1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Fname
; use Fname
;
39 with Freeze
; use Freeze
;
40 with Ghost
; use Ghost
;
41 with Inline
; use Inline
;
42 with Itypes
; use Itypes
;
44 with Lib
.Xref
; use Lib
.Xref
;
45 with Namet
; use Namet
;
46 with Nmake
; use Nmake
;
47 with Nlists
; use Nlists
;
49 with Output
; use Output
;
50 with Par_SCO
; use Par_SCO
;
51 with Restrict
; use Restrict
;
52 with Rident
; use Rident
;
53 with Rtsfind
; use Rtsfind
;
55 with Sem_Aux
; use Sem_Aux
;
56 with Sem_Aggr
; use Sem_Aggr
;
57 with Sem_Attr
; use Sem_Attr
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch4
; use Sem_Ch4
;
60 with Sem_Ch3
; use Sem_Ch3
;
61 with Sem_Ch6
; use Sem_Ch6
;
62 with Sem_Ch8
; use Sem_Ch8
;
63 with Sem_Ch13
; use Sem_Ch13
;
64 with Sem_Dim
; use Sem_Dim
;
65 with Sem_Disp
; use Sem_Disp
;
66 with Sem_Dist
; use Sem_Dist
;
67 with Sem_Elim
; use Sem_Elim
;
68 with Sem_Elab
; use Sem_Elab
;
69 with Sem_Eval
; use Sem_Eval
;
70 with Sem_Intr
; use Sem_Intr
;
71 with Sem_Util
; use Sem_Util
;
72 with Targparm
; use Targparm
;
73 with Sem_Type
; use Sem_Type
;
74 with Sem_Warn
; use Sem_Warn
;
75 with Sinfo
; use Sinfo
;
76 with Sinfo
.CN
; use Sinfo
.CN
;
77 with Snames
; use Snames
;
78 with Stand
; use Stand
;
79 with Stringt
; use Stringt
;
80 with Style
; use Style
;
81 with Tbuild
; use Tbuild
;
82 with Uintp
; use Uintp
;
83 with Urealp
; use Urealp
;
85 package body Sem_Res
is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 -- Second pass (top-down) type checking and overload resolution procedures
92 -- Typ is the type required by context. These procedures propagate the
93 -- type information recursively to the descendants of N. If the node is not
94 -- overloaded, its Etype is established in the first pass. If overloaded,
95 -- the Resolve routines set the correct type. For arithmetic operators, the
96 -- Etype is the base type of the context.
98 -- Note that Resolve_Attribute is separated off in Sem_Attr
100 procedure Check_Discriminant_Use
(N
: Node_Id
);
101 -- Enforce the restrictions on the use of discriminants when constraining
102 -- a component of a discriminated type (record or concurrent type).
104 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
105 -- Given a node for an operator associated with type T, check that the
106 -- operator is visible. Operators all of whose operands are universal must
107 -- be checked for visibility during resolution because their type is not
108 -- determinable based on their operands.
110 procedure Check_Fully_Declared_Prefix
113 -- Check that the type of the prefix of a dereference is not incomplete
115 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
116 -- Given a call node, N, which is known to occur immediately within the
117 -- subprogram being called, determines whether it is a detectable case of
118 -- an infinite recursion, and if so, outputs appropriate messages. Returns
119 -- True if an infinite recursion is detected, and False otherwise.
121 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
122 -- If the type of the object being initialized uses the secondary stack
123 -- directly or indirectly, create a transient scope for the call to the
124 -- init proc. This is because we do not create transient scopes for the
125 -- initialization of individual components within the init proc itself.
126 -- Could be optimized away perhaps?
128 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
129 -- N is the node for a logical operator. If the operator is predefined, and
130 -- the root type of the operands is Standard.Boolean, then a check is made
131 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
132 -- the style check for Style_Check_Boolean_And_Or.
134 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean;
135 -- N is either an indexed component or a selected component. This function
136 -- returns true if the prefix refers to an object that has an address
137 -- clause (the case in which we may want to issue a warning).
139 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
153 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
209 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
211 function Operator_Kind
213 Is_Binary
: Boolean) return Node_Kind
;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
339 Scope_Suppress
.Suppress
:= (others => True);
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
.Suppress
:= Sva
;
346 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
348 Scope_Suppress
.Suppress
(Suppress
) := True;
349 Analyze_And_Resolve
(N
, Typ
);
350 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
354 if Current_Scope
/= Scop
355 and then Scope_Is_Transient
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
363 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
366 end Analyze_And_Resolve
;
368 procedure Analyze_And_Resolve
372 Scop
: constant Entity_Id
:= Current_Scope
;
375 if Suppress
= All_Checks
then
377 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
379 Scope_Suppress
.Suppress
:= (others => True);
380 Analyze_And_Resolve
(N
);
381 Scope_Suppress
.Suppress
:= Sva
;
386 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
388 Scope_Suppress
.Suppress
(Suppress
) := True;
389 Analyze_And_Resolve
(N
);
390 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
394 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
395 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
398 end Analyze_And_Resolve
;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use
(N
: Node_Id
) is
405 PN
: constant Node_Id
:= Parent
(N
);
406 Disc
: constant Entity_Id
:= Entity
(N
);
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression
then
416 elsif Nkind
(PN
) = N_Range
then
418 -- Discriminant cannot be used to constrain a scalar type
422 if Nkind
(P
) = N_Range_Constraint
423 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
424 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
426 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
428 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
446 if Ekind
(Current_Scope
) = E_Record_Type
447 and then Scope
(Disc
) = Current_Scope
449 (Nkind
(Parent
(P
)) = N_Subtype_Indication
451 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
452 N_Subtype_Declaration
)
453 and then Paren_Count
(N
) = 0)
456 ("discriminant must appear alone in component constraint", N
);
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large
: declare
477 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
493 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
495 Minimum_Size
(T
, Biased
=> True) >=
496 RM_Size
(Standard_Positive
);
497 end Large_Storage_Type
;
499 -- Start of processing for Check_Large
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type
(Etype
(Disc
)) then
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
512 if Is_Limited_Type
(Scope
(Disc
)) then
516 -- Check that it is the high bound
518 if N
/= High_Bound
(PN
)
519 or else No
(Discriminant_Default_Value
(Disc
))
524 -- Check the array allows a large range at this bound. First
529 if Nkind
(SI
) /= N_Subtype_Indication
then
533 T
:= Entity
(Subtype_Mark
(SI
));
535 if not Is_Array_Type
(T
) then
539 -- Next, find the dimension
541 TB
:= First_Index
(T
);
542 CB
:= First
(Constraints
(P
));
544 and then Present
(TB
)
545 and then Present
(CB
)
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type
(Etype
(TB
)) then
562 -- Warn about the danger
565 ("??creation of & object may raise Storage_Error!",
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
577 N_Discriminant_Association
)
579 if Paren_Count
(N
) > 0 then
581 ("discriminant in constraint must appear alone", N
);
583 elsif Nkind
(N
) = N_Expanded_Name
584 and then Comes_From_Source
(N
)
587 ("discriminant must appear alone as a direct name", N
);
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
598 while not Nkind_In
(P
, N_Component_Declaration
,
599 N_Subtype_Indication
,
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind
(P
) = N_Subtype_Indication
613 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
614 N_Derived_Type_Definition
)
615 and then D
= Constraint
(P
))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind
(P
) = N_Subtype_Indication
622 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
623 or else Nkind
(P
) = N_Entry_Declaration
624 or else Nkind
(D
) = N_Defining_Identifier
627 ("discriminant in constraint must appear alone", N
);
630 end Check_Discriminant_Use
;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
638 if Is_Invisible_Operator
(N
, T
) then
639 Error_Msg_NE
-- CODEFIX
640 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
641 Error_Msg_N
-- CODEFIX
642 ("use clause would make operation legal!", N
);
644 end Check_For_Visible_Operator
;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name
(Pref
)
674 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version
>= Ada_2005
683 and then Is_Entity_Name
(Pref
)
684 and then Is_Access_Type
(Etype
(Pref
))
685 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
687 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
691 Check_Fully_Declared
(Typ
, Parent
(Pref
));
693 end Check_Fully_Declared_Prefix
;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
703 function Same_Argument_List
return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List
return Boolean is
717 if not Is_Entity_Name
(Name
(N
)) then
720 Subp
:= Entity
(Name
(N
));
723 F
:= First_Formal
(Subp
);
724 A
:= First_Actual
(N
);
725 while Present
(F
) and then Present
(A
) loop
726 if not Is_Entity_Name
(A
) or else Entity
(A
) /= F
then
735 end Same_Argument_List
;
737 -- Start of processing for Check_Infinite_Recursion
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member
(N
)
745 and then List_Length
(List_Containing
(N
)) = 1
746 and then Same_Argument_List
749 P
: constant Node_Id
:= Parent
(N
);
751 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
752 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
753 and then Is_Empty_List
(Declarations
(Parent
(P
)))
755 Error_Msg_Warn
:= SPARK_Mode
/= On
;
756 Error_Msg_N
("!infinite recursion<<", N
);
757 Error_Msg_N
("\!Storage_Error [<<", N
);
759 Make_Raise_Storage_Error
(Sloc
(N
),
760 Reason
=> SE_Infinite_Recursion
));
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind
(P
) = N_Subprogram_Body
;
787 -- If appearing in conditional, result is false
789 if Nkind_In
(P
, N_Or_Else
,
798 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
799 and then C
/= First
(Statements
(P
))
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
810 -- raise Program_Error;
814 -- for generating a stub function
816 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
817 and then Same_Argument_List
819 exit when not Is_List_Member
(Parent
(N
));
821 -- OK, return statement is in a statement list, look for raise
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod
:= Prev
(Parent
(N
));
831 and then Nkind
(Nod
) = N_Freeze_Entity
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
842 (Nkind
(Nod
) not in N_Raise_xxx_Error
843 or else Present
(Condition
(Nod
)));
854 Error_Msg_Warn
:= SPARK_Mode
/= On
;
855 Error_Msg_N
("!possible infinite recursion<<", N
);
856 Error_Msg_N
("\!??Storage_Error ]<<", N
);
859 end Check_Infinite_Recursion
;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
866 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
868 function Uses_SS
(T
: Entity_Id
) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
879 function Uses_SS
(T
: Entity_Id
) return Boolean is
882 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present
(Full_Type
) then
892 if Is_Controlled
(Full_Type
) then
895 elsif Is_Array_Type
(Full_Type
) then
896 return Uses_SS
(Component_Type
(Full_Type
));
898 elsif Is_Record_Type
(Full_Type
) then
899 Comp
:= First_Component
(Full_Type
);
900 while Present
(Comp
) loop
901 if Ekind
(Comp
) = E_Component
902 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
914 if (Nkind
(Expr
) = N_Function_Call
915 or else Nkind
(Expr
) in N_Op
916 or else (Nkind
(Expr
) = N_Attribute_Reference
917 and then Present
(Expressions
(Expr
))))
918 and then Requires_Transient_Scope
(Etype
(Expr
))
922 elsif Uses_SS
(Etype
(Comp
)) then
927 Next_Component
(Comp
);
937 -- Start of processing for Check_Initialization_Call
940 -- Establish a transient scope if the type needs it
942 if Uses_SS
(Typ
) then
943 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
945 end Check_Initialization_Call
;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
953 if Scope
(Entity
(N
)) = Standard_Standard
954 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
956 -- Restriction only applies to original source code
958 if Comes_From_Source
(N
) then
959 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
963 -- Do style check (but skip if in instance, error is on template)
966 if not In_Instance
then
967 Check_Boolean_Operator
(N
);
970 end Check_No_Direct_Boolean_Operators
;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call
(N
: Node_Id
) is
979 function Prefix_Is_Access_Subp
return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp
return Boolean is
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind
(Parent
(N
)) = N_Attribute_Reference
997 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1004 if not Is_Overloaded
(N
) then
1006 Ekind
(Etype
(N
)) = E_Subprogram_Type
1007 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1009 Get_First_Interp
(N
, I
, It
);
1010 while Present
(It
.Typ
) loop
1011 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1012 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1017 Get_Next_Interp
(I
, It
);
1022 end Prefix_Is_Access_Subp
;
1024 -- Start of processing for Check_Parameterless_Call
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected
/= 0 then
1030 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1032 elsif Nkind
(N
) in N_Has_Chars
1033 and then Chars
(N
) in Error_Name_Or_No_Name
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name
(N
)
1046 and then Ekind
(Entity
(N
)) = E_Procedure
1047 and then not Is_Overloaded
(N
)
1049 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1051 N_Procedure_Call_Statement
)
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name
(N
)
1066 and then Nkind
(N
) /= N_Operator_Symbol
1067 and then Is_Overloadable
(Entity
(N
))
1068 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1069 or else Is_Overloaded
(N
)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1076 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1083 (Nkind
(N
) = N_Selected_Component
1084 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1086 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1088 and then Is_Overloaded
(Selector_Name
(N
)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1094 if Nkind
(Parent
(N
)) /= N_Function_Call
1095 or else N
/= Name
(Parent
(N
))
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version
>= Ada_2005
1102 and then Nkind
(N
) = N_Selected_Component
1103 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1105 Analyze_Selected_Component
(N
);
1107 if Nkind
(N
) /= N_Selected_Component
then
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam
:= Relocate_Node
(N
);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps
(N
, Nam
);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node
(N
, N_Function_Call
);
1127 Set_Sloc
(N
, Sloc
(Nam
));
1131 elsif Nkind
(N
) = N_Parameter_Association
then
1132 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1134 elsif Nkind
(N
) = N_Operator_Symbol
then
1135 Change_Operator_Symbol_To_String_Literal
(N
);
1136 Set_Is_Overloaded
(N
, False);
1137 Set_Etype
(N
, Any_String
);
1139 end Check_Parameterless_Call
;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean is
1146 Pref
: constant Node_Id
:= Prefix
(N
);
1149 if not Is_Entity_Name
(Pref
) then
1154 Pent
: constant Entity_Id
:= Entity
(Pref
);
1155 Ptyp
: constant Entity_Id
:= Etype
(Pent
);
1157 return not Is_Access_Type
(Ptyp
)
1158 and then (Is_Atomic
(Ptyp
) or else Is_Atomic
(Pent
))
1159 and then Present
(Address_Clause
(Pent
));
1162 end Is_Atomic_Ref_With_Address
;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1169 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1171 return Ekind
(Btyp
) = E_Access_Type
1172 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1173 and then Comes_From_Source
(Btyp
));
1174 end Is_Definite_Access_Type
;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram
(Nam
) then
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1194 return not Is_Generic_Instance
(Nam
)
1195 and then Chars
(Nam
) in Any_Operator_Name
1196 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1197 end Is_Predefined_Op
;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1208 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1209 Act1
: Node_Id
:= First_Actual
(N
);
1210 Act2
: Node_Id
:= Next_Actual
(Act1
);
1211 Error
: Boolean := False;
1212 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1213 Is_Binary
: constant Boolean := Present
(Act2
);
1215 Opnd_Type
: Entity_Id
;
1216 Orig_Type
: Entity_Id
:= Empty
;
1219 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1221 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1227 -- Find a type of the given class in package Pack that contains the
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1235 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1240 if not Is_Overloaded
(Nod
) then
1241 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1244 Get_First_Interp
(Nod
, I
, It
);
1245 while Present
(It
.Typ
) loop
1246 if Scope
(Base_Type
(It
.Typ
)) = S
then
1250 Get_Next_Interp
(I
, It
);
1255 end Operand_Type_In_Scope
;
1261 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1264 function In_Decl
return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1272 function In_Decl
return Boolean is
1273 Decl_Node
: constant Node_Id
:= Parent
(E
);
1279 if Etype
(E
) = Any_Type
then
1282 elsif No
(Decl_Node
) then
1287 and then Nkind
(N2
) /= N_Compilation_Unit
1289 if N2
= Decl_Node
then
1300 -- Start of processing for Type_In_P
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1307 return Base_Type
(Typ
);
1310 E
:= First_Entity
(Pack
);
1311 while Present
(E
) loop
1312 if Test
(E
) and then not In_Decl
then
1323 -- Start of processing for Make_Call_Into_Operator
1326 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1331 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1332 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1333 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1334 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1335 Act1
:= Left_Opnd
(Op_Node
);
1336 Act2
:= Right_Opnd
(Op_Node
);
1341 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1342 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1343 Act1
:= Right_Opnd
(Op_Node
);
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1365 Pack
:= Entity
(Prefix
(Name
(N
)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present
(Renamed_Entity
(Pack
)) then
1371 Pack
:= Renamed_Entity
(Pack
);
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope
(Entity
(Name
(N
))) = Pack
1378 and then Pack
/= Standard_Standard
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance
then
1389 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1390 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1391 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1393 if Pack
/= Standard_Standard
then
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1400 elsif Ada_Version
>= Ada_2005
1401 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1402 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1407 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1409 if Op_Name
= Name_Op_Concat
then
1410 Opnd_Type
:= Base_Type
(Typ
);
1412 elsif (Scope
(Opnd_Type
) = Standard_Standard
1414 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1416 and then not Comes_From_Source
(Opnd_Type
))
1418 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1421 if Scope
(Opnd_Type
) = Standard_Standard
then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack
/= Standard_Standard
then
1428 if Opnd_Type
= Universal_Integer
then
1429 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1431 elsif Opnd_Type
= Universal_Real
then
1432 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1434 elsif Opnd_Type
= Any_String
then
1435 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1437 elsif Opnd_Type
= Any_Access
then
1438 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1440 elsif Opnd_Type
= Any_Composite
then
1441 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1443 if Present
(Orig_Type
) then
1444 if Has_Private_Component
(Orig_Type
) then
1447 Set_Etype
(Act1
, Orig_Type
);
1450 Set_Etype
(Act2
, Orig_Type
);
1459 Error
:= No
(Orig_Type
);
1462 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1463 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1467 -- If the type is defined elsewhere, and the operator is not
1468 -- defined in the given scope (by a renaming declaration, e.g.)
1469 -- then this is an error as well. If an extension of System is
1470 -- present, and the type may be defined there, Pack must be
1473 elsif Scope
(Opnd_Type
) /= Pack
1474 and then Scope
(Op_Id
) /= Pack
1475 and then (No
(System_Aux_Id
)
1476 or else Scope
(Opnd_Type
) /= System_Aux_Id
1477 or else Pack
/= Scope
(System_Aux_Id
))
1479 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1482 Error
:= not Operand_Type_In_Scope
(Pack
);
1485 elsif Pack
= Standard_Standard
1486 and then not Operand_Type_In_Scope
(Standard_Standard
)
1493 Error_Msg_Node_2
:= Pack
;
1495 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1496 Set_Etype
(N
, Any_Type
);
1499 -- Detect a mismatch between the context type and the result type
1500 -- in the named package, which is otherwise not detected if the
1501 -- operands are universal. Check is only needed if source entity is
1502 -- an operator, not a function that renames an operator.
1504 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1505 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1506 and then Is_Numeric_Type
(Typ
)
1507 and then not Is_Universal_Numeric_Type
(Typ
)
1508 and then Scope
(Base_Type
(Typ
)) /= Pack
1509 and then not In_Instance
1511 if Is_Fixed_Point_Type
(Typ
)
1512 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1514 -- Already checked above
1518 -- Operator may be defined in an extension of System
1520 elsif Present
(System_Aux_Id
)
1521 and then Scope
(Opnd_Type
) = System_Aux_Id
1526 -- Could we use Wrong_Type here??? (this would require setting
1527 -- Etype (N) to the actual type found where Typ was expected).
1529 Error_Msg_NE
("expect }", N
, Typ
);
1534 Set_Chars
(Op_Node
, Op_Name
);
1536 if not Is_Private_Type
(Etype
(N
)) then
1537 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1539 Set_Etype
(Op_Node
, Etype
(N
));
1542 -- If this is a call to a function that renames a predefined equality,
1543 -- the renaming declaration provides a type that must be used to
1544 -- resolve the operands. This must be done now because resolution of
1545 -- the equality node will not resolve any remaining ambiguity, and it
1546 -- assumes that the first operand is not overloaded.
1548 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1549 and then Ekind
(Func
) = E_Function
1550 and then Is_Overloaded
(Act1
)
1552 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1553 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1556 Set_Entity
(Op_Node
, Op_Id
);
1557 Generate_Reference
(Op_Id
, N
, ' ');
1559 -- Do rewrite setting Comes_From_Source on the result if the original
1560 -- call came from source. Although it is not strictly the case that the
1561 -- operator as such comes from the source, logically it corresponds
1562 -- exactly to the function call in the source, so it should be marked
1563 -- this way (e.g. to make sure that validity checks work fine).
1566 CS
: constant Boolean := Comes_From_Source
(N
);
1568 Rewrite
(N
, Op_Node
);
1569 Set_Comes_From_Source
(N
, CS
);
1572 -- If this is an arithmetic operator and the result type is private,
1573 -- the operands and the result must be wrapped in conversion to
1574 -- expose the underlying numeric type and expand the proper checks,
1575 -- e.g. on division.
1577 if Is_Private_Type
(Typ
) then
1579 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1580 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
1581 Resolve_Intrinsic_Operator
(N
, Typ
);
1583 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
1584 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1593 -- If in ASIS_Mode, propagate operand types to original actuals of
1594 -- function call, which would otherwise not be fully resolved. If
1595 -- the call has already been constant-folded, nothing to do. We
1596 -- relocate the operand nodes rather than copy them, to preserve
1597 -- original_node pointers, given that the operands themselves may
1598 -- have been rewritten. If the call was itself a rewriting of an
1599 -- operator node, nothing to do.
1602 and then Nkind
(N
) in N_Op
1603 and then Nkind
(Original_Node
(N
)) = N_Function_Call
1607 R
: constant Node_Id
:= Right_Opnd
(N
);
1609 Old_First
: constant Node_Id
:=
1610 First
(Parameter_Associations
(Original_Node
(N
)));
1616 Old_Sec
:= Next
(Old_First
);
1618 -- If the original call has named associations, replace the
1619 -- explicit actual parameter in the association with the proper
1620 -- resolved operand.
1622 if Nkind
(Old_First
) = N_Parameter_Association
then
1623 if Chars
(Selector_Name
(Old_First
)) =
1624 Chars
(First_Entity
(Op_Id
))
1626 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1629 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1634 Rewrite
(Old_First
, Relocate_Node
(L
));
1637 if Nkind
(Old_Sec
) = N_Parameter_Association
then
1638 if Chars
(Selector_Name
(Old_Sec
)) =
1639 Chars
(First_Entity
(Op_Id
))
1641 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1644 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1649 Rewrite
(Old_Sec
, Relocate_Node
(R
));
1653 if Nkind
(Old_First
) = N_Parameter_Association
then
1654 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1657 Rewrite
(Old_First
, Relocate_Node
(R
));
1662 Set_Parent
(Original_Node
(N
), Parent
(N
));
1664 end Make_Call_Into_Operator
;
1670 function Operator_Kind
1672 Is_Binary
: Boolean) return Node_Kind
1677 -- Use CASE statement or array???
1680 if Op_Name
= Name_Op_And
then
1682 elsif Op_Name
= Name_Op_Or
then
1684 elsif Op_Name
= Name_Op_Xor
then
1686 elsif Op_Name
= Name_Op_Eq
then
1688 elsif Op_Name
= Name_Op_Ne
then
1690 elsif Op_Name
= Name_Op_Lt
then
1692 elsif Op_Name
= Name_Op_Le
then
1694 elsif Op_Name
= Name_Op_Gt
then
1696 elsif Op_Name
= Name_Op_Ge
then
1698 elsif Op_Name
= Name_Op_Add
then
1700 elsif Op_Name
= Name_Op_Subtract
then
1701 Kind
:= N_Op_Subtract
;
1702 elsif Op_Name
= Name_Op_Concat
then
1703 Kind
:= N_Op_Concat
;
1704 elsif Op_Name
= Name_Op_Multiply
then
1705 Kind
:= N_Op_Multiply
;
1706 elsif Op_Name
= Name_Op_Divide
then
1707 Kind
:= N_Op_Divide
;
1708 elsif Op_Name
= Name_Op_Mod
then
1710 elsif Op_Name
= Name_Op_Rem
then
1712 elsif Op_Name
= Name_Op_Expon
then
1715 raise Program_Error
;
1721 if Op_Name
= Name_Op_Add
then
1723 elsif Op_Name
= Name_Op_Subtract
then
1725 elsif Op_Name
= Name_Op_Abs
then
1727 elsif Op_Name
= Name_Op_Not
then
1730 raise Program_Error
;
1737 ----------------------------
1738 -- Preanalyze_And_Resolve --
1739 ----------------------------
1741 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1742 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1745 Full_Analysis
:= False;
1746 Expander_Mode_Save_And_Set
(False);
1748 -- Normally, we suppress all checks for this preanalysis. There is no
1749 -- point in processing them now, since they will be applied properly
1750 -- and in the proper location when the default expressions reanalyzed
1751 -- and reexpanded later on. We will also have more information at that
1752 -- point for possible suppression of individual checks.
1754 -- However, in SPARK mode, most expansion is suppressed, and this
1755 -- later reanalysis and reexpansion may not occur. SPARK mode does
1756 -- require the setting of checking flags for proof purposes, so we
1757 -- do the SPARK preanalysis without suppressing checks.
1759 -- This special handling for SPARK mode is required for example in the
1760 -- case of Ada 2012 constructs such as quantified expressions, which are
1761 -- expanded in two separate steps.
1763 if GNATprove_Mode
then
1764 Analyze_And_Resolve
(N
, T
);
1766 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1769 Expander_Mode_Restore
;
1770 Full_Analysis
:= Save_Full_Analysis
;
1771 end Preanalyze_And_Resolve
;
1773 -- Version without context type
1775 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1776 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1779 Full_Analysis
:= False;
1780 Expander_Mode_Save_And_Set
(False);
1783 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1785 Expander_Mode_Restore
;
1786 Full_Analysis
:= Save_Full_Analysis
;
1787 end Preanalyze_And_Resolve
;
1789 ----------------------------------
1790 -- Replace_Actual_Discriminants --
1791 ----------------------------------
1793 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1794 Loc
: constant Source_Ptr
:= Sloc
(N
);
1795 Tsk
: Node_Id
:= Empty
;
1797 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1798 -- Comment needed???
1804 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1808 if Nkind
(Nod
) = N_Identifier
then
1809 Ent
:= Entity
(Nod
);
1812 and then Ekind
(Ent
) = E_Discriminant
1815 Make_Selected_Component
(Loc
,
1816 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1817 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1819 Set_Etype
(Nod
, Etype
(Ent
));
1827 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1829 -- Start of processing for Replace_Actual_Discriminants
1832 if not Expander_Active
then
1836 if Nkind
(Name
(N
)) = N_Selected_Component
then
1837 Tsk
:= Prefix
(Name
(N
));
1839 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1840 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1846 Replace_Discrs
(Default
);
1848 end Replace_Actual_Discriminants
;
1854 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1855 Ambiguous
: Boolean := False;
1856 Ctx_Type
: Entity_Id
:= Typ
;
1857 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1858 Err_Type
: Entity_Id
:= Empty
;
1859 Found
: Boolean := False;
1862 I1
: Interp_Index
:= 0; -- prevent junk warning
1865 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1867 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1868 -- Determine whether a node comes from a predefined library unit or
1871 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1872 -- Try and fix up a literal so that it matches its expected type. New
1873 -- literals are manufactured if necessary to avoid cascaded errors.
1875 procedure Report_Ambiguous_Argument
;
1876 -- Additional diagnostics when an ambiguous call has an ambiguous
1877 -- argument (typically a controlling actual).
1879 procedure Resolution_Failed
;
1880 -- Called when attempt at resolving current expression fails
1882 ------------------------------------
1883 -- Comes_From_Predefined_Lib_Unit --
1884 -------------------------------------
1886 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1889 Sloc
(Nod
) = Standard_Location
1890 or else Is_Predefined_File_Name
1891 (Unit_File_Name
(Get_Source_Unit
(Sloc
(Nod
))));
1892 end Comes_From_Predefined_Lib_Unit
;
1894 --------------------
1895 -- Patch_Up_Value --
1896 --------------------
1898 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1900 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1902 Make_Real_Literal
(Sloc
(N
),
1903 Realval
=> UR_From_Uint
(Intval
(N
))));
1904 Set_Etype
(N
, Universal_Real
);
1905 Set_Is_Static_Expression
(N
);
1907 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1909 Make_Integer_Literal
(Sloc
(N
),
1910 Intval
=> UR_To_Uint
(Realval
(N
))));
1911 Set_Etype
(N
, Universal_Integer
);
1912 Set_Is_Static_Expression
(N
);
1914 elsif Nkind
(N
) = N_String_Literal
1915 and then Is_Character_Type
(Typ
)
1917 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1919 Make_Character_Literal
(Sloc
(N
),
1921 Char_Literal_Value
=>
1922 UI_From_Int
(Character'Pos ('A'))));
1923 Set_Etype
(N
, Any_Character
);
1924 Set_Is_Static_Expression
(N
);
1926 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1928 Make_String_Literal
(Sloc
(N
),
1929 Strval
=> End_String
));
1931 elsif Nkind
(N
) = N_Range
then
1932 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1933 Patch_Up_Value
(High_Bound
(N
), Typ
);
1937 -------------------------------
1938 -- Report_Ambiguous_Argument --
1939 -------------------------------
1941 procedure Report_Ambiguous_Argument
is
1942 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1947 if Nkind
(Arg
) = N_Function_Call
1948 and then Is_Entity_Name
(Name
(Arg
))
1949 and then Is_Overloaded
(Name
(Arg
))
1951 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1953 -- Could use comments on what is going on here???
1955 Get_First_Interp
(Name
(Arg
), I
, It
);
1956 while Present
(It
.Nam
) loop
1957 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1959 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1960 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1962 Error_Msg_N
("interpretation #!", Arg
);
1965 Get_Next_Interp
(I
, It
);
1968 end Report_Ambiguous_Argument
;
1970 -----------------------
1971 -- Resolution_Failed --
1972 -----------------------
1974 procedure Resolution_Failed
is
1976 Patch_Up_Value
(N
, Typ
);
1978 -- Set the type to the desired one to minimize cascaded errors. Note
1979 -- that this is an approximation and does not work in all cases.
1983 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1984 Set_Is_Overloaded
(N
, False);
1986 -- The caller will return without calling the expander, so we need
1987 -- to set the analyzed flag. Note that it is fine to set Analyzed
1988 -- to True even if we are in the middle of a shallow analysis,
1989 -- (see the spec of sem for more details) since this is an error
1990 -- situation anyway, and there is no point in repeating the
1991 -- analysis later (indeed it won't work to repeat it later, since
1992 -- we haven't got a clear resolution of which entity is being
1995 Set_Analyzed
(N
, True);
1997 end Resolution_Failed
;
2001 Save_Ghost_Mode
: constant Ghost_Mode_Type
:= Ghost_Mode
;
2003 -- Start of processing for Resolve
2010 -- A declaration may be subject to pragma Ghost. Set the mode now to
2011 -- ensure that any nodes generated during analysis and expansion are
2014 if Is_Declaration
(N
) then
2018 -- Access attribute on remote subprogram cannot be used for a non-remote
2019 -- access-to-subprogram type.
2021 if Nkind
(N
) = N_Attribute_Reference
2022 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
2023 Name_Unrestricted_Access
,
2024 Name_Unchecked_Access
)
2025 and then Comes_From_Source
(N
)
2026 and then Is_Entity_Name
(Prefix
(N
))
2027 and then Is_Subprogram
(Entity
(Prefix
(N
)))
2028 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
2029 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
2032 ("prefix must statically denote a non-remote subprogram", N
);
2035 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
2037 -- If the context is a Remote_Access_To_Subprogram, access attributes
2038 -- must be resolved with the corresponding fat pointer. There is no need
2039 -- to check for the attribute name since the return type of an
2040 -- attribute is never a remote type.
2042 if Nkind
(N
) = N_Attribute_Reference
2043 and then Comes_From_Source
(N
)
2044 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
2047 Attr
: constant Attribute_Id
:=
2048 Get_Attribute_Id
(Attribute_Name
(N
));
2049 Pref
: constant Node_Id
:= Prefix
(N
);
2052 Is_Remote
: Boolean := True;
2055 -- Check that Typ is a remote access-to-subprogram type
2057 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2059 -- Prefix (N) must statically denote a remote subprogram
2060 -- declared in a package specification.
2062 if Attr
= Attribute_Access
or else
2063 Attr
= Attribute_Unchecked_Access
or else
2064 Attr
= Attribute_Unrestricted_Access
2066 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2068 if Nkind
(Decl
) = N_Subprogram_Body
then
2069 Spec
:= Corresponding_Spec
(Decl
);
2071 if Present
(Spec
) then
2072 Decl
:= Unit_Declaration_Node
(Spec
);
2076 Spec
:= Parent
(Decl
);
2078 if not Is_Entity_Name
(Prefix
(N
))
2079 or else Nkind
(Spec
) /= N_Package_Specification
2081 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2085 ("prefix must statically denote a remote subprogram ",
2089 -- If we are generating code in distributed mode, perform
2090 -- semantic checks against corresponding remote entities.
2093 and then Get_PCS_Name
/= Name_No_DSA
2095 Check_Subtype_Conformant
2096 (New_Id
=> Entity
(Prefix
(N
)),
2097 Old_Id
=> Designated_Type
2098 (Corresponding_Remote_Type
(Typ
)),
2102 Process_Remote_AST_Attribute
(N
, Typ
);
2110 Debug_A_Entry
("resolving ", N
);
2112 if Debug_Flag_V
then
2113 Write_Overloads
(N
);
2116 if Comes_From_Source
(N
) then
2117 if Is_Fixed_Point_Type
(Typ
) then
2118 Check_Restriction
(No_Fixed_Point
, N
);
2120 elsif Is_Floating_Point_Type
(Typ
)
2121 and then Typ
/= Universal_Real
2122 and then Typ
/= Any_Real
2124 Check_Restriction
(No_Floating_Point
, N
);
2128 -- Return if already analyzed
2130 if Analyzed
(N
) then
2131 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2132 Analyze_Dimension
(N
);
2133 Ghost_Mode
:= Save_Ghost_Mode
;
2136 -- Any case of Any_Type as the Etype value means that we had a
2139 elsif Etype
(N
) = Any_Type
then
2140 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2141 Ghost_Mode
:= Save_Ghost_Mode
;
2145 Check_Parameterless_Call
(N
);
2147 -- The resolution of an Expression_With_Actions is determined by
2150 if Nkind
(N
) = N_Expression_With_Actions
then
2151 Resolve
(Expression
(N
), Typ
);
2154 Expr_Type
:= Etype
(Expression
(N
));
2156 -- If not overloaded, then we know the type, and all that needs doing
2157 -- is to check that this type is compatible with the context.
2159 elsif not Is_Overloaded
(N
) then
2160 Found
:= Covers
(Typ
, Etype
(N
));
2161 Expr_Type
:= Etype
(N
);
2163 -- In the overloaded case, we must select the interpretation that
2164 -- is compatible with the context (i.e. the type passed to Resolve)
2167 -- Loop through possible interpretations
2169 Get_First_Interp
(N
, I
, It
);
2170 Interp_Loop
: while Present
(It
.Typ
) loop
2171 if Debug_Flag_V
then
2172 Write_Str
("Interp: ");
2176 -- We are only interested in interpretations that are compatible
2177 -- with the expected type, any other interpretations are ignored.
2179 if not Covers
(Typ
, It
.Typ
) then
2180 if Debug_Flag_V
then
2181 Write_Str
(" interpretation incompatible with context");
2186 -- Skip the current interpretation if it is disabled by an
2187 -- abstract operator. This action is performed only when the
2188 -- type against which we are resolving is the same as the
2189 -- type of the interpretation.
2191 if Ada_Version
>= Ada_2005
2192 and then It
.Typ
= Typ
2193 and then Typ
/= Universal_Integer
2194 and then Typ
/= Universal_Real
2195 and then Present
(It
.Abstract_Op
)
2197 if Debug_Flag_V
then
2198 Write_Line
("Skip.");
2204 -- First matching interpretation
2210 Expr_Type
:= It
.Typ
;
2212 -- Matching interpretation that is not the first, maybe an
2213 -- error, but there are some cases where preference rules are
2214 -- used to choose between the two possibilities. These and
2215 -- some more obscure cases are handled in Disambiguate.
2218 -- If the current statement is part of a predefined library
2219 -- unit, then all interpretations which come from user level
2220 -- packages should not be considered. Check previous and
2224 if not Comes_From_Predefined_Lib_Unit
(It
.Nam
) then
2227 elsif not Comes_From_Predefined_Lib_Unit
(Seen
) then
2229 -- Previous interpretation must be discarded
2233 Expr_Type
:= It
.Typ
;
2234 Set_Entity
(N
, Seen
);
2239 -- Otherwise apply further disambiguation steps
2241 Error_Msg_Sloc
:= Sloc
(Seen
);
2242 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2244 -- Disambiguation has succeeded. Skip the remaining
2247 if It1
/= No_Interp
then
2249 Expr_Type
:= It1
.Typ
;
2251 while Present
(It
.Typ
) loop
2252 Get_Next_Interp
(I
, It
);
2256 -- Before we issue an ambiguity complaint, check for the
2257 -- case of a subprogram call where at least one of the
2258 -- arguments is Any_Type, and if so suppress the message,
2259 -- since it is a cascaded error. This can also happen for
2260 -- a generalized indexing operation.
2262 if Nkind
(N
) in N_Subprogram_Call
2263 or else (Nkind
(N
) = N_Indexed_Component
2264 and then Present
(Generalized_Indexing
(N
)))
2271 if Nkind
(N
) = N_Indexed_Component
then
2272 Rewrite
(N
, Generalized_Indexing
(N
));
2275 A
:= First_Actual
(N
);
2276 while Present
(A
) loop
2279 if Nkind
(E
) = N_Parameter_Association
then
2280 E
:= Explicit_Actual_Parameter
(E
);
2283 if Etype
(E
) = Any_Type
then
2284 if Debug_Flag_V
then
2285 Write_Str
("Any_Type in call");
2296 elsif Nkind
(N
) in N_Binary_Op
2297 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2298 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2302 elsif Nkind
(N
) in N_Unary_Op
2303 and then Etype
(Right_Opnd
(N
)) = Any_Type
2308 -- Not that special case, so issue message using the flag
2309 -- Ambiguous to control printing of the header message
2310 -- only at the start of an ambiguous set.
2312 if not Ambiguous
then
2313 if Nkind
(N
) = N_Function_Call
2314 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2317 ("ambiguous expression (cannot resolve indirect "
2320 Error_Msg_NE
-- CODEFIX
2321 ("ambiguous expression (cannot resolve&)!",
2327 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2329 ("\\possible interpretation (inherited)#!", N
);
2331 Error_Msg_N
-- CODEFIX
2332 ("\\possible interpretation#!", N
);
2335 if Nkind
(N
) in N_Subprogram_Call
2336 and then Present
(Parameter_Associations
(N
))
2338 Report_Ambiguous_Argument
;
2342 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2344 -- By default, the error message refers to the candidate
2345 -- interpretation. But if it is a predefined operator, it
2346 -- is implicitly declared at the declaration of the type
2347 -- of the operand. Recover the sloc of that declaration
2348 -- for the error message.
2350 if Nkind
(N
) in N_Op
2351 and then Scope
(It
.Nam
) = Standard_Standard
2352 and then not Is_Overloaded
(Right_Opnd
(N
))
2353 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2356 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2358 if Comes_From_Source
(Err_Type
)
2359 and then Present
(Parent
(Err_Type
))
2361 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2364 elsif Nkind
(N
) in N_Binary_Op
2365 and then Scope
(It
.Nam
) = Standard_Standard
2366 and then not Is_Overloaded
(Left_Opnd
(N
))
2367 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2370 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2372 if Comes_From_Source
(Err_Type
)
2373 and then Present
(Parent
(Err_Type
))
2375 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2378 -- If this is an indirect call, use the subprogram_type
2379 -- in the message, to have a meaningful location. Also
2380 -- indicate if this is an inherited operation, created
2381 -- by a type declaration.
2383 elsif Nkind
(N
) = N_Function_Call
2384 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2385 and then Is_Type
(It
.Nam
)
2389 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2394 if Nkind
(N
) in N_Op
2395 and then Scope
(It
.Nam
) = Standard_Standard
2396 and then Present
(Err_Type
)
2398 -- Special-case the message for universal_fixed
2399 -- operators, which are not declared with the type
2400 -- of the operand, but appear forever in Standard.
2402 if It
.Typ
= Universal_Fixed
2403 and then Scope
(It
.Nam
) = Standard_Standard
2406 ("\\possible interpretation as universal_fixed "
2407 & "operation (RM 4.5.5 (19))", N
);
2410 ("\\possible interpretation (predefined)#!", N
);
2414 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2417 ("\\possible interpretation (inherited)#!", N
);
2419 Error_Msg_N
-- CODEFIX
2420 ("\\possible interpretation#!", N
);
2426 -- We have a matching interpretation, Expr_Type is the type
2427 -- from this interpretation, and Seen is the entity.
2429 -- For an operator, just set the entity name. The type will be
2430 -- set by the specific operator resolution routine.
2432 if Nkind
(N
) in N_Op
then
2433 Set_Entity
(N
, Seen
);
2434 Generate_Reference
(Seen
, N
);
2436 elsif Nkind
(N
) = N_Case_Expression
then
2437 Set_Etype
(N
, Expr_Type
);
2439 elsif Nkind
(N
) = N_Character_Literal
then
2440 Set_Etype
(N
, Expr_Type
);
2442 elsif Nkind
(N
) = N_If_Expression
then
2443 Set_Etype
(N
, Expr_Type
);
2445 -- AI05-0139-2: Expression is overloaded because type has
2446 -- implicit dereference. If type matches context, no implicit
2447 -- dereference is involved.
2449 elsif Has_Implicit_Dereference
(Expr_Type
) then
2450 Set_Etype
(N
, Expr_Type
);
2451 Set_Is_Overloaded
(N
, False);
2454 elsif Is_Overloaded
(N
)
2455 and then Present
(It
.Nam
)
2456 and then Ekind
(It
.Nam
) = E_Discriminant
2457 and then Has_Implicit_Dereference
(It
.Nam
)
2459 -- If the node is a general indexing, the dereference is
2460 -- is inserted when resolving the rewritten form, else
2463 if Nkind
(N
) /= N_Indexed_Component
2464 or else No
(Generalized_Indexing
(N
))
2466 Build_Explicit_Dereference
(N
, It
.Nam
);
2469 -- For an explicit dereference, attribute reference, range,
2470 -- short-circuit form (which is not an operator node), or call
2471 -- with a name that is an explicit dereference, there is
2472 -- nothing to be done at this point.
2474 elsif Nkind_In
(N
, N_Explicit_Dereference
,
2475 N_Attribute_Reference
,
2477 N_Indexed_Component
,
2480 N_Selected_Component
,
2482 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2486 -- For procedure or function calls, set the type of the name,
2487 -- and also the entity pointer for the prefix.
2489 elsif Nkind
(N
) in N_Subprogram_Call
2490 and then Is_Entity_Name
(Name
(N
))
2492 Set_Etype
(Name
(N
), Expr_Type
);
2493 Set_Entity
(Name
(N
), Seen
);
2494 Generate_Reference
(Seen
, Name
(N
));
2496 elsif Nkind
(N
) = N_Function_Call
2497 and then Nkind
(Name
(N
)) = N_Selected_Component
2499 Set_Etype
(Name
(N
), Expr_Type
);
2500 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2501 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2503 -- For all other cases, just set the type of the Name
2506 Set_Etype
(Name
(N
), Expr_Type
);
2513 -- Move to next interpretation
2515 exit Interp_Loop
when No
(It
.Typ
);
2517 Get_Next_Interp
(I
, It
);
2518 end loop Interp_Loop
;
2521 -- At this stage Found indicates whether or not an acceptable
2522 -- interpretation exists. If not, then we have an error, except that if
2523 -- the context is Any_Type as a result of some other error, then we
2524 -- suppress the error report.
2527 if Typ
/= Any_Type
then
2529 -- If type we are looking for is Void, then this is the procedure
2530 -- call case, and the error is simply that what we gave is not a
2531 -- procedure name (we think of procedure calls as expressions with
2532 -- types internally, but the user doesn't think of them this way).
2534 if Typ
= Standard_Void_Type
then
2536 -- Special case message if function used as a procedure
2538 if Nkind
(N
) = N_Procedure_Call_Statement
2539 and then Is_Entity_Name
(Name
(N
))
2540 and then Ekind
(Entity
(Name
(N
))) = E_Function
2543 ("cannot use function & in a procedure call",
2544 Name
(N
), Entity
(Name
(N
)));
2546 -- Otherwise give general message (not clear what cases this
2547 -- covers, but no harm in providing for them).
2550 Error_Msg_N
("expect procedure name in procedure call", N
);
2555 -- Otherwise we do have a subexpression with the wrong type
2557 -- Check for the case of an allocator which uses an access type
2558 -- instead of the designated type. This is a common error and we
2559 -- specialize the message, posting an error on the operand of the
2560 -- allocator, complaining that we expected the designated type of
2563 elsif Nkind
(N
) = N_Allocator
2564 and then Is_Access_Type
(Typ
)
2565 and then Is_Access_Type
(Etype
(N
))
2566 and then Designated_Type
(Etype
(N
)) = Typ
2568 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2571 -- Check for view mismatch on Null in instances, for which the
2572 -- view-swapping mechanism has no identifier.
2574 elsif (In_Instance
or else In_Inlined_Body
)
2575 and then (Nkind
(N
) = N_Null
)
2576 and then Is_Private_Type
(Typ
)
2577 and then Is_Access_Type
(Full_View
(Typ
))
2579 Resolve
(N
, Full_View
(Typ
));
2581 Ghost_Mode
:= Save_Ghost_Mode
;
2584 -- Check for an aggregate. Sometimes we can get bogus aggregates
2585 -- from misuse of parentheses, and we are about to complain about
2586 -- the aggregate without even looking inside it.
2588 -- Instead, if we have an aggregate of type Any_Composite, then
2589 -- analyze and resolve the component fields, and then only issue
2590 -- another message if we get no errors doing this (otherwise
2591 -- assume that the errors in the aggregate caused the problem).
2593 elsif Nkind
(N
) = N_Aggregate
2594 and then Etype
(N
) = Any_Composite
2596 -- Disable expansion in any case. If there is a type mismatch
2597 -- it may be fatal to try to expand the aggregate. The flag
2598 -- would otherwise be set to false when the error is posted.
2600 Expander_Active
:= False;
2603 procedure Check_Aggr
(Aggr
: Node_Id
);
2604 -- Check one aggregate, and set Found to True if we have a
2605 -- definite error in any of its elements
2607 procedure Check_Elmt
(Aelmt
: Node_Id
);
2608 -- Check one element of aggregate and set Found to True if
2609 -- we definitely have an error in the element.
2615 procedure Check_Aggr
(Aggr
: Node_Id
) is
2619 if Present
(Expressions
(Aggr
)) then
2620 Elmt
:= First
(Expressions
(Aggr
));
2621 while Present
(Elmt
) loop
2627 if Present
(Component_Associations
(Aggr
)) then
2628 Elmt
:= First
(Component_Associations
(Aggr
));
2629 while Present
(Elmt
) loop
2631 -- If this is a default-initialized component, then
2632 -- there is nothing to check. The box will be
2633 -- replaced by the appropriate call during late
2636 if not Box_Present
(Elmt
) then
2637 Check_Elmt
(Expression
(Elmt
));
2649 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2651 -- If we have a nested aggregate, go inside it (to
2652 -- attempt a naked analyze-resolve of the aggregate can
2653 -- cause undesirable cascaded errors). Do not resolve
2654 -- expression if it needs a type from context, as for
2655 -- integer * fixed expression.
2657 if Nkind
(Aelmt
) = N_Aggregate
then
2663 if not Is_Overloaded
(Aelmt
)
2664 and then Etype
(Aelmt
) /= Any_Fixed
2669 if Etype
(Aelmt
) = Any_Type
then
2680 -- Looks like we have a type error, but check for special case
2681 -- of Address wanted, integer found, with the configuration pragma
2682 -- Allow_Integer_Address active. If we have this case, introduce
2683 -- an unchecked conversion to allow the integer expression to be
2684 -- treated as an Address. The reverse case of integer wanted,
2685 -- Address found, is treated in an analogous manner.
2687 if Address_Integer_Convert_OK
(Typ
, Etype
(N
)) then
2688 Rewrite
(N
, Unchecked_Convert_To
(Typ
, Relocate_Node
(N
)));
2689 Analyze_And_Resolve
(N
, Typ
);
2690 Ghost_Mode
:= Save_Ghost_Mode
;
2693 -- Under relaxed RM semantics silently replace occurrences of null
2694 -- by System.Address_Null.
2696 elsif Null_To_Null_Address_Convert_OK
(N
, Typ
) then
2697 Replace_Null_By_Null_Address
(N
);
2698 Analyze_And_Resolve
(N
, Typ
);
2702 -- That special Allow_Integer_Address check did not apply, so we
2703 -- have a real type error. If an error message was issued already,
2704 -- Found got reset to True, so if it's still False, issue standard
2705 -- Wrong_Type message.
2708 if Is_Overloaded
(N
) and then Nkind
(N
) = N_Function_Call
then
2710 Subp_Name
: Node_Id
;
2713 if Is_Entity_Name
(Name
(N
)) then
2714 Subp_Name
:= Name
(N
);
2716 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2718 -- Protected operation: retrieve operation name
2720 Subp_Name
:= Selector_Name
(Name
(N
));
2723 raise Program_Error
;
2726 Error_Msg_Node_2
:= Typ
;
2728 ("no visible interpretation of& "
2729 & "matches expected type&", N
, Subp_Name
);
2732 if All_Errors_Mode
then
2734 Index
: Interp_Index
;
2738 Error_Msg_N
("\\possible interpretations:", N
);
2740 Get_First_Interp
(Name
(N
), Index
, It
);
2741 while Present
(It
.Nam
) loop
2742 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2743 Error_Msg_Node_2
:= It
.Nam
;
2745 ("\\ type& for & declared#", N
, It
.Typ
);
2746 Get_Next_Interp
(Index
, It
);
2751 Error_Msg_N
("\use -gnatf for details", N
);
2755 Wrong_Type
(N
, Typ
);
2761 Ghost_Mode
:= Save_Ghost_Mode
;
2764 -- Test if we have more than one interpretation for the context
2766 elsif Ambiguous
then
2768 Ghost_Mode
:= Save_Ghost_Mode
;
2771 -- Only one intepretation
2774 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2775 -- the "+" on T is abstract, and the operands are of universal type,
2776 -- the above code will have (incorrectly) resolved the "+" to the
2777 -- universal one in Standard. Therefore check for this case and give
2778 -- an error. We can't do this earlier, because it would cause legal
2779 -- cases to get errors (when some other type has an abstract "+").
2781 if Ada_Version
>= Ada_2005
2782 and then Nkind
(N
) in N_Op
2783 and then Is_Overloaded
(N
)
2784 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2786 Get_First_Interp
(N
, I
, It
);
2787 while Present
(It
.Typ
) loop
2788 if Present
(It
.Abstract_Op
) and then
2789 Etype
(It
.Abstract_Op
) = Typ
2792 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2796 Get_Next_Interp
(I
, It
);
2800 -- Here we have an acceptable interpretation for the context
2802 -- Propagate type information and normalize tree for various
2803 -- predefined operations. If the context only imposes a class of
2804 -- types, rather than a specific type, propagate the actual type
2807 if Typ
= Any_Integer
or else
2808 Typ
= Any_Boolean
or else
2809 Typ
= Any_Modular
or else
2810 Typ
= Any_Real
or else
2813 Ctx_Type
:= Expr_Type
;
2815 -- Any_Fixed is legal in a real context only if a specific fixed-
2816 -- point type is imposed. If Norman Cohen can be confused by this,
2817 -- it deserves a separate message.
2820 and then Expr_Type
= Any_Fixed
2822 Error_Msg_N
("illegal context for mixed mode operation", N
);
2823 Set_Etype
(N
, Universal_Real
);
2824 Ctx_Type
:= Universal_Real
;
2828 -- A user-defined operator is transformed into a function call at
2829 -- this point, so that further processing knows that operators are
2830 -- really operators (i.e. are predefined operators). User-defined
2831 -- operators that are intrinsic are just renamings of the predefined
2832 -- ones, and need not be turned into calls either, but if they rename
2833 -- a different operator, we must transform the node accordingly.
2834 -- Instantiations of Unchecked_Conversion are intrinsic but are
2835 -- treated as functions, even if given an operator designator.
2837 if Nkind
(N
) in N_Op
2838 and then Present
(Entity
(N
))
2839 and then Ekind
(Entity
(N
)) /= E_Operator
2842 if not Is_Predefined_Op
(Entity
(N
)) then
2843 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2845 elsif Present
(Alias
(Entity
(N
)))
2847 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2848 N_Subprogram_Renaming_Declaration
2850 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2852 -- If the node is rewritten, it will be fully resolved in
2853 -- Rewrite_Renamed_Operator.
2855 if Analyzed
(N
) then
2856 Ghost_Mode
:= Save_Ghost_Mode
;
2862 case N_Subexpr
'(Nkind (N)) is
2864 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2866 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2868 when N_Short_Circuit
2869 => Resolve_Short_Circuit (N, Ctx_Type);
2871 when N_Attribute_Reference
2872 => Resolve_Attribute (N, Ctx_Type);
2874 when N_Case_Expression
2875 => Resolve_Case_Expression (N, Ctx_Type);
2877 when N_Character_Literal
2878 => Resolve_Character_Literal (N, Ctx_Type);
2880 when N_Expanded_Name
2881 => Resolve_Entity_Name (N, Ctx_Type);
2883 when N_Explicit_Dereference
2884 => Resolve_Explicit_Dereference (N, Ctx_Type);
2886 when N_Expression_With_Actions
2887 => Resolve_Expression_With_Actions (N, Ctx_Type);
2889 when N_Extension_Aggregate
2890 => Resolve_Extension_Aggregate (N, Ctx_Type);
2892 when N_Function_Call
2893 => Resolve_Call (N, Ctx_Type);
2896 => Resolve_Entity_Name (N, Ctx_Type);
2898 when N_If_Expression
2899 => Resolve_If_Expression (N, Ctx_Type);
2901 when N_Indexed_Component
2902 => Resolve_Indexed_Component (N, Ctx_Type);
2904 when N_Integer_Literal
2905 => Resolve_Integer_Literal (N, Ctx_Type);
2907 when N_Membership_Test
2908 => Resolve_Membership_Op (N, Ctx_Type);
2910 when N_Null => Resolve_Null (N, Ctx_Type);
2912 when N_Op_And | N_Op_Or | N_Op_Xor
2913 => Resolve_Logical_Op (N, Ctx_Type);
2915 when N_Op_Eq | N_Op_Ne
2916 => Resolve_Equality_Op (N, Ctx_Type);
2918 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2919 => Resolve_Comparison_Op (N, Ctx_Type);
2921 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2923 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2924 N_Op_Divide | N_Op_Mod | N_Op_Rem
2926 => Resolve_Arithmetic_Op (N, Ctx_Type);
2928 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2930 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2932 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2933 => Resolve_Unary_Op (N, Ctx_Type);
2935 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2937 when N_Procedure_Call_Statement
2938 => Resolve_Call (N, Ctx_Type);
2940 when N_Operator_Symbol
2941 => Resolve_Operator_Symbol (N, Ctx_Type);
2943 when N_Qualified_Expression
2944 => Resolve_Qualified_Expression (N, Ctx_Type);
2946 -- Why is the following null, needs a comment ???
2948 when N_Quantified_Expression
2951 when N_Raise_Expression
2952 => Resolve_Raise_Expression (N, Ctx_Type);
2954 when N_Raise_xxx_Error
2955 => Set_Etype (N, Ctx_Type);
2957 when N_Range => Resolve_Range (N, Ctx_Type);
2960 => Resolve_Real_Literal (N, Ctx_Type);
2962 when N_Reference => Resolve_Reference (N, Ctx_Type);
2964 when N_Selected_Component
2965 => Resolve_Selected_Component (N, Ctx_Type);
2967 when N_Slice => Resolve_Slice (N, Ctx_Type);
2969 when N_String_Literal
2970 => Resolve_String_Literal (N, Ctx_Type);
2972 when N_Type_Conversion
2973 => Resolve_Type_Conversion (N, Ctx_Type);
2975 when N_Unchecked_Expression =>
2976 Resolve_Unchecked_Expression (N, Ctx_Type);
2978 when N_Unchecked_Type_Conversion =>
2979 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2982 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2983 -- expression of an anonymous access type that occurs in the context
2984 -- of a named general access type, except when the expression is that
2985 -- of a membership test. This ensures proper legality checking in
2986 -- terms of allowed conversions (expressions that would be illegal to
2987 -- convert implicitly are allowed in membership tests).
2989 if Ada_Version >= Ada_2012
2990 and then Ekind (Ctx_Type) = E_General_Access_Type
2991 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2992 and then Nkind (Parent (N)) not in N_Membership_Test
2994 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2995 Analyze_And_Resolve (N, Ctx_Type);
2998 -- If the subexpression was replaced by a non-subexpression, then
2999 -- all we do is to expand it. The only legitimate case we know of
3000 -- is converting procedure call statement to entry call statements,
3001 -- but there may be others, so we are making this test general.
3003 if Nkind (N) not in N_Subexpr then
3004 Debug_A_Exit ("resolving ", N, " (done)");
3006 Ghost_Mode := Save_Ghost_Mode;
3010 -- The expression is definitely NOT overloaded at this point, so
3011 -- we reset the Is_Overloaded flag to avoid any confusion when
3012 -- reanalyzing the node.
3014 Set_Is_Overloaded (N, False);
3016 -- Freeze expression type, entity if it is a name, and designated
3017 -- type if it is an allocator (RM 13.14(10,11,13)).
3019 -- Now that the resolution of the type of the node is complete, and
3020 -- we did not detect an error, we can expand this node. We skip the
3021 -- expand call if we are in a default expression, see section
3022 -- "Handling of Default Expressions" in Sem spec.
3024 Debug_A_Exit ("resolving ", N, " (done)");
3026 -- We unconditionally freeze the expression, even if we are in
3027 -- default expression mode (the Freeze_Expression routine tests this
3028 -- flag and only freezes static types if it is set).
3030 -- Ada 2012 (AI05-177): The declaration of an expression function
3031 -- does not cause freezing, but we never reach here in that case.
3032 -- Here we are resolving the corresponding expanded body, so we do
3033 -- need to perform normal freezing.
3035 Freeze_Expression (N);
3037 -- Now we can do the expansion
3042 Ghost_Mode := Save_Ghost_Mode;
3049 -- Version with check(s) suppressed
3051 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3053 if Suppress = All_Checks then
3055 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3057 Scope_Suppress.Suppress := (others => True);
3059 Scope_Suppress.Suppress := Sva;
3064 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3066 Scope_Suppress.Suppress (Suppress) := True;
3068 Scope_Suppress.Suppress (Suppress) := Svg;
3077 -- Version with implicit type
3079 procedure Resolve (N : Node_Id) is
3081 Resolve (N, Etype (N));
3084 ---------------------
3085 -- Resolve_Actuals --
3086 ---------------------
3088 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3089 Loc : constant Source_Ptr := Sloc (N);
3095 Prev : Node_Id := Empty;
3099 Real_Subp : Entity_Id;
3100 -- If the subprogram being called is an inherited operation for
3101 -- a formal derived type in an instance, Real_Subp is the subprogram
3102 -- that will be called. It may have different formal names than the
3103 -- operation of the formal in the generic, so after actual is resolved
3104 -- the name of the actual in a named association must carry the name
3105 -- of the actual of the subprogram being called.
3107 procedure Check_Aliased_Parameter;
3108 -- Check rules on aliased parameters and related accessibility rules
3109 -- in (RM 3.10.2 (10.2-10.4)).
3111 procedure Check_Argument_Order;
3112 -- Performs a check for the case where the actuals are all simple
3113 -- identifiers that correspond to the formal names, but in the wrong
3114 -- order, which is considered suspicious and cause for a warning.
3116 procedure Check_Prefixed_Call;
3117 -- If the original node is an overloaded call in prefix notation,
3118 -- insert an 'Access or a dereference as needed over the first actual
.
3119 -- Try_Object_Operation has already verified that there is a valid
3120 -- interpretation, but the form of the actual can only be determined
3121 -- once the primitive operation is identified.
3123 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
);
3124 -- Emit an error concerning the illegal usage of an effectively volatile
3125 -- object in interfering context (SPARK RM 7.13(12)).
3127 procedure Insert_Default
;
3128 -- If the actual is missing in a call, insert in the actuals list
3129 -- an instance of the default expression. The insertion is always
3130 -- a named association.
3132 procedure Property_Error
3135 Prop_Nam
: Name_Id
);
3136 -- Emit an error concerning variable Var with entity Var_Id that has
3137 -- enabled property Prop_Nam when it acts as an actual parameter in a
3138 -- call and the corresponding formal parameter is of mode IN.
3140 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3141 -- Check whether T1 and T2, or their full views, are derived from a
3142 -- common type. Used to enforce the restrictions on array conversions
3145 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3146 -- Predicate to determine whether an actual that is a concatenation
3147 -- will be evaluated statically and does not need a transient scope.
3148 -- This must be determined before the actual is resolved and expanded
3149 -- because if needed the transient scope must be introduced earlier.
3151 -----------------------------
3152 -- Check_Aliased_Parameter --
3153 -----------------------------
3155 procedure Check_Aliased_Parameter
is
3156 Nominal_Subt
: Entity_Id
;
3159 if Is_Aliased
(F
) then
3160 if Is_Tagged_Type
(A_Typ
) then
3163 elsif Is_Aliased_View
(A
) then
3164 if Is_Constr_Subt_For_U_Nominal
(A_Typ
) then
3165 Nominal_Subt
:= Base_Type
(A_Typ
);
3167 Nominal_Subt
:= A_Typ
;
3170 if Subtypes_Statically_Match
(F_Typ
, Nominal_Subt
) then
3173 -- In a generic body assume the worst for generic formals:
3174 -- they can have a constrained partial view (AI05-041).
3176 elsif Has_Discriminants
(F_Typ
)
3177 and then not Is_Constrained
(F_Typ
)
3178 and then not Has_Constrained_Partial_View
(F_Typ
)
3179 and then not Is_Generic_Type
(F_Typ
)
3184 Error_Msg_NE
("untagged actual does not match "
3185 & "aliased formal&", A
, F
);
3189 Error_Msg_NE
("actual for aliased formal& must be "
3190 & "aliased object", A
, F
);
3193 if Ekind
(Nam
) = E_Procedure
then
3196 elsif Ekind
(Etype
(Nam
)) = E_Anonymous_Access_Type
then
3197 if Nkind
(Parent
(N
)) = N_Type_Conversion
3198 and then Type_Access_Level
(Etype
(Parent
(N
))) <
3199 Object_Access_Level
(A
)
3201 Error_Msg_N
("aliased actual has wrong accessibility", A
);
3204 elsif Nkind
(Parent
(N
)) = N_Qualified_Expression
3205 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
3206 and then Type_Access_Level
(Etype
(Parent
(Parent
(N
)))) <
3207 Object_Access_Level
(A
)
3210 ("aliased actual in allocator has wrong accessibility", A
);
3213 end Check_Aliased_Parameter
;
3215 --------------------------
3216 -- Check_Argument_Order --
3217 --------------------------
3219 procedure Check_Argument_Order
is
3221 -- Nothing to do if no parameters, or original node is neither a
3222 -- function call nor a procedure call statement (happens in the
3223 -- operator-transformed-to-function call case), or the call does
3224 -- not come from source, or this warning is off.
3226 if not Warn_On_Parameter_Order
3227 or else No
(Parameter_Associations
(N
))
3228 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3229 or else not Comes_From_Source
(N
)
3235 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3238 -- Nothing to do if only one parameter
3244 -- Here if at least two arguments
3247 Actuals
: array (1 .. Nargs
) of Node_Id
;
3251 Wrong_Order
: Boolean := False;
3252 -- Set True if an out of order case is found
3255 -- Collect identifier names of actuals, fail if any actual is
3256 -- not a simple identifier, and record max length of name.
3258 Actual
:= First
(Parameter_Associations
(N
));
3259 for J
in Actuals
'Range loop
3260 if Nkind
(Actual
) /= N_Identifier
then
3263 Actuals
(J
) := Actual
;
3268 -- If we got this far, all actuals are identifiers and the list
3269 -- of their names is stored in the Actuals array.
3271 Formal
:= First_Formal
(Nam
);
3272 for J
in Actuals
'Range loop
3274 -- If we ran out of formals, that's odd, probably an error
3275 -- which will be detected elsewhere, but abandon the search.
3281 -- If name matches and is in order OK
3283 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3287 -- If no match, see if it is elsewhere in list and if so
3288 -- flag potential wrong order if type is compatible.
3290 for K
in Actuals
'Range loop
3291 if Chars
(Formal
) = Chars
(Actuals
(K
))
3293 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3295 Wrong_Order
:= True;
3305 <<Continue
>> Next_Formal
(Formal
);
3308 -- If Formals left over, also probably an error, skip warning
3310 if Present
(Formal
) then
3314 -- Here we give the warning if something was out of order
3318 ("?P?actuals for this call may be in wrong order", N
);
3322 end Check_Argument_Order
;
3324 -------------------------
3325 -- Check_Prefixed_Call --
3326 -------------------------
3328 procedure Check_Prefixed_Call
is
3329 Act
: constant Node_Id
:= First_Actual
(N
);
3330 A_Type
: constant Entity_Id
:= Etype
(Act
);
3331 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3332 Orig
: constant Node_Id
:= Original_Node
(N
);
3336 -- Check whether the call is a prefixed call, with or without
3337 -- additional actuals.
3339 if Nkind
(Orig
) = N_Selected_Component
3341 (Nkind
(Orig
) = N_Indexed_Component
3342 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3343 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3344 and then Is_Entity_Name
(Act
)
3345 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3347 if Is_Access_Type
(A_Type
)
3348 and then not Is_Access_Type
(F_Type
)
3350 -- Introduce dereference on object in prefix
3353 Make_Explicit_Dereference
(Sloc
(Act
),
3354 Prefix
=> Relocate_Node
(Act
));
3355 Rewrite
(Act
, New_A
);
3358 elsif Is_Access_Type
(F_Type
)
3359 and then not Is_Access_Type
(A_Type
)
3361 -- Introduce an implicit 'Access in prefix
3363 if not Is_Aliased_View
(Act
) then
3365 ("object in prefixed call to& must be aliased "
3366 & "(RM 4.1.3 (13 1/2))",
3371 Make_Attribute_Reference
(Loc
,
3372 Attribute_Name
=> Name_Access
,
3373 Prefix
=> Relocate_Node
(Act
)));
3378 end Check_Prefixed_Call
;
3380 ---------------------------------------
3381 -- Flag_Effectively_Volatile_Objects --
3382 ---------------------------------------
3384 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
) is
3385 function Flag_Object
(N
: Node_Id
) return Traverse_Result
;
3386 -- Determine whether arbitrary node N denotes an effectively volatile
3387 -- object and if it does, emit an error.
3393 function Flag_Object
(N
: Node_Id
) return Traverse_Result
is
3397 -- Do not consider nested function calls because they have already
3398 -- been processed during their own resolution.
3400 if Nkind
(N
) = N_Function_Call
then
3403 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
3407 and then Is_Effectively_Volatile
(Id
)
3408 and then (Async_Writers_Enabled
(Id
)
3409 or else Effective_Reads_Enabled
(Id
))
3412 ("volatile object cannot appear in this context (SPARK "
3413 & "RM 7.1.3(11))", N
);
3421 procedure Flag_Objects
is new Traverse_Proc
(Flag_Object
);
3423 -- Start of processing for Flag_Effectively_Volatile_Objects
3426 Flag_Objects
(Expr
);
3427 end Flag_Effectively_Volatile_Objects
;
3429 --------------------
3430 -- Insert_Default --
3431 --------------------
3433 procedure Insert_Default
is
3438 -- Missing argument in call, nothing to insert
3440 if No
(Default_Value
(F
)) then
3444 -- Note that we do a full New_Copy_Tree, so that any associated
3445 -- Itypes are properly copied. This may not be needed any more,
3446 -- but it does no harm as a safety measure. Defaults of a generic
3447 -- formal may be out of bounds of the corresponding actual (see
3448 -- cc1311b) and an additional check may be required.
3453 New_Scope
=> Current_Scope
,
3456 -- Propagate dimension information, if any.
3458 Copy_Dimensions
(Default_Value
(F
), Actval
);
3460 if Is_Concurrent_Type
(Scope
(Nam
))
3461 and then Has_Discriminants
(Scope
(Nam
))
3463 Replace_Actual_Discriminants
(N
, Actval
);
3466 if Is_Overloadable
(Nam
)
3467 and then Present
(Alias
(Nam
))
3469 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3470 and then not Is_Tagged_Type
(Etype
(F
))
3472 -- If default is a real literal, do not introduce a
3473 -- conversion whose effect may depend on the run-time
3474 -- size of universal real.
3476 if Nkind
(Actval
) = N_Real_Literal
then
3477 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3479 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3483 if Is_Scalar_Type
(Etype
(F
)) then
3484 Enable_Range_Check
(Actval
);
3487 Set_Parent
(Actval
, N
);
3489 -- Resolve aggregates with their base type, to avoid scope
3490 -- anomalies: the subtype was first built in the subprogram
3491 -- declaration, and the current call may be nested.
3493 if Nkind
(Actval
) = N_Aggregate
then
3494 Analyze_And_Resolve
(Actval
, Etype
(F
));
3496 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3500 Set_Parent
(Actval
, N
);
3502 -- See note above concerning aggregates
3504 if Nkind
(Actval
) = N_Aggregate
3505 and then Has_Discriminants
(Etype
(Actval
))
3507 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3509 -- Resolve entities with their own type, which may differ from
3510 -- the type of a reference in a generic context (the view
3511 -- swapping mechanism did not anticipate the re-analysis of
3512 -- default values in calls).
3514 elsif Is_Entity_Name
(Actval
) then
3515 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3518 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3522 -- If default is a tag indeterminate function call, propagate tag
3523 -- to obtain proper dispatching.
3525 if Is_Controlling_Formal
(F
)
3526 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3528 Set_Is_Controlling_Actual
(Actval
);
3532 -- If the default expression raises constraint error, then just
3533 -- silently replace it with an N_Raise_Constraint_Error node, since
3534 -- we already gave the warning on the subprogram spec. If node is
3535 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3536 -- the warnings removal machinery.
3538 if Raises_Constraint_Error
(Actval
)
3539 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3542 Make_Raise_Constraint_Error
(Loc
,
3543 Reason
=> CE_Range_Check_Failed
));
3544 Set_Raises_Constraint_Error
(Actval
);
3545 Set_Etype
(Actval
, Etype
(F
));
3549 Make_Parameter_Association
(Loc
,
3550 Explicit_Actual_Parameter
=> Actval
,
3551 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3553 -- Case of insertion is first named actual
3555 if No
(Prev
) or else
3556 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3558 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3559 Set_First_Named_Actual
(N
, Actval
);
3562 if No
(Parameter_Associations
(N
)) then
3563 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3565 Append
(Assoc
, Parameter_Associations
(N
));
3569 Insert_After
(Prev
, Assoc
);
3572 -- Case of insertion is not first named actual
3575 Set_Next_Named_Actual
3576 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3577 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3578 Append
(Assoc
, Parameter_Associations
(N
));
3581 Mark_Rewrite_Insertion
(Assoc
);
3582 Mark_Rewrite_Insertion
(Actval
);
3587 --------------------
3588 -- Property_Error --
3589 --------------------
3591 procedure Property_Error
3597 Error_Msg_Name_1
:= Prop_Nam
;
3599 ("external variable & with enabled property % cannot appear as "
3600 & "actual in procedure call (SPARK RM 7.1.3(10))", Var
, Var_Id
);
3601 Error_Msg_N
("\\corresponding formal parameter has mode In", Var
);
3608 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3609 FT1
: Entity_Id
:= T1
;
3610 FT2
: Entity_Id
:= T2
;
3613 if Is_Private_Type
(T1
)
3614 and then Present
(Full_View
(T1
))
3616 FT1
:= Full_View
(T1
);
3619 if Is_Private_Type
(T2
)
3620 and then Present
(Full_View
(T2
))
3622 FT2
:= Full_View
(T2
);
3625 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3628 --------------------------
3629 -- Static_Concatenation --
3630 --------------------------
3632 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3635 when N_String_Literal
=>
3640 -- Concatenation is static when both operands are static and
3641 -- the concatenation operator is a predefined one.
3643 return Scope
(Entity
(N
)) = Standard_Standard
3645 Static_Concatenation
(Left_Opnd
(N
))
3647 Static_Concatenation
(Right_Opnd
(N
));
3650 if Is_Entity_Name
(N
) then
3652 Ent
: constant Entity_Id
:= Entity
(N
);
3654 return Ekind
(Ent
) = E_Constant
3655 and then Present
(Constant_Value
(Ent
))
3657 Is_OK_Static_Expression
(Constant_Value
(Ent
));
3664 end Static_Concatenation
;
3666 -- Start of processing for Resolve_Actuals
3669 Check_Argument_Order
;
3671 if Is_Overloadable
(Nam
)
3672 and then Is_Inherited_Operation
(Nam
)
3673 and then In_Instance
3674 and then Present
(Alias
(Nam
))
3675 and then Present
(Overridden_Operation
(Alias
(Nam
)))
3677 Real_Subp
:= Alias
(Nam
);
3682 if Present
(First_Actual
(N
)) then
3683 Check_Prefixed_Call
;
3686 A
:= First_Actual
(N
);
3687 F
:= First_Formal
(Nam
);
3689 if Present
(Real_Subp
) then
3690 Real_F
:= First_Formal
(Real_Subp
);
3693 while Present
(F
) loop
3694 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3697 -- If we have an error in any actual or formal, indicated by a type
3698 -- of Any_Type, then abandon resolution attempt, and set result type
3699 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3700 -- type is imposed from context.
3702 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3703 or else Etype
(F
) = Any_Type
3705 if Nkind
(A
) /= N_Raise_Expression
then
3706 Set_Etype
(N
, Any_Type
);
3711 -- Case where actual is present
3713 -- If the actual is an entity, generate a reference to it now. We
3714 -- do this before the actual is resolved, because a formal of some
3715 -- protected subprogram, or a task discriminant, will be rewritten
3716 -- during expansion, and the source entity reference may be lost.
3719 and then Is_Entity_Name
(A
)
3720 and then Comes_From_Source
(A
)
3722 Orig_A
:= Entity
(A
);
3724 if Present
(Orig_A
) then
3725 if Is_Formal
(Orig_A
)
3726 and then Ekind
(F
) /= E_In_Parameter
3728 Generate_Reference
(Orig_A
, A
, 'm');
3730 elsif not Is_Overloaded
(A
) then
3731 if Ekind
(F
) /= E_Out_Parameter
then
3732 Generate_Reference
(Orig_A
, A
);
3734 -- RM 6.4.1(12): For an out parameter that is passed by
3735 -- copy, the formal parameter object is created, and:
3737 -- * For an access type, the formal parameter is initialized
3738 -- from the value of the actual, without checking that the
3739 -- value satisfies any constraint, any predicate, or any
3740 -- exclusion of the null value.
3742 -- * For a scalar type that has the Default_Value aspect
3743 -- specified, the formal parameter is initialized from the
3744 -- value of the actual, without checking that the value
3745 -- satisfies any constraint or any predicate.
3746 -- I do not understand why this case is included??? this is
3747 -- not a case where an OUT parameter is treated as IN OUT.
3749 -- * For a composite type with discriminants or that has
3750 -- implicit initial values for any subcomponents, the
3751 -- behavior is as for an in out parameter passed by copy.
3753 -- Hence for these cases we generate the read reference now
3754 -- (the write reference will be generated later by
3755 -- Note_Possible_Modification).
3757 elsif Is_By_Copy_Type
(Etype
(F
))
3759 (Is_Access_Type
(Etype
(F
))
3761 (Is_Scalar_Type
(Etype
(F
))
3763 Present
(Default_Aspect_Value
(Etype
(F
))))
3765 (Is_Composite_Type
(Etype
(F
))
3766 and then (Has_Discriminants
(Etype
(F
))
3767 or else Is_Partially_Initialized_Type
3770 Generate_Reference
(Orig_A
, A
);
3777 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3778 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3780 -- If style checking mode on, check match of formal name
3783 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3784 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3788 -- If the formal is Out or In_Out, do not resolve and expand the
3789 -- conversion, because it is subsequently expanded into explicit
3790 -- temporaries and assignments. However, the object of the
3791 -- conversion can be resolved. An exception is the case of tagged
3792 -- type conversion with a class-wide actual. In that case we want
3793 -- the tag check to occur and no temporary will be needed (no
3794 -- representation change can occur) and the parameter is passed by
3795 -- reference, so we go ahead and resolve the type conversion.
3796 -- Another exception is the case of reference to component or
3797 -- subcomponent of a bit-packed array, in which case we want to
3798 -- defer expansion to the point the in and out assignments are
3801 if Ekind
(F
) /= E_In_Parameter
3802 and then Nkind
(A
) = N_Type_Conversion
3803 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3805 if Ekind
(F
) = E_In_Out_Parameter
3806 and then Is_Array_Type
(Etype
(F
))
3808 -- In a view conversion, the conversion must be legal in
3809 -- both directions, and thus both component types must be
3810 -- aliased, or neither (4.6 (8)).
3812 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3813 -- the privacy requirement should not apply to generic
3814 -- types, and should be checked in an instance. ARG query
3817 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3818 Has_Aliased_Components
(Etype
(F
))
3821 ("both component types in a view conversion must be"
3822 & " aliased, or neither", A
);
3824 -- Comment here??? what set of cases???
3827 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3829 -- Check view conv between unrelated by ref array types
3831 if Is_By_Reference_Type
(Etype
(F
))
3832 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3835 ("view conversion between unrelated by reference "
3836 & "array types not allowed (\'A'I-00246)", A
);
3838 -- In Ada 2005 mode, check view conversion component
3839 -- type cannot be private, tagged, or volatile. Note
3840 -- that we only apply this to source conversions. The
3841 -- generated code can contain conversions which are
3842 -- not subject to this test, and we cannot extract the
3843 -- component type in such cases since it is not present.
3845 elsif Comes_From_Source
(A
)
3846 and then Ada_Version
>= Ada_2005
3849 Comp_Type
: constant Entity_Id
:=
3851 (Etype
(Expression
(A
)));
3853 if (Is_Private_Type
(Comp_Type
)
3854 and then not Is_Generic_Type
(Comp_Type
))
3855 or else Is_Tagged_Type
(Comp_Type
)
3856 or else Is_Volatile
(Comp_Type
)
3859 ("component type of a view conversion cannot"
3860 & " be private, tagged, or volatile"
3869 -- Resolve expression if conversion is all OK
3871 if (Conversion_OK
(A
)
3872 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3873 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3875 Resolve
(Expression
(A
));
3878 -- If the actual is a function call that returns a limited
3879 -- unconstrained object that needs finalization, create a
3880 -- transient scope for it, so that it can receive the proper
3881 -- finalization list.
3883 elsif Nkind
(A
) = N_Function_Call
3884 and then Is_Limited_Record
(Etype
(F
))
3885 and then not Is_Constrained
(Etype
(F
))
3886 and then Expander_Active
3887 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3889 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3890 Resolve
(A
, Etype
(F
));
3892 -- A small optimization: if one of the actuals is a concatenation
3893 -- create a block around a procedure call to recover stack space.
3894 -- This alleviates stack usage when several procedure calls in
3895 -- the same statement list use concatenation. We do not perform
3896 -- this wrapping for code statements, where the argument is a
3897 -- static string, and we want to preserve warnings involving
3898 -- sequences of such statements.
3900 elsif Nkind
(A
) = N_Op_Concat
3901 and then Nkind
(N
) = N_Procedure_Call_Statement
3902 and then Expander_Active
3904 not (Is_Intrinsic_Subprogram
(Nam
)
3905 and then Chars
(Nam
) = Name_Asm
)
3906 and then not Static_Concatenation
(A
)
3908 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3909 Resolve
(A
, Etype
(F
));
3912 if Nkind
(A
) = N_Type_Conversion
3913 and then Is_Array_Type
(Etype
(F
))
3914 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3916 (Is_Limited_Type
(Etype
(F
))
3917 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3920 ("conversion between unrelated limited array types "
3921 & "not allowed ('A'I-00246)", A
);
3923 if Is_Limited_Type
(Etype
(F
)) then
3924 Explain_Limited_Type
(Etype
(F
), A
);
3927 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3928 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3932 -- (Ada 2005: AI-251): If the actual is an allocator whose
3933 -- directly designated type is a class-wide interface, we build
3934 -- an anonymous access type to use it as the type of the
3935 -- allocator. Later, when the subprogram call is expanded, if
3936 -- the interface has a secondary dispatch table the expander
3937 -- will add a type conversion to force the correct displacement
3940 if Nkind
(A
) = N_Allocator
then
3942 DDT
: constant Entity_Id
:=
3943 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3945 New_Itype
: Entity_Id
;
3948 if Is_Class_Wide_Type
(DDT
)
3949 and then Is_Interface
(DDT
)
3951 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3952 Set_Etype
(New_Itype
, Etype
(A
));
3953 Set_Directly_Designated_Type
3954 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
3955 Set_Etype
(A
, New_Itype
);
3958 -- Ada 2005, AI-162:If the actual is an allocator, the
3959 -- innermost enclosing statement is the master of the
3960 -- created object. This needs to be done with expansion
3961 -- enabled only, otherwise the transient scope will not
3962 -- be removed in the expansion of the wrapped construct.
3964 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3965 and then Expander_Active
3967 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3971 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
3972 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
3976 -- (Ada 2005): The call may be to a primitive operation of a
3977 -- tagged synchronized type, declared outside of the type. In
3978 -- this case the controlling actual must be converted to its
3979 -- corresponding record type, which is the formal type. The
3980 -- actual may be a subtype, either because of a constraint or
3981 -- because it is a generic actual, so use base type to locate
3984 F_Typ
:= Base_Type
(Etype
(F
));
3986 if Is_Tagged_Type
(F_Typ
)
3987 and then (Is_Concurrent_Type
(F_Typ
)
3988 or else Is_Concurrent_Record_Type
(F_Typ
))
3990 -- If the actual is overloaded, look for an interpretation
3991 -- that has a synchronized type.
3993 if not Is_Overloaded
(A
) then
3994 A_Typ
:= Base_Type
(Etype
(A
));
3998 Index
: Interp_Index
;
4002 Get_First_Interp
(A
, Index
, It
);
4003 while Present
(It
.Typ
) loop
4004 if Is_Concurrent_Type
(It
.Typ
)
4005 or else Is_Concurrent_Record_Type
(It
.Typ
)
4007 A_Typ
:= Base_Type
(It
.Typ
);
4011 Get_Next_Interp
(Index
, It
);
4017 Full_A_Typ
: Entity_Id
;
4020 if Present
(Full_View
(A_Typ
)) then
4021 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
4023 Full_A_Typ
:= A_Typ
;
4026 -- Tagged synchronized type (case 1): the actual is a
4029 if Is_Concurrent_Type
(A_Typ
)
4030 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
4033 Unchecked_Convert_To
4034 (Corresponding_Record_Type
(A_Typ
), A
));
4035 Resolve
(A
, Etype
(F
));
4037 -- Tagged synchronized type (case 2): the formal is a
4040 elsif Ekind
(Full_A_Typ
) = E_Record_Type
4042 (Corresponding_Concurrent_Type
(Full_A_Typ
))
4043 and then Is_Concurrent_Type
(F_Typ
)
4044 and then Present
(Corresponding_Record_Type
(F_Typ
))
4045 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
4047 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
4052 Resolve
(A
, Etype
(F
));
4056 -- Not a synchronized operation
4059 Resolve
(A
, Etype
(F
));
4066 -- An actual cannot be an untagged formal incomplete type
4068 if Ekind
(A_Typ
) = E_Incomplete_Type
4069 and then not Is_Tagged_Type
(A_Typ
)
4070 and then Is_Generic_Type
(A_Typ
)
4073 ("invalid use of untagged formal incomplete type", A
);
4076 if Comes_From_Source
(Original_Node
(N
))
4077 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
4078 N_Procedure_Call_Statement
)
4080 -- In formal mode, check that actual parameters matching
4081 -- formals of tagged types are objects (or ancestor type
4082 -- conversions of objects), not general expressions.
4084 if Is_Actual_Tagged_Parameter
(A
) then
4085 if Is_SPARK_05_Object_Reference
(A
) then
4088 elsif Nkind
(A
) = N_Type_Conversion
then
4090 Operand
: constant Node_Id
:= Expression
(A
);
4091 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
4092 Target_Typ
: constant Entity_Id
:= A_Typ
;
4095 if not Is_SPARK_05_Object_Reference
(Operand
) then
4096 Check_SPARK_05_Restriction
4097 ("object required", Operand
);
4099 -- In formal mode, the only view conversions are those
4100 -- involving ancestor conversion of an extended type.
4103 (Is_Tagged_Type
(Target_Typ
)
4104 and then not Is_Class_Wide_Type
(Target_Typ
)
4105 and then Is_Tagged_Type
(Operand_Typ
)
4106 and then not Is_Class_Wide_Type
(Operand_Typ
)
4107 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
4110 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
4112 Check_SPARK_05_Restriction
4113 ("ancestor conversion is the only permitted "
4114 & "view conversion", A
);
4116 Check_SPARK_05_Restriction
4117 ("ancestor conversion required", A
);
4126 Check_SPARK_05_Restriction
("object required", A
);
4129 -- In formal mode, the only view conversions are those
4130 -- involving ancestor conversion of an extended type.
4132 elsif Nkind
(A
) = N_Type_Conversion
4133 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
4135 Check_SPARK_05_Restriction
4136 ("ancestor conversion is the only permitted view "
4141 -- has warnings suppressed, then we reset Never_Set_In_Source for
4142 -- the calling entity. The reason for this is to catch cases like
4143 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4144 -- uses trickery to modify an IN parameter.
4146 if Ekind
(F
) = E_In_Parameter
4147 and then Is_Entity_Name
(A
)
4148 and then Present
(Entity
(A
))
4149 and then Ekind
(Entity
(A
)) = E_Variable
4150 and then Has_Warnings_Off
(F_Typ
)
4152 Set_Never_Set_In_Source
(Entity
(A
), False);
4155 -- Perform error checks for IN and IN OUT parameters
4157 if Ekind
(F
) /= E_Out_Parameter
then
4159 -- Check unset reference. For scalar parameters, it is clearly
4160 -- wrong to pass an uninitialized value as either an IN or
4161 -- IN-OUT parameter. For composites, it is also clearly an
4162 -- error to pass a completely uninitialized value as an IN
4163 -- parameter, but the case of IN OUT is trickier. We prefer
4164 -- not to give a warning here. For example, suppose there is
4165 -- a routine that sets some component of a record to False.
4166 -- It is perfectly reasonable to make this IN-OUT and allow
4167 -- either initialized or uninitialized records to be passed
4170 -- For partially initialized composite values, we also avoid
4171 -- warnings, since it is quite likely that we are passing a
4172 -- partially initialized value and only the initialized fields
4173 -- will in fact be read in the subprogram.
4175 if Is_Scalar_Type
(A_Typ
)
4176 or else (Ekind
(F
) = E_In_Parameter
4177 and then not Is_Partially_Initialized_Type
(A_Typ
))
4179 Check_Unset_Reference
(A
);
4182 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4183 -- actual to a nested call, since this constitutes a reading of
4184 -- the parameter, which is not allowed.
4186 if Ada_Version
= Ada_83
4187 and then Is_Entity_Name
(A
)
4188 and then Ekind
(Entity
(A
)) = E_Out_Parameter
4190 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
4194 -- Case of OUT or IN OUT parameter
4196 if Ekind
(F
) /= E_In_Parameter
then
4198 -- For an Out parameter, check for useless assignment. Note
4199 -- that we can't set Last_Assignment this early, because we may
4200 -- kill current values in Resolve_Call, and that call would
4201 -- clobber the Last_Assignment field.
4203 -- Note: call Warn_On_Useless_Assignment before doing the check
4204 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4205 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4206 -- reflects the last assignment, not this one.
4208 if Ekind
(F
) = E_Out_Parameter
then
4209 if Warn_On_Modified_As_Out_Parameter
(F
)
4210 and then Is_Entity_Name
(A
)
4211 and then Present
(Entity
(A
))
4212 and then Comes_From_Source
(N
)
4214 Warn_On_Useless_Assignment
(Entity
(A
), A
);
4218 -- Validate the form of the actual. Note that the call to
4219 -- Is_OK_Variable_For_Out_Formal generates the required
4220 -- reference in this case.
4222 -- A call to an initialization procedure for an aggregate
4223 -- component may initialize a nested component of a constant
4224 -- designated object. In this context the object is variable.
4226 if not Is_OK_Variable_For_Out_Formal
(A
)
4227 and then not Is_Init_Proc
(Nam
)
4229 Error_Msg_NE
("actual for& must be a variable", A
, F
);
4231 if Is_Subprogram
(Current_Scope
) then
4232 if Is_Invariant_Procedure
(Current_Scope
)
4233 or else Is_Partial_Invariant_Procedure
(Current_Scope
)
4236 ("function used in invariant cannot modify its "
4239 elsif Is_Predicate_Function
(Current_Scope
) then
4241 ("function used in predicate cannot modify its "
4247 -- What's the following about???
4249 if Is_Entity_Name
(A
) then
4250 Kill_Checks
(Entity
(A
));
4256 if Etype
(A
) = Any_Type
then
4257 Set_Etype
(N
, Any_Type
);
4261 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4263 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
4265 -- Apply predicate tests except in certain special cases. Note
4266 -- that it might be more consistent to apply these only when
4267 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4268 -- for the outbound predicate tests ???
4270 if Predicate_Tests_On_Arguments
(Nam
) then
4271 Apply_Predicate_Check
(A
, F_Typ
);
4274 -- Apply required constraint checks
4276 -- Gigi looks at the check flag and uses the appropriate types.
4277 -- For now since one flag is used there is an optimization
4278 -- which might not be done in the IN OUT case since Gigi does
4279 -- not do any analysis. More thought required about this ???
4281 -- In fact is this comment obsolete??? doesn't the expander now
4282 -- generate all these tests anyway???
4284 if Is_Scalar_Type
(Etype
(A
)) then
4285 Apply_Scalar_Range_Check
(A
, F_Typ
);
4287 elsif Is_Array_Type
(Etype
(A
)) then
4288 Apply_Length_Check
(A
, F_Typ
);
4290 elsif Is_Record_Type
(F_Typ
)
4291 and then Has_Discriminants
(F_Typ
)
4292 and then Is_Constrained
(F_Typ
)
4293 and then (not Is_Derived_Type
(F_Typ
)
4294 or else Comes_From_Source
(Nam
))
4296 Apply_Discriminant_Check
(A
, F_Typ
);
4298 -- For view conversions of a discriminated object, apply
4299 -- check to object itself, the conversion alreay has the
4302 if Nkind
(A
) = N_Type_Conversion
4303 and then Is_Constrained
(Etype
(Expression
(A
)))
4305 Apply_Discriminant_Check
(Expression
(A
), F_Typ
);
4308 elsif Is_Access_Type
(F_Typ
)
4309 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4310 and then Is_Constrained
(Designated_Type
(F_Typ
))
4312 Apply_Length_Check
(A
, F_Typ
);
4314 elsif Is_Access_Type
(F_Typ
)
4315 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4316 and then Is_Constrained
(Designated_Type
(F_Typ
))
4318 Apply_Discriminant_Check
(A
, F_Typ
);
4321 Apply_Range_Check
(A
, F_Typ
);
4324 -- Ada 2005 (AI-231): Note that the controlling parameter case
4325 -- already existed in Ada 95, which is partially checked
4326 -- elsewhere (see Checks), and we don't want the warning
4327 -- message to differ.
4329 if Is_Access_Type
(F_Typ
)
4330 and then Can_Never_Be_Null
(F_Typ
)
4331 and then Known_Null
(A
)
4333 if Is_Controlling_Formal
(F
) then
4334 Apply_Compile_Time_Constraint_Error
4336 Msg
=> "null value not allowed here??",
4337 Reason
=> CE_Access_Check_Failed
);
4339 elsif Ada_Version
>= Ada_2005
then
4340 Apply_Compile_Time_Constraint_Error
4342 Msg
=> "(Ada 2005) null not allowed in "
4343 & "null-excluding formal??",
4344 Reason
=> CE_Null_Not_Allowed
);
4349 -- Checks for OUT parameters and IN OUT parameters
4351 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4353 -- If there is a type conversion, to make sure the return value
4354 -- meets the constraints of the variable before the conversion.
4356 if Nkind
(A
) = N_Type_Conversion
then
4357 if Is_Scalar_Type
(A_Typ
) then
4358 Apply_Scalar_Range_Check
4359 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4362 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4365 -- If no conversion apply scalar range checks and length checks
4366 -- base on the subtype of the actual (NOT that of the formal).
4369 if Is_Scalar_Type
(F_Typ
) then
4370 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4371 elsif Is_Array_Type
(F_Typ
)
4372 and then Ekind
(F
) = E_Out_Parameter
4374 Apply_Length_Check
(A
, F_Typ
);
4376 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4380 -- Note: we do not apply the predicate checks for the case of
4381 -- OUT and IN OUT parameters. They are instead applied in the
4382 -- Expand_Actuals routine in Exp_Ch6.
4385 -- An actual associated with an access parameter is implicitly
4386 -- converted to the anonymous access type of the formal and must
4387 -- satisfy the legality checks for access conversions.
4389 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4390 if not Valid_Conversion
(A
, F_Typ
, A
) then
4392 ("invalid implicit conversion for access parameter", A
);
4395 -- If the actual is an access selected component of a variable,
4396 -- the call may modify its designated object. It is reasonable
4397 -- to treat this as a potential modification of the enclosing
4398 -- record, to prevent spurious warnings that it should be
4399 -- declared as a constant, because intuitively programmers
4400 -- regard the designated subcomponent as part of the record.
4402 if Nkind
(A
) = N_Selected_Component
4403 and then Is_Entity_Name
(Prefix
(A
))
4404 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4406 Note_Possible_Modification
(A
, Sure
=> False);
4410 -- Check bad case of atomic/volatile argument (RM C.6(12))
4412 if Is_By_Reference_Type
(Etype
(F
))
4413 and then Comes_From_Source
(N
)
4415 if Is_Atomic_Object
(A
)
4416 and then not Is_Atomic
(Etype
(F
))
4419 ("cannot pass atomic argument to non-atomic formal&",
4422 elsif Is_Volatile_Object
(A
)
4423 and then not Is_Volatile
(Etype
(F
))
4426 ("cannot pass volatile argument to non-volatile formal&",
4431 -- Check that subprograms don't have improper controlling
4432 -- arguments (RM 3.9.2 (9)).
4434 -- A primitive operation may have an access parameter of an
4435 -- incomplete tagged type, but a dispatching call is illegal
4436 -- if the type is still incomplete.
4438 if Is_Controlling_Formal
(F
) then
4439 Set_Is_Controlling_Actual
(A
);
4441 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4443 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4445 if Ekind
(Desig
) = E_Incomplete_Type
4446 and then No
(Full_View
(Desig
))
4447 and then No
(Non_Limited_View
(Desig
))
4450 ("premature use of incomplete type& "
4451 & "in dispatching call", A
, Desig
);
4456 elsif Nkind
(A
) = N_Explicit_Dereference
then
4457 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4460 -- Apply legality rule 3.9.2 (9/1)
4462 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4463 and then not Is_Class_Wide_Type
(F_Typ
)
4464 and then not Is_Controlling_Formal
(F
)
4465 and then not In_Instance
4467 Error_Msg_N
("class-wide argument not allowed here!", A
);
4469 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4470 Error_Msg_Node_2
:= F_Typ
;
4472 ("& is not a dispatching operation of &!", A
, Nam
);
4475 -- Apply the checks described in 3.10.2(27): if the context is a
4476 -- specific access-to-object, the actual cannot be class-wide.
4477 -- Use base type to exclude access_to_subprogram cases.
4479 elsif Is_Access_Type
(A_Typ
)
4480 and then Is_Access_Type
(F_Typ
)
4481 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4482 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4483 or else (Nkind
(A
) = N_Attribute_Reference
4485 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4486 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4487 and then not Is_Controlling_Formal
(F
)
4489 -- Disable these checks for call to imported C++ subprograms
4492 (Is_Entity_Name
(Name
(N
))
4493 and then Is_Imported
(Entity
(Name
(N
)))
4494 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4497 ("access to class-wide argument not allowed here!", A
);
4499 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4500 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4502 ("& is not a dispatching operation of &!", A
, Nam
);
4506 Check_Aliased_Parameter
;
4510 -- If it is a named association, treat the selector_name as a
4511 -- proper identifier, and mark the corresponding entity.
4513 if Nkind
(Parent
(A
)) = N_Parameter_Association
4515 -- Ignore reference in SPARK mode, as it refers to an entity not
4516 -- in scope at the point of reference, so the reference should
4517 -- be ignored for computing effects of subprograms.
4519 and then not GNATprove_Mode
4521 -- If subprogram is overridden, use name of formal that
4524 if Present
(Real_Subp
) then
4525 Set_Entity
(Selector_Name
(Parent
(A
)), Real_F
);
4526 Set_Etype
(Selector_Name
(Parent
(A
)), Etype
(Real_F
));
4529 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4530 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4531 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4532 Generate_Reference
(F_Typ
, N
, ' ');
4538 if Ekind
(F
) /= E_Out_Parameter
then
4539 Check_Unset_Reference
(A
);
4542 -- The following checks are only relevant when SPARK_Mode is on as
4543 -- they are not standard Ada legality rule. Internally generated
4544 -- temporaries are ignored.
4546 if SPARK_Mode
= On
and then Comes_From_Source
(A
) then
4548 -- An effectively volatile object may act as an actual when the
4549 -- corresponding formal is of a non-scalar effectively volatile
4550 -- type (SPARK RM 7.1.3(11)).
4552 if not Is_Scalar_Type
(Etype
(F
))
4553 and then Is_Effectively_Volatile
(Etype
(F
))
4557 -- An effectively volatile object may act as an actual in a
4558 -- call to an instance of Unchecked_Conversion.
4559 -- (SPARK RM 7.1.3(11)).
4561 elsif Is_Unchecked_Conversion_Instance
(Nam
) then
4564 -- The actual denotes an object
4566 elsif Is_Effectively_Volatile_Object
(A
) then
4568 ("volatile object cannot act as actual in a call (SPARK "
4569 & "RM 7.1.3(11))", A
);
4571 -- Otherwise the actual denotes an expression. Inspect the
4572 -- expression and flag each effectively volatile object with
4573 -- enabled property Async_Writers or Effective_Reads as illegal
4574 -- because it apprears within an interfering context. Note that
4575 -- this is usually done in Resolve_Entity_Name, but when the
4576 -- effectively volatile object appears as an actual in a call,
4577 -- the call must be resolved first.
4580 Flag_Effectively_Volatile_Objects
(A
);
4583 -- Detect an external variable with an enabled property that
4584 -- does not match the mode of the corresponding formal in a
4585 -- procedure call. Functions are not considered because they
4586 -- cannot have effectively volatile formal parameters in the
4589 if Ekind
(Nam
) = E_Procedure
4590 and then Ekind
(F
) = E_In_Parameter
4591 and then Is_Entity_Name
(A
)
4592 and then Present
(Entity
(A
))
4593 and then Ekind
(Entity
(A
)) = E_Variable
4597 if Async_Readers_Enabled
(A_Id
) then
4598 Property_Error
(A
, A_Id
, Name_Async_Readers
);
4599 elsif Effective_Reads_Enabled
(A_Id
) then
4600 Property_Error
(A
, A_Id
, Name_Effective_Reads
);
4601 elsif Effective_Writes_Enabled
(A_Id
) then
4602 Property_Error
(A
, A_Id
, Name_Effective_Writes
);
4607 -- A formal parameter of a specific tagged type whose related
4608 -- subprogram is subject to pragma Extensions_Visible with value
4609 -- "False" cannot act as an actual in a subprogram with value
4610 -- "True" (SPARK RM 6.1.7(3)).
4612 if Is_EVF_Expression
(A
)
4613 and then Extensions_Visible_Status
(Nam
) =
4614 Extensions_Visible_True
4617 ("formal parameter cannot act as actual parameter when "
4618 & "Extensions_Visible is False", A
);
4620 ("\subprogram & has Extensions_Visible True", A
, Nam
);
4623 -- The actual parameter of a Ghost subprogram whose formal is of
4624 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4626 if Comes_From_Source
(Nam
)
4627 and then Is_Ghost_Entity
(Nam
)
4628 and then Ekind_In
(F
, E_In_Out_Parameter
, E_Out_Parameter
)
4629 and then Is_Entity_Name
(A
)
4630 and then Present
(Entity
(A
))
4631 and then not Is_Ghost_Entity
(Entity
(A
))
4634 ("non-ghost variable & cannot appear as actual in call to "
4635 & "ghost procedure", A
, Entity
(A
));
4637 if Ekind
(F
) = E_In_Out_Parameter
then
4638 Error_Msg_N
("\corresponding formal has mode `IN OUT`", A
);
4640 Error_Msg_N
("\corresponding formal has mode OUT", A
);
4646 -- Case where actual is not present
4654 if Present
(Real_Subp
) then
4655 Next_Formal
(Real_F
);
4658 end Resolve_Actuals
;
4660 -----------------------
4661 -- Resolve_Allocator --
4662 -----------------------
4664 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4665 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4666 E
: constant Node_Id
:= Expression
(N
);
4668 Discrim
: Entity_Id
;
4671 Assoc
: Node_Id
:= Empty
;
4674 procedure Check_Allocator_Discrim_Accessibility
4675 (Disc_Exp
: Node_Id
;
4676 Alloc_Typ
: Entity_Id
);
4677 -- Check that accessibility level associated with an access discriminant
4678 -- initialized in an allocator by the expression Disc_Exp is not deeper
4679 -- than the level of the allocator type Alloc_Typ. An error message is
4680 -- issued if this condition is violated. Specialized checks are done for
4681 -- the cases of a constraint expression which is an access attribute or
4682 -- an access discriminant.
4684 function In_Dispatching_Context
return Boolean;
4685 -- If the allocator is an actual in a call, it is allowed to be class-
4686 -- wide when the context is not because it is a controlling actual.
4688 -------------------------------------------
4689 -- Check_Allocator_Discrim_Accessibility --
4690 -------------------------------------------
4692 procedure Check_Allocator_Discrim_Accessibility
4693 (Disc_Exp
: Node_Id
;
4694 Alloc_Typ
: Entity_Id
)
4697 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4698 Deepest_Type_Access_Level
(Alloc_Typ
)
4701 ("operand type has deeper level than allocator type", Disc_Exp
);
4703 -- When the expression is an Access attribute the level of the prefix
4704 -- object must not be deeper than that of the allocator's type.
4706 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4707 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4709 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4710 Deepest_Type_Access_Level
(Alloc_Typ
)
4713 ("prefix of attribute has deeper level than allocator type",
4716 -- When the expression is an access discriminant the check is against
4717 -- the level of the prefix object.
4719 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4720 and then Nkind
(Disc_Exp
) = N_Selected_Component
4721 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4722 Deepest_Type_Access_Level
(Alloc_Typ
)
4725 ("access discriminant has deeper level than allocator type",
4728 -- All other cases are legal
4733 end Check_Allocator_Discrim_Accessibility
;
4735 ----------------------------
4736 -- In_Dispatching_Context --
4737 ----------------------------
4739 function In_Dispatching_Context
return Boolean is
4740 Par
: constant Node_Id
:= Parent
(N
);
4743 return Nkind
(Par
) in N_Subprogram_Call
4744 and then Is_Entity_Name
(Name
(Par
))
4745 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4746 end In_Dispatching_Context
;
4748 -- Start of processing for Resolve_Allocator
4751 -- Replace general access with specific type
4753 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4754 Set_Etype
(N
, Base_Type
(Typ
));
4757 if Is_Abstract_Type
(Typ
) then
4758 Error_Msg_N
("type of allocator cannot be abstract", N
);
4761 -- For qualified expression, resolve the expression using the given
4762 -- subtype (nothing to do for type mark, subtype indication)
4764 if Nkind
(E
) = N_Qualified_Expression
then
4765 if Is_Class_Wide_Type
(Etype
(E
))
4766 and then not Is_Class_Wide_Type
(Desig_T
)
4767 and then not In_Dispatching_Context
4770 ("class-wide allocator not allowed for this access type", N
);
4773 Resolve
(Expression
(E
), Etype
(E
));
4774 Check_Non_Static_Context
(Expression
(E
));
4775 Check_Unset_Reference
(Expression
(E
));
4777 -- Allocators generated by the build-in-place expansion mechanism
4778 -- are explicitly marked as coming from source but do not need to be
4779 -- checked for limited initialization. To exclude this case, ensure
4780 -- that the parent of the allocator is a source node.
4782 if Is_Limited_Type
(Etype
(E
))
4783 and then Comes_From_Source
(N
)
4784 and then Comes_From_Source
(Parent
(N
))
4785 and then not In_Instance_Body
4787 if not OK_For_Limited_Init
(Etype
(E
), Expression
(E
)) then
4788 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4790 ("illegal expression for initialized allocator of a "
4791 & "limited type (RM 7.5 (2.7/2))", N
);
4794 ("initialization not allowed for limited types", N
);
4797 Explain_Limited_Type
(Etype
(E
), N
);
4801 -- A qualified expression requires an exact match of the type. Class-
4802 -- wide matching is not allowed.
4804 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4805 or else Is_Class_Wide_Type
(Etype
(E
)))
4806 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4808 Wrong_Type
(Expression
(E
), Etype
(E
));
4811 -- Calls to build-in-place functions are not currently supported in
4812 -- allocators for access types associated with a simple storage pool.
4813 -- Supporting such allocators may require passing additional implicit
4814 -- parameters to build-in-place functions (or a significant revision
4815 -- of the current b-i-p implementation to unify the handling for
4816 -- multiple kinds of storage pools). ???
4818 if Is_Limited_View
(Desig_T
)
4819 and then Nkind
(Expression
(E
)) = N_Function_Call
4822 Pool
: constant Entity_Id
:=
4823 Associated_Storage_Pool
(Root_Type
(Typ
));
4827 Present
(Get_Rep_Pragma
4828 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4831 ("limited function calls not yet supported in simple "
4832 & "storage pool allocators", Expression
(E
));
4837 -- A special accessibility check is needed for allocators that
4838 -- constrain access discriminants. The level of the type of the
4839 -- expression used to constrain an access discriminant cannot be
4840 -- deeper than the type of the allocator (in contrast to access
4841 -- parameters, where the level of the actual can be arbitrary).
4843 -- We can't use Valid_Conversion to perform this check because in
4844 -- general the type of the allocator is unrelated to the type of
4845 -- the access discriminant.
4847 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4848 or else Is_Local_Anonymous_Access
(Typ
)
4850 Subtyp
:= Entity
(Subtype_Mark
(E
));
4852 Aggr
:= Original_Node
(Expression
(E
));
4854 if Has_Discriminants
(Subtyp
)
4855 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4857 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4859 -- Get the first component expression of the aggregate
4861 if Present
(Expressions
(Aggr
)) then
4862 Disc_Exp
:= First
(Expressions
(Aggr
));
4864 elsif Present
(Component_Associations
(Aggr
)) then
4865 Assoc
:= First
(Component_Associations
(Aggr
));
4867 if Present
(Assoc
) then
4868 Disc_Exp
:= Expression
(Assoc
);
4877 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4878 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4879 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4882 Next_Discriminant
(Discrim
);
4884 if Present
(Discrim
) then
4885 if Present
(Assoc
) then
4887 Disc_Exp
:= Expression
(Assoc
);
4889 elsif Present
(Next
(Disc_Exp
)) then
4893 Assoc
:= First
(Component_Associations
(Aggr
));
4895 if Present
(Assoc
) then
4896 Disc_Exp
:= Expression
(Assoc
);
4906 -- For a subtype mark or subtype indication, freeze the subtype
4909 Freeze_Expression
(E
);
4911 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4913 ("initialization required for access-to-constant allocator", N
);
4916 -- A special accessibility check is needed for allocators that
4917 -- constrain access discriminants. The level of the type of the
4918 -- expression used to constrain an access discriminant cannot be
4919 -- deeper than the type of the allocator (in contrast to access
4920 -- parameters, where the level of the actual can be arbitrary).
4921 -- We can't use Valid_Conversion to perform this check because
4922 -- in general the type of the allocator is unrelated to the type
4923 -- of the access discriminant.
4925 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4926 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4927 or else Is_Local_Anonymous_Access
(Typ
))
4929 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4931 if Has_Discriminants
(Subtyp
) then
4932 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4933 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4934 while Present
(Discrim
) and then Present
(Constr
) loop
4935 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4936 if Nkind
(Constr
) = N_Discriminant_Association
then
4937 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4939 Disc_Exp
:= Original_Node
(Constr
);
4942 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4945 Next_Discriminant
(Discrim
);
4952 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4953 -- check that the level of the type of the created object is not deeper
4954 -- than the level of the allocator's access type, since extensions can
4955 -- now occur at deeper levels than their ancestor types. This is a
4956 -- static accessibility level check; a run-time check is also needed in
4957 -- the case of an initialized allocator with a class-wide argument (see
4958 -- Expand_Allocator_Expression).
4960 if Ada_Version
>= Ada_2005
4961 and then Is_Class_Wide_Type
(Desig_T
)
4964 Exp_Typ
: Entity_Id
;
4967 if Nkind
(E
) = N_Qualified_Expression
then
4968 Exp_Typ
:= Etype
(E
);
4969 elsif Nkind
(E
) = N_Subtype_Indication
then
4970 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4972 Exp_Typ
:= Entity
(E
);
4975 if Type_Access_Level
(Exp_Typ
) >
4976 Deepest_Type_Access_Level
(Typ
)
4978 if In_Instance_Body
then
4979 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4981 ("type in allocator has deeper level than "
4982 & "designated class-wide type<<", E
);
4983 Error_Msg_N
("\Program_Error [<<", E
);
4985 Make_Raise_Program_Error
(Sloc
(N
),
4986 Reason
=> PE_Accessibility_Check_Failed
));
4989 -- Do not apply Ada 2005 accessibility checks on a class-wide
4990 -- allocator if the type given in the allocator is a formal
4991 -- type. A run-time check will be performed in the instance.
4993 elsif not Is_Generic_Type
(Exp_Typ
) then
4994 Error_Msg_N
("type in allocator has deeper level than "
4995 & "designated class-wide type", E
);
5001 -- Check for allocation from an empty storage pool
5003 if No_Pool_Assigned
(Typ
) then
5004 Error_Msg_N
("allocation from empty storage pool!", N
);
5006 -- If the context is an unchecked conversion, as may happen within an
5007 -- inlined subprogram, the allocator is being resolved with its own
5008 -- anonymous type. In that case, if the target type has a specific
5009 -- storage pool, it must be inherited explicitly by the allocator type.
5011 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
5012 and then No
(Associated_Storage_Pool
(Typ
))
5014 Set_Associated_Storage_Pool
5015 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
5018 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
5019 Check_Restriction
(No_Anonymous_Allocators
, N
);
5022 -- Check that an allocator with task parts isn't for a nested access
5023 -- type when restriction No_Task_Hierarchy applies.
5025 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
5026 and then Has_Task
(Base_Type
(Desig_T
))
5028 Check_Restriction
(No_Task_Hierarchy
, N
);
5031 -- An illegal allocator may be rewritten as a raise Program_Error
5034 if Nkind
(N
) = N_Allocator
then
5036 -- An anonymous access discriminant is the definition of a
5039 if Ekind
(Typ
) = E_Anonymous_Access_Type
5040 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
5041 N_Discriminant_Specification
5044 Discr
: constant Entity_Id
:=
5045 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
5048 Check_Restriction
(No_Coextensions
, N
);
5050 -- Ada 2012 AI05-0052: If the designated type of the allocator
5051 -- is limited, then the allocator shall not be used to define
5052 -- the value of an access discriminant unless the discriminated
5053 -- type is immutably limited.
5055 if Ada_Version
>= Ada_2012
5056 and then Is_Limited_Type
(Desig_T
)
5057 and then not Is_Limited_View
(Scope
(Discr
))
5060 ("only immutably limited types can have anonymous "
5061 & "access discriminants designating a limited type", N
);
5065 -- Avoid marking an allocator as a dynamic coextension if it is
5066 -- within a static construct.
5068 if not Is_Static_Coextension
(N
) then
5069 Set_Is_Dynamic_Coextension
(N
);
5072 -- Cleanup for potential static coextensions
5075 Set_Is_Dynamic_Coextension
(N
, False);
5076 Set_Is_Static_Coextension
(N
, False);
5080 -- Report a simple error: if the designated object is a local task,
5081 -- its body has not been seen yet, and its activation will fail an
5082 -- elaboration check.
5084 if Is_Task_Type
(Desig_T
)
5085 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
5086 and then Is_Compilation_Unit
(Current_Scope
)
5087 and then Ekind
(Current_Scope
) = E_Package
5088 and then not In_Package_Body
(Current_Scope
)
5090 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5091 Error_Msg_N
("cannot activate task before body seen<<", N
);
5092 Error_Msg_N
("\Program_Error [<<", N
);
5095 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5096 -- type with a task component on a subpool. This action must raise
5097 -- Program_Error at runtime.
5099 if Ada_Version
>= Ada_2012
5100 and then Nkind
(N
) = N_Allocator
5101 and then Present
(Subpool_Handle_Name
(N
))
5102 and then Has_Task
(Desig_T
)
5104 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5105 Error_Msg_N
("cannot allocate task on subpool<<", N
);
5106 Error_Msg_N
("\Program_Error [<<", N
);
5109 Make_Raise_Program_Error
(Sloc
(N
),
5110 Reason
=> PE_Explicit_Raise
));
5113 end Resolve_Allocator
;
5115 ---------------------------
5116 -- Resolve_Arithmetic_Op --
5117 ---------------------------
5119 -- Used for resolving all arithmetic operators except exponentiation
5121 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
5122 L
: constant Node_Id
:= Left_Opnd
(N
);
5123 R
: constant Node_Id
:= Right_Opnd
(N
);
5124 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
5125 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
5129 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5130 -- We do the resolution using the base type, because intermediate values
5131 -- in expressions always are of the base type, not a subtype of it.
5133 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
5134 -- Returns True if N is in a context that expects "any real type"
5136 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
5137 -- Return True iff given type is Integer or universal real/integer
5139 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
5140 -- Choose type of integer literal in fixed-point operation to conform
5141 -- to available fixed-point type. T is the type of the other operand,
5142 -- which is needed to determine the expected type of N.
5144 procedure Set_Operand_Type
(N
: Node_Id
);
5145 -- Set operand type to T if universal
5147 -------------------------------
5148 -- Expected_Type_Is_Any_Real --
5149 -------------------------------
5151 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
5153 -- N is the expression after "delta" in a fixed_point_definition;
5156 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
5157 N_Decimal_Fixed_Point_Definition
,
5159 -- N is one of the bounds in a real_range_specification;
5162 N_Real_Range_Specification
,
5164 -- N is the expression of a delta_constraint;
5167 N_Delta_Constraint
);
5168 end Expected_Type_Is_Any_Real
;
5170 -----------------------------
5171 -- Is_Integer_Or_Universal --
5172 -----------------------------
5174 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
5176 Index
: Interp_Index
;
5180 if not Is_Overloaded
(N
) then
5182 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
5183 or else T
= Universal_Integer
5184 or else T
= Universal_Real
;
5186 Get_First_Interp
(N
, Index
, It
);
5187 while Present
(It
.Typ
) loop
5188 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
5189 or else It
.Typ
= Universal_Integer
5190 or else It
.Typ
= Universal_Real
5195 Get_Next_Interp
(Index
, It
);
5200 end Is_Integer_Or_Universal
;
5202 ----------------------------
5203 -- Set_Mixed_Mode_Operand --
5204 ----------------------------
5206 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
5207 Index
: Interp_Index
;
5211 if Universal_Interpretation
(N
) = Universal_Integer
then
5213 -- A universal integer literal is resolved as standard integer
5214 -- except in the case of a fixed-point result, where we leave it
5215 -- as universal (to be handled by Exp_Fixd later on)
5217 if Is_Fixed_Point_Type
(T
) then
5218 Resolve
(N
, Universal_Integer
);
5220 Resolve
(N
, Standard_Integer
);
5223 elsif Universal_Interpretation
(N
) = Universal_Real
5224 and then (T
= Base_Type
(Standard_Integer
)
5225 or else T
= Universal_Integer
5226 or else T
= Universal_Real
)
5228 -- A universal real can appear in a fixed-type context. We resolve
5229 -- the literal with that context, even though this might raise an
5230 -- exception prematurely (the other operand may be zero).
5234 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
5235 and then T
= Universal_Real
5236 and then Is_Overloaded
(N
)
5238 -- Integer arg in mixed-mode operation. Resolve with universal
5239 -- type, in case preference rule must be applied.
5241 Resolve
(N
, Universal_Integer
);
5244 and then B_Typ
/= Universal_Fixed
5246 -- Not a mixed-mode operation, resolve with context
5250 elsif Etype
(N
) = Any_Fixed
then
5252 -- N may itself be a mixed-mode operation, so use context type
5256 elsif Is_Fixed_Point_Type
(T
)
5257 and then B_Typ
= Universal_Fixed
5258 and then Is_Overloaded
(N
)
5260 -- Must be (fixed * fixed) operation, operand must have one
5261 -- compatible interpretation.
5263 Resolve
(N
, Any_Fixed
);
5265 elsif Is_Fixed_Point_Type
(B_Typ
)
5266 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
5267 and then Is_Overloaded
(N
)
5269 -- C * F(X) in a fixed context, where C is a real literal or a
5270 -- fixed-point expression. F must have either a fixed type
5271 -- interpretation or an integer interpretation, but not both.
5273 Get_First_Interp
(N
, Index
, It
);
5274 while Present
(It
.Typ
) loop
5275 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
5276 if Analyzed
(N
) then
5277 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5279 Resolve
(N
, Standard_Integer
);
5282 elsif Is_Fixed_Point_Type
(It
.Typ
) then
5283 if Analyzed
(N
) then
5284 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5286 Resolve
(N
, It
.Typ
);
5290 Get_Next_Interp
(Index
, It
);
5293 -- Reanalyze the literal with the fixed type of the context. If
5294 -- context is Universal_Fixed, we are within a conversion, leave
5295 -- the literal as a universal real because there is no usable
5296 -- fixed type, and the target of the conversion plays no role in
5310 if B_Typ
= Universal_Fixed
5311 and then Nkind
(Op2
) = N_Real_Literal
5313 T2
:= Universal_Real
;
5318 Set_Analyzed
(Op2
, False);
5325 end Set_Mixed_Mode_Operand
;
5327 ----------------------
5328 -- Set_Operand_Type --
5329 ----------------------
5331 procedure Set_Operand_Type
(N
: Node_Id
) is
5333 if Etype
(N
) = Universal_Integer
5334 or else Etype
(N
) = Universal_Real
5338 end Set_Operand_Type
;
5340 -- Start of processing for Resolve_Arithmetic_Op
5343 if Comes_From_Source
(N
)
5344 and then Ekind
(Entity
(N
)) = E_Function
5345 and then Is_Imported
(Entity
(N
))
5346 and then Is_Intrinsic_Subprogram
(Entity
(N
))
5348 Resolve_Intrinsic_Operator
(N
, Typ
);
5351 -- Special-case for mixed-mode universal expressions or fixed point type
5352 -- operation: each argument is resolved separately. The same treatment
5353 -- is required if one of the operands of a fixed point operation is
5354 -- universal real, since in this case we don't do a conversion to a
5355 -- specific fixed-point type (instead the expander handles the case).
5357 -- Set the type of the node to its universal interpretation because
5358 -- legality checks on an exponentiation operand need the context.
5360 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
5361 and then Present
(Universal_Interpretation
(L
))
5362 and then Present
(Universal_Interpretation
(R
))
5364 Set_Etype
(N
, B_Typ
);
5365 Resolve
(L
, Universal_Interpretation
(L
));
5366 Resolve
(R
, Universal_Interpretation
(R
));
5368 elsif (B_Typ
= Universal_Real
5369 or else Etype
(N
) = Universal_Fixed
5370 or else (Etype
(N
) = Any_Fixed
5371 and then Is_Fixed_Point_Type
(B_Typ
))
5372 or else (Is_Fixed_Point_Type
(B_Typ
)
5373 and then (Is_Integer_Or_Universal
(L
)
5375 Is_Integer_Or_Universal
(R
))))
5376 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5378 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
5379 Check_For_Visible_Operator
(N
, B_Typ
);
5382 -- If context is a fixed type and one operand is integer, the other
5383 -- is resolved with the type of the context.
5385 if Is_Fixed_Point_Type
(B_Typ
)
5386 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
5387 or else TL
= Universal_Integer
)
5392 elsif Is_Fixed_Point_Type
(B_Typ
)
5393 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
5394 or else TR
= Universal_Integer
)
5400 Set_Mixed_Mode_Operand
(L
, TR
);
5401 Set_Mixed_Mode_Operand
(R
, TL
);
5404 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5405 -- multiplying operators from being used when the expected type is
5406 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5407 -- some cases where the expected type is actually Any_Real;
5408 -- Expected_Type_Is_Any_Real takes care of that case.
5410 if Etype
(N
) = Universal_Fixed
5411 or else Etype
(N
) = Any_Fixed
5413 if B_Typ
= Universal_Fixed
5414 and then not Expected_Type_Is_Any_Real
(N
)
5415 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
5416 N_Unchecked_Type_Conversion
)
5418 Error_Msg_N
("type cannot be determined from context!", N
);
5419 Error_Msg_N
("\explicit conversion to result type required", N
);
5421 Set_Etype
(L
, Any_Type
);
5422 Set_Etype
(R
, Any_Type
);
5425 if Ada_Version
= Ada_83
5426 and then Etype
(N
) = Universal_Fixed
5428 Nkind_In
(Parent
(N
), N_Type_Conversion
,
5429 N_Unchecked_Type_Conversion
)
5432 ("(Ada 83) fixed-point operation needs explicit "
5436 -- The expected type is "any real type" in contexts like
5438 -- type T is delta <universal_fixed-expression> ...
5440 -- in which case we need to set the type to Universal_Real
5441 -- so that static expression evaluation will work properly.
5443 if Expected_Type_Is_Any_Real
(N
) then
5444 Set_Etype
(N
, Universal_Real
);
5446 Set_Etype
(N
, B_Typ
);
5450 elsif Is_Fixed_Point_Type
(B_Typ
)
5451 and then (Is_Integer_Or_Universal
(L
)
5452 or else Nkind
(L
) = N_Real_Literal
5453 or else Nkind
(R
) = N_Real_Literal
5454 or else Is_Integer_Or_Universal
(R
))
5456 Set_Etype
(N
, B_Typ
);
5458 elsif Etype
(N
) = Any_Fixed
then
5460 -- If no previous errors, this is only possible if one operand is
5461 -- overloaded and the context is universal. Resolve as such.
5463 Set_Etype
(N
, B_Typ
);
5467 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5469 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5471 Check_For_Visible_Operator
(N
, B_Typ
);
5474 -- If the context is Universal_Fixed and the operands are also
5475 -- universal fixed, this is an error, unless there is only one
5476 -- applicable fixed_point type (usually Duration).
5478 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5479 T
:= Unique_Fixed_Point_Type
(N
);
5481 if T
= Any_Type
then
5494 -- If one of the arguments was resolved to a non-universal type.
5495 -- label the result of the operation itself with the same type.
5496 -- Do the same for the universal argument, if any.
5498 T
:= Intersect_Types
(L
, R
);
5499 Set_Etype
(N
, Base_Type
(T
));
5500 Set_Operand_Type
(L
);
5501 Set_Operand_Type
(R
);
5504 Generate_Operator_Reference
(N
, Typ
);
5505 Analyze_Dimension
(N
);
5506 Eval_Arithmetic_Op
(N
);
5508 -- In SPARK, a multiplication or division with operands of fixed point
5509 -- types must be qualified or explicitly converted to identify the
5512 if (Is_Fixed_Point_Type
(Etype
(L
))
5513 or else Is_Fixed_Point_Type
(Etype
(R
)))
5514 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5516 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5518 Check_SPARK_05_Restriction
5519 ("operation should be qualified or explicitly converted", N
);
5522 -- Set overflow and division checking bit
5524 if Nkind
(N
) in N_Op
then
5525 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5526 Enable_Overflow_Check
(N
);
5529 -- Give warning if explicit division by zero
5531 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5532 and then not Division_Checks_Suppressed
(Etype
(N
))
5534 Rop
:= Right_Opnd
(N
);
5536 if Compile_Time_Known_Value
(Rop
)
5537 and then ((Is_Integer_Type
(Etype
(Rop
))
5538 and then Expr_Value
(Rop
) = Uint_0
)
5540 (Is_Real_Type
(Etype
(Rop
))
5541 and then Expr_Value_R
(Rop
) = Ureal_0
))
5543 -- Specialize the warning message according to the operation.
5544 -- When SPARK_Mode is On, force a warning instead of an error
5545 -- in that case, as this likely corresponds to deactivated
5546 -- code. The following warnings are for the case
5551 -- For division, we have two cases, for float division
5552 -- of an unconstrained float type, on a machine where
5553 -- Machine_Overflows is false, we don't get an exception
5554 -- at run-time, but rather an infinity or Nan. The Nan
5555 -- case is pretty obscure, so just warn about infinities.
5557 if Is_Floating_Point_Type
(Typ
)
5558 and then not Is_Constrained
(Typ
)
5559 and then not Machine_Overflows_On_Target
5562 ("float division by zero, may generate "
5563 & "'+'/'- infinity??", Right_Opnd
(N
));
5565 -- For all other cases, we get a Constraint_Error
5568 Apply_Compile_Time_Constraint_Error
5569 (N
, "division by zero??", CE_Divide_By_Zero
,
5570 Loc
=> Sloc
(Right_Opnd
(N
)),
5571 Warn
=> SPARK_Mode
= On
);
5575 Apply_Compile_Time_Constraint_Error
5576 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5577 Loc
=> Sloc
(Right_Opnd
(N
)),
5578 Warn
=> SPARK_Mode
= On
);
5581 Apply_Compile_Time_Constraint_Error
5582 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5583 Loc
=> Sloc
(Right_Opnd
(N
)),
5584 Warn
=> SPARK_Mode
= On
);
5586 -- Division by zero can only happen with division, rem,
5587 -- and mod operations.
5590 raise Program_Error
;
5593 -- In GNATprove mode, we enable the division check so that
5594 -- GNATprove will issue a message if it cannot be proved.
5596 if GNATprove_Mode
then
5597 Activate_Division_Check
(N
);
5600 -- Otherwise just set the flag to check at run time
5603 Activate_Division_Check
(N
);
5607 -- If Restriction No_Implicit_Conditionals is active, then it is
5608 -- violated if either operand can be negative for mod, or for rem
5609 -- if both operands can be negative.
5611 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5612 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5621 -- Set if corresponding operand might be negative
5625 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5626 LNeg
:= (not OK
) or else Lo
< 0;
5629 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5630 RNeg
:= (not OK
) or else Lo
< 0;
5632 -- Check if we will be generating conditionals. There are two
5633 -- cases where that can happen, first for REM, the only case
5634 -- is largest negative integer mod -1, where the division can
5635 -- overflow, but we still have to give the right result. The
5636 -- front end generates a test for this annoying case. Here we
5637 -- just test if both operands can be negative (that's what the
5638 -- expander does, so we match its logic here).
5640 -- The second case is mod where either operand can be negative.
5641 -- In this case, the back end has to generate additional tests.
5643 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5645 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5647 Check_Restriction
(No_Implicit_Conditionals
, N
);
5653 Check_Unset_Reference
(L
);
5654 Check_Unset_Reference
(R
);
5655 end Resolve_Arithmetic_Op
;
5661 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5662 function Same_Or_Aliased_Subprograms
5664 E
: Entity_Id
) return Boolean;
5665 -- Returns True if the subprogram entity S is the same as E or else
5666 -- S is an alias of E.
5668 ---------------------------------
5669 -- Same_Or_Aliased_Subprograms --
5670 ---------------------------------
5672 function Same_Or_Aliased_Subprograms
5674 E
: Entity_Id
) return Boolean
5676 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5678 return S
= E
or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5679 end Same_Or_Aliased_Subprograms
;
5683 Loc
: constant Source_Ptr
:= Sloc
(N
);
5684 Subp
: constant Node_Id
:= Name
(N
);
5685 Body_Id
: Entity_Id
;
5695 -- Start of processing for Resolve_Call
5698 -- The context imposes a unique interpretation with type Typ on a
5699 -- procedure or function call. Find the entity of the subprogram that
5700 -- yields the expected type, and propagate the corresponding formal
5701 -- constraints on the actuals. The caller has established that an
5702 -- interpretation exists, and emitted an error if not unique.
5704 -- First deal with the case of a call to an access-to-subprogram,
5705 -- dereference made explicit in Analyze_Call.
5707 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5708 if not Is_Overloaded
(Subp
) then
5709 Nam
:= Etype
(Subp
);
5712 -- Find the interpretation whose type (a subprogram type) has a
5713 -- return type that is compatible with the context. Analysis of
5714 -- the node has established that one exists.
5718 Get_First_Interp
(Subp
, I
, It
);
5719 while Present
(It
.Typ
) loop
5720 if Covers
(Typ
, Etype
(It
.Typ
)) then
5725 Get_Next_Interp
(I
, It
);
5729 raise Program_Error
;
5733 -- If the prefix is not an entity, then resolve it
5735 if not Is_Entity_Name
(Subp
) then
5736 Resolve
(Subp
, Nam
);
5739 -- For an indirect call, we always invalidate checks, since we do not
5740 -- know whether the subprogram is local or global. Yes we could do
5741 -- better here, e.g. by knowing that there are no local subprograms,
5742 -- but it does not seem worth the effort. Similarly, we kill all
5743 -- knowledge of current constant values.
5745 Kill_Current_Values
;
5747 -- If this is a procedure call which is really an entry call, do
5748 -- the conversion of the procedure call to an entry call. Protected
5749 -- operations use the same circuitry because the name in the call
5750 -- can be an arbitrary expression with special resolution rules.
5752 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5753 or else (Is_Entity_Name
(Subp
)
5754 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5756 Resolve_Entry_Call
(N
, Typ
);
5757 Check_Elab_Call
(N
);
5759 -- Kill checks and constant values, as above for indirect case
5760 -- Who knows what happens when another task is activated?
5762 Kill_Current_Values
;
5765 -- Normal subprogram call with name established in Resolve
5767 elsif not (Is_Type
(Entity
(Subp
))) then
5768 Nam
:= Entity
(Subp
);
5769 Set_Entity_With_Checks
(Subp
, Nam
);
5771 -- Otherwise we must have the case of an overloaded call
5774 pragma Assert
(Is_Overloaded
(Subp
));
5776 -- Initialize Nam to prevent warning (we know it will be assigned
5777 -- in the loop below, but the compiler does not know that).
5781 Get_First_Interp
(Subp
, I
, It
);
5782 while Present
(It
.Typ
) loop
5783 if Covers
(Typ
, It
.Typ
) then
5785 Set_Entity_With_Checks
(Subp
, Nam
);
5789 Get_Next_Interp
(I
, It
);
5793 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5794 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5795 and then Nkind
(Subp
) /= N_Explicit_Dereference
5796 and then Present
(Parameter_Associations
(N
))
5798 -- The prefix is a parameterless function call that returns an access
5799 -- to subprogram. If parameters are present in the current call, add
5800 -- add an explicit dereference. We use the base type here because
5801 -- within an instance these may be subtypes.
5803 -- The dereference is added either in Analyze_Call or here. Should
5804 -- be consolidated ???
5806 Set_Is_Overloaded
(Subp
, False);
5807 Set_Etype
(Subp
, Etype
(Nam
));
5808 Insert_Explicit_Dereference
(Subp
);
5809 Nam
:= Designated_Type
(Etype
(Nam
));
5810 Resolve
(Subp
, Nam
);
5813 -- Check that a call to Current_Task does not occur in an entry body
5815 if Is_RTE
(Nam
, RE_Current_Task
) then
5824 -- Exclude calls that occur within the default of a formal
5825 -- parameter of the entry, since those are evaluated outside
5828 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5830 if Nkind
(P
) = N_Entry_Body
5831 or else (Nkind
(P
) = N_Subprogram_Body
5832 and then Is_Entry_Barrier_Function
(P
))
5835 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5837 ("& should not be used in entry body (RM C.7(17))<<",
5839 Error_Msg_NE
("\Program_Error [<<", N
, Nam
);
5841 Make_Raise_Program_Error
(Loc
,
5842 Reason
=> PE_Current_Task_In_Entry_Body
));
5843 Set_Etype
(N
, Rtype
);
5850 -- Check that a procedure call does not occur in the context of the
5851 -- entry call statement of a conditional or timed entry call. Note that
5852 -- the case of a call to a subprogram renaming of an entry will also be
5853 -- rejected. The test for N not being an N_Entry_Call_Statement is
5854 -- defensive, covering the possibility that the processing of entry
5855 -- calls might reach this point due to later modifications of the code
5858 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5859 and then Nkind
(N
) /= N_Entry_Call_Statement
5860 and then Entry_Call_Statement
(Parent
(N
)) = N
5862 if Ada_Version
< Ada_2005
then
5863 Error_Msg_N
("entry call required in select statement", N
);
5865 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5866 -- for a procedure_or_entry_call, the procedure_name or
5867 -- procedure_prefix of the procedure_call_statement shall denote
5868 -- an entry renamed by a procedure, or (a view of) a primitive
5869 -- subprogram of a limited interface whose first parameter is
5870 -- a controlling parameter.
5872 elsif Nkind
(N
) = N_Procedure_Call_Statement
5873 and then not Is_Renamed_Entry
(Nam
)
5874 and then not Is_Controlling_Limited_Procedure
(Nam
)
5877 ("entry call or dispatching primitive of interface required", N
);
5881 -- If the SPARK_05 restriction is active, we are not allowed
5882 -- to have a call to a subprogram before we see its completion.
5884 if not Has_Completion
(Nam
)
5885 and then Restriction_Check_Required
(SPARK_05
)
5887 -- Don't flag strange internal calls
5889 and then Comes_From_Source
(N
)
5890 and then Comes_From_Source
(Nam
)
5892 -- Only flag calls in extended main source
5894 and then In_Extended_Main_Source_Unit
(Nam
)
5895 and then In_Extended_Main_Source_Unit
(N
)
5897 -- Exclude enumeration literals from this processing
5899 and then Ekind
(Nam
) /= E_Enumeration_Literal
5901 Check_SPARK_05_Restriction
5902 ("call to subprogram cannot appear before its body", N
);
5905 -- Check that this is not a call to a protected procedure or entry from
5906 -- within a protected function.
5908 Check_Internal_Protected_Use
(N
, Nam
);
5910 -- Freeze the subprogram name if not in a spec-expression. Note that
5911 -- we freeze procedure calls as well as function calls. Procedure calls
5912 -- are not frozen according to the rules (RM 13.14(14)) because it is
5913 -- impossible to have a procedure call to a non-frozen procedure in
5914 -- pure Ada, but in the code that we generate in the expander, this
5915 -- rule needs extending because we can generate procedure calls that
5918 -- In Ada 2012, expression functions may be called within pre/post
5919 -- conditions of subsequent functions or expression functions. Such
5920 -- calls do not freeze when they appear within generated bodies,
5921 -- (including the body of another expression function) which would
5922 -- place the freeze node in the wrong scope. An expression function
5923 -- is frozen in the usual fashion, by the appearance of a real body,
5924 -- or at the end of a declarative part.
5926 if Is_Entity_Name
(Subp
)
5927 and then not In_Spec_Expression
5928 and then not Is_Expression_Function_Or_Completion
(Current_Scope
)
5930 (not Is_Expression_Function_Or_Completion
(Entity
(Subp
))
5931 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5933 Freeze_Expression
(Subp
);
5936 -- For a predefined operator, the type of the result is the type imposed
5937 -- by context, except for a predefined operation on universal fixed.
5938 -- Otherwise The type of the call is the type returned by the subprogram
5941 if Is_Predefined_Op
(Nam
) then
5942 if Etype
(N
) /= Universal_Fixed
then
5946 -- If the subprogram returns an array type, and the context requires the
5947 -- component type of that array type, the node is really an indexing of
5948 -- the parameterless call. Resolve as such. A pathological case occurs
5949 -- when the type of the component is an access to the array type. In
5950 -- this case the call is truly ambiguous.
5952 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
5954 ((Is_Array_Type
(Etype
(Nam
))
5955 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
5957 (Is_Access_Type
(Etype
(Nam
))
5958 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
5960 Covers
(Typ
, Component_Type
(Designated_Type
(Etype
(Nam
))))))
5963 Index_Node
: Node_Id
;
5965 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
5968 if Is_Access_Type
(Ret_Type
)
5969 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
5972 ("cannot disambiguate function call and indexing", N
);
5974 New_Subp
:= Relocate_Node
(Subp
);
5976 -- The called entity may be an explicit dereference, in which
5977 -- case there is no entity to set.
5979 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
5980 Set_Entity
(Subp
, Nam
);
5983 if (Is_Array_Type
(Ret_Type
)
5984 and then Component_Type
(Ret_Type
) /= Any_Type
)
5986 (Is_Access_Type
(Ret_Type
)
5988 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
5990 if Needs_No_Actuals
(Nam
) then
5992 -- Indexed call to a parameterless function
5995 Make_Indexed_Component
(Loc
,
5997 Make_Function_Call
(Loc
, Name
=> New_Subp
),
5998 Expressions
=> Parameter_Associations
(N
));
6000 -- An Ada 2005 prefixed call to a primitive operation
6001 -- whose first parameter is the prefix. This prefix was
6002 -- prepended to the parameter list, which is actually a
6003 -- list of indexes. Remove the prefix in order to build
6004 -- the proper indexed component.
6007 Make_Indexed_Component
(Loc
,
6009 Make_Function_Call
(Loc
,
6011 Parameter_Associations
=>
6013 (Remove_Head
(Parameter_Associations
(N
)))),
6014 Expressions
=> Parameter_Associations
(N
));
6017 -- Preserve the parenthesis count of the node
6019 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
6021 -- Since we are correcting a node classification error made
6022 -- by the parser, we call Replace rather than Rewrite.
6024 Replace
(N
, Index_Node
);
6026 Set_Etype
(Prefix
(N
), Ret_Type
);
6028 Resolve_Indexed_Component
(N
, Typ
);
6029 Check_Elab_Call
(Prefix
(N
));
6037 -- If the function returns the limited view of type, the call must
6038 -- appear in a context in which the non-limited view is available.
6039 -- As is done in Try_Object_Operation, use the available view to
6040 -- prevent back-end confusion.
6042 if From_Limited_With
(Etype
(Nam
)) then
6043 Set_Etype
(Nam
, Available_View
(Etype
(Nam
)));
6046 Set_Etype
(N
, Etype
(Nam
));
6049 -- In the case where the call is to an overloaded subprogram, Analyze
6050 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6051 -- such a case Normalize_Actuals needs to be called once more to order
6052 -- the actuals correctly. Otherwise the call will have the ordering
6053 -- given by the last overloaded subprogram whether this is the correct
6054 -- one being called or not.
6056 if Is_Overloaded
(Subp
) then
6057 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6058 pragma Assert
(Norm_OK
);
6061 -- In any case, call is fully resolved now. Reset Overload flag, to
6062 -- prevent subsequent overload resolution if node is analyzed again
6064 Set_Is_Overloaded
(Subp
, False);
6065 Set_Is_Overloaded
(N
, False);
6067 -- A Ghost entity must appear in a specific context
6069 if Is_Ghost_Entity
(Nam
) and then Comes_From_Source
(N
) then
6070 Check_Ghost_Context
(Nam
, N
);
6073 -- If we are calling the current subprogram from immediately within its
6074 -- body, then that is the case where we can sometimes detect cases of
6075 -- infinite recursion statically. Do not try this in case restriction
6076 -- No_Recursion is in effect anyway, and do it only for source calls.
6078 if Comes_From_Source
(N
) then
6079 Scop
:= Current_Scope
;
6081 -- Check violation of SPARK_05 restriction which does not permit
6082 -- a subprogram body to contain a call to the subprogram directly.
6084 if Restriction_Check_Required
(SPARK_05
)
6085 and then Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6087 Check_SPARK_05_Restriction
6088 ("subprogram may not contain direct call to itself", N
);
6091 -- Issue warning for possible infinite recursion in the absence
6092 -- of the No_Recursion restriction.
6094 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6095 and then not Restriction_Active
(No_Recursion
)
6096 and then Check_Infinite_Recursion
(N
)
6098 -- Here we detected and flagged an infinite recursion, so we do
6099 -- not need to test the case below for further warnings. Also we
6100 -- are all done if we now have a raise SE node.
6102 if Nkind
(N
) = N_Raise_Storage_Error
then
6106 -- If call is to immediately containing subprogram, then check for
6107 -- the case of a possible run-time detectable infinite recursion.
6110 Scope_Loop
: while Scop
/= Standard_Standard
loop
6111 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
6113 -- Although in general case, recursion is not statically
6114 -- checkable, the case of calling an immediately containing
6115 -- subprogram is easy to catch.
6117 Check_Restriction
(No_Recursion
, N
);
6119 -- If the recursive call is to a parameterless subprogram,
6120 -- then even if we can't statically detect infinite
6121 -- recursion, this is pretty suspicious, and we output a
6122 -- warning. Furthermore, we will try later to detect some
6123 -- cases here at run time by expanding checking code (see
6124 -- Detect_Infinite_Recursion in package Exp_Ch6).
6126 -- If the recursive call is within a handler, do not emit a
6127 -- warning, because this is a common idiom: loop until input
6128 -- is correct, catch illegal input in handler and restart.
6130 if No
(First_Formal
(Nam
))
6131 and then Etype
(Nam
) = Standard_Void_Type
6132 and then not Error_Posted
(N
)
6133 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
6135 -- For the case of a procedure call. We give the message
6136 -- only if the call is the first statement in a sequence
6137 -- of statements, or if all previous statements are
6138 -- simple assignments. This is simply a heuristic to
6139 -- decrease false positives, without losing too many good
6140 -- warnings. The idea is that these previous statements
6141 -- may affect global variables the procedure depends on.
6142 -- We also exclude raise statements, that may arise from
6143 -- constraint checks and are probably unrelated to the
6144 -- intended control flow.
6146 if Nkind
(N
) = N_Procedure_Call_Statement
6147 and then Is_List_Member
(N
)
6153 while Present
(P
) loop
6154 if not Nkind_In
(P
, N_Assignment_Statement
,
6155 N_Raise_Constraint_Error
)
6165 -- Do not give warning if we are in a conditional context
6168 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6170 if (K
= N_Loop_Statement
6171 and then Present
(Iteration_Scheme
(Parent
(N
))))
6172 or else K
= N_If_Statement
6173 or else K
= N_Elsif_Part
6174 or else K
= N_Case_Statement_Alternative
6180 -- Here warning is to be issued
6182 Set_Has_Recursive_Call
(Nam
);
6183 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6184 Error_Msg_N
("possible infinite recursion<<!", N
);
6185 Error_Msg_N
("\Storage_Error ]<<!", N
);
6191 Scop
:= Scope
(Scop
);
6192 end loop Scope_Loop
;
6196 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6198 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
6200 -- If subprogram name is a predefined operator, it was given in
6201 -- functional notation. Replace call node with operator node, so
6202 -- that actuals can be resolved appropriately.
6204 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
6205 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
6208 elsif Present
(Alias
(Nam
))
6209 and then Is_Predefined_Op
(Alias
(Nam
))
6211 Resolve_Actuals
(N
, Nam
);
6212 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
6216 -- Create a transient scope if the resulting type requires it
6218 -- There are several notable exceptions:
6220 -- a) In init procs, the transient scope overhead is not needed, and is
6221 -- even incorrect when the call is a nested initialization call for a
6222 -- component whose expansion may generate adjust calls. However, if the
6223 -- call is some other procedure call within an initialization procedure
6224 -- (for example a call to Create_Task in the init_proc of the task
6225 -- run-time record) a transient scope must be created around this call.
6227 -- b) Enumeration literal pseudo-calls need no transient scope
6229 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6230 -- functions) do not use the secondary stack even though the return
6231 -- type may be unconstrained.
6233 -- d) Calls to a build-in-place function, since such functions may
6234 -- allocate their result directly in a target object, and cases where
6235 -- the result does get allocated in the secondary stack are checked for
6236 -- within the specialized Exp_Ch6 procedures for expanding those
6237 -- build-in-place calls.
6239 -- e) If the subprogram is marked Inline_Always, then even if it returns
6240 -- an unconstrained type the call does not require use of the secondary
6241 -- stack. However, inlining will only take place if the body to inline
6242 -- is already present. It may not be available if e.g. the subprogram is
6243 -- declared in a child instance.
6245 -- If this is an initialization call for a type whose construction
6246 -- uses the secondary stack, and it is not a nested call to initialize
6247 -- a component, we do need to create a transient scope for it. We
6248 -- check for this by traversing the type in Check_Initialization_Call.
6251 and then Has_Pragma_Inline
(Nam
)
6252 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
6253 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
6257 elsif Ekind
(Nam
) = E_Enumeration_Literal
6258 or else Is_Build_In_Place_Function
(Nam
)
6259 or else Is_Intrinsic_Subprogram
(Nam
)
6263 elsif Expander_Active
6264 and then Is_Type
(Etype
(Nam
))
6265 and then Requires_Transient_Scope
(Etype
(Nam
))
6267 (not Within_Init_Proc
6269 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
6271 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6273 -- If the call appears within the bounds of a loop, it will
6274 -- be rewritten and reanalyzed, nothing left to do here.
6276 if Nkind
(N
) /= N_Function_Call
then
6280 elsif Is_Init_Proc
(Nam
)
6281 and then not Within_Init_Proc
6283 Check_Initialization_Call
(N
, Nam
);
6286 -- A protected function cannot be called within the definition of the
6287 -- enclosing protected type, unless it is part of a pre/postcondition
6288 -- on another protected operation.
6290 if Is_Protected_Type
(Scope
(Nam
))
6291 and then In_Open_Scopes
(Scope
(Nam
))
6292 and then not Has_Completion
(Scope
(Nam
))
6293 and then not In_Spec_Expression
6296 ("& cannot be called before end of protected definition", N
, Nam
);
6299 -- Propagate interpretation to actuals, and add default expressions
6302 if Present
(First_Formal
(Nam
)) then
6303 Resolve_Actuals
(N
, Nam
);
6305 -- Overloaded literals are rewritten as function calls, for purpose of
6306 -- resolution. After resolution, we can replace the call with the
6309 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
6310 Copy_Node
(Subp
, N
);
6311 Resolve_Entity_Name
(N
, Typ
);
6313 -- Avoid validation, since it is a static function call
6315 Generate_Reference
(Nam
, Subp
);
6319 -- If the subprogram is not global, then kill all saved values and
6320 -- checks. This is a bit conservative, since in many cases we could do
6321 -- better, but it is not worth the effort. Similarly, we kill constant
6322 -- values. However we do not need to do this for internal entities
6323 -- (unless they are inherited user-defined subprograms), since they
6324 -- are not in the business of molesting local values.
6326 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6327 -- kill all checks and values for calls to global subprograms. This
6328 -- takes care of the case where an access to a local subprogram is
6329 -- taken, and could be passed directly or indirectly and then called
6330 -- from almost any context.
6332 -- Note: we do not do this step till after resolving the actuals. That
6333 -- way we still take advantage of the current value information while
6334 -- scanning the actuals.
6336 -- We suppress killing values if we are processing the nodes associated
6337 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6338 -- type kills all the values as part of analyzing the code that
6339 -- initializes the dispatch tables.
6341 if Inside_Freezing_Actions
= 0
6342 and then (not Is_Library_Level_Entity
(Nam
)
6343 or else Suppress_Value_Tracking_On_Call
6344 (Nearest_Dynamic_Scope
(Current_Scope
)))
6345 and then (Comes_From_Source
(Nam
)
6346 or else (Present
(Alias
(Nam
))
6347 and then Comes_From_Source
(Alias
(Nam
))))
6349 Kill_Current_Values
;
6352 -- If we are warning about unread OUT parameters, this is the place to
6353 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6354 -- after the above call to Kill_Current_Values (since that call clears
6355 -- the Last_Assignment field of all local variables).
6357 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
6358 and then Comes_From_Source
(N
)
6359 and then In_Extended_Main_Source_Unit
(N
)
6366 F
:= First_Formal
(Nam
);
6367 A
:= First_Actual
(N
);
6368 while Present
(F
) and then Present
(A
) loop
6369 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
6370 and then Warn_On_Modified_As_Out_Parameter
(F
)
6371 and then Is_Entity_Name
(A
)
6372 and then Present
(Entity
(A
))
6373 and then Comes_From_Source
(N
)
6374 and then Safe_To_Capture_Value
(N
, Entity
(A
))
6376 Set_Last_Assignment
(Entity
(A
), A
);
6385 -- If the subprogram is a primitive operation, check whether or not
6386 -- it is a correct dispatching call.
6388 if Is_Overloadable
(Nam
)
6389 and then Is_Dispatching_Operation
(Nam
)
6391 Check_Dispatching_Call
(N
);
6393 elsif Ekind
(Nam
) /= E_Subprogram_Type
6394 and then Is_Abstract_Subprogram
(Nam
)
6395 and then not In_Instance
6397 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
6400 -- If this is a dispatching call, generate the appropriate reference,
6401 -- for better source navigation in GPS.
6403 if Is_Overloadable
(Nam
)
6404 and then Present
(Controlling_Argument
(N
))
6406 Generate_Reference
(Nam
, Subp
, 'R');
6408 -- Normal case, not a dispatching call: generate a call reference
6411 Generate_Reference
(Nam
, Subp
, 's');
6414 if Is_Intrinsic_Subprogram
(Nam
) then
6415 Check_Intrinsic_Call
(N
);
6418 -- Check for violation of restriction No_Specific_Termination_Handlers
6419 -- and warn on a potentially blocking call to Abort_Task.
6421 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
6422 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
6424 Is_RTE
(Nam
, RE_Specific_Handler
))
6426 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
6428 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
6429 Check_Potentially_Blocking_Operation
(N
);
6432 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6433 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6434 -- need to check the second argument to determine whether it is an
6435 -- absolute or relative timing event.
6437 if Restriction_Check_Required
(No_Relative_Delay
)
6438 and then Is_RTE
(Nam
, RE_Set_Handler
)
6439 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
6441 Check_Restriction
(No_Relative_Delay
, N
);
6444 -- Issue an error for a call to an eliminated subprogram. This routine
6445 -- will not perform the check if the call appears within a default
6448 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
6450 -- In formal mode, the primitive operations of a tagged type or type
6451 -- extension do not include functions that return the tagged type.
6453 if Nkind
(N
) = N_Function_Call
6454 and then Is_Tagged_Type
(Etype
(N
))
6455 and then Is_Entity_Name
(Name
(N
))
6456 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
6458 Check_SPARK_05_Restriction
("function not inherited", N
);
6461 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6462 -- class-wide and the call dispatches on result in a context that does
6463 -- not provide a tag, the call raises Program_Error.
6465 if Nkind
(N
) = N_Function_Call
6466 and then In_Instance
6467 and then Is_Generic_Actual_Type
(Typ
)
6468 and then Is_Class_Wide_Type
(Typ
)
6469 and then Has_Controlling_Result
(Nam
)
6470 and then Nkind
(Parent
(N
)) = N_Object_Declaration
6472 -- Verify that none of the formals are controlling
6475 Call_OK
: Boolean := False;
6479 F
:= First_Formal
(Nam
);
6480 while Present
(F
) loop
6481 if Is_Controlling_Formal
(F
) then
6490 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6491 Error_Msg_N
("!cannot determine tag of result<<", N
);
6492 Error_Msg_N
("\Program_Error [<<!", N
);
6494 Make_Raise_Program_Error
(Sloc
(N
),
6495 Reason
=> PE_Explicit_Raise
));
6500 -- Check for calling a function with OUT or IN OUT parameter when the
6501 -- calling context (us right now) is not Ada 2012, so does not allow
6502 -- OUT or IN OUT parameters in function calls. Functions declared in
6503 -- a predefined unit are OK, as they may be called indirectly from a
6504 -- user-declared instantiation.
6506 if Ada_Version
< Ada_2012
6507 and then Ekind
(Nam
) = E_Function
6508 and then Has_Out_Or_In_Out_Parameter
(Nam
)
6509 and then not In_Predefined_Unit
(Nam
)
6511 Error_Msg_NE
("& has at least one OUT or `IN OUT` parameter", N
, Nam
);
6512 Error_Msg_N
("\call to this function only allowed in Ada 2012", N
);
6515 -- Check the dimensions of the actuals in the call. For function calls,
6516 -- propagate the dimensions from the returned type to N.
6518 Analyze_Dimension_Call
(N
, Nam
);
6520 -- All done, evaluate call and deal with elaboration issues
6523 Check_Elab_Call
(N
);
6525 -- In GNATprove mode, expansion is disabled, but we want to inline some
6526 -- subprograms to facilitate formal verification. Indirect calls through
6527 -- a subprogram type or within a generic cannot be inlined. Inlining is
6528 -- performed only for calls subject to SPARK_Mode on.
6531 and then SPARK_Mode
= On
6532 and then Is_Overloadable
(Nam
)
6533 and then not Inside_A_Generic
6535 Nam_UA
:= Ultimate_Alias
(Nam
);
6536 Nam_Decl
:= Unit_Declaration_Node
(Nam_UA
);
6538 if Nkind
(Nam_Decl
) = N_Subprogram_Declaration
then
6539 Body_Id
:= Corresponding_Body
(Nam_Decl
);
6541 -- Nothing to do if the subprogram is not eligible for inlining in
6544 if not Is_Inlined_Always
(Nam_UA
)
6545 or else not Can_Be_Inlined_In_GNATprove_Mode
(Nam_UA
, Body_Id
)
6549 -- Calls cannot be inlined inside assertions, as GNATprove treats
6550 -- assertions as logic expressions.
6552 elsif In_Assertion_Expr
/= 0 then
6554 ("cannot inline & (in assertion expression)?", N
, Nam_UA
);
6556 -- Calls cannot be inlined inside default expressions
6558 elsif In_Default_Expr
then
6560 ("cannot inline & (in default expression)?", N
, Nam_UA
);
6562 -- Inlining should not be performed during pre-analysis
6564 elsif Full_Analysis
then
6566 -- With the one-pass inlining technique, a call cannot be
6567 -- inlined if the corresponding body has not been seen yet.
6569 if No
(Body_Id
) then
6571 ("cannot inline & (body not seen yet)?", N
, Nam_UA
);
6573 -- Nothing to do if there is no body to inline, indicating that
6574 -- the subprogram is not suitable for inlining in GNATprove
6577 elsif No
(Body_To_Inline
(Nam_Decl
)) then
6580 -- Do not inline calls inside expression functions, as this
6581 -- would prevent interpreting them as logical formulas in
6584 elsif Present
(Current_Subprogram
)
6586 Is_Expression_Function_Or_Completion
(Current_Subprogram
)
6589 ("cannot inline & (inside expression function)?",
6592 -- Calls cannot be inlined inside potentially unevaluated
6593 -- expressions, as this would create complex actions inside
6594 -- expressions, that are not handled by GNATprove.
6596 elsif Is_Potentially_Unevaluated
(N
) then
6598 ("cannot inline & (in potentially unevaluated context)?",
6601 -- Otherwise, inline the call
6604 Expand_Inlined_Call
(N
, Nam_UA
, Nam
);
6610 Warn_On_Overlapping_Actuals
(Nam
, N
);
6613 -----------------------------
6614 -- Resolve_Case_Expression --
6615 -----------------------------
6617 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6620 Alt_Typ
: Entity_Id
;
6624 Alt
:= First
(Alternatives
(N
));
6625 while Present
(Alt
) loop
6626 Alt_Expr
:= Expression
(Alt
);
6627 Resolve
(Alt_Expr
, Typ
);
6628 Alt_Typ
:= Etype
(Alt_Expr
);
6630 -- When the expression is of a scalar subtype different from the
6631 -- result subtype, then insert a conversion to ensure the generation
6632 -- of a constraint check.
6634 if Is_Scalar_Type
(Alt_Typ
) and then Alt_Typ
/= Typ
then
6635 Rewrite
(Alt_Expr
, Convert_To
(Typ
, Alt_Expr
));
6636 Analyze_And_Resolve
(Alt_Expr
, Typ
);
6642 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6643 -- dynamically tagged must be known statically.
6645 if Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
6646 Alt
:= First
(Alternatives
(N
));
6647 Is_Dyn
:= Is_Dynamically_Tagged
(Expression
(Alt
));
6649 while Present
(Alt
) loop
6650 if Is_Dynamically_Tagged
(Expression
(Alt
)) /= Is_Dyn
then
6652 ("all or none of the dependent expressions can be "
6653 & "dynamically tagged", N
);
6661 Eval_Case_Expression
(N
);
6662 end Resolve_Case_Expression
;
6664 -------------------------------
6665 -- Resolve_Character_Literal --
6666 -------------------------------
6668 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6669 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6673 -- Verify that the character does belong to the type of the context
6675 Set_Etype
(N
, B_Typ
);
6676 Eval_Character_Literal
(N
);
6678 -- Wide_Wide_Character literals must always be defined, since the set
6679 -- of wide wide character literals is complete, i.e. if a character
6680 -- literal is accepted by the parser, then it is OK for wide wide
6681 -- character (out of range character literals are rejected).
6683 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6686 -- Always accept character literal for type Any_Character, which
6687 -- occurs in error situations and in comparisons of literals, both
6688 -- of which should accept all literals.
6690 elsif B_Typ
= Any_Character
then
6693 -- For Standard.Character or a type derived from it, check that the
6694 -- literal is in range.
6696 elsif Root_Type
(B_Typ
) = Standard_Character
then
6697 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6701 -- For Standard.Wide_Character or a type derived from it, check that the
6702 -- literal is in range.
6704 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6705 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6709 -- For Standard.Wide_Wide_Character or a type derived from it, we
6710 -- know the literal is in range, since the parser checked.
6712 elsif Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6715 -- If the entity is already set, this has already been resolved in a
6716 -- generic context, or comes from expansion. Nothing else to do.
6718 elsif Present
(Entity
(N
)) then
6721 -- Otherwise we have a user defined character type, and we can use the
6722 -- standard visibility mechanisms to locate the referenced entity.
6725 C
:= Current_Entity
(N
);
6726 while Present
(C
) loop
6727 if Etype
(C
) = B_Typ
then
6728 Set_Entity_With_Checks
(N
, C
);
6729 Generate_Reference
(C
, N
);
6737 -- If we fall through, then the literal does not match any of the
6738 -- entries of the enumeration type. This isn't just a constraint error
6739 -- situation, it is an illegality (see RM 4.2).
6742 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6743 end Resolve_Character_Literal
;
6745 ---------------------------
6746 -- Resolve_Comparison_Op --
6747 ---------------------------
6749 -- Context requires a boolean type, and plays no role in resolution.
6750 -- Processing identical to that for equality operators. The result type is
6751 -- the base type, which matters when pathological subtypes of booleans with
6752 -- limited ranges are used.
6754 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6755 L
: constant Node_Id
:= Left_Opnd
(N
);
6756 R
: constant Node_Id
:= Right_Opnd
(N
);
6760 -- If this is an intrinsic operation which is not predefined, use the
6761 -- types of its declared arguments to resolve the possibly overloaded
6762 -- operands. Otherwise the operands are unambiguous and specify the
6765 if Scope
(Entity
(N
)) /= Standard_Standard
then
6766 T
:= Etype
(First_Entity
(Entity
(N
)));
6769 T
:= Find_Unique_Type
(L
, R
);
6771 if T
= Any_Fixed
then
6772 T
:= Unique_Fixed_Point_Type
(L
);
6776 Set_Etype
(N
, Base_Type
(Typ
));
6777 Generate_Reference
(T
, N
, ' ');
6779 -- Skip remaining processing if already set to Any_Type
6781 if T
= Any_Type
then
6785 -- Deal with other error cases
6787 if T
= Any_String
or else
6788 T
= Any_Composite
or else
6791 if T
= Any_Character
then
6792 Ambiguous_Character
(L
);
6794 Error_Msg_N
("ambiguous operands for comparison", N
);
6797 Set_Etype
(N
, Any_Type
);
6801 -- Resolve the operands if types OK
6805 Check_Unset_Reference
(L
);
6806 Check_Unset_Reference
(R
);
6807 Generate_Operator_Reference
(N
, T
);
6808 Check_Low_Bound_Tested
(N
);
6810 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6811 -- types or array types except String.
6813 if Is_Boolean_Type
(T
) then
6814 Check_SPARK_05_Restriction
6815 ("comparison is not defined on Boolean type", N
);
6817 elsif Is_Array_Type
(T
)
6818 and then Base_Type
(T
) /= Standard_String
6820 Check_SPARK_05_Restriction
6821 ("comparison is not defined on array types other than String", N
);
6824 -- Check comparison on unordered enumeration
6826 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6827 Error_Msg_Sloc
:= Sloc
(Etype
(L
));
6829 ("comparison on unordered enumeration type& declared#?U?",
6833 -- Evaluate the relation (note we do this after the above check since
6834 -- this Eval call may change N to True/False.
6836 Analyze_Dimension
(N
);
6837 Eval_Relational_Op
(N
);
6838 end Resolve_Comparison_Op
;
6840 -----------------------------------------
6841 -- Resolve_Discrete_Subtype_Indication --
6842 -----------------------------------------
6844 procedure Resolve_Discrete_Subtype_Indication
6852 Analyze
(Subtype_Mark
(N
));
6853 S
:= Entity
(Subtype_Mark
(N
));
6855 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6856 Error_Msg_N
("expect range constraint for discrete type", N
);
6857 Set_Etype
(N
, Any_Type
);
6860 R
:= Range_Expression
(Constraint
(N
));
6868 if Base_Type
(S
) /= Base_Type
(Typ
) then
6870 ("expect subtype of }", N
, First_Subtype
(Typ
));
6872 -- Rewrite the constraint as a range of Typ
6873 -- to allow compilation to proceed further.
6876 Rewrite
(Low_Bound
(R
),
6877 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6878 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6879 Attribute_Name
=> Name_First
));
6880 Rewrite
(High_Bound
(R
),
6881 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
6882 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6883 Attribute_Name
=> Name_First
));
6887 Set_Etype
(N
, Etype
(R
));
6889 -- Additionally, we must check that the bounds are compatible
6890 -- with the given subtype, which might be different from the
6891 -- type of the context.
6893 Apply_Range_Check
(R
, S
);
6895 -- ??? If the above check statically detects a Constraint_Error
6896 -- it replaces the offending bound(s) of the range R with a
6897 -- Constraint_Error node. When the itype which uses these bounds
6898 -- is frozen the resulting call to Duplicate_Subexpr generates
6899 -- a new temporary for the bounds.
6901 -- Unfortunately there are other itypes that are also made depend
6902 -- on these bounds, so when Duplicate_Subexpr is called they get
6903 -- a forward reference to the newly created temporaries and Gigi
6904 -- aborts on such forward references. This is probably sign of a
6905 -- more fundamental problem somewhere else in either the order of
6906 -- itype freezing or the way certain itypes are constructed.
6908 -- To get around this problem we call Remove_Side_Effects right
6909 -- away if either bounds of R are a Constraint_Error.
6912 L
: constant Node_Id
:= Low_Bound
(R
);
6913 H
: constant Node_Id
:= High_Bound
(R
);
6916 if Nkind
(L
) = N_Raise_Constraint_Error
then
6917 Remove_Side_Effects
(L
);
6920 if Nkind
(H
) = N_Raise_Constraint_Error
then
6921 Remove_Side_Effects
(H
);
6925 Check_Unset_Reference
(Low_Bound
(R
));
6926 Check_Unset_Reference
(High_Bound
(R
));
6929 end Resolve_Discrete_Subtype_Indication
;
6931 -------------------------
6932 -- Resolve_Entity_Name --
6933 -------------------------
6935 -- Used to resolve identifiers and expanded names
6937 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
6938 function Is_Assignment_Or_Object_Expression
6940 Expr
: Node_Id
) return Boolean;
6941 -- Determine whether node Context denotes an assignment statement or an
6942 -- object declaration whose expression is node Expr.
6944 ----------------------------------------
6945 -- Is_Assignment_Or_Object_Expression --
6946 ----------------------------------------
6948 function Is_Assignment_Or_Object_Expression
6950 Expr
: Node_Id
) return Boolean
6953 if Nkind_In
(Context
, N_Assignment_Statement
,
6954 N_Object_Declaration
)
6955 and then Expression
(Context
) = Expr
6959 -- Check whether a construct that yields a name is the expression of
6960 -- an assignment statement or an object declaration.
6962 elsif (Nkind_In
(Context
, N_Attribute_Reference
,
6963 N_Explicit_Dereference
,
6964 N_Indexed_Component
,
6965 N_Selected_Component
,
6967 and then Prefix
(Context
) = Expr
)
6969 (Nkind_In
(Context
, N_Type_Conversion
,
6970 N_Unchecked_Type_Conversion
)
6971 and then Expression
(Context
) = Expr
)
6974 Is_Assignment_Or_Object_Expression
6975 (Context
=> Parent
(Context
),
6978 -- Otherwise the context is not an assignment statement or an object
6984 end Is_Assignment_Or_Object_Expression
;
6988 E
: constant Entity_Id
:= Entity
(N
);
6991 -- Start of processing for Resolve_Entity_Name
6994 -- If garbage from errors, set to Any_Type and return
6996 if No
(E
) and then Total_Errors_Detected
/= 0 then
6997 Set_Etype
(N
, Any_Type
);
7001 -- Replace named numbers by corresponding literals. Note that this is
7002 -- the one case where Resolve_Entity_Name must reset the Etype, since
7003 -- it is currently marked as universal.
7005 if Ekind
(E
) = E_Named_Integer
then
7007 Eval_Named_Integer
(N
);
7009 elsif Ekind
(E
) = E_Named_Real
then
7011 Eval_Named_Real
(N
);
7013 -- For enumeration literals, we need to make sure that a proper style
7014 -- check is done, since such literals are overloaded, and thus we did
7015 -- not do a style check during the first phase of analysis.
7017 elsif Ekind
(E
) = E_Enumeration_Literal
then
7018 Set_Entity_With_Checks
(N
, E
);
7019 Eval_Entity_Name
(N
);
7021 -- Case of (sub)type name appearing in a context where an expression
7022 -- is expected. This is legal if occurrence is a current instance.
7023 -- See RM 8.6 (17/3).
7025 elsif Is_Type
(E
) then
7026 if Is_Current_Instance
(N
) then
7029 -- Any other use is an error
7033 ("invalid use of subtype mark in expression or call", N
);
7036 -- Check discriminant use if entity is discriminant in current scope,
7037 -- i.e. discriminant of record or concurrent type currently being
7038 -- analyzed. Uses in corresponding body are unrestricted.
7040 elsif Ekind
(E
) = E_Discriminant
7041 and then Scope
(E
) = Current_Scope
7042 and then not Has_Completion
(Current_Scope
)
7044 Check_Discriminant_Use
(N
);
7046 -- A parameterless generic function cannot appear in a context that
7047 -- requires resolution.
7049 elsif Ekind
(E
) = E_Generic_Function
then
7050 Error_Msg_N
("illegal use of generic function", N
);
7052 -- In Ada 83 an OUT parameter cannot be read
7054 elsif Ekind
(E
) = E_Out_Parameter
7055 and then (Nkind
(Parent
(N
)) in N_Op
7056 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
7057 or else Is_Assignment_Or_Object_Expression
7058 (Context
=> Parent
(N
),
7061 if Ada_Version
= Ada_83
then
7062 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
7065 -- In all other cases, just do the possible static evaluation
7068 -- A deferred constant that appears in an expression must have a
7069 -- completion, unless it has been removed by in-place expansion of
7070 -- an aggregate. A constant that is a renaming does not need
7073 if Ekind
(E
) = E_Constant
7074 and then Comes_From_Source
(E
)
7075 and then No
(Constant_Value
(E
))
7076 and then Is_Frozen
(Etype
(E
))
7077 and then not In_Spec_Expression
7078 and then not Is_Imported
(E
)
7079 and then Nkind
(Parent
(E
)) /= N_Object_Renaming_Declaration
7081 if No_Initialization
(Parent
(E
))
7082 or else (Present
(Full_View
(E
))
7083 and then No_Initialization
(Parent
(Full_View
(E
))))
7088 ("deferred constant is frozen before completion", N
);
7092 Eval_Entity_Name
(N
);
7097 -- When the entity appears in a parameter association, retrieve the
7098 -- related subprogram call.
7100 if Nkind
(Par
) = N_Parameter_Association
then
7101 Par
:= Parent
(Par
);
7104 if Comes_From_Source
(N
) then
7106 -- The following checks are only relevant when SPARK_Mode is on as
7107 -- they are not standard Ada legality rules.
7109 if SPARK_Mode
= On
then
7111 -- An effectively volatile object subject to enabled properties
7112 -- Async_Writers or Effective_Reads must appear in non-interfering
7113 -- context (SPARK RM 7.1.3(12)).
7116 and then Is_Effectively_Volatile
(E
)
7117 and then (Async_Writers_Enabled
(E
)
7118 or else Effective_Reads_Enabled
(E
))
7119 and then not Is_OK_Volatile_Context
(Par
, N
)
7122 ("volatile object cannot appear in this context "
7123 & "(SPARK RM 7.1.3(12))", N
);
7126 -- Check for possible elaboration issues with respect to reads of
7127 -- variables. The act of renaming the variable is not considered a
7128 -- read as it simply establishes an alias.
7130 if Ekind
(E
) = E_Variable
7131 and then Dynamic_Elaboration_Checks
7132 and then Nkind
(Par
) /= N_Object_Renaming_Declaration
7134 Check_Elab_Call
(N
);
7137 -- The variable may eventually become a constituent of a single
7138 -- protected/task type. Record the reference now and verify its
7139 -- legality when analyzing the contract of the variable
7142 if Ekind
(E
) = E_Variable
then
7143 Record_Possible_Part_Of_Reference
(E
, N
);
7147 -- A Ghost entity must appear in a specific context
7149 if Is_Ghost_Entity
(E
) then
7150 Check_Ghost_Context
(E
, N
);
7153 end Resolve_Entity_Name
;
7159 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
7160 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7168 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
7169 -- If the bounds of the entry family being called depend on task
7170 -- discriminants, build a new index subtype where a discriminant is
7171 -- replaced with the value of the discriminant of the target task.
7172 -- The target task is the prefix of the entry name in the call.
7174 -----------------------
7175 -- Actual_Index_Type --
7176 -----------------------
7178 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
7179 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
7180 Tsk
: constant Entity_Id
:= Scope
(E
);
7181 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
7182 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
7185 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
7186 -- If the bound is given by a discriminant, replace with a reference
7187 -- to the discriminant of the same name in the target task. If the
7188 -- entry name is the target of a requeue statement and the entry is
7189 -- in the current protected object, the bound to be used is the
7190 -- discriminal of the object (see Apply_Range_Checks for details of
7191 -- the transformation).
7193 -----------------------------
7194 -- Actual_Discriminant_Ref --
7195 -----------------------------
7197 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
7198 Typ
: constant Entity_Id
:= Etype
(Bound
);
7202 Remove_Side_Effects
(Bound
);
7204 if not Is_Entity_Name
(Bound
)
7205 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
7209 elsif Is_Protected_Type
(Tsk
)
7210 and then In_Open_Scopes
(Tsk
)
7211 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
7213 -- Note: here Bound denotes a discriminant of the corresponding
7214 -- record type tskV, whose discriminal is a formal of the
7215 -- init-proc tskVIP. What we want is the body discriminal,
7216 -- which is associated to the discriminant of the original
7217 -- concurrent type tsk.
7219 return New_Occurrence_Of
7220 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
7224 Make_Selected_Component
(Loc
,
7225 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
7226 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
7231 end Actual_Discriminant_Ref
;
7233 -- Start of processing for Actual_Index_Type
7236 if not Has_Discriminants
(Tsk
)
7237 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
7239 return Entry_Index_Type
(E
);
7242 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
7243 Set_Etype
(New_T
, Base_Type
(Typ
));
7244 Set_Size_Info
(New_T
, Typ
);
7245 Set_RM_Size
(New_T
, RM_Size
(Typ
));
7246 Set_Scalar_Range
(New_T
,
7247 Make_Range
(Sloc
(Entry_Name
),
7248 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
7249 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
7253 end Actual_Index_Type
;
7255 -- Start of processing for Resolve_Entry
7258 -- Find name of entry being called, and resolve prefix of name with its
7259 -- own type. The prefix can be overloaded, and the name and signature of
7260 -- the entry must be taken into account.
7262 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7264 -- Case of dealing with entry family within the current tasks
7266 E_Name
:= Prefix
(Entry_Name
);
7269 E_Name
:= Entry_Name
;
7272 if Is_Entity_Name
(E_Name
) then
7274 -- Entry call to an entry (or entry family) in the current task. This
7275 -- is legal even though the task will deadlock. Rewrite as call to
7278 -- This can also be a call to an entry in an enclosing task. If this
7279 -- is a single task, we have to retrieve its name, because the scope
7280 -- of the entry is the task type, not the object. If the enclosing
7281 -- task is a task type, the identity of the task is given by its own
7284 -- Finally this can be a requeue on an entry of the same task or
7285 -- protected object.
7287 S
:= Scope
(Entity
(E_Name
));
7289 for J
in reverse 0 .. Scope_Stack
.Last
loop
7290 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
7291 and then not Comes_From_Source
(S
)
7293 -- S is an enclosing task or protected object. The concurrent
7294 -- declaration has been converted into a type declaration, and
7295 -- the object itself has an object declaration that follows
7296 -- the type in the same declarative part.
7298 Tsk
:= Next_Entity
(S
);
7299 while Etype
(Tsk
) /= S
loop
7306 elsif S
= Scope_Stack
.Table
(J
).Entity
then
7308 -- Call to current task. Will be transformed into call to Self
7316 Make_Selected_Component
(Loc
,
7317 Prefix
=> New_Occurrence_Of
(S
, Loc
),
7319 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
7320 Rewrite
(E_Name
, New_N
);
7323 elsif Nkind
(Entry_Name
) = N_Selected_Component
7324 and then Is_Overloaded
(Prefix
(Entry_Name
))
7326 -- Use the entry name (which must be unique at this point) to find
7327 -- the prefix that returns the corresponding task/protected type.
7330 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
7331 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
7336 Get_First_Interp
(Pref
, I
, It
);
7337 while Present
(It
.Typ
) loop
7338 if Scope
(Ent
) = It
.Typ
then
7339 Set_Etype
(Pref
, It
.Typ
);
7343 Get_Next_Interp
(I
, It
);
7348 if Nkind
(Entry_Name
) = N_Selected_Component
then
7349 Resolve
(Prefix
(Entry_Name
));
7351 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7352 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7353 Resolve
(Prefix
(Prefix
(Entry_Name
)));
7354 Index
:= First
(Expressions
(Entry_Name
));
7355 Resolve
(Index
, Entry_Index_Type
(Nam
));
7357 -- Up to this point the expression could have been the actual in a
7358 -- simple entry call, and be given by a named association.
7360 if Nkind
(Index
) = N_Parameter_Association
then
7361 Error_Msg_N
("expect expression for entry index", Index
);
7363 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
7368 ------------------------
7369 -- Resolve_Entry_Call --
7370 ------------------------
7372 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
7373 Entry_Name
: constant Node_Id
:= Name
(N
);
7374 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7376 First_Named
: Node_Id
;
7383 -- We kill all checks here, because it does not seem worth the effort to
7384 -- do anything better, an entry call is a big operation.
7388 -- Processing of the name is similar for entry calls and protected
7389 -- operation calls. Once the entity is determined, we can complete
7390 -- the resolution of the actuals.
7392 -- The selector may be overloaded, in the case of a protected object
7393 -- with overloaded functions. The type of the context is used for
7396 if Nkind
(Entry_Name
) = N_Selected_Component
7397 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
7398 and then Typ
/= Standard_Void_Type
7405 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
7406 while Present
(It
.Typ
) loop
7407 if Covers
(Typ
, It
.Typ
) then
7408 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
7409 Set_Etype
(Entry_Name
, It
.Typ
);
7411 Generate_Reference
(It
.Typ
, N
, ' ');
7414 Get_Next_Interp
(I
, It
);
7419 Resolve_Entry
(Entry_Name
);
7421 if Nkind
(Entry_Name
) = N_Selected_Component
then
7423 -- Simple entry call
7425 Nam
:= Entity
(Selector_Name
(Entry_Name
));
7426 Obj
:= Prefix
(Entry_Name
);
7427 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
7429 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7431 -- Call to member of entry family
7433 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7434 Obj
:= Prefix
(Prefix
(Entry_Name
));
7435 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
7438 -- We cannot in general check the maximum depth of protected entry calls
7439 -- at compile time. But we can tell that any protected entry call at all
7440 -- violates a specified nesting depth of zero.
7442 if Is_Protected_Type
(Scope
(Nam
)) then
7443 Check_Restriction
(Max_Entry_Queue_Length
, N
);
7446 -- Use context type to disambiguate a protected function that can be
7447 -- called without actuals and that returns an array type, and where the
7448 -- argument list may be an indexing of the returned value.
7450 if Ekind
(Nam
) = E_Function
7451 and then Needs_No_Actuals
(Nam
)
7452 and then Present
(Parameter_Associations
(N
))
7454 ((Is_Array_Type
(Etype
(Nam
))
7455 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
7457 or else (Is_Access_Type
(Etype
(Nam
))
7458 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
7462 Component_Type
(Designated_Type
(Etype
(Nam
))))))
7465 Index_Node
: Node_Id
;
7469 Make_Indexed_Component
(Loc
,
7471 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
7472 Expressions
=> Parameter_Associations
(N
));
7474 -- Since we are correcting a node classification error made by the
7475 -- parser, we call Replace rather than Rewrite.
7477 Replace
(N
, Index_Node
);
7478 Set_Etype
(Prefix
(N
), Etype
(Nam
));
7480 Resolve_Indexed_Component
(N
, Typ
);
7485 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
7486 and then Present
(Contract_Wrapper
(Nam
))
7487 and then Current_Scope
/= Contract_Wrapper
(Nam
)
7490 -- Note the entity being called before rewriting the call, so that
7491 -- it appears used at this point.
7493 Generate_Reference
(Nam
, Entry_Name
, 'r');
7495 -- Rewrite as call to the precondition wrapper, adding the task
7496 -- object to the list of actuals. If the call is to a member of an
7497 -- entry family, include the index as well.
7501 New_Actuals
: List_Id
;
7504 New_Actuals
:= New_List
(Obj
);
7506 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7507 Append_To
(New_Actuals
,
7508 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
7511 Append_List
(Parameter_Associations
(N
), New_Actuals
);
7513 Make_Procedure_Call_Statement
(Loc
,
7515 New_Occurrence_Of
(Contract_Wrapper
(Nam
), Loc
),
7516 Parameter_Associations
=> New_Actuals
);
7517 Rewrite
(N
, New_Call
);
7519 -- Preanalyze and resolve new call. Current procedure is called
7520 -- from Resolve_Call, after which expansion will take place.
7522 Preanalyze_And_Resolve
(N
);
7527 -- The operation name may have been overloaded. Order the actuals
7528 -- according to the formals of the resolved entity, and set the return
7529 -- type to that of the operation.
7532 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
7533 pragma Assert
(Norm_OK
);
7534 Set_Etype
(N
, Etype
(Nam
));
7536 -- Reset the Is_Overloaded flag, since resolution is now completed
7538 -- Simple entry call
7540 if Nkind
(Entry_Name
) = N_Selected_Component
then
7541 Set_Is_Overloaded
(Selector_Name
(Entry_Name
), False);
7543 -- Call to a member of an entry family
7545 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7546 Set_Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)), False);
7550 Resolve_Actuals
(N
, Nam
);
7551 Check_Internal_Protected_Use
(N
, Nam
);
7553 -- Create a call reference to the entry
7555 Generate_Reference
(Nam
, Entry_Name
, 's');
7557 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
7558 Check_Potentially_Blocking_Operation
(N
);
7561 -- Verify that a procedure call cannot masquerade as an entry
7562 -- call where an entry call is expected.
7564 if Ekind
(Nam
) = E_Procedure
then
7565 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
7566 and then N
= Entry_Call_Statement
(Parent
(N
))
7568 Error_Msg_N
("entry call required in select statement", N
);
7570 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
7571 and then N
= Triggering_Statement
(Parent
(N
))
7573 Error_Msg_N
("triggering statement cannot be procedure call", N
);
7575 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
7576 and then not In_Open_Scopes
(Scope
(Nam
))
7578 Error_Msg_N
("task has no entry with this name", Entry_Name
);
7582 -- After resolution, entry calls and protected procedure calls are
7583 -- changed into entry calls, for expansion. The structure of the node
7584 -- does not change, so it can safely be done in place. Protected
7585 -- function calls must keep their structure because they are
7588 if Ekind
(Nam
) /= E_Function
then
7590 -- A protected operation that is not a function may modify the
7591 -- corresponding object, and cannot apply to a constant. If this
7592 -- is an internal call, the prefix is the type itself.
7594 if Is_Protected_Type
(Scope
(Nam
))
7595 and then not Is_Variable
(Obj
)
7596 and then (not Is_Entity_Name
(Obj
)
7597 or else not Is_Type
(Entity
(Obj
)))
7600 ("prefix of protected procedure or entry call must be variable",
7604 Actuals
:= Parameter_Associations
(N
);
7605 First_Named
:= First_Named_Actual
(N
);
7608 Make_Entry_Call_Statement
(Loc
,
7610 Parameter_Associations
=> Actuals
));
7612 Set_First_Named_Actual
(N
, First_Named
);
7613 Set_Analyzed
(N
, True);
7615 -- Protected functions can return on the secondary stack, in which
7616 -- case we must trigger the transient scope mechanism.
7618 elsif Expander_Active
7619 and then Requires_Transient_Scope
(Etype
(Nam
))
7621 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
7623 end Resolve_Entry_Call
;
7625 -------------------------
7626 -- Resolve_Equality_Op --
7627 -------------------------
7629 -- Both arguments must have the same type, and the boolean context does
7630 -- not participate in the resolution. The first pass verifies that the
7631 -- interpretation is not ambiguous, and the type of the left argument is
7632 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7633 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7634 -- though they carry a single (universal) type. Diagnose this case here.
7636 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7637 L
: constant Node_Id
:= Left_Opnd
(N
);
7638 R
: constant Node_Id
:= Right_Opnd
(N
);
7639 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
7641 procedure Check_If_Expression
(Cond
: Node_Id
);
7642 -- The resolution rule for if expressions requires that each such must
7643 -- have a unique type. This means that if several dependent expressions
7644 -- are of a non-null anonymous access type, and the context does not
7645 -- impose an expected type (as can be the case in an equality operation)
7646 -- the expression must be rejected.
7648 procedure Explain_Redundancy
(N
: Node_Id
);
7649 -- Attempt to explain the nature of a redundant comparison with True. If
7650 -- the expression N is too complex, this routine issues a general error
7653 function Find_Unique_Access_Type
return Entity_Id
;
7654 -- In the case of allocators and access attributes, the context must
7655 -- provide an indication of the specific access type to be used. If
7656 -- one operand is of such a "generic" access type, check whether there
7657 -- is a specific visible access type that has the same designated type.
7658 -- This is semantically dubious, and of no interest to any real code,
7659 -- but c48008a makes it all worthwhile.
7661 -------------------------
7662 -- Check_If_Expression --
7663 -------------------------
7665 procedure Check_If_Expression
(Cond
: Node_Id
) is
7666 Then_Expr
: Node_Id
;
7667 Else_Expr
: Node_Id
;
7670 if Nkind
(Cond
) = N_If_Expression
then
7671 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
7672 Else_Expr
:= Next
(Then_Expr
);
7674 if Nkind
(Then_Expr
) /= N_Null
7675 and then Nkind
(Else_Expr
) /= N_Null
7677 Error_Msg_N
("cannot determine type of if expression", Cond
);
7680 end Check_If_Expression
;
7682 ------------------------
7683 -- Explain_Redundancy --
7684 ------------------------
7686 procedure Explain_Redundancy
(N
: Node_Id
) is
7694 -- Strip the operand down to an entity
7697 if Nkind
(Val
) = N_Selected_Component
then
7698 Val
:= Selector_Name
(Val
);
7704 -- The construct denotes an entity
7706 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
7707 Val_Id
:= Entity
(Val
);
7709 -- Do not generate an error message when the comparison is done
7710 -- against the enumeration literal Standard.True.
7712 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
7714 -- Build a customized error message
7717 Add_Str_To_Name_Buffer
("?r?");
7719 if Ekind
(Val_Id
) = E_Component
then
7720 Add_Str_To_Name_Buffer
("component ");
7722 elsif Ekind
(Val_Id
) = E_Constant
then
7723 Add_Str_To_Name_Buffer
("constant ");
7725 elsif Ekind
(Val_Id
) = E_Discriminant
then
7726 Add_Str_To_Name_Buffer
("discriminant ");
7728 elsif Is_Formal
(Val_Id
) then
7729 Add_Str_To_Name_Buffer
("parameter ");
7731 elsif Ekind
(Val_Id
) = E_Variable
then
7732 Add_Str_To_Name_Buffer
("variable ");
7735 Add_Str_To_Name_Buffer
("& is always True!");
7738 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
7741 -- The construct is too complex to disect, issue a general message
7744 Error_Msg_N
("?r?expression is always True!", Val
);
7746 end Explain_Redundancy
;
7748 -----------------------------
7749 -- Find_Unique_Access_Type --
7750 -----------------------------
7752 function Find_Unique_Access_Type
return Entity_Id
is
7758 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
7759 E_Access_Attribute_Type
)
7761 Acc
:= Designated_Type
(Etype
(R
));
7763 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
7764 E_Access_Attribute_Type
)
7766 Acc
:= Designated_Type
(Etype
(L
));
7772 while S
/= Standard_Standard
loop
7773 E
:= First_Entity
(S
);
7774 while Present
(E
) loop
7776 and then Is_Access_Type
(E
)
7777 and then Ekind
(E
) /= E_Allocator_Type
7778 and then Designated_Type
(E
) = Base_Type
(Acc
)
7790 end Find_Unique_Access_Type
;
7792 -- Start of processing for Resolve_Equality_Op
7795 Set_Etype
(N
, Base_Type
(Typ
));
7796 Generate_Reference
(T
, N
, ' ');
7798 if T
= Any_Fixed
then
7799 T
:= Unique_Fixed_Point_Type
(L
);
7802 if T
/= Any_Type
then
7803 if T
= Any_String
or else
7804 T
= Any_Composite
or else
7807 if T
= Any_Character
then
7808 Ambiguous_Character
(L
);
7810 Error_Msg_N
("ambiguous operands for equality", N
);
7813 Set_Etype
(N
, Any_Type
);
7816 elsif T
= Any_Access
7817 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7819 T
:= Find_Unique_Access_Type
;
7822 Error_Msg_N
("ambiguous operands for equality", N
);
7823 Set_Etype
(N
, Any_Type
);
7827 -- If expressions must have a single type, and if the context does
7828 -- not impose one the dependent expressions cannot be anonymous
7831 -- Why no similar processing for case expressions???
7833 elsif Ada_Version
>= Ada_2012
7834 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
7835 E_Anonymous_Access_Subprogram_Type
)
7836 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
7837 E_Anonymous_Access_Subprogram_Type
)
7839 Check_If_Expression
(L
);
7840 Check_If_Expression
(R
);
7846 -- In SPARK, equality operators = and /= for array types other than
7847 -- String are only defined when, for each index position, the
7848 -- operands have equal static bounds.
7850 if Is_Array_Type
(T
) then
7852 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7853 -- operation if not needed.
7855 if Restriction_Check_Required
(SPARK_05
)
7856 and then Base_Type
(T
) /= Standard_String
7857 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7858 and then Etype
(L
) /= Any_Composite
-- or else L in error
7859 and then Etype
(R
) /= Any_Composite
-- or else R in error
7860 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
7862 Check_SPARK_05_Restriction
7863 ("array types should have matching static bounds", N
);
7867 -- If the unique type is a class-wide type then it will be expanded
7868 -- into a dispatching call to the predefined primitive. Therefore we
7869 -- check here for potential violation of such restriction.
7871 if Is_Class_Wide_Type
(T
) then
7872 Check_Restriction
(No_Dispatching_Calls
, N
);
7875 if Warn_On_Redundant_Constructs
7876 and then Comes_From_Source
(N
)
7877 and then Comes_From_Source
(R
)
7878 and then Is_Entity_Name
(R
)
7879 and then Entity
(R
) = Standard_True
7881 Error_Msg_N
-- CODEFIX
7882 ("?r?comparison with True is redundant!", N
);
7883 Explain_Redundancy
(Original_Node
(R
));
7886 Check_Unset_Reference
(L
);
7887 Check_Unset_Reference
(R
);
7888 Generate_Operator_Reference
(N
, T
);
7889 Check_Low_Bound_Tested
(N
);
7891 -- If this is an inequality, it may be the implicit inequality
7892 -- created for a user-defined operation, in which case the corres-
7893 -- ponding equality operation is not intrinsic, and the operation
7894 -- cannot be constant-folded. Else fold.
7896 if Nkind
(N
) = N_Op_Eq
7897 or else Comes_From_Source
(Entity
(N
))
7898 or else Ekind
(Entity
(N
)) = E_Operator
7899 or else Is_Intrinsic_Subprogram
7900 (Corresponding_Equality
(Entity
(N
)))
7902 Analyze_Dimension
(N
);
7903 Eval_Relational_Op
(N
);
7905 elsif Nkind
(N
) = N_Op_Ne
7906 and then Is_Abstract_Subprogram
(Entity
(N
))
7908 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
7911 -- Ada 2005: If one operand is an anonymous access type, convert the
7912 -- other operand to it, to ensure that the underlying types match in
7913 -- the back-end. Same for access_to_subprogram, and the conversion
7914 -- verifies that the types are subtype conformant.
7916 -- We apply the same conversion in the case one of the operands is a
7917 -- private subtype of the type of the other.
7919 -- Why the Expander_Active test here ???
7923 (Ekind_In
(T
, E_Anonymous_Access_Type
,
7924 E_Anonymous_Access_Subprogram_Type
)
7925 or else Is_Private_Type
(T
))
7927 if Etype
(L
) /= T
then
7929 Make_Unchecked_Type_Conversion
(Sloc
(L
),
7930 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
7931 Expression
=> Relocate_Node
(L
)));
7932 Analyze_And_Resolve
(L
, T
);
7935 if (Etype
(R
)) /= T
then
7937 Make_Unchecked_Type_Conversion
(Sloc
(R
),
7938 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
7939 Expression
=> Relocate_Node
(R
)));
7940 Analyze_And_Resolve
(R
, T
);
7944 end Resolve_Equality_Op
;
7946 ----------------------------------
7947 -- Resolve_Explicit_Dereference --
7948 ----------------------------------
7950 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
7951 Loc
: constant Source_Ptr
:= Sloc
(N
);
7953 P
: constant Node_Id
:= Prefix
(N
);
7956 -- The candidate prefix type, if overloaded
7962 Check_Fully_Declared_Prefix
(Typ
, P
);
7965 -- A useful optimization: check whether the dereference denotes an
7966 -- element of a container, and if so rewrite it as a call to the
7967 -- corresponding Element function.
7969 -- Disabled for now, on advice of ARG. A more restricted form of the
7970 -- predicate might be acceptable ???
7972 -- if Is_Container_Element (N) then
7976 if Is_Overloaded
(P
) then
7978 -- Use the context type to select the prefix that has the correct
7979 -- designated type. Keep the first match, which will be the inner-
7982 Get_First_Interp
(P
, I
, It
);
7984 while Present
(It
.Typ
) loop
7985 if Is_Access_Type
(It
.Typ
)
7986 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
7992 -- Remove access types that do not match, but preserve access
7993 -- to subprogram interpretations, in case a further dereference
7994 -- is needed (see below).
7996 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8000 Get_Next_Interp
(I
, It
);
8003 if Present
(P_Typ
) then
8005 Set_Etype
(N
, Designated_Type
(P_Typ
));
8008 -- If no interpretation covers the designated type of the prefix,
8009 -- this is the pathological case where not all implementations of
8010 -- the prefix allow the interpretation of the node as a call. Now
8011 -- that the expected type is known, Remove other interpretations
8012 -- from prefix, rewrite it as a call, and resolve again, so that
8013 -- the proper call node is generated.
8015 Get_First_Interp
(P
, I
, It
);
8016 while Present
(It
.Typ
) loop
8017 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8021 Get_Next_Interp
(I
, It
);
8025 Make_Function_Call
(Loc
,
8027 Make_Explicit_Dereference
(Loc
,
8029 Parameter_Associations
=> New_List
);
8031 Save_Interps
(N
, New_N
);
8033 Analyze_And_Resolve
(N
, Typ
);
8037 -- If not overloaded, resolve P with its own type
8043 -- If the prefix might be null, add an access check
8045 if Is_Access_Type
(Etype
(P
))
8046 and then not Can_Never_Be_Null
(Etype
(P
))
8048 Apply_Access_Check
(N
);
8051 -- If the designated type is a packed unconstrained array type, and the
8052 -- explicit dereference is not in the context of an attribute reference,
8053 -- then we must compute and set the actual subtype, since it is needed
8054 -- by Gigi. The reason we exclude the attribute case is that this is
8055 -- handled fine by Gigi, and in fact we use such attributes to build the
8056 -- actual subtype. We also exclude generated code (which builds actual
8057 -- subtypes directly if they are needed).
8059 if Is_Array_Type
(Etype
(N
))
8060 and then Is_Packed
(Etype
(N
))
8061 and then not Is_Constrained
(Etype
(N
))
8062 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
8063 and then Comes_From_Source
(N
)
8065 Set_Etype
(N
, Get_Actual_Subtype
(N
));
8068 Analyze_Dimension
(N
);
8070 -- Note: No Eval processing is required for an explicit dereference,
8071 -- because such a name can never be static.
8073 end Resolve_Explicit_Dereference
;
8075 -------------------------------------
8076 -- Resolve_Expression_With_Actions --
8077 -------------------------------------
8079 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
8083 -- If N has no actions, and its expression has been constant folded,
8084 -- then rewrite N as just its expression. Note, we can't do this in
8085 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8086 -- Expression (N) to be expanded again.
8088 if Is_Empty_List
(Actions
(N
))
8089 and then Compile_Time_Known_Value
(Expression
(N
))
8091 Rewrite
(N
, Expression
(N
));
8093 end Resolve_Expression_With_Actions
;
8095 ----------------------------------
8096 -- Resolve_Generalized_Indexing --
8097 ----------------------------------
8099 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
) is
8100 Indexing
: constant Node_Id
:= Generalized_Indexing
(N
);
8106 -- In ASIS mode, propagate the information about the indexes back to
8107 -- to the original indexing node. The generalized indexing is either
8108 -- a function call, or a dereference of one. The actuals include the
8109 -- prefix of the original node, which is the container expression.
8112 Resolve
(Indexing
, Typ
);
8113 Set_Etype
(N
, Etype
(Indexing
));
8114 Set_Is_Overloaded
(N
, False);
8117 while Nkind_In
(Call
, N_Explicit_Dereference
, N_Selected_Component
)
8119 Call
:= Prefix
(Call
);
8122 if Nkind
(Call
) = N_Function_Call
then
8123 Indexes
:= Parameter_Associations
(Call
);
8124 Pref
:= Remove_Head
(Indexes
);
8125 Set_Expressions
(N
, Indexes
);
8127 -- If expression is to be reanalyzed, reset Generalized_Indexing
8128 -- to recreate call node, as is the case when the expression is
8129 -- part of an expression function.
8131 if In_Spec_Expression
then
8132 Set_Generalized_Indexing
(N
, Empty
);
8135 Set_Prefix
(N
, Pref
);
8139 Rewrite
(N
, Indexing
);
8142 end Resolve_Generalized_Indexing
;
8144 ---------------------------
8145 -- Resolve_If_Expression --
8146 ---------------------------
8148 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8149 Condition
: constant Node_Id
:= First
(Expressions
(N
));
8150 Then_Expr
: constant Node_Id
:= Next
(Condition
);
8151 Else_Expr
: Node_Id
:= Next
(Then_Expr
);
8152 Else_Typ
: Entity_Id
;
8153 Then_Typ
: Entity_Id
;
8156 Resolve
(Condition
, Any_Boolean
);
8157 Resolve
(Then_Expr
, Typ
);
8158 Then_Typ
:= Etype
(Then_Expr
);
8160 -- When the "then" expression is of a scalar subtype different from the
8161 -- result subtype, then insert a conversion to ensure the generation of
8162 -- a constraint check. The same is done for the else part below, again
8163 -- comparing subtypes rather than base types.
8165 if Is_Scalar_Type
(Then_Typ
)
8166 and then Then_Typ
/= Typ
8168 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
8169 Analyze_And_Resolve
(Then_Expr
, Typ
);
8172 -- If ELSE expression present, just resolve using the determined type
8173 -- If type is universal, resolve to any member of the class.
8175 if Present
(Else_Expr
) then
8176 if Typ
= Universal_Integer
then
8177 Resolve
(Else_Expr
, Any_Integer
);
8179 elsif Typ
= Universal_Real
then
8180 Resolve
(Else_Expr
, Any_Real
);
8183 Resolve
(Else_Expr
, Typ
);
8186 Else_Typ
:= Etype
(Else_Expr
);
8188 if Is_Scalar_Type
(Else_Typ
) and then Else_Typ
/= Typ
then
8189 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
8190 Analyze_And_Resolve
(Else_Expr
, Typ
);
8192 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8193 -- dynamically tagged must be known statically.
8195 elsif Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
8196 if Is_Dynamically_Tagged
(Then_Expr
) /=
8197 Is_Dynamically_Tagged
(Else_Expr
)
8199 Error_Msg_N
("all or none of the dependent expressions "
8200 & "can be dynamically tagged", N
);
8204 -- If no ELSE expression is present, root type must be Standard.Boolean
8205 -- and we provide a Standard.True result converted to the appropriate
8206 -- Boolean type (in case it is a derived boolean type).
8208 elsif Root_Type
(Typ
) = Standard_Boolean
then
8210 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
8211 Analyze_And_Resolve
(Else_Expr
, Typ
);
8212 Append_To
(Expressions
(N
), Else_Expr
);
8215 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
8216 Append_To
(Expressions
(N
), Error
);
8220 Eval_If_Expression
(N
);
8221 end Resolve_If_Expression
;
8223 -------------------------------
8224 -- Resolve_Indexed_Component --
8225 -------------------------------
8227 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8228 Name
: constant Node_Id
:= Prefix
(N
);
8230 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
8234 if Present
(Generalized_Indexing
(N
)) then
8235 Resolve_Generalized_Indexing
(N
, Typ
);
8239 if Is_Overloaded
(Name
) then
8241 -- Use the context type to select the prefix that yields the correct
8247 I1
: Interp_Index
:= 0;
8248 P
: constant Node_Id
:= Prefix
(N
);
8249 Found
: Boolean := False;
8252 Get_First_Interp
(P
, I
, It
);
8253 while Present
(It
.Typ
) loop
8254 if (Is_Array_Type
(It
.Typ
)
8255 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
8256 or else (Is_Access_Type
(It
.Typ
)
8257 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8261 Component_Type
(Designated_Type
(It
.Typ
))))
8264 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8266 if It
= No_Interp
then
8267 Error_Msg_N
("ambiguous prefix for indexing", N
);
8273 Array_Type
:= It
.Typ
;
8279 Array_Type
:= It
.Typ
;
8284 Get_Next_Interp
(I
, It
);
8289 Array_Type
:= Etype
(Name
);
8292 Resolve
(Name
, Array_Type
);
8293 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
8295 -- If prefix is access type, dereference to get real array type.
8296 -- Note: we do not apply an access check because the expander always
8297 -- introduces an explicit dereference, and the check will happen there.
8299 if Is_Access_Type
(Array_Type
) then
8300 Array_Type
:= Designated_Type
(Array_Type
);
8303 -- If name was overloaded, set component type correctly now
8304 -- If a misplaced call to an entry family (which has no index types)
8305 -- return. Error will be diagnosed from calling context.
8307 if Is_Array_Type
(Array_Type
) then
8308 Set_Etype
(N
, Component_Type
(Array_Type
));
8313 Index
:= First_Index
(Array_Type
);
8314 Expr
:= First
(Expressions
(N
));
8316 -- The prefix may have resolved to a string literal, in which case its
8317 -- etype has a special representation. This is only possible currently
8318 -- if the prefix is a static concatenation, written in functional
8321 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
8322 Resolve
(Expr
, Standard_Positive
);
8325 while Present
(Index
) and Present
(Expr
) loop
8326 Resolve
(Expr
, Etype
(Index
));
8327 Check_Unset_Reference
(Expr
);
8329 if Is_Scalar_Type
(Etype
(Expr
)) then
8330 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
8332 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
8340 Analyze_Dimension
(N
);
8342 -- Do not generate the warning on suspicious index if we are analyzing
8343 -- package Ada.Tags; otherwise we will report the warning with the
8344 -- Prims_Ptr field of the dispatch table.
8346 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
8348 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
8351 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
8352 Eval_Indexed_Component
(N
);
8355 -- If the array type is atomic, and the component is not atomic, then
8356 -- this is worth a warning, since we have a situation where the access
8357 -- to the component may cause extra read/writes of the atomic array
8358 -- object, or partial word accesses, which could be unexpected.
8360 if Nkind
(N
) = N_Indexed_Component
8361 and then Is_Atomic_Ref_With_Address
(N
)
8362 and then not (Has_Atomic_Components
(Array_Type
)
8363 or else (Is_Entity_Name
(Prefix
(N
))
8364 and then Has_Atomic_Components
8365 (Entity
(Prefix
(N
)))))
8366 and then not Is_Atomic
(Component_Type
(Array_Type
))
8369 ("??access to non-atomic component of atomic array", Prefix
(N
));
8371 ("??\may cause unexpected accesses to atomic object", Prefix
(N
));
8373 end Resolve_Indexed_Component
;
8375 -----------------------------
8376 -- Resolve_Integer_Literal --
8377 -----------------------------
8379 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8382 Eval_Integer_Literal
(N
);
8383 end Resolve_Integer_Literal
;
8385 --------------------------------
8386 -- Resolve_Intrinsic_Operator --
8387 --------------------------------
8389 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
8390 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8395 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
8396 -- If the operand is a literal, it cannot be the expression in a
8397 -- conversion. Use a qualified expression instead.
8399 ---------------------
8400 -- Convert_Operand --
8401 ---------------------
8403 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
8404 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
8408 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
8410 Make_Qualified_Expression
(Loc
,
8411 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
8412 Expression
=> Relocate_Node
(Opnd
));
8416 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
8420 end Convert_Operand
;
8422 -- Start of processing for Resolve_Intrinsic_Operator
8425 -- We must preserve the original entity in a generic setting, so that
8426 -- the legality of the operation can be verified in an instance.
8428 if not Expander_Active
then
8433 while Scope
(Op
) /= Standard_Standard
loop
8435 pragma Assert
(Present
(Op
));
8439 Set_Is_Overloaded
(N
, False);
8441 -- If the result or operand types are private, rewrite with unchecked
8442 -- conversions on the operands and the result, to expose the proper
8443 -- underlying numeric type.
8445 if Is_Private_Type
(Typ
)
8446 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
8447 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
8449 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
8451 if Nkind
(N
) = N_Op_Expon
then
8452 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
8454 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
8457 if Nkind
(Arg1
) = N_Type_Conversion
then
8458 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8461 if Nkind
(Arg2
) = N_Type_Conversion
then
8462 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8465 Set_Left_Opnd
(N
, Arg1
);
8466 Set_Right_Opnd
(N
, Arg2
);
8468 Set_Etype
(N
, Btyp
);
8469 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8472 elsif Typ
/= Etype
(Left_Opnd
(N
))
8473 or else Typ
/= Etype
(Right_Opnd
(N
))
8475 -- Add explicit conversion where needed, and save interpretations in
8476 -- case operands are overloaded.
8478 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
8479 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
8481 if Nkind
(Arg1
) = N_Type_Conversion
then
8482 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8484 Save_Interps
(Left_Opnd
(N
), Arg1
);
8487 if Nkind
(Arg2
) = N_Type_Conversion
then
8488 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8490 Save_Interps
(Right_Opnd
(N
), Arg2
);
8493 Rewrite
(Left_Opnd
(N
), Arg1
);
8494 Rewrite
(Right_Opnd
(N
), Arg2
);
8497 Resolve_Arithmetic_Op
(N
, Typ
);
8500 Resolve_Arithmetic_Op
(N
, Typ
);
8502 end Resolve_Intrinsic_Operator
;
8504 --------------------------------------
8505 -- Resolve_Intrinsic_Unary_Operator --
8506 --------------------------------------
8508 procedure Resolve_Intrinsic_Unary_Operator
8512 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8518 while Scope
(Op
) /= Standard_Standard
loop
8520 pragma Assert
(Present
(Op
));
8525 if Is_Private_Type
(Typ
) then
8526 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
8527 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8529 Set_Right_Opnd
(N
, Arg2
);
8531 Set_Etype
(N
, Btyp
);
8532 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8536 Resolve_Unary_Op
(N
, Typ
);
8538 end Resolve_Intrinsic_Unary_Operator
;
8540 ------------------------
8541 -- Resolve_Logical_Op --
8542 ------------------------
8544 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8548 Check_No_Direct_Boolean_Operators
(N
);
8550 -- Predefined operations on scalar types yield the base type. On the
8551 -- other hand, logical operations on arrays yield the type of the
8552 -- arguments (and the context).
8554 if Is_Array_Type
(Typ
) then
8557 B_Typ
:= Base_Type
(Typ
);
8560 -- The following test is required because the operands of the operation
8561 -- may be literals, in which case the resulting type appears to be
8562 -- compatible with a signed integer type, when in fact it is compatible
8563 -- only with modular types. If the context itself is universal, the
8564 -- operation is illegal.
8566 if not Valid_Boolean_Arg
(Typ
) then
8567 Error_Msg_N
("invalid context for logical operation", N
);
8568 Set_Etype
(N
, Any_Type
);
8571 elsif Typ
= Any_Modular
then
8573 ("no modular type available in this context", N
);
8574 Set_Etype
(N
, Any_Type
);
8577 elsif Is_Modular_Integer_Type
(Typ
)
8578 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
8579 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
8581 Check_For_Visible_Operator
(N
, B_Typ
);
8584 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8585 -- is active and the result type is standard Boolean (do not mess with
8586 -- ops that return a nonstandard Boolean type, because something strange
8589 -- Note: you might expect this replacement to be done during expansion,
8590 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8591 -- is used, no part of the right operand of an "and" or "or" operator
8592 -- should be executed if the left operand would short-circuit the
8593 -- evaluation of the corresponding "and then" or "or else". If we left
8594 -- the replacement to expansion time, then run-time checks associated
8595 -- with such operands would be evaluated unconditionally, due to being
8596 -- before the condition prior to the rewriting as short-circuit forms
8597 -- during expansion.
8599 if Short_Circuit_And_Or
8600 and then B_Typ
= Standard_Boolean
8601 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
8603 -- Mark the corresponding putative SCO operator as truly a logical
8604 -- (and short-circuit) operator.
8606 if Generate_SCO
and then Comes_From_Source
(N
) then
8607 Set_SCO_Logical_Operator
(N
);
8610 if Nkind
(N
) = N_Op_And
then
8612 Make_And_Then
(Sloc
(N
),
8613 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8614 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8615 Analyze_And_Resolve
(N
, B_Typ
);
8617 -- Case of OR changed to OR ELSE
8621 Make_Or_Else
(Sloc
(N
),
8622 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8623 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8624 Analyze_And_Resolve
(N
, B_Typ
);
8627 -- Return now, since analysis of the rewritten ops will take care of
8628 -- other reference bookkeeping and expression folding.
8633 Resolve
(Left_Opnd
(N
), B_Typ
);
8634 Resolve
(Right_Opnd
(N
), B_Typ
);
8636 Check_Unset_Reference
(Left_Opnd
(N
));
8637 Check_Unset_Reference
(Right_Opnd
(N
));
8639 Set_Etype
(N
, B_Typ
);
8640 Generate_Operator_Reference
(N
, B_Typ
);
8641 Eval_Logical_Op
(N
);
8643 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8644 -- only when both operands have same static lower and higher bounds. Of
8645 -- course the types have to match, so only check if operands are
8646 -- compatible and the node itself has no errors.
8648 if Is_Array_Type
(B_Typ
)
8649 and then Nkind
(N
) in N_Binary_Op
8652 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
8653 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
8656 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8657 -- operation if not needed.
8659 if Restriction_Check_Required
(SPARK_05
)
8660 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
8661 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
8662 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
8663 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
8665 Check_SPARK_05_Restriction
8666 ("array types should have matching static bounds", N
);
8670 end Resolve_Logical_Op
;
8672 ---------------------------
8673 -- Resolve_Membership_Op --
8674 ---------------------------
8676 -- The context can only be a boolean type, and does not determine the
8677 -- arguments. Arguments should be unambiguous, but the preference rule for
8678 -- universal types applies.
8680 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8681 pragma Warnings
(Off
, Typ
);
8683 L
: constant Node_Id
:= Left_Opnd
(N
);
8684 R
: constant Node_Id
:= Right_Opnd
(N
);
8687 procedure Resolve_Set_Membership
;
8688 -- Analysis has determined a unique type for the left operand. Use it to
8689 -- resolve the disjuncts.
8691 ----------------------------
8692 -- Resolve_Set_Membership --
8693 ----------------------------
8695 procedure Resolve_Set_Membership
is
8700 -- If the left operand is overloaded, find type compatible with not
8701 -- overloaded alternative of the right operand.
8703 if Is_Overloaded
(L
) then
8705 Alt
:= First
(Alternatives
(N
));
8706 while Present
(Alt
) loop
8707 if not Is_Overloaded
(Alt
) then
8708 Ltyp
:= Intersect_Types
(L
, Alt
);
8715 -- Unclear how to resolve expression if all alternatives are also
8719 Error_Msg_N
("ambiguous expression", N
);
8728 Alt
:= First
(Alternatives
(N
));
8729 while Present
(Alt
) loop
8731 -- Alternative is an expression, a range
8732 -- or a subtype mark.
8734 if not Is_Entity_Name
(Alt
)
8735 or else not Is_Type
(Entity
(Alt
))
8737 Resolve
(Alt
, Ltyp
);
8743 -- Check for duplicates for discrete case
8745 if Is_Discrete_Type
(Ltyp
) then
8752 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
8756 -- Loop checking duplicates. This is quadratic, but giant sets
8757 -- are unlikely in this context so it's a reasonable choice.
8760 Alt
:= First
(Alternatives
(N
));
8761 while Present
(Alt
) loop
8762 if Is_OK_Static_Expression
(Alt
)
8763 and then (Nkind_In
(Alt
, N_Integer_Literal
,
8764 N_Character_Literal
)
8765 or else Nkind
(Alt
) in N_Has_Entity
)
8768 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
8770 for J
in 1 .. Nalts
- 1 loop
8771 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
8772 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
8773 Error_Msg_N
("duplicate of value given#??", Alt
);
8782 end Resolve_Set_Membership
;
8784 -- Start of processing for Resolve_Membership_Op
8787 if L
= Error
or else R
= Error
then
8791 if Present
(Alternatives
(N
)) then
8792 Resolve_Set_Membership
;
8795 elsif not Is_Overloaded
(R
)
8797 (Etype
(R
) = Universal_Integer
8799 Etype
(R
) = Universal_Real
)
8800 and then Is_Overloaded
(L
)
8804 -- Ada 2005 (AI-251): Support the following case:
8806 -- type I is interface;
8807 -- type T is tagged ...
8809 -- function Test (O : I'Class) is
8811 -- return O in T'Class.
8814 -- In this case we have nothing else to do. The membership test will be
8815 -- done at run time.
8817 elsif Ada_Version
>= Ada_2005
8818 and then Is_Class_Wide_Type
(Etype
(L
))
8819 and then Is_Interface
(Etype
(L
))
8820 and then Is_Class_Wide_Type
(Etype
(R
))
8821 and then not Is_Interface
(Etype
(R
))
8825 T
:= Intersect_Types
(L
, R
);
8828 -- If mixed-mode operations are present and operands are all literal,
8829 -- the only interpretation involves Duration, which is probably not
8830 -- the intention of the programmer.
8832 if T
= Any_Fixed
then
8833 T
:= Unique_Fixed_Point_Type
(N
);
8835 if T
= Any_Type
then
8841 Check_Unset_Reference
(L
);
8843 if Nkind
(R
) = N_Range
8844 and then not Is_Scalar_Type
(T
)
8846 Error_Msg_N
("scalar type required for range", R
);
8849 if Is_Entity_Name
(R
) then
8850 Freeze_Expression
(R
);
8853 Check_Unset_Reference
(R
);
8856 -- Here after resolving membership operation
8860 Eval_Membership_Op
(N
);
8861 end Resolve_Membership_Op
;
8867 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
8868 Loc
: constant Source_Ptr
:= Sloc
(N
);
8871 -- Handle restriction against anonymous null access values This
8872 -- restriction can be turned off using -gnatdj.
8874 -- Ada 2005 (AI-231): Remove restriction
8876 if Ada_Version
< Ada_2005
8877 and then not Debug_Flag_J
8878 and then Ekind
(Typ
) = E_Anonymous_Access_Type
8879 and then Comes_From_Source
(N
)
8881 -- In the common case of a call which uses an explicitly null value
8882 -- for an access parameter, give specialized error message.
8884 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
8886 ("null is not allowed as argument for an access parameter", N
);
8888 -- Standard message for all other cases (are there any?)
8892 ("null cannot be of an anonymous access type", N
);
8896 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8897 -- assignment to a null-excluding object
8899 if Ada_Version
>= Ada_2005
8900 and then Can_Never_Be_Null
(Typ
)
8901 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
8903 if not Inside_Init_Proc
then
8905 (Compile_Time_Constraint_Error
(N
,
8906 "(Ada 2005) null not allowed in null-excluding objects??"),
8907 Make_Raise_Constraint_Error
(Loc
,
8908 Reason
=> CE_Access_Check_Failed
));
8911 Make_Raise_Constraint_Error
(Loc
,
8912 Reason
=> CE_Access_Check_Failed
));
8916 -- In a distributed context, null for a remote access to subprogram may
8917 -- need to be replaced with a special record aggregate. In this case,
8918 -- return after having done the transformation.
8920 if (Ekind
(Typ
) = E_Record_Type
8921 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
8922 and then Remote_AST_Null_Value
(N
, Typ
)
8927 -- The null literal takes its type from the context
8932 -----------------------
8933 -- Resolve_Op_Concat --
8934 -----------------------
8936 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
8938 -- We wish to avoid deep recursion, because concatenations are often
8939 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8940 -- operands nonrecursively until we find something that is not a simple
8941 -- concatenation (A in this case). We resolve that, and then walk back
8942 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8943 -- to do the rest of the work at each level. The Parent pointers allow
8944 -- us to avoid recursion, and thus avoid running out of memory. See also
8945 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8951 -- The following code is equivalent to:
8953 -- Resolve_Op_Concat_First (NN, Typ);
8954 -- Resolve_Op_Concat_Arg (N, ...);
8955 -- Resolve_Op_Concat_Rest (N, Typ);
8957 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8958 -- operand is a concatenation.
8960 -- Walk down left operands
8963 Resolve_Op_Concat_First
(NN
, Typ
);
8964 Op1
:= Left_Opnd
(NN
);
8965 exit when not (Nkind
(Op1
) = N_Op_Concat
8966 and then not Is_Array_Type
(Component_Type
(Typ
))
8967 and then Entity
(Op1
) = Entity
(NN
));
8971 -- Now (given the above example) NN is A&B and Op1 is A
8973 -- First resolve Op1 ...
8975 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
8977 -- ... then walk NN back up until we reach N (where we started), calling
8978 -- Resolve_Op_Concat_Rest along the way.
8981 Resolve_Op_Concat_Rest
(NN
, Typ
);
8986 if Base_Type
(Etype
(N
)) /= Standard_String
then
8987 Check_SPARK_05_Restriction
8988 ("result of concatenation should have type String", N
);
8990 end Resolve_Op_Concat
;
8992 ---------------------------
8993 -- Resolve_Op_Concat_Arg --
8994 ---------------------------
8996 procedure Resolve_Op_Concat_Arg
9002 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9003 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
9008 or else (not Is_Overloaded
(Arg
)
9009 and then Etype
(Arg
) /= Any_Composite
9010 and then Covers
(Ctyp
, Etype
(Arg
)))
9012 Resolve
(Arg
, Ctyp
);
9014 Resolve
(Arg
, Btyp
);
9017 -- If both Array & Array and Array & Component are visible, there is a
9018 -- potential ambiguity that must be reported.
9020 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
9021 if Nkind
(Arg
) = N_Aggregate
9022 and then Is_Composite_Type
(Ctyp
)
9024 if Is_Private_Type
(Ctyp
) then
9025 Resolve
(Arg
, Btyp
);
9027 -- If the operation is user-defined and not overloaded use its
9028 -- profile. The operation may be a renaming, in which case it has
9029 -- been rewritten, and we want the original profile.
9031 elsif not Is_Overloaded
(N
)
9032 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
9033 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
9037 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
9040 -- Otherwise an aggregate may match both the array type and the
9044 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
9045 Set_Etype
(Arg
, Any_Type
);
9049 if Is_Overloaded
(Arg
)
9050 and then Has_Compatible_Type
(Arg
, Typ
)
9051 and then Etype
(Arg
) /= Any_Type
9059 Get_First_Interp
(Arg
, I
, It
);
9061 Get_Next_Interp
(I
, It
);
9063 -- Special-case the error message when the overloading is
9064 -- caused by a function that yields an array and can be
9065 -- called without parameters.
9067 if It
.Nam
= Func
then
9068 Error_Msg_Sloc
:= Sloc
(Func
);
9069 Error_Msg_N
("ambiguous call to function#", Arg
);
9071 ("\\interpretation as call yields&", Arg
, Typ
);
9073 ("\\interpretation as indexing of call yields&",
9074 Arg
, Component_Type
(Typ
));
9077 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
9079 Get_First_Interp
(Arg
, I
, It
);
9080 while Present
(It
.Nam
) loop
9081 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
9083 if Base_Type
(It
.Typ
) = Btyp
9085 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
9087 Error_Msg_N
-- CODEFIX
9088 ("\\possible interpretation#", Arg
);
9091 Get_Next_Interp
(I
, It
);
9097 Resolve
(Arg
, Component_Type
(Typ
));
9099 if Nkind
(Arg
) = N_String_Literal
then
9100 Set_Etype
(Arg
, Component_Type
(Typ
));
9103 if Arg
= Left_Opnd
(N
) then
9104 Set_Is_Component_Left_Opnd
(N
);
9106 Set_Is_Component_Right_Opnd
(N
);
9111 Resolve
(Arg
, Btyp
);
9114 -- Concatenation is restricted in SPARK: each operand must be either a
9115 -- string literal, the name of a string constant, a static character or
9116 -- string expression, or another concatenation. Arg cannot be a
9117 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9118 -- separately on each final operand, past concatenation operations.
9120 if Is_Character_Type
(Etype
(Arg
)) then
9121 if not Is_OK_Static_Expression
(Arg
) then
9122 Check_SPARK_05_Restriction
9123 ("character operand for concatenation should be static", Arg
);
9126 elsif Is_String_Type
(Etype
(Arg
)) then
9127 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
9128 and then Is_Constant_Object
(Entity
(Arg
)))
9129 and then not Is_OK_Static_Expression
(Arg
)
9131 Check_SPARK_05_Restriction
9132 ("string operand for concatenation should be static", Arg
);
9135 -- Do not issue error on an operand that is neither a character nor a
9136 -- string, as the error is issued in Resolve_Op_Concat.
9142 Check_Unset_Reference
(Arg
);
9143 end Resolve_Op_Concat_Arg
;
9145 -----------------------------
9146 -- Resolve_Op_Concat_First --
9147 -----------------------------
9149 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
9150 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9151 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9152 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9155 -- The parser folds an enormous sequence of concatenations of string
9156 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9157 -- in the right operand. If the expression resolves to a predefined "&"
9158 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9159 -- we give an error. See P_Simple_Expression in Par.Ch4.
9161 if Nkind
(Op2
) = N_String_Literal
9162 and then Is_Folded_In_Parser
(Op2
)
9163 and then Ekind
(Entity
(N
)) = E_Function
9165 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
9166 and then String_Length
(Strval
(Op1
)) = 0);
9167 Error_Msg_N
("too many user-defined concatenations", N
);
9171 Set_Etype
(N
, Btyp
);
9173 if Is_Limited_Composite
(Btyp
) then
9174 Error_Msg_N
("concatenation not available for limited array", N
);
9175 Explain_Limited_Type
(Btyp
, N
);
9177 end Resolve_Op_Concat_First
;
9179 ----------------------------
9180 -- Resolve_Op_Concat_Rest --
9181 ----------------------------
9183 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
9184 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9185 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9188 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
9190 Generate_Operator_Reference
(N
, Typ
);
9192 if Is_String_Type
(Typ
) then
9193 Eval_Concatenation
(N
);
9196 -- If this is not a static concatenation, but the result is a string
9197 -- type (and not an array of strings) ensure that static string operands
9198 -- have their subtypes properly constructed.
9200 if Nkind
(N
) /= N_String_Literal
9201 and then Is_Character_Type
(Component_Type
(Typ
))
9203 Set_String_Literal_Subtype
(Op1
, Typ
);
9204 Set_String_Literal_Subtype
(Op2
, Typ
);
9206 end Resolve_Op_Concat_Rest
;
9208 ----------------------
9209 -- Resolve_Op_Expon --
9210 ----------------------
9212 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
9213 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9216 -- Catch attempts to do fixed-point exponentiation with universal
9217 -- operands, which is a case where the illegality is not caught during
9218 -- normal operator analysis. This is not done in preanalysis mode
9219 -- since the tree is not fully decorated during preanalysis.
9221 if Full_Analysis
then
9222 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
9223 Error_Msg_N
("exponentiation not available for fixed point", N
);
9226 elsif Nkind
(Parent
(N
)) in N_Op
9227 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
9228 and then Etype
(N
) = Universal_Real
9229 and then Comes_From_Source
(N
)
9231 Error_Msg_N
("exponentiation not available for fixed point", N
);
9236 if Comes_From_Source
(N
)
9237 and then Ekind
(Entity
(N
)) = E_Function
9238 and then Is_Imported
(Entity
(N
))
9239 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9241 Resolve_Intrinsic_Operator
(N
, Typ
);
9245 if Etype
(Left_Opnd
(N
)) = Universal_Integer
9246 or else Etype
(Left_Opnd
(N
)) = Universal_Real
9248 Check_For_Visible_Operator
(N
, B_Typ
);
9251 -- We do the resolution using the base type, because intermediate values
9252 -- in expressions are always of the base type, not a subtype of it.
9254 Resolve
(Left_Opnd
(N
), B_Typ
);
9255 Resolve
(Right_Opnd
(N
), Standard_Integer
);
9257 -- For integer types, right argument must be in Natural range
9259 if Is_Integer_Type
(Typ
) then
9260 Apply_Scalar_Range_Check
(Right_Opnd
(N
), Standard_Natural
);
9263 Check_Unset_Reference
(Left_Opnd
(N
));
9264 Check_Unset_Reference
(Right_Opnd
(N
));
9266 Set_Etype
(N
, B_Typ
);
9267 Generate_Operator_Reference
(N
, B_Typ
);
9269 Analyze_Dimension
(N
);
9271 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
9272 -- Evaluate the exponentiation operator for dimensioned type
9274 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
9279 -- Set overflow checking bit. Much cleverer code needed here eventually
9280 -- and perhaps the Resolve routines should be separated for the various
9281 -- arithmetic operations, since they will need different processing. ???
9283 if Nkind
(N
) in N_Op
then
9284 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9285 Enable_Overflow_Check
(N
);
9288 end Resolve_Op_Expon
;
9290 --------------------
9291 -- Resolve_Op_Not --
9292 --------------------
9294 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
9297 function Parent_Is_Boolean
return Boolean;
9298 -- This function determines if the parent node is a boolean operator or
9299 -- operation (comparison op, membership test, or short circuit form) and
9300 -- the not in question is the left operand of this operation. Note that
9301 -- if the not is in parens, then false is returned.
9303 -----------------------
9304 -- Parent_Is_Boolean --
9305 -----------------------
9307 function Parent_Is_Boolean
return Boolean is
9309 if Paren_Count
(N
) /= 0 then
9313 case Nkind
(Parent
(N
)) is
9328 return Left_Opnd
(Parent
(N
)) = N
;
9334 end Parent_Is_Boolean
;
9336 -- Start of processing for Resolve_Op_Not
9339 -- Predefined operations on scalar types yield the base type. On the
9340 -- other hand, logical operations on arrays yield the type of the
9341 -- arguments (and the context).
9343 if Is_Array_Type
(Typ
) then
9346 B_Typ
:= Base_Type
(Typ
);
9349 -- Straightforward case of incorrect arguments
9351 if not Valid_Boolean_Arg
(Typ
) then
9352 Error_Msg_N
("invalid operand type for operator&", N
);
9353 Set_Etype
(N
, Any_Type
);
9356 -- Special case of probable missing parens
9358 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
9359 if Parent_Is_Boolean
then
9361 ("operand of not must be enclosed in parentheses",
9365 ("no modular type available in this context", N
);
9368 Set_Etype
(N
, Any_Type
);
9371 -- OK resolution of NOT
9374 -- Warn if non-boolean types involved. This is a case like not a < b
9375 -- where a and b are modular, where we will get (not a) < b and most
9376 -- likely not (a < b) was intended.
9378 if Warn_On_Questionable_Missing_Parens
9379 and then not Is_Boolean_Type
(Typ
)
9380 and then Parent_Is_Boolean
9382 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
9385 -- Warn on double negation if checking redundant constructs
9387 if Warn_On_Redundant_Constructs
9388 and then Comes_From_Source
(N
)
9389 and then Comes_From_Source
(Right_Opnd
(N
))
9390 and then Root_Type
(Typ
) = Standard_Boolean
9391 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
9393 Error_Msg_N
("redundant double negation?r?", N
);
9396 -- Complete resolution and evaluation of NOT
9398 Resolve
(Right_Opnd
(N
), B_Typ
);
9399 Check_Unset_Reference
(Right_Opnd
(N
));
9400 Set_Etype
(N
, B_Typ
);
9401 Generate_Operator_Reference
(N
, B_Typ
);
9406 -----------------------------
9407 -- Resolve_Operator_Symbol --
9408 -----------------------------
9410 -- Nothing to be done, all resolved already
9412 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
9413 pragma Warnings
(Off
, N
);
9414 pragma Warnings
(Off
, Typ
);
9418 end Resolve_Operator_Symbol
;
9420 ----------------------------------
9421 -- Resolve_Qualified_Expression --
9422 ----------------------------------
9424 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9425 pragma Warnings
(Off
, Typ
);
9427 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9428 Expr
: constant Node_Id
:= Expression
(N
);
9431 Resolve
(Expr
, Target_Typ
);
9433 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9434 -- operation if not needed.
9436 if Restriction_Check_Required
(SPARK_05
)
9437 and then Is_Array_Type
(Target_Typ
)
9438 and then Is_Array_Type
(Etype
(Expr
))
9439 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
9440 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
9442 Check_SPARK_05_Restriction
9443 ("array types should have matching static bounds", N
);
9446 -- A qualified expression requires an exact match of the type, class-
9447 -- wide matching is not allowed. However, if the qualifying type is
9448 -- specific and the expression has a class-wide type, it may still be
9449 -- okay, since it can be the result of the expansion of a call to a
9450 -- dispatching function, so we also have to check class-wideness of the
9451 -- type of the expression's original node.
9453 if (Is_Class_Wide_Type
(Target_Typ
)
9455 (Is_Class_Wide_Type
(Etype
(Expr
))
9456 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
9457 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
9459 Wrong_Type
(Expr
, Target_Typ
);
9462 -- If the target type is unconstrained, then we reset the type of the
9463 -- result from the type of the expression. For other cases, the actual
9464 -- subtype of the expression is the target type.
9466 if Is_Composite_Type
(Target_Typ
)
9467 and then not Is_Constrained
(Target_Typ
)
9469 Set_Etype
(N
, Etype
(Expr
));
9472 Analyze_Dimension
(N
);
9473 Eval_Qualified_Expression
(N
);
9475 -- If we still have a qualified expression after the static evaluation,
9476 -- then apply a scalar range check if needed. The reason that we do this
9477 -- after the Eval call is that otherwise, the application of the range
9478 -- check may convert an illegal static expression and result in warning
9479 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9481 if Nkind
(N
) = N_Qualified_Expression
and then Is_Scalar_Type
(Typ
) then
9482 Apply_Scalar_Range_Check
(Expr
, Typ
);
9485 -- Finally, check whether a predicate applies to the target type. This
9486 -- comes from AI12-0100. As for type conversions, check the enclosing
9487 -- context to prevent an infinite expansion.
9489 if Has_Predicates
(Target_Typ
) then
9490 if Nkind
(Parent
(N
)) = N_Function_Call
9491 and then Present
(Name
(Parent
(N
)))
9492 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
9494 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
9498 -- In the case of a qualified expression in an allocator, the check
9499 -- is applied when expanding the allocator, so avoid redundant check.
9501 elsif Nkind
(N
) = N_Qualified_Expression
9502 and then Nkind
(Parent
(N
)) /= N_Allocator
9504 Apply_Predicate_Check
(N
, Target_Typ
);
9507 end Resolve_Qualified_Expression
;
9509 ------------------------------
9510 -- Resolve_Raise_Expression --
9511 ------------------------------
9513 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9515 if Typ
= Raise_Type
then
9516 Error_Msg_N
("cannot find unique type for raise expression", N
);
9517 Set_Etype
(N
, Any_Type
);
9521 end Resolve_Raise_Expression
;
9527 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
9528 L
: constant Node_Id
:= Low_Bound
(N
);
9529 H
: constant Node_Id
:= High_Bound
(N
);
9531 function First_Last_Ref
return Boolean;
9532 -- Returns True if N is of the form X'First .. X'Last where X is the
9533 -- same entity for both attributes.
9535 --------------------
9536 -- First_Last_Ref --
9537 --------------------
9539 function First_Last_Ref
return Boolean is
9540 Lorig
: constant Node_Id
:= Original_Node
(L
);
9541 Horig
: constant Node_Id
:= Original_Node
(H
);
9544 if Nkind
(Lorig
) = N_Attribute_Reference
9545 and then Nkind
(Horig
) = N_Attribute_Reference
9546 and then Attribute_Name
(Lorig
) = Name_First
9547 and then Attribute_Name
(Horig
) = Name_Last
9550 PL
: constant Node_Id
:= Prefix
(Lorig
);
9551 PH
: constant Node_Id
:= Prefix
(Horig
);
9553 if Is_Entity_Name
(PL
)
9554 and then Is_Entity_Name
(PH
)
9555 and then Entity
(PL
) = Entity
(PH
)
9565 -- Start of processing for Resolve_Range
9572 -- Check for inappropriate range on unordered enumeration type
9574 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
9576 -- Exclude X'First .. X'Last if X is the same entity for both
9578 and then not First_Last_Ref
9580 Error_Msg_Sloc
:= Sloc
(Typ
);
9582 ("subrange of unordered enumeration type& declared#?U?", N
, Typ
);
9585 Check_Unset_Reference
(L
);
9586 Check_Unset_Reference
(H
);
9588 -- We have to check the bounds for being within the base range as
9589 -- required for a non-static context. Normally this is automatic and
9590 -- done as part of evaluating expressions, but the N_Range node is an
9591 -- exception, since in GNAT we consider this node to be a subexpression,
9592 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9593 -- this, but that would put the test on the main evaluation path for
9596 Check_Non_Static_Context
(L
);
9597 Check_Non_Static_Context
(H
);
9599 -- Check for an ambiguous range over character literals. This will
9600 -- happen with a membership test involving only literals.
9602 if Typ
= Any_Character
then
9603 Ambiguous_Character
(L
);
9604 Set_Etype
(N
, Any_Type
);
9608 -- If bounds are static, constant-fold them, so size computations are
9609 -- identical between front-end and back-end. Do not perform this
9610 -- transformation while analyzing generic units, as type information
9611 -- would be lost when reanalyzing the constant node in the instance.
9613 if Is_Discrete_Type
(Typ
) and then Expander_Active
then
9614 if Is_OK_Static_Expression
(L
) then
9615 Fold_Uint
(L
, Expr_Value
(L
), Is_OK_Static_Expression
(L
));
9618 if Is_OK_Static_Expression
(H
) then
9619 Fold_Uint
(H
, Expr_Value
(H
), Is_OK_Static_Expression
(H
));
9624 --------------------------
9625 -- Resolve_Real_Literal --
9626 --------------------------
9628 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9629 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
9632 -- Special processing for fixed-point literals to make sure that the
9633 -- value is an exact multiple of small where this is required. We skip
9634 -- this for the universal real case, and also for generic types.
9636 if Is_Fixed_Point_Type
(Typ
)
9637 and then Typ
/= Universal_Fixed
9638 and then Typ
/= Any_Fixed
9639 and then not Is_Generic_Type
(Typ
)
9642 Val
: constant Ureal
:= Realval
(N
);
9643 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
9644 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
9645 Den
: constant Uint
:= Norm_Den
(Cintr
);
9649 -- Case of literal is not an exact multiple of the Small
9653 -- For a source program literal for a decimal fixed-point type,
9654 -- this is statically illegal (RM 4.9(36)).
9656 if Is_Decimal_Fixed_Point_Type
(Typ
)
9657 and then Actual_Typ
= Universal_Real
9658 and then Comes_From_Source
(N
)
9660 Error_Msg_N
("value has extraneous low order digits", N
);
9663 -- Generate a warning if literal from source
9665 if Is_OK_Static_Expression
(N
)
9666 and then Warn_On_Bad_Fixed_Value
9669 ("?b?static fixed-point value is not a multiple of Small!",
9673 -- Replace literal by a value that is the exact representation
9674 -- of a value of the type, i.e. a multiple of the small value,
9675 -- by truncation, since Machine_Rounds is false for all GNAT
9676 -- fixed-point types (RM 4.9(38)).
9678 Stat
:= Is_OK_Static_Expression
(N
);
9680 Make_Real_Literal
(Sloc
(N
),
9681 Realval
=> Small_Value
(Typ
) * Cint
));
9683 Set_Is_Static_Expression
(N
, Stat
);
9686 -- In all cases, set the corresponding integer field
9688 Set_Corresponding_Integer_Value
(N
, Cint
);
9692 -- Now replace the actual type by the expected type as usual
9695 Eval_Real_Literal
(N
);
9696 end Resolve_Real_Literal
;
9698 -----------------------
9699 -- Resolve_Reference --
9700 -----------------------
9702 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
9703 P
: constant Node_Id
:= Prefix
(N
);
9706 -- Replace general access with specific type
9708 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
9709 Set_Etype
(N
, Base_Type
(Typ
));
9712 Resolve
(P
, Designated_Type
(Etype
(N
)));
9714 -- If we are taking the reference of a volatile entity, then treat it as
9715 -- a potential modification of this entity. This is too conservative,
9716 -- but necessary because remove side effects can cause transformations
9717 -- of normal assignments into reference sequences that otherwise fail to
9718 -- notice the modification.
9720 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
9721 Note_Possible_Modification
(P
, Sure
=> False);
9723 end Resolve_Reference
;
9725 --------------------------------
9726 -- Resolve_Selected_Component --
9727 --------------------------------
9729 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
9731 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
9732 P
: constant Node_Id
:= Prefix
(N
);
9733 S
: constant Node_Id
:= Selector_Name
(N
);
9734 T
: Entity_Id
:= Etype
(P
);
9736 I1
: Interp_Index
:= 0; -- prevent junk warning
9741 function Init_Component
return Boolean;
9742 -- Check whether this is the initialization of a component within an
9743 -- init proc (by assignment or call to another init proc). If true,
9744 -- there is no need for a discriminant check.
9746 --------------------
9747 -- Init_Component --
9748 --------------------
9750 function Init_Component
return Boolean is
9752 return Inside_Init_Proc
9753 and then Nkind
(Prefix
(N
)) = N_Identifier
9754 and then Chars
(Prefix
(N
)) = Name_uInit
9755 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
9758 -- Start of processing for Resolve_Selected_Component
9761 if Is_Overloaded
(P
) then
9763 -- Use the context type to select the prefix that has a selector
9764 -- of the correct name and type.
9767 Get_First_Interp
(P
, I
, It
);
9769 Search
: while Present
(It
.Typ
) loop
9770 if Is_Access_Type
(It
.Typ
) then
9771 T
:= Designated_Type
(It
.Typ
);
9776 -- Locate selected component. For a private prefix the selector
9777 -- can denote a discriminant.
9779 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
9781 -- The visible components of a class-wide type are those of
9784 if Is_Class_Wide_Type
(T
) then
9788 Comp
:= First_Entity
(T
);
9789 while Present
(Comp
) loop
9790 if Chars
(Comp
) = Chars
(S
)
9791 and then Covers
(Typ
, Etype
(Comp
))
9800 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9802 if It
= No_Interp
then
9804 ("ambiguous prefix for selected component", N
);
9811 -- There may be an implicit dereference. Retrieve
9812 -- designated record type.
9814 if Is_Access_Type
(It1
.Typ
) then
9815 T
:= Designated_Type
(It1
.Typ
);
9820 if Scope
(Comp1
) /= T
then
9822 -- Resolution chooses the new interpretation.
9823 -- Find the component with the right name.
9825 Comp1
:= First_Entity
(T
);
9826 while Present
(Comp1
)
9827 and then Chars
(Comp1
) /= Chars
(S
)
9829 Comp1
:= Next_Entity
(Comp1
);
9838 Comp
:= Next_Entity
(Comp
);
9842 Get_Next_Interp
(I
, It
);
9845 -- There must be a legal interpretation at this point
9847 pragma Assert
(Found
);
9848 Resolve
(P
, It1
.Typ
);
9850 Set_Entity_With_Checks
(S
, Comp1
);
9853 -- Resolve prefix with its type
9858 -- Generate cross-reference. We needed to wait until full overloading
9859 -- resolution was complete to do this, since otherwise we can't tell if
9860 -- we are an lvalue or not.
9862 if May_Be_Lvalue
(N
) then
9863 Generate_Reference
(Entity
(S
), S
, 'm');
9865 Generate_Reference
(Entity
(S
), S
, 'r');
9868 -- If prefix is an access type, the node will be transformed into an
9869 -- explicit dereference during expansion. The type of the node is the
9870 -- designated type of that of the prefix.
9872 if Is_Access_Type
(Etype
(P
)) then
9873 T
:= Designated_Type
(Etype
(P
));
9874 Check_Fully_Declared_Prefix
(T
, P
);
9879 -- Set flag for expander if discriminant check required on a component
9880 -- appearing within a variant.
9882 if Has_Discriminants
(T
)
9883 and then Ekind
(Entity
(S
)) = E_Component
9884 and then Present
(Original_Record_Component
(Entity
(S
)))
9885 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
9887 Is_Declared_Within_Variant
(Original_Record_Component
(Entity
(S
)))
9888 and then not Discriminant_Checks_Suppressed
(T
)
9889 and then not Init_Component
9891 Set_Do_Discriminant_Check
(N
);
9894 if Ekind
(Entity
(S
)) = E_Void
then
9895 Error_Msg_N
("premature use of component", S
);
9898 -- If the prefix is a record conversion, this may be a renamed
9899 -- discriminant whose bounds differ from those of the original
9900 -- one, so we must ensure that a range check is performed.
9902 if Nkind
(P
) = N_Type_Conversion
9903 and then Ekind
(Entity
(S
)) = E_Discriminant
9904 and then Is_Discrete_Type
(Typ
)
9906 Set_Etype
(N
, Base_Type
(Typ
));
9909 -- Note: No Eval processing is required, because the prefix is of a
9910 -- record type, or protected type, and neither can possibly be static.
9912 -- If the record type is atomic, and the component is non-atomic, then
9913 -- this is worth a warning, since we have a situation where the access
9914 -- to the component may cause extra read/writes of the atomic array
9915 -- object, or partial word accesses, both of which may be unexpected.
9917 if Nkind
(N
) = N_Selected_Component
9918 and then Is_Atomic_Ref_With_Address
(N
)
9919 and then not Is_Atomic
(Entity
(S
))
9920 and then not Is_Atomic
(Etype
(Entity
(S
)))
9923 ("??access to non-atomic component of atomic record",
9926 ("\??may cause unexpected accesses to atomic object",
9930 Analyze_Dimension
(N
);
9931 end Resolve_Selected_Component
;
9937 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
9938 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9939 L
: constant Node_Id
:= Left_Opnd
(N
);
9940 R
: constant Node_Id
:= Right_Opnd
(N
);
9943 -- We do the resolution using the base type, because intermediate values
9944 -- in expressions always are of the base type, not a subtype of it.
9947 Resolve
(R
, Standard_Natural
);
9949 Check_Unset_Reference
(L
);
9950 Check_Unset_Reference
(R
);
9952 Set_Etype
(N
, B_Typ
);
9953 Generate_Operator_Reference
(N
, B_Typ
);
9957 ---------------------------
9958 -- Resolve_Short_Circuit --
9959 ---------------------------
9961 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
9962 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9963 L
: constant Node_Id
:= Left_Opnd
(N
);
9964 R
: constant Node_Id
:= Right_Opnd
(N
);
9967 -- Ensure all actions associated with the left operand (e.g.
9968 -- finalization of transient objects) are fully evaluated locally within
9969 -- an expression with actions. This is particularly helpful for coverage
9970 -- analysis. However this should not happen in generics or if option
9971 -- Minimize_Expression_With_Actions is set.
9973 if Expander_Active
and not Minimize_Expression_With_Actions
then
9975 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
9977 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
9980 Make_Expression_With_Actions
(Sloc
(L
),
9981 Actions
=> New_List
,
9982 Expression
=> Reloc_L
));
9984 -- Set Comes_From_Source on L to preserve warnings for unset
9987 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
9994 -- Check for issuing warning for always False assert/check, this happens
9995 -- when assertions are turned off, in which case the pragma Assert/Check
9996 -- was transformed into:
9998 -- if False and then <condition> then ...
10000 -- and we detect this pattern
10002 if Warn_On_Assertion_Failure
10003 and then Is_Entity_Name
(R
)
10004 and then Entity
(R
) = Standard_False
10005 and then Nkind
(Parent
(N
)) = N_If_Statement
10006 and then Nkind
(N
) = N_And_Then
10007 and then Is_Entity_Name
(L
)
10008 and then Entity
(L
) = Standard_False
10011 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
10014 -- Special handling of Asssert pragma
10016 if Nkind
(Orig
) = N_Pragma
10017 and then Pragma_Name
(Orig
) = Name_Assert
10020 Expr
: constant Node_Id
:=
10023 (First
(Pragma_Argument_Associations
(Orig
))));
10026 -- Don't warn if original condition is explicit False,
10027 -- since obviously the failure is expected in this case.
10029 if Is_Entity_Name
(Expr
)
10030 and then Entity
(Expr
) = Standard_False
10034 -- Issue warning. We do not want the deletion of the
10035 -- IF/AND-THEN to take this message with it. We achieve this
10036 -- by making sure that the expanded code points to the Sloc
10037 -- of the expression, not the original pragma.
10040 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10041 -- The source location of the expression is not usually
10042 -- the best choice here. For example, it gets located on
10043 -- the last AND keyword in a chain of boolean expressiond
10044 -- AND'ed together. It is best to put the message on the
10045 -- first character of the assertion, which is the effect
10046 -- of the First_Node call here.
10049 ("?A?assertion would fail at run time!",
10051 (First
(Pragma_Argument_Associations
(Orig
))));
10055 -- Similar processing for Check pragma
10057 elsif Nkind
(Orig
) = N_Pragma
10058 and then Pragma_Name
(Orig
) = Name_Check
10060 -- Don't want to warn if original condition is explicit False
10063 Expr
: constant Node_Id
:=
10066 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
10068 if Is_Entity_Name
(Expr
)
10069 and then Entity
(Expr
) = Standard_False
10076 -- Again use Error_Msg_F rather than Error_Msg_N, see
10077 -- comment above for an explanation of why we do this.
10080 ("?A?check would fail at run time!",
10082 (Last
(Pragma_Argument_Associations
(Orig
))));
10089 -- Continue with processing of short circuit
10091 Check_Unset_Reference
(L
);
10092 Check_Unset_Reference
(R
);
10094 Set_Etype
(N
, B_Typ
);
10095 Eval_Short_Circuit
(N
);
10096 end Resolve_Short_Circuit
;
10098 -------------------
10099 -- Resolve_Slice --
10100 -------------------
10102 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
10103 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10104 Name
: constant Node_Id
:= Prefix
(N
);
10105 Array_Type
: Entity_Id
:= Empty
;
10106 Dexpr
: Node_Id
:= Empty
;
10107 Index_Type
: Entity_Id
;
10110 if Is_Overloaded
(Name
) then
10112 -- Use the context type to select the prefix that yields the correct
10117 I1
: Interp_Index
:= 0;
10119 P
: constant Node_Id
:= Prefix
(N
);
10120 Found
: Boolean := False;
10123 Get_First_Interp
(P
, I
, It
);
10124 while Present
(It
.Typ
) loop
10125 if (Is_Array_Type
(It
.Typ
)
10126 and then Covers
(Typ
, It
.Typ
))
10127 or else (Is_Access_Type
(It
.Typ
)
10128 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
10129 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
10132 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10134 if It
= No_Interp
then
10135 Error_Msg_N
("ambiguous prefix for slicing", N
);
10136 Set_Etype
(N
, Typ
);
10140 Array_Type
:= It
.Typ
;
10145 Array_Type
:= It
.Typ
;
10150 Get_Next_Interp
(I
, It
);
10155 Array_Type
:= Etype
(Name
);
10158 Resolve
(Name
, Array_Type
);
10160 if Is_Access_Type
(Array_Type
) then
10161 Apply_Access_Check
(N
);
10162 Array_Type
:= Designated_Type
(Array_Type
);
10164 -- If the prefix is an access to an unconstrained array, we must use
10165 -- the actual subtype of the object to perform the index checks. The
10166 -- object denoted by the prefix is implicit in the node, so we build
10167 -- an explicit representation for it in order to compute the actual
10170 if not Is_Constrained
(Array_Type
) then
10171 Remove_Side_Effects
(Prefix
(N
));
10174 Obj
: constant Node_Id
:=
10175 Make_Explicit_Dereference
(Sloc
(N
),
10176 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
10178 Set_Etype
(Obj
, Array_Type
);
10179 Set_Parent
(Obj
, Parent
(N
));
10180 Array_Type
:= Get_Actual_Subtype
(Obj
);
10184 elsif Is_Entity_Name
(Name
)
10185 or else Nkind
(Name
) = N_Explicit_Dereference
10186 or else (Nkind
(Name
) = N_Function_Call
10187 and then not Is_Constrained
(Etype
(Name
)))
10189 Array_Type
:= Get_Actual_Subtype
(Name
);
10191 -- If the name is a selected component that depends on discriminants,
10192 -- build an actual subtype for it. This can happen only when the name
10193 -- itself is overloaded; otherwise the actual subtype is created when
10194 -- the selected component is analyzed.
10196 elsif Nkind
(Name
) = N_Selected_Component
10197 and then Full_Analysis
10198 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
10201 Act_Decl
: constant Node_Id
:=
10202 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
10204 Insert_Action
(N
, Act_Decl
);
10205 Array_Type
:= Defining_Identifier
(Act_Decl
);
10208 -- Maybe this should just be "else", instead of checking for the
10209 -- specific case of slice??? This is needed for the case where the
10210 -- prefix is an Image attribute, which gets expanded to a slice, and so
10211 -- has a constrained subtype which we want to use for the slice range
10212 -- check applied below (the range check won't get done if the
10213 -- unconstrained subtype of the 'Image is used).
10215 elsif Nkind
(Name
) = N_Slice
then
10216 Array_Type
:= Etype
(Name
);
10219 -- Obtain the type of the array index
10221 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
10222 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
10224 Index_Type
:= Etype
(First_Index
(Array_Type
));
10227 -- If name was overloaded, set slice type correctly now
10229 Set_Etype
(N
, Array_Type
);
10231 -- Handle the generation of a range check that compares the array index
10232 -- against the discrete_range. The check is not applied to internally
10233 -- built nodes associated with the expansion of dispatch tables. Check
10234 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10237 if Tagged_Type_Expansion
10238 and then RTU_Loaded
(Ada_Tags
)
10239 and then Nkind
(Prefix
(N
)) = N_Selected_Component
10240 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
10241 and then Entity
(Selector_Name
(Prefix
(N
))) =
10242 RTE_Record_Component
(RE_Prims_Ptr
)
10246 -- The discrete_range is specified by a subtype indication. Create a
10247 -- shallow copy and inherit the type, parent and source location from
10248 -- the discrete_range. This ensures that the range check is inserted
10249 -- relative to the slice and that the runtime exception points to the
10250 -- proper construct.
10252 elsif Is_Entity_Name
(Drange
) then
10253 Dexpr
:= New_Copy
(Scalar_Range
(Entity
(Drange
)));
10255 Set_Etype
(Dexpr
, Etype
(Drange
));
10256 Set_Parent
(Dexpr
, Parent
(Drange
));
10257 Set_Sloc
(Dexpr
, Sloc
(Drange
));
10259 -- The discrete_range is a regular range. Resolve the bounds and remove
10260 -- their side effects.
10263 Resolve
(Drange
, Base_Type
(Index_Type
));
10265 if Nkind
(Drange
) = N_Range
then
10266 Force_Evaluation
(Low_Bound
(Drange
));
10267 Force_Evaluation
(High_Bound
(Drange
));
10273 if Present
(Dexpr
) then
10274 Apply_Range_Check
(Dexpr
, Index_Type
);
10277 Set_Slice_Subtype
(N
);
10279 -- Check bad use of type with predicates
10285 if Nkind
(Drange
) = N_Subtype_Indication
10286 and then Has_Predicates
(Entity
(Subtype_Mark
(Drange
)))
10288 Subt
:= Entity
(Subtype_Mark
(Drange
));
10290 Subt
:= Etype
(Drange
);
10293 if Has_Predicates
(Subt
) then
10294 Bad_Predicated_Subtype_Use
10295 ("subtype& has predicate, not allowed in slice", Drange
, Subt
);
10299 -- Otherwise here is where we check suspicious indexes
10301 if Nkind
(Drange
) = N_Range
then
10302 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
10303 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
10306 Analyze_Dimension
(N
);
10310 ----------------------------
10311 -- Resolve_String_Literal --
10312 ----------------------------
10314 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
10315 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
10316 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
10317 Loc
: constant Source_Ptr
:= Sloc
(N
);
10318 Str
: constant String_Id
:= Strval
(N
);
10319 Strlen
: constant Nat
:= String_Length
(Str
);
10320 Subtype_Id
: Entity_Id
;
10321 Need_Check
: Boolean;
10324 -- For a string appearing in a concatenation, defer creation of the
10325 -- string_literal_subtype until the end of the resolution of the
10326 -- concatenation, because the literal may be constant-folded away. This
10327 -- is a useful optimization for long concatenation expressions.
10329 -- If the string is an aggregate built for a single character (which
10330 -- happens in a non-static context) or a is null string to which special
10331 -- checks may apply, we build the subtype. Wide strings must also get a
10332 -- string subtype if they come from a one character aggregate. Strings
10333 -- generated by attributes might be static, but it is often hard to
10334 -- determine whether the enclosing context is static, so we generate
10335 -- subtypes for them as well, thus losing some rarer optimizations ???
10336 -- Same for strings that come from a static conversion.
10339 (Strlen
= 0 and then Typ
/= Standard_String
)
10340 or else Nkind
(Parent
(N
)) /= N_Op_Concat
10341 or else (N
/= Left_Opnd
(Parent
(N
))
10342 and then N
/= Right_Opnd
(Parent
(N
)))
10343 or else ((Typ
= Standard_Wide_String
10344 or else Typ
= Standard_Wide_Wide_String
)
10345 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
10347 -- If the resolving type is itself a string literal subtype, we can just
10348 -- reuse it, since there is no point in creating another.
10350 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10353 elsif Nkind
(Parent
(N
)) = N_Op_Concat
10354 and then not Need_Check
10355 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
10356 N_Attribute_Reference
,
10357 N_Qualified_Expression
,
10362 -- Do not generate a string literal subtype for the default expression
10363 -- of a formal parameter in GNATprove mode. This is because the string
10364 -- subtype is associated with the freezing actions of the subprogram,
10365 -- however freezing is disabled in GNATprove mode and as a result the
10366 -- subtype is unavailable.
10368 elsif GNATprove_Mode
10369 and then Nkind
(Parent
(N
)) = N_Parameter_Specification
10373 -- Otherwise we must create a string literal subtype. Note that the
10374 -- whole idea of string literal subtypes is simply to avoid the need
10375 -- for building a full fledged array subtype for each literal.
10378 Set_String_Literal_Subtype
(N
, Typ
);
10379 Subtype_Id
:= Etype
(N
);
10382 if Nkind
(Parent
(N
)) /= N_Op_Concat
10385 Set_Etype
(N
, Subtype_Id
);
10386 Eval_String_Literal
(N
);
10389 if Is_Limited_Composite
(Typ
)
10390 or else Is_Private_Composite
(Typ
)
10392 Error_Msg_N
("string literal not available for private array", N
);
10393 Set_Etype
(N
, Any_Type
);
10397 -- The validity of a null string has been checked in the call to
10398 -- Eval_String_Literal.
10403 -- Always accept string literal with component type Any_Character, which
10404 -- occurs in error situations and in comparisons of literals, both of
10405 -- which should accept all literals.
10407 elsif R_Typ
= Any_Character
then
10410 -- If the type is bit-packed, then we always transform the string
10411 -- literal into a full fledged aggregate.
10413 elsif Is_Bit_Packed_Array
(Typ
) then
10416 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10419 -- For Standard.Wide_Wide_String, or any other type whose component
10420 -- type is Standard.Wide_Wide_Character, we know that all the
10421 -- characters in the string must be acceptable, since the parser
10422 -- accepted the characters as valid character literals.
10424 if R_Typ
= Standard_Wide_Wide_Character
then
10427 -- For the case of Standard.String, or any other type whose component
10428 -- type is Standard.Character, we must make sure that there are no
10429 -- wide characters in the string, i.e. that it is entirely composed
10430 -- of characters in range of type Character.
10432 -- If the string literal is the result of a static concatenation, the
10433 -- test has already been performed on the components, and need not be
10436 elsif R_Typ
= Standard_Character
10437 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10439 for J
in 1 .. Strlen
loop
10440 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
10442 -- If we are out of range, post error. This is one of the
10443 -- very few places that we place the flag in the middle of
10444 -- a token, right under the offending wide character. Not
10445 -- quite clear if this is right wrt wide character encoding
10446 -- sequences, but it's only an error message.
10449 ("literal out of range of type Standard.Character",
10450 Source_Ptr
(Int
(Loc
) + J
));
10455 -- For the case of Standard.Wide_String, or any other type whose
10456 -- component type is Standard.Wide_Character, we must make sure that
10457 -- there are no wide characters in the string, i.e. that it is
10458 -- entirely composed of characters in range of type Wide_Character.
10460 -- If the string literal is the result of a static concatenation,
10461 -- the test has already been performed on the components, and need
10462 -- not be repeated.
10464 elsif R_Typ
= Standard_Wide_Character
10465 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10467 for J
in 1 .. Strlen
loop
10468 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
10470 -- If we are out of range, post error. This is one of the
10471 -- very few places that we place the flag in the middle of
10472 -- a token, right under the offending wide character.
10474 -- This is not quite right, because characters in general
10475 -- will take more than one character position ???
10478 ("literal out of range of type Standard.Wide_Character",
10479 Source_Ptr
(Int
(Loc
) + J
));
10484 -- If the root type is not a standard character, then we will convert
10485 -- the string into an aggregate and will let the aggregate code do
10486 -- the checking. Standard Wide_Wide_Character is also OK here.
10492 -- See if the component type of the array corresponding to the string
10493 -- has compile time known bounds. If yes we can directly check
10494 -- whether the evaluation of the string will raise constraint error.
10495 -- Otherwise we need to transform the string literal into the
10496 -- corresponding character aggregate and let the aggregate code do
10499 if Is_Standard_Character_Type
(R_Typ
) then
10501 -- Check for the case of full range, where we are definitely OK
10503 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
10507 -- Here the range is not the complete base type range, so check
10510 Comp_Typ_Lo
: constant Node_Id
:=
10511 Type_Low_Bound
(Component_Type
(Typ
));
10512 Comp_Typ_Hi
: constant Node_Id
:=
10513 Type_High_Bound
(Component_Type
(Typ
));
10518 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
10519 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
10521 for J
in 1 .. Strlen
loop
10522 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
10524 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
10525 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
10527 Apply_Compile_Time_Constraint_Error
10528 (N
, "character out of range??",
10529 CE_Range_Check_Failed
,
10530 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
10540 -- If we got here we meed to transform the string literal into the
10541 -- equivalent qualified positional array aggregate. This is rather
10542 -- heavy artillery for this situation, but it is hard work to avoid.
10545 Lits
: constant List_Id
:= New_List
;
10546 P
: Source_Ptr
:= Loc
+ 1;
10550 -- Build the character literals, we give them source locations that
10551 -- correspond to the string positions, which is a bit tricky given
10552 -- the possible presence of wide character escape sequences.
10554 for J
in 1 .. Strlen
loop
10555 C
:= Get_String_Char
(Str
, J
);
10556 Set_Character_Literal_Name
(C
);
10559 Make_Character_Literal
(P
,
10560 Chars
=> Name_Find
,
10561 Char_Literal_Value
=> UI_From_CC
(C
)));
10563 if In_Character_Range
(C
) then
10566 -- Should we have a call to Skip_Wide here ???
10575 Make_Qualified_Expression
(Loc
,
10576 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
10578 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
10580 Analyze_And_Resolve
(N
, Typ
);
10582 end Resolve_String_Literal
;
10584 -----------------------------
10585 -- Resolve_Type_Conversion --
10586 -----------------------------
10588 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
10589 Conv_OK
: constant Boolean := Conversion_OK
(N
);
10590 Operand
: constant Node_Id
:= Expression
(N
);
10591 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
10592 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10597 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
10598 -- Set to False to suppress cases where we want to suppress the test
10599 -- for redundancy to avoid possible false positives on this warning.
10603 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
10608 -- If the Operand Etype is Universal_Fixed, then the conversion is
10609 -- never redundant. We need this check because by the time we have
10610 -- finished the rather complex transformation, the conversion looks
10611 -- redundant when it is not.
10613 if Operand_Typ
= Universal_Fixed
then
10614 Test_Redundant
:= False;
10616 -- If the operand is marked as Any_Fixed, then special processing is
10617 -- required. This is also a case where we suppress the test for a
10618 -- redundant conversion, since most certainly it is not redundant.
10620 elsif Operand_Typ
= Any_Fixed
then
10621 Test_Redundant
:= False;
10623 -- Mixed-mode operation involving a literal. Context must be a fixed
10624 -- type which is applied to the literal subsequently.
10626 if Is_Fixed_Point_Type
(Typ
) then
10627 Set_Etype
(Operand
, Universal_Real
);
10629 elsif Is_Numeric_Type
(Typ
)
10630 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
10631 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
10633 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
10635 -- Return if expression is ambiguous
10637 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
10640 -- If nothing else, the available fixed type is Duration
10643 Set_Etype
(Operand
, Standard_Duration
);
10646 -- Resolve the real operand with largest available precision
10648 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
10649 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
10651 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
10654 Resolve
(Rop
, Universal_Real
);
10656 -- If the operand is a literal (it could be a non-static and
10657 -- illegal exponentiation) check whether the use of Duration
10658 -- is potentially inaccurate.
10660 if Nkind
(Rop
) = N_Real_Literal
10661 and then Realval
(Rop
) /= Ureal_0
10662 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
10665 ("??universal real operand can only "
10666 & "be interpreted as Duration!", Rop
);
10668 ("\??precision will be lost in the conversion!", Rop
);
10671 elsif Is_Numeric_Type
(Typ
)
10672 and then Nkind
(Operand
) in N_Op
10673 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
10675 Set_Etype
(Operand
, Standard_Duration
);
10678 Error_Msg_N
("invalid context for mixed mode operation", N
);
10679 Set_Etype
(Operand
, Any_Type
);
10686 -- In SPARK, a type conversion between array types should be restricted
10687 -- to types which have matching static bounds.
10689 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10690 -- operation if not needed.
10692 if Restriction_Check_Required
(SPARK_05
)
10693 and then Is_Array_Type
(Target_Typ
)
10694 and then Is_Array_Type
(Operand_Typ
)
10695 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
10696 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
10698 Check_SPARK_05_Restriction
10699 ("array types should have matching static bounds", N
);
10702 -- In formal mode, the operand of an ancestor type conversion must be an
10703 -- object (not an expression).
10705 if Is_Tagged_Type
(Target_Typ
)
10706 and then not Is_Class_Wide_Type
(Target_Typ
)
10707 and then Is_Tagged_Type
(Operand_Typ
)
10708 and then not Is_Class_Wide_Type
(Operand_Typ
)
10709 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
10710 and then not Is_SPARK_05_Object_Reference
(Operand
)
10712 Check_SPARK_05_Restriction
("object required", Operand
);
10715 Analyze_Dimension
(N
);
10717 -- Note: we do the Eval_Type_Conversion call before applying the
10718 -- required checks for a subtype conversion. This is important, since
10719 -- both are prepared under certain circumstances to change the type
10720 -- conversion to a constraint error node, but in the case of
10721 -- Eval_Type_Conversion this may reflect an illegality in the static
10722 -- case, and we would miss the illegality (getting only a warning
10723 -- message), if we applied the type conversion checks first.
10725 Eval_Type_Conversion
(N
);
10727 -- Even when evaluation is not possible, we may be able to simplify the
10728 -- conversion or its expression. This needs to be done before applying
10729 -- checks, since otherwise the checks may use the original expression
10730 -- and defeat the simplifications. This is specifically the case for
10731 -- elimination of the floating-point Truncation attribute in
10732 -- float-to-int conversions.
10734 Simplify_Type_Conversion
(N
);
10736 -- If after evaluation we still have a type conversion, then we may need
10737 -- to apply checks required for a subtype conversion.
10739 -- Skip these type conversion checks if universal fixed operands
10740 -- operands involved, since range checks are handled separately for
10741 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10743 if Nkind
(N
) = N_Type_Conversion
10744 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
10745 and then Target_Typ
/= Universal_Fixed
10746 and then Operand_Typ
/= Universal_Fixed
10748 Apply_Type_Conversion_Checks
(N
);
10751 -- Issue warning for conversion of simple object to its own type. We
10752 -- have to test the original nodes, since they may have been rewritten
10753 -- by various optimizations.
10755 Orig_N
:= Original_Node
(N
);
10757 -- Here we test for a redundant conversion if the warning mode is
10758 -- active (and was not locally reset), and we have a type conversion
10759 -- from source not appearing in a generic instance.
10762 and then Nkind
(Orig_N
) = N_Type_Conversion
10763 and then Comes_From_Source
(Orig_N
)
10764 and then not In_Instance
10766 Orig_N
:= Original_Node
(Expression
(Orig_N
));
10767 Orig_T
:= Target_Typ
;
10769 -- If the node is part of a larger expression, the Target_Type
10770 -- may not be the original type of the node if the context is a
10771 -- condition. Recover original type to see if conversion is needed.
10773 if Is_Boolean_Type
(Orig_T
)
10774 and then Nkind
(Parent
(N
)) in N_Op
10776 Orig_T
:= Etype
(Parent
(N
));
10779 -- If we have an entity name, then give the warning if the entity
10780 -- is the right type, or if it is a loop parameter covered by the
10781 -- original type (that's needed because loop parameters have an
10782 -- odd subtype coming from the bounds).
10784 if (Is_Entity_Name
(Orig_N
)
10786 (Etype
(Entity
(Orig_N
)) = Orig_T
10788 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
10789 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
10791 -- If not an entity, then type of expression must match
10793 or else Etype
(Orig_N
) = Orig_T
10795 -- One more check, do not give warning if the analyzed conversion
10796 -- has an expression with non-static bounds, and the bounds of the
10797 -- target are static. This avoids junk warnings in cases where the
10798 -- conversion is necessary to establish staticness, for example in
10799 -- a case statement.
10801 if not Is_OK_Static_Subtype
(Operand_Typ
)
10802 and then Is_OK_Static_Subtype
(Target_Typ
)
10806 -- Finally, if this type conversion occurs in a context requiring
10807 -- a prefix, and the expression is a qualified expression then the
10808 -- type conversion is not redundant, since a qualified expression
10809 -- is not a prefix, whereas a type conversion is. For example, "X
10810 -- := T'(Funx(...)).Y;" is illegal because a selected component
10811 -- requires a prefix, but a type conversion makes it legal: "X :=
10812 -- T(T'(Funx(...))).Y;"
10814 -- In Ada 2012, a qualified expression is a name, so this idiom is
10815 -- no longer needed, but we still suppress the warning because it
10816 -- seems unfriendly for warnings to pop up when you switch to the
10817 -- newer language version.
10819 elsif Nkind
(Orig_N
) = N_Qualified_Expression
10820 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
10821 N_Indexed_Component
,
10822 N_Selected_Component
,
10824 N_Explicit_Dereference
)
10828 -- Never warn on conversion to Long_Long_Integer'Base since
10829 -- that is most likely an artifact of the extended overflow
10830 -- checking and comes from complex expanded code.
10832 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
10835 -- Here we give the redundant conversion warning. If it is an
10836 -- entity, give the name of the entity in the message. If not,
10837 -- just mention the expression.
10839 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10842 if Is_Entity_Name
(Orig_N
) then
10843 Error_Msg_Node_2
:= Orig_T
;
10844 Error_Msg_NE
-- CODEFIX
10845 ("??redundant conversion, & is of type &!",
10846 N
, Entity
(Orig_N
));
10849 ("??redundant conversion, expression is of type&!",
10856 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10857 -- No need to perform any interface conversion if the type of the
10858 -- expression coincides with the target type.
10860 if Ada_Version
>= Ada_2005
10861 and then Expander_Active
10862 and then Operand_Typ
/= Target_Typ
10865 Opnd
: Entity_Id
:= Operand_Typ
;
10866 Target
: Entity_Id
:= Target_Typ
;
10869 -- If the type of the operand is a limited view, use nonlimited
10870 -- view when available. If it is a class-wide type, recover the
10871 -- class-wide type of the nonlimited view.
10873 if From_Limited_With
(Opnd
)
10874 and then Has_Non_Limited_View
(Opnd
)
10876 Opnd
:= Non_Limited_View
(Opnd
);
10877 Set_Etype
(Expression
(N
), Opnd
);
10880 if Is_Access_Type
(Opnd
) then
10881 Opnd
:= Designated_Type
(Opnd
);
10884 if Is_Access_Type
(Target_Typ
) then
10885 Target
:= Designated_Type
(Target
);
10888 if Opnd
= Target
then
10891 -- Conversion from interface type
10893 elsif Is_Interface
(Opnd
) then
10895 -- Ada 2005 (AI-217): Handle entities from limited views
10897 if From_Limited_With
(Opnd
) then
10898 Error_Msg_Qual_Level
:= 99;
10899 Error_Msg_NE
-- CODEFIX
10900 ("missing WITH clause on package &", N
,
10901 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
10903 ("type conversions require visibility of the full view",
10906 elsif From_Limited_With
(Target
)
10908 (Is_Access_Type
(Target_Typ
)
10909 and then Present
(Non_Limited_View
(Etype
(Target
))))
10911 Error_Msg_Qual_Level
:= 99;
10912 Error_Msg_NE
-- CODEFIX
10913 ("missing WITH clause on package &", N
,
10914 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
10916 ("type conversions require visibility of the full view",
10920 Expand_Interface_Conversion
(N
);
10923 -- Conversion to interface type
10925 elsif Is_Interface
(Target
) then
10929 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
10930 Opnd
:= Etype
(Opnd
);
10933 if Is_Class_Wide_Type
(Opnd
)
10934 or else Interface_Present_In_Ancestor
10938 Expand_Interface_Conversion
(N
);
10940 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
10941 Error_Msg_Name_2
:= Chars
(Opnd
);
10943 ("wrong interface conversion (% is not a progenitor "
10950 -- Ada 2012: if target type has predicates, the result requires a
10951 -- predicate check. If the context is a call to another predicate
10952 -- check we must prevent infinite recursion.
10954 if Has_Predicates
(Target_Typ
) then
10955 if Nkind
(Parent
(N
)) = N_Function_Call
10956 and then Present
(Name
(Parent
(N
)))
10957 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
10959 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
10964 Apply_Predicate_Check
(N
, Target_Typ
);
10968 -- If at this stage we have a real to integer conversion, make sure
10969 -- that the Do_Range_Check flag is set, because such conversions in
10970 -- general need a range check. We only need this if expansion is off
10971 -- or we are in GNATProve mode.
10973 if Nkind
(N
) = N_Type_Conversion
10974 and then (GNATprove_Mode
or not Expander_Active
)
10975 and then Is_Integer_Type
(Target_Typ
)
10976 and then Is_Real_Type
(Operand_Typ
)
10978 Set_Do_Range_Check
(Operand
);
10981 -- Generating C code a type conversion of an access to constrained
10982 -- array type to access to unconstrained array type involves building
10983 -- a fat pointer which in general cannot be generated on the fly. We
10984 -- remove side effects in order to store the result of the conversion
10985 -- into a temporary.
10988 and then Nkind
(N
) = N_Type_Conversion
10989 and then Nkind
(Parent
(N
)) /= N_Object_Declaration
10990 and then Is_Access_Type
(Etype
(N
))
10991 and then Is_Array_Type
(Designated_Type
(Etype
(N
)))
10992 and then not Is_Constrained
(Designated_Type
(Etype
(N
)))
10993 and then Is_Constrained
(Designated_Type
(Etype
(Expression
(N
))))
10995 Remove_Side_Effects
(N
);
10997 end Resolve_Type_Conversion
;
10999 ----------------------
11000 -- Resolve_Unary_Op --
11001 ----------------------
11003 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
11004 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11005 R
: constant Node_Id
:= Right_Opnd
(N
);
11011 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
11012 Error_Msg_Name_1
:= Chars
(Typ
);
11013 Check_SPARK_05_Restriction
11014 ("unary operator not defined for modular type%", N
);
11017 -- Deal with intrinsic unary operators
11019 if Comes_From_Source
(N
)
11020 and then Ekind
(Entity
(N
)) = E_Function
11021 and then Is_Imported
(Entity
(N
))
11022 and then Is_Intrinsic_Subprogram
(Entity
(N
))
11024 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11028 -- Deal with universal cases
11030 if Etype
(R
) = Universal_Integer
11032 Etype
(R
) = Universal_Real
11034 Check_For_Visible_Operator
(N
, B_Typ
);
11037 Set_Etype
(N
, B_Typ
);
11038 Resolve
(R
, B_Typ
);
11040 -- Generate warning for expressions like abs (x mod 2)
11042 if Warn_On_Redundant_Constructs
11043 and then Nkind
(N
) = N_Op_Abs
11045 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
11047 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
11048 Error_Msg_N
-- CODEFIX
11049 ("?r?abs applied to known non-negative value has no effect", N
);
11053 -- Deal with reference generation
11055 Check_Unset_Reference
(R
);
11056 Generate_Operator_Reference
(N
, B_Typ
);
11057 Analyze_Dimension
(N
);
11060 -- Set overflow checking bit. Much cleverer code needed here eventually
11061 -- and perhaps the Resolve routines should be separated for the various
11062 -- arithmetic operations, since they will need different processing ???
11064 if Nkind
(N
) in N_Op
then
11065 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
11066 Enable_Overflow_Check
(N
);
11070 -- Generate warning for expressions like -5 mod 3 for integers. No need
11071 -- to worry in the floating-point case, since parens do not affect the
11072 -- result so there is no point in giving in a warning.
11075 Norig
: constant Node_Id
:= Original_Node
(N
);
11084 if Warn_On_Questionable_Missing_Parens
11085 and then Comes_From_Source
(Norig
)
11086 and then Is_Integer_Type
(Typ
)
11087 and then Nkind
(Norig
) = N_Op_Minus
11089 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
11091 -- We are looking for cases where the right operand is not
11092 -- parenthesized, and is a binary operator, multiply, divide, or
11093 -- mod. These are the cases where the grouping can affect results.
11095 if Paren_Count
(Rorig
) = 0
11096 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
11098 -- For mod, we always give the warning, since the value is
11099 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11100 -- -(5 mod 315)). But for the other cases, the only concern is
11101 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11102 -- overflows, but (-2) * 64 does not). So we try to give the
11103 -- message only when overflow is possible.
11105 if Nkind
(Rorig
) /= N_Op_Mod
11106 and then Compile_Time_Known_Value
(R
)
11108 Val
:= Expr_Value
(R
);
11110 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
11111 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
11113 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
11116 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
11117 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
11119 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
11122 -- Note that the test below is deliberately excluding the
11123 -- largest negative number, since that is a potentially
11124 -- troublesome case (e.g. -2 * x, where the result is the
11125 -- largest negative integer has an overflow with 2 * x).
11127 if Val
> LB
and then Val
<= HB
then
11132 -- For the multiplication case, the only case we have to worry
11133 -- about is when (-a)*b is exactly the largest negative number
11134 -- so that -(a*b) can cause overflow. This can only happen if
11135 -- a is a power of 2, and more generally if any operand is a
11136 -- constant that is not a power of 2, then the parentheses
11137 -- cannot affect whether overflow occurs. We only bother to
11138 -- test the left most operand
11140 -- Loop looking at left operands for one that has known value
11143 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
11144 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
11145 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
11147 -- Operand value of 0 or 1 skips warning
11152 -- Otherwise check power of 2, if power of 2, warn, if
11153 -- anything else, skip warning.
11156 while Lval
/= 2 loop
11157 if Lval
mod 2 = 1 then
11168 -- Keep looking at left operands
11170 Opnd
:= Left_Opnd
(Opnd
);
11171 end loop Opnd_Loop
;
11173 -- For rem or "/" we can only have a problematic situation
11174 -- if the divisor has a value of minus one or one. Otherwise
11175 -- overflow is impossible (divisor > 1) or we have a case of
11176 -- division by zero in any case.
11178 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
11179 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
11180 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
11185 -- If we fall through warning should be issued
11187 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11190 ("??unary minus expression should be parenthesized here!", N
);
11194 end Resolve_Unary_Op
;
11196 ----------------------------------
11197 -- Resolve_Unchecked_Expression --
11198 ----------------------------------
11200 procedure Resolve_Unchecked_Expression
11205 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
11206 Set_Etype
(N
, Typ
);
11207 end Resolve_Unchecked_Expression
;
11209 ---------------------------------------
11210 -- Resolve_Unchecked_Type_Conversion --
11211 ---------------------------------------
11213 procedure Resolve_Unchecked_Type_Conversion
11217 pragma Warnings
(Off
, Typ
);
11219 Operand
: constant Node_Id
:= Expression
(N
);
11220 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
11223 -- Resolve operand using its own type
11225 Resolve
(Operand
, Opnd_Type
);
11227 -- In an inlined context, the unchecked conversion may be applied
11228 -- to a literal, in which case its type is the type of the context.
11229 -- (In other contexts conversions cannot apply to literals).
11232 and then (Opnd_Type
= Any_Character
or else
11233 Opnd_Type
= Any_Integer
or else
11234 Opnd_Type
= Any_Real
)
11236 Set_Etype
(Operand
, Typ
);
11239 Analyze_Dimension
(N
);
11240 Eval_Unchecked_Conversion
(N
);
11241 end Resolve_Unchecked_Type_Conversion
;
11243 ------------------------------
11244 -- Rewrite_Operator_As_Call --
11245 ------------------------------
11247 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
11248 Loc
: constant Source_Ptr
:= Sloc
(N
);
11249 Actuals
: constant List_Id
:= New_List
;
11253 if Nkind
(N
) in N_Binary_Op
then
11254 Append
(Left_Opnd
(N
), Actuals
);
11257 Append
(Right_Opnd
(N
), Actuals
);
11260 Make_Function_Call
(Sloc
=> Loc
,
11261 Name
=> New_Occurrence_Of
(Nam
, Loc
),
11262 Parameter_Associations
=> Actuals
);
11264 Preserve_Comes_From_Source
(New_N
, N
);
11265 Preserve_Comes_From_Source
(Name
(New_N
), N
);
11266 Rewrite
(N
, New_N
);
11267 Set_Etype
(N
, Etype
(Nam
));
11268 end Rewrite_Operator_As_Call
;
11270 ------------------------------
11271 -- Rewrite_Renamed_Operator --
11272 ------------------------------
11274 procedure Rewrite_Renamed_Operator
11279 Nam
: constant Name_Id
:= Chars
(Op
);
11280 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
11284 -- Do not perform this transformation within a pre/postcondition,
11285 -- because the expression will be re-analyzed, and the transformation
11286 -- might affect the visibility of the operator, e.g. in an instance.
11287 -- Note that fully analyzed and expanded pre/postconditions appear as
11288 -- pragma Check equivalents.
11290 if In_Pre_Post_Condition
(N
) then
11294 -- Rewrite the operator node using the real operator, not its renaming.
11295 -- Exclude user-defined intrinsic operations of the same name, which are
11296 -- treated separately and rewritten as calls.
11298 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
11299 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
11300 Set_Chars
(Op_Node
, Nam
);
11301 Set_Etype
(Op_Node
, Etype
(N
));
11302 Set_Entity
(Op_Node
, Op
);
11303 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
11305 -- Indicate that both the original entity and its renaming are
11306 -- referenced at this point.
11308 Generate_Reference
(Entity
(N
), N
);
11309 Generate_Reference
(Op
, N
);
11312 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
11315 Rewrite
(N
, Op_Node
);
11317 -- If the context type is private, add the appropriate conversions so
11318 -- that the operator is applied to the full view. This is done in the
11319 -- routines that resolve intrinsic operators.
11321 if Is_Intrinsic_Subprogram
(Op
) and then Is_Private_Type
(Typ
) then
11323 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11324 N_Op_Expon | N_Op_Mod | N_Op_Rem
=>
11325 Resolve_Intrinsic_Operator
(N
, Typ
);
11327 when N_Op_Plus | N_Op_Minus | N_Op_Abs
=>
11328 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11335 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
11337 -- Operator renames a user-defined operator of the same name. Use the
11338 -- original operator in the node, which is the one Gigi knows about.
11340 Set_Entity
(N
, Op
);
11341 Set_Is_Overloaded
(N
, False);
11343 end Rewrite_Renamed_Operator
;
11345 -----------------------
11346 -- Set_Slice_Subtype --
11347 -----------------------
11349 -- Build an implicit subtype declaration to represent the type delivered by
11350 -- the slice. This is an abbreviated version of an array subtype. We define
11351 -- an index subtype for the slice, using either the subtype name or the
11352 -- discrete range of the slice. To be consistent with index usage elsewhere
11353 -- we create a list header to hold the single index. This list is not
11354 -- otherwise attached to the syntax tree.
11356 procedure Set_Slice_Subtype
(N
: Node_Id
) is
11357 Loc
: constant Source_Ptr
:= Sloc
(N
);
11358 Index_List
: constant List_Id
:= New_List
;
11360 Index_Subtype
: Entity_Id
;
11361 Index_Type
: Entity_Id
;
11362 Slice_Subtype
: Entity_Id
;
11363 Drange
: constant Node_Id
:= Discrete_Range
(N
);
11366 Index_Type
:= Base_Type
(Etype
(Drange
));
11368 if Is_Entity_Name
(Drange
) then
11369 Index_Subtype
:= Entity
(Drange
);
11372 -- We force the evaluation of a range. This is definitely needed in
11373 -- the renamed case, and seems safer to do unconditionally. Note in
11374 -- any case that since we will create and insert an Itype referring
11375 -- to this range, we must make sure any side effect removal actions
11376 -- are inserted before the Itype definition.
11378 if Nkind
(Drange
) = N_Range
then
11379 Force_Evaluation
(Low_Bound
(Drange
));
11380 Force_Evaluation
(High_Bound
(Drange
));
11382 -- If the discrete range is given by a subtype indication, the
11383 -- type of the slice is the base of the subtype mark.
11385 elsif Nkind
(Drange
) = N_Subtype_Indication
then
11387 R
: constant Node_Id
:= Range_Expression
(Constraint
(Drange
));
11389 Index_Type
:= Base_Type
(Entity
(Subtype_Mark
(Drange
)));
11390 Force_Evaluation
(Low_Bound
(R
));
11391 Force_Evaluation
(High_Bound
(R
));
11395 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11397 -- Take a new copy of Drange (where bounds have been rewritten to
11398 -- reference side-effect-free names). Using a separate tree ensures
11399 -- that further expansion (e.g. while rewriting a slice assignment
11400 -- into a FOR loop) does not attempt to remove side effects on the
11401 -- bounds again (which would cause the bounds in the index subtype
11402 -- definition to refer to temporaries before they are defined) (the
11403 -- reason is that some names are considered side effect free here
11404 -- for the subtype, but not in the context of a loop iteration
11407 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
11408 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
11409 Set_Etype
(Index_Subtype
, Index_Type
);
11410 Set_Size_Info
(Index_Subtype
, Index_Type
);
11411 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11414 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11416 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11417 Set_Etype
(Index
, Index_Subtype
);
11418 Append
(Index
, Index_List
);
11420 Set_First_Index
(Slice_Subtype
, Index
);
11421 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
11422 Set_Is_Constrained
(Slice_Subtype
, True);
11424 Check_Compile_Time_Size
(Slice_Subtype
);
11426 -- The Etype of the existing Slice node is reset to this slice subtype.
11427 -- Its bounds are obtained from its first index.
11429 Set_Etype
(N
, Slice_Subtype
);
11431 -- For packed slice subtypes, freeze immediately (except in the case of
11432 -- being in a "spec expression" where we never freeze when we first see
11433 -- the expression).
11435 if Is_Packed
(Slice_Subtype
) and not In_Spec_Expression
then
11436 Freeze_Itype
(Slice_Subtype
, N
);
11438 -- For all other cases insert an itype reference in the slice's actions
11439 -- so that the itype is frozen at the proper place in the tree (i.e. at
11440 -- the point where actions for the slice are analyzed). Note that this
11441 -- is different from freezing the itype immediately, which might be
11442 -- premature (e.g. if the slice is within a transient scope). This needs
11443 -- to be done only if expansion is enabled.
11445 elsif Expander_Active
then
11446 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
11448 end Set_Slice_Subtype
;
11450 --------------------------------
11451 -- Set_String_Literal_Subtype --
11452 --------------------------------
11454 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
11455 Loc
: constant Source_Ptr
:= Sloc
(N
);
11456 Low_Bound
: constant Node_Id
:=
11457 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
11458 Subtype_Id
: Entity_Id
;
11461 if Nkind
(N
) /= N_String_Literal
then
11465 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
11466 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
11467 (String_Length
(Strval
(N
))));
11468 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
11469 Set_Is_Constrained
(Subtype_Id
);
11470 Set_Etype
(N
, Subtype_Id
);
11472 -- The low bound is set from the low bound of the corresponding index
11473 -- type. Note that we do not store the high bound in the string literal
11474 -- subtype, but it can be deduced if necessary from the length and the
11477 if Is_OK_Static_Expression
(Low_Bound
) then
11478 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
11480 -- If the lower bound is not static we create a range for the string
11481 -- literal, using the index type and the known length of the literal.
11482 -- The index type is not necessarily Positive, so the upper bound is
11483 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11487 Index_List
: constant List_Id
:= New_List
;
11488 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
11489 High_Bound
: constant Node_Id
:=
11490 Make_Attribute_Reference
(Loc
,
11491 Attribute_Name
=> Name_Val
,
11493 New_Occurrence_Of
(Index_Type
, Loc
),
11494 Expressions
=> New_List
(
11497 Make_Attribute_Reference
(Loc
,
11498 Attribute_Name
=> Name_Pos
,
11500 New_Occurrence_Of
(Index_Type
, Loc
),
11502 New_List
(New_Copy_Tree
(Low_Bound
))),
11504 Make_Integer_Literal
(Loc
,
11505 String_Length
(Strval
(N
)) - 1))));
11507 Array_Subtype
: Entity_Id
;
11510 Index_Subtype
: Entity_Id
;
11513 if Is_Integer_Type
(Index_Type
) then
11514 Set_String_Literal_Low_Bound
11515 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
11518 -- If the index type is an enumeration type, build bounds
11519 -- expression with attributes.
11521 Set_String_Literal_Low_Bound
11523 Make_Attribute_Reference
(Loc
,
11524 Attribute_Name
=> Name_First
,
11526 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
11527 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
11530 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
11532 -- Build bona fide subtype for the string, and wrap it in an
11533 -- unchecked conversion, because the backend expects the
11534 -- String_Literal_Subtype to have a static lower bound.
11537 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11538 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
11539 Set_Scalar_Range
(Index_Subtype
, Drange
);
11540 Set_Parent
(Drange
, N
);
11541 Analyze_And_Resolve
(Drange
, Index_Type
);
11543 -- In the context, the Index_Type may already have a constraint,
11544 -- so use common base type on string subtype. The base type may
11545 -- be used when generating attributes of the string, for example
11546 -- in the context of a slice assignment.
11548 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
11549 Set_Size_Info
(Index_Subtype
, Index_Type
);
11550 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11552 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11554 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11555 Set_Etype
(Index
, Index_Subtype
);
11556 Append
(Index
, Index_List
);
11558 Set_First_Index
(Array_Subtype
, Index
);
11559 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
11560 Set_Is_Constrained
(Array_Subtype
, True);
11563 Make_Unchecked_Type_Conversion
(Loc
,
11564 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
11565 Expression
=> Relocate_Node
(N
)));
11566 Set_Etype
(N
, Array_Subtype
);
11569 end Set_String_Literal_Subtype
;
11571 ------------------------------
11572 -- Simplify_Type_Conversion --
11573 ------------------------------
11575 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
11577 if Nkind
(N
) = N_Type_Conversion
then
11579 Operand
: constant Node_Id
:= Expression
(N
);
11580 Target_Typ
: constant Entity_Id
:= Etype
(N
);
11581 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
11584 -- Special processing if the conversion is the expression of a
11585 -- Rounding or Truncation attribute reference. In this case we
11588 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11594 -- with the Float_Truncate flag set to False or True respectively,
11595 -- which is more efficient.
11597 if Is_Floating_Point_Type
(Opnd_Typ
)
11599 (Is_Integer_Type
(Target_Typ
)
11600 or else (Is_Fixed_Point_Type
(Target_Typ
)
11601 and then Conversion_OK
(N
)))
11602 and then Nkind
(Operand
) = N_Attribute_Reference
11603 and then Nam_In
(Attribute_Name
(Operand
), Name_Rounding
,
11607 Truncate
: constant Boolean :=
11608 Attribute_Name
(Operand
) = Name_Truncation
;
11611 Relocate_Node
(First
(Expressions
(Operand
))));
11612 Set_Float_Truncate
(N
, Truncate
);
11617 end Simplify_Type_Conversion
;
11619 -----------------------------
11620 -- Unique_Fixed_Point_Type --
11621 -----------------------------
11623 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
11624 T1
: Entity_Id
:= Empty
;
11629 procedure Fixed_Point_Error
;
11630 -- Give error messages for true ambiguity. Messages are posted on node
11631 -- N, and entities T1, T2 are the possible interpretations.
11633 -----------------------
11634 -- Fixed_Point_Error --
11635 -----------------------
11637 procedure Fixed_Point_Error
is
11639 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
11640 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
11641 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
11642 end Fixed_Point_Error
;
11644 -- Start of processing for Unique_Fixed_Point_Type
11647 -- The operations on Duration are visible, so Duration is always a
11648 -- possible interpretation.
11650 T1
:= Standard_Duration
;
11652 -- Look for fixed-point types in enclosing scopes
11654 Scop
:= Current_Scope
;
11655 while Scop
/= Standard_Standard
loop
11656 T2
:= First_Entity
(Scop
);
11657 while Present
(T2
) loop
11658 if Is_Fixed_Point_Type
(T2
)
11659 and then Current_Entity
(T2
) = T2
11660 and then Scope
(Base_Type
(T2
)) = Scop
11662 if Present
(T1
) then
11673 Scop
:= Scope
(Scop
);
11676 -- Look for visible fixed type declarations in the context
11678 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
11679 while Present
(Item
) loop
11680 if Nkind
(Item
) = N_With_Clause
then
11681 Scop
:= Entity
(Name
(Item
));
11682 T2
:= First_Entity
(Scop
);
11683 while Present
(T2
) loop
11684 if Is_Fixed_Point_Type
(T2
)
11685 and then Scope
(Base_Type
(T2
)) = Scop
11686 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
11688 if Present
(T1
) then
11703 if Nkind
(N
) = N_Real_Literal
then
11705 ("??real literal interpreted as }!", N
, T1
);
11708 ("??universal_fixed expression interpreted as }!", N
, T1
);
11712 end Unique_Fixed_Point_Type
;
11714 ----------------------
11715 -- Valid_Conversion --
11716 ----------------------
11718 function Valid_Conversion
11720 Target
: Entity_Id
;
11722 Report_Errs
: Boolean := True) return Boolean
11724 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
11725 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
11726 Inc_Ancestor
: Entity_Id
;
11728 function Conversion_Check
11730 Msg
: String) return Boolean;
11731 -- Little routine to post Msg if Valid is False, returns Valid value
11733 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
11734 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11736 procedure Conversion_Error_NE
11738 N
: Node_Or_Entity_Id
;
11739 E
: Node_Or_Entity_Id
);
11740 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11742 function Valid_Tagged_Conversion
11743 (Target_Type
: Entity_Id
;
11744 Opnd_Type
: Entity_Id
) return Boolean;
11745 -- Specifically test for validity of tagged conversions
11747 function Valid_Array_Conversion
return Boolean;
11748 -- Check index and component conformance, and accessibility levels if
11749 -- the component types are anonymous access types (Ada 2005).
11751 ----------------------
11752 -- Conversion_Check --
11753 ----------------------
11755 function Conversion_Check
11757 Msg
: String) return Boolean
11762 -- A generic unit has already been analyzed and we have verified
11763 -- that a particular conversion is OK in that context. Since the
11764 -- instance is reanalyzed without relying on the relationships
11765 -- established during the analysis of the generic, it is possible
11766 -- to end up with inconsistent views of private types. Do not emit
11767 -- the error message in such cases. The rest of the machinery in
11768 -- Valid_Conversion still ensures the proper compatibility of
11769 -- target and operand types.
11771 and then not In_Instance
11773 Conversion_Error_N
(Msg
, Operand
);
11777 end Conversion_Check
;
11779 ------------------------
11780 -- Conversion_Error_N --
11781 ------------------------
11783 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
11785 if Report_Errs
then
11786 Error_Msg_N
(Msg
, N
);
11788 end Conversion_Error_N
;
11790 -------------------------
11791 -- Conversion_Error_NE --
11792 -------------------------
11794 procedure Conversion_Error_NE
11796 N
: Node_Or_Entity_Id
;
11797 E
: Node_Or_Entity_Id
)
11800 if Report_Errs
then
11801 Error_Msg_NE
(Msg
, N
, E
);
11803 end Conversion_Error_NE
;
11805 ----------------------------
11806 -- Valid_Array_Conversion --
11807 ----------------------------
11809 function Valid_Array_Conversion
return Boolean
11811 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
11812 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
11814 Opnd_Index
: Node_Id
;
11815 Opnd_Index_Type
: Entity_Id
;
11817 Target_Comp_Type
: constant Entity_Id
:=
11818 Component_Type
(Target_Type
);
11819 Target_Comp_Base
: constant Entity_Id
:=
11820 Base_Type
(Target_Comp_Type
);
11822 Target_Index
: Node_Id
;
11823 Target_Index_Type
: Entity_Id
;
11826 -- Error if wrong number of dimensions
11829 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
11832 ("incompatible number of dimensions for conversion", Operand
);
11835 -- Number of dimensions matches
11838 -- Loop through indexes of the two arrays
11840 Target_Index
:= First_Index
(Target_Type
);
11841 Opnd_Index
:= First_Index
(Opnd_Type
);
11842 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
11843 Target_Index_Type
:= Etype
(Target_Index
);
11844 Opnd_Index_Type
:= Etype
(Opnd_Index
);
11846 -- Error if index types are incompatible
11848 if not (Is_Integer_Type
(Target_Index_Type
)
11849 and then Is_Integer_Type
(Opnd_Index_Type
))
11850 and then (Root_Type
(Target_Index_Type
)
11851 /= Root_Type
(Opnd_Index_Type
))
11854 ("incompatible index types for array conversion",
11859 Next_Index
(Target_Index
);
11860 Next_Index
(Opnd_Index
);
11863 -- If component types have same base type, all set
11865 if Target_Comp_Base
= Opnd_Comp_Base
then
11868 -- Here if base types of components are not the same. The only
11869 -- time this is allowed is if we have anonymous access types.
11871 -- The conversion of arrays of anonymous access types can lead
11872 -- to dangling pointers. AI-392 formalizes the accessibility
11873 -- checks that must be applied to such conversions to prevent
11874 -- out-of-scope references.
11877 (Target_Comp_Base
, E_Anonymous_Access_Type
,
11878 E_Anonymous_Access_Subprogram_Type
)
11879 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
11881 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
11883 if Type_Access_Level
(Target_Type
) <
11884 Deepest_Type_Access_Level
(Opnd_Type
)
11886 if In_Instance_Body
then
11887 Error_Msg_Warn
:= SPARK_Mode
/= On
;
11889 ("source array type has deeper accessibility "
11890 & "level than target<<", Operand
);
11891 Conversion_Error_N
("\Program_Error [<<", Operand
);
11893 Make_Raise_Program_Error
(Sloc
(N
),
11894 Reason
=> PE_Accessibility_Check_Failed
));
11895 Set_Etype
(N
, Target_Type
);
11898 -- Conversion not allowed because of accessibility levels
11902 ("source array type has deeper accessibility "
11903 & "level than target", Operand
);
11911 -- All other cases where component base types do not match
11915 ("incompatible component types for array conversion",
11920 -- Check that component subtypes statically match. For numeric
11921 -- types this means that both must be either constrained or
11922 -- unconstrained. For enumeration types the bounds must match.
11923 -- All of this is checked in Subtypes_Statically_Match.
11925 if not Subtypes_Statically_Match
11926 (Target_Comp_Type
, Opnd_Comp_Type
)
11929 ("component subtypes must statically match", Operand
);
11935 end Valid_Array_Conversion
;
11937 -----------------------------
11938 -- Valid_Tagged_Conversion --
11939 -----------------------------
11941 function Valid_Tagged_Conversion
11942 (Target_Type
: Entity_Id
;
11943 Opnd_Type
: Entity_Id
) return Boolean
11946 -- Upward conversions are allowed (RM 4.6(22))
11948 if Covers
(Target_Type
, Opnd_Type
)
11949 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
11953 -- Downward conversion are allowed if the operand is class-wide
11956 elsif Is_Class_Wide_Type
(Opnd_Type
)
11957 and then Covers
(Opnd_Type
, Target_Type
)
11961 elsif Covers
(Opnd_Type
, Target_Type
)
11962 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
11965 Conversion_Check
(False,
11966 "downward conversion of tagged objects not allowed");
11968 -- Ada 2005 (AI-251): The conversion to/from interface types is
11969 -- always valid. The types involved may be class-wide (sub)types.
11971 elsif Is_Interface
(Etype
(Base_Type
(Target_Type
)))
11972 or else Is_Interface
(Etype
(Base_Type
(Opnd_Type
)))
11976 -- If the operand is a class-wide type obtained through a limited_
11977 -- with clause, and the context includes the nonlimited view, use
11978 -- it to determine whether the conversion is legal.
11980 elsif Is_Class_Wide_Type
(Opnd_Type
)
11981 and then From_Limited_With
(Opnd_Type
)
11982 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
11983 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
11987 elsif Is_Access_Type
(Opnd_Type
)
11988 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
11993 Conversion_Error_NE
11994 ("invalid tagged conversion, not compatible with}",
11995 N
, First_Subtype
(Opnd_Type
));
11998 end Valid_Tagged_Conversion
;
12000 -- Start of processing for Valid_Conversion
12003 Check_Parameterless_Call
(Operand
);
12005 if Is_Overloaded
(Operand
) then
12015 -- Remove procedure calls, which syntactically cannot appear in
12016 -- this context, but which cannot be removed by type checking,
12017 -- because the context does not impose a type.
12019 -- The node may be labelled overloaded, but still contain only one
12020 -- interpretation because others were discarded earlier. If this
12021 -- is the case, retain the single interpretation if legal.
12023 Get_First_Interp
(Operand
, I
, It
);
12024 Opnd_Type
:= It
.Typ
;
12025 Get_Next_Interp
(I
, It
);
12027 if Present
(It
.Typ
)
12028 and then Opnd_Type
/= Standard_Void_Type
12030 -- More than one candidate interpretation is available
12032 Get_First_Interp
(Operand
, I
, It
);
12033 while Present
(It
.Typ
) loop
12034 if It
.Typ
= Standard_Void_Type
then
12038 -- When compiling for a system where Address is of a visible
12039 -- integer type, spurious ambiguities can be produced when
12040 -- arithmetic operations have a literal operand and return
12041 -- System.Address or a descendant of it. These ambiguities
12042 -- are usually resolved by the context, but for conversions
12043 -- there is no context type and the removal of the spurious
12044 -- operations must be done explicitly here.
12046 if not Address_Is_Private
12047 and then Is_Descendant_Of_Address
(It
.Typ
)
12052 Get_Next_Interp
(I
, It
);
12056 Get_First_Interp
(Operand
, I
, It
);
12060 if No
(It
.Typ
) then
12061 Conversion_Error_N
("illegal operand in conversion", Operand
);
12065 Get_Next_Interp
(I
, It
);
12067 if Present
(It
.Typ
) then
12070 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
12072 if It1
= No_Interp
then
12074 ("ambiguous operand in conversion", Operand
);
12076 -- If the interpretation involves a standard operator, use
12077 -- the location of the type, which may be user-defined.
12079 if Sloc
(It
.Nam
) = Standard_Location
then
12080 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
12082 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
12085 Conversion_Error_N
-- CODEFIX
12086 ("\\possible interpretation#!", Operand
);
12088 if Sloc
(N1
) = Standard_Location
then
12089 Error_Msg_Sloc
:= Sloc
(T1
);
12091 Error_Msg_Sloc
:= Sloc
(N1
);
12094 Conversion_Error_N
-- CODEFIX
12095 ("\\possible interpretation#!", Operand
);
12101 Set_Etype
(Operand
, It1
.Typ
);
12102 Opnd_Type
:= It1
.Typ
;
12106 -- Deal with conversion of integer type to address if the pragma
12107 -- Allow_Integer_Address is in effect. We convert the conversion to
12108 -- an unchecked conversion in this case and we are all done.
12110 if Address_Integer_Convert_OK
(Opnd_Type
, Target_Type
) then
12111 Rewrite
(N
, Unchecked_Convert_To
(Target_Type
, Expression
(N
)));
12112 Analyze_And_Resolve
(N
, Target_Type
);
12116 -- If we are within a child unit, check whether the type of the
12117 -- expression has an ancestor in a parent unit, in which case it
12118 -- belongs to its derivation class even if the ancestor is private.
12119 -- See RM 7.3.1 (5.2/3).
12121 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
12125 if Is_Numeric_Type
(Target_Type
) then
12127 -- A universal fixed expression can be converted to any numeric type
12129 if Opnd_Type
= Universal_Fixed
then
12132 -- Also no need to check when in an instance or inlined body, because
12133 -- the legality has been established when the template was analyzed.
12134 -- Furthermore, numeric conversions may occur where only a private
12135 -- view of the operand type is visible at the instantiation point.
12136 -- This results in a spurious error if we check that the operand type
12137 -- is a numeric type.
12139 -- Note: in a previous version of this unit, the following tests were
12140 -- applied only for generated code (Comes_From_Source set to False),
12141 -- but in fact the test is required for source code as well, since
12142 -- this situation can arise in source code.
12144 elsif In_Instance
or else In_Inlined_Body
then
12147 -- Otherwise we need the conversion check
12150 return Conversion_Check
12151 (Is_Numeric_Type
(Opnd_Type
)
12153 (Present
(Inc_Ancestor
)
12154 and then Is_Numeric_Type
(Inc_Ancestor
)),
12155 "illegal operand for numeric conversion");
12160 elsif Is_Array_Type
(Target_Type
) then
12161 if not Is_Array_Type
(Opnd_Type
)
12162 or else Opnd_Type
= Any_Composite
12163 or else Opnd_Type
= Any_String
12166 ("illegal operand for array conversion", Operand
);
12170 return Valid_Array_Conversion
;
12173 -- Ada 2005 (AI-251): Internally generated conversions of access to
12174 -- interface types added to force the displacement of the pointer to
12175 -- reference the corresponding dispatch table.
12177 elsif not Comes_From_Source
(N
)
12178 and then Is_Access_Type
(Target_Type
)
12179 and then Is_Interface
(Designated_Type
(Target_Type
))
12183 -- Ada 2005 (AI-251): Anonymous access types where target references an
12186 elsif Is_Access_Type
(Opnd_Type
)
12187 and then Ekind_In
(Target_Type
, E_General_Access_Type
,
12188 E_Anonymous_Access_Type
)
12189 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
12191 -- Check the static accessibility rule of 4.6(17). Note that the
12192 -- check is not enforced when within an instance body, since the
12193 -- RM requires such cases to be caught at run time.
12195 -- If the operand is a rewriting of an allocator no check is needed
12196 -- because there are no accessibility issues.
12198 if Nkind
(Original_Node
(N
)) = N_Allocator
then
12201 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
12202 if Type_Access_Level
(Opnd_Type
) >
12203 Deepest_Type_Access_Level
(Target_Type
)
12205 -- In an instance, this is a run-time check, but one we know
12206 -- will fail, so generate an appropriate warning. The raise
12207 -- will be generated by Expand_N_Type_Conversion.
12209 if In_Instance_Body
then
12210 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12212 ("cannot convert local pointer to non-local access type<<",
12214 Conversion_Error_N
("\Program_Error [<<", Operand
);
12218 ("cannot convert local pointer to non-local access type",
12223 -- Special accessibility checks are needed in the case of access
12224 -- discriminants declared for a limited type.
12226 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12227 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12229 -- When the operand is a selected access discriminant the check
12230 -- needs to be made against the level of the object denoted by
12231 -- the prefix of the selected name (Object_Access_Level handles
12232 -- checking the prefix of the operand for this case).
12234 if Nkind
(Operand
) = N_Selected_Component
12235 and then Object_Access_Level
(Operand
) >
12236 Deepest_Type_Access_Level
(Target_Type
)
12238 -- In an instance, this is a run-time check, but one we know
12239 -- will fail, so generate an appropriate warning. The raise
12240 -- will be generated by Expand_N_Type_Conversion.
12242 if In_Instance_Body
then
12243 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12245 ("cannot convert access discriminant to non-local "
12246 & "access type<<", Operand
);
12247 Conversion_Error_N
("\Program_Error [<<", Operand
);
12249 -- Real error if not in instance body
12253 ("cannot convert access discriminant to non-local "
12254 & "access type", Operand
);
12259 -- The case of a reference to an access discriminant from
12260 -- within a limited type declaration (which will appear as
12261 -- a discriminal) is always illegal because the level of the
12262 -- discriminant is considered to be deeper than any (nameable)
12265 if Is_Entity_Name
(Operand
)
12266 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12268 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12269 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12272 ("discriminant has deeper accessibility level than target",
12281 -- General and anonymous access types
12283 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12284 E_Anonymous_Access_Type
)
12287 (Is_Access_Type
(Opnd_Type
)
12289 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
12290 E_Access_Protected_Subprogram_Type
),
12291 "must be an access-to-object type")
12293 if Is_Access_Constant
(Opnd_Type
)
12294 and then not Is_Access_Constant
(Target_Type
)
12297 ("access-to-constant operand type not allowed", Operand
);
12301 -- Check the static accessibility rule of 4.6(17). Note that the
12302 -- check is not enforced when within an instance body, since the RM
12303 -- requires such cases to be caught at run time.
12305 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
12306 or else Is_Local_Anonymous_Access
(Target_Type
)
12307 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
12308 N_Object_Declaration
12310 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12311 -- conversions from an anonymous access type to a named general
12312 -- access type. Such conversions are not allowed in the case of
12313 -- access parameters and stand-alone objects of an anonymous
12314 -- access type. The implicit conversion case is recognized by
12315 -- testing that Comes_From_Source is False and that it's been
12316 -- rewritten. The Comes_From_Source test isn't sufficient because
12317 -- nodes in inlined calls to predefined library routines can have
12318 -- Comes_From_Source set to False. (Is there a better way to test
12319 -- for implicit conversions???)
12321 if Ada_Version
>= Ada_2012
12322 and then not Comes_From_Source
(N
)
12323 and then N
/= Original_Node
(N
)
12324 and then Ekind
(Target_Type
) = E_General_Access_Type
12325 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12327 if Is_Itype
(Opnd_Type
) then
12329 -- Implicit conversions aren't allowed for objects of an
12330 -- anonymous access type, since such objects have nonstatic
12331 -- levels in Ada 2012.
12333 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
12334 N_Object_Declaration
12337 ("implicit conversion of stand-alone anonymous "
12338 & "access object not allowed", Operand
);
12341 -- Implicit conversions aren't allowed for anonymous access
12342 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12343 -- is done to exclude anonymous access results.
12345 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
12346 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
12347 N_Function_Specification
,
12348 N_Procedure_Specification
)
12351 ("implicit conversion of anonymous access formal "
12352 & "not allowed", Operand
);
12355 -- This is a case where there's an enclosing object whose
12356 -- to which the "statically deeper than" relationship does
12357 -- not apply (such as an access discriminant selected from
12358 -- a dereference of an access parameter).
12360 elsif Object_Access_Level
(Operand
)
12361 = Scope_Depth
(Standard_Standard
)
12364 ("implicit conversion of anonymous access value "
12365 & "not allowed", Operand
);
12368 -- In other cases, the level of the operand's type must be
12369 -- statically less deep than that of the target type, else
12370 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12372 elsif Type_Access_Level
(Opnd_Type
) >
12373 Deepest_Type_Access_Level
(Target_Type
)
12376 ("implicit conversion of anonymous access value "
12377 & "violates accessibility", Operand
);
12382 elsif Type_Access_Level
(Opnd_Type
) >
12383 Deepest_Type_Access_Level
(Target_Type
)
12385 -- In an instance, this is a run-time check, but one we know
12386 -- will fail, so generate an appropriate warning. The raise
12387 -- will be generated by Expand_N_Type_Conversion.
12389 if In_Instance_Body
then
12390 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12392 ("cannot convert local pointer to non-local access type<<",
12394 Conversion_Error_N
("\Program_Error [<<", Operand
);
12396 -- If not in an instance body, this is a real error
12399 -- Avoid generation of spurious error message
12401 if not Error_Posted
(N
) then
12403 ("cannot convert local pointer to non-local access type",
12410 -- Special accessibility checks are needed in the case of access
12411 -- discriminants declared for a limited type.
12413 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12414 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12416 -- When the operand is a selected access discriminant the check
12417 -- needs to be made against the level of the object denoted by
12418 -- the prefix of the selected name (Object_Access_Level handles
12419 -- checking the prefix of the operand for this case).
12421 if Nkind
(Operand
) = N_Selected_Component
12422 and then Object_Access_Level
(Operand
) >
12423 Deepest_Type_Access_Level
(Target_Type
)
12425 -- In an instance, this is a run-time check, but one we know
12426 -- will fail, so generate an appropriate warning. The raise
12427 -- will be generated by Expand_N_Type_Conversion.
12429 if In_Instance_Body
then
12430 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12432 ("cannot convert access discriminant to non-local "
12433 & "access type<<", Operand
);
12434 Conversion_Error_N
("\Program_Error [<<", Operand
);
12436 -- If not in an instance body, this is a real error
12440 ("cannot convert access discriminant to non-local "
12441 & "access type", Operand
);
12446 -- The case of a reference to an access discriminant from
12447 -- within a limited type declaration (which will appear as
12448 -- a discriminal) is always illegal because the level of the
12449 -- discriminant is considered to be deeper than any (nameable)
12452 if Is_Entity_Name
(Operand
)
12454 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12455 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12458 ("discriminant has deeper accessibility level than target",
12465 -- In the presence of limited_with clauses we have to use nonlimited
12466 -- views, if available.
12468 Check_Limited
: declare
12469 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
12470 -- Helper function to handle limited views
12472 --------------------------
12473 -- Full_Designated_Type --
12474 --------------------------
12476 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
12477 Desig
: constant Entity_Id
:= Designated_Type
(T
);
12480 -- Handle the limited view of a type
12482 if From_Limited_With
(Desig
)
12483 and then Has_Non_Limited_View
(Desig
)
12485 return Available_View
(Desig
);
12489 end Full_Designated_Type
;
12491 -- Local Declarations
12493 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
12494 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
12496 Same_Base
: constant Boolean :=
12497 Base_Type
(Target
) = Base_Type
(Opnd
);
12499 -- Start of processing for Check_Limited
12502 if Is_Tagged_Type
(Target
) then
12503 return Valid_Tagged_Conversion
(Target
, Opnd
);
12506 if not Same_Base
then
12507 Conversion_Error_NE
12508 ("target designated type not compatible with }",
12509 N
, Base_Type
(Opnd
));
12512 -- Ada 2005 AI-384: legality rule is symmetric in both
12513 -- designated types. The conversion is legal (with possible
12514 -- constraint check) if either designated type is
12517 elsif Subtypes_Statically_Match
(Target
, Opnd
)
12519 (Has_Discriminants
(Target
)
12521 (not Is_Constrained
(Opnd
)
12522 or else not Is_Constrained
(Target
)))
12524 -- Special case, if Value_Size has been used to make the
12525 -- sizes different, the conversion is not allowed even
12526 -- though the subtypes statically match.
12528 if Known_Static_RM_Size
(Target
)
12529 and then Known_Static_RM_Size
(Opnd
)
12530 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
12532 Conversion_Error_NE
12533 ("target designated subtype not compatible with }",
12535 Conversion_Error_NE
12536 ("\because sizes of the two designated subtypes differ",
12540 -- Normal case where conversion is allowed
12548 ("target designated subtype not compatible with }",
12555 -- Access to subprogram types. If the operand is an access parameter,
12556 -- the type has a deeper accessibility that any master, and cannot be
12557 -- assigned. We must make an exception if the conversion is part of an
12558 -- assignment and the target is the return object of an extended return
12559 -- statement, because in that case the accessibility check takes place
12560 -- after the return.
12562 elsif Is_Access_Subprogram_Type
(Target_Type
)
12564 -- Note: this test of Opnd_Type is there to prevent entering this
12565 -- branch in the case of a remote access to subprogram type, which
12566 -- is internally represented as an E_Record_Type.
12568 and then Is_Access_Type
(Opnd_Type
)
12570 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
12571 and then Is_Entity_Name
(Operand
)
12572 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
12574 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
12575 or else not Is_Entity_Name
(Name
(Parent
(N
)))
12576 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
12579 ("illegal attempt to store anonymous access to subprogram",
12582 ("\value has deeper accessibility than any master "
12583 & "(RM 3.10.2 (13))",
12587 ("\use named access type for& instead of access parameter",
12588 Operand
, Entity
(Operand
));
12591 -- Check that the designated types are subtype conformant
12593 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
12594 Old_Id
=> Designated_Type
(Opnd_Type
),
12597 -- Check the static accessibility rule of 4.6(20)
12599 if Type_Access_Level
(Opnd_Type
) >
12600 Deepest_Type_Access_Level
(Target_Type
)
12603 ("operand type has deeper accessibility level than target",
12606 -- Check that if the operand type is declared in a generic body,
12607 -- then the target type must be declared within that same body
12608 -- (enforces last sentence of 4.6(20)).
12610 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
12612 O_Gen
: constant Node_Id
:=
12613 Enclosing_Generic_Body
(Opnd_Type
);
12618 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
12619 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
12620 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
12623 if T_Gen
/= O_Gen
then
12625 ("target type must be declared in same generic body "
12626 & "as operand type", N
);
12633 -- Remote access to subprogram types
12635 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
12636 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
12638 -- It is valid to convert from one RAS type to another provided
12639 -- that their specification statically match.
12641 -- Note: at this point, remote access to subprogram types have been
12642 -- expanded to their E_Record_Type representation, and we need to
12643 -- go back to the original access type definition using the
12644 -- Corresponding_Remote_Type attribute in order to check that the
12645 -- designated profiles match.
12647 pragma Assert
(Ekind
(Target_Type
) = E_Record_Type
);
12648 pragma Assert
(Ekind
(Opnd_Type
) = E_Record_Type
);
12650 Check_Subtype_Conformant
12652 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
12654 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
12659 -- If it was legal in the generic, it's legal in the instance
12661 elsif In_Instance_Body
then
12664 -- If both are tagged types, check legality of view conversions
12666 elsif Is_Tagged_Type
(Target_Type
)
12668 Is_Tagged_Type
(Opnd_Type
)
12670 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
12672 -- Types derived from the same root type are convertible
12674 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
12677 -- In an instance or an inlined body, there may be inconsistent views of
12678 -- the same type, or of types derived from a common root.
12680 elsif (In_Instance
or In_Inlined_Body
)
12682 Root_Type
(Underlying_Type
(Target_Type
)) =
12683 Root_Type
(Underlying_Type
(Opnd_Type
))
12687 -- Special check for common access type error case
12689 elsif Ekind
(Target_Type
) = E_Access_Type
12690 and then Is_Access_Type
(Opnd_Type
)
12692 Conversion_Error_N
("target type must be general access type!", N
);
12693 Conversion_Error_NE
-- CODEFIX
12694 ("add ALL to }!", N
, Target_Type
);
12697 -- Here we have a real conversion error
12700 Conversion_Error_NE
12701 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
12704 end Valid_Conversion
;