /* These defs are not migratable. */
1291 if (dump_file)
1292 fprintf (dump_file, "it's not migratable\n");
1293 return 0;
1296 if (!def->uses)
1297 /* We have combined this def with another in the same group, so
1298 no need to consider it further.
1301 if (dump_file)
1302 fprintf (dump_file, "it's already combined with another pt\n");
1303 return 0;
1306 btr_def_live_range (def, &btrs_live_in_range);
1307 live_range = BITMAP_ALLOC (NULL);
1308 bitmap_copy (live_range, def->live_range);
1310 #ifdef INSN_SCHEDULING
1311 def_latency = insn_default_latency (def->insn) * issue_rate;
1312 #else
1313 def_latency = issue_rate;
1314 #endif
1316 for (user = def->uses; user != NULL; user = user->next)
1318 if (user->bb == def->bb
1319 && user->luid > def->luid
1320 && (def->luid + def_latency) > user->luid
1321 && ! can_move_up (def->bb, def->insn,
1322 (def->luid + def_latency) - user->luid))
1324 btr_used_near_def = 1;
1325 break;
1329 def_basic_block_freq = basic_block_freq (def->bb);
1331 for (try = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1332 !give_up && try && try != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1333 try = get_immediate_dominator (CDI_DOMINATORS, try))
1335 /* Try to move the instruction that sets the target register into
1336 basic block TRY. */
1337 int try_freq = basic_block_freq (try);
1339 if (dump_file)
1340 fprintf (dump_file, "trying block %d ...", try->index);
1342 if (try_freq < def_basic_block_freq
1343 || (try_freq == def_basic_block_freq && btr_used_near_def))
1345 int btr;
1346 augment_live_range (live_range, &btrs_live_in_range, def->bb, try,
1347 flag_btr_bb_exclusive);
1348 if (dump_file)
1350 fprintf (dump_file, "Now btrs live in range are: ");
1351 dump_hard_reg_set (btrs_live_in_range);
1352 fprintf (dump_file, "\n");
1354 btr = choose_btr (btrs_live_in_range);
1355 if (btr != -1)
1357 move_btr_def (try, btr, def, live_range, &btrs_live_in_range);
1358 bitmap_copy(live_range, def->live_range);
1359 btr_used_near_def = 0;
1360 def_moved = 1;
1361 def_basic_block_freq = basic_block_freq (def->bb);
1363 else
1365 /* There are no free target registers available to move
1366 this far forward, so give up */
1367 give_up = 1;
1368 if (dump_file)
1369 fprintf (dump_file,
1370 "giving up because there are no free target registers\n");
1375 if (!def_moved)
1377 give_up = 1;
1378 if (dump_file)
1379 fprintf (dump_file, "failed to move\n");
1381 BITMAP_FREE (live_range);
1382 return !give_up;
1385 /* Attempt to move instructions that set target registers earlier
1386 in the flowgraph, away from their corresponding uses. */
1387 static void
1388 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1390 fibheap_t all_btr_defs = fibheap_new ();
1391 int reg;
1393 gcc_obstack_init (&migrate_btrl_obstack);
1394 if (dump_file)
1396 int i;
1398 for (i = 0; i < n_basic_blocks; i++)
1400 basic_block bb = BASIC_BLOCK (i);
1401 fprintf(dump_file,
1402 "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1403 " loop-depth = %d idom = %d\n",
1404 i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1405 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1409 CLEAR_HARD_REG_SET (all_btrs);
1410 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1411 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1412 && (allow_callee_save || call_used_regs[reg] || regs_ever_live[reg]))
1414 SET_HARD_REG_BIT (all_btrs, reg);
1415 last_btr = reg;
1416 if (first_btr < 0)
1417 first_btr = reg;
1420 btrs_live = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1421 btrs_live_at_end = xcalloc (n_basic_blocks, sizeof (HARD_REG_SET));
1423 build_btr_def_use_webs (all_btr_defs);
1425 while (!fibheap_empty (all_btr_defs))
1427 btr_def def = fibheap_extract_min (all_btr_defs);
1428 int min_cost = -fibheap_min_key (all_btr_defs);
1429 if (migrate_btr_def (def, min_cost))
1431 fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1432 if (dump_file)
1434 fprintf (dump_file,
1435 "Putting insn %d back on queue with priority %d\n",
1436 INSN_UID (def->insn), def->cost);
1439 else
1440 BITMAP_FREE (def->live_range);
1443 free (btrs_live);
1444 free (btrs_live_at_end);
1445 obstack_free (&migrate_btrl_obstack, NULL);
1446 fibheap_delete (all_btr_defs);
1449 void
1450 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1452 enum reg_class class = targetm.branch_target_register_class ();
1453 if (class != NO_REGS)
1455 /* Initialize issue_rate. */
1456 if (targetm.sched.issue_rate)
1457 issue_rate = targetm.sched.issue_rate ();
1458 else
1459 issue_rate = 1;
1461 /* Build the CFG for migrate_btr_defs. */
1462 #if 1
1463 /* This may or may not be needed, depending on where we
1464 run this phase. */
1465 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1466 #endif
1468 life_analysis (NULL, 0);
1470 /* Dominator info is also needed for migrate_btr_def. */
1471 calculate_dominance_info (CDI_DOMINATORS);
1472 migrate_btr_defs (class,
1473 (targetm.branch_target_register_callee_saved
1474 (after_prologue_epilogue_gen)));
1476 free_dominance_info (CDI_DOMINATORS);
1478 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
1479 PROP_DEATH_NOTES | PROP_REG_INFO);