pa.h (BIGGEST_ALIGNMENT): Adjust comment.
[official-gcc.git] / gcc / ada / sem_res.adb
blob86691d9e9a5a8c96de6bb745177499ca7986991b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Ghost; use Ghost;
41 with Inline; use Inline;
42 with Itypes; use Itypes;
43 with Lib; use Lib;
44 with Lib.Xref; use Lib.Xref;
45 with Namet; use Namet;
46 with Nmake; use Nmake;
47 with Nlists; use Nlists;
48 with Opt; use Opt;
49 with Output; use Output;
50 with Par_SCO; use Par_SCO;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Aggr; use Sem_Aggr;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch6; use Sem_Ch6;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Elab; use Sem_Elab;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Intr; use Sem_Intr;
71 with Sem_Util; use Sem_Util;
72 with Targparm; use Targparm;
73 with Sem_Type; use Sem_Type;
74 with Sem_Warn; use Sem_Warn;
75 with Sinfo; use Sinfo;
76 with Sinfo.CN; use Sinfo.CN;
77 with Snames; use Snames;
78 with Stand; use Stand;
79 with Stringt; use Stringt;
80 with Style; use Style;
81 with Tbuild; use Tbuild;
82 with Uintp; use Uintp;
83 with Urealp; use Urealp;
85 package body Sem_Res is
87 -----------------------
88 -- Local Subprograms --
89 -----------------------
91 -- Second pass (top-down) type checking and overload resolution procedures
92 -- Typ is the type required by context. These procedures propagate the
93 -- type information recursively to the descendants of N. If the node is not
94 -- overloaded, its Etype is established in the first pass. If overloaded,
95 -- the Resolve routines set the correct type. For arithmetic operators, the
96 -- Etype is the base type of the context.
98 -- Note that Resolve_Attribute is separated off in Sem_Attr
100 procedure Check_Discriminant_Use (N : Node_Id);
101 -- Enforce the restrictions on the use of discriminants when constraining
102 -- a component of a discriminated type (record or concurrent type).
104 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
105 -- Given a node for an operator associated with type T, check that the
106 -- operator is visible. Operators all of whose operands are universal must
107 -- be checked for visibility during resolution because their type is not
108 -- determinable based on their operands.
110 procedure Check_Fully_Declared_Prefix
111 (Typ : Entity_Id;
112 Pref : Node_Id);
113 -- Check that the type of the prefix of a dereference is not incomplete
115 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
116 -- Given a call node, N, which is known to occur immediately within the
117 -- subprogram being called, determines whether it is a detectable case of
118 -- an infinite recursion, and if so, outputs appropriate messages. Returns
119 -- True if an infinite recursion is detected, and False otherwise.
121 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
122 -- If the type of the object being initialized uses the secondary stack
123 -- directly or indirectly, create a transient scope for the call to the
124 -- init proc. This is because we do not create transient scopes for the
125 -- initialization of individual components within the init proc itself.
126 -- Could be optimized away perhaps?
128 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
129 -- N is the node for a logical operator. If the operator is predefined, and
130 -- the root type of the operands is Standard.Boolean, then a check is made
131 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
132 -- the style check for Style_Check_Boolean_And_Or.
134 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
135 -- N is either an indexed component or a selected component. This function
136 -- returns true if the prefix refers to an object that has an address
137 -- clause (the case in which we may want to issue a warning).
139 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
140 -- Determine whether E is an access type declared by an access declaration,
141 -- and not an (anonymous) allocator type.
143 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
144 -- Utility to check whether the entity for an operator is a predefined
145 -- operator, in which case the expression is left as an operator in the
146 -- tree (else it is rewritten into a call). An instance of an intrinsic
147 -- conversion operation may be given an operator name, but is not treated
148 -- like an operator. Note that an operator that is an imported back-end
149 -- builtin has convention Intrinsic, but is expected to be rewritten into
150 -- a call, so such an operator is not treated as predefined by this
151 -- predicate.
153 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
154 -- If a default expression in entry call N depends on the discriminants
155 -- of the task, it must be replaced with a reference to the discriminant
156 -- of the task being called.
158 procedure Resolve_Op_Concat_Arg
159 (N : Node_Id;
160 Arg : Node_Id;
161 Typ : Entity_Id;
162 Is_Comp : Boolean);
163 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
164 -- concatenation operator. The operand is either of the array type or of
165 -- the component type. If the operand is an aggregate, and the component
166 -- type is composite, this is ambiguous if component type has aggregates.
168 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
169 -- Does the first part of the work of Resolve_Op_Concat
171 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
172 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
173 -- has been resolved. See Resolve_Op_Concat for details.
175 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Binary operator
1330 if Is_Binary then
1331 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1332 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333 Save_Interps (Act1, Left_Opnd (Op_Node));
1334 Save_Interps (Act2, Right_Opnd (Op_Node));
1335 Act1 := Left_Opnd (Op_Node);
1336 Act2 := Right_Opnd (Op_Node);
1338 -- Unary operator
1340 else
1341 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342 Save_Interps (Act1, Right_Opnd (Op_Node));
1343 Act1 := Right_Opnd (Op_Node);
1344 end if;
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind (Name (N)) = N_Expanded_Name then
1365 Pack := Entity (Prefix (Name (N)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present (Renamed_Entity (Pack)) then
1371 Pack := Renamed_Entity (Pack);
1372 end if;
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope (Entity (Name (N))) = Pack
1378 and then Pack /= Standard_Standard
1379 then
1380 null;
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance then
1387 null;
1389 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1391 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392 then
1393 if Pack /= Standard_Standard then
1394 Error := True;
1395 end if;
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1398 -- available.
1400 elsif Ada_Version >= Ada_2005
1401 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403 then
1404 null;
1406 else
1407 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1409 if Op_Name = Name_Op_Concat then
1410 Opnd_Type := Base_Type (Typ);
1412 elsif (Scope (Opnd_Type) = Standard_Standard
1413 and then Is_Binary)
1414 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415 and then Is_Binary
1416 and then not Comes_From_Source (Opnd_Type))
1417 then
1418 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419 end if;
1421 if Scope (Opnd_Type) = Standard_Standard then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack /= Standard_Standard then
1428 if Opnd_Type = Universal_Integer then
1429 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1431 elsif Opnd_Type = Universal_Real then
1432 Orig_Type := Type_In_P (Is_Real_Type'Access);
1434 elsif Opnd_Type = Any_String then
1435 Orig_Type := Type_In_P (Is_String_Type'Access);
1437 elsif Opnd_Type = Any_Access then
1438 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1440 elsif Opnd_Type = Any_Composite then
1441 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1443 if Present (Orig_Type) then
1444 if Has_Private_Component (Orig_Type) then
1445 Orig_Type := Empty;
1446 else
1447 Set_Etype (Act1, Orig_Type);
1449 if Is_Binary then
1450 Set_Etype (Act2, Orig_Type);
1451 end if;
1452 end if;
1453 end if;
1455 else
1456 Orig_Type := Empty;
1457 end if;
1459 Error := No (Orig_Type);
1460 end if;
1462 elsif Ekind (Opnd_Type) = E_Allocator_Type
1463 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1464 then
1465 Error := True;
1467 -- If the type is defined elsewhere, and the operator is not
1468 -- defined in the given scope (by a renaming declaration, e.g.)
1469 -- then this is an error as well. If an extension of System is
1470 -- present, and the type may be defined there, Pack must be
1471 -- System itself.
1473 elsif Scope (Opnd_Type) /= Pack
1474 and then Scope (Op_Id) /= Pack
1475 and then (No (System_Aux_Id)
1476 or else Scope (Opnd_Type) /= System_Aux_Id
1477 or else Pack /= Scope (System_Aux_Id))
1478 then
1479 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1480 Error := True;
1481 else
1482 Error := not Operand_Type_In_Scope (Pack);
1483 end if;
1485 elsif Pack = Standard_Standard
1486 and then not Operand_Type_In_Scope (Standard_Standard)
1487 then
1488 Error := True;
1489 end if;
1490 end if;
1492 if Error then
1493 Error_Msg_Node_2 := Pack;
1494 Error_Msg_NE
1495 ("& not declared in&", N, Selector_Name (Name (N)));
1496 Set_Etype (N, Any_Type);
1497 return;
1499 -- Detect a mismatch between the context type and the result type
1500 -- in the named package, which is otherwise not detected if the
1501 -- operands are universal. Check is only needed if source entity is
1502 -- an operator, not a function that renames an operator.
1504 elsif Nkind (Parent (N)) /= N_Type_Conversion
1505 and then Ekind (Entity (Name (N))) = E_Operator
1506 and then Is_Numeric_Type (Typ)
1507 and then not Is_Universal_Numeric_Type (Typ)
1508 and then Scope (Base_Type (Typ)) /= Pack
1509 and then not In_Instance
1510 then
1511 if Is_Fixed_Point_Type (Typ)
1512 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1513 then
1514 -- Already checked above
1516 null;
1518 -- Operator may be defined in an extension of System
1520 elsif Present (System_Aux_Id)
1521 and then Scope (Opnd_Type) = System_Aux_Id
1522 then
1523 null;
1525 else
1526 -- Could we use Wrong_Type here??? (this would require setting
1527 -- Etype (N) to the actual type found where Typ was expected).
1529 Error_Msg_NE ("expect }", N, Typ);
1530 end if;
1531 end if;
1532 end if;
1534 Set_Chars (Op_Node, Op_Name);
1536 if not Is_Private_Type (Etype (N)) then
1537 Set_Etype (Op_Node, Base_Type (Etype (N)));
1538 else
1539 Set_Etype (Op_Node, Etype (N));
1540 end if;
1542 -- If this is a call to a function that renames a predefined equality,
1543 -- the renaming declaration provides a type that must be used to
1544 -- resolve the operands. This must be done now because resolution of
1545 -- the equality node will not resolve any remaining ambiguity, and it
1546 -- assumes that the first operand is not overloaded.
1548 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1549 and then Ekind (Func) = E_Function
1550 and then Is_Overloaded (Act1)
1551 then
1552 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1553 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1554 end if;
1556 Set_Entity (Op_Node, Op_Id);
1557 Generate_Reference (Op_Id, N, ' ');
1559 -- Do rewrite setting Comes_From_Source on the result if the original
1560 -- call came from source. Although it is not strictly the case that the
1561 -- operator as such comes from the source, logically it corresponds
1562 -- exactly to the function call in the source, so it should be marked
1563 -- this way (e.g. to make sure that validity checks work fine).
1565 declare
1566 CS : constant Boolean := Comes_From_Source (N);
1567 begin
1568 Rewrite (N, Op_Node);
1569 Set_Comes_From_Source (N, CS);
1570 end;
1572 -- If this is an arithmetic operator and the result type is private,
1573 -- the operands and the result must be wrapped in conversion to
1574 -- expose the underlying numeric type and expand the proper checks,
1575 -- e.g. on division.
1577 if Is_Private_Type (Typ) then
1578 case Nkind (N) is
1579 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1580 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1581 Resolve_Intrinsic_Operator (N, Typ);
1583 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1584 Resolve_Intrinsic_Unary_Operator (N, Typ);
1586 when others =>
1587 Resolve (N, Typ);
1588 end case;
1589 else
1590 Resolve (N, Typ);
1591 end if;
1593 -- If in ASIS_Mode, propagate operand types to original actuals of
1594 -- function call, which would otherwise not be fully resolved. If
1595 -- the call has already been constant-folded, nothing to do. We
1596 -- relocate the operand nodes rather than copy them, to preserve
1597 -- original_node pointers, given that the operands themselves may
1598 -- have been rewritten. If the call was itself a rewriting of an
1599 -- operator node, nothing to do.
1601 if ASIS_Mode
1602 and then Nkind (N) in N_Op
1603 and then Nkind (Original_Node (N)) = N_Function_Call
1604 then
1605 declare
1606 L : Node_Id;
1607 R : constant Node_Id := Right_Opnd (N);
1609 Old_First : constant Node_Id :=
1610 First (Parameter_Associations (Original_Node (N)));
1611 Old_Sec : Node_Id;
1613 begin
1614 if Is_Binary then
1615 L := Left_Opnd (N);
1616 Old_Sec := Next (Old_First);
1618 -- If the original call has named associations, replace the
1619 -- explicit actual parameter in the association with the proper
1620 -- resolved operand.
1622 if Nkind (Old_First) = N_Parameter_Association then
1623 if Chars (Selector_Name (Old_First)) =
1624 Chars (First_Entity (Op_Id))
1625 then
1626 Rewrite (Explicit_Actual_Parameter (Old_First),
1627 Relocate_Node (L));
1628 else
1629 Rewrite (Explicit_Actual_Parameter (Old_First),
1630 Relocate_Node (R));
1631 end if;
1633 else
1634 Rewrite (Old_First, Relocate_Node (L));
1635 end if;
1637 if Nkind (Old_Sec) = N_Parameter_Association then
1638 if Chars (Selector_Name (Old_Sec)) =
1639 Chars (First_Entity (Op_Id))
1640 then
1641 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1642 Relocate_Node (L));
1643 else
1644 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1645 Relocate_Node (R));
1646 end if;
1648 else
1649 Rewrite (Old_Sec, Relocate_Node (R));
1650 end if;
1652 else
1653 if Nkind (Old_First) = N_Parameter_Association then
1654 Rewrite (Explicit_Actual_Parameter (Old_First),
1655 Relocate_Node (R));
1656 else
1657 Rewrite (Old_First, Relocate_Node (R));
1658 end if;
1659 end if;
1660 end;
1662 Set_Parent (Original_Node (N), Parent (N));
1663 end if;
1664 end Make_Call_Into_Operator;
1666 -------------------
1667 -- Operator_Kind --
1668 -------------------
1670 function Operator_Kind
1671 (Op_Name : Name_Id;
1672 Is_Binary : Boolean) return Node_Kind
1674 Kind : Node_Kind;
1676 begin
1677 -- Use CASE statement or array???
1679 if Is_Binary then
1680 if Op_Name = Name_Op_And then
1681 Kind := N_Op_And;
1682 elsif Op_Name = Name_Op_Or then
1683 Kind := N_Op_Or;
1684 elsif Op_Name = Name_Op_Xor then
1685 Kind := N_Op_Xor;
1686 elsif Op_Name = Name_Op_Eq then
1687 Kind := N_Op_Eq;
1688 elsif Op_Name = Name_Op_Ne then
1689 Kind := N_Op_Ne;
1690 elsif Op_Name = Name_Op_Lt then
1691 Kind := N_Op_Lt;
1692 elsif Op_Name = Name_Op_Le then
1693 Kind := N_Op_Le;
1694 elsif Op_Name = Name_Op_Gt then
1695 Kind := N_Op_Gt;
1696 elsif Op_Name = Name_Op_Ge then
1697 Kind := N_Op_Ge;
1698 elsif Op_Name = Name_Op_Add then
1699 Kind := N_Op_Add;
1700 elsif Op_Name = Name_Op_Subtract then
1701 Kind := N_Op_Subtract;
1702 elsif Op_Name = Name_Op_Concat then
1703 Kind := N_Op_Concat;
1704 elsif Op_Name = Name_Op_Multiply then
1705 Kind := N_Op_Multiply;
1706 elsif Op_Name = Name_Op_Divide then
1707 Kind := N_Op_Divide;
1708 elsif Op_Name = Name_Op_Mod then
1709 Kind := N_Op_Mod;
1710 elsif Op_Name = Name_Op_Rem then
1711 Kind := N_Op_Rem;
1712 elsif Op_Name = Name_Op_Expon then
1713 Kind := N_Op_Expon;
1714 else
1715 raise Program_Error;
1716 end if;
1718 -- Unary operators
1720 else
1721 if Op_Name = Name_Op_Add then
1722 Kind := N_Op_Plus;
1723 elsif Op_Name = Name_Op_Subtract then
1724 Kind := N_Op_Minus;
1725 elsif Op_Name = Name_Op_Abs then
1726 Kind := N_Op_Abs;
1727 elsif Op_Name = Name_Op_Not then
1728 Kind := N_Op_Not;
1729 else
1730 raise Program_Error;
1731 end if;
1732 end if;
1734 return Kind;
1735 end Operator_Kind;
1737 ----------------------------
1738 -- Preanalyze_And_Resolve --
1739 ----------------------------
1741 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1742 Save_Full_Analysis : constant Boolean := Full_Analysis;
1744 begin
1745 Full_Analysis := False;
1746 Expander_Mode_Save_And_Set (False);
1748 -- Normally, we suppress all checks for this preanalysis. There is no
1749 -- point in processing them now, since they will be applied properly
1750 -- and in the proper location when the default expressions reanalyzed
1751 -- and reexpanded later on. We will also have more information at that
1752 -- point for possible suppression of individual checks.
1754 -- However, in SPARK mode, most expansion is suppressed, and this
1755 -- later reanalysis and reexpansion may not occur. SPARK mode does
1756 -- require the setting of checking flags for proof purposes, so we
1757 -- do the SPARK preanalysis without suppressing checks.
1759 -- This special handling for SPARK mode is required for example in the
1760 -- case of Ada 2012 constructs such as quantified expressions, which are
1761 -- expanded in two separate steps.
1763 if GNATprove_Mode then
1764 Analyze_And_Resolve (N, T);
1765 else
1766 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1767 end if;
1769 Expander_Mode_Restore;
1770 Full_Analysis := Save_Full_Analysis;
1771 end Preanalyze_And_Resolve;
1773 -- Version without context type
1775 procedure Preanalyze_And_Resolve (N : Node_Id) is
1776 Save_Full_Analysis : constant Boolean := Full_Analysis;
1778 begin
1779 Full_Analysis := False;
1780 Expander_Mode_Save_And_Set (False);
1782 Analyze (N);
1783 Resolve (N, Etype (N), Suppress => All_Checks);
1785 Expander_Mode_Restore;
1786 Full_Analysis := Save_Full_Analysis;
1787 end Preanalyze_And_Resolve;
1789 ----------------------------------
1790 -- Replace_Actual_Discriminants --
1791 ----------------------------------
1793 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1794 Loc : constant Source_Ptr := Sloc (N);
1795 Tsk : Node_Id := Empty;
1797 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1798 -- Comment needed???
1800 -------------------
1801 -- Process_Discr --
1802 -------------------
1804 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1805 Ent : Entity_Id;
1807 begin
1808 if Nkind (Nod) = N_Identifier then
1809 Ent := Entity (Nod);
1811 if Present (Ent)
1812 and then Ekind (Ent) = E_Discriminant
1813 then
1814 Rewrite (Nod,
1815 Make_Selected_Component (Loc,
1816 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1817 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1819 Set_Etype (Nod, Etype (Ent));
1820 end if;
1822 end if;
1824 return OK;
1825 end Process_Discr;
1827 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1829 -- Start of processing for Replace_Actual_Discriminants
1831 begin
1832 if not Expander_Active then
1833 return;
1834 end if;
1836 if Nkind (Name (N)) = N_Selected_Component then
1837 Tsk := Prefix (Name (N));
1839 elsif Nkind (Name (N)) = N_Indexed_Component then
1840 Tsk := Prefix (Prefix (Name (N)));
1841 end if;
1843 if No (Tsk) then
1844 return;
1845 else
1846 Replace_Discrs (Default);
1847 end if;
1848 end Replace_Actual_Discriminants;
1850 -------------
1851 -- Resolve --
1852 -------------
1854 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1855 Ambiguous : Boolean := False;
1856 Ctx_Type : Entity_Id := Typ;
1857 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1858 Err_Type : Entity_Id := Empty;
1859 Found : Boolean := False;
1860 From_Lib : Boolean;
1861 I : Interp_Index;
1862 I1 : Interp_Index := 0; -- prevent junk warning
1863 It : Interp;
1864 It1 : Interp;
1865 Seen : Entity_Id := Empty; -- prevent junk warning
1867 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1868 -- Determine whether a node comes from a predefined library unit or
1869 -- Standard.
1871 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1872 -- Try and fix up a literal so that it matches its expected type. New
1873 -- literals are manufactured if necessary to avoid cascaded errors.
1875 procedure Report_Ambiguous_Argument;
1876 -- Additional diagnostics when an ambiguous call has an ambiguous
1877 -- argument (typically a controlling actual).
1879 procedure Resolution_Failed;
1880 -- Called when attempt at resolving current expression fails
1882 ------------------------------------
1883 -- Comes_From_Predefined_Lib_Unit --
1884 -------------------------------------
1886 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1887 begin
1888 return
1889 Sloc (Nod) = Standard_Location
1890 or else Is_Predefined_File_Name
1891 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
1892 end Comes_From_Predefined_Lib_Unit;
1894 --------------------
1895 -- Patch_Up_Value --
1896 --------------------
1898 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1899 begin
1900 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1901 Rewrite (N,
1902 Make_Real_Literal (Sloc (N),
1903 Realval => UR_From_Uint (Intval (N))));
1904 Set_Etype (N, Universal_Real);
1905 Set_Is_Static_Expression (N);
1907 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1908 Rewrite (N,
1909 Make_Integer_Literal (Sloc (N),
1910 Intval => UR_To_Uint (Realval (N))));
1911 Set_Etype (N, Universal_Integer);
1912 Set_Is_Static_Expression (N);
1914 elsif Nkind (N) = N_String_Literal
1915 and then Is_Character_Type (Typ)
1916 then
1917 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1918 Rewrite (N,
1919 Make_Character_Literal (Sloc (N),
1920 Chars => Name_Find,
1921 Char_Literal_Value =>
1922 UI_From_Int (Character'Pos ('A'))));
1923 Set_Etype (N, Any_Character);
1924 Set_Is_Static_Expression (N);
1926 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1927 Rewrite (N,
1928 Make_String_Literal (Sloc (N),
1929 Strval => End_String));
1931 elsif Nkind (N) = N_Range then
1932 Patch_Up_Value (Low_Bound (N), Typ);
1933 Patch_Up_Value (High_Bound (N), Typ);
1934 end if;
1935 end Patch_Up_Value;
1937 -------------------------------
1938 -- Report_Ambiguous_Argument --
1939 -------------------------------
1941 procedure Report_Ambiguous_Argument is
1942 Arg : constant Node_Id := First (Parameter_Associations (N));
1943 I : Interp_Index;
1944 It : Interp;
1946 begin
1947 if Nkind (Arg) = N_Function_Call
1948 and then Is_Entity_Name (Name (Arg))
1949 and then Is_Overloaded (Name (Arg))
1950 then
1951 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1953 -- Could use comments on what is going on here???
1955 Get_First_Interp (Name (Arg), I, It);
1956 while Present (It.Nam) loop
1957 Error_Msg_Sloc := Sloc (It.Nam);
1959 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1960 Error_Msg_N ("interpretation (inherited) #!", Arg);
1961 else
1962 Error_Msg_N ("interpretation #!", Arg);
1963 end if;
1965 Get_Next_Interp (I, It);
1966 end loop;
1967 end if;
1968 end Report_Ambiguous_Argument;
1970 -----------------------
1971 -- Resolution_Failed --
1972 -----------------------
1974 procedure Resolution_Failed is
1975 begin
1976 Patch_Up_Value (N, Typ);
1978 -- Set the type to the desired one to minimize cascaded errors. Note
1979 -- that this is an approximation and does not work in all cases.
1981 Set_Etype (N, Typ);
1983 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1984 Set_Is_Overloaded (N, False);
1986 -- The caller will return without calling the expander, so we need
1987 -- to set the analyzed flag. Note that it is fine to set Analyzed
1988 -- to True even if we are in the middle of a shallow analysis,
1989 -- (see the spec of sem for more details) since this is an error
1990 -- situation anyway, and there is no point in repeating the
1991 -- analysis later (indeed it won't work to repeat it later, since
1992 -- we haven't got a clear resolution of which entity is being
1993 -- referenced.)
1995 Set_Analyzed (N, True);
1996 return;
1997 end Resolution_Failed;
1999 -- Local variables
2001 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
2003 -- Start of processing for Resolve
2005 begin
2006 if N = Error then
2007 return;
2008 end if;
2010 -- A declaration may be subject to pragma Ghost. Set the mode now to
2011 -- ensure that any nodes generated during analysis and expansion are
2012 -- marked as Ghost.
2014 if Is_Declaration (N) then
2015 Set_Ghost_Mode (N);
2016 end if;
2018 -- Access attribute on remote subprogram cannot be used for a non-remote
2019 -- access-to-subprogram type.
2021 if Nkind (N) = N_Attribute_Reference
2022 and then Nam_In (Attribute_Name (N), Name_Access,
2023 Name_Unrestricted_Access,
2024 Name_Unchecked_Access)
2025 and then Comes_From_Source (N)
2026 and then Is_Entity_Name (Prefix (N))
2027 and then Is_Subprogram (Entity (Prefix (N)))
2028 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2029 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2030 then
2031 Error_Msg_N
2032 ("prefix must statically denote a non-remote subprogram", N);
2033 end if;
2035 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2037 -- If the context is a Remote_Access_To_Subprogram, access attributes
2038 -- must be resolved with the corresponding fat pointer. There is no need
2039 -- to check for the attribute name since the return type of an
2040 -- attribute is never a remote type.
2042 if Nkind (N) = N_Attribute_Reference
2043 and then Comes_From_Source (N)
2044 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2045 then
2046 declare
2047 Attr : constant Attribute_Id :=
2048 Get_Attribute_Id (Attribute_Name (N));
2049 Pref : constant Node_Id := Prefix (N);
2050 Decl : Node_Id;
2051 Spec : Node_Id;
2052 Is_Remote : Boolean := True;
2054 begin
2055 -- Check that Typ is a remote access-to-subprogram type
2057 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2059 -- Prefix (N) must statically denote a remote subprogram
2060 -- declared in a package specification.
2062 if Attr = Attribute_Access or else
2063 Attr = Attribute_Unchecked_Access or else
2064 Attr = Attribute_Unrestricted_Access
2065 then
2066 Decl := Unit_Declaration_Node (Entity (Pref));
2068 if Nkind (Decl) = N_Subprogram_Body then
2069 Spec := Corresponding_Spec (Decl);
2071 if Present (Spec) then
2072 Decl := Unit_Declaration_Node (Spec);
2073 end if;
2074 end if;
2076 Spec := Parent (Decl);
2078 if not Is_Entity_Name (Prefix (N))
2079 or else Nkind (Spec) /= N_Package_Specification
2080 or else
2081 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2082 then
2083 Is_Remote := False;
2084 Error_Msg_N
2085 ("prefix must statically denote a remote subprogram ",
2087 end if;
2089 -- If we are generating code in distributed mode, perform
2090 -- semantic checks against corresponding remote entities.
2092 if Expander_Active
2093 and then Get_PCS_Name /= Name_No_DSA
2094 then
2095 Check_Subtype_Conformant
2096 (New_Id => Entity (Prefix (N)),
2097 Old_Id => Designated_Type
2098 (Corresponding_Remote_Type (Typ)),
2099 Err_Loc => N);
2101 if Is_Remote then
2102 Process_Remote_AST_Attribute (N, Typ);
2103 end if;
2104 end if;
2105 end if;
2106 end if;
2107 end;
2108 end if;
2110 Debug_A_Entry ("resolving ", N);
2112 if Debug_Flag_V then
2113 Write_Overloads (N);
2114 end if;
2116 if Comes_From_Source (N) then
2117 if Is_Fixed_Point_Type (Typ) then
2118 Check_Restriction (No_Fixed_Point, N);
2120 elsif Is_Floating_Point_Type (Typ)
2121 and then Typ /= Universal_Real
2122 and then Typ /= Any_Real
2123 then
2124 Check_Restriction (No_Floating_Point, N);
2125 end if;
2126 end if;
2128 -- Return if already analyzed
2130 if Analyzed (N) then
2131 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2132 Analyze_Dimension (N);
2133 Ghost_Mode := Save_Ghost_Mode;
2134 return;
2136 -- Any case of Any_Type as the Etype value means that we had a
2137 -- previous error.
2139 elsif Etype (N) = Any_Type then
2140 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2141 Ghost_Mode := Save_Ghost_Mode;
2142 return;
2143 end if;
2145 Check_Parameterless_Call (N);
2147 -- The resolution of an Expression_With_Actions is determined by
2148 -- its Expression.
2150 if Nkind (N) = N_Expression_With_Actions then
2151 Resolve (Expression (N), Typ);
2153 Found := True;
2154 Expr_Type := Etype (Expression (N));
2156 -- If not overloaded, then we know the type, and all that needs doing
2157 -- is to check that this type is compatible with the context.
2159 elsif not Is_Overloaded (N) then
2160 Found := Covers (Typ, Etype (N));
2161 Expr_Type := Etype (N);
2163 -- In the overloaded case, we must select the interpretation that
2164 -- is compatible with the context (i.e. the type passed to Resolve)
2166 else
2167 -- Loop through possible interpretations
2169 Get_First_Interp (N, I, It);
2170 Interp_Loop : while Present (It.Typ) loop
2171 if Debug_Flag_V then
2172 Write_Str ("Interp: ");
2173 Write_Interp (It);
2174 end if;
2176 -- We are only interested in interpretations that are compatible
2177 -- with the expected type, any other interpretations are ignored.
2179 if not Covers (Typ, It.Typ) then
2180 if Debug_Flag_V then
2181 Write_Str (" interpretation incompatible with context");
2182 Write_Eol;
2183 end if;
2185 else
2186 -- Skip the current interpretation if it is disabled by an
2187 -- abstract operator. This action is performed only when the
2188 -- type against which we are resolving is the same as the
2189 -- type of the interpretation.
2191 if Ada_Version >= Ada_2005
2192 and then It.Typ = Typ
2193 and then Typ /= Universal_Integer
2194 and then Typ /= Universal_Real
2195 and then Present (It.Abstract_Op)
2196 then
2197 if Debug_Flag_V then
2198 Write_Line ("Skip.");
2199 end if;
2201 goto Continue;
2202 end if;
2204 -- First matching interpretation
2206 if not Found then
2207 Found := True;
2208 I1 := I;
2209 Seen := It.Nam;
2210 Expr_Type := It.Typ;
2212 -- Matching interpretation that is not the first, maybe an
2213 -- error, but there are some cases where preference rules are
2214 -- used to choose between the two possibilities. These and
2215 -- some more obscure cases are handled in Disambiguate.
2217 else
2218 -- If the current statement is part of a predefined library
2219 -- unit, then all interpretations which come from user level
2220 -- packages should not be considered. Check previous and
2221 -- current one.
2223 if From_Lib then
2224 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2225 goto Continue;
2227 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2229 -- Previous interpretation must be discarded
2231 I1 := I;
2232 Seen := It.Nam;
2233 Expr_Type := It.Typ;
2234 Set_Entity (N, Seen);
2235 goto Continue;
2236 end if;
2237 end if;
2239 -- Otherwise apply further disambiguation steps
2241 Error_Msg_Sloc := Sloc (Seen);
2242 It1 := Disambiguate (N, I1, I, Typ);
2244 -- Disambiguation has succeeded. Skip the remaining
2245 -- interpretations.
2247 if It1 /= No_Interp then
2248 Seen := It1.Nam;
2249 Expr_Type := It1.Typ;
2251 while Present (It.Typ) loop
2252 Get_Next_Interp (I, It);
2253 end loop;
2255 else
2256 -- Before we issue an ambiguity complaint, check for the
2257 -- case of a subprogram call where at least one of the
2258 -- arguments is Any_Type, and if so suppress the message,
2259 -- since it is a cascaded error. This can also happen for
2260 -- a generalized indexing operation.
2262 if Nkind (N) in N_Subprogram_Call
2263 or else (Nkind (N) = N_Indexed_Component
2264 and then Present (Generalized_Indexing (N)))
2265 then
2266 declare
2267 A : Node_Id;
2268 E : Node_Id;
2270 begin
2271 if Nkind (N) = N_Indexed_Component then
2272 Rewrite (N, Generalized_Indexing (N));
2273 end if;
2275 A := First_Actual (N);
2276 while Present (A) loop
2277 E := A;
2279 if Nkind (E) = N_Parameter_Association then
2280 E := Explicit_Actual_Parameter (E);
2281 end if;
2283 if Etype (E) = Any_Type then
2284 if Debug_Flag_V then
2285 Write_Str ("Any_Type in call");
2286 Write_Eol;
2287 end if;
2289 exit Interp_Loop;
2290 end if;
2292 Next_Actual (A);
2293 end loop;
2294 end;
2296 elsif Nkind (N) in N_Binary_Op
2297 and then (Etype (Left_Opnd (N)) = Any_Type
2298 or else Etype (Right_Opnd (N)) = Any_Type)
2299 then
2300 exit Interp_Loop;
2302 elsif Nkind (N) in N_Unary_Op
2303 and then Etype (Right_Opnd (N)) = Any_Type
2304 then
2305 exit Interp_Loop;
2306 end if;
2308 -- Not that special case, so issue message using the flag
2309 -- Ambiguous to control printing of the header message
2310 -- only at the start of an ambiguous set.
2312 if not Ambiguous then
2313 if Nkind (N) = N_Function_Call
2314 and then Nkind (Name (N)) = N_Explicit_Dereference
2315 then
2316 Error_Msg_N
2317 ("ambiguous expression (cannot resolve indirect "
2318 & "call)!", N);
2319 else
2320 Error_Msg_NE -- CODEFIX
2321 ("ambiguous expression (cannot resolve&)!",
2322 N, It.Nam);
2323 end if;
2325 Ambiguous := True;
2327 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2328 Error_Msg_N
2329 ("\\possible interpretation (inherited)#!", N);
2330 else
2331 Error_Msg_N -- CODEFIX
2332 ("\\possible interpretation#!", N);
2333 end if;
2335 if Nkind (N) in N_Subprogram_Call
2336 and then Present (Parameter_Associations (N))
2337 then
2338 Report_Ambiguous_Argument;
2339 end if;
2340 end if;
2342 Error_Msg_Sloc := Sloc (It.Nam);
2344 -- By default, the error message refers to the candidate
2345 -- interpretation. But if it is a predefined operator, it
2346 -- is implicitly declared at the declaration of the type
2347 -- of the operand. Recover the sloc of that declaration
2348 -- for the error message.
2350 if Nkind (N) in N_Op
2351 and then Scope (It.Nam) = Standard_Standard
2352 and then not Is_Overloaded (Right_Opnd (N))
2353 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2354 Standard_Standard
2355 then
2356 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2358 if Comes_From_Source (Err_Type)
2359 and then Present (Parent (Err_Type))
2360 then
2361 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2362 end if;
2364 elsif Nkind (N) in N_Binary_Op
2365 and then Scope (It.Nam) = Standard_Standard
2366 and then not Is_Overloaded (Left_Opnd (N))
2367 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2368 Standard_Standard
2369 then
2370 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2372 if Comes_From_Source (Err_Type)
2373 and then Present (Parent (Err_Type))
2374 then
2375 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2376 end if;
2378 -- If this is an indirect call, use the subprogram_type
2379 -- in the message, to have a meaningful location. Also
2380 -- indicate if this is an inherited operation, created
2381 -- by a type declaration.
2383 elsif Nkind (N) = N_Function_Call
2384 and then Nkind (Name (N)) = N_Explicit_Dereference
2385 and then Is_Type (It.Nam)
2386 then
2387 Err_Type := It.Nam;
2388 Error_Msg_Sloc :=
2389 Sloc (Associated_Node_For_Itype (Err_Type));
2390 else
2391 Err_Type := Empty;
2392 end if;
2394 if Nkind (N) in N_Op
2395 and then Scope (It.Nam) = Standard_Standard
2396 and then Present (Err_Type)
2397 then
2398 -- Special-case the message for universal_fixed
2399 -- operators, which are not declared with the type
2400 -- of the operand, but appear forever in Standard.
2402 if It.Typ = Universal_Fixed
2403 and then Scope (It.Nam) = Standard_Standard
2404 then
2405 Error_Msg_N
2406 ("\\possible interpretation as universal_fixed "
2407 & "operation (RM 4.5.5 (19))", N);
2408 else
2409 Error_Msg_N
2410 ("\\possible interpretation (predefined)#!", N);
2411 end if;
2413 elsif
2414 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2415 then
2416 Error_Msg_N
2417 ("\\possible interpretation (inherited)#!", N);
2418 else
2419 Error_Msg_N -- CODEFIX
2420 ("\\possible interpretation#!", N);
2421 end if;
2423 end if;
2424 end if;
2426 -- We have a matching interpretation, Expr_Type is the type
2427 -- from this interpretation, and Seen is the entity.
2429 -- For an operator, just set the entity name. The type will be
2430 -- set by the specific operator resolution routine.
2432 if Nkind (N) in N_Op then
2433 Set_Entity (N, Seen);
2434 Generate_Reference (Seen, N);
2436 elsif Nkind (N) = N_Case_Expression then
2437 Set_Etype (N, Expr_Type);
2439 elsif Nkind (N) = N_Character_Literal then
2440 Set_Etype (N, Expr_Type);
2442 elsif Nkind (N) = N_If_Expression then
2443 Set_Etype (N, Expr_Type);
2445 -- AI05-0139-2: Expression is overloaded because type has
2446 -- implicit dereference. If type matches context, no implicit
2447 -- dereference is involved.
2449 elsif Has_Implicit_Dereference (Expr_Type) then
2450 Set_Etype (N, Expr_Type);
2451 Set_Is_Overloaded (N, False);
2452 exit Interp_Loop;
2454 elsif Is_Overloaded (N)
2455 and then Present (It.Nam)
2456 and then Ekind (It.Nam) = E_Discriminant
2457 and then Has_Implicit_Dereference (It.Nam)
2458 then
2459 -- If the node is a general indexing, the dereference is
2460 -- is inserted when resolving the rewritten form, else
2461 -- insert it now.
2463 if Nkind (N) /= N_Indexed_Component
2464 or else No (Generalized_Indexing (N))
2465 then
2466 Build_Explicit_Dereference (N, It.Nam);
2467 end if;
2469 -- For an explicit dereference, attribute reference, range,
2470 -- short-circuit form (which is not an operator node), or call
2471 -- with a name that is an explicit dereference, there is
2472 -- nothing to be done at this point.
2474 elsif Nkind_In (N, N_Explicit_Dereference,
2475 N_Attribute_Reference,
2476 N_And_Then,
2477 N_Indexed_Component,
2478 N_Or_Else,
2479 N_Range,
2480 N_Selected_Component,
2481 N_Slice)
2482 or else Nkind (Name (N)) = N_Explicit_Dereference
2483 then
2484 null;
2486 -- For procedure or function calls, set the type of the name,
2487 -- and also the entity pointer for the prefix.
2489 elsif Nkind (N) in N_Subprogram_Call
2490 and then Is_Entity_Name (Name (N))
2491 then
2492 Set_Etype (Name (N), Expr_Type);
2493 Set_Entity (Name (N), Seen);
2494 Generate_Reference (Seen, Name (N));
2496 elsif Nkind (N) = N_Function_Call
2497 and then Nkind (Name (N)) = N_Selected_Component
2498 then
2499 Set_Etype (Name (N), Expr_Type);
2500 Set_Entity (Selector_Name (Name (N)), Seen);
2501 Generate_Reference (Seen, Selector_Name (Name (N)));
2503 -- For all other cases, just set the type of the Name
2505 else
2506 Set_Etype (Name (N), Expr_Type);
2507 end if;
2509 end if;
2511 <<Continue>>
2513 -- Move to next interpretation
2515 exit Interp_Loop when No (It.Typ);
2517 Get_Next_Interp (I, It);
2518 end loop Interp_Loop;
2519 end if;
2521 -- At this stage Found indicates whether or not an acceptable
2522 -- interpretation exists. If not, then we have an error, except that if
2523 -- the context is Any_Type as a result of some other error, then we
2524 -- suppress the error report.
2526 if not Found then
2527 if Typ /= Any_Type then
2529 -- If type we are looking for is Void, then this is the procedure
2530 -- call case, and the error is simply that what we gave is not a
2531 -- procedure name (we think of procedure calls as expressions with
2532 -- types internally, but the user doesn't think of them this way).
2534 if Typ = Standard_Void_Type then
2536 -- Special case message if function used as a procedure
2538 if Nkind (N) = N_Procedure_Call_Statement
2539 and then Is_Entity_Name (Name (N))
2540 and then Ekind (Entity (Name (N))) = E_Function
2541 then
2542 Error_Msg_NE
2543 ("cannot use function & in a procedure call",
2544 Name (N), Entity (Name (N)));
2546 -- Otherwise give general message (not clear what cases this
2547 -- covers, but no harm in providing for them).
2549 else
2550 Error_Msg_N ("expect procedure name in procedure call", N);
2551 end if;
2553 Found := True;
2555 -- Otherwise we do have a subexpression with the wrong type
2557 -- Check for the case of an allocator which uses an access type
2558 -- instead of the designated type. This is a common error and we
2559 -- specialize the message, posting an error on the operand of the
2560 -- allocator, complaining that we expected the designated type of
2561 -- the allocator.
2563 elsif Nkind (N) = N_Allocator
2564 and then Is_Access_Type (Typ)
2565 and then Is_Access_Type (Etype (N))
2566 and then Designated_Type (Etype (N)) = Typ
2567 then
2568 Wrong_Type (Expression (N), Designated_Type (Typ));
2569 Found := True;
2571 -- Check for view mismatch on Null in instances, for which the
2572 -- view-swapping mechanism has no identifier.
2574 elsif (In_Instance or else In_Inlined_Body)
2575 and then (Nkind (N) = N_Null)
2576 and then Is_Private_Type (Typ)
2577 and then Is_Access_Type (Full_View (Typ))
2578 then
2579 Resolve (N, Full_View (Typ));
2580 Set_Etype (N, Typ);
2581 Ghost_Mode := Save_Ghost_Mode;
2582 return;
2584 -- Check for an aggregate. Sometimes we can get bogus aggregates
2585 -- from misuse of parentheses, and we are about to complain about
2586 -- the aggregate without even looking inside it.
2588 -- Instead, if we have an aggregate of type Any_Composite, then
2589 -- analyze and resolve the component fields, and then only issue
2590 -- another message if we get no errors doing this (otherwise
2591 -- assume that the errors in the aggregate caused the problem).
2593 elsif Nkind (N) = N_Aggregate
2594 and then Etype (N) = Any_Composite
2595 then
2596 -- Disable expansion in any case. If there is a type mismatch
2597 -- it may be fatal to try to expand the aggregate. The flag
2598 -- would otherwise be set to false when the error is posted.
2600 Expander_Active := False;
2602 declare
2603 procedure Check_Aggr (Aggr : Node_Id);
2604 -- Check one aggregate, and set Found to True if we have a
2605 -- definite error in any of its elements
2607 procedure Check_Elmt (Aelmt : Node_Id);
2608 -- Check one element of aggregate and set Found to True if
2609 -- we definitely have an error in the element.
2611 ----------------
2612 -- Check_Aggr --
2613 ----------------
2615 procedure Check_Aggr (Aggr : Node_Id) is
2616 Elmt : Node_Id;
2618 begin
2619 if Present (Expressions (Aggr)) then
2620 Elmt := First (Expressions (Aggr));
2621 while Present (Elmt) loop
2622 Check_Elmt (Elmt);
2623 Next (Elmt);
2624 end loop;
2625 end if;
2627 if Present (Component_Associations (Aggr)) then
2628 Elmt := First (Component_Associations (Aggr));
2629 while Present (Elmt) loop
2631 -- If this is a default-initialized component, then
2632 -- there is nothing to check. The box will be
2633 -- replaced by the appropriate call during late
2634 -- expansion.
2636 if not Box_Present (Elmt) then
2637 Check_Elmt (Expression (Elmt));
2638 end if;
2640 Next (Elmt);
2641 end loop;
2642 end if;
2643 end Check_Aggr;
2645 ----------------
2646 -- Check_Elmt --
2647 ----------------
2649 procedure Check_Elmt (Aelmt : Node_Id) is
2650 begin
2651 -- If we have a nested aggregate, go inside it (to
2652 -- attempt a naked analyze-resolve of the aggregate can
2653 -- cause undesirable cascaded errors). Do not resolve
2654 -- expression if it needs a type from context, as for
2655 -- integer * fixed expression.
2657 if Nkind (Aelmt) = N_Aggregate then
2658 Check_Aggr (Aelmt);
2660 else
2661 Analyze (Aelmt);
2663 if not Is_Overloaded (Aelmt)
2664 and then Etype (Aelmt) /= Any_Fixed
2665 then
2666 Resolve (Aelmt);
2667 end if;
2669 if Etype (Aelmt) = Any_Type then
2670 Found := True;
2671 end if;
2672 end if;
2673 end Check_Elmt;
2675 begin
2676 Check_Aggr (N);
2677 end;
2678 end if;
2680 -- Looks like we have a type error, but check for special case
2681 -- of Address wanted, integer found, with the configuration pragma
2682 -- Allow_Integer_Address active. If we have this case, introduce
2683 -- an unchecked conversion to allow the integer expression to be
2684 -- treated as an Address. The reverse case of integer wanted,
2685 -- Address found, is treated in an analogous manner.
2687 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2688 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2689 Analyze_And_Resolve (N, Typ);
2690 Ghost_Mode := Save_Ghost_Mode;
2691 return;
2693 -- Under relaxed RM semantics silently replace occurrences of null
2694 -- by System.Address_Null.
2696 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2697 Replace_Null_By_Null_Address (N);
2698 Analyze_And_Resolve (N, Typ);
2699 return;
2700 end if;
2702 -- That special Allow_Integer_Address check did not apply, so we
2703 -- have a real type error. If an error message was issued already,
2704 -- Found got reset to True, so if it's still False, issue standard
2705 -- Wrong_Type message.
2707 if not Found then
2708 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2709 declare
2710 Subp_Name : Node_Id;
2712 begin
2713 if Is_Entity_Name (Name (N)) then
2714 Subp_Name := Name (N);
2716 elsif Nkind (Name (N)) = N_Selected_Component then
2718 -- Protected operation: retrieve operation name
2720 Subp_Name := Selector_Name (Name (N));
2722 else
2723 raise Program_Error;
2724 end if;
2726 Error_Msg_Node_2 := Typ;
2727 Error_Msg_NE
2728 ("no visible interpretation of& "
2729 & "matches expected type&", N, Subp_Name);
2730 end;
2732 if All_Errors_Mode then
2733 declare
2734 Index : Interp_Index;
2735 It : Interp;
2737 begin
2738 Error_Msg_N ("\\possible interpretations:", N);
2740 Get_First_Interp (Name (N), Index, It);
2741 while Present (It.Nam) loop
2742 Error_Msg_Sloc := Sloc (It.Nam);
2743 Error_Msg_Node_2 := It.Nam;
2744 Error_Msg_NE
2745 ("\\ type& for & declared#", N, It.Typ);
2746 Get_Next_Interp (Index, It);
2747 end loop;
2748 end;
2750 else
2751 Error_Msg_N ("\use -gnatf for details", N);
2752 end if;
2754 else
2755 Wrong_Type (N, Typ);
2756 end if;
2757 end if;
2758 end if;
2760 Resolution_Failed;
2761 Ghost_Mode := Save_Ghost_Mode;
2762 return;
2764 -- Test if we have more than one interpretation for the context
2766 elsif Ambiguous then
2767 Resolution_Failed;
2768 Ghost_Mode := Save_Ghost_Mode;
2769 return;
2771 -- Only one intepretation
2773 else
2774 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2775 -- the "+" on T is abstract, and the operands are of universal type,
2776 -- the above code will have (incorrectly) resolved the "+" to the
2777 -- universal one in Standard. Therefore check for this case and give
2778 -- an error. We can't do this earlier, because it would cause legal
2779 -- cases to get errors (when some other type has an abstract "+").
2781 if Ada_Version >= Ada_2005
2782 and then Nkind (N) in N_Op
2783 and then Is_Overloaded (N)
2784 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2785 then
2786 Get_First_Interp (N, I, It);
2787 while Present (It.Typ) loop
2788 if Present (It.Abstract_Op) and then
2789 Etype (It.Abstract_Op) = Typ
2790 then
2791 Error_Msg_NE
2792 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2793 return;
2794 end if;
2796 Get_Next_Interp (I, It);
2797 end loop;
2798 end if;
2800 -- Here we have an acceptable interpretation for the context
2802 -- Propagate type information and normalize tree for various
2803 -- predefined operations. If the context only imposes a class of
2804 -- types, rather than a specific type, propagate the actual type
2805 -- downward.
2807 if Typ = Any_Integer or else
2808 Typ = Any_Boolean or else
2809 Typ = Any_Modular or else
2810 Typ = Any_Real or else
2811 Typ = Any_Discrete
2812 then
2813 Ctx_Type := Expr_Type;
2815 -- Any_Fixed is legal in a real context only if a specific fixed-
2816 -- point type is imposed. If Norman Cohen can be confused by this,
2817 -- it deserves a separate message.
2819 if Typ = Any_Real
2820 and then Expr_Type = Any_Fixed
2821 then
2822 Error_Msg_N ("illegal context for mixed mode operation", N);
2823 Set_Etype (N, Universal_Real);
2824 Ctx_Type := Universal_Real;
2825 end if;
2826 end if;
2828 -- A user-defined operator is transformed into a function call at
2829 -- this point, so that further processing knows that operators are
2830 -- really operators (i.e. are predefined operators). User-defined
2831 -- operators that are intrinsic are just renamings of the predefined
2832 -- ones, and need not be turned into calls either, but if they rename
2833 -- a different operator, we must transform the node accordingly.
2834 -- Instantiations of Unchecked_Conversion are intrinsic but are
2835 -- treated as functions, even if given an operator designator.
2837 if Nkind (N) in N_Op
2838 and then Present (Entity (N))
2839 and then Ekind (Entity (N)) /= E_Operator
2840 then
2842 if not Is_Predefined_Op (Entity (N)) then
2843 Rewrite_Operator_As_Call (N, Entity (N));
2845 elsif Present (Alias (Entity (N)))
2846 and then
2847 Nkind (Parent (Parent (Entity (N)))) =
2848 N_Subprogram_Renaming_Declaration
2849 then
2850 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2852 -- If the node is rewritten, it will be fully resolved in
2853 -- Rewrite_Renamed_Operator.
2855 if Analyzed (N) then
2856 Ghost_Mode := Save_Ghost_Mode;
2857 return;
2858 end if;
2859 end if;
2860 end if;
2862 case N_Subexpr'(Nkind (N)) is
2864 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2866 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2868 when N_Short_Circuit
2869 => Resolve_Short_Circuit (N, Ctx_Type);
2871 when N_Attribute_Reference
2872 => Resolve_Attribute (N, Ctx_Type);
2874 when N_Case_Expression
2875 => Resolve_Case_Expression (N, Ctx_Type);
2877 when N_Character_Literal
2878 => Resolve_Character_Literal (N, Ctx_Type);
2880 when N_Expanded_Name
2881 => Resolve_Entity_Name (N, Ctx_Type);
2883 when N_Explicit_Dereference
2884 => Resolve_Explicit_Dereference (N, Ctx_Type);
2886 when N_Expression_With_Actions
2887 => Resolve_Expression_With_Actions (N, Ctx_Type);
2889 when N_Extension_Aggregate
2890 => Resolve_Extension_Aggregate (N, Ctx_Type);
2892 when N_Function_Call
2893 => Resolve_Call (N, Ctx_Type);
2895 when N_Identifier
2896 => Resolve_Entity_Name (N, Ctx_Type);
2898 when N_If_Expression
2899 => Resolve_If_Expression (N, Ctx_Type);
2901 when N_Indexed_Component
2902 => Resolve_Indexed_Component (N, Ctx_Type);
2904 when N_Integer_Literal
2905 => Resolve_Integer_Literal (N, Ctx_Type);
2907 when N_Membership_Test
2908 => Resolve_Membership_Op (N, Ctx_Type);
2910 when N_Null => Resolve_Null (N, Ctx_Type);
2912 when N_Op_And | N_Op_Or | N_Op_Xor
2913 => Resolve_Logical_Op (N, Ctx_Type);
2915 when N_Op_Eq | N_Op_Ne
2916 => Resolve_Equality_Op (N, Ctx_Type);
2918 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2919 => Resolve_Comparison_Op (N, Ctx_Type);
2921 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2923 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2924 N_Op_Divide | N_Op_Mod | N_Op_Rem
2926 => Resolve_Arithmetic_Op (N, Ctx_Type);
2928 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2930 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2932 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2933 => Resolve_Unary_Op (N, Ctx_Type);
2935 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2937 when N_Procedure_Call_Statement
2938 => Resolve_Call (N, Ctx_Type);
2940 when N_Operator_Symbol
2941 => Resolve_Operator_Symbol (N, Ctx_Type);
2943 when N_Qualified_Expression
2944 => Resolve_Qualified_Expression (N, Ctx_Type);
2946 -- Why is the following null, needs a comment ???
2948 when N_Quantified_Expression
2949 => null;
2951 when N_Raise_Expression
2952 => Resolve_Raise_Expression (N, Ctx_Type);
2954 when N_Raise_xxx_Error
2955 => Set_Etype (N, Ctx_Type);
2957 when N_Range => Resolve_Range (N, Ctx_Type);
2959 when N_Real_Literal
2960 => Resolve_Real_Literal (N, Ctx_Type);
2962 when N_Reference => Resolve_Reference (N, Ctx_Type);
2964 when N_Selected_Component
2965 => Resolve_Selected_Component (N, Ctx_Type);
2967 when N_Slice => Resolve_Slice (N, Ctx_Type);
2969 when N_String_Literal
2970 => Resolve_String_Literal (N, Ctx_Type);
2972 when N_Type_Conversion
2973 => Resolve_Type_Conversion (N, Ctx_Type);
2975 when N_Unchecked_Expression =>
2976 Resolve_Unchecked_Expression (N, Ctx_Type);
2978 when N_Unchecked_Type_Conversion =>
2979 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2980 end case;
2982 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2983 -- expression of an anonymous access type that occurs in the context
2984 -- of a named general access type, except when the expression is that
2985 -- of a membership test. This ensures proper legality checking in
2986 -- terms of allowed conversions (expressions that would be illegal to
2987 -- convert implicitly are allowed in membership tests).
2989 if Ada_Version >= Ada_2012
2990 and then Ekind (Ctx_Type) = E_General_Access_Type
2991 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
2992 and then Nkind (Parent (N)) not in N_Membership_Test
2993 then
2994 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
2995 Analyze_And_Resolve (N, Ctx_Type);
2996 end if;
2998 -- If the subexpression was replaced by a non-subexpression, then
2999 -- all we do is to expand it. The only legitimate case we know of
3000 -- is converting procedure call statement to entry call statements,
3001 -- but there may be others, so we are making this test general.
3003 if Nkind (N) not in N_Subexpr then
3004 Debug_A_Exit ("resolving ", N, " (done)");
3005 Expand (N);
3006 Ghost_Mode := Save_Ghost_Mode;
3007 return;
3008 end if;
3010 -- The expression is definitely NOT overloaded at this point, so
3011 -- we reset the Is_Overloaded flag to avoid any confusion when
3012 -- reanalyzing the node.
3014 Set_Is_Overloaded (N, False);
3016 -- Freeze expression type, entity if it is a name, and designated
3017 -- type if it is an allocator (RM 13.14(10,11,13)).
3019 -- Now that the resolution of the type of the node is complete, and
3020 -- we did not detect an error, we can expand this node. We skip the
3021 -- expand call if we are in a default expression, see section
3022 -- "Handling of Default Expressions" in Sem spec.
3024 Debug_A_Exit ("resolving ", N, " (done)");
3026 -- We unconditionally freeze the expression, even if we are in
3027 -- default expression mode (the Freeze_Expression routine tests this
3028 -- flag and only freezes static types if it is set).
3030 -- Ada 2012 (AI05-177): The declaration of an expression function
3031 -- does not cause freezing, but we never reach here in that case.
3032 -- Here we are resolving the corresponding expanded body, so we do
3033 -- need to perform normal freezing.
3035 Freeze_Expression (N);
3037 -- Now we can do the expansion
3039 Expand (N);
3040 end if;
3042 Ghost_Mode := Save_Ghost_Mode;
3043 end Resolve;
3045 -------------
3046 -- Resolve --
3047 -------------
3049 -- Version with check(s) suppressed
3051 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3052 begin
3053 if Suppress = All_Checks then
3054 declare
3055 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3056 begin
3057 Scope_Suppress.Suppress := (others => True);
3058 Resolve (N, Typ);
3059 Scope_Suppress.Suppress := Sva;
3060 end;
3062 else
3063 declare
3064 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3065 begin
3066 Scope_Suppress.Suppress (Suppress) := True;
3067 Resolve (N, Typ);
3068 Scope_Suppress.Suppress (Suppress) := Svg;
3069 end;
3070 end if;
3071 end Resolve;
3073 -------------
3074 -- Resolve --
3075 -------------
3077 -- Version with implicit type
3079 procedure Resolve (N : Node_Id) is
3080 begin
3081 Resolve (N, Etype (N));
3082 end Resolve;
3084 ---------------------
3085 -- Resolve_Actuals --
3086 ---------------------
3088 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3089 Loc : constant Source_Ptr := Sloc (N);
3090 A : Node_Id;
3091 A_Id : Entity_Id;
3092 A_Typ : Entity_Id;
3093 F : Entity_Id;
3094 F_Typ : Entity_Id;
3095 Prev : Node_Id := Empty;
3096 Orig_A : Node_Id;
3097 Real_F : Entity_Id;
3099 Real_Subp : Entity_Id;
3100 -- If the subprogram being called is an inherited operation for
3101 -- a formal derived type in an instance, Real_Subp is the subprogram
3102 -- that will be called. It may have different formal names than the
3103 -- operation of the formal in the generic, so after actual is resolved
3104 -- the name of the actual in a named association must carry the name
3105 -- of the actual of the subprogram being called.
3107 procedure Check_Aliased_Parameter;
3108 -- Check rules on aliased parameters and related accessibility rules
3109 -- in (RM 3.10.2 (10.2-10.4)).
3111 procedure Check_Argument_Order;
3112 -- Performs a check for the case where the actuals are all simple
3113 -- identifiers that correspond to the formal names, but in the wrong
3114 -- order, which is considered suspicious and cause for a warning.
3116 procedure Check_Prefixed_Call;
3117 -- If the original node is an overloaded call in prefix notation,
3118 -- insert an 'Access or a dereference as needed over the first actual.
3119 -- Try_Object_Operation has already verified that there is a valid
3120 -- interpretation, but the form of the actual can only be determined
3121 -- once the primitive operation is identified.
3123 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3124 -- Emit an error concerning the illegal usage of an effectively volatile
3125 -- object in interfering context (SPARK RM 7.13(12)).
3127 procedure Insert_Default;
3128 -- If the actual is missing in a call, insert in the actuals list
3129 -- an instance of the default expression. The insertion is always
3130 -- a named association.
3132 procedure Property_Error
3133 (Var : Node_Id;
3134 Var_Id : Entity_Id;
3135 Prop_Nam : Name_Id);
3136 -- Emit an error concerning variable Var with entity Var_Id that has
3137 -- enabled property Prop_Nam when it acts as an actual parameter in a
3138 -- call and the corresponding formal parameter is of mode IN.
3140 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3141 -- Check whether T1 and T2, or their full views, are derived from a
3142 -- common type. Used to enforce the restrictions on array conversions
3143 -- of AI95-00246.
3145 function Static_Concatenation (N : Node_Id) return Boolean;
3146 -- Predicate to determine whether an actual that is a concatenation
3147 -- will be evaluated statically and does not need a transient scope.
3148 -- This must be determined before the actual is resolved and expanded
3149 -- because if needed the transient scope must be introduced earlier.
3151 -----------------------------
3152 -- Check_Aliased_Parameter --
3153 -----------------------------
3155 procedure Check_Aliased_Parameter is
3156 Nominal_Subt : Entity_Id;
3158 begin
3159 if Is_Aliased (F) then
3160 if Is_Tagged_Type (A_Typ) then
3161 null;
3163 elsif Is_Aliased_View (A) then
3164 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3165 Nominal_Subt := Base_Type (A_Typ);
3166 else
3167 Nominal_Subt := A_Typ;
3168 end if;
3170 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3171 null;
3173 -- In a generic body assume the worst for generic formals:
3174 -- they can have a constrained partial view (AI05-041).
3176 elsif Has_Discriminants (F_Typ)
3177 and then not Is_Constrained (F_Typ)
3178 and then not Has_Constrained_Partial_View (F_Typ)
3179 and then not Is_Generic_Type (F_Typ)
3180 then
3181 null;
3183 else
3184 Error_Msg_NE ("untagged actual does not match "
3185 & "aliased formal&", A, F);
3186 end if;
3188 else
3189 Error_Msg_NE ("actual for aliased formal& must be "
3190 & "aliased object", A, F);
3191 end if;
3193 if Ekind (Nam) = E_Procedure then
3194 null;
3196 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3197 if Nkind (Parent (N)) = N_Type_Conversion
3198 and then Type_Access_Level (Etype (Parent (N))) <
3199 Object_Access_Level (A)
3200 then
3201 Error_Msg_N ("aliased actual has wrong accessibility", A);
3202 end if;
3204 elsif Nkind (Parent (N)) = N_Qualified_Expression
3205 and then Nkind (Parent (Parent (N))) = N_Allocator
3206 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3207 Object_Access_Level (A)
3208 then
3209 Error_Msg_N
3210 ("aliased actual in allocator has wrong accessibility", A);
3211 end if;
3212 end if;
3213 end Check_Aliased_Parameter;
3215 --------------------------
3216 -- Check_Argument_Order --
3217 --------------------------
3219 procedure Check_Argument_Order is
3220 begin
3221 -- Nothing to do if no parameters, or original node is neither a
3222 -- function call nor a procedure call statement (happens in the
3223 -- operator-transformed-to-function call case), or the call does
3224 -- not come from source, or this warning is off.
3226 if not Warn_On_Parameter_Order
3227 or else No (Parameter_Associations (N))
3228 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3229 or else not Comes_From_Source (N)
3230 then
3231 return;
3232 end if;
3234 declare
3235 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3237 begin
3238 -- Nothing to do if only one parameter
3240 if Nargs < 2 then
3241 return;
3242 end if;
3244 -- Here if at least two arguments
3246 declare
3247 Actuals : array (1 .. Nargs) of Node_Id;
3248 Actual : Node_Id;
3249 Formal : Node_Id;
3251 Wrong_Order : Boolean := False;
3252 -- Set True if an out of order case is found
3254 begin
3255 -- Collect identifier names of actuals, fail if any actual is
3256 -- not a simple identifier, and record max length of name.
3258 Actual := First (Parameter_Associations (N));
3259 for J in Actuals'Range loop
3260 if Nkind (Actual) /= N_Identifier then
3261 return;
3262 else
3263 Actuals (J) := Actual;
3264 Next (Actual);
3265 end if;
3266 end loop;
3268 -- If we got this far, all actuals are identifiers and the list
3269 -- of their names is stored in the Actuals array.
3271 Formal := First_Formal (Nam);
3272 for J in Actuals'Range loop
3274 -- If we ran out of formals, that's odd, probably an error
3275 -- which will be detected elsewhere, but abandon the search.
3277 if No (Formal) then
3278 return;
3279 end if;
3281 -- If name matches and is in order OK
3283 if Chars (Formal) = Chars (Actuals (J)) then
3284 null;
3286 else
3287 -- If no match, see if it is elsewhere in list and if so
3288 -- flag potential wrong order if type is compatible.
3290 for K in Actuals'Range loop
3291 if Chars (Formal) = Chars (Actuals (K))
3292 and then
3293 Has_Compatible_Type (Actuals (K), Etype (Formal))
3294 then
3295 Wrong_Order := True;
3296 goto Continue;
3297 end if;
3298 end loop;
3300 -- No match
3302 return;
3303 end if;
3305 <<Continue>> Next_Formal (Formal);
3306 end loop;
3308 -- If Formals left over, also probably an error, skip warning
3310 if Present (Formal) then
3311 return;
3312 end if;
3314 -- Here we give the warning if something was out of order
3316 if Wrong_Order then
3317 Error_Msg_N
3318 ("?P?actuals for this call may be in wrong order", N);
3319 end if;
3320 end;
3321 end;
3322 end Check_Argument_Order;
3324 -------------------------
3325 -- Check_Prefixed_Call --
3326 -------------------------
3328 procedure Check_Prefixed_Call is
3329 Act : constant Node_Id := First_Actual (N);
3330 A_Type : constant Entity_Id := Etype (Act);
3331 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3332 Orig : constant Node_Id := Original_Node (N);
3333 New_A : Node_Id;
3335 begin
3336 -- Check whether the call is a prefixed call, with or without
3337 -- additional actuals.
3339 if Nkind (Orig) = N_Selected_Component
3340 or else
3341 (Nkind (Orig) = N_Indexed_Component
3342 and then Nkind (Prefix (Orig)) = N_Selected_Component
3343 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3344 and then Is_Entity_Name (Act)
3345 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3346 then
3347 if Is_Access_Type (A_Type)
3348 and then not Is_Access_Type (F_Type)
3349 then
3350 -- Introduce dereference on object in prefix
3352 New_A :=
3353 Make_Explicit_Dereference (Sloc (Act),
3354 Prefix => Relocate_Node (Act));
3355 Rewrite (Act, New_A);
3356 Analyze (Act);
3358 elsif Is_Access_Type (F_Type)
3359 and then not Is_Access_Type (A_Type)
3360 then
3361 -- Introduce an implicit 'Access in prefix
3363 if not Is_Aliased_View (Act) then
3364 Error_Msg_NE
3365 ("object in prefixed call to& must be aliased "
3366 & "(RM 4.1.3 (13 1/2))",
3367 Prefix (Act), Nam);
3368 end if;
3370 Rewrite (Act,
3371 Make_Attribute_Reference (Loc,
3372 Attribute_Name => Name_Access,
3373 Prefix => Relocate_Node (Act)));
3374 end if;
3376 Analyze (Act);
3377 end if;
3378 end Check_Prefixed_Call;
3380 ---------------------------------------
3381 -- Flag_Effectively_Volatile_Objects --
3382 ---------------------------------------
3384 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3385 function Flag_Object (N : Node_Id) return Traverse_Result;
3386 -- Determine whether arbitrary node N denotes an effectively volatile
3387 -- object and if it does, emit an error.
3389 -----------------
3390 -- Flag_Object --
3391 -----------------
3393 function Flag_Object (N : Node_Id) return Traverse_Result is
3394 Id : Entity_Id;
3396 begin
3397 -- Do not consider nested function calls because they have already
3398 -- been processed during their own resolution.
3400 if Nkind (N) = N_Function_Call then
3401 return Skip;
3403 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3404 Id := Entity (N);
3406 if Is_Object (Id)
3407 and then Is_Effectively_Volatile (Id)
3408 and then (Async_Writers_Enabled (Id)
3409 or else Effective_Reads_Enabled (Id))
3410 then
3411 Error_Msg_N
3412 ("volatile object cannot appear in this context (SPARK "
3413 & "RM 7.1.3(11))", N);
3414 return Skip;
3415 end if;
3416 end if;
3418 return OK;
3419 end Flag_Object;
3421 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3423 -- Start of processing for Flag_Effectively_Volatile_Objects
3425 begin
3426 Flag_Objects (Expr);
3427 end Flag_Effectively_Volatile_Objects;
3429 --------------------
3430 -- Insert_Default --
3431 --------------------
3433 procedure Insert_Default is
3434 Actval : Node_Id;
3435 Assoc : Node_Id;
3437 begin
3438 -- Missing argument in call, nothing to insert
3440 if No (Default_Value (F)) then
3441 return;
3443 else
3444 -- Note that we do a full New_Copy_Tree, so that any associated
3445 -- Itypes are properly copied. This may not be needed any more,
3446 -- but it does no harm as a safety measure. Defaults of a generic
3447 -- formal may be out of bounds of the corresponding actual (see
3448 -- cc1311b) and an additional check may be required.
3450 Actval :=
3451 New_Copy_Tree
3452 (Default_Value (F),
3453 New_Scope => Current_Scope,
3454 New_Sloc => Loc);
3456 -- Propagate dimension information, if any.
3458 Copy_Dimensions (Default_Value (F), Actval);
3460 if Is_Concurrent_Type (Scope (Nam))
3461 and then Has_Discriminants (Scope (Nam))
3462 then
3463 Replace_Actual_Discriminants (N, Actval);
3464 end if;
3466 if Is_Overloadable (Nam)
3467 and then Present (Alias (Nam))
3468 then
3469 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3470 and then not Is_Tagged_Type (Etype (F))
3471 then
3472 -- If default is a real literal, do not introduce a
3473 -- conversion whose effect may depend on the run-time
3474 -- size of universal real.
3476 if Nkind (Actval) = N_Real_Literal then
3477 Set_Etype (Actval, Base_Type (Etype (F)));
3478 else
3479 Actval := Unchecked_Convert_To (Etype (F), Actval);
3480 end if;
3481 end if;
3483 if Is_Scalar_Type (Etype (F)) then
3484 Enable_Range_Check (Actval);
3485 end if;
3487 Set_Parent (Actval, N);
3489 -- Resolve aggregates with their base type, to avoid scope
3490 -- anomalies: the subtype was first built in the subprogram
3491 -- declaration, and the current call may be nested.
3493 if Nkind (Actval) = N_Aggregate then
3494 Analyze_And_Resolve (Actval, Etype (F));
3495 else
3496 Analyze_And_Resolve (Actval, Etype (Actval));
3497 end if;
3499 else
3500 Set_Parent (Actval, N);
3502 -- See note above concerning aggregates
3504 if Nkind (Actval) = N_Aggregate
3505 and then Has_Discriminants (Etype (Actval))
3506 then
3507 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3509 -- Resolve entities with their own type, which may differ from
3510 -- the type of a reference in a generic context (the view
3511 -- swapping mechanism did not anticipate the re-analysis of
3512 -- default values in calls).
3514 elsif Is_Entity_Name (Actval) then
3515 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3517 else
3518 Analyze_And_Resolve (Actval, Etype (Actval));
3519 end if;
3520 end if;
3522 -- If default is a tag indeterminate function call, propagate tag
3523 -- to obtain proper dispatching.
3525 if Is_Controlling_Formal (F)
3526 and then Nkind (Default_Value (F)) = N_Function_Call
3527 then
3528 Set_Is_Controlling_Actual (Actval);
3529 end if;
3530 end if;
3532 -- If the default expression raises constraint error, then just
3533 -- silently replace it with an N_Raise_Constraint_Error node, since
3534 -- we already gave the warning on the subprogram spec. If node is
3535 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3536 -- the warnings removal machinery.
3538 if Raises_Constraint_Error (Actval)
3539 and then Nkind (Actval) /= N_Raise_Constraint_Error
3540 then
3541 Rewrite (Actval,
3542 Make_Raise_Constraint_Error (Loc,
3543 Reason => CE_Range_Check_Failed));
3544 Set_Raises_Constraint_Error (Actval);
3545 Set_Etype (Actval, Etype (F));
3546 end if;
3548 Assoc :=
3549 Make_Parameter_Association (Loc,
3550 Explicit_Actual_Parameter => Actval,
3551 Selector_Name => Make_Identifier (Loc, Chars (F)));
3553 -- Case of insertion is first named actual
3555 if No (Prev) or else
3556 Nkind (Parent (Prev)) /= N_Parameter_Association
3557 then
3558 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3559 Set_First_Named_Actual (N, Actval);
3561 if No (Prev) then
3562 if No (Parameter_Associations (N)) then
3563 Set_Parameter_Associations (N, New_List (Assoc));
3564 else
3565 Append (Assoc, Parameter_Associations (N));
3566 end if;
3568 else
3569 Insert_After (Prev, Assoc);
3570 end if;
3572 -- Case of insertion is not first named actual
3574 else
3575 Set_Next_Named_Actual
3576 (Assoc, Next_Named_Actual (Parent (Prev)));
3577 Set_Next_Named_Actual (Parent (Prev), Actval);
3578 Append (Assoc, Parameter_Associations (N));
3579 end if;
3581 Mark_Rewrite_Insertion (Assoc);
3582 Mark_Rewrite_Insertion (Actval);
3584 Prev := Actval;
3585 end Insert_Default;
3587 --------------------
3588 -- Property_Error --
3589 --------------------
3591 procedure Property_Error
3592 (Var : Node_Id;
3593 Var_Id : Entity_Id;
3594 Prop_Nam : Name_Id)
3596 begin
3597 Error_Msg_Name_1 := Prop_Nam;
3598 Error_Msg_NE
3599 ("external variable & with enabled property % cannot appear as "
3600 & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3601 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3602 end Property_Error;
3604 -------------------
3605 -- Same_Ancestor --
3606 -------------------
3608 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3609 FT1 : Entity_Id := T1;
3610 FT2 : Entity_Id := T2;
3612 begin
3613 if Is_Private_Type (T1)
3614 and then Present (Full_View (T1))
3615 then
3616 FT1 := Full_View (T1);
3617 end if;
3619 if Is_Private_Type (T2)
3620 and then Present (Full_View (T2))
3621 then
3622 FT2 := Full_View (T2);
3623 end if;
3625 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3626 end Same_Ancestor;
3628 --------------------------
3629 -- Static_Concatenation --
3630 --------------------------
3632 function Static_Concatenation (N : Node_Id) return Boolean is
3633 begin
3634 case Nkind (N) is
3635 when N_String_Literal =>
3636 return True;
3638 when N_Op_Concat =>
3640 -- Concatenation is static when both operands are static and
3641 -- the concatenation operator is a predefined one.
3643 return Scope (Entity (N)) = Standard_Standard
3644 and then
3645 Static_Concatenation (Left_Opnd (N))
3646 and then
3647 Static_Concatenation (Right_Opnd (N));
3649 when others =>
3650 if Is_Entity_Name (N) then
3651 declare
3652 Ent : constant Entity_Id := Entity (N);
3653 begin
3654 return Ekind (Ent) = E_Constant
3655 and then Present (Constant_Value (Ent))
3656 and then
3657 Is_OK_Static_Expression (Constant_Value (Ent));
3658 end;
3660 else
3661 return False;
3662 end if;
3663 end case;
3664 end Static_Concatenation;
3666 -- Start of processing for Resolve_Actuals
3668 begin
3669 Check_Argument_Order;
3671 if Is_Overloadable (Nam)
3672 and then Is_Inherited_Operation (Nam)
3673 and then In_Instance
3674 and then Present (Alias (Nam))
3675 and then Present (Overridden_Operation (Alias (Nam)))
3676 then
3677 Real_Subp := Alias (Nam);
3678 else
3679 Real_Subp := Empty;
3680 end if;
3682 if Present (First_Actual (N)) then
3683 Check_Prefixed_Call;
3684 end if;
3686 A := First_Actual (N);
3687 F := First_Formal (Nam);
3689 if Present (Real_Subp) then
3690 Real_F := First_Formal (Real_Subp);
3691 end if;
3693 while Present (F) loop
3694 if No (A) and then Needs_No_Actuals (Nam) then
3695 null;
3697 -- If we have an error in any actual or formal, indicated by a type
3698 -- of Any_Type, then abandon resolution attempt, and set result type
3699 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3700 -- type is imposed from context.
3702 elsif (Present (A) and then Etype (A) = Any_Type)
3703 or else Etype (F) = Any_Type
3704 then
3705 if Nkind (A) /= N_Raise_Expression then
3706 Set_Etype (N, Any_Type);
3707 return;
3708 end if;
3709 end if;
3711 -- Case where actual is present
3713 -- If the actual is an entity, generate a reference to it now. We
3714 -- do this before the actual is resolved, because a formal of some
3715 -- protected subprogram, or a task discriminant, will be rewritten
3716 -- during expansion, and the source entity reference may be lost.
3718 if Present (A)
3719 and then Is_Entity_Name (A)
3720 and then Comes_From_Source (A)
3721 then
3722 Orig_A := Entity (A);
3724 if Present (Orig_A) then
3725 if Is_Formal (Orig_A)
3726 and then Ekind (F) /= E_In_Parameter
3727 then
3728 Generate_Reference (Orig_A, A, 'm');
3730 elsif not Is_Overloaded (A) then
3731 if Ekind (F) /= E_Out_Parameter then
3732 Generate_Reference (Orig_A, A);
3734 -- RM 6.4.1(12): For an out parameter that is passed by
3735 -- copy, the formal parameter object is created, and:
3737 -- * For an access type, the formal parameter is initialized
3738 -- from the value of the actual, without checking that the
3739 -- value satisfies any constraint, any predicate, or any
3740 -- exclusion of the null value.
3742 -- * For a scalar type that has the Default_Value aspect
3743 -- specified, the formal parameter is initialized from the
3744 -- value of the actual, without checking that the value
3745 -- satisfies any constraint or any predicate.
3746 -- I do not understand why this case is included??? this is
3747 -- not a case where an OUT parameter is treated as IN OUT.
3749 -- * For a composite type with discriminants or that has
3750 -- implicit initial values for any subcomponents, the
3751 -- behavior is as for an in out parameter passed by copy.
3753 -- Hence for these cases we generate the read reference now
3754 -- (the write reference will be generated later by
3755 -- Note_Possible_Modification).
3757 elsif Is_By_Copy_Type (Etype (F))
3758 and then
3759 (Is_Access_Type (Etype (F))
3760 or else
3761 (Is_Scalar_Type (Etype (F))
3762 and then
3763 Present (Default_Aspect_Value (Etype (F))))
3764 or else
3765 (Is_Composite_Type (Etype (F))
3766 and then (Has_Discriminants (Etype (F))
3767 or else Is_Partially_Initialized_Type
3768 (Etype (F)))))
3769 then
3770 Generate_Reference (Orig_A, A);
3771 end if;
3772 end if;
3773 end if;
3774 end if;
3776 if Present (A)
3777 and then (Nkind (Parent (A)) /= N_Parameter_Association
3778 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3779 then
3780 -- If style checking mode on, check match of formal name
3782 if Style_Check then
3783 if Nkind (Parent (A)) = N_Parameter_Association then
3784 Check_Identifier (Selector_Name (Parent (A)), F);
3785 end if;
3786 end if;
3788 -- If the formal is Out or In_Out, do not resolve and expand the
3789 -- conversion, because it is subsequently expanded into explicit
3790 -- temporaries and assignments. However, the object of the
3791 -- conversion can be resolved. An exception is the case of tagged
3792 -- type conversion with a class-wide actual. In that case we want
3793 -- the tag check to occur and no temporary will be needed (no
3794 -- representation change can occur) and the parameter is passed by
3795 -- reference, so we go ahead and resolve the type conversion.
3796 -- Another exception is the case of reference to component or
3797 -- subcomponent of a bit-packed array, in which case we want to
3798 -- defer expansion to the point the in and out assignments are
3799 -- performed.
3801 if Ekind (F) /= E_In_Parameter
3802 and then Nkind (A) = N_Type_Conversion
3803 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3804 then
3805 if Ekind (F) = E_In_Out_Parameter
3806 and then Is_Array_Type (Etype (F))
3807 then
3808 -- In a view conversion, the conversion must be legal in
3809 -- both directions, and thus both component types must be
3810 -- aliased, or neither (4.6 (8)).
3812 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3813 -- the privacy requirement should not apply to generic
3814 -- types, and should be checked in an instance. ARG query
3815 -- is in order ???
3817 if Has_Aliased_Components (Etype (Expression (A))) /=
3818 Has_Aliased_Components (Etype (F))
3819 then
3820 Error_Msg_N
3821 ("both component types in a view conversion must be"
3822 & " aliased, or neither", A);
3824 -- Comment here??? what set of cases???
3826 elsif
3827 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3828 then
3829 -- Check view conv between unrelated by ref array types
3831 if Is_By_Reference_Type (Etype (F))
3832 or else Is_By_Reference_Type (Etype (Expression (A)))
3833 then
3834 Error_Msg_N
3835 ("view conversion between unrelated by reference "
3836 & "array types not allowed (\'A'I-00246)", A);
3838 -- In Ada 2005 mode, check view conversion component
3839 -- type cannot be private, tagged, or volatile. Note
3840 -- that we only apply this to source conversions. The
3841 -- generated code can contain conversions which are
3842 -- not subject to this test, and we cannot extract the
3843 -- component type in such cases since it is not present.
3845 elsif Comes_From_Source (A)
3846 and then Ada_Version >= Ada_2005
3847 then
3848 declare
3849 Comp_Type : constant Entity_Id :=
3850 Component_Type
3851 (Etype (Expression (A)));
3852 begin
3853 if (Is_Private_Type (Comp_Type)
3854 and then not Is_Generic_Type (Comp_Type))
3855 or else Is_Tagged_Type (Comp_Type)
3856 or else Is_Volatile (Comp_Type)
3857 then
3858 Error_Msg_N
3859 ("component type of a view conversion cannot"
3860 & " be private, tagged, or volatile"
3861 & " (RM 4.6 (24))",
3862 Expression (A));
3863 end if;
3864 end;
3865 end if;
3866 end if;
3867 end if;
3869 -- Resolve expression if conversion is all OK
3871 if (Conversion_OK (A)
3872 or else Valid_Conversion (A, Etype (A), Expression (A)))
3873 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3874 then
3875 Resolve (Expression (A));
3876 end if;
3878 -- If the actual is a function call that returns a limited
3879 -- unconstrained object that needs finalization, create a
3880 -- transient scope for it, so that it can receive the proper
3881 -- finalization list.
3883 elsif Nkind (A) = N_Function_Call
3884 and then Is_Limited_Record (Etype (F))
3885 and then not Is_Constrained (Etype (F))
3886 and then Expander_Active
3887 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3888 then
3889 Establish_Transient_Scope (A, Sec_Stack => False);
3890 Resolve (A, Etype (F));
3892 -- A small optimization: if one of the actuals is a concatenation
3893 -- create a block around a procedure call to recover stack space.
3894 -- This alleviates stack usage when several procedure calls in
3895 -- the same statement list use concatenation. We do not perform
3896 -- this wrapping for code statements, where the argument is a
3897 -- static string, and we want to preserve warnings involving
3898 -- sequences of such statements.
3900 elsif Nkind (A) = N_Op_Concat
3901 and then Nkind (N) = N_Procedure_Call_Statement
3902 and then Expander_Active
3903 and then
3904 not (Is_Intrinsic_Subprogram (Nam)
3905 and then Chars (Nam) = Name_Asm)
3906 and then not Static_Concatenation (A)
3907 then
3908 Establish_Transient_Scope (A, Sec_Stack => False);
3909 Resolve (A, Etype (F));
3911 else
3912 if Nkind (A) = N_Type_Conversion
3913 and then Is_Array_Type (Etype (F))
3914 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3915 and then
3916 (Is_Limited_Type (Etype (F))
3917 or else Is_Limited_Type (Etype (Expression (A))))
3918 then
3919 Error_Msg_N
3920 ("conversion between unrelated limited array types "
3921 & "not allowed ('A'I-00246)", A);
3923 if Is_Limited_Type (Etype (F)) then
3924 Explain_Limited_Type (Etype (F), A);
3925 end if;
3927 if Is_Limited_Type (Etype (Expression (A))) then
3928 Explain_Limited_Type (Etype (Expression (A)), A);
3929 end if;
3930 end if;
3932 -- (Ada 2005: AI-251): If the actual is an allocator whose
3933 -- directly designated type is a class-wide interface, we build
3934 -- an anonymous access type to use it as the type of the
3935 -- allocator. Later, when the subprogram call is expanded, if
3936 -- the interface has a secondary dispatch table the expander
3937 -- will add a type conversion to force the correct displacement
3938 -- of the pointer.
3940 if Nkind (A) = N_Allocator then
3941 declare
3942 DDT : constant Entity_Id :=
3943 Directly_Designated_Type (Base_Type (Etype (F)));
3945 New_Itype : Entity_Id;
3947 begin
3948 if Is_Class_Wide_Type (DDT)
3949 and then Is_Interface (DDT)
3950 then
3951 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3952 Set_Etype (New_Itype, Etype (A));
3953 Set_Directly_Designated_Type
3954 (New_Itype, Directly_Designated_Type (Etype (A)));
3955 Set_Etype (A, New_Itype);
3956 end if;
3958 -- Ada 2005, AI-162:If the actual is an allocator, the
3959 -- innermost enclosing statement is the master of the
3960 -- created object. This needs to be done with expansion
3961 -- enabled only, otherwise the transient scope will not
3962 -- be removed in the expansion of the wrapped construct.
3964 if (Is_Controlled (DDT) or else Has_Task (DDT))
3965 and then Expander_Active
3966 then
3967 Establish_Transient_Scope (A, Sec_Stack => False);
3968 end if;
3969 end;
3971 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3972 Check_Restriction (No_Access_Parameter_Allocators, A);
3973 end if;
3974 end if;
3976 -- (Ada 2005): The call may be to a primitive operation of a
3977 -- tagged synchronized type, declared outside of the type. In
3978 -- this case the controlling actual must be converted to its
3979 -- corresponding record type, which is the formal type. The
3980 -- actual may be a subtype, either because of a constraint or
3981 -- because it is a generic actual, so use base type to locate
3982 -- concurrent type.
3984 F_Typ := Base_Type (Etype (F));
3986 if Is_Tagged_Type (F_Typ)
3987 and then (Is_Concurrent_Type (F_Typ)
3988 or else Is_Concurrent_Record_Type (F_Typ))
3989 then
3990 -- If the actual is overloaded, look for an interpretation
3991 -- that has a synchronized type.
3993 if not Is_Overloaded (A) then
3994 A_Typ := Base_Type (Etype (A));
3996 else
3997 declare
3998 Index : Interp_Index;
3999 It : Interp;
4001 begin
4002 Get_First_Interp (A, Index, It);
4003 while Present (It.Typ) loop
4004 if Is_Concurrent_Type (It.Typ)
4005 or else Is_Concurrent_Record_Type (It.Typ)
4006 then
4007 A_Typ := Base_Type (It.Typ);
4008 exit;
4009 end if;
4011 Get_Next_Interp (Index, It);
4012 end loop;
4013 end;
4014 end if;
4016 declare
4017 Full_A_Typ : Entity_Id;
4019 begin
4020 if Present (Full_View (A_Typ)) then
4021 Full_A_Typ := Base_Type (Full_View (A_Typ));
4022 else
4023 Full_A_Typ := A_Typ;
4024 end if;
4026 -- Tagged synchronized type (case 1): the actual is a
4027 -- concurrent type.
4029 if Is_Concurrent_Type (A_Typ)
4030 and then Corresponding_Record_Type (A_Typ) = F_Typ
4031 then
4032 Rewrite (A,
4033 Unchecked_Convert_To
4034 (Corresponding_Record_Type (A_Typ), A));
4035 Resolve (A, Etype (F));
4037 -- Tagged synchronized type (case 2): the formal is a
4038 -- concurrent type.
4040 elsif Ekind (Full_A_Typ) = E_Record_Type
4041 and then Present
4042 (Corresponding_Concurrent_Type (Full_A_Typ))
4043 and then Is_Concurrent_Type (F_Typ)
4044 and then Present (Corresponding_Record_Type (F_Typ))
4045 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4046 then
4047 Resolve (A, Corresponding_Record_Type (F_Typ));
4049 -- Common case
4051 else
4052 Resolve (A, Etype (F));
4053 end if;
4054 end;
4056 -- Not a synchronized operation
4058 else
4059 Resolve (A, Etype (F));
4060 end if;
4061 end if;
4063 A_Typ := Etype (A);
4064 F_Typ := Etype (F);
4066 -- An actual cannot be an untagged formal incomplete type
4068 if Ekind (A_Typ) = E_Incomplete_Type
4069 and then not Is_Tagged_Type (A_Typ)
4070 and then Is_Generic_Type (A_Typ)
4071 then
4072 Error_Msg_N
4073 ("invalid use of untagged formal incomplete type", A);
4074 end if;
4076 if Comes_From_Source (Original_Node (N))
4077 and then Nkind_In (Original_Node (N), N_Function_Call,
4078 N_Procedure_Call_Statement)
4079 then
4080 -- In formal mode, check that actual parameters matching
4081 -- formals of tagged types are objects (or ancestor type
4082 -- conversions of objects), not general expressions.
4084 if Is_Actual_Tagged_Parameter (A) then
4085 if Is_SPARK_05_Object_Reference (A) then
4086 null;
4088 elsif Nkind (A) = N_Type_Conversion then
4089 declare
4090 Operand : constant Node_Id := Expression (A);
4091 Operand_Typ : constant Entity_Id := Etype (Operand);
4092 Target_Typ : constant Entity_Id := A_Typ;
4094 begin
4095 if not Is_SPARK_05_Object_Reference (Operand) then
4096 Check_SPARK_05_Restriction
4097 ("object required", Operand);
4099 -- In formal mode, the only view conversions are those
4100 -- involving ancestor conversion of an extended type.
4102 elsif not
4103 (Is_Tagged_Type (Target_Typ)
4104 and then not Is_Class_Wide_Type (Target_Typ)
4105 and then Is_Tagged_Type (Operand_Typ)
4106 and then not Is_Class_Wide_Type (Operand_Typ)
4107 and then Is_Ancestor (Target_Typ, Operand_Typ))
4108 then
4109 if Ekind_In
4110 (F, E_Out_Parameter, E_In_Out_Parameter)
4111 then
4112 Check_SPARK_05_Restriction
4113 ("ancestor conversion is the only permitted "
4114 & "view conversion", A);
4115 else
4116 Check_SPARK_05_Restriction
4117 ("ancestor conversion required", A);
4118 end if;
4120 else
4121 null;
4122 end if;
4123 end;
4125 else
4126 Check_SPARK_05_Restriction ("object required", A);
4127 end if;
4129 -- In formal mode, the only view conversions are those
4130 -- involving ancestor conversion of an extended type.
4132 elsif Nkind (A) = N_Type_Conversion
4133 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4134 then
4135 Check_SPARK_05_Restriction
4136 ("ancestor conversion is the only permitted view "
4137 & "conversion", A);
4138 end if;
4139 end if;
4141 -- has warnings suppressed, then we reset Never_Set_In_Source for
4142 -- the calling entity. The reason for this is to catch cases like
4143 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4144 -- uses trickery to modify an IN parameter.
4146 if Ekind (F) = E_In_Parameter
4147 and then Is_Entity_Name (A)
4148 and then Present (Entity (A))
4149 and then Ekind (Entity (A)) = E_Variable
4150 and then Has_Warnings_Off (F_Typ)
4151 then
4152 Set_Never_Set_In_Source (Entity (A), False);
4153 end if;
4155 -- Perform error checks for IN and IN OUT parameters
4157 if Ekind (F) /= E_Out_Parameter then
4159 -- Check unset reference. For scalar parameters, it is clearly
4160 -- wrong to pass an uninitialized value as either an IN or
4161 -- IN-OUT parameter. For composites, it is also clearly an
4162 -- error to pass a completely uninitialized value as an IN
4163 -- parameter, but the case of IN OUT is trickier. We prefer
4164 -- not to give a warning here. For example, suppose there is
4165 -- a routine that sets some component of a record to False.
4166 -- It is perfectly reasonable to make this IN-OUT and allow
4167 -- either initialized or uninitialized records to be passed
4168 -- in this case.
4170 -- For partially initialized composite values, we also avoid
4171 -- warnings, since it is quite likely that we are passing a
4172 -- partially initialized value and only the initialized fields
4173 -- will in fact be read in the subprogram.
4175 if Is_Scalar_Type (A_Typ)
4176 or else (Ekind (F) = E_In_Parameter
4177 and then not Is_Partially_Initialized_Type (A_Typ))
4178 then
4179 Check_Unset_Reference (A);
4180 end if;
4182 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4183 -- actual to a nested call, since this constitutes a reading of
4184 -- the parameter, which is not allowed.
4186 if Ada_Version = Ada_83
4187 and then Is_Entity_Name (A)
4188 and then Ekind (Entity (A)) = E_Out_Parameter
4189 then
4190 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4191 end if;
4192 end if;
4194 -- Case of OUT or IN OUT parameter
4196 if Ekind (F) /= E_In_Parameter then
4198 -- For an Out parameter, check for useless assignment. Note
4199 -- that we can't set Last_Assignment this early, because we may
4200 -- kill current values in Resolve_Call, and that call would
4201 -- clobber the Last_Assignment field.
4203 -- Note: call Warn_On_Useless_Assignment before doing the check
4204 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4205 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4206 -- reflects the last assignment, not this one.
4208 if Ekind (F) = E_Out_Parameter then
4209 if Warn_On_Modified_As_Out_Parameter (F)
4210 and then Is_Entity_Name (A)
4211 and then Present (Entity (A))
4212 and then Comes_From_Source (N)
4213 then
4214 Warn_On_Useless_Assignment (Entity (A), A);
4215 end if;
4216 end if;
4218 -- Validate the form of the actual. Note that the call to
4219 -- Is_OK_Variable_For_Out_Formal generates the required
4220 -- reference in this case.
4222 -- A call to an initialization procedure for an aggregate
4223 -- component may initialize a nested component of a constant
4224 -- designated object. In this context the object is variable.
4226 if not Is_OK_Variable_For_Out_Formal (A)
4227 and then not Is_Init_Proc (Nam)
4228 then
4229 Error_Msg_NE ("actual for& must be a variable", A, F);
4231 if Is_Subprogram (Current_Scope) then
4232 if Is_Invariant_Procedure (Current_Scope)
4233 or else Is_Partial_Invariant_Procedure (Current_Scope)
4234 then
4235 Error_Msg_N
4236 ("function used in invariant cannot modify its "
4237 & "argument", F);
4239 elsif Is_Predicate_Function (Current_Scope) then
4240 Error_Msg_N
4241 ("function used in predicate cannot modify its "
4242 & "argument", F);
4243 end if;
4244 end if;
4245 end if;
4247 -- What's the following about???
4249 if Is_Entity_Name (A) then
4250 Kill_Checks (Entity (A));
4251 else
4252 Kill_All_Checks;
4253 end if;
4254 end if;
4256 if Etype (A) = Any_Type then
4257 Set_Etype (N, Any_Type);
4258 return;
4259 end if;
4261 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4263 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4265 -- Apply predicate tests except in certain special cases. Note
4266 -- that it might be more consistent to apply these only when
4267 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4268 -- for the outbound predicate tests ???
4270 if Predicate_Tests_On_Arguments (Nam) then
4271 Apply_Predicate_Check (A, F_Typ);
4272 end if;
4274 -- Apply required constraint checks
4276 -- Gigi looks at the check flag and uses the appropriate types.
4277 -- For now since one flag is used there is an optimization
4278 -- which might not be done in the IN OUT case since Gigi does
4279 -- not do any analysis. More thought required about this ???
4281 -- In fact is this comment obsolete??? doesn't the expander now
4282 -- generate all these tests anyway???
4284 if Is_Scalar_Type (Etype (A)) then
4285 Apply_Scalar_Range_Check (A, F_Typ);
4287 elsif Is_Array_Type (Etype (A)) then
4288 Apply_Length_Check (A, F_Typ);
4290 elsif Is_Record_Type (F_Typ)
4291 and then Has_Discriminants (F_Typ)
4292 and then Is_Constrained (F_Typ)
4293 and then (not Is_Derived_Type (F_Typ)
4294 or else Comes_From_Source (Nam))
4295 then
4296 Apply_Discriminant_Check (A, F_Typ);
4298 -- For view conversions of a discriminated object, apply
4299 -- check to object itself, the conversion alreay has the
4300 -- proper type.
4302 if Nkind (A) = N_Type_Conversion
4303 and then Is_Constrained (Etype (Expression (A)))
4304 then
4305 Apply_Discriminant_Check (Expression (A), F_Typ);
4306 end if;
4308 elsif Is_Access_Type (F_Typ)
4309 and then Is_Array_Type (Designated_Type (F_Typ))
4310 and then Is_Constrained (Designated_Type (F_Typ))
4311 then
4312 Apply_Length_Check (A, F_Typ);
4314 elsif Is_Access_Type (F_Typ)
4315 and then Has_Discriminants (Designated_Type (F_Typ))
4316 and then Is_Constrained (Designated_Type (F_Typ))
4317 then
4318 Apply_Discriminant_Check (A, F_Typ);
4320 else
4321 Apply_Range_Check (A, F_Typ);
4322 end if;
4324 -- Ada 2005 (AI-231): Note that the controlling parameter case
4325 -- already existed in Ada 95, which is partially checked
4326 -- elsewhere (see Checks), and we don't want the warning
4327 -- message to differ.
4329 if Is_Access_Type (F_Typ)
4330 and then Can_Never_Be_Null (F_Typ)
4331 and then Known_Null (A)
4332 then
4333 if Is_Controlling_Formal (F) then
4334 Apply_Compile_Time_Constraint_Error
4335 (N => A,
4336 Msg => "null value not allowed here??",
4337 Reason => CE_Access_Check_Failed);
4339 elsif Ada_Version >= Ada_2005 then
4340 Apply_Compile_Time_Constraint_Error
4341 (N => A,
4342 Msg => "(Ada 2005) null not allowed in "
4343 & "null-excluding formal??",
4344 Reason => CE_Null_Not_Allowed);
4345 end if;
4346 end if;
4347 end if;
4349 -- Checks for OUT parameters and IN OUT parameters
4351 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4353 -- If there is a type conversion, to make sure the return value
4354 -- meets the constraints of the variable before the conversion.
4356 if Nkind (A) = N_Type_Conversion then
4357 if Is_Scalar_Type (A_Typ) then
4358 Apply_Scalar_Range_Check
4359 (Expression (A), Etype (Expression (A)), A_Typ);
4360 else
4361 Apply_Range_Check
4362 (Expression (A), Etype (Expression (A)), A_Typ);
4363 end if;
4365 -- If no conversion apply scalar range checks and length checks
4366 -- base on the subtype of the actual (NOT that of the formal).
4368 else
4369 if Is_Scalar_Type (F_Typ) then
4370 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4371 elsif Is_Array_Type (F_Typ)
4372 and then Ekind (F) = E_Out_Parameter
4373 then
4374 Apply_Length_Check (A, F_Typ);
4375 else
4376 Apply_Range_Check (A, A_Typ, F_Typ);
4377 end if;
4378 end if;
4380 -- Note: we do not apply the predicate checks for the case of
4381 -- OUT and IN OUT parameters. They are instead applied in the
4382 -- Expand_Actuals routine in Exp_Ch6.
4383 end if;
4385 -- An actual associated with an access parameter is implicitly
4386 -- converted to the anonymous access type of the formal and must
4387 -- satisfy the legality checks for access conversions.
4389 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4390 if not Valid_Conversion (A, F_Typ, A) then
4391 Error_Msg_N
4392 ("invalid implicit conversion for access parameter", A);
4393 end if;
4395 -- If the actual is an access selected component of a variable,
4396 -- the call may modify its designated object. It is reasonable
4397 -- to treat this as a potential modification of the enclosing
4398 -- record, to prevent spurious warnings that it should be
4399 -- declared as a constant, because intuitively programmers
4400 -- regard the designated subcomponent as part of the record.
4402 if Nkind (A) = N_Selected_Component
4403 and then Is_Entity_Name (Prefix (A))
4404 and then not Is_Constant_Object (Entity (Prefix (A)))
4405 then
4406 Note_Possible_Modification (A, Sure => False);
4407 end if;
4408 end if;
4410 -- Check bad case of atomic/volatile argument (RM C.6(12))
4412 if Is_By_Reference_Type (Etype (F))
4413 and then Comes_From_Source (N)
4414 then
4415 if Is_Atomic_Object (A)
4416 and then not Is_Atomic (Etype (F))
4417 then
4418 Error_Msg_NE
4419 ("cannot pass atomic argument to non-atomic formal&",
4420 A, F);
4422 elsif Is_Volatile_Object (A)
4423 and then not Is_Volatile (Etype (F))
4424 then
4425 Error_Msg_NE
4426 ("cannot pass volatile argument to non-volatile formal&",
4427 A, F);
4428 end if;
4429 end if;
4431 -- Check that subprograms don't have improper controlling
4432 -- arguments (RM 3.9.2 (9)).
4434 -- A primitive operation may have an access parameter of an
4435 -- incomplete tagged type, but a dispatching call is illegal
4436 -- if the type is still incomplete.
4438 if Is_Controlling_Formal (F) then
4439 Set_Is_Controlling_Actual (A);
4441 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4442 declare
4443 Desig : constant Entity_Id := Designated_Type (Etype (F));
4444 begin
4445 if Ekind (Desig) = E_Incomplete_Type
4446 and then No (Full_View (Desig))
4447 and then No (Non_Limited_View (Desig))
4448 then
4449 Error_Msg_NE
4450 ("premature use of incomplete type& "
4451 & "in dispatching call", A, Desig);
4452 end if;
4453 end;
4454 end if;
4456 elsif Nkind (A) = N_Explicit_Dereference then
4457 Validate_Remote_Access_To_Class_Wide_Type (A);
4458 end if;
4460 -- Apply legality rule 3.9.2 (9/1)
4462 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4463 and then not Is_Class_Wide_Type (F_Typ)
4464 and then not Is_Controlling_Formal (F)
4465 and then not In_Instance
4466 then
4467 Error_Msg_N ("class-wide argument not allowed here!", A);
4469 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4470 Error_Msg_Node_2 := F_Typ;
4471 Error_Msg_NE
4472 ("& is not a dispatching operation of &!", A, Nam);
4473 end if;
4475 -- Apply the checks described in 3.10.2(27): if the context is a
4476 -- specific access-to-object, the actual cannot be class-wide.
4477 -- Use base type to exclude access_to_subprogram cases.
4479 elsif Is_Access_Type (A_Typ)
4480 and then Is_Access_Type (F_Typ)
4481 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4482 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4483 or else (Nkind (A) = N_Attribute_Reference
4484 and then
4485 Is_Class_Wide_Type (Etype (Prefix (A)))))
4486 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4487 and then not Is_Controlling_Formal (F)
4489 -- Disable these checks for call to imported C++ subprograms
4491 and then not
4492 (Is_Entity_Name (Name (N))
4493 and then Is_Imported (Entity (Name (N)))
4494 and then Convention (Entity (Name (N))) = Convention_CPP)
4495 then
4496 Error_Msg_N
4497 ("access to class-wide argument not allowed here!", A);
4499 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4500 Error_Msg_Node_2 := Designated_Type (F_Typ);
4501 Error_Msg_NE
4502 ("& is not a dispatching operation of &!", A, Nam);
4503 end if;
4504 end if;
4506 Check_Aliased_Parameter;
4508 Eval_Actual (A);
4510 -- If it is a named association, treat the selector_name as a
4511 -- proper identifier, and mark the corresponding entity.
4513 if Nkind (Parent (A)) = N_Parameter_Association
4515 -- Ignore reference in SPARK mode, as it refers to an entity not
4516 -- in scope at the point of reference, so the reference should
4517 -- be ignored for computing effects of subprograms.
4519 and then not GNATprove_Mode
4520 then
4521 -- If subprogram is overridden, use name of formal that
4522 -- is being called.
4524 if Present (Real_Subp) then
4525 Set_Entity (Selector_Name (Parent (A)), Real_F);
4526 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4528 else
4529 Set_Entity (Selector_Name (Parent (A)), F);
4530 Generate_Reference (F, Selector_Name (Parent (A)));
4531 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4532 Generate_Reference (F_Typ, N, ' ');
4533 end if;
4534 end if;
4536 Prev := A;
4538 if Ekind (F) /= E_Out_Parameter then
4539 Check_Unset_Reference (A);
4540 end if;
4542 -- The following checks are only relevant when SPARK_Mode is on as
4543 -- they are not standard Ada legality rule. Internally generated
4544 -- temporaries are ignored.
4546 if SPARK_Mode = On and then Comes_From_Source (A) then
4548 -- An effectively volatile object may act as an actual when the
4549 -- corresponding formal is of a non-scalar effectively volatile
4550 -- type (SPARK RM 7.1.3(11)).
4552 if not Is_Scalar_Type (Etype (F))
4553 and then Is_Effectively_Volatile (Etype (F))
4554 then
4555 null;
4557 -- An effectively volatile object may act as an actual in a
4558 -- call to an instance of Unchecked_Conversion.
4559 -- (SPARK RM 7.1.3(11)).
4561 elsif Is_Unchecked_Conversion_Instance (Nam) then
4562 null;
4564 -- The actual denotes an object
4566 elsif Is_Effectively_Volatile_Object (A) then
4567 Error_Msg_N
4568 ("volatile object cannot act as actual in a call (SPARK "
4569 & "RM 7.1.3(11))", A);
4571 -- Otherwise the actual denotes an expression. Inspect the
4572 -- expression and flag each effectively volatile object with
4573 -- enabled property Async_Writers or Effective_Reads as illegal
4574 -- because it apprears within an interfering context. Note that
4575 -- this is usually done in Resolve_Entity_Name, but when the
4576 -- effectively volatile object appears as an actual in a call,
4577 -- the call must be resolved first.
4579 else
4580 Flag_Effectively_Volatile_Objects (A);
4581 end if;
4583 -- Detect an external variable with an enabled property that
4584 -- does not match the mode of the corresponding formal in a
4585 -- procedure call. Functions are not considered because they
4586 -- cannot have effectively volatile formal parameters in the
4587 -- first place.
4589 if Ekind (Nam) = E_Procedure
4590 and then Ekind (F) = E_In_Parameter
4591 and then Is_Entity_Name (A)
4592 and then Present (Entity (A))
4593 and then Ekind (Entity (A)) = E_Variable
4594 then
4595 A_Id := Entity (A);
4597 if Async_Readers_Enabled (A_Id) then
4598 Property_Error (A, A_Id, Name_Async_Readers);
4599 elsif Effective_Reads_Enabled (A_Id) then
4600 Property_Error (A, A_Id, Name_Effective_Reads);
4601 elsif Effective_Writes_Enabled (A_Id) then
4602 Property_Error (A, A_Id, Name_Effective_Writes);
4603 end if;
4604 end if;
4605 end if;
4607 -- A formal parameter of a specific tagged type whose related
4608 -- subprogram is subject to pragma Extensions_Visible with value
4609 -- "False" cannot act as an actual in a subprogram with value
4610 -- "True" (SPARK RM 6.1.7(3)).
4612 if Is_EVF_Expression (A)
4613 and then Extensions_Visible_Status (Nam) =
4614 Extensions_Visible_True
4615 then
4616 Error_Msg_N
4617 ("formal parameter cannot act as actual parameter when "
4618 & "Extensions_Visible is False", A);
4619 Error_Msg_NE
4620 ("\subprogram & has Extensions_Visible True", A, Nam);
4621 end if;
4623 -- The actual parameter of a Ghost subprogram whose formal is of
4624 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4626 if Comes_From_Source (Nam)
4627 and then Is_Ghost_Entity (Nam)
4628 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4629 and then Is_Entity_Name (A)
4630 and then Present (Entity (A))
4631 and then not Is_Ghost_Entity (Entity (A))
4632 then
4633 Error_Msg_NE
4634 ("non-ghost variable & cannot appear as actual in call to "
4635 & "ghost procedure", A, Entity (A));
4637 if Ekind (F) = E_In_Out_Parameter then
4638 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4639 else
4640 Error_Msg_N ("\corresponding formal has mode OUT", A);
4641 end if;
4642 end if;
4644 Next_Actual (A);
4646 -- Case where actual is not present
4648 else
4649 Insert_Default;
4650 end if;
4652 Next_Formal (F);
4654 if Present (Real_Subp) then
4655 Next_Formal (Real_F);
4656 end if;
4657 end loop;
4658 end Resolve_Actuals;
4660 -----------------------
4661 -- Resolve_Allocator --
4662 -----------------------
4664 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4665 Desig_T : constant Entity_Id := Designated_Type (Typ);
4666 E : constant Node_Id := Expression (N);
4667 Subtyp : Entity_Id;
4668 Discrim : Entity_Id;
4669 Constr : Node_Id;
4670 Aggr : Node_Id;
4671 Assoc : Node_Id := Empty;
4672 Disc_Exp : Node_Id;
4674 procedure Check_Allocator_Discrim_Accessibility
4675 (Disc_Exp : Node_Id;
4676 Alloc_Typ : Entity_Id);
4677 -- Check that accessibility level associated with an access discriminant
4678 -- initialized in an allocator by the expression Disc_Exp is not deeper
4679 -- than the level of the allocator type Alloc_Typ. An error message is
4680 -- issued if this condition is violated. Specialized checks are done for
4681 -- the cases of a constraint expression which is an access attribute or
4682 -- an access discriminant.
4684 function In_Dispatching_Context return Boolean;
4685 -- If the allocator is an actual in a call, it is allowed to be class-
4686 -- wide when the context is not because it is a controlling actual.
4688 -------------------------------------------
4689 -- Check_Allocator_Discrim_Accessibility --
4690 -------------------------------------------
4692 procedure Check_Allocator_Discrim_Accessibility
4693 (Disc_Exp : Node_Id;
4694 Alloc_Typ : Entity_Id)
4696 begin
4697 if Type_Access_Level (Etype (Disc_Exp)) >
4698 Deepest_Type_Access_Level (Alloc_Typ)
4699 then
4700 Error_Msg_N
4701 ("operand type has deeper level than allocator type", Disc_Exp);
4703 -- When the expression is an Access attribute the level of the prefix
4704 -- object must not be deeper than that of the allocator's type.
4706 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4707 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4708 Attribute_Access
4709 and then Object_Access_Level (Prefix (Disc_Exp)) >
4710 Deepest_Type_Access_Level (Alloc_Typ)
4711 then
4712 Error_Msg_N
4713 ("prefix of attribute has deeper level than allocator type",
4714 Disc_Exp);
4716 -- When the expression is an access discriminant the check is against
4717 -- the level of the prefix object.
4719 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4720 and then Nkind (Disc_Exp) = N_Selected_Component
4721 and then Object_Access_Level (Prefix (Disc_Exp)) >
4722 Deepest_Type_Access_Level (Alloc_Typ)
4723 then
4724 Error_Msg_N
4725 ("access discriminant has deeper level than allocator type",
4726 Disc_Exp);
4728 -- All other cases are legal
4730 else
4731 null;
4732 end if;
4733 end Check_Allocator_Discrim_Accessibility;
4735 ----------------------------
4736 -- In_Dispatching_Context --
4737 ----------------------------
4739 function In_Dispatching_Context return Boolean is
4740 Par : constant Node_Id := Parent (N);
4742 begin
4743 return Nkind (Par) in N_Subprogram_Call
4744 and then Is_Entity_Name (Name (Par))
4745 and then Is_Dispatching_Operation (Entity (Name (Par)));
4746 end In_Dispatching_Context;
4748 -- Start of processing for Resolve_Allocator
4750 begin
4751 -- Replace general access with specific type
4753 if Ekind (Etype (N)) = E_Allocator_Type then
4754 Set_Etype (N, Base_Type (Typ));
4755 end if;
4757 if Is_Abstract_Type (Typ) then
4758 Error_Msg_N ("type of allocator cannot be abstract", N);
4759 end if;
4761 -- For qualified expression, resolve the expression using the given
4762 -- subtype (nothing to do for type mark, subtype indication)
4764 if Nkind (E) = N_Qualified_Expression then
4765 if Is_Class_Wide_Type (Etype (E))
4766 and then not Is_Class_Wide_Type (Desig_T)
4767 and then not In_Dispatching_Context
4768 then
4769 Error_Msg_N
4770 ("class-wide allocator not allowed for this access type", N);
4771 end if;
4773 Resolve (Expression (E), Etype (E));
4774 Check_Non_Static_Context (Expression (E));
4775 Check_Unset_Reference (Expression (E));
4777 -- Allocators generated by the build-in-place expansion mechanism
4778 -- are explicitly marked as coming from source but do not need to be
4779 -- checked for limited initialization. To exclude this case, ensure
4780 -- that the parent of the allocator is a source node.
4782 if Is_Limited_Type (Etype (E))
4783 and then Comes_From_Source (N)
4784 and then Comes_From_Source (Parent (N))
4785 and then not In_Instance_Body
4786 then
4787 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4788 if Nkind (Parent (N)) = N_Assignment_Statement then
4789 Error_Msg_N
4790 ("illegal expression for initialized allocator of a "
4791 & "limited type (RM 7.5 (2.7/2))", N);
4792 else
4793 Error_Msg_N
4794 ("initialization not allowed for limited types", N);
4795 end if;
4797 Explain_Limited_Type (Etype (E), N);
4798 end if;
4799 end if;
4801 -- A qualified expression requires an exact match of the type. Class-
4802 -- wide matching is not allowed.
4804 if (Is_Class_Wide_Type (Etype (Expression (E)))
4805 or else Is_Class_Wide_Type (Etype (E)))
4806 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4807 then
4808 Wrong_Type (Expression (E), Etype (E));
4809 end if;
4811 -- Calls to build-in-place functions are not currently supported in
4812 -- allocators for access types associated with a simple storage pool.
4813 -- Supporting such allocators may require passing additional implicit
4814 -- parameters to build-in-place functions (or a significant revision
4815 -- of the current b-i-p implementation to unify the handling for
4816 -- multiple kinds of storage pools). ???
4818 if Is_Limited_View (Desig_T)
4819 and then Nkind (Expression (E)) = N_Function_Call
4820 then
4821 declare
4822 Pool : constant Entity_Id :=
4823 Associated_Storage_Pool (Root_Type (Typ));
4824 begin
4825 if Present (Pool)
4826 and then
4827 Present (Get_Rep_Pragma
4828 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4829 then
4830 Error_Msg_N
4831 ("limited function calls not yet supported in simple "
4832 & "storage pool allocators", Expression (E));
4833 end if;
4834 end;
4835 end if;
4837 -- A special accessibility check is needed for allocators that
4838 -- constrain access discriminants. The level of the type of the
4839 -- expression used to constrain an access discriminant cannot be
4840 -- deeper than the type of the allocator (in contrast to access
4841 -- parameters, where the level of the actual can be arbitrary).
4843 -- We can't use Valid_Conversion to perform this check because in
4844 -- general the type of the allocator is unrelated to the type of
4845 -- the access discriminant.
4847 if Ekind (Typ) /= E_Anonymous_Access_Type
4848 or else Is_Local_Anonymous_Access (Typ)
4849 then
4850 Subtyp := Entity (Subtype_Mark (E));
4852 Aggr := Original_Node (Expression (E));
4854 if Has_Discriminants (Subtyp)
4855 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4856 then
4857 Discrim := First_Discriminant (Base_Type (Subtyp));
4859 -- Get the first component expression of the aggregate
4861 if Present (Expressions (Aggr)) then
4862 Disc_Exp := First (Expressions (Aggr));
4864 elsif Present (Component_Associations (Aggr)) then
4865 Assoc := First (Component_Associations (Aggr));
4867 if Present (Assoc) then
4868 Disc_Exp := Expression (Assoc);
4869 else
4870 Disc_Exp := Empty;
4871 end if;
4873 else
4874 Disc_Exp := Empty;
4875 end if;
4877 while Present (Discrim) and then Present (Disc_Exp) loop
4878 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4879 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4880 end if;
4882 Next_Discriminant (Discrim);
4884 if Present (Discrim) then
4885 if Present (Assoc) then
4886 Next (Assoc);
4887 Disc_Exp := Expression (Assoc);
4889 elsif Present (Next (Disc_Exp)) then
4890 Next (Disc_Exp);
4892 else
4893 Assoc := First (Component_Associations (Aggr));
4895 if Present (Assoc) then
4896 Disc_Exp := Expression (Assoc);
4897 else
4898 Disc_Exp := Empty;
4899 end if;
4900 end if;
4901 end if;
4902 end loop;
4903 end if;
4904 end if;
4906 -- For a subtype mark or subtype indication, freeze the subtype
4908 else
4909 Freeze_Expression (E);
4911 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4912 Error_Msg_N
4913 ("initialization required for access-to-constant allocator", N);
4914 end if;
4916 -- A special accessibility check is needed for allocators that
4917 -- constrain access discriminants. The level of the type of the
4918 -- expression used to constrain an access discriminant cannot be
4919 -- deeper than the type of the allocator (in contrast to access
4920 -- parameters, where the level of the actual can be arbitrary).
4921 -- We can't use Valid_Conversion to perform this check because
4922 -- in general the type of the allocator is unrelated to the type
4923 -- of the access discriminant.
4925 if Nkind (Original_Node (E)) = N_Subtype_Indication
4926 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4927 or else Is_Local_Anonymous_Access (Typ))
4928 then
4929 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4931 if Has_Discriminants (Subtyp) then
4932 Discrim := First_Discriminant (Base_Type (Subtyp));
4933 Constr := First (Constraints (Constraint (Original_Node (E))));
4934 while Present (Discrim) and then Present (Constr) loop
4935 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4936 if Nkind (Constr) = N_Discriminant_Association then
4937 Disc_Exp := Original_Node (Expression (Constr));
4938 else
4939 Disc_Exp := Original_Node (Constr);
4940 end if;
4942 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4943 end if;
4945 Next_Discriminant (Discrim);
4946 Next (Constr);
4947 end loop;
4948 end if;
4949 end if;
4950 end if;
4952 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4953 -- check that the level of the type of the created object is not deeper
4954 -- than the level of the allocator's access type, since extensions can
4955 -- now occur at deeper levels than their ancestor types. This is a
4956 -- static accessibility level check; a run-time check is also needed in
4957 -- the case of an initialized allocator with a class-wide argument (see
4958 -- Expand_Allocator_Expression).
4960 if Ada_Version >= Ada_2005
4961 and then Is_Class_Wide_Type (Desig_T)
4962 then
4963 declare
4964 Exp_Typ : Entity_Id;
4966 begin
4967 if Nkind (E) = N_Qualified_Expression then
4968 Exp_Typ := Etype (E);
4969 elsif Nkind (E) = N_Subtype_Indication then
4970 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4971 else
4972 Exp_Typ := Entity (E);
4973 end if;
4975 if Type_Access_Level (Exp_Typ) >
4976 Deepest_Type_Access_Level (Typ)
4977 then
4978 if In_Instance_Body then
4979 Error_Msg_Warn := SPARK_Mode /= On;
4980 Error_Msg_N
4981 ("type in allocator has deeper level than "
4982 & "designated class-wide type<<", E);
4983 Error_Msg_N ("\Program_Error [<<", E);
4984 Rewrite (N,
4985 Make_Raise_Program_Error (Sloc (N),
4986 Reason => PE_Accessibility_Check_Failed));
4987 Set_Etype (N, Typ);
4989 -- Do not apply Ada 2005 accessibility checks on a class-wide
4990 -- allocator if the type given in the allocator is a formal
4991 -- type. A run-time check will be performed in the instance.
4993 elsif not Is_Generic_Type (Exp_Typ) then
4994 Error_Msg_N ("type in allocator has deeper level than "
4995 & "designated class-wide type", E);
4996 end if;
4997 end if;
4998 end;
4999 end if;
5001 -- Check for allocation from an empty storage pool
5003 if No_Pool_Assigned (Typ) then
5004 Error_Msg_N ("allocation from empty storage pool!", N);
5006 -- If the context is an unchecked conversion, as may happen within an
5007 -- inlined subprogram, the allocator is being resolved with its own
5008 -- anonymous type. In that case, if the target type has a specific
5009 -- storage pool, it must be inherited explicitly by the allocator type.
5011 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5012 and then No (Associated_Storage_Pool (Typ))
5013 then
5014 Set_Associated_Storage_Pool
5015 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5016 end if;
5018 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5019 Check_Restriction (No_Anonymous_Allocators, N);
5020 end if;
5022 -- Check that an allocator with task parts isn't for a nested access
5023 -- type when restriction No_Task_Hierarchy applies.
5025 if not Is_Library_Level_Entity (Base_Type (Typ))
5026 and then Has_Task (Base_Type (Desig_T))
5027 then
5028 Check_Restriction (No_Task_Hierarchy, N);
5029 end if;
5031 -- An illegal allocator may be rewritten as a raise Program_Error
5032 -- statement.
5034 if Nkind (N) = N_Allocator then
5036 -- An anonymous access discriminant is the definition of a
5037 -- coextension.
5039 if Ekind (Typ) = E_Anonymous_Access_Type
5040 and then Nkind (Associated_Node_For_Itype (Typ)) =
5041 N_Discriminant_Specification
5042 then
5043 declare
5044 Discr : constant Entity_Id :=
5045 Defining_Identifier (Associated_Node_For_Itype (Typ));
5047 begin
5048 Check_Restriction (No_Coextensions, N);
5050 -- Ada 2012 AI05-0052: If the designated type of the allocator
5051 -- is limited, then the allocator shall not be used to define
5052 -- the value of an access discriminant unless the discriminated
5053 -- type is immutably limited.
5055 if Ada_Version >= Ada_2012
5056 and then Is_Limited_Type (Desig_T)
5057 and then not Is_Limited_View (Scope (Discr))
5058 then
5059 Error_Msg_N
5060 ("only immutably limited types can have anonymous "
5061 & "access discriminants designating a limited type", N);
5062 end if;
5063 end;
5065 -- Avoid marking an allocator as a dynamic coextension if it is
5066 -- within a static construct.
5068 if not Is_Static_Coextension (N) then
5069 Set_Is_Dynamic_Coextension (N);
5070 end if;
5072 -- Cleanup for potential static coextensions
5074 else
5075 Set_Is_Dynamic_Coextension (N, False);
5076 Set_Is_Static_Coextension (N, False);
5077 end if;
5078 end if;
5080 -- Report a simple error: if the designated object is a local task,
5081 -- its body has not been seen yet, and its activation will fail an
5082 -- elaboration check.
5084 if Is_Task_Type (Desig_T)
5085 and then Scope (Base_Type (Desig_T)) = Current_Scope
5086 and then Is_Compilation_Unit (Current_Scope)
5087 and then Ekind (Current_Scope) = E_Package
5088 and then not In_Package_Body (Current_Scope)
5089 then
5090 Error_Msg_Warn := SPARK_Mode /= On;
5091 Error_Msg_N ("cannot activate task before body seen<<", N);
5092 Error_Msg_N ("\Program_Error [<<", N);
5093 end if;
5095 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5096 -- type with a task component on a subpool. This action must raise
5097 -- Program_Error at runtime.
5099 if Ada_Version >= Ada_2012
5100 and then Nkind (N) = N_Allocator
5101 and then Present (Subpool_Handle_Name (N))
5102 and then Has_Task (Desig_T)
5103 then
5104 Error_Msg_Warn := SPARK_Mode /= On;
5105 Error_Msg_N ("cannot allocate task on subpool<<", N);
5106 Error_Msg_N ("\Program_Error [<<", N);
5108 Rewrite (N,
5109 Make_Raise_Program_Error (Sloc (N),
5110 Reason => PE_Explicit_Raise));
5111 Set_Etype (N, Typ);
5112 end if;
5113 end Resolve_Allocator;
5115 ---------------------------
5116 -- Resolve_Arithmetic_Op --
5117 ---------------------------
5119 -- Used for resolving all arithmetic operators except exponentiation
5121 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5122 L : constant Node_Id := Left_Opnd (N);
5123 R : constant Node_Id := Right_Opnd (N);
5124 TL : constant Entity_Id := Base_Type (Etype (L));
5125 TR : constant Entity_Id := Base_Type (Etype (R));
5126 T : Entity_Id;
5127 Rop : Node_Id;
5129 B_Typ : constant Entity_Id := Base_Type (Typ);
5130 -- We do the resolution using the base type, because intermediate values
5131 -- in expressions always are of the base type, not a subtype of it.
5133 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5134 -- Returns True if N is in a context that expects "any real type"
5136 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5137 -- Return True iff given type is Integer or universal real/integer
5139 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5140 -- Choose type of integer literal in fixed-point operation to conform
5141 -- to available fixed-point type. T is the type of the other operand,
5142 -- which is needed to determine the expected type of N.
5144 procedure Set_Operand_Type (N : Node_Id);
5145 -- Set operand type to T if universal
5147 -------------------------------
5148 -- Expected_Type_Is_Any_Real --
5149 -------------------------------
5151 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5152 begin
5153 -- N is the expression after "delta" in a fixed_point_definition;
5154 -- see RM-3.5.9(6):
5156 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5157 N_Decimal_Fixed_Point_Definition,
5159 -- N is one of the bounds in a real_range_specification;
5160 -- see RM-3.5.7(5):
5162 N_Real_Range_Specification,
5164 -- N is the expression of a delta_constraint;
5165 -- see RM-J.3(3):
5167 N_Delta_Constraint);
5168 end Expected_Type_Is_Any_Real;
5170 -----------------------------
5171 -- Is_Integer_Or_Universal --
5172 -----------------------------
5174 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5175 T : Entity_Id;
5176 Index : Interp_Index;
5177 It : Interp;
5179 begin
5180 if not Is_Overloaded (N) then
5181 T := Etype (N);
5182 return Base_Type (T) = Base_Type (Standard_Integer)
5183 or else T = Universal_Integer
5184 or else T = Universal_Real;
5185 else
5186 Get_First_Interp (N, Index, It);
5187 while Present (It.Typ) loop
5188 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5189 or else It.Typ = Universal_Integer
5190 or else It.Typ = Universal_Real
5191 then
5192 return True;
5193 end if;
5195 Get_Next_Interp (Index, It);
5196 end loop;
5197 end if;
5199 return False;
5200 end Is_Integer_Or_Universal;
5202 ----------------------------
5203 -- Set_Mixed_Mode_Operand --
5204 ----------------------------
5206 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5207 Index : Interp_Index;
5208 It : Interp;
5210 begin
5211 if Universal_Interpretation (N) = Universal_Integer then
5213 -- A universal integer literal is resolved as standard integer
5214 -- except in the case of a fixed-point result, where we leave it
5215 -- as universal (to be handled by Exp_Fixd later on)
5217 if Is_Fixed_Point_Type (T) then
5218 Resolve (N, Universal_Integer);
5219 else
5220 Resolve (N, Standard_Integer);
5221 end if;
5223 elsif Universal_Interpretation (N) = Universal_Real
5224 and then (T = Base_Type (Standard_Integer)
5225 or else T = Universal_Integer
5226 or else T = Universal_Real)
5227 then
5228 -- A universal real can appear in a fixed-type context. We resolve
5229 -- the literal with that context, even though this might raise an
5230 -- exception prematurely (the other operand may be zero).
5232 Resolve (N, B_Typ);
5234 elsif Etype (N) = Base_Type (Standard_Integer)
5235 and then T = Universal_Real
5236 and then Is_Overloaded (N)
5237 then
5238 -- Integer arg in mixed-mode operation. Resolve with universal
5239 -- type, in case preference rule must be applied.
5241 Resolve (N, Universal_Integer);
5243 elsif Etype (N) = T
5244 and then B_Typ /= Universal_Fixed
5245 then
5246 -- Not a mixed-mode operation, resolve with context
5248 Resolve (N, B_Typ);
5250 elsif Etype (N) = Any_Fixed then
5252 -- N may itself be a mixed-mode operation, so use context type
5254 Resolve (N, B_Typ);
5256 elsif Is_Fixed_Point_Type (T)
5257 and then B_Typ = Universal_Fixed
5258 and then Is_Overloaded (N)
5259 then
5260 -- Must be (fixed * fixed) operation, operand must have one
5261 -- compatible interpretation.
5263 Resolve (N, Any_Fixed);
5265 elsif Is_Fixed_Point_Type (B_Typ)
5266 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5267 and then Is_Overloaded (N)
5268 then
5269 -- C * F(X) in a fixed context, where C is a real literal or a
5270 -- fixed-point expression. F must have either a fixed type
5271 -- interpretation or an integer interpretation, but not both.
5273 Get_First_Interp (N, Index, It);
5274 while Present (It.Typ) loop
5275 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5276 if Analyzed (N) then
5277 Error_Msg_N ("ambiguous operand in fixed operation", N);
5278 else
5279 Resolve (N, Standard_Integer);
5280 end if;
5282 elsif Is_Fixed_Point_Type (It.Typ) then
5283 if Analyzed (N) then
5284 Error_Msg_N ("ambiguous operand in fixed operation", N);
5285 else
5286 Resolve (N, It.Typ);
5287 end if;
5288 end if;
5290 Get_Next_Interp (Index, It);
5291 end loop;
5293 -- Reanalyze the literal with the fixed type of the context. If
5294 -- context is Universal_Fixed, we are within a conversion, leave
5295 -- the literal as a universal real because there is no usable
5296 -- fixed type, and the target of the conversion plays no role in
5297 -- the resolution.
5299 declare
5300 Op2 : Node_Id;
5301 T2 : Entity_Id;
5303 begin
5304 if N = L then
5305 Op2 := R;
5306 else
5307 Op2 := L;
5308 end if;
5310 if B_Typ = Universal_Fixed
5311 and then Nkind (Op2) = N_Real_Literal
5312 then
5313 T2 := Universal_Real;
5314 else
5315 T2 := B_Typ;
5316 end if;
5318 Set_Analyzed (Op2, False);
5319 Resolve (Op2, T2);
5320 end;
5322 else
5323 Resolve (N);
5324 end if;
5325 end Set_Mixed_Mode_Operand;
5327 ----------------------
5328 -- Set_Operand_Type --
5329 ----------------------
5331 procedure Set_Operand_Type (N : Node_Id) is
5332 begin
5333 if Etype (N) = Universal_Integer
5334 or else Etype (N) = Universal_Real
5335 then
5336 Set_Etype (N, T);
5337 end if;
5338 end Set_Operand_Type;
5340 -- Start of processing for Resolve_Arithmetic_Op
5342 begin
5343 if Comes_From_Source (N)
5344 and then Ekind (Entity (N)) = E_Function
5345 and then Is_Imported (Entity (N))
5346 and then Is_Intrinsic_Subprogram (Entity (N))
5347 then
5348 Resolve_Intrinsic_Operator (N, Typ);
5349 return;
5351 -- Special-case for mixed-mode universal expressions or fixed point type
5352 -- operation: each argument is resolved separately. The same treatment
5353 -- is required if one of the operands of a fixed point operation is
5354 -- universal real, since in this case we don't do a conversion to a
5355 -- specific fixed-point type (instead the expander handles the case).
5357 -- Set the type of the node to its universal interpretation because
5358 -- legality checks on an exponentiation operand need the context.
5360 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5361 and then Present (Universal_Interpretation (L))
5362 and then Present (Universal_Interpretation (R))
5363 then
5364 Set_Etype (N, B_Typ);
5365 Resolve (L, Universal_Interpretation (L));
5366 Resolve (R, Universal_Interpretation (R));
5368 elsif (B_Typ = Universal_Real
5369 or else Etype (N) = Universal_Fixed
5370 or else (Etype (N) = Any_Fixed
5371 and then Is_Fixed_Point_Type (B_Typ))
5372 or else (Is_Fixed_Point_Type (B_Typ)
5373 and then (Is_Integer_Or_Universal (L)
5374 or else
5375 Is_Integer_Or_Universal (R))))
5376 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5377 then
5378 if TL = Universal_Integer or else TR = Universal_Integer then
5379 Check_For_Visible_Operator (N, B_Typ);
5380 end if;
5382 -- If context is a fixed type and one operand is integer, the other
5383 -- is resolved with the type of the context.
5385 if Is_Fixed_Point_Type (B_Typ)
5386 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5387 or else TL = Universal_Integer)
5388 then
5389 Resolve (R, B_Typ);
5390 Resolve (L, TL);
5392 elsif Is_Fixed_Point_Type (B_Typ)
5393 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5394 or else TR = Universal_Integer)
5395 then
5396 Resolve (L, B_Typ);
5397 Resolve (R, TR);
5399 else
5400 Set_Mixed_Mode_Operand (L, TR);
5401 Set_Mixed_Mode_Operand (R, TL);
5402 end if;
5404 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5405 -- multiplying operators from being used when the expected type is
5406 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5407 -- some cases where the expected type is actually Any_Real;
5408 -- Expected_Type_Is_Any_Real takes care of that case.
5410 if Etype (N) = Universal_Fixed
5411 or else Etype (N) = Any_Fixed
5412 then
5413 if B_Typ = Universal_Fixed
5414 and then not Expected_Type_Is_Any_Real (N)
5415 and then not Nkind_In (Parent (N), N_Type_Conversion,
5416 N_Unchecked_Type_Conversion)
5417 then
5418 Error_Msg_N ("type cannot be determined from context!", N);
5419 Error_Msg_N ("\explicit conversion to result type required", N);
5421 Set_Etype (L, Any_Type);
5422 Set_Etype (R, Any_Type);
5424 else
5425 if Ada_Version = Ada_83
5426 and then Etype (N) = Universal_Fixed
5427 and then not
5428 Nkind_In (Parent (N), N_Type_Conversion,
5429 N_Unchecked_Type_Conversion)
5430 then
5431 Error_Msg_N
5432 ("(Ada 83) fixed-point operation needs explicit "
5433 & "conversion", N);
5434 end if;
5436 -- The expected type is "any real type" in contexts like
5438 -- type T is delta <universal_fixed-expression> ...
5440 -- in which case we need to set the type to Universal_Real
5441 -- so that static expression evaluation will work properly.
5443 if Expected_Type_Is_Any_Real (N) then
5444 Set_Etype (N, Universal_Real);
5445 else
5446 Set_Etype (N, B_Typ);
5447 end if;
5448 end if;
5450 elsif Is_Fixed_Point_Type (B_Typ)
5451 and then (Is_Integer_Or_Universal (L)
5452 or else Nkind (L) = N_Real_Literal
5453 or else Nkind (R) = N_Real_Literal
5454 or else Is_Integer_Or_Universal (R))
5455 then
5456 Set_Etype (N, B_Typ);
5458 elsif Etype (N) = Any_Fixed then
5460 -- If no previous errors, this is only possible if one operand is
5461 -- overloaded and the context is universal. Resolve as such.
5463 Set_Etype (N, B_Typ);
5464 end if;
5466 else
5467 if (TL = Universal_Integer or else TL = Universal_Real)
5468 and then
5469 (TR = Universal_Integer or else TR = Universal_Real)
5470 then
5471 Check_For_Visible_Operator (N, B_Typ);
5472 end if;
5474 -- If the context is Universal_Fixed and the operands are also
5475 -- universal fixed, this is an error, unless there is only one
5476 -- applicable fixed_point type (usually Duration).
5478 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5479 T := Unique_Fixed_Point_Type (N);
5481 if T = Any_Type then
5482 Set_Etype (N, T);
5483 return;
5484 else
5485 Resolve (L, T);
5486 Resolve (R, T);
5487 end if;
5489 else
5490 Resolve (L, B_Typ);
5491 Resolve (R, B_Typ);
5492 end if;
5494 -- If one of the arguments was resolved to a non-universal type.
5495 -- label the result of the operation itself with the same type.
5496 -- Do the same for the universal argument, if any.
5498 T := Intersect_Types (L, R);
5499 Set_Etype (N, Base_Type (T));
5500 Set_Operand_Type (L);
5501 Set_Operand_Type (R);
5502 end if;
5504 Generate_Operator_Reference (N, Typ);
5505 Analyze_Dimension (N);
5506 Eval_Arithmetic_Op (N);
5508 -- In SPARK, a multiplication or division with operands of fixed point
5509 -- types must be qualified or explicitly converted to identify the
5510 -- result type.
5512 if (Is_Fixed_Point_Type (Etype (L))
5513 or else Is_Fixed_Point_Type (Etype (R)))
5514 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5515 and then
5516 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5517 then
5518 Check_SPARK_05_Restriction
5519 ("operation should be qualified or explicitly converted", N);
5520 end if;
5522 -- Set overflow and division checking bit
5524 if Nkind (N) in N_Op then
5525 if not Overflow_Checks_Suppressed (Etype (N)) then
5526 Enable_Overflow_Check (N);
5527 end if;
5529 -- Give warning if explicit division by zero
5531 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5532 and then not Division_Checks_Suppressed (Etype (N))
5533 then
5534 Rop := Right_Opnd (N);
5536 if Compile_Time_Known_Value (Rop)
5537 and then ((Is_Integer_Type (Etype (Rop))
5538 and then Expr_Value (Rop) = Uint_0)
5539 or else
5540 (Is_Real_Type (Etype (Rop))
5541 and then Expr_Value_R (Rop) = Ureal_0))
5542 then
5543 -- Specialize the warning message according to the operation.
5544 -- When SPARK_Mode is On, force a warning instead of an error
5545 -- in that case, as this likely corresponds to deactivated
5546 -- code. The following warnings are for the case
5548 case Nkind (N) is
5549 when N_Op_Divide =>
5551 -- For division, we have two cases, for float division
5552 -- of an unconstrained float type, on a machine where
5553 -- Machine_Overflows is false, we don't get an exception
5554 -- at run-time, but rather an infinity or Nan. The Nan
5555 -- case is pretty obscure, so just warn about infinities.
5557 if Is_Floating_Point_Type (Typ)
5558 and then not Is_Constrained (Typ)
5559 and then not Machine_Overflows_On_Target
5560 then
5561 Error_Msg_N
5562 ("float division by zero, may generate "
5563 & "'+'/'- infinity??", Right_Opnd (N));
5565 -- For all other cases, we get a Constraint_Error
5567 else
5568 Apply_Compile_Time_Constraint_Error
5569 (N, "division by zero??", CE_Divide_By_Zero,
5570 Loc => Sloc (Right_Opnd (N)),
5571 Warn => SPARK_Mode = On);
5572 end if;
5574 when N_Op_Rem =>
5575 Apply_Compile_Time_Constraint_Error
5576 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5577 Loc => Sloc (Right_Opnd (N)),
5578 Warn => SPARK_Mode = On);
5580 when N_Op_Mod =>
5581 Apply_Compile_Time_Constraint_Error
5582 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5583 Loc => Sloc (Right_Opnd (N)),
5584 Warn => SPARK_Mode = On);
5586 -- Division by zero can only happen with division, rem,
5587 -- and mod operations.
5589 when others =>
5590 raise Program_Error;
5591 end case;
5593 -- In GNATprove mode, we enable the division check so that
5594 -- GNATprove will issue a message if it cannot be proved.
5596 if GNATprove_Mode then
5597 Activate_Division_Check (N);
5598 end if;
5600 -- Otherwise just set the flag to check at run time
5602 else
5603 Activate_Division_Check (N);
5604 end if;
5605 end if;
5607 -- If Restriction No_Implicit_Conditionals is active, then it is
5608 -- violated if either operand can be negative for mod, or for rem
5609 -- if both operands can be negative.
5611 if Restriction_Check_Required (No_Implicit_Conditionals)
5612 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5613 then
5614 declare
5615 Lo : Uint;
5616 Hi : Uint;
5617 OK : Boolean;
5619 LNeg : Boolean;
5620 RNeg : Boolean;
5621 -- Set if corresponding operand might be negative
5623 begin
5624 Determine_Range
5625 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5626 LNeg := (not OK) or else Lo < 0;
5628 Determine_Range
5629 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5630 RNeg := (not OK) or else Lo < 0;
5632 -- Check if we will be generating conditionals. There are two
5633 -- cases where that can happen, first for REM, the only case
5634 -- is largest negative integer mod -1, where the division can
5635 -- overflow, but we still have to give the right result. The
5636 -- front end generates a test for this annoying case. Here we
5637 -- just test if both operands can be negative (that's what the
5638 -- expander does, so we match its logic here).
5640 -- The second case is mod where either operand can be negative.
5641 -- In this case, the back end has to generate additional tests.
5643 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5644 or else
5645 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5646 then
5647 Check_Restriction (No_Implicit_Conditionals, N);
5648 end if;
5649 end;
5650 end if;
5651 end if;
5653 Check_Unset_Reference (L);
5654 Check_Unset_Reference (R);
5655 end Resolve_Arithmetic_Op;
5657 ------------------
5658 -- Resolve_Call --
5659 ------------------
5661 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5662 function Same_Or_Aliased_Subprograms
5663 (S : Entity_Id;
5664 E : Entity_Id) return Boolean;
5665 -- Returns True if the subprogram entity S is the same as E or else
5666 -- S is an alias of E.
5668 ---------------------------------
5669 -- Same_Or_Aliased_Subprograms --
5670 ---------------------------------
5672 function Same_Or_Aliased_Subprograms
5673 (S : Entity_Id;
5674 E : Entity_Id) return Boolean
5676 Subp_Alias : constant Entity_Id := Alias (S);
5677 begin
5678 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5679 end Same_Or_Aliased_Subprograms;
5681 -- Local variables
5683 Loc : constant Source_Ptr := Sloc (N);
5684 Subp : constant Node_Id := Name (N);
5685 Body_Id : Entity_Id;
5686 I : Interp_Index;
5687 It : Interp;
5688 Nam : Entity_Id;
5689 Nam_Decl : Node_Id;
5690 Nam_UA : Entity_Id;
5691 Norm_OK : Boolean;
5692 Rtype : Entity_Id;
5693 Scop : Entity_Id;
5695 -- Start of processing for Resolve_Call
5697 begin
5698 -- The context imposes a unique interpretation with type Typ on a
5699 -- procedure or function call. Find the entity of the subprogram that
5700 -- yields the expected type, and propagate the corresponding formal
5701 -- constraints on the actuals. The caller has established that an
5702 -- interpretation exists, and emitted an error if not unique.
5704 -- First deal with the case of a call to an access-to-subprogram,
5705 -- dereference made explicit in Analyze_Call.
5707 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5708 if not Is_Overloaded (Subp) then
5709 Nam := Etype (Subp);
5711 else
5712 -- Find the interpretation whose type (a subprogram type) has a
5713 -- return type that is compatible with the context. Analysis of
5714 -- the node has established that one exists.
5716 Nam := Empty;
5718 Get_First_Interp (Subp, I, It);
5719 while Present (It.Typ) loop
5720 if Covers (Typ, Etype (It.Typ)) then
5721 Nam := It.Typ;
5722 exit;
5723 end if;
5725 Get_Next_Interp (I, It);
5726 end loop;
5728 if No (Nam) then
5729 raise Program_Error;
5730 end if;
5731 end if;
5733 -- If the prefix is not an entity, then resolve it
5735 if not Is_Entity_Name (Subp) then
5736 Resolve (Subp, Nam);
5737 end if;
5739 -- For an indirect call, we always invalidate checks, since we do not
5740 -- know whether the subprogram is local or global. Yes we could do
5741 -- better here, e.g. by knowing that there are no local subprograms,
5742 -- but it does not seem worth the effort. Similarly, we kill all
5743 -- knowledge of current constant values.
5745 Kill_Current_Values;
5747 -- If this is a procedure call which is really an entry call, do
5748 -- the conversion of the procedure call to an entry call. Protected
5749 -- operations use the same circuitry because the name in the call
5750 -- can be an arbitrary expression with special resolution rules.
5752 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5753 or else (Is_Entity_Name (Subp)
5754 and then Ekind (Entity (Subp)) = E_Entry)
5755 then
5756 Resolve_Entry_Call (N, Typ);
5757 Check_Elab_Call (N);
5759 -- Kill checks and constant values, as above for indirect case
5760 -- Who knows what happens when another task is activated?
5762 Kill_Current_Values;
5763 return;
5765 -- Normal subprogram call with name established in Resolve
5767 elsif not (Is_Type (Entity (Subp))) then
5768 Nam := Entity (Subp);
5769 Set_Entity_With_Checks (Subp, Nam);
5771 -- Otherwise we must have the case of an overloaded call
5773 else
5774 pragma Assert (Is_Overloaded (Subp));
5776 -- Initialize Nam to prevent warning (we know it will be assigned
5777 -- in the loop below, but the compiler does not know that).
5779 Nam := Empty;
5781 Get_First_Interp (Subp, I, It);
5782 while Present (It.Typ) loop
5783 if Covers (Typ, It.Typ) then
5784 Nam := It.Nam;
5785 Set_Entity_With_Checks (Subp, Nam);
5786 exit;
5787 end if;
5789 Get_Next_Interp (I, It);
5790 end loop;
5791 end if;
5793 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5794 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5795 and then Nkind (Subp) /= N_Explicit_Dereference
5796 and then Present (Parameter_Associations (N))
5797 then
5798 -- The prefix is a parameterless function call that returns an access
5799 -- to subprogram. If parameters are present in the current call, add
5800 -- add an explicit dereference. We use the base type here because
5801 -- within an instance these may be subtypes.
5803 -- The dereference is added either in Analyze_Call or here. Should
5804 -- be consolidated ???
5806 Set_Is_Overloaded (Subp, False);
5807 Set_Etype (Subp, Etype (Nam));
5808 Insert_Explicit_Dereference (Subp);
5809 Nam := Designated_Type (Etype (Nam));
5810 Resolve (Subp, Nam);
5811 end if;
5813 -- Check that a call to Current_Task does not occur in an entry body
5815 if Is_RTE (Nam, RE_Current_Task) then
5816 declare
5817 P : Node_Id;
5819 begin
5820 P := N;
5821 loop
5822 P := Parent (P);
5824 -- Exclude calls that occur within the default of a formal
5825 -- parameter of the entry, since those are evaluated outside
5826 -- of the body.
5828 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5830 if Nkind (P) = N_Entry_Body
5831 or else (Nkind (P) = N_Subprogram_Body
5832 and then Is_Entry_Barrier_Function (P))
5833 then
5834 Rtype := Etype (N);
5835 Error_Msg_Warn := SPARK_Mode /= On;
5836 Error_Msg_NE
5837 ("& should not be used in entry body (RM C.7(17))<<",
5838 N, Nam);
5839 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5840 Rewrite (N,
5841 Make_Raise_Program_Error (Loc,
5842 Reason => PE_Current_Task_In_Entry_Body));
5843 Set_Etype (N, Rtype);
5844 return;
5845 end if;
5846 end loop;
5847 end;
5848 end if;
5850 -- Check that a procedure call does not occur in the context of the
5851 -- entry call statement of a conditional or timed entry call. Note that
5852 -- the case of a call to a subprogram renaming of an entry will also be
5853 -- rejected. The test for N not being an N_Entry_Call_Statement is
5854 -- defensive, covering the possibility that the processing of entry
5855 -- calls might reach this point due to later modifications of the code
5856 -- above.
5858 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5859 and then Nkind (N) /= N_Entry_Call_Statement
5860 and then Entry_Call_Statement (Parent (N)) = N
5861 then
5862 if Ada_Version < Ada_2005 then
5863 Error_Msg_N ("entry call required in select statement", N);
5865 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5866 -- for a procedure_or_entry_call, the procedure_name or
5867 -- procedure_prefix of the procedure_call_statement shall denote
5868 -- an entry renamed by a procedure, or (a view of) a primitive
5869 -- subprogram of a limited interface whose first parameter is
5870 -- a controlling parameter.
5872 elsif Nkind (N) = N_Procedure_Call_Statement
5873 and then not Is_Renamed_Entry (Nam)
5874 and then not Is_Controlling_Limited_Procedure (Nam)
5875 then
5876 Error_Msg_N
5877 ("entry call or dispatching primitive of interface required", N);
5878 end if;
5879 end if;
5881 -- If the SPARK_05 restriction is active, we are not allowed
5882 -- to have a call to a subprogram before we see its completion.
5884 if not Has_Completion (Nam)
5885 and then Restriction_Check_Required (SPARK_05)
5887 -- Don't flag strange internal calls
5889 and then Comes_From_Source (N)
5890 and then Comes_From_Source (Nam)
5892 -- Only flag calls in extended main source
5894 and then In_Extended_Main_Source_Unit (Nam)
5895 and then In_Extended_Main_Source_Unit (N)
5897 -- Exclude enumeration literals from this processing
5899 and then Ekind (Nam) /= E_Enumeration_Literal
5900 then
5901 Check_SPARK_05_Restriction
5902 ("call to subprogram cannot appear before its body", N);
5903 end if;
5905 -- Check that this is not a call to a protected procedure or entry from
5906 -- within a protected function.
5908 Check_Internal_Protected_Use (N, Nam);
5910 -- Freeze the subprogram name if not in a spec-expression. Note that
5911 -- we freeze procedure calls as well as function calls. Procedure calls
5912 -- are not frozen according to the rules (RM 13.14(14)) because it is
5913 -- impossible to have a procedure call to a non-frozen procedure in
5914 -- pure Ada, but in the code that we generate in the expander, this
5915 -- rule needs extending because we can generate procedure calls that
5916 -- need freezing.
5918 -- In Ada 2012, expression functions may be called within pre/post
5919 -- conditions of subsequent functions or expression functions. Such
5920 -- calls do not freeze when they appear within generated bodies,
5921 -- (including the body of another expression function) which would
5922 -- place the freeze node in the wrong scope. An expression function
5923 -- is frozen in the usual fashion, by the appearance of a real body,
5924 -- or at the end of a declarative part.
5926 if Is_Entity_Name (Subp)
5927 and then not In_Spec_Expression
5928 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5929 and then
5930 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5931 or else Scope (Entity (Subp)) = Current_Scope)
5932 then
5933 Freeze_Expression (Subp);
5934 end if;
5936 -- For a predefined operator, the type of the result is the type imposed
5937 -- by context, except for a predefined operation on universal fixed.
5938 -- Otherwise The type of the call is the type returned by the subprogram
5939 -- being called.
5941 if Is_Predefined_Op (Nam) then
5942 if Etype (N) /= Universal_Fixed then
5943 Set_Etype (N, Typ);
5944 end if;
5946 -- If the subprogram returns an array type, and the context requires the
5947 -- component type of that array type, the node is really an indexing of
5948 -- the parameterless call. Resolve as such. A pathological case occurs
5949 -- when the type of the component is an access to the array type. In
5950 -- this case the call is truly ambiguous.
5952 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5953 and then
5954 ((Is_Array_Type (Etype (Nam))
5955 and then Covers (Typ, Component_Type (Etype (Nam))))
5956 or else
5957 (Is_Access_Type (Etype (Nam))
5958 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5959 and then
5960 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5961 then
5962 declare
5963 Index_Node : Node_Id;
5964 New_Subp : Node_Id;
5965 Ret_Type : constant Entity_Id := Etype (Nam);
5967 begin
5968 if Is_Access_Type (Ret_Type)
5969 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5970 then
5971 Error_Msg_N
5972 ("cannot disambiguate function call and indexing", N);
5973 else
5974 New_Subp := Relocate_Node (Subp);
5976 -- The called entity may be an explicit dereference, in which
5977 -- case there is no entity to set.
5979 if Nkind (New_Subp) /= N_Explicit_Dereference then
5980 Set_Entity (Subp, Nam);
5981 end if;
5983 if (Is_Array_Type (Ret_Type)
5984 and then Component_Type (Ret_Type) /= Any_Type)
5985 or else
5986 (Is_Access_Type (Ret_Type)
5987 and then
5988 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5989 then
5990 if Needs_No_Actuals (Nam) then
5992 -- Indexed call to a parameterless function
5994 Index_Node :=
5995 Make_Indexed_Component (Loc,
5996 Prefix =>
5997 Make_Function_Call (Loc, Name => New_Subp),
5998 Expressions => Parameter_Associations (N));
5999 else
6000 -- An Ada 2005 prefixed call to a primitive operation
6001 -- whose first parameter is the prefix. This prefix was
6002 -- prepended to the parameter list, which is actually a
6003 -- list of indexes. Remove the prefix in order to build
6004 -- the proper indexed component.
6006 Index_Node :=
6007 Make_Indexed_Component (Loc,
6008 Prefix =>
6009 Make_Function_Call (Loc,
6010 Name => New_Subp,
6011 Parameter_Associations =>
6012 New_List
6013 (Remove_Head (Parameter_Associations (N)))),
6014 Expressions => Parameter_Associations (N));
6015 end if;
6017 -- Preserve the parenthesis count of the node
6019 Set_Paren_Count (Index_Node, Paren_Count (N));
6021 -- Since we are correcting a node classification error made
6022 -- by the parser, we call Replace rather than Rewrite.
6024 Replace (N, Index_Node);
6026 Set_Etype (Prefix (N), Ret_Type);
6027 Set_Etype (N, Typ);
6028 Resolve_Indexed_Component (N, Typ);
6029 Check_Elab_Call (Prefix (N));
6030 end if;
6031 end if;
6033 return;
6034 end;
6036 else
6037 -- If the function returns the limited view of type, the call must
6038 -- appear in a context in which the non-limited view is available.
6039 -- As is done in Try_Object_Operation, use the available view to
6040 -- prevent back-end confusion.
6042 if From_Limited_With (Etype (Nam)) then
6043 Set_Etype (Nam, Available_View (Etype (Nam)));
6044 end if;
6046 Set_Etype (N, Etype (Nam));
6047 end if;
6049 -- In the case where the call is to an overloaded subprogram, Analyze
6050 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6051 -- such a case Normalize_Actuals needs to be called once more to order
6052 -- the actuals correctly. Otherwise the call will have the ordering
6053 -- given by the last overloaded subprogram whether this is the correct
6054 -- one being called or not.
6056 if Is_Overloaded (Subp) then
6057 Normalize_Actuals (N, Nam, False, Norm_OK);
6058 pragma Assert (Norm_OK);
6059 end if;
6061 -- In any case, call is fully resolved now. Reset Overload flag, to
6062 -- prevent subsequent overload resolution if node is analyzed again
6064 Set_Is_Overloaded (Subp, False);
6065 Set_Is_Overloaded (N, False);
6067 -- A Ghost entity must appear in a specific context
6069 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6070 Check_Ghost_Context (Nam, N);
6071 end if;
6073 -- If we are calling the current subprogram from immediately within its
6074 -- body, then that is the case where we can sometimes detect cases of
6075 -- infinite recursion statically. Do not try this in case restriction
6076 -- No_Recursion is in effect anyway, and do it only for source calls.
6078 if Comes_From_Source (N) then
6079 Scop := Current_Scope;
6081 -- Check violation of SPARK_05 restriction which does not permit
6082 -- a subprogram body to contain a call to the subprogram directly.
6084 if Restriction_Check_Required (SPARK_05)
6085 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6086 then
6087 Check_SPARK_05_Restriction
6088 ("subprogram may not contain direct call to itself", N);
6089 end if;
6091 -- Issue warning for possible infinite recursion in the absence
6092 -- of the No_Recursion restriction.
6094 if Same_Or_Aliased_Subprograms (Nam, Scop)
6095 and then not Restriction_Active (No_Recursion)
6096 and then Check_Infinite_Recursion (N)
6097 then
6098 -- Here we detected and flagged an infinite recursion, so we do
6099 -- not need to test the case below for further warnings. Also we
6100 -- are all done if we now have a raise SE node.
6102 if Nkind (N) = N_Raise_Storage_Error then
6103 return;
6104 end if;
6106 -- If call is to immediately containing subprogram, then check for
6107 -- the case of a possible run-time detectable infinite recursion.
6109 else
6110 Scope_Loop : while Scop /= Standard_Standard loop
6111 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6113 -- Although in general case, recursion is not statically
6114 -- checkable, the case of calling an immediately containing
6115 -- subprogram is easy to catch.
6117 Check_Restriction (No_Recursion, N);
6119 -- If the recursive call is to a parameterless subprogram,
6120 -- then even if we can't statically detect infinite
6121 -- recursion, this is pretty suspicious, and we output a
6122 -- warning. Furthermore, we will try later to detect some
6123 -- cases here at run time by expanding checking code (see
6124 -- Detect_Infinite_Recursion in package Exp_Ch6).
6126 -- If the recursive call is within a handler, do not emit a
6127 -- warning, because this is a common idiom: loop until input
6128 -- is correct, catch illegal input in handler and restart.
6130 if No (First_Formal (Nam))
6131 and then Etype (Nam) = Standard_Void_Type
6132 and then not Error_Posted (N)
6133 and then Nkind (Parent (N)) /= N_Exception_Handler
6134 then
6135 -- For the case of a procedure call. We give the message
6136 -- only if the call is the first statement in a sequence
6137 -- of statements, or if all previous statements are
6138 -- simple assignments. This is simply a heuristic to
6139 -- decrease false positives, without losing too many good
6140 -- warnings. The idea is that these previous statements
6141 -- may affect global variables the procedure depends on.
6142 -- We also exclude raise statements, that may arise from
6143 -- constraint checks and are probably unrelated to the
6144 -- intended control flow.
6146 if Nkind (N) = N_Procedure_Call_Statement
6147 and then Is_List_Member (N)
6148 then
6149 declare
6150 P : Node_Id;
6151 begin
6152 P := Prev (N);
6153 while Present (P) loop
6154 if not Nkind_In (P, N_Assignment_Statement,
6155 N_Raise_Constraint_Error)
6156 then
6157 exit Scope_Loop;
6158 end if;
6160 Prev (P);
6161 end loop;
6162 end;
6163 end if;
6165 -- Do not give warning if we are in a conditional context
6167 declare
6168 K : constant Node_Kind := Nkind (Parent (N));
6169 begin
6170 if (K = N_Loop_Statement
6171 and then Present (Iteration_Scheme (Parent (N))))
6172 or else K = N_If_Statement
6173 or else K = N_Elsif_Part
6174 or else K = N_Case_Statement_Alternative
6175 then
6176 exit Scope_Loop;
6177 end if;
6178 end;
6180 -- Here warning is to be issued
6182 Set_Has_Recursive_Call (Nam);
6183 Error_Msg_Warn := SPARK_Mode /= On;
6184 Error_Msg_N ("possible infinite recursion<<!", N);
6185 Error_Msg_N ("\Storage_Error ]<<!", N);
6186 end if;
6188 exit Scope_Loop;
6189 end if;
6191 Scop := Scope (Scop);
6192 end loop Scope_Loop;
6193 end if;
6194 end if;
6196 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6198 Check_Obsolescent_2005_Entity (Nam, Subp);
6200 -- If subprogram name is a predefined operator, it was given in
6201 -- functional notation. Replace call node with operator node, so
6202 -- that actuals can be resolved appropriately.
6204 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6205 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6206 return;
6208 elsif Present (Alias (Nam))
6209 and then Is_Predefined_Op (Alias (Nam))
6210 then
6211 Resolve_Actuals (N, Nam);
6212 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6213 return;
6214 end if;
6216 -- Create a transient scope if the resulting type requires it
6218 -- There are several notable exceptions:
6220 -- a) In init procs, the transient scope overhead is not needed, and is
6221 -- even incorrect when the call is a nested initialization call for a
6222 -- component whose expansion may generate adjust calls. However, if the
6223 -- call is some other procedure call within an initialization procedure
6224 -- (for example a call to Create_Task in the init_proc of the task
6225 -- run-time record) a transient scope must be created around this call.
6227 -- b) Enumeration literal pseudo-calls need no transient scope
6229 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6230 -- functions) do not use the secondary stack even though the return
6231 -- type may be unconstrained.
6233 -- d) Calls to a build-in-place function, since such functions may
6234 -- allocate their result directly in a target object, and cases where
6235 -- the result does get allocated in the secondary stack are checked for
6236 -- within the specialized Exp_Ch6 procedures for expanding those
6237 -- build-in-place calls.
6239 -- e) If the subprogram is marked Inline_Always, then even if it returns
6240 -- an unconstrained type the call does not require use of the secondary
6241 -- stack. However, inlining will only take place if the body to inline
6242 -- is already present. It may not be available if e.g. the subprogram is
6243 -- declared in a child instance.
6245 -- If this is an initialization call for a type whose construction
6246 -- uses the secondary stack, and it is not a nested call to initialize
6247 -- a component, we do need to create a transient scope for it. We
6248 -- check for this by traversing the type in Check_Initialization_Call.
6250 if Is_Inlined (Nam)
6251 and then Has_Pragma_Inline (Nam)
6252 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6253 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6254 then
6255 null;
6257 elsif Ekind (Nam) = E_Enumeration_Literal
6258 or else Is_Build_In_Place_Function (Nam)
6259 or else Is_Intrinsic_Subprogram (Nam)
6260 then
6261 null;
6263 elsif Expander_Active
6264 and then Is_Type (Etype (Nam))
6265 and then Requires_Transient_Scope (Etype (Nam))
6266 and then
6267 (not Within_Init_Proc
6268 or else
6269 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6270 then
6271 Establish_Transient_Scope (N, Sec_Stack => True);
6273 -- If the call appears within the bounds of a loop, it will
6274 -- be rewritten and reanalyzed, nothing left to do here.
6276 if Nkind (N) /= N_Function_Call then
6277 return;
6278 end if;
6280 elsif Is_Init_Proc (Nam)
6281 and then not Within_Init_Proc
6282 then
6283 Check_Initialization_Call (N, Nam);
6284 end if;
6286 -- A protected function cannot be called within the definition of the
6287 -- enclosing protected type, unless it is part of a pre/postcondition
6288 -- on another protected operation.
6290 if Is_Protected_Type (Scope (Nam))
6291 and then In_Open_Scopes (Scope (Nam))
6292 and then not Has_Completion (Scope (Nam))
6293 and then not In_Spec_Expression
6294 then
6295 Error_Msg_NE
6296 ("& cannot be called before end of protected definition", N, Nam);
6297 end if;
6299 -- Propagate interpretation to actuals, and add default expressions
6300 -- where needed.
6302 if Present (First_Formal (Nam)) then
6303 Resolve_Actuals (N, Nam);
6305 -- Overloaded literals are rewritten as function calls, for purpose of
6306 -- resolution. After resolution, we can replace the call with the
6307 -- literal itself.
6309 elsif Ekind (Nam) = E_Enumeration_Literal then
6310 Copy_Node (Subp, N);
6311 Resolve_Entity_Name (N, Typ);
6313 -- Avoid validation, since it is a static function call
6315 Generate_Reference (Nam, Subp);
6316 return;
6317 end if;
6319 -- If the subprogram is not global, then kill all saved values and
6320 -- checks. This is a bit conservative, since in many cases we could do
6321 -- better, but it is not worth the effort. Similarly, we kill constant
6322 -- values. However we do not need to do this for internal entities
6323 -- (unless they are inherited user-defined subprograms), since they
6324 -- are not in the business of molesting local values.
6326 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6327 -- kill all checks and values for calls to global subprograms. This
6328 -- takes care of the case where an access to a local subprogram is
6329 -- taken, and could be passed directly or indirectly and then called
6330 -- from almost any context.
6332 -- Note: we do not do this step till after resolving the actuals. That
6333 -- way we still take advantage of the current value information while
6334 -- scanning the actuals.
6336 -- We suppress killing values if we are processing the nodes associated
6337 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6338 -- type kills all the values as part of analyzing the code that
6339 -- initializes the dispatch tables.
6341 if Inside_Freezing_Actions = 0
6342 and then (not Is_Library_Level_Entity (Nam)
6343 or else Suppress_Value_Tracking_On_Call
6344 (Nearest_Dynamic_Scope (Current_Scope)))
6345 and then (Comes_From_Source (Nam)
6346 or else (Present (Alias (Nam))
6347 and then Comes_From_Source (Alias (Nam))))
6348 then
6349 Kill_Current_Values;
6350 end if;
6352 -- If we are warning about unread OUT parameters, this is the place to
6353 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6354 -- after the above call to Kill_Current_Values (since that call clears
6355 -- the Last_Assignment field of all local variables).
6357 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6358 and then Comes_From_Source (N)
6359 and then In_Extended_Main_Source_Unit (N)
6360 then
6361 declare
6362 F : Entity_Id;
6363 A : Node_Id;
6365 begin
6366 F := First_Formal (Nam);
6367 A := First_Actual (N);
6368 while Present (F) and then Present (A) loop
6369 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6370 and then Warn_On_Modified_As_Out_Parameter (F)
6371 and then Is_Entity_Name (A)
6372 and then Present (Entity (A))
6373 and then Comes_From_Source (N)
6374 and then Safe_To_Capture_Value (N, Entity (A))
6375 then
6376 Set_Last_Assignment (Entity (A), A);
6377 end if;
6379 Next_Formal (F);
6380 Next_Actual (A);
6381 end loop;
6382 end;
6383 end if;
6385 -- If the subprogram is a primitive operation, check whether or not
6386 -- it is a correct dispatching call.
6388 if Is_Overloadable (Nam)
6389 and then Is_Dispatching_Operation (Nam)
6390 then
6391 Check_Dispatching_Call (N);
6393 elsif Ekind (Nam) /= E_Subprogram_Type
6394 and then Is_Abstract_Subprogram (Nam)
6395 and then not In_Instance
6396 then
6397 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6398 end if;
6400 -- If this is a dispatching call, generate the appropriate reference,
6401 -- for better source navigation in GPS.
6403 if Is_Overloadable (Nam)
6404 and then Present (Controlling_Argument (N))
6405 then
6406 Generate_Reference (Nam, Subp, 'R');
6408 -- Normal case, not a dispatching call: generate a call reference
6410 else
6411 Generate_Reference (Nam, Subp, 's');
6412 end if;
6414 if Is_Intrinsic_Subprogram (Nam) then
6415 Check_Intrinsic_Call (N);
6416 end if;
6418 -- Check for violation of restriction No_Specific_Termination_Handlers
6419 -- and warn on a potentially blocking call to Abort_Task.
6421 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6422 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6423 or else
6424 Is_RTE (Nam, RE_Specific_Handler))
6425 then
6426 Check_Restriction (No_Specific_Termination_Handlers, N);
6428 elsif Is_RTE (Nam, RE_Abort_Task) then
6429 Check_Potentially_Blocking_Operation (N);
6430 end if;
6432 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6433 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6434 -- need to check the second argument to determine whether it is an
6435 -- absolute or relative timing event.
6437 if Restriction_Check_Required (No_Relative_Delay)
6438 and then Is_RTE (Nam, RE_Set_Handler)
6439 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6440 then
6441 Check_Restriction (No_Relative_Delay, N);
6442 end if;
6444 -- Issue an error for a call to an eliminated subprogram. This routine
6445 -- will not perform the check if the call appears within a default
6446 -- expression.
6448 Check_For_Eliminated_Subprogram (Subp, Nam);
6450 -- In formal mode, the primitive operations of a tagged type or type
6451 -- extension do not include functions that return the tagged type.
6453 if Nkind (N) = N_Function_Call
6454 and then Is_Tagged_Type (Etype (N))
6455 and then Is_Entity_Name (Name (N))
6456 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6457 then
6458 Check_SPARK_05_Restriction ("function not inherited", N);
6459 end if;
6461 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6462 -- class-wide and the call dispatches on result in a context that does
6463 -- not provide a tag, the call raises Program_Error.
6465 if Nkind (N) = N_Function_Call
6466 and then In_Instance
6467 and then Is_Generic_Actual_Type (Typ)
6468 and then Is_Class_Wide_Type (Typ)
6469 and then Has_Controlling_Result (Nam)
6470 and then Nkind (Parent (N)) = N_Object_Declaration
6471 then
6472 -- Verify that none of the formals are controlling
6474 declare
6475 Call_OK : Boolean := False;
6476 F : Entity_Id;
6478 begin
6479 F := First_Formal (Nam);
6480 while Present (F) loop
6481 if Is_Controlling_Formal (F) then
6482 Call_OK := True;
6483 exit;
6484 end if;
6486 Next_Formal (F);
6487 end loop;
6489 if not Call_OK then
6490 Error_Msg_Warn := SPARK_Mode /= On;
6491 Error_Msg_N ("!cannot determine tag of result<<", N);
6492 Error_Msg_N ("\Program_Error [<<!", N);
6493 Insert_Action (N,
6494 Make_Raise_Program_Error (Sloc (N),
6495 Reason => PE_Explicit_Raise));
6496 end if;
6497 end;
6498 end if;
6500 -- Check for calling a function with OUT or IN OUT parameter when the
6501 -- calling context (us right now) is not Ada 2012, so does not allow
6502 -- OUT or IN OUT parameters in function calls. Functions declared in
6503 -- a predefined unit are OK, as they may be called indirectly from a
6504 -- user-declared instantiation.
6506 if Ada_Version < Ada_2012
6507 and then Ekind (Nam) = E_Function
6508 and then Has_Out_Or_In_Out_Parameter (Nam)
6509 and then not In_Predefined_Unit (Nam)
6510 then
6511 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6512 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6513 end if;
6515 -- Check the dimensions of the actuals in the call. For function calls,
6516 -- propagate the dimensions from the returned type to N.
6518 Analyze_Dimension_Call (N, Nam);
6520 -- All done, evaluate call and deal with elaboration issues
6522 Eval_Call (N);
6523 Check_Elab_Call (N);
6525 -- In GNATprove mode, expansion is disabled, but we want to inline some
6526 -- subprograms to facilitate formal verification. Indirect calls through
6527 -- a subprogram type or within a generic cannot be inlined. Inlining is
6528 -- performed only for calls subject to SPARK_Mode on.
6530 if GNATprove_Mode
6531 and then SPARK_Mode = On
6532 and then Is_Overloadable (Nam)
6533 and then not Inside_A_Generic
6534 then
6535 Nam_UA := Ultimate_Alias (Nam);
6536 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6538 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6539 Body_Id := Corresponding_Body (Nam_Decl);
6541 -- Nothing to do if the subprogram is not eligible for inlining in
6542 -- GNATprove mode.
6544 if not Is_Inlined_Always (Nam_UA)
6545 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6546 then
6547 null;
6549 -- Calls cannot be inlined inside assertions, as GNATprove treats
6550 -- assertions as logic expressions.
6552 elsif In_Assertion_Expr /= 0 then
6553 Cannot_Inline
6554 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6556 -- Calls cannot be inlined inside default expressions
6558 elsif In_Default_Expr then
6559 Cannot_Inline
6560 ("cannot inline & (in default expression)?", N, Nam_UA);
6562 -- Inlining should not be performed during pre-analysis
6564 elsif Full_Analysis then
6566 -- With the one-pass inlining technique, a call cannot be
6567 -- inlined if the corresponding body has not been seen yet.
6569 if No (Body_Id) then
6570 Cannot_Inline
6571 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6573 -- Nothing to do if there is no body to inline, indicating that
6574 -- the subprogram is not suitable for inlining in GNATprove
6575 -- mode.
6577 elsif No (Body_To_Inline (Nam_Decl)) then
6578 null;
6580 -- Do not inline calls inside expression functions, as this
6581 -- would prevent interpreting them as logical formulas in
6582 -- GNATprove.
6584 elsif Present (Current_Subprogram)
6585 and then
6586 Is_Expression_Function_Or_Completion (Current_Subprogram)
6587 then
6588 Cannot_Inline
6589 ("cannot inline & (inside expression function)?",
6590 N, Nam_UA);
6592 -- Calls cannot be inlined inside potentially unevaluated
6593 -- expressions, as this would create complex actions inside
6594 -- expressions, that are not handled by GNATprove.
6596 elsif Is_Potentially_Unevaluated (N) then
6597 Cannot_Inline
6598 ("cannot inline & (in potentially unevaluated context)?",
6599 N, Nam_UA);
6601 -- Otherwise, inline the call
6603 else
6604 Expand_Inlined_Call (N, Nam_UA, Nam);
6605 end if;
6606 end if;
6607 end if;
6608 end if;
6610 Warn_On_Overlapping_Actuals (Nam, N);
6611 end Resolve_Call;
6613 -----------------------------
6614 -- Resolve_Case_Expression --
6615 -----------------------------
6617 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6618 Alt : Node_Id;
6619 Alt_Expr : Node_Id;
6620 Alt_Typ : Entity_Id;
6621 Is_Dyn : Boolean;
6623 begin
6624 Alt := First (Alternatives (N));
6625 while Present (Alt) loop
6626 Alt_Expr := Expression (Alt);
6627 Resolve (Alt_Expr, Typ);
6628 Alt_Typ := Etype (Alt_Expr);
6630 -- When the expression is of a scalar subtype different from the
6631 -- result subtype, then insert a conversion to ensure the generation
6632 -- of a constraint check.
6634 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6635 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6636 Analyze_And_Resolve (Alt_Expr, Typ);
6637 end if;
6639 Next (Alt);
6640 end loop;
6642 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6643 -- dynamically tagged must be known statically.
6645 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6646 Alt := First (Alternatives (N));
6647 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6649 while Present (Alt) loop
6650 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6651 Error_Msg_N
6652 ("all or none of the dependent expressions can be "
6653 & "dynamically tagged", N);
6654 end if;
6656 Next (Alt);
6657 end loop;
6658 end if;
6660 Set_Etype (N, Typ);
6661 Eval_Case_Expression (N);
6662 end Resolve_Case_Expression;
6664 -------------------------------
6665 -- Resolve_Character_Literal --
6666 -------------------------------
6668 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6669 B_Typ : constant Entity_Id := Base_Type (Typ);
6670 C : Entity_Id;
6672 begin
6673 -- Verify that the character does belong to the type of the context
6675 Set_Etype (N, B_Typ);
6676 Eval_Character_Literal (N);
6678 -- Wide_Wide_Character literals must always be defined, since the set
6679 -- of wide wide character literals is complete, i.e. if a character
6680 -- literal is accepted by the parser, then it is OK for wide wide
6681 -- character (out of range character literals are rejected).
6683 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6684 return;
6686 -- Always accept character literal for type Any_Character, which
6687 -- occurs in error situations and in comparisons of literals, both
6688 -- of which should accept all literals.
6690 elsif B_Typ = Any_Character then
6691 return;
6693 -- For Standard.Character or a type derived from it, check that the
6694 -- literal is in range.
6696 elsif Root_Type (B_Typ) = Standard_Character then
6697 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6698 return;
6699 end if;
6701 -- For Standard.Wide_Character or a type derived from it, check that the
6702 -- literal is in range.
6704 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6705 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6706 return;
6707 end if;
6709 -- For Standard.Wide_Wide_Character or a type derived from it, we
6710 -- know the literal is in range, since the parser checked.
6712 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6713 return;
6715 -- If the entity is already set, this has already been resolved in a
6716 -- generic context, or comes from expansion. Nothing else to do.
6718 elsif Present (Entity (N)) then
6719 return;
6721 -- Otherwise we have a user defined character type, and we can use the
6722 -- standard visibility mechanisms to locate the referenced entity.
6724 else
6725 C := Current_Entity (N);
6726 while Present (C) loop
6727 if Etype (C) = B_Typ then
6728 Set_Entity_With_Checks (N, C);
6729 Generate_Reference (C, N);
6730 return;
6731 end if;
6733 C := Homonym (C);
6734 end loop;
6735 end if;
6737 -- If we fall through, then the literal does not match any of the
6738 -- entries of the enumeration type. This isn't just a constraint error
6739 -- situation, it is an illegality (see RM 4.2).
6741 Error_Msg_NE
6742 ("character not defined for }", N, First_Subtype (B_Typ));
6743 end Resolve_Character_Literal;
6745 ---------------------------
6746 -- Resolve_Comparison_Op --
6747 ---------------------------
6749 -- Context requires a boolean type, and plays no role in resolution.
6750 -- Processing identical to that for equality operators. The result type is
6751 -- the base type, which matters when pathological subtypes of booleans with
6752 -- limited ranges are used.
6754 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6755 L : constant Node_Id := Left_Opnd (N);
6756 R : constant Node_Id := Right_Opnd (N);
6757 T : Entity_Id;
6759 begin
6760 -- If this is an intrinsic operation which is not predefined, use the
6761 -- types of its declared arguments to resolve the possibly overloaded
6762 -- operands. Otherwise the operands are unambiguous and specify the
6763 -- expected type.
6765 if Scope (Entity (N)) /= Standard_Standard then
6766 T := Etype (First_Entity (Entity (N)));
6768 else
6769 T := Find_Unique_Type (L, R);
6771 if T = Any_Fixed then
6772 T := Unique_Fixed_Point_Type (L);
6773 end if;
6774 end if;
6776 Set_Etype (N, Base_Type (Typ));
6777 Generate_Reference (T, N, ' ');
6779 -- Skip remaining processing if already set to Any_Type
6781 if T = Any_Type then
6782 return;
6783 end if;
6785 -- Deal with other error cases
6787 if T = Any_String or else
6788 T = Any_Composite or else
6789 T = Any_Character
6790 then
6791 if T = Any_Character then
6792 Ambiguous_Character (L);
6793 else
6794 Error_Msg_N ("ambiguous operands for comparison", N);
6795 end if;
6797 Set_Etype (N, Any_Type);
6798 return;
6799 end if;
6801 -- Resolve the operands if types OK
6803 Resolve (L, T);
6804 Resolve (R, T);
6805 Check_Unset_Reference (L);
6806 Check_Unset_Reference (R);
6807 Generate_Operator_Reference (N, T);
6808 Check_Low_Bound_Tested (N);
6810 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6811 -- types or array types except String.
6813 if Is_Boolean_Type (T) then
6814 Check_SPARK_05_Restriction
6815 ("comparison is not defined on Boolean type", N);
6817 elsif Is_Array_Type (T)
6818 and then Base_Type (T) /= Standard_String
6819 then
6820 Check_SPARK_05_Restriction
6821 ("comparison is not defined on array types other than String", N);
6822 end if;
6824 -- Check comparison on unordered enumeration
6826 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6827 Error_Msg_Sloc := Sloc (Etype (L));
6828 Error_Msg_NE
6829 ("comparison on unordered enumeration type& declared#?U?",
6830 N, Etype (L));
6831 end if;
6833 -- Evaluate the relation (note we do this after the above check since
6834 -- this Eval call may change N to True/False.
6836 Analyze_Dimension (N);
6837 Eval_Relational_Op (N);
6838 end Resolve_Comparison_Op;
6840 -----------------------------------------
6841 -- Resolve_Discrete_Subtype_Indication --
6842 -----------------------------------------
6844 procedure Resolve_Discrete_Subtype_Indication
6845 (N : Node_Id;
6846 Typ : Entity_Id)
6848 R : Node_Id;
6849 S : Entity_Id;
6851 begin
6852 Analyze (Subtype_Mark (N));
6853 S := Entity (Subtype_Mark (N));
6855 if Nkind (Constraint (N)) /= N_Range_Constraint then
6856 Error_Msg_N ("expect range constraint for discrete type", N);
6857 Set_Etype (N, Any_Type);
6859 else
6860 R := Range_Expression (Constraint (N));
6862 if R = Error then
6863 return;
6864 end if;
6866 Analyze (R);
6868 if Base_Type (S) /= Base_Type (Typ) then
6869 Error_Msg_NE
6870 ("expect subtype of }", N, First_Subtype (Typ));
6872 -- Rewrite the constraint as a range of Typ
6873 -- to allow compilation to proceed further.
6875 Set_Etype (N, Typ);
6876 Rewrite (Low_Bound (R),
6877 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6878 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6879 Attribute_Name => Name_First));
6880 Rewrite (High_Bound (R),
6881 Make_Attribute_Reference (Sloc (High_Bound (R)),
6882 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6883 Attribute_Name => Name_First));
6885 else
6886 Resolve (R, Typ);
6887 Set_Etype (N, Etype (R));
6889 -- Additionally, we must check that the bounds are compatible
6890 -- with the given subtype, which might be different from the
6891 -- type of the context.
6893 Apply_Range_Check (R, S);
6895 -- ??? If the above check statically detects a Constraint_Error
6896 -- it replaces the offending bound(s) of the range R with a
6897 -- Constraint_Error node. When the itype which uses these bounds
6898 -- is frozen the resulting call to Duplicate_Subexpr generates
6899 -- a new temporary for the bounds.
6901 -- Unfortunately there are other itypes that are also made depend
6902 -- on these bounds, so when Duplicate_Subexpr is called they get
6903 -- a forward reference to the newly created temporaries and Gigi
6904 -- aborts on such forward references. This is probably sign of a
6905 -- more fundamental problem somewhere else in either the order of
6906 -- itype freezing or the way certain itypes are constructed.
6908 -- To get around this problem we call Remove_Side_Effects right
6909 -- away if either bounds of R are a Constraint_Error.
6911 declare
6912 L : constant Node_Id := Low_Bound (R);
6913 H : constant Node_Id := High_Bound (R);
6915 begin
6916 if Nkind (L) = N_Raise_Constraint_Error then
6917 Remove_Side_Effects (L);
6918 end if;
6920 if Nkind (H) = N_Raise_Constraint_Error then
6921 Remove_Side_Effects (H);
6922 end if;
6923 end;
6925 Check_Unset_Reference (Low_Bound (R));
6926 Check_Unset_Reference (High_Bound (R));
6927 end if;
6928 end if;
6929 end Resolve_Discrete_Subtype_Indication;
6931 -------------------------
6932 -- Resolve_Entity_Name --
6933 -------------------------
6935 -- Used to resolve identifiers and expanded names
6937 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6938 function Is_Assignment_Or_Object_Expression
6939 (Context : Node_Id;
6940 Expr : Node_Id) return Boolean;
6941 -- Determine whether node Context denotes an assignment statement or an
6942 -- object declaration whose expression is node Expr.
6944 ----------------------------------------
6945 -- Is_Assignment_Or_Object_Expression --
6946 ----------------------------------------
6948 function Is_Assignment_Or_Object_Expression
6949 (Context : Node_Id;
6950 Expr : Node_Id) return Boolean
6952 begin
6953 if Nkind_In (Context, N_Assignment_Statement,
6954 N_Object_Declaration)
6955 and then Expression (Context) = Expr
6956 then
6957 return True;
6959 -- Check whether a construct that yields a name is the expression of
6960 -- an assignment statement or an object declaration.
6962 elsif (Nkind_In (Context, N_Attribute_Reference,
6963 N_Explicit_Dereference,
6964 N_Indexed_Component,
6965 N_Selected_Component,
6966 N_Slice)
6967 and then Prefix (Context) = Expr)
6968 or else
6969 (Nkind_In (Context, N_Type_Conversion,
6970 N_Unchecked_Type_Conversion)
6971 and then Expression (Context) = Expr)
6972 then
6973 return
6974 Is_Assignment_Or_Object_Expression
6975 (Context => Parent (Context),
6976 Expr => Context);
6978 -- Otherwise the context is not an assignment statement or an object
6979 -- declaration.
6981 else
6982 return False;
6983 end if;
6984 end Is_Assignment_Or_Object_Expression;
6986 -- Local variables
6988 E : constant Entity_Id := Entity (N);
6989 Par : Node_Id;
6991 -- Start of processing for Resolve_Entity_Name
6993 begin
6994 -- If garbage from errors, set to Any_Type and return
6996 if No (E) and then Total_Errors_Detected /= 0 then
6997 Set_Etype (N, Any_Type);
6998 return;
6999 end if;
7001 -- Replace named numbers by corresponding literals. Note that this is
7002 -- the one case where Resolve_Entity_Name must reset the Etype, since
7003 -- it is currently marked as universal.
7005 if Ekind (E) = E_Named_Integer then
7006 Set_Etype (N, Typ);
7007 Eval_Named_Integer (N);
7009 elsif Ekind (E) = E_Named_Real then
7010 Set_Etype (N, Typ);
7011 Eval_Named_Real (N);
7013 -- For enumeration literals, we need to make sure that a proper style
7014 -- check is done, since such literals are overloaded, and thus we did
7015 -- not do a style check during the first phase of analysis.
7017 elsif Ekind (E) = E_Enumeration_Literal then
7018 Set_Entity_With_Checks (N, E);
7019 Eval_Entity_Name (N);
7021 -- Case of (sub)type name appearing in a context where an expression
7022 -- is expected. This is legal if occurrence is a current instance.
7023 -- See RM 8.6 (17/3).
7025 elsif Is_Type (E) then
7026 if Is_Current_Instance (N) then
7027 null;
7029 -- Any other use is an error
7031 else
7032 Error_Msg_N
7033 ("invalid use of subtype mark in expression or call", N);
7034 end if;
7036 -- Check discriminant use if entity is discriminant in current scope,
7037 -- i.e. discriminant of record or concurrent type currently being
7038 -- analyzed. Uses in corresponding body are unrestricted.
7040 elsif Ekind (E) = E_Discriminant
7041 and then Scope (E) = Current_Scope
7042 and then not Has_Completion (Current_Scope)
7043 then
7044 Check_Discriminant_Use (N);
7046 -- A parameterless generic function cannot appear in a context that
7047 -- requires resolution.
7049 elsif Ekind (E) = E_Generic_Function then
7050 Error_Msg_N ("illegal use of generic function", N);
7052 -- In Ada 83 an OUT parameter cannot be read
7054 elsif Ekind (E) = E_Out_Parameter
7055 and then (Nkind (Parent (N)) in N_Op
7056 or else Nkind (Parent (N)) = N_Explicit_Dereference
7057 or else Is_Assignment_Or_Object_Expression
7058 (Context => Parent (N),
7059 Expr => N))
7060 then
7061 if Ada_Version = Ada_83 then
7062 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7063 end if;
7065 -- In all other cases, just do the possible static evaluation
7067 else
7068 -- A deferred constant that appears in an expression must have a
7069 -- completion, unless it has been removed by in-place expansion of
7070 -- an aggregate. A constant that is a renaming does not need
7071 -- initialization.
7073 if Ekind (E) = E_Constant
7074 and then Comes_From_Source (E)
7075 and then No (Constant_Value (E))
7076 and then Is_Frozen (Etype (E))
7077 and then not In_Spec_Expression
7078 and then not Is_Imported (E)
7079 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7080 then
7081 if No_Initialization (Parent (E))
7082 or else (Present (Full_View (E))
7083 and then No_Initialization (Parent (Full_View (E))))
7084 then
7085 null;
7086 else
7087 Error_Msg_N
7088 ("deferred constant is frozen before completion", N);
7089 end if;
7090 end if;
7092 Eval_Entity_Name (N);
7093 end if;
7095 Par := Parent (N);
7097 -- When the entity appears in a parameter association, retrieve the
7098 -- related subprogram call.
7100 if Nkind (Par) = N_Parameter_Association then
7101 Par := Parent (Par);
7102 end if;
7104 if Comes_From_Source (N) then
7106 -- The following checks are only relevant when SPARK_Mode is on as
7107 -- they are not standard Ada legality rules.
7109 if SPARK_Mode = On then
7111 -- An effectively volatile object subject to enabled properties
7112 -- Async_Writers or Effective_Reads must appear in non-interfering
7113 -- context (SPARK RM 7.1.3(12)).
7115 if Is_Object (E)
7116 and then Is_Effectively_Volatile (E)
7117 and then (Async_Writers_Enabled (E)
7118 or else Effective_Reads_Enabled (E))
7119 and then not Is_OK_Volatile_Context (Par, N)
7120 then
7121 SPARK_Msg_N
7122 ("volatile object cannot appear in this context "
7123 & "(SPARK RM 7.1.3(12))", N);
7124 end if;
7126 -- Check for possible elaboration issues with respect to reads of
7127 -- variables. The act of renaming the variable is not considered a
7128 -- read as it simply establishes an alias.
7130 if Ekind (E) = E_Variable
7131 and then Dynamic_Elaboration_Checks
7132 and then Nkind (Par) /= N_Object_Renaming_Declaration
7133 then
7134 Check_Elab_Call (N);
7135 end if;
7137 -- The variable may eventually become a constituent of a single
7138 -- protected/task type. Record the reference now and verify its
7139 -- legality when analyzing the contract of the variable
7140 -- (SPARK RM 9.3).
7142 if Ekind (E) = E_Variable then
7143 Record_Possible_Part_Of_Reference (E, N);
7144 end if;
7145 end if;
7147 -- A Ghost entity must appear in a specific context
7149 if Is_Ghost_Entity (E) then
7150 Check_Ghost_Context (E, N);
7151 end if;
7152 end if;
7153 end Resolve_Entity_Name;
7155 -------------------
7156 -- Resolve_Entry --
7157 -------------------
7159 procedure Resolve_Entry (Entry_Name : Node_Id) is
7160 Loc : constant Source_Ptr := Sloc (Entry_Name);
7161 Nam : Entity_Id;
7162 New_N : Node_Id;
7163 S : Entity_Id;
7164 Tsk : Entity_Id;
7165 E_Name : Node_Id;
7166 Index : Node_Id;
7168 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7169 -- If the bounds of the entry family being called depend on task
7170 -- discriminants, build a new index subtype where a discriminant is
7171 -- replaced with the value of the discriminant of the target task.
7172 -- The target task is the prefix of the entry name in the call.
7174 -----------------------
7175 -- Actual_Index_Type --
7176 -----------------------
7178 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7179 Typ : constant Entity_Id := Entry_Index_Type (E);
7180 Tsk : constant Entity_Id := Scope (E);
7181 Lo : constant Node_Id := Type_Low_Bound (Typ);
7182 Hi : constant Node_Id := Type_High_Bound (Typ);
7183 New_T : Entity_Id;
7185 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7186 -- If the bound is given by a discriminant, replace with a reference
7187 -- to the discriminant of the same name in the target task. If the
7188 -- entry name is the target of a requeue statement and the entry is
7189 -- in the current protected object, the bound to be used is the
7190 -- discriminal of the object (see Apply_Range_Checks for details of
7191 -- the transformation).
7193 -----------------------------
7194 -- Actual_Discriminant_Ref --
7195 -----------------------------
7197 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7198 Typ : constant Entity_Id := Etype (Bound);
7199 Ref : Node_Id;
7201 begin
7202 Remove_Side_Effects (Bound);
7204 if not Is_Entity_Name (Bound)
7205 or else Ekind (Entity (Bound)) /= E_Discriminant
7206 then
7207 return Bound;
7209 elsif Is_Protected_Type (Tsk)
7210 and then In_Open_Scopes (Tsk)
7211 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7212 then
7213 -- Note: here Bound denotes a discriminant of the corresponding
7214 -- record type tskV, whose discriminal is a formal of the
7215 -- init-proc tskVIP. What we want is the body discriminal,
7216 -- which is associated to the discriminant of the original
7217 -- concurrent type tsk.
7219 return New_Occurrence_Of
7220 (Find_Body_Discriminal (Entity (Bound)), Loc);
7222 else
7223 Ref :=
7224 Make_Selected_Component (Loc,
7225 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7226 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7227 Analyze (Ref);
7228 Resolve (Ref, Typ);
7229 return Ref;
7230 end if;
7231 end Actual_Discriminant_Ref;
7233 -- Start of processing for Actual_Index_Type
7235 begin
7236 if not Has_Discriminants (Tsk)
7237 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7238 then
7239 return Entry_Index_Type (E);
7241 else
7242 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7243 Set_Etype (New_T, Base_Type (Typ));
7244 Set_Size_Info (New_T, Typ);
7245 Set_RM_Size (New_T, RM_Size (Typ));
7246 Set_Scalar_Range (New_T,
7247 Make_Range (Sloc (Entry_Name),
7248 Low_Bound => Actual_Discriminant_Ref (Lo),
7249 High_Bound => Actual_Discriminant_Ref (Hi)));
7251 return New_T;
7252 end if;
7253 end Actual_Index_Type;
7255 -- Start of processing for Resolve_Entry
7257 begin
7258 -- Find name of entry being called, and resolve prefix of name with its
7259 -- own type. The prefix can be overloaded, and the name and signature of
7260 -- the entry must be taken into account.
7262 if Nkind (Entry_Name) = N_Indexed_Component then
7264 -- Case of dealing with entry family within the current tasks
7266 E_Name := Prefix (Entry_Name);
7268 else
7269 E_Name := Entry_Name;
7270 end if;
7272 if Is_Entity_Name (E_Name) then
7274 -- Entry call to an entry (or entry family) in the current task. This
7275 -- is legal even though the task will deadlock. Rewrite as call to
7276 -- current task.
7278 -- This can also be a call to an entry in an enclosing task. If this
7279 -- is a single task, we have to retrieve its name, because the scope
7280 -- of the entry is the task type, not the object. If the enclosing
7281 -- task is a task type, the identity of the task is given by its own
7282 -- self variable.
7284 -- Finally this can be a requeue on an entry of the same task or
7285 -- protected object.
7287 S := Scope (Entity (E_Name));
7289 for J in reverse 0 .. Scope_Stack.Last loop
7290 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7291 and then not Comes_From_Source (S)
7292 then
7293 -- S is an enclosing task or protected object. The concurrent
7294 -- declaration has been converted into a type declaration, and
7295 -- the object itself has an object declaration that follows
7296 -- the type in the same declarative part.
7298 Tsk := Next_Entity (S);
7299 while Etype (Tsk) /= S loop
7300 Next_Entity (Tsk);
7301 end loop;
7303 S := Tsk;
7304 exit;
7306 elsif S = Scope_Stack.Table (J).Entity then
7308 -- Call to current task. Will be transformed into call to Self
7310 exit;
7312 end if;
7313 end loop;
7315 New_N :=
7316 Make_Selected_Component (Loc,
7317 Prefix => New_Occurrence_Of (S, Loc),
7318 Selector_Name =>
7319 New_Occurrence_Of (Entity (E_Name), Loc));
7320 Rewrite (E_Name, New_N);
7321 Analyze (E_Name);
7323 elsif Nkind (Entry_Name) = N_Selected_Component
7324 and then Is_Overloaded (Prefix (Entry_Name))
7325 then
7326 -- Use the entry name (which must be unique at this point) to find
7327 -- the prefix that returns the corresponding task/protected type.
7329 declare
7330 Pref : constant Node_Id := Prefix (Entry_Name);
7331 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7332 I : Interp_Index;
7333 It : Interp;
7335 begin
7336 Get_First_Interp (Pref, I, It);
7337 while Present (It.Typ) loop
7338 if Scope (Ent) = It.Typ then
7339 Set_Etype (Pref, It.Typ);
7340 exit;
7341 end if;
7343 Get_Next_Interp (I, It);
7344 end loop;
7345 end;
7346 end if;
7348 if Nkind (Entry_Name) = N_Selected_Component then
7349 Resolve (Prefix (Entry_Name));
7351 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7352 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7353 Resolve (Prefix (Prefix (Entry_Name)));
7354 Index := First (Expressions (Entry_Name));
7355 Resolve (Index, Entry_Index_Type (Nam));
7357 -- Up to this point the expression could have been the actual in a
7358 -- simple entry call, and be given by a named association.
7360 if Nkind (Index) = N_Parameter_Association then
7361 Error_Msg_N ("expect expression for entry index", Index);
7362 else
7363 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7364 end if;
7365 end if;
7366 end Resolve_Entry;
7368 ------------------------
7369 -- Resolve_Entry_Call --
7370 ------------------------
7372 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7373 Entry_Name : constant Node_Id := Name (N);
7374 Loc : constant Source_Ptr := Sloc (Entry_Name);
7375 Actuals : List_Id;
7376 First_Named : Node_Id;
7377 Nam : Entity_Id;
7378 Norm_OK : Boolean;
7379 Obj : Node_Id;
7380 Was_Over : Boolean;
7382 begin
7383 -- We kill all checks here, because it does not seem worth the effort to
7384 -- do anything better, an entry call is a big operation.
7386 Kill_All_Checks;
7388 -- Processing of the name is similar for entry calls and protected
7389 -- operation calls. Once the entity is determined, we can complete
7390 -- the resolution of the actuals.
7392 -- The selector may be overloaded, in the case of a protected object
7393 -- with overloaded functions. The type of the context is used for
7394 -- resolution.
7396 if Nkind (Entry_Name) = N_Selected_Component
7397 and then Is_Overloaded (Selector_Name (Entry_Name))
7398 and then Typ /= Standard_Void_Type
7399 then
7400 declare
7401 I : Interp_Index;
7402 It : Interp;
7404 begin
7405 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7406 while Present (It.Typ) loop
7407 if Covers (Typ, It.Typ) then
7408 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7409 Set_Etype (Entry_Name, It.Typ);
7411 Generate_Reference (It.Typ, N, ' ');
7412 end if;
7414 Get_Next_Interp (I, It);
7415 end loop;
7416 end;
7417 end if;
7419 Resolve_Entry (Entry_Name);
7421 if Nkind (Entry_Name) = N_Selected_Component then
7423 -- Simple entry call
7425 Nam := Entity (Selector_Name (Entry_Name));
7426 Obj := Prefix (Entry_Name);
7427 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7429 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7431 -- Call to member of entry family
7433 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7434 Obj := Prefix (Prefix (Entry_Name));
7435 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7436 end if;
7438 -- We cannot in general check the maximum depth of protected entry calls
7439 -- at compile time. But we can tell that any protected entry call at all
7440 -- violates a specified nesting depth of zero.
7442 if Is_Protected_Type (Scope (Nam)) then
7443 Check_Restriction (Max_Entry_Queue_Length, N);
7444 end if;
7446 -- Use context type to disambiguate a protected function that can be
7447 -- called without actuals and that returns an array type, and where the
7448 -- argument list may be an indexing of the returned value.
7450 if Ekind (Nam) = E_Function
7451 and then Needs_No_Actuals (Nam)
7452 and then Present (Parameter_Associations (N))
7453 and then
7454 ((Is_Array_Type (Etype (Nam))
7455 and then Covers (Typ, Component_Type (Etype (Nam))))
7457 or else (Is_Access_Type (Etype (Nam))
7458 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7459 and then
7460 Covers
7461 (Typ,
7462 Component_Type (Designated_Type (Etype (Nam))))))
7463 then
7464 declare
7465 Index_Node : Node_Id;
7467 begin
7468 Index_Node :=
7469 Make_Indexed_Component (Loc,
7470 Prefix =>
7471 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7472 Expressions => Parameter_Associations (N));
7474 -- Since we are correcting a node classification error made by the
7475 -- parser, we call Replace rather than Rewrite.
7477 Replace (N, Index_Node);
7478 Set_Etype (Prefix (N), Etype (Nam));
7479 Set_Etype (N, Typ);
7480 Resolve_Indexed_Component (N, Typ);
7481 return;
7482 end;
7483 end if;
7485 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7486 and then Present (Contract_Wrapper (Nam))
7487 and then Current_Scope /= Contract_Wrapper (Nam)
7488 then
7490 -- Note the entity being called before rewriting the call, so that
7491 -- it appears used at this point.
7493 Generate_Reference (Nam, Entry_Name, 'r');
7495 -- Rewrite as call to the precondition wrapper, adding the task
7496 -- object to the list of actuals. If the call is to a member of an
7497 -- entry family, include the index as well.
7499 declare
7500 New_Call : Node_Id;
7501 New_Actuals : List_Id;
7503 begin
7504 New_Actuals := New_List (Obj);
7506 if Nkind (Entry_Name) = N_Indexed_Component then
7507 Append_To (New_Actuals,
7508 New_Copy_Tree (First (Expressions (Entry_Name))));
7509 end if;
7511 Append_List (Parameter_Associations (N), New_Actuals);
7512 New_Call :=
7513 Make_Procedure_Call_Statement (Loc,
7514 Name =>
7515 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7516 Parameter_Associations => New_Actuals);
7517 Rewrite (N, New_Call);
7519 -- Preanalyze and resolve new call. Current procedure is called
7520 -- from Resolve_Call, after which expansion will take place.
7522 Preanalyze_And_Resolve (N);
7523 return;
7524 end;
7525 end if;
7527 -- The operation name may have been overloaded. Order the actuals
7528 -- according to the formals of the resolved entity, and set the return
7529 -- type to that of the operation.
7531 if Was_Over then
7532 Normalize_Actuals (N, Nam, False, Norm_OK);
7533 pragma Assert (Norm_OK);
7534 Set_Etype (N, Etype (Nam));
7536 -- Reset the Is_Overloaded flag, since resolution is now completed
7538 -- Simple entry call
7540 if Nkind (Entry_Name) = N_Selected_Component then
7541 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7543 -- Call to a member of an entry family
7545 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7546 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7547 end if;
7548 end if;
7550 Resolve_Actuals (N, Nam);
7551 Check_Internal_Protected_Use (N, Nam);
7553 -- Create a call reference to the entry
7555 Generate_Reference (Nam, Entry_Name, 's');
7557 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7558 Check_Potentially_Blocking_Operation (N);
7559 end if;
7561 -- Verify that a procedure call cannot masquerade as an entry
7562 -- call where an entry call is expected.
7564 if Ekind (Nam) = E_Procedure then
7565 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7566 and then N = Entry_Call_Statement (Parent (N))
7567 then
7568 Error_Msg_N ("entry call required in select statement", N);
7570 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7571 and then N = Triggering_Statement (Parent (N))
7572 then
7573 Error_Msg_N ("triggering statement cannot be procedure call", N);
7575 elsif Ekind (Scope (Nam)) = E_Task_Type
7576 and then not In_Open_Scopes (Scope (Nam))
7577 then
7578 Error_Msg_N ("task has no entry with this name", Entry_Name);
7579 end if;
7580 end if;
7582 -- After resolution, entry calls and protected procedure calls are
7583 -- changed into entry calls, for expansion. The structure of the node
7584 -- does not change, so it can safely be done in place. Protected
7585 -- function calls must keep their structure because they are
7586 -- subexpressions.
7588 if Ekind (Nam) /= E_Function then
7590 -- A protected operation that is not a function may modify the
7591 -- corresponding object, and cannot apply to a constant. If this
7592 -- is an internal call, the prefix is the type itself.
7594 if Is_Protected_Type (Scope (Nam))
7595 and then not Is_Variable (Obj)
7596 and then (not Is_Entity_Name (Obj)
7597 or else not Is_Type (Entity (Obj)))
7598 then
7599 Error_Msg_N
7600 ("prefix of protected procedure or entry call must be variable",
7601 Entry_Name);
7602 end if;
7604 Actuals := Parameter_Associations (N);
7605 First_Named := First_Named_Actual (N);
7607 Rewrite (N,
7608 Make_Entry_Call_Statement (Loc,
7609 Name => Entry_Name,
7610 Parameter_Associations => Actuals));
7612 Set_First_Named_Actual (N, First_Named);
7613 Set_Analyzed (N, True);
7615 -- Protected functions can return on the secondary stack, in which
7616 -- case we must trigger the transient scope mechanism.
7618 elsif Expander_Active
7619 and then Requires_Transient_Scope (Etype (Nam))
7620 then
7621 Establish_Transient_Scope (N, Sec_Stack => True);
7622 end if;
7623 end Resolve_Entry_Call;
7625 -------------------------
7626 -- Resolve_Equality_Op --
7627 -------------------------
7629 -- Both arguments must have the same type, and the boolean context does
7630 -- not participate in the resolution. The first pass verifies that the
7631 -- interpretation is not ambiguous, and the type of the left argument is
7632 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7633 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7634 -- though they carry a single (universal) type. Diagnose this case here.
7636 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7637 L : constant Node_Id := Left_Opnd (N);
7638 R : constant Node_Id := Right_Opnd (N);
7639 T : Entity_Id := Find_Unique_Type (L, R);
7641 procedure Check_If_Expression (Cond : Node_Id);
7642 -- The resolution rule for if expressions requires that each such must
7643 -- have a unique type. This means that if several dependent expressions
7644 -- are of a non-null anonymous access type, and the context does not
7645 -- impose an expected type (as can be the case in an equality operation)
7646 -- the expression must be rejected.
7648 procedure Explain_Redundancy (N : Node_Id);
7649 -- Attempt to explain the nature of a redundant comparison with True. If
7650 -- the expression N is too complex, this routine issues a general error
7651 -- message.
7653 function Find_Unique_Access_Type return Entity_Id;
7654 -- In the case of allocators and access attributes, the context must
7655 -- provide an indication of the specific access type to be used. If
7656 -- one operand is of such a "generic" access type, check whether there
7657 -- is a specific visible access type that has the same designated type.
7658 -- This is semantically dubious, and of no interest to any real code,
7659 -- but c48008a makes it all worthwhile.
7661 -------------------------
7662 -- Check_If_Expression --
7663 -------------------------
7665 procedure Check_If_Expression (Cond : Node_Id) is
7666 Then_Expr : Node_Id;
7667 Else_Expr : Node_Id;
7669 begin
7670 if Nkind (Cond) = N_If_Expression then
7671 Then_Expr := Next (First (Expressions (Cond)));
7672 Else_Expr := Next (Then_Expr);
7674 if Nkind (Then_Expr) /= N_Null
7675 and then Nkind (Else_Expr) /= N_Null
7676 then
7677 Error_Msg_N ("cannot determine type of if expression", Cond);
7678 end if;
7679 end if;
7680 end Check_If_Expression;
7682 ------------------------
7683 -- Explain_Redundancy --
7684 ------------------------
7686 procedure Explain_Redundancy (N : Node_Id) is
7687 Error : Name_Id;
7688 Val : Node_Id;
7689 Val_Id : Entity_Id;
7691 begin
7692 Val := N;
7694 -- Strip the operand down to an entity
7696 loop
7697 if Nkind (Val) = N_Selected_Component then
7698 Val := Selector_Name (Val);
7699 else
7700 exit;
7701 end if;
7702 end loop;
7704 -- The construct denotes an entity
7706 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7707 Val_Id := Entity (Val);
7709 -- Do not generate an error message when the comparison is done
7710 -- against the enumeration literal Standard.True.
7712 if Ekind (Val_Id) /= E_Enumeration_Literal then
7714 -- Build a customized error message
7716 Name_Len := 0;
7717 Add_Str_To_Name_Buffer ("?r?");
7719 if Ekind (Val_Id) = E_Component then
7720 Add_Str_To_Name_Buffer ("component ");
7722 elsif Ekind (Val_Id) = E_Constant then
7723 Add_Str_To_Name_Buffer ("constant ");
7725 elsif Ekind (Val_Id) = E_Discriminant then
7726 Add_Str_To_Name_Buffer ("discriminant ");
7728 elsif Is_Formal (Val_Id) then
7729 Add_Str_To_Name_Buffer ("parameter ");
7731 elsif Ekind (Val_Id) = E_Variable then
7732 Add_Str_To_Name_Buffer ("variable ");
7733 end if;
7735 Add_Str_To_Name_Buffer ("& is always True!");
7736 Error := Name_Find;
7738 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7739 end if;
7741 -- The construct is too complex to disect, issue a general message
7743 else
7744 Error_Msg_N ("?r?expression is always True!", Val);
7745 end if;
7746 end Explain_Redundancy;
7748 -----------------------------
7749 -- Find_Unique_Access_Type --
7750 -----------------------------
7752 function Find_Unique_Access_Type return Entity_Id is
7753 Acc : Entity_Id;
7754 E : Entity_Id;
7755 S : Entity_Id;
7757 begin
7758 if Ekind_In (Etype (R), E_Allocator_Type,
7759 E_Access_Attribute_Type)
7760 then
7761 Acc := Designated_Type (Etype (R));
7763 elsif Ekind_In (Etype (L), E_Allocator_Type,
7764 E_Access_Attribute_Type)
7765 then
7766 Acc := Designated_Type (Etype (L));
7767 else
7768 return Empty;
7769 end if;
7771 S := Current_Scope;
7772 while S /= Standard_Standard loop
7773 E := First_Entity (S);
7774 while Present (E) loop
7775 if Is_Type (E)
7776 and then Is_Access_Type (E)
7777 and then Ekind (E) /= E_Allocator_Type
7778 and then Designated_Type (E) = Base_Type (Acc)
7779 then
7780 return E;
7781 end if;
7783 Next_Entity (E);
7784 end loop;
7786 S := Scope (S);
7787 end loop;
7789 return Empty;
7790 end Find_Unique_Access_Type;
7792 -- Start of processing for Resolve_Equality_Op
7794 begin
7795 Set_Etype (N, Base_Type (Typ));
7796 Generate_Reference (T, N, ' ');
7798 if T = Any_Fixed then
7799 T := Unique_Fixed_Point_Type (L);
7800 end if;
7802 if T /= Any_Type then
7803 if T = Any_String or else
7804 T = Any_Composite or else
7805 T = Any_Character
7806 then
7807 if T = Any_Character then
7808 Ambiguous_Character (L);
7809 else
7810 Error_Msg_N ("ambiguous operands for equality", N);
7811 end if;
7813 Set_Etype (N, Any_Type);
7814 return;
7816 elsif T = Any_Access
7817 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7818 then
7819 T := Find_Unique_Access_Type;
7821 if No (T) then
7822 Error_Msg_N ("ambiguous operands for equality", N);
7823 Set_Etype (N, Any_Type);
7824 return;
7825 end if;
7827 -- If expressions must have a single type, and if the context does
7828 -- not impose one the dependent expressions cannot be anonymous
7829 -- access types.
7831 -- Why no similar processing for case expressions???
7833 elsif Ada_Version >= Ada_2012
7834 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7835 E_Anonymous_Access_Subprogram_Type)
7836 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7837 E_Anonymous_Access_Subprogram_Type)
7838 then
7839 Check_If_Expression (L);
7840 Check_If_Expression (R);
7841 end if;
7843 Resolve (L, T);
7844 Resolve (R, T);
7846 -- In SPARK, equality operators = and /= for array types other than
7847 -- String are only defined when, for each index position, the
7848 -- operands have equal static bounds.
7850 if Is_Array_Type (T) then
7852 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7853 -- operation if not needed.
7855 if Restriction_Check_Required (SPARK_05)
7856 and then Base_Type (T) /= Standard_String
7857 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7858 and then Etype (L) /= Any_Composite -- or else L in error
7859 and then Etype (R) /= Any_Composite -- or else R in error
7860 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7861 then
7862 Check_SPARK_05_Restriction
7863 ("array types should have matching static bounds", N);
7864 end if;
7865 end if;
7867 -- If the unique type is a class-wide type then it will be expanded
7868 -- into a dispatching call to the predefined primitive. Therefore we
7869 -- check here for potential violation of such restriction.
7871 if Is_Class_Wide_Type (T) then
7872 Check_Restriction (No_Dispatching_Calls, N);
7873 end if;
7875 if Warn_On_Redundant_Constructs
7876 and then Comes_From_Source (N)
7877 and then Comes_From_Source (R)
7878 and then Is_Entity_Name (R)
7879 and then Entity (R) = Standard_True
7880 then
7881 Error_Msg_N -- CODEFIX
7882 ("?r?comparison with True is redundant!", N);
7883 Explain_Redundancy (Original_Node (R));
7884 end if;
7886 Check_Unset_Reference (L);
7887 Check_Unset_Reference (R);
7888 Generate_Operator_Reference (N, T);
7889 Check_Low_Bound_Tested (N);
7891 -- If this is an inequality, it may be the implicit inequality
7892 -- created for a user-defined operation, in which case the corres-
7893 -- ponding equality operation is not intrinsic, and the operation
7894 -- cannot be constant-folded. Else fold.
7896 if Nkind (N) = N_Op_Eq
7897 or else Comes_From_Source (Entity (N))
7898 or else Ekind (Entity (N)) = E_Operator
7899 or else Is_Intrinsic_Subprogram
7900 (Corresponding_Equality (Entity (N)))
7901 then
7902 Analyze_Dimension (N);
7903 Eval_Relational_Op (N);
7905 elsif Nkind (N) = N_Op_Ne
7906 and then Is_Abstract_Subprogram (Entity (N))
7907 then
7908 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7909 end if;
7911 -- Ada 2005: If one operand is an anonymous access type, convert the
7912 -- other operand to it, to ensure that the underlying types match in
7913 -- the back-end. Same for access_to_subprogram, and the conversion
7914 -- verifies that the types are subtype conformant.
7916 -- We apply the same conversion in the case one of the operands is a
7917 -- private subtype of the type of the other.
7919 -- Why the Expander_Active test here ???
7921 if Expander_Active
7922 and then
7923 (Ekind_In (T, E_Anonymous_Access_Type,
7924 E_Anonymous_Access_Subprogram_Type)
7925 or else Is_Private_Type (T))
7926 then
7927 if Etype (L) /= T then
7928 Rewrite (L,
7929 Make_Unchecked_Type_Conversion (Sloc (L),
7930 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7931 Expression => Relocate_Node (L)));
7932 Analyze_And_Resolve (L, T);
7933 end if;
7935 if (Etype (R)) /= T then
7936 Rewrite (R,
7937 Make_Unchecked_Type_Conversion (Sloc (R),
7938 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7939 Expression => Relocate_Node (R)));
7940 Analyze_And_Resolve (R, T);
7941 end if;
7942 end if;
7943 end if;
7944 end Resolve_Equality_Op;
7946 ----------------------------------
7947 -- Resolve_Explicit_Dereference --
7948 ----------------------------------
7950 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7951 Loc : constant Source_Ptr := Sloc (N);
7952 New_N : Node_Id;
7953 P : constant Node_Id := Prefix (N);
7955 P_Typ : Entity_Id;
7956 -- The candidate prefix type, if overloaded
7958 I : Interp_Index;
7959 It : Interp;
7961 begin
7962 Check_Fully_Declared_Prefix (Typ, P);
7963 P_Typ := Empty;
7965 -- A useful optimization: check whether the dereference denotes an
7966 -- element of a container, and if so rewrite it as a call to the
7967 -- corresponding Element function.
7969 -- Disabled for now, on advice of ARG. A more restricted form of the
7970 -- predicate might be acceptable ???
7972 -- if Is_Container_Element (N) then
7973 -- return;
7974 -- end if;
7976 if Is_Overloaded (P) then
7978 -- Use the context type to select the prefix that has the correct
7979 -- designated type. Keep the first match, which will be the inner-
7980 -- most.
7982 Get_First_Interp (P, I, It);
7984 while Present (It.Typ) loop
7985 if Is_Access_Type (It.Typ)
7986 and then Covers (Typ, Designated_Type (It.Typ))
7987 then
7988 if No (P_Typ) then
7989 P_Typ := It.Typ;
7990 end if;
7992 -- Remove access types that do not match, but preserve access
7993 -- to subprogram interpretations, in case a further dereference
7994 -- is needed (see below).
7996 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7997 Remove_Interp (I);
7998 end if;
8000 Get_Next_Interp (I, It);
8001 end loop;
8003 if Present (P_Typ) then
8004 Resolve (P, P_Typ);
8005 Set_Etype (N, Designated_Type (P_Typ));
8007 else
8008 -- If no interpretation covers the designated type of the prefix,
8009 -- this is the pathological case where not all implementations of
8010 -- the prefix allow the interpretation of the node as a call. Now
8011 -- that the expected type is known, Remove other interpretations
8012 -- from prefix, rewrite it as a call, and resolve again, so that
8013 -- the proper call node is generated.
8015 Get_First_Interp (P, I, It);
8016 while Present (It.Typ) loop
8017 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8018 Remove_Interp (I);
8019 end if;
8021 Get_Next_Interp (I, It);
8022 end loop;
8024 New_N :=
8025 Make_Function_Call (Loc,
8026 Name =>
8027 Make_Explicit_Dereference (Loc,
8028 Prefix => P),
8029 Parameter_Associations => New_List);
8031 Save_Interps (N, New_N);
8032 Rewrite (N, New_N);
8033 Analyze_And_Resolve (N, Typ);
8034 return;
8035 end if;
8037 -- If not overloaded, resolve P with its own type
8039 else
8040 Resolve (P);
8041 end if;
8043 -- If the prefix might be null, add an access check
8045 if Is_Access_Type (Etype (P))
8046 and then not Can_Never_Be_Null (Etype (P))
8047 then
8048 Apply_Access_Check (N);
8049 end if;
8051 -- If the designated type is a packed unconstrained array type, and the
8052 -- explicit dereference is not in the context of an attribute reference,
8053 -- then we must compute and set the actual subtype, since it is needed
8054 -- by Gigi. The reason we exclude the attribute case is that this is
8055 -- handled fine by Gigi, and in fact we use such attributes to build the
8056 -- actual subtype. We also exclude generated code (which builds actual
8057 -- subtypes directly if they are needed).
8059 if Is_Array_Type (Etype (N))
8060 and then Is_Packed (Etype (N))
8061 and then not Is_Constrained (Etype (N))
8062 and then Nkind (Parent (N)) /= N_Attribute_Reference
8063 and then Comes_From_Source (N)
8064 then
8065 Set_Etype (N, Get_Actual_Subtype (N));
8066 end if;
8068 Analyze_Dimension (N);
8070 -- Note: No Eval processing is required for an explicit dereference,
8071 -- because such a name can never be static.
8073 end Resolve_Explicit_Dereference;
8075 -------------------------------------
8076 -- Resolve_Expression_With_Actions --
8077 -------------------------------------
8079 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8080 begin
8081 Set_Etype (N, Typ);
8083 -- If N has no actions, and its expression has been constant folded,
8084 -- then rewrite N as just its expression. Note, we can't do this in
8085 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8086 -- Expression (N) to be expanded again.
8088 if Is_Empty_List (Actions (N))
8089 and then Compile_Time_Known_Value (Expression (N))
8090 then
8091 Rewrite (N, Expression (N));
8092 end if;
8093 end Resolve_Expression_With_Actions;
8095 ----------------------------------
8096 -- Resolve_Generalized_Indexing --
8097 ----------------------------------
8099 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8100 Indexing : constant Node_Id := Generalized_Indexing (N);
8101 Call : Node_Id;
8102 Indexes : List_Id;
8103 Pref : Node_Id;
8105 begin
8106 -- In ASIS mode, propagate the information about the indexes back to
8107 -- to the original indexing node. The generalized indexing is either
8108 -- a function call, or a dereference of one. The actuals include the
8109 -- prefix of the original node, which is the container expression.
8111 if ASIS_Mode then
8112 Resolve (Indexing, Typ);
8113 Set_Etype (N, Etype (Indexing));
8114 Set_Is_Overloaded (N, False);
8116 Call := Indexing;
8117 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8118 loop
8119 Call := Prefix (Call);
8120 end loop;
8122 if Nkind (Call) = N_Function_Call then
8123 Indexes := Parameter_Associations (Call);
8124 Pref := Remove_Head (Indexes);
8125 Set_Expressions (N, Indexes);
8127 -- If expression is to be reanalyzed, reset Generalized_Indexing
8128 -- to recreate call node, as is the case when the expression is
8129 -- part of an expression function.
8131 if In_Spec_Expression then
8132 Set_Generalized_Indexing (N, Empty);
8133 end if;
8135 Set_Prefix (N, Pref);
8136 end if;
8138 else
8139 Rewrite (N, Indexing);
8140 Resolve (N, Typ);
8141 end if;
8142 end Resolve_Generalized_Indexing;
8144 ---------------------------
8145 -- Resolve_If_Expression --
8146 ---------------------------
8148 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8149 Condition : constant Node_Id := First (Expressions (N));
8150 Then_Expr : constant Node_Id := Next (Condition);
8151 Else_Expr : Node_Id := Next (Then_Expr);
8152 Else_Typ : Entity_Id;
8153 Then_Typ : Entity_Id;
8155 begin
8156 Resolve (Condition, Any_Boolean);
8157 Resolve (Then_Expr, Typ);
8158 Then_Typ := Etype (Then_Expr);
8160 -- When the "then" expression is of a scalar subtype different from the
8161 -- result subtype, then insert a conversion to ensure the generation of
8162 -- a constraint check. The same is done for the else part below, again
8163 -- comparing subtypes rather than base types.
8165 if Is_Scalar_Type (Then_Typ)
8166 and then Then_Typ /= Typ
8167 then
8168 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8169 Analyze_And_Resolve (Then_Expr, Typ);
8170 end if;
8172 -- If ELSE expression present, just resolve using the determined type
8173 -- If type is universal, resolve to any member of the class.
8175 if Present (Else_Expr) then
8176 if Typ = Universal_Integer then
8177 Resolve (Else_Expr, Any_Integer);
8179 elsif Typ = Universal_Real then
8180 Resolve (Else_Expr, Any_Real);
8182 else
8183 Resolve (Else_Expr, Typ);
8184 end if;
8186 Else_Typ := Etype (Else_Expr);
8188 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8189 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8190 Analyze_And_Resolve (Else_Expr, Typ);
8192 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8193 -- dynamically tagged must be known statically.
8195 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8196 if Is_Dynamically_Tagged (Then_Expr) /=
8197 Is_Dynamically_Tagged (Else_Expr)
8198 then
8199 Error_Msg_N ("all or none of the dependent expressions "
8200 & "can be dynamically tagged", N);
8201 end if;
8202 end if;
8204 -- If no ELSE expression is present, root type must be Standard.Boolean
8205 -- and we provide a Standard.True result converted to the appropriate
8206 -- Boolean type (in case it is a derived boolean type).
8208 elsif Root_Type (Typ) = Standard_Boolean then
8209 Else_Expr :=
8210 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8211 Analyze_And_Resolve (Else_Expr, Typ);
8212 Append_To (Expressions (N), Else_Expr);
8214 else
8215 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8216 Append_To (Expressions (N), Error);
8217 end if;
8219 Set_Etype (N, Typ);
8220 Eval_If_Expression (N);
8221 end Resolve_If_Expression;
8223 -------------------------------
8224 -- Resolve_Indexed_Component --
8225 -------------------------------
8227 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8228 Name : constant Node_Id := Prefix (N);
8229 Expr : Node_Id;
8230 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8231 Index : Node_Id;
8233 begin
8234 if Present (Generalized_Indexing (N)) then
8235 Resolve_Generalized_Indexing (N, Typ);
8236 return;
8237 end if;
8239 if Is_Overloaded (Name) then
8241 -- Use the context type to select the prefix that yields the correct
8242 -- component type.
8244 declare
8245 I : Interp_Index;
8246 It : Interp;
8247 I1 : Interp_Index := 0;
8248 P : constant Node_Id := Prefix (N);
8249 Found : Boolean := False;
8251 begin
8252 Get_First_Interp (P, I, It);
8253 while Present (It.Typ) loop
8254 if (Is_Array_Type (It.Typ)
8255 and then Covers (Typ, Component_Type (It.Typ)))
8256 or else (Is_Access_Type (It.Typ)
8257 and then Is_Array_Type (Designated_Type (It.Typ))
8258 and then
8259 Covers
8260 (Typ,
8261 Component_Type (Designated_Type (It.Typ))))
8262 then
8263 if Found then
8264 It := Disambiguate (P, I1, I, Any_Type);
8266 if It = No_Interp then
8267 Error_Msg_N ("ambiguous prefix for indexing", N);
8268 Set_Etype (N, Typ);
8269 return;
8271 else
8272 Found := True;
8273 Array_Type := It.Typ;
8274 I1 := I;
8275 end if;
8277 else
8278 Found := True;
8279 Array_Type := It.Typ;
8280 I1 := I;
8281 end if;
8282 end if;
8284 Get_Next_Interp (I, It);
8285 end loop;
8286 end;
8288 else
8289 Array_Type := Etype (Name);
8290 end if;
8292 Resolve (Name, Array_Type);
8293 Array_Type := Get_Actual_Subtype_If_Available (Name);
8295 -- If prefix is access type, dereference to get real array type.
8296 -- Note: we do not apply an access check because the expander always
8297 -- introduces an explicit dereference, and the check will happen there.
8299 if Is_Access_Type (Array_Type) then
8300 Array_Type := Designated_Type (Array_Type);
8301 end if;
8303 -- If name was overloaded, set component type correctly now
8304 -- If a misplaced call to an entry family (which has no index types)
8305 -- return. Error will be diagnosed from calling context.
8307 if Is_Array_Type (Array_Type) then
8308 Set_Etype (N, Component_Type (Array_Type));
8309 else
8310 return;
8311 end if;
8313 Index := First_Index (Array_Type);
8314 Expr := First (Expressions (N));
8316 -- The prefix may have resolved to a string literal, in which case its
8317 -- etype has a special representation. This is only possible currently
8318 -- if the prefix is a static concatenation, written in functional
8319 -- notation.
8321 if Ekind (Array_Type) = E_String_Literal_Subtype then
8322 Resolve (Expr, Standard_Positive);
8324 else
8325 while Present (Index) and Present (Expr) loop
8326 Resolve (Expr, Etype (Index));
8327 Check_Unset_Reference (Expr);
8329 if Is_Scalar_Type (Etype (Expr)) then
8330 Apply_Scalar_Range_Check (Expr, Etype (Index));
8331 else
8332 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8333 end if;
8335 Next_Index (Index);
8336 Next (Expr);
8337 end loop;
8338 end if;
8340 Analyze_Dimension (N);
8342 -- Do not generate the warning on suspicious index if we are analyzing
8343 -- package Ada.Tags; otherwise we will report the warning with the
8344 -- Prims_Ptr field of the dispatch table.
8346 if Scope (Etype (Prefix (N))) = Standard_Standard
8347 or else not
8348 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8349 Ada_Tags)
8350 then
8351 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8352 Eval_Indexed_Component (N);
8353 end if;
8355 -- If the array type is atomic, and the component is not atomic, then
8356 -- this is worth a warning, since we have a situation where the access
8357 -- to the component may cause extra read/writes of the atomic array
8358 -- object, or partial word accesses, which could be unexpected.
8360 if Nkind (N) = N_Indexed_Component
8361 and then Is_Atomic_Ref_With_Address (N)
8362 and then not (Has_Atomic_Components (Array_Type)
8363 or else (Is_Entity_Name (Prefix (N))
8364 and then Has_Atomic_Components
8365 (Entity (Prefix (N)))))
8366 and then not Is_Atomic (Component_Type (Array_Type))
8367 then
8368 Error_Msg_N
8369 ("??access to non-atomic component of atomic array", Prefix (N));
8370 Error_Msg_N
8371 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8372 end if;
8373 end Resolve_Indexed_Component;
8375 -----------------------------
8376 -- Resolve_Integer_Literal --
8377 -----------------------------
8379 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8380 begin
8381 Set_Etype (N, Typ);
8382 Eval_Integer_Literal (N);
8383 end Resolve_Integer_Literal;
8385 --------------------------------
8386 -- Resolve_Intrinsic_Operator --
8387 --------------------------------
8389 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8390 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8391 Op : Entity_Id;
8392 Arg1 : Node_Id;
8393 Arg2 : Node_Id;
8395 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8396 -- If the operand is a literal, it cannot be the expression in a
8397 -- conversion. Use a qualified expression instead.
8399 ---------------------
8400 -- Convert_Operand --
8401 ---------------------
8403 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8404 Loc : constant Source_Ptr := Sloc (Opnd);
8405 Res : Node_Id;
8407 begin
8408 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8409 Res :=
8410 Make_Qualified_Expression (Loc,
8411 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8412 Expression => Relocate_Node (Opnd));
8413 Analyze (Res);
8415 else
8416 Res := Unchecked_Convert_To (Btyp, Opnd);
8417 end if;
8419 return Res;
8420 end Convert_Operand;
8422 -- Start of processing for Resolve_Intrinsic_Operator
8424 begin
8425 -- We must preserve the original entity in a generic setting, so that
8426 -- the legality of the operation can be verified in an instance.
8428 if not Expander_Active then
8429 return;
8430 end if;
8432 Op := Entity (N);
8433 while Scope (Op) /= Standard_Standard loop
8434 Op := Homonym (Op);
8435 pragma Assert (Present (Op));
8436 end loop;
8438 Set_Entity (N, Op);
8439 Set_Is_Overloaded (N, False);
8441 -- If the result or operand types are private, rewrite with unchecked
8442 -- conversions on the operands and the result, to expose the proper
8443 -- underlying numeric type.
8445 if Is_Private_Type (Typ)
8446 or else Is_Private_Type (Etype (Left_Opnd (N)))
8447 or else Is_Private_Type (Etype (Right_Opnd (N)))
8448 then
8449 Arg1 := Convert_Operand (Left_Opnd (N));
8451 if Nkind (N) = N_Op_Expon then
8452 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8453 else
8454 Arg2 := Convert_Operand (Right_Opnd (N));
8455 end if;
8457 if Nkind (Arg1) = N_Type_Conversion then
8458 Save_Interps (Left_Opnd (N), Expression (Arg1));
8459 end if;
8461 if Nkind (Arg2) = N_Type_Conversion then
8462 Save_Interps (Right_Opnd (N), Expression (Arg2));
8463 end if;
8465 Set_Left_Opnd (N, Arg1);
8466 Set_Right_Opnd (N, Arg2);
8468 Set_Etype (N, Btyp);
8469 Rewrite (N, Unchecked_Convert_To (Typ, N));
8470 Resolve (N, Typ);
8472 elsif Typ /= Etype (Left_Opnd (N))
8473 or else Typ /= Etype (Right_Opnd (N))
8474 then
8475 -- Add explicit conversion where needed, and save interpretations in
8476 -- case operands are overloaded.
8478 Arg1 := Convert_To (Typ, Left_Opnd (N));
8479 Arg2 := Convert_To (Typ, Right_Opnd (N));
8481 if Nkind (Arg1) = N_Type_Conversion then
8482 Save_Interps (Left_Opnd (N), Expression (Arg1));
8483 else
8484 Save_Interps (Left_Opnd (N), Arg1);
8485 end if;
8487 if Nkind (Arg2) = N_Type_Conversion then
8488 Save_Interps (Right_Opnd (N), Expression (Arg2));
8489 else
8490 Save_Interps (Right_Opnd (N), Arg2);
8491 end if;
8493 Rewrite (Left_Opnd (N), Arg1);
8494 Rewrite (Right_Opnd (N), Arg2);
8495 Analyze (Arg1);
8496 Analyze (Arg2);
8497 Resolve_Arithmetic_Op (N, Typ);
8499 else
8500 Resolve_Arithmetic_Op (N, Typ);
8501 end if;
8502 end Resolve_Intrinsic_Operator;
8504 --------------------------------------
8505 -- Resolve_Intrinsic_Unary_Operator --
8506 --------------------------------------
8508 procedure Resolve_Intrinsic_Unary_Operator
8509 (N : Node_Id;
8510 Typ : Entity_Id)
8512 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8513 Op : Entity_Id;
8514 Arg2 : Node_Id;
8516 begin
8517 Op := Entity (N);
8518 while Scope (Op) /= Standard_Standard loop
8519 Op := Homonym (Op);
8520 pragma Assert (Present (Op));
8521 end loop;
8523 Set_Entity (N, Op);
8525 if Is_Private_Type (Typ) then
8526 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8527 Save_Interps (Right_Opnd (N), Expression (Arg2));
8529 Set_Right_Opnd (N, Arg2);
8531 Set_Etype (N, Btyp);
8532 Rewrite (N, Unchecked_Convert_To (Typ, N));
8533 Resolve (N, Typ);
8535 else
8536 Resolve_Unary_Op (N, Typ);
8537 end if;
8538 end Resolve_Intrinsic_Unary_Operator;
8540 ------------------------
8541 -- Resolve_Logical_Op --
8542 ------------------------
8544 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8545 B_Typ : Entity_Id;
8547 begin
8548 Check_No_Direct_Boolean_Operators (N);
8550 -- Predefined operations on scalar types yield the base type. On the
8551 -- other hand, logical operations on arrays yield the type of the
8552 -- arguments (and the context).
8554 if Is_Array_Type (Typ) then
8555 B_Typ := Typ;
8556 else
8557 B_Typ := Base_Type (Typ);
8558 end if;
8560 -- The following test is required because the operands of the operation
8561 -- may be literals, in which case the resulting type appears to be
8562 -- compatible with a signed integer type, when in fact it is compatible
8563 -- only with modular types. If the context itself is universal, the
8564 -- operation is illegal.
8566 if not Valid_Boolean_Arg (Typ) then
8567 Error_Msg_N ("invalid context for logical operation", N);
8568 Set_Etype (N, Any_Type);
8569 return;
8571 elsif Typ = Any_Modular then
8572 Error_Msg_N
8573 ("no modular type available in this context", N);
8574 Set_Etype (N, Any_Type);
8575 return;
8577 elsif Is_Modular_Integer_Type (Typ)
8578 and then Etype (Left_Opnd (N)) = Universal_Integer
8579 and then Etype (Right_Opnd (N)) = Universal_Integer
8580 then
8581 Check_For_Visible_Operator (N, B_Typ);
8582 end if;
8584 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8585 -- is active and the result type is standard Boolean (do not mess with
8586 -- ops that return a nonstandard Boolean type, because something strange
8587 -- is going on).
8589 -- Note: you might expect this replacement to be done during expansion,
8590 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8591 -- is used, no part of the right operand of an "and" or "or" operator
8592 -- should be executed if the left operand would short-circuit the
8593 -- evaluation of the corresponding "and then" or "or else". If we left
8594 -- the replacement to expansion time, then run-time checks associated
8595 -- with such operands would be evaluated unconditionally, due to being
8596 -- before the condition prior to the rewriting as short-circuit forms
8597 -- during expansion.
8599 if Short_Circuit_And_Or
8600 and then B_Typ = Standard_Boolean
8601 and then Nkind_In (N, N_Op_And, N_Op_Or)
8602 then
8603 -- Mark the corresponding putative SCO operator as truly a logical
8604 -- (and short-circuit) operator.
8606 if Generate_SCO and then Comes_From_Source (N) then
8607 Set_SCO_Logical_Operator (N);
8608 end if;
8610 if Nkind (N) = N_Op_And then
8611 Rewrite (N,
8612 Make_And_Then (Sloc (N),
8613 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8614 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8615 Analyze_And_Resolve (N, B_Typ);
8617 -- Case of OR changed to OR ELSE
8619 else
8620 Rewrite (N,
8621 Make_Or_Else (Sloc (N),
8622 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8623 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8624 Analyze_And_Resolve (N, B_Typ);
8625 end if;
8627 -- Return now, since analysis of the rewritten ops will take care of
8628 -- other reference bookkeeping and expression folding.
8630 return;
8631 end if;
8633 Resolve (Left_Opnd (N), B_Typ);
8634 Resolve (Right_Opnd (N), B_Typ);
8636 Check_Unset_Reference (Left_Opnd (N));
8637 Check_Unset_Reference (Right_Opnd (N));
8639 Set_Etype (N, B_Typ);
8640 Generate_Operator_Reference (N, B_Typ);
8641 Eval_Logical_Op (N);
8643 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8644 -- only when both operands have same static lower and higher bounds. Of
8645 -- course the types have to match, so only check if operands are
8646 -- compatible and the node itself has no errors.
8648 if Is_Array_Type (B_Typ)
8649 and then Nkind (N) in N_Binary_Op
8650 then
8651 declare
8652 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8653 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8655 begin
8656 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8657 -- operation if not needed.
8659 if Restriction_Check_Required (SPARK_05)
8660 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8661 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8662 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8663 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8664 then
8665 Check_SPARK_05_Restriction
8666 ("array types should have matching static bounds", N);
8667 end if;
8668 end;
8669 end if;
8670 end Resolve_Logical_Op;
8672 ---------------------------
8673 -- Resolve_Membership_Op --
8674 ---------------------------
8676 -- The context can only be a boolean type, and does not determine the
8677 -- arguments. Arguments should be unambiguous, but the preference rule for
8678 -- universal types applies.
8680 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8681 pragma Warnings (Off, Typ);
8683 L : constant Node_Id := Left_Opnd (N);
8684 R : constant Node_Id := Right_Opnd (N);
8685 T : Entity_Id;
8687 procedure Resolve_Set_Membership;
8688 -- Analysis has determined a unique type for the left operand. Use it to
8689 -- resolve the disjuncts.
8691 ----------------------------
8692 -- Resolve_Set_Membership --
8693 ----------------------------
8695 procedure Resolve_Set_Membership is
8696 Alt : Node_Id;
8697 Ltyp : Entity_Id;
8699 begin
8700 -- If the left operand is overloaded, find type compatible with not
8701 -- overloaded alternative of the right operand.
8703 if Is_Overloaded (L) then
8704 Ltyp := Empty;
8705 Alt := First (Alternatives (N));
8706 while Present (Alt) loop
8707 if not Is_Overloaded (Alt) then
8708 Ltyp := Intersect_Types (L, Alt);
8709 exit;
8710 else
8711 Next (Alt);
8712 end if;
8713 end loop;
8715 -- Unclear how to resolve expression if all alternatives are also
8716 -- overloaded.
8718 if No (Ltyp) then
8719 Error_Msg_N ("ambiguous expression", N);
8720 end if;
8722 else
8723 Ltyp := Etype (L);
8724 end if;
8726 Resolve (L, Ltyp);
8728 Alt := First (Alternatives (N));
8729 while Present (Alt) loop
8731 -- Alternative is an expression, a range
8732 -- or a subtype mark.
8734 if not Is_Entity_Name (Alt)
8735 or else not Is_Type (Entity (Alt))
8736 then
8737 Resolve (Alt, Ltyp);
8738 end if;
8740 Next (Alt);
8741 end loop;
8743 -- Check for duplicates for discrete case
8745 if Is_Discrete_Type (Ltyp) then
8746 declare
8747 type Ent is record
8748 Alt : Node_Id;
8749 Val : Uint;
8750 end record;
8752 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8753 Nalts : Nat;
8755 begin
8756 -- Loop checking duplicates. This is quadratic, but giant sets
8757 -- are unlikely in this context so it's a reasonable choice.
8759 Nalts := 0;
8760 Alt := First (Alternatives (N));
8761 while Present (Alt) loop
8762 if Is_OK_Static_Expression (Alt)
8763 and then (Nkind_In (Alt, N_Integer_Literal,
8764 N_Character_Literal)
8765 or else Nkind (Alt) in N_Has_Entity)
8766 then
8767 Nalts := Nalts + 1;
8768 Alts (Nalts) := (Alt, Expr_Value (Alt));
8770 for J in 1 .. Nalts - 1 loop
8771 if Alts (J).Val = Alts (Nalts).Val then
8772 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8773 Error_Msg_N ("duplicate of value given#??", Alt);
8774 end if;
8775 end loop;
8776 end if;
8778 Alt := Next (Alt);
8779 end loop;
8780 end;
8781 end if;
8782 end Resolve_Set_Membership;
8784 -- Start of processing for Resolve_Membership_Op
8786 begin
8787 if L = Error or else R = Error then
8788 return;
8789 end if;
8791 if Present (Alternatives (N)) then
8792 Resolve_Set_Membership;
8793 goto SM_Exit;
8795 elsif not Is_Overloaded (R)
8796 and then
8797 (Etype (R) = Universal_Integer
8798 or else
8799 Etype (R) = Universal_Real)
8800 and then Is_Overloaded (L)
8801 then
8802 T := Etype (R);
8804 -- Ada 2005 (AI-251): Support the following case:
8806 -- type I is interface;
8807 -- type T is tagged ...
8809 -- function Test (O : I'Class) is
8810 -- begin
8811 -- return O in T'Class.
8812 -- end Test;
8814 -- In this case we have nothing else to do. The membership test will be
8815 -- done at run time.
8817 elsif Ada_Version >= Ada_2005
8818 and then Is_Class_Wide_Type (Etype (L))
8819 and then Is_Interface (Etype (L))
8820 and then Is_Class_Wide_Type (Etype (R))
8821 and then not Is_Interface (Etype (R))
8822 then
8823 return;
8824 else
8825 T := Intersect_Types (L, R);
8826 end if;
8828 -- If mixed-mode operations are present and operands are all literal,
8829 -- the only interpretation involves Duration, which is probably not
8830 -- the intention of the programmer.
8832 if T = Any_Fixed then
8833 T := Unique_Fixed_Point_Type (N);
8835 if T = Any_Type then
8836 return;
8837 end if;
8838 end if;
8840 Resolve (L, T);
8841 Check_Unset_Reference (L);
8843 if Nkind (R) = N_Range
8844 and then not Is_Scalar_Type (T)
8845 then
8846 Error_Msg_N ("scalar type required for range", R);
8847 end if;
8849 if Is_Entity_Name (R) then
8850 Freeze_Expression (R);
8851 else
8852 Resolve (R, T);
8853 Check_Unset_Reference (R);
8854 end if;
8856 -- Here after resolving membership operation
8858 <<SM_Exit>>
8860 Eval_Membership_Op (N);
8861 end Resolve_Membership_Op;
8863 ------------------
8864 -- Resolve_Null --
8865 ------------------
8867 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8868 Loc : constant Source_Ptr := Sloc (N);
8870 begin
8871 -- Handle restriction against anonymous null access values This
8872 -- restriction can be turned off using -gnatdj.
8874 -- Ada 2005 (AI-231): Remove restriction
8876 if Ada_Version < Ada_2005
8877 and then not Debug_Flag_J
8878 and then Ekind (Typ) = E_Anonymous_Access_Type
8879 and then Comes_From_Source (N)
8880 then
8881 -- In the common case of a call which uses an explicitly null value
8882 -- for an access parameter, give specialized error message.
8884 if Nkind (Parent (N)) in N_Subprogram_Call then
8885 Error_Msg_N
8886 ("null is not allowed as argument for an access parameter", N);
8888 -- Standard message for all other cases (are there any?)
8890 else
8891 Error_Msg_N
8892 ("null cannot be of an anonymous access type", N);
8893 end if;
8894 end if;
8896 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8897 -- assignment to a null-excluding object
8899 if Ada_Version >= Ada_2005
8900 and then Can_Never_Be_Null (Typ)
8901 and then Nkind (Parent (N)) = N_Assignment_Statement
8902 then
8903 if not Inside_Init_Proc then
8904 Insert_Action
8905 (Compile_Time_Constraint_Error (N,
8906 "(Ada 2005) null not allowed in null-excluding objects??"),
8907 Make_Raise_Constraint_Error (Loc,
8908 Reason => CE_Access_Check_Failed));
8909 else
8910 Insert_Action (N,
8911 Make_Raise_Constraint_Error (Loc,
8912 Reason => CE_Access_Check_Failed));
8913 end if;
8914 end if;
8916 -- In a distributed context, null for a remote access to subprogram may
8917 -- need to be replaced with a special record aggregate. In this case,
8918 -- return after having done the transformation.
8920 if (Ekind (Typ) = E_Record_Type
8921 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8922 and then Remote_AST_Null_Value (N, Typ)
8923 then
8924 return;
8925 end if;
8927 -- The null literal takes its type from the context
8929 Set_Etype (N, Typ);
8930 end Resolve_Null;
8932 -----------------------
8933 -- Resolve_Op_Concat --
8934 -----------------------
8936 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8938 -- We wish to avoid deep recursion, because concatenations are often
8939 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8940 -- operands nonrecursively until we find something that is not a simple
8941 -- concatenation (A in this case). We resolve that, and then walk back
8942 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8943 -- to do the rest of the work at each level. The Parent pointers allow
8944 -- us to avoid recursion, and thus avoid running out of memory. See also
8945 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8947 NN : Node_Id := N;
8948 Op1 : Node_Id;
8950 begin
8951 -- The following code is equivalent to:
8953 -- Resolve_Op_Concat_First (NN, Typ);
8954 -- Resolve_Op_Concat_Arg (N, ...);
8955 -- Resolve_Op_Concat_Rest (N, Typ);
8957 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8958 -- operand is a concatenation.
8960 -- Walk down left operands
8962 loop
8963 Resolve_Op_Concat_First (NN, Typ);
8964 Op1 := Left_Opnd (NN);
8965 exit when not (Nkind (Op1) = N_Op_Concat
8966 and then not Is_Array_Type (Component_Type (Typ))
8967 and then Entity (Op1) = Entity (NN));
8968 NN := Op1;
8969 end loop;
8971 -- Now (given the above example) NN is A&B and Op1 is A
8973 -- First resolve Op1 ...
8975 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
8977 -- ... then walk NN back up until we reach N (where we started), calling
8978 -- Resolve_Op_Concat_Rest along the way.
8980 loop
8981 Resolve_Op_Concat_Rest (NN, Typ);
8982 exit when NN = N;
8983 NN := Parent (NN);
8984 end loop;
8986 if Base_Type (Etype (N)) /= Standard_String then
8987 Check_SPARK_05_Restriction
8988 ("result of concatenation should have type String", N);
8989 end if;
8990 end Resolve_Op_Concat;
8992 ---------------------------
8993 -- Resolve_Op_Concat_Arg --
8994 ---------------------------
8996 procedure Resolve_Op_Concat_Arg
8997 (N : Node_Id;
8998 Arg : Node_Id;
8999 Typ : Entity_Id;
9000 Is_Comp : Boolean)
9002 Btyp : constant Entity_Id := Base_Type (Typ);
9003 Ctyp : constant Entity_Id := Component_Type (Typ);
9005 begin
9006 if In_Instance then
9007 if Is_Comp
9008 or else (not Is_Overloaded (Arg)
9009 and then Etype (Arg) /= Any_Composite
9010 and then Covers (Ctyp, Etype (Arg)))
9011 then
9012 Resolve (Arg, Ctyp);
9013 else
9014 Resolve (Arg, Btyp);
9015 end if;
9017 -- If both Array & Array and Array & Component are visible, there is a
9018 -- potential ambiguity that must be reported.
9020 elsif Has_Compatible_Type (Arg, Ctyp) then
9021 if Nkind (Arg) = N_Aggregate
9022 and then Is_Composite_Type (Ctyp)
9023 then
9024 if Is_Private_Type (Ctyp) then
9025 Resolve (Arg, Btyp);
9027 -- If the operation is user-defined and not overloaded use its
9028 -- profile. The operation may be a renaming, in which case it has
9029 -- been rewritten, and we want the original profile.
9031 elsif not Is_Overloaded (N)
9032 and then Comes_From_Source (Entity (Original_Node (N)))
9033 and then Ekind (Entity (Original_Node (N))) = E_Function
9034 then
9035 Resolve (Arg,
9036 Etype
9037 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9038 return;
9040 -- Otherwise an aggregate may match both the array type and the
9041 -- component type.
9043 else
9044 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9045 Set_Etype (Arg, Any_Type);
9046 end if;
9048 else
9049 if Is_Overloaded (Arg)
9050 and then Has_Compatible_Type (Arg, Typ)
9051 and then Etype (Arg) /= Any_Type
9052 then
9053 declare
9054 I : Interp_Index;
9055 It : Interp;
9056 Func : Entity_Id;
9058 begin
9059 Get_First_Interp (Arg, I, It);
9060 Func := It.Nam;
9061 Get_Next_Interp (I, It);
9063 -- Special-case the error message when the overloading is
9064 -- caused by a function that yields an array and can be
9065 -- called without parameters.
9067 if It.Nam = Func then
9068 Error_Msg_Sloc := Sloc (Func);
9069 Error_Msg_N ("ambiguous call to function#", Arg);
9070 Error_Msg_NE
9071 ("\\interpretation as call yields&", Arg, Typ);
9072 Error_Msg_NE
9073 ("\\interpretation as indexing of call yields&",
9074 Arg, Component_Type (Typ));
9076 else
9077 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9079 Get_First_Interp (Arg, I, It);
9080 while Present (It.Nam) loop
9081 Error_Msg_Sloc := Sloc (It.Nam);
9083 if Base_Type (It.Typ) = Btyp
9084 or else
9085 Base_Type (It.Typ) = Base_Type (Ctyp)
9086 then
9087 Error_Msg_N -- CODEFIX
9088 ("\\possible interpretation#", Arg);
9089 end if;
9091 Get_Next_Interp (I, It);
9092 end loop;
9093 end if;
9094 end;
9095 end if;
9097 Resolve (Arg, Component_Type (Typ));
9099 if Nkind (Arg) = N_String_Literal then
9100 Set_Etype (Arg, Component_Type (Typ));
9101 end if;
9103 if Arg = Left_Opnd (N) then
9104 Set_Is_Component_Left_Opnd (N);
9105 else
9106 Set_Is_Component_Right_Opnd (N);
9107 end if;
9108 end if;
9110 else
9111 Resolve (Arg, Btyp);
9112 end if;
9114 -- Concatenation is restricted in SPARK: each operand must be either a
9115 -- string literal, the name of a string constant, a static character or
9116 -- string expression, or another concatenation. Arg cannot be a
9117 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9118 -- separately on each final operand, past concatenation operations.
9120 if Is_Character_Type (Etype (Arg)) then
9121 if not Is_OK_Static_Expression (Arg) then
9122 Check_SPARK_05_Restriction
9123 ("character operand for concatenation should be static", Arg);
9124 end if;
9126 elsif Is_String_Type (Etype (Arg)) then
9127 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9128 and then Is_Constant_Object (Entity (Arg)))
9129 and then not Is_OK_Static_Expression (Arg)
9130 then
9131 Check_SPARK_05_Restriction
9132 ("string operand for concatenation should be static", Arg);
9133 end if;
9135 -- Do not issue error on an operand that is neither a character nor a
9136 -- string, as the error is issued in Resolve_Op_Concat.
9138 else
9139 null;
9140 end if;
9142 Check_Unset_Reference (Arg);
9143 end Resolve_Op_Concat_Arg;
9145 -----------------------------
9146 -- Resolve_Op_Concat_First --
9147 -----------------------------
9149 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9150 Btyp : constant Entity_Id := Base_Type (Typ);
9151 Op1 : constant Node_Id := Left_Opnd (N);
9152 Op2 : constant Node_Id := Right_Opnd (N);
9154 begin
9155 -- The parser folds an enormous sequence of concatenations of string
9156 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9157 -- in the right operand. If the expression resolves to a predefined "&"
9158 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9159 -- we give an error. See P_Simple_Expression in Par.Ch4.
9161 if Nkind (Op2) = N_String_Literal
9162 and then Is_Folded_In_Parser (Op2)
9163 and then Ekind (Entity (N)) = E_Function
9164 then
9165 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9166 and then String_Length (Strval (Op1)) = 0);
9167 Error_Msg_N ("too many user-defined concatenations", N);
9168 return;
9169 end if;
9171 Set_Etype (N, Btyp);
9173 if Is_Limited_Composite (Btyp) then
9174 Error_Msg_N ("concatenation not available for limited array", N);
9175 Explain_Limited_Type (Btyp, N);
9176 end if;
9177 end Resolve_Op_Concat_First;
9179 ----------------------------
9180 -- Resolve_Op_Concat_Rest --
9181 ----------------------------
9183 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9184 Op1 : constant Node_Id := Left_Opnd (N);
9185 Op2 : constant Node_Id := Right_Opnd (N);
9187 begin
9188 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9190 Generate_Operator_Reference (N, Typ);
9192 if Is_String_Type (Typ) then
9193 Eval_Concatenation (N);
9194 end if;
9196 -- If this is not a static concatenation, but the result is a string
9197 -- type (and not an array of strings) ensure that static string operands
9198 -- have their subtypes properly constructed.
9200 if Nkind (N) /= N_String_Literal
9201 and then Is_Character_Type (Component_Type (Typ))
9202 then
9203 Set_String_Literal_Subtype (Op1, Typ);
9204 Set_String_Literal_Subtype (Op2, Typ);
9205 end if;
9206 end Resolve_Op_Concat_Rest;
9208 ----------------------
9209 -- Resolve_Op_Expon --
9210 ----------------------
9212 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9213 B_Typ : constant Entity_Id := Base_Type (Typ);
9215 begin
9216 -- Catch attempts to do fixed-point exponentiation with universal
9217 -- operands, which is a case where the illegality is not caught during
9218 -- normal operator analysis. This is not done in preanalysis mode
9219 -- since the tree is not fully decorated during preanalysis.
9221 if Full_Analysis then
9222 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9223 Error_Msg_N ("exponentiation not available for fixed point", N);
9224 return;
9226 elsif Nkind (Parent (N)) in N_Op
9227 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9228 and then Etype (N) = Universal_Real
9229 and then Comes_From_Source (N)
9230 then
9231 Error_Msg_N ("exponentiation not available for fixed point", N);
9232 return;
9233 end if;
9234 end if;
9236 if Comes_From_Source (N)
9237 and then Ekind (Entity (N)) = E_Function
9238 and then Is_Imported (Entity (N))
9239 and then Is_Intrinsic_Subprogram (Entity (N))
9240 then
9241 Resolve_Intrinsic_Operator (N, Typ);
9242 return;
9243 end if;
9245 if Etype (Left_Opnd (N)) = Universal_Integer
9246 or else Etype (Left_Opnd (N)) = Universal_Real
9247 then
9248 Check_For_Visible_Operator (N, B_Typ);
9249 end if;
9251 -- We do the resolution using the base type, because intermediate values
9252 -- in expressions are always of the base type, not a subtype of it.
9254 Resolve (Left_Opnd (N), B_Typ);
9255 Resolve (Right_Opnd (N), Standard_Integer);
9257 -- For integer types, right argument must be in Natural range
9259 if Is_Integer_Type (Typ) then
9260 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9261 end if;
9263 Check_Unset_Reference (Left_Opnd (N));
9264 Check_Unset_Reference (Right_Opnd (N));
9266 Set_Etype (N, B_Typ);
9267 Generate_Operator_Reference (N, B_Typ);
9269 Analyze_Dimension (N);
9271 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9272 -- Evaluate the exponentiation operator for dimensioned type
9274 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9275 else
9276 Eval_Op_Expon (N);
9277 end if;
9279 -- Set overflow checking bit. Much cleverer code needed here eventually
9280 -- and perhaps the Resolve routines should be separated for the various
9281 -- arithmetic operations, since they will need different processing. ???
9283 if Nkind (N) in N_Op then
9284 if not Overflow_Checks_Suppressed (Etype (N)) then
9285 Enable_Overflow_Check (N);
9286 end if;
9287 end if;
9288 end Resolve_Op_Expon;
9290 --------------------
9291 -- Resolve_Op_Not --
9292 --------------------
9294 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9295 B_Typ : Entity_Id;
9297 function Parent_Is_Boolean return Boolean;
9298 -- This function determines if the parent node is a boolean operator or
9299 -- operation (comparison op, membership test, or short circuit form) and
9300 -- the not in question is the left operand of this operation. Note that
9301 -- if the not is in parens, then false is returned.
9303 -----------------------
9304 -- Parent_Is_Boolean --
9305 -----------------------
9307 function Parent_Is_Boolean return Boolean is
9308 begin
9309 if Paren_Count (N) /= 0 then
9310 return False;
9312 else
9313 case Nkind (Parent (N)) is
9314 when N_Op_And |
9315 N_Op_Eq |
9316 N_Op_Ge |
9317 N_Op_Gt |
9318 N_Op_Le |
9319 N_Op_Lt |
9320 N_Op_Ne |
9321 N_Op_Or |
9322 N_Op_Xor |
9323 N_In |
9324 N_Not_In |
9325 N_And_Then |
9326 N_Or_Else =>
9328 return Left_Opnd (Parent (N)) = N;
9330 when others =>
9331 return False;
9332 end case;
9333 end if;
9334 end Parent_Is_Boolean;
9336 -- Start of processing for Resolve_Op_Not
9338 begin
9339 -- Predefined operations on scalar types yield the base type. On the
9340 -- other hand, logical operations on arrays yield the type of the
9341 -- arguments (and the context).
9343 if Is_Array_Type (Typ) then
9344 B_Typ := Typ;
9345 else
9346 B_Typ := Base_Type (Typ);
9347 end if;
9349 -- Straightforward case of incorrect arguments
9351 if not Valid_Boolean_Arg (Typ) then
9352 Error_Msg_N ("invalid operand type for operator&", N);
9353 Set_Etype (N, Any_Type);
9354 return;
9356 -- Special case of probable missing parens
9358 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9359 if Parent_Is_Boolean then
9360 Error_Msg_N
9361 ("operand of not must be enclosed in parentheses",
9362 Right_Opnd (N));
9363 else
9364 Error_Msg_N
9365 ("no modular type available in this context", N);
9366 end if;
9368 Set_Etype (N, Any_Type);
9369 return;
9371 -- OK resolution of NOT
9373 else
9374 -- Warn if non-boolean types involved. This is a case like not a < b
9375 -- where a and b are modular, where we will get (not a) < b and most
9376 -- likely not (a < b) was intended.
9378 if Warn_On_Questionable_Missing_Parens
9379 and then not Is_Boolean_Type (Typ)
9380 and then Parent_Is_Boolean
9381 then
9382 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9383 end if;
9385 -- Warn on double negation if checking redundant constructs
9387 if Warn_On_Redundant_Constructs
9388 and then Comes_From_Source (N)
9389 and then Comes_From_Source (Right_Opnd (N))
9390 and then Root_Type (Typ) = Standard_Boolean
9391 and then Nkind (Right_Opnd (N)) = N_Op_Not
9392 then
9393 Error_Msg_N ("redundant double negation?r?", N);
9394 end if;
9396 -- Complete resolution and evaluation of NOT
9398 Resolve (Right_Opnd (N), B_Typ);
9399 Check_Unset_Reference (Right_Opnd (N));
9400 Set_Etype (N, B_Typ);
9401 Generate_Operator_Reference (N, B_Typ);
9402 Eval_Op_Not (N);
9403 end if;
9404 end Resolve_Op_Not;
9406 -----------------------------
9407 -- Resolve_Operator_Symbol --
9408 -----------------------------
9410 -- Nothing to be done, all resolved already
9412 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9413 pragma Warnings (Off, N);
9414 pragma Warnings (Off, Typ);
9416 begin
9417 null;
9418 end Resolve_Operator_Symbol;
9420 ----------------------------------
9421 -- Resolve_Qualified_Expression --
9422 ----------------------------------
9424 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9425 pragma Warnings (Off, Typ);
9427 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9428 Expr : constant Node_Id := Expression (N);
9430 begin
9431 Resolve (Expr, Target_Typ);
9433 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9434 -- operation if not needed.
9436 if Restriction_Check_Required (SPARK_05)
9437 and then Is_Array_Type (Target_Typ)
9438 and then Is_Array_Type (Etype (Expr))
9439 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9440 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9441 then
9442 Check_SPARK_05_Restriction
9443 ("array types should have matching static bounds", N);
9444 end if;
9446 -- A qualified expression requires an exact match of the type, class-
9447 -- wide matching is not allowed. However, if the qualifying type is
9448 -- specific and the expression has a class-wide type, it may still be
9449 -- okay, since it can be the result of the expansion of a call to a
9450 -- dispatching function, so we also have to check class-wideness of the
9451 -- type of the expression's original node.
9453 if (Is_Class_Wide_Type (Target_Typ)
9454 or else
9455 (Is_Class_Wide_Type (Etype (Expr))
9456 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9457 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9458 then
9459 Wrong_Type (Expr, Target_Typ);
9460 end if;
9462 -- If the target type is unconstrained, then we reset the type of the
9463 -- result from the type of the expression. For other cases, the actual
9464 -- subtype of the expression is the target type.
9466 if Is_Composite_Type (Target_Typ)
9467 and then not Is_Constrained (Target_Typ)
9468 then
9469 Set_Etype (N, Etype (Expr));
9470 end if;
9472 Analyze_Dimension (N);
9473 Eval_Qualified_Expression (N);
9475 -- If we still have a qualified expression after the static evaluation,
9476 -- then apply a scalar range check if needed. The reason that we do this
9477 -- after the Eval call is that otherwise, the application of the range
9478 -- check may convert an illegal static expression and result in warning
9479 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9481 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9482 Apply_Scalar_Range_Check (Expr, Typ);
9483 end if;
9485 -- Finally, check whether a predicate applies to the target type. This
9486 -- comes from AI12-0100. As for type conversions, check the enclosing
9487 -- context to prevent an infinite expansion.
9489 if Has_Predicates (Target_Typ) then
9490 if Nkind (Parent (N)) = N_Function_Call
9491 and then Present (Name (Parent (N)))
9492 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9493 or else
9494 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9495 then
9496 null;
9498 -- In the case of a qualified expression in an allocator, the check
9499 -- is applied when expanding the allocator, so avoid redundant check.
9501 elsif Nkind (N) = N_Qualified_Expression
9502 and then Nkind (Parent (N)) /= N_Allocator
9503 then
9504 Apply_Predicate_Check (N, Target_Typ);
9505 end if;
9506 end if;
9507 end Resolve_Qualified_Expression;
9509 ------------------------------
9510 -- Resolve_Raise_Expression --
9511 ------------------------------
9513 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9514 begin
9515 if Typ = Raise_Type then
9516 Error_Msg_N ("cannot find unique type for raise expression", N);
9517 Set_Etype (N, Any_Type);
9518 else
9519 Set_Etype (N, Typ);
9520 end if;
9521 end Resolve_Raise_Expression;
9523 -------------------
9524 -- Resolve_Range --
9525 -------------------
9527 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9528 L : constant Node_Id := Low_Bound (N);
9529 H : constant Node_Id := High_Bound (N);
9531 function First_Last_Ref return Boolean;
9532 -- Returns True if N is of the form X'First .. X'Last where X is the
9533 -- same entity for both attributes.
9535 --------------------
9536 -- First_Last_Ref --
9537 --------------------
9539 function First_Last_Ref return Boolean is
9540 Lorig : constant Node_Id := Original_Node (L);
9541 Horig : constant Node_Id := Original_Node (H);
9543 begin
9544 if Nkind (Lorig) = N_Attribute_Reference
9545 and then Nkind (Horig) = N_Attribute_Reference
9546 and then Attribute_Name (Lorig) = Name_First
9547 and then Attribute_Name (Horig) = Name_Last
9548 then
9549 declare
9550 PL : constant Node_Id := Prefix (Lorig);
9551 PH : constant Node_Id := Prefix (Horig);
9552 begin
9553 if Is_Entity_Name (PL)
9554 and then Is_Entity_Name (PH)
9555 and then Entity (PL) = Entity (PH)
9556 then
9557 return True;
9558 end if;
9559 end;
9560 end if;
9562 return False;
9563 end First_Last_Ref;
9565 -- Start of processing for Resolve_Range
9567 begin
9568 Set_Etype (N, Typ);
9569 Resolve (L, Typ);
9570 Resolve (H, Typ);
9572 -- Check for inappropriate range on unordered enumeration type
9574 if Bad_Unordered_Enumeration_Reference (N, Typ)
9576 -- Exclude X'First .. X'Last if X is the same entity for both
9578 and then not First_Last_Ref
9579 then
9580 Error_Msg_Sloc := Sloc (Typ);
9581 Error_Msg_NE
9582 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9583 end if;
9585 Check_Unset_Reference (L);
9586 Check_Unset_Reference (H);
9588 -- We have to check the bounds for being within the base range as
9589 -- required for a non-static context. Normally this is automatic and
9590 -- done as part of evaluating expressions, but the N_Range node is an
9591 -- exception, since in GNAT we consider this node to be a subexpression,
9592 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9593 -- this, but that would put the test on the main evaluation path for
9594 -- expressions.
9596 Check_Non_Static_Context (L);
9597 Check_Non_Static_Context (H);
9599 -- Check for an ambiguous range over character literals. This will
9600 -- happen with a membership test involving only literals.
9602 if Typ = Any_Character then
9603 Ambiguous_Character (L);
9604 Set_Etype (N, Any_Type);
9605 return;
9606 end if;
9608 -- If bounds are static, constant-fold them, so size computations are
9609 -- identical between front-end and back-end. Do not perform this
9610 -- transformation while analyzing generic units, as type information
9611 -- would be lost when reanalyzing the constant node in the instance.
9613 if Is_Discrete_Type (Typ) and then Expander_Active then
9614 if Is_OK_Static_Expression (L) then
9615 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9616 end if;
9618 if Is_OK_Static_Expression (H) then
9619 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9620 end if;
9621 end if;
9622 end Resolve_Range;
9624 --------------------------
9625 -- Resolve_Real_Literal --
9626 --------------------------
9628 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9629 Actual_Typ : constant Entity_Id := Etype (N);
9631 begin
9632 -- Special processing for fixed-point literals to make sure that the
9633 -- value is an exact multiple of small where this is required. We skip
9634 -- this for the universal real case, and also for generic types.
9636 if Is_Fixed_Point_Type (Typ)
9637 and then Typ /= Universal_Fixed
9638 and then Typ /= Any_Fixed
9639 and then not Is_Generic_Type (Typ)
9640 then
9641 declare
9642 Val : constant Ureal := Realval (N);
9643 Cintr : constant Ureal := Val / Small_Value (Typ);
9644 Cint : constant Uint := UR_Trunc (Cintr);
9645 Den : constant Uint := Norm_Den (Cintr);
9646 Stat : Boolean;
9648 begin
9649 -- Case of literal is not an exact multiple of the Small
9651 if Den /= 1 then
9653 -- For a source program literal for a decimal fixed-point type,
9654 -- this is statically illegal (RM 4.9(36)).
9656 if Is_Decimal_Fixed_Point_Type (Typ)
9657 and then Actual_Typ = Universal_Real
9658 and then Comes_From_Source (N)
9659 then
9660 Error_Msg_N ("value has extraneous low order digits", N);
9661 end if;
9663 -- Generate a warning if literal from source
9665 if Is_OK_Static_Expression (N)
9666 and then Warn_On_Bad_Fixed_Value
9667 then
9668 Error_Msg_N
9669 ("?b?static fixed-point value is not a multiple of Small!",
9671 end if;
9673 -- Replace literal by a value that is the exact representation
9674 -- of a value of the type, i.e. a multiple of the small value,
9675 -- by truncation, since Machine_Rounds is false for all GNAT
9676 -- fixed-point types (RM 4.9(38)).
9678 Stat := Is_OK_Static_Expression (N);
9679 Rewrite (N,
9680 Make_Real_Literal (Sloc (N),
9681 Realval => Small_Value (Typ) * Cint));
9683 Set_Is_Static_Expression (N, Stat);
9684 end if;
9686 -- In all cases, set the corresponding integer field
9688 Set_Corresponding_Integer_Value (N, Cint);
9689 end;
9690 end if;
9692 -- Now replace the actual type by the expected type as usual
9694 Set_Etype (N, Typ);
9695 Eval_Real_Literal (N);
9696 end Resolve_Real_Literal;
9698 -----------------------
9699 -- Resolve_Reference --
9700 -----------------------
9702 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9703 P : constant Node_Id := Prefix (N);
9705 begin
9706 -- Replace general access with specific type
9708 if Ekind (Etype (N)) = E_Allocator_Type then
9709 Set_Etype (N, Base_Type (Typ));
9710 end if;
9712 Resolve (P, Designated_Type (Etype (N)));
9714 -- If we are taking the reference of a volatile entity, then treat it as
9715 -- a potential modification of this entity. This is too conservative,
9716 -- but necessary because remove side effects can cause transformations
9717 -- of normal assignments into reference sequences that otherwise fail to
9718 -- notice the modification.
9720 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9721 Note_Possible_Modification (P, Sure => False);
9722 end if;
9723 end Resolve_Reference;
9725 --------------------------------
9726 -- Resolve_Selected_Component --
9727 --------------------------------
9729 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9730 Comp : Entity_Id;
9731 Comp1 : Entity_Id := Empty; -- prevent junk warning
9732 P : constant Node_Id := Prefix (N);
9733 S : constant Node_Id := Selector_Name (N);
9734 T : Entity_Id := Etype (P);
9735 I : Interp_Index;
9736 I1 : Interp_Index := 0; -- prevent junk warning
9737 It : Interp;
9738 It1 : Interp;
9739 Found : Boolean;
9741 function Init_Component return Boolean;
9742 -- Check whether this is the initialization of a component within an
9743 -- init proc (by assignment or call to another init proc). If true,
9744 -- there is no need for a discriminant check.
9746 --------------------
9747 -- Init_Component --
9748 --------------------
9750 function Init_Component return Boolean is
9751 begin
9752 return Inside_Init_Proc
9753 and then Nkind (Prefix (N)) = N_Identifier
9754 and then Chars (Prefix (N)) = Name_uInit
9755 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9756 end Init_Component;
9758 -- Start of processing for Resolve_Selected_Component
9760 begin
9761 if Is_Overloaded (P) then
9763 -- Use the context type to select the prefix that has a selector
9764 -- of the correct name and type.
9766 Found := False;
9767 Get_First_Interp (P, I, It);
9769 Search : while Present (It.Typ) loop
9770 if Is_Access_Type (It.Typ) then
9771 T := Designated_Type (It.Typ);
9772 else
9773 T := It.Typ;
9774 end if;
9776 -- Locate selected component. For a private prefix the selector
9777 -- can denote a discriminant.
9779 if Is_Record_Type (T) or else Is_Private_Type (T) then
9781 -- The visible components of a class-wide type are those of
9782 -- the root type.
9784 if Is_Class_Wide_Type (T) then
9785 T := Etype (T);
9786 end if;
9788 Comp := First_Entity (T);
9789 while Present (Comp) loop
9790 if Chars (Comp) = Chars (S)
9791 and then Covers (Typ, Etype (Comp))
9792 then
9793 if not Found then
9794 Found := True;
9795 I1 := I;
9796 It1 := It;
9797 Comp1 := Comp;
9799 else
9800 It := Disambiguate (P, I1, I, Any_Type);
9802 if It = No_Interp then
9803 Error_Msg_N
9804 ("ambiguous prefix for selected component", N);
9805 Set_Etype (N, Typ);
9806 return;
9808 else
9809 It1 := It;
9811 -- There may be an implicit dereference. Retrieve
9812 -- designated record type.
9814 if Is_Access_Type (It1.Typ) then
9815 T := Designated_Type (It1.Typ);
9816 else
9817 T := It1.Typ;
9818 end if;
9820 if Scope (Comp1) /= T then
9822 -- Resolution chooses the new interpretation.
9823 -- Find the component with the right name.
9825 Comp1 := First_Entity (T);
9826 while Present (Comp1)
9827 and then Chars (Comp1) /= Chars (S)
9828 loop
9829 Comp1 := Next_Entity (Comp1);
9830 end loop;
9831 end if;
9833 exit Search;
9834 end if;
9835 end if;
9836 end if;
9838 Comp := Next_Entity (Comp);
9839 end loop;
9840 end if;
9842 Get_Next_Interp (I, It);
9843 end loop Search;
9845 -- There must be a legal interpretation at this point
9847 pragma Assert (Found);
9848 Resolve (P, It1.Typ);
9849 Set_Etype (N, Typ);
9850 Set_Entity_With_Checks (S, Comp1);
9852 else
9853 -- Resolve prefix with its type
9855 Resolve (P, T);
9856 end if;
9858 -- Generate cross-reference. We needed to wait until full overloading
9859 -- resolution was complete to do this, since otherwise we can't tell if
9860 -- we are an lvalue or not.
9862 if May_Be_Lvalue (N) then
9863 Generate_Reference (Entity (S), S, 'm');
9864 else
9865 Generate_Reference (Entity (S), S, 'r');
9866 end if;
9868 -- If prefix is an access type, the node will be transformed into an
9869 -- explicit dereference during expansion. The type of the node is the
9870 -- designated type of that of the prefix.
9872 if Is_Access_Type (Etype (P)) then
9873 T := Designated_Type (Etype (P));
9874 Check_Fully_Declared_Prefix (T, P);
9875 else
9876 T := Etype (P);
9877 end if;
9879 -- Set flag for expander if discriminant check required on a component
9880 -- appearing within a variant.
9882 if Has_Discriminants (T)
9883 and then Ekind (Entity (S)) = E_Component
9884 and then Present (Original_Record_Component (Entity (S)))
9885 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9886 and then
9887 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
9888 and then not Discriminant_Checks_Suppressed (T)
9889 and then not Init_Component
9890 then
9891 Set_Do_Discriminant_Check (N);
9892 end if;
9894 if Ekind (Entity (S)) = E_Void then
9895 Error_Msg_N ("premature use of component", S);
9896 end if;
9898 -- If the prefix is a record conversion, this may be a renamed
9899 -- discriminant whose bounds differ from those of the original
9900 -- one, so we must ensure that a range check is performed.
9902 if Nkind (P) = N_Type_Conversion
9903 and then Ekind (Entity (S)) = E_Discriminant
9904 and then Is_Discrete_Type (Typ)
9905 then
9906 Set_Etype (N, Base_Type (Typ));
9907 end if;
9909 -- Note: No Eval processing is required, because the prefix is of a
9910 -- record type, or protected type, and neither can possibly be static.
9912 -- If the record type is atomic, and the component is non-atomic, then
9913 -- this is worth a warning, since we have a situation where the access
9914 -- to the component may cause extra read/writes of the atomic array
9915 -- object, or partial word accesses, both of which may be unexpected.
9917 if Nkind (N) = N_Selected_Component
9918 and then Is_Atomic_Ref_With_Address (N)
9919 and then not Is_Atomic (Entity (S))
9920 and then not Is_Atomic (Etype (Entity (S)))
9921 then
9922 Error_Msg_N
9923 ("??access to non-atomic component of atomic record",
9924 Prefix (N));
9925 Error_Msg_N
9926 ("\??may cause unexpected accesses to atomic object",
9927 Prefix (N));
9928 end if;
9930 Analyze_Dimension (N);
9931 end Resolve_Selected_Component;
9933 -------------------
9934 -- Resolve_Shift --
9935 -------------------
9937 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9938 B_Typ : constant Entity_Id := Base_Type (Typ);
9939 L : constant Node_Id := Left_Opnd (N);
9940 R : constant Node_Id := Right_Opnd (N);
9942 begin
9943 -- We do the resolution using the base type, because intermediate values
9944 -- in expressions always are of the base type, not a subtype of it.
9946 Resolve (L, B_Typ);
9947 Resolve (R, Standard_Natural);
9949 Check_Unset_Reference (L);
9950 Check_Unset_Reference (R);
9952 Set_Etype (N, B_Typ);
9953 Generate_Operator_Reference (N, B_Typ);
9954 Eval_Shift (N);
9955 end Resolve_Shift;
9957 ---------------------------
9958 -- Resolve_Short_Circuit --
9959 ---------------------------
9961 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9962 B_Typ : constant Entity_Id := Base_Type (Typ);
9963 L : constant Node_Id := Left_Opnd (N);
9964 R : constant Node_Id := Right_Opnd (N);
9966 begin
9967 -- Ensure all actions associated with the left operand (e.g.
9968 -- finalization of transient objects) are fully evaluated locally within
9969 -- an expression with actions. This is particularly helpful for coverage
9970 -- analysis. However this should not happen in generics or if option
9971 -- Minimize_Expression_With_Actions is set.
9973 if Expander_Active and not Minimize_Expression_With_Actions then
9974 declare
9975 Reloc_L : constant Node_Id := Relocate_Node (L);
9976 begin
9977 Save_Interps (Old_N => L, New_N => Reloc_L);
9979 Rewrite (L,
9980 Make_Expression_With_Actions (Sloc (L),
9981 Actions => New_List,
9982 Expression => Reloc_L));
9984 -- Set Comes_From_Source on L to preserve warnings for unset
9985 -- reference.
9987 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9988 end;
9989 end if;
9991 Resolve (L, B_Typ);
9992 Resolve (R, B_Typ);
9994 -- Check for issuing warning for always False assert/check, this happens
9995 -- when assertions are turned off, in which case the pragma Assert/Check
9996 -- was transformed into:
9998 -- if False and then <condition> then ...
10000 -- and we detect this pattern
10002 if Warn_On_Assertion_Failure
10003 and then Is_Entity_Name (R)
10004 and then Entity (R) = Standard_False
10005 and then Nkind (Parent (N)) = N_If_Statement
10006 and then Nkind (N) = N_And_Then
10007 and then Is_Entity_Name (L)
10008 and then Entity (L) = Standard_False
10009 then
10010 declare
10011 Orig : constant Node_Id := Original_Node (Parent (N));
10013 begin
10014 -- Special handling of Asssert pragma
10016 if Nkind (Orig) = N_Pragma
10017 and then Pragma_Name (Orig) = Name_Assert
10018 then
10019 declare
10020 Expr : constant Node_Id :=
10021 Original_Node
10022 (Expression
10023 (First (Pragma_Argument_Associations (Orig))));
10025 begin
10026 -- Don't warn if original condition is explicit False,
10027 -- since obviously the failure is expected in this case.
10029 if Is_Entity_Name (Expr)
10030 and then Entity (Expr) = Standard_False
10031 then
10032 null;
10034 -- Issue warning. We do not want the deletion of the
10035 -- IF/AND-THEN to take this message with it. We achieve this
10036 -- by making sure that the expanded code points to the Sloc
10037 -- of the expression, not the original pragma.
10039 else
10040 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10041 -- The source location of the expression is not usually
10042 -- the best choice here. For example, it gets located on
10043 -- the last AND keyword in a chain of boolean expressiond
10044 -- AND'ed together. It is best to put the message on the
10045 -- first character of the assertion, which is the effect
10046 -- of the First_Node call here.
10048 Error_Msg_F
10049 ("?A?assertion would fail at run time!",
10050 Expression
10051 (First (Pragma_Argument_Associations (Orig))));
10052 end if;
10053 end;
10055 -- Similar processing for Check pragma
10057 elsif Nkind (Orig) = N_Pragma
10058 and then Pragma_Name (Orig) = Name_Check
10059 then
10060 -- Don't want to warn if original condition is explicit False
10062 declare
10063 Expr : constant Node_Id :=
10064 Original_Node
10065 (Expression
10066 (Next (First (Pragma_Argument_Associations (Orig)))));
10067 begin
10068 if Is_Entity_Name (Expr)
10069 and then Entity (Expr) = Standard_False
10070 then
10071 null;
10073 -- Post warning
10075 else
10076 -- Again use Error_Msg_F rather than Error_Msg_N, see
10077 -- comment above for an explanation of why we do this.
10079 Error_Msg_F
10080 ("?A?check would fail at run time!",
10081 Expression
10082 (Last (Pragma_Argument_Associations (Orig))));
10083 end if;
10084 end;
10085 end if;
10086 end;
10087 end if;
10089 -- Continue with processing of short circuit
10091 Check_Unset_Reference (L);
10092 Check_Unset_Reference (R);
10094 Set_Etype (N, B_Typ);
10095 Eval_Short_Circuit (N);
10096 end Resolve_Short_Circuit;
10098 -------------------
10099 -- Resolve_Slice --
10100 -------------------
10102 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10103 Drange : constant Node_Id := Discrete_Range (N);
10104 Name : constant Node_Id := Prefix (N);
10105 Array_Type : Entity_Id := Empty;
10106 Dexpr : Node_Id := Empty;
10107 Index_Type : Entity_Id;
10109 begin
10110 if Is_Overloaded (Name) then
10112 -- Use the context type to select the prefix that yields the correct
10113 -- array type.
10115 declare
10116 I : Interp_Index;
10117 I1 : Interp_Index := 0;
10118 It : Interp;
10119 P : constant Node_Id := Prefix (N);
10120 Found : Boolean := False;
10122 begin
10123 Get_First_Interp (P, I, It);
10124 while Present (It.Typ) loop
10125 if (Is_Array_Type (It.Typ)
10126 and then Covers (Typ, It.Typ))
10127 or else (Is_Access_Type (It.Typ)
10128 and then Is_Array_Type (Designated_Type (It.Typ))
10129 and then Covers (Typ, Designated_Type (It.Typ)))
10130 then
10131 if Found then
10132 It := Disambiguate (P, I1, I, Any_Type);
10134 if It = No_Interp then
10135 Error_Msg_N ("ambiguous prefix for slicing", N);
10136 Set_Etype (N, Typ);
10137 return;
10138 else
10139 Found := True;
10140 Array_Type := It.Typ;
10141 I1 := I;
10142 end if;
10143 else
10144 Found := True;
10145 Array_Type := It.Typ;
10146 I1 := I;
10147 end if;
10148 end if;
10150 Get_Next_Interp (I, It);
10151 end loop;
10152 end;
10154 else
10155 Array_Type := Etype (Name);
10156 end if;
10158 Resolve (Name, Array_Type);
10160 if Is_Access_Type (Array_Type) then
10161 Apply_Access_Check (N);
10162 Array_Type := Designated_Type (Array_Type);
10164 -- If the prefix is an access to an unconstrained array, we must use
10165 -- the actual subtype of the object to perform the index checks. The
10166 -- object denoted by the prefix is implicit in the node, so we build
10167 -- an explicit representation for it in order to compute the actual
10168 -- subtype.
10170 if not Is_Constrained (Array_Type) then
10171 Remove_Side_Effects (Prefix (N));
10173 declare
10174 Obj : constant Node_Id :=
10175 Make_Explicit_Dereference (Sloc (N),
10176 Prefix => New_Copy_Tree (Prefix (N)));
10177 begin
10178 Set_Etype (Obj, Array_Type);
10179 Set_Parent (Obj, Parent (N));
10180 Array_Type := Get_Actual_Subtype (Obj);
10181 end;
10182 end if;
10184 elsif Is_Entity_Name (Name)
10185 or else Nkind (Name) = N_Explicit_Dereference
10186 or else (Nkind (Name) = N_Function_Call
10187 and then not Is_Constrained (Etype (Name)))
10188 then
10189 Array_Type := Get_Actual_Subtype (Name);
10191 -- If the name is a selected component that depends on discriminants,
10192 -- build an actual subtype for it. This can happen only when the name
10193 -- itself is overloaded; otherwise the actual subtype is created when
10194 -- the selected component is analyzed.
10196 elsif Nkind (Name) = N_Selected_Component
10197 and then Full_Analysis
10198 and then Depends_On_Discriminant (First_Index (Array_Type))
10199 then
10200 declare
10201 Act_Decl : constant Node_Id :=
10202 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10203 begin
10204 Insert_Action (N, Act_Decl);
10205 Array_Type := Defining_Identifier (Act_Decl);
10206 end;
10208 -- Maybe this should just be "else", instead of checking for the
10209 -- specific case of slice??? This is needed for the case where the
10210 -- prefix is an Image attribute, which gets expanded to a slice, and so
10211 -- has a constrained subtype which we want to use for the slice range
10212 -- check applied below (the range check won't get done if the
10213 -- unconstrained subtype of the 'Image is used).
10215 elsif Nkind (Name) = N_Slice then
10216 Array_Type := Etype (Name);
10217 end if;
10219 -- Obtain the type of the array index
10221 if Ekind (Array_Type) = E_String_Literal_Subtype then
10222 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10223 else
10224 Index_Type := Etype (First_Index (Array_Type));
10225 end if;
10227 -- If name was overloaded, set slice type correctly now
10229 Set_Etype (N, Array_Type);
10231 -- Handle the generation of a range check that compares the array index
10232 -- against the discrete_range. The check is not applied to internally
10233 -- built nodes associated with the expansion of dispatch tables. Check
10234 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10235 -- the unit.
10237 if Tagged_Type_Expansion
10238 and then RTU_Loaded (Ada_Tags)
10239 and then Nkind (Prefix (N)) = N_Selected_Component
10240 and then Present (Entity (Selector_Name (Prefix (N))))
10241 and then Entity (Selector_Name (Prefix (N))) =
10242 RTE_Record_Component (RE_Prims_Ptr)
10243 then
10244 null;
10246 -- The discrete_range is specified by a subtype indication. Create a
10247 -- shallow copy and inherit the type, parent and source location from
10248 -- the discrete_range. This ensures that the range check is inserted
10249 -- relative to the slice and that the runtime exception points to the
10250 -- proper construct.
10252 elsif Is_Entity_Name (Drange) then
10253 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10255 Set_Etype (Dexpr, Etype (Drange));
10256 Set_Parent (Dexpr, Parent (Drange));
10257 Set_Sloc (Dexpr, Sloc (Drange));
10259 -- The discrete_range is a regular range. Resolve the bounds and remove
10260 -- their side effects.
10262 else
10263 Resolve (Drange, Base_Type (Index_Type));
10265 if Nkind (Drange) = N_Range then
10266 Force_Evaluation (Low_Bound (Drange));
10267 Force_Evaluation (High_Bound (Drange));
10269 Dexpr := Drange;
10270 end if;
10271 end if;
10273 if Present (Dexpr) then
10274 Apply_Range_Check (Dexpr, Index_Type);
10275 end if;
10277 Set_Slice_Subtype (N);
10279 -- Check bad use of type with predicates
10281 declare
10282 Subt : Entity_Id;
10284 begin
10285 if Nkind (Drange) = N_Subtype_Indication
10286 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10287 then
10288 Subt := Entity (Subtype_Mark (Drange));
10289 else
10290 Subt := Etype (Drange);
10291 end if;
10293 if Has_Predicates (Subt) then
10294 Bad_Predicated_Subtype_Use
10295 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10296 end if;
10297 end;
10299 -- Otherwise here is where we check suspicious indexes
10301 if Nkind (Drange) = N_Range then
10302 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10303 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10304 end if;
10306 Analyze_Dimension (N);
10307 Eval_Slice (N);
10308 end Resolve_Slice;
10310 ----------------------------
10311 -- Resolve_String_Literal --
10312 ----------------------------
10314 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10315 C_Typ : constant Entity_Id := Component_Type (Typ);
10316 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10317 Loc : constant Source_Ptr := Sloc (N);
10318 Str : constant String_Id := Strval (N);
10319 Strlen : constant Nat := String_Length (Str);
10320 Subtype_Id : Entity_Id;
10321 Need_Check : Boolean;
10323 begin
10324 -- For a string appearing in a concatenation, defer creation of the
10325 -- string_literal_subtype until the end of the resolution of the
10326 -- concatenation, because the literal may be constant-folded away. This
10327 -- is a useful optimization for long concatenation expressions.
10329 -- If the string is an aggregate built for a single character (which
10330 -- happens in a non-static context) or a is null string to which special
10331 -- checks may apply, we build the subtype. Wide strings must also get a
10332 -- string subtype if they come from a one character aggregate. Strings
10333 -- generated by attributes might be static, but it is often hard to
10334 -- determine whether the enclosing context is static, so we generate
10335 -- subtypes for them as well, thus losing some rarer optimizations ???
10336 -- Same for strings that come from a static conversion.
10338 Need_Check :=
10339 (Strlen = 0 and then Typ /= Standard_String)
10340 or else Nkind (Parent (N)) /= N_Op_Concat
10341 or else (N /= Left_Opnd (Parent (N))
10342 and then N /= Right_Opnd (Parent (N)))
10343 or else ((Typ = Standard_Wide_String
10344 or else Typ = Standard_Wide_Wide_String)
10345 and then Nkind (Original_Node (N)) /= N_String_Literal);
10347 -- If the resolving type is itself a string literal subtype, we can just
10348 -- reuse it, since there is no point in creating another.
10350 if Ekind (Typ) = E_String_Literal_Subtype then
10351 Subtype_Id := Typ;
10353 elsif Nkind (Parent (N)) = N_Op_Concat
10354 and then not Need_Check
10355 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10356 N_Attribute_Reference,
10357 N_Qualified_Expression,
10358 N_Type_Conversion)
10359 then
10360 Subtype_Id := Typ;
10362 -- Do not generate a string literal subtype for the default expression
10363 -- of a formal parameter in GNATprove mode. This is because the string
10364 -- subtype is associated with the freezing actions of the subprogram,
10365 -- however freezing is disabled in GNATprove mode and as a result the
10366 -- subtype is unavailable.
10368 elsif GNATprove_Mode
10369 and then Nkind (Parent (N)) = N_Parameter_Specification
10370 then
10371 Subtype_Id := Typ;
10373 -- Otherwise we must create a string literal subtype. Note that the
10374 -- whole idea of string literal subtypes is simply to avoid the need
10375 -- for building a full fledged array subtype for each literal.
10377 else
10378 Set_String_Literal_Subtype (N, Typ);
10379 Subtype_Id := Etype (N);
10380 end if;
10382 if Nkind (Parent (N)) /= N_Op_Concat
10383 or else Need_Check
10384 then
10385 Set_Etype (N, Subtype_Id);
10386 Eval_String_Literal (N);
10387 end if;
10389 if Is_Limited_Composite (Typ)
10390 or else Is_Private_Composite (Typ)
10391 then
10392 Error_Msg_N ("string literal not available for private array", N);
10393 Set_Etype (N, Any_Type);
10394 return;
10395 end if;
10397 -- The validity of a null string has been checked in the call to
10398 -- Eval_String_Literal.
10400 if Strlen = 0 then
10401 return;
10403 -- Always accept string literal with component type Any_Character, which
10404 -- occurs in error situations and in comparisons of literals, both of
10405 -- which should accept all literals.
10407 elsif R_Typ = Any_Character then
10408 return;
10410 -- If the type is bit-packed, then we always transform the string
10411 -- literal into a full fledged aggregate.
10413 elsif Is_Bit_Packed_Array (Typ) then
10414 null;
10416 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10418 else
10419 -- For Standard.Wide_Wide_String, or any other type whose component
10420 -- type is Standard.Wide_Wide_Character, we know that all the
10421 -- characters in the string must be acceptable, since the parser
10422 -- accepted the characters as valid character literals.
10424 if R_Typ = Standard_Wide_Wide_Character then
10425 null;
10427 -- For the case of Standard.String, or any other type whose component
10428 -- type is Standard.Character, we must make sure that there are no
10429 -- wide characters in the string, i.e. that it is entirely composed
10430 -- of characters in range of type Character.
10432 -- If the string literal is the result of a static concatenation, the
10433 -- test has already been performed on the components, and need not be
10434 -- repeated.
10436 elsif R_Typ = Standard_Character
10437 and then Nkind (Original_Node (N)) /= N_Op_Concat
10438 then
10439 for J in 1 .. Strlen loop
10440 if not In_Character_Range (Get_String_Char (Str, J)) then
10442 -- If we are out of range, post error. This is one of the
10443 -- very few places that we place the flag in the middle of
10444 -- a token, right under the offending wide character. Not
10445 -- quite clear if this is right wrt wide character encoding
10446 -- sequences, but it's only an error message.
10448 Error_Msg
10449 ("literal out of range of type Standard.Character",
10450 Source_Ptr (Int (Loc) + J));
10451 return;
10452 end if;
10453 end loop;
10455 -- For the case of Standard.Wide_String, or any other type whose
10456 -- component type is Standard.Wide_Character, we must make sure that
10457 -- there are no wide characters in the string, i.e. that it is
10458 -- entirely composed of characters in range of type Wide_Character.
10460 -- If the string literal is the result of a static concatenation,
10461 -- the test has already been performed on the components, and need
10462 -- not be repeated.
10464 elsif R_Typ = Standard_Wide_Character
10465 and then Nkind (Original_Node (N)) /= N_Op_Concat
10466 then
10467 for J in 1 .. Strlen loop
10468 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10470 -- If we are out of range, post error. This is one of the
10471 -- very few places that we place the flag in the middle of
10472 -- a token, right under the offending wide character.
10474 -- This is not quite right, because characters in general
10475 -- will take more than one character position ???
10477 Error_Msg
10478 ("literal out of range of type Standard.Wide_Character",
10479 Source_Ptr (Int (Loc) + J));
10480 return;
10481 end if;
10482 end loop;
10484 -- If the root type is not a standard character, then we will convert
10485 -- the string into an aggregate and will let the aggregate code do
10486 -- the checking. Standard Wide_Wide_Character is also OK here.
10488 else
10489 null;
10490 end if;
10492 -- See if the component type of the array corresponding to the string
10493 -- has compile time known bounds. If yes we can directly check
10494 -- whether the evaluation of the string will raise constraint error.
10495 -- Otherwise we need to transform the string literal into the
10496 -- corresponding character aggregate and let the aggregate code do
10497 -- the checking.
10499 if Is_Standard_Character_Type (R_Typ) then
10501 -- Check for the case of full range, where we are definitely OK
10503 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10504 return;
10505 end if;
10507 -- Here the range is not the complete base type range, so check
10509 declare
10510 Comp_Typ_Lo : constant Node_Id :=
10511 Type_Low_Bound (Component_Type (Typ));
10512 Comp_Typ_Hi : constant Node_Id :=
10513 Type_High_Bound (Component_Type (Typ));
10515 Char_Val : Uint;
10517 begin
10518 if Compile_Time_Known_Value (Comp_Typ_Lo)
10519 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10520 then
10521 for J in 1 .. Strlen loop
10522 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10524 if Char_Val < Expr_Value (Comp_Typ_Lo)
10525 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10526 then
10527 Apply_Compile_Time_Constraint_Error
10528 (N, "character out of range??",
10529 CE_Range_Check_Failed,
10530 Loc => Source_Ptr (Int (Loc) + J));
10531 end if;
10532 end loop;
10534 return;
10535 end if;
10536 end;
10537 end if;
10538 end if;
10540 -- If we got here we meed to transform the string literal into the
10541 -- equivalent qualified positional array aggregate. This is rather
10542 -- heavy artillery for this situation, but it is hard work to avoid.
10544 declare
10545 Lits : constant List_Id := New_List;
10546 P : Source_Ptr := Loc + 1;
10547 C : Char_Code;
10549 begin
10550 -- Build the character literals, we give them source locations that
10551 -- correspond to the string positions, which is a bit tricky given
10552 -- the possible presence of wide character escape sequences.
10554 for J in 1 .. Strlen loop
10555 C := Get_String_Char (Str, J);
10556 Set_Character_Literal_Name (C);
10558 Append_To (Lits,
10559 Make_Character_Literal (P,
10560 Chars => Name_Find,
10561 Char_Literal_Value => UI_From_CC (C)));
10563 if In_Character_Range (C) then
10564 P := P + 1;
10566 -- Should we have a call to Skip_Wide here ???
10568 -- ??? else
10569 -- Skip_Wide (P);
10571 end if;
10572 end loop;
10574 Rewrite (N,
10575 Make_Qualified_Expression (Loc,
10576 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10577 Expression =>
10578 Make_Aggregate (Loc, Expressions => Lits)));
10580 Analyze_And_Resolve (N, Typ);
10581 end;
10582 end Resolve_String_Literal;
10584 -----------------------------
10585 -- Resolve_Type_Conversion --
10586 -----------------------------
10588 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10589 Conv_OK : constant Boolean := Conversion_OK (N);
10590 Operand : constant Node_Id := Expression (N);
10591 Operand_Typ : constant Entity_Id := Etype (Operand);
10592 Target_Typ : constant Entity_Id := Etype (N);
10593 Rop : Node_Id;
10594 Orig_N : Node_Id;
10595 Orig_T : Node_Id;
10597 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10598 -- Set to False to suppress cases where we want to suppress the test
10599 -- for redundancy to avoid possible false positives on this warning.
10601 begin
10602 if not Conv_OK
10603 and then not Valid_Conversion (N, Target_Typ, Operand)
10604 then
10605 return;
10606 end if;
10608 -- If the Operand Etype is Universal_Fixed, then the conversion is
10609 -- never redundant. We need this check because by the time we have
10610 -- finished the rather complex transformation, the conversion looks
10611 -- redundant when it is not.
10613 if Operand_Typ = Universal_Fixed then
10614 Test_Redundant := False;
10616 -- If the operand is marked as Any_Fixed, then special processing is
10617 -- required. This is also a case where we suppress the test for a
10618 -- redundant conversion, since most certainly it is not redundant.
10620 elsif Operand_Typ = Any_Fixed then
10621 Test_Redundant := False;
10623 -- Mixed-mode operation involving a literal. Context must be a fixed
10624 -- type which is applied to the literal subsequently.
10626 if Is_Fixed_Point_Type (Typ) then
10627 Set_Etype (Operand, Universal_Real);
10629 elsif Is_Numeric_Type (Typ)
10630 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10631 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10632 or else
10633 Etype (Left_Opnd (Operand)) = Universal_Real)
10634 then
10635 -- Return if expression is ambiguous
10637 if Unique_Fixed_Point_Type (N) = Any_Type then
10638 return;
10640 -- If nothing else, the available fixed type is Duration
10642 else
10643 Set_Etype (Operand, Standard_Duration);
10644 end if;
10646 -- Resolve the real operand with largest available precision
10648 if Etype (Right_Opnd (Operand)) = Universal_Real then
10649 Rop := New_Copy_Tree (Right_Opnd (Operand));
10650 else
10651 Rop := New_Copy_Tree (Left_Opnd (Operand));
10652 end if;
10654 Resolve (Rop, Universal_Real);
10656 -- If the operand is a literal (it could be a non-static and
10657 -- illegal exponentiation) check whether the use of Duration
10658 -- is potentially inaccurate.
10660 if Nkind (Rop) = N_Real_Literal
10661 and then Realval (Rop) /= Ureal_0
10662 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10663 then
10664 Error_Msg_N
10665 ("??universal real operand can only "
10666 & "be interpreted as Duration!", Rop);
10667 Error_Msg_N
10668 ("\??precision will be lost in the conversion!", Rop);
10669 end if;
10671 elsif Is_Numeric_Type (Typ)
10672 and then Nkind (Operand) in N_Op
10673 and then Unique_Fixed_Point_Type (N) /= Any_Type
10674 then
10675 Set_Etype (Operand, Standard_Duration);
10677 else
10678 Error_Msg_N ("invalid context for mixed mode operation", N);
10679 Set_Etype (Operand, Any_Type);
10680 return;
10681 end if;
10682 end if;
10684 Resolve (Operand);
10686 -- In SPARK, a type conversion between array types should be restricted
10687 -- to types which have matching static bounds.
10689 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10690 -- operation if not needed.
10692 if Restriction_Check_Required (SPARK_05)
10693 and then Is_Array_Type (Target_Typ)
10694 and then Is_Array_Type (Operand_Typ)
10695 and then Operand_Typ /= Any_Composite -- or else Operand in error
10696 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10697 then
10698 Check_SPARK_05_Restriction
10699 ("array types should have matching static bounds", N);
10700 end if;
10702 -- In formal mode, the operand of an ancestor type conversion must be an
10703 -- object (not an expression).
10705 if Is_Tagged_Type (Target_Typ)
10706 and then not Is_Class_Wide_Type (Target_Typ)
10707 and then Is_Tagged_Type (Operand_Typ)
10708 and then not Is_Class_Wide_Type (Operand_Typ)
10709 and then Is_Ancestor (Target_Typ, Operand_Typ)
10710 and then not Is_SPARK_05_Object_Reference (Operand)
10711 then
10712 Check_SPARK_05_Restriction ("object required", Operand);
10713 end if;
10715 Analyze_Dimension (N);
10717 -- Note: we do the Eval_Type_Conversion call before applying the
10718 -- required checks for a subtype conversion. This is important, since
10719 -- both are prepared under certain circumstances to change the type
10720 -- conversion to a constraint error node, but in the case of
10721 -- Eval_Type_Conversion this may reflect an illegality in the static
10722 -- case, and we would miss the illegality (getting only a warning
10723 -- message), if we applied the type conversion checks first.
10725 Eval_Type_Conversion (N);
10727 -- Even when evaluation is not possible, we may be able to simplify the
10728 -- conversion or its expression. This needs to be done before applying
10729 -- checks, since otherwise the checks may use the original expression
10730 -- and defeat the simplifications. This is specifically the case for
10731 -- elimination of the floating-point Truncation attribute in
10732 -- float-to-int conversions.
10734 Simplify_Type_Conversion (N);
10736 -- If after evaluation we still have a type conversion, then we may need
10737 -- to apply checks required for a subtype conversion.
10739 -- Skip these type conversion checks if universal fixed operands
10740 -- operands involved, since range checks are handled separately for
10741 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10743 if Nkind (N) = N_Type_Conversion
10744 and then not Is_Generic_Type (Root_Type (Target_Typ))
10745 and then Target_Typ /= Universal_Fixed
10746 and then Operand_Typ /= Universal_Fixed
10747 then
10748 Apply_Type_Conversion_Checks (N);
10749 end if;
10751 -- Issue warning for conversion of simple object to its own type. We
10752 -- have to test the original nodes, since they may have been rewritten
10753 -- by various optimizations.
10755 Orig_N := Original_Node (N);
10757 -- Here we test for a redundant conversion if the warning mode is
10758 -- active (and was not locally reset), and we have a type conversion
10759 -- from source not appearing in a generic instance.
10761 if Test_Redundant
10762 and then Nkind (Orig_N) = N_Type_Conversion
10763 and then Comes_From_Source (Orig_N)
10764 and then not In_Instance
10765 then
10766 Orig_N := Original_Node (Expression (Orig_N));
10767 Orig_T := Target_Typ;
10769 -- If the node is part of a larger expression, the Target_Type
10770 -- may not be the original type of the node if the context is a
10771 -- condition. Recover original type to see if conversion is needed.
10773 if Is_Boolean_Type (Orig_T)
10774 and then Nkind (Parent (N)) in N_Op
10775 then
10776 Orig_T := Etype (Parent (N));
10777 end if;
10779 -- If we have an entity name, then give the warning if the entity
10780 -- is the right type, or if it is a loop parameter covered by the
10781 -- original type (that's needed because loop parameters have an
10782 -- odd subtype coming from the bounds).
10784 if (Is_Entity_Name (Orig_N)
10785 and then
10786 (Etype (Entity (Orig_N)) = Orig_T
10787 or else
10788 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10789 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10791 -- If not an entity, then type of expression must match
10793 or else Etype (Orig_N) = Orig_T
10794 then
10795 -- One more check, do not give warning if the analyzed conversion
10796 -- has an expression with non-static bounds, and the bounds of the
10797 -- target are static. This avoids junk warnings in cases where the
10798 -- conversion is necessary to establish staticness, for example in
10799 -- a case statement.
10801 if not Is_OK_Static_Subtype (Operand_Typ)
10802 and then Is_OK_Static_Subtype (Target_Typ)
10803 then
10804 null;
10806 -- Finally, if this type conversion occurs in a context requiring
10807 -- a prefix, and the expression is a qualified expression then the
10808 -- type conversion is not redundant, since a qualified expression
10809 -- is not a prefix, whereas a type conversion is. For example, "X
10810 -- := T'(Funx(...)).Y;" is illegal because a selected component
10811 -- requires a prefix, but a type conversion makes it legal: "X :=
10812 -- T(T'(Funx(...))).Y;"
10814 -- In Ada 2012, a qualified expression is a name, so this idiom is
10815 -- no longer needed, but we still suppress the warning because it
10816 -- seems unfriendly for warnings to pop up when you switch to the
10817 -- newer language version.
10819 elsif Nkind (Orig_N) = N_Qualified_Expression
10820 and then Nkind_In (Parent (N), N_Attribute_Reference,
10821 N_Indexed_Component,
10822 N_Selected_Component,
10823 N_Slice,
10824 N_Explicit_Dereference)
10825 then
10826 null;
10828 -- Never warn on conversion to Long_Long_Integer'Base since
10829 -- that is most likely an artifact of the extended overflow
10830 -- checking and comes from complex expanded code.
10832 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10833 null;
10835 -- Here we give the redundant conversion warning. If it is an
10836 -- entity, give the name of the entity in the message. If not,
10837 -- just mention the expression.
10839 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10841 else
10842 if Is_Entity_Name (Orig_N) then
10843 Error_Msg_Node_2 := Orig_T;
10844 Error_Msg_NE -- CODEFIX
10845 ("??redundant conversion, & is of type &!",
10846 N, Entity (Orig_N));
10847 else
10848 Error_Msg_NE
10849 ("??redundant conversion, expression is of type&!",
10850 N, Orig_T);
10851 end if;
10852 end if;
10853 end if;
10854 end if;
10856 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10857 -- No need to perform any interface conversion if the type of the
10858 -- expression coincides with the target type.
10860 if Ada_Version >= Ada_2005
10861 and then Expander_Active
10862 and then Operand_Typ /= Target_Typ
10863 then
10864 declare
10865 Opnd : Entity_Id := Operand_Typ;
10866 Target : Entity_Id := Target_Typ;
10868 begin
10869 -- If the type of the operand is a limited view, use nonlimited
10870 -- view when available. If it is a class-wide type, recover the
10871 -- class-wide type of the nonlimited view.
10873 if From_Limited_With (Opnd)
10874 and then Has_Non_Limited_View (Opnd)
10875 then
10876 Opnd := Non_Limited_View (Opnd);
10877 Set_Etype (Expression (N), Opnd);
10878 end if;
10880 if Is_Access_Type (Opnd) then
10881 Opnd := Designated_Type (Opnd);
10882 end if;
10884 if Is_Access_Type (Target_Typ) then
10885 Target := Designated_Type (Target);
10886 end if;
10888 if Opnd = Target then
10889 null;
10891 -- Conversion from interface type
10893 elsif Is_Interface (Opnd) then
10895 -- Ada 2005 (AI-217): Handle entities from limited views
10897 if From_Limited_With (Opnd) then
10898 Error_Msg_Qual_Level := 99;
10899 Error_Msg_NE -- CODEFIX
10900 ("missing WITH clause on package &", N,
10901 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10902 Error_Msg_N
10903 ("type conversions require visibility of the full view",
10906 elsif From_Limited_With (Target)
10907 and then not
10908 (Is_Access_Type (Target_Typ)
10909 and then Present (Non_Limited_View (Etype (Target))))
10910 then
10911 Error_Msg_Qual_Level := 99;
10912 Error_Msg_NE -- CODEFIX
10913 ("missing WITH clause on package &", N,
10914 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10915 Error_Msg_N
10916 ("type conversions require visibility of the full view",
10919 else
10920 Expand_Interface_Conversion (N);
10921 end if;
10923 -- Conversion to interface type
10925 elsif Is_Interface (Target) then
10927 -- Handle subtypes
10929 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10930 Opnd := Etype (Opnd);
10931 end if;
10933 if Is_Class_Wide_Type (Opnd)
10934 or else Interface_Present_In_Ancestor
10935 (Typ => Opnd,
10936 Iface => Target)
10937 then
10938 Expand_Interface_Conversion (N);
10939 else
10940 Error_Msg_Name_1 := Chars (Etype (Target));
10941 Error_Msg_Name_2 := Chars (Opnd);
10942 Error_Msg_N
10943 ("wrong interface conversion (% is not a progenitor "
10944 & "of %)", N);
10945 end if;
10946 end if;
10947 end;
10948 end if;
10950 -- Ada 2012: if target type has predicates, the result requires a
10951 -- predicate check. If the context is a call to another predicate
10952 -- check we must prevent infinite recursion.
10954 if Has_Predicates (Target_Typ) then
10955 if Nkind (Parent (N)) = N_Function_Call
10956 and then Present (Name (Parent (N)))
10957 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10958 or else
10959 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10960 then
10961 null;
10963 else
10964 Apply_Predicate_Check (N, Target_Typ);
10965 end if;
10966 end if;
10968 -- If at this stage we have a real to integer conversion, make sure
10969 -- that the Do_Range_Check flag is set, because such conversions in
10970 -- general need a range check. We only need this if expansion is off
10971 -- or we are in GNATProve mode.
10973 if Nkind (N) = N_Type_Conversion
10974 and then (GNATprove_Mode or not Expander_Active)
10975 and then Is_Integer_Type (Target_Typ)
10976 and then Is_Real_Type (Operand_Typ)
10977 then
10978 Set_Do_Range_Check (Operand);
10979 end if;
10981 -- Generating C code a type conversion of an access to constrained
10982 -- array type to access to unconstrained array type involves building
10983 -- a fat pointer which in general cannot be generated on the fly. We
10984 -- remove side effects in order to store the result of the conversion
10985 -- into a temporary.
10987 if Generate_C_Code
10988 and then Nkind (N) = N_Type_Conversion
10989 and then Nkind (Parent (N)) /= N_Object_Declaration
10990 and then Is_Access_Type (Etype (N))
10991 and then Is_Array_Type (Designated_Type (Etype (N)))
10992 and then not Is_Constrained (Designated_Type (Etype (N)))
10993 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
10994 then
10995 Remove_Side_Effects (N);
10996 end if;
10997 end Resolve_Type_Conversion;
10999 ----------------------
11000 -- Resolve_Unary_Op --
11001 ----------------------
11003 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11004 B_Typ : constant Entity_Id := Base_Type (Typ);
11005 R : constant Node_Id := Right_Opnd (N);
11006 OK : Boolean;
11007 Lo : Uint;
11008 Hi : Uint;
11010 begin
11011 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11012 Error_Msg_Name_1 := Chars (Typ);
11013 Check_SPARK_05_Restriction
11014 ("unary operator not defined for modular type%", N);
11015 end if;
11017 -- Deal with intrinsic unary operators
11019 if Comes_From_Source (N)
11020 and then Ekind (Entity (N)) = E_Function
11021 and then Is_Imported (Entity (N))
11022 and then Is_Intrinsic_Subprogram (Entity (N))
11023 then
11024 Resolve_Intrinsic_Unary_Operator (N, Typ);
11025 return;
11026 end if;
11028 -- Deal with universal cases
11030 if Etype (R) = Universal_Integer
11031 or else
11032 Etype (R) = Universal_Real
11033 then
11034 Check_For_Visible_Operator (N, B_Typ);
11035 end if;
11037 Set_Etype (N, B_Typ);
11038 Resolve (R, B_Typ);
11040 -- Generate warning for expressions like abs (x mod 2)
11042 if Warn_On_Redundant_Constructs
11043 and then Nkind (N) = N_Op_Abs
11044 then
11045 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11047 if OK and then Hi >= Lo and then Lo >= 0 then
11048 Error_Msg_N -- CODEFIX
11049 ("?r?abs applied to known non-negative value has no effect", N);
11050 end if;
11051 end if;
11053 -- Deal with reference generation
11055 Check_Unset_Reference (R);
11056 Generate_Operator_Reference (N, B_Typ);
11057 Analyze_Dimension (N);
11058 Eval_Unary_Op (N);
11060 -- Set overflow checking bit. Much cleverer code needed here eventually
11061 -- and perhaps the Resolve routines should be separated for the various
11062 -- arithmetic operations, since they will need different processing ???
11064 if Nkind (N) in N_Op then
11065 if not Overflow_Checks_Suppressed (Etype (N)) then
11066 Enable_Overflow_Check (N);
11067 end if;
11068 end if;
11070 -- Generate warning for expressions like -5 mod 3 for integers. No need
11071 -- to worry in the floating-point case, since parens do not affect the
11072 -- result so there is no point in giving in a warning.
11074 declare
11075 Norig : constant Node_Id := Original_Node (N);
11076 Rorig : Node_Id;
11077 Val : Uint;
11078 HB : Uint;
11079 LB : Uint;
11080 Lval : Uint;
11081 Opnd : Node_Id;
11083 begin
11084 if Warn_On_Questionable_Missing_Parens
11085 and then Comes_From_Source (Norig)
11086 and then Is_Integer_Type (Typ)
11087 and then Nkind (Norig) = N_Op_Minus
11088 then
11089 Rorig := Original_Node (Right_Opnd (Norig));
11091 -- We are looking for cases where the right operand is not
11092 -- parenthesized, and is a binary operator, multiply, divide, or
11093 -- mod. These are the cases where the grouping can affect results.
11095 if Paren_Count (Rorig) = 0
11096 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11097 then
11098 -- For mod, we always give the warning, since the value is
11099 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11100 -- -(5 mod 315)). But for the other cases, the only concern is
11101 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11102 -- overflows, but (-2) * 64 does not). So we try to give the
11103 -- message only when overflow is possible.
11105 if Nkind (Rorig) /= N_Op_Mod
11106 and then Compile_Time_Known_Value (R)
11107 then
11108 Val := Expr_Value (R);
11110 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11111 HB := Expr_Value (Type_High_Bound (Typ));
11112 else
11113 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11114 end if;
11116 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11117 LB := Expr_Value (Type_Low_Bound (Typ));
11118 else
11119 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11120 end if;
11122 -- Note that the test below is deliberately excluding the
11123 -- largest negative number, since that is a potentially
11124 -- troublesome case (e.g. -2 * x, where the result is the
11125 -- largest negative integer has an overflow with 2 * x).
11127 if Val > LB and then Val <= HB then
11128 return;
11129 end if;
11130 end if;
11132 -- For the multiplication case, the only case we have to worry
11133 -- about is when (-a)*b is exactly the largest negative number
11134 -- so that -(a*b) can cause overflow. This can only happen if
11135 -- a is a power of 2, and more generally if any operand is a
11136 -- constant that is not a power of 2, then the parentheses
11137 -- cannot affect whether overflow occurs. We only bother to
11138 -- test the left most operand
11140 -- Loop looking at left operands for one that has known value
11142 Opnd := Rorig;
11143 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11144 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11145 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11147 -- Operand value of 0 or 1 skips warning
11149 if Lval <= 1 then
11150 return;
11152 -- Otherwise check power of 2, if power of 2, warn, if
11153 -- anything else, skip warning.
11155 else
11156 while Lval /= 2 loop
11157 if Lval mod 2 = 1 then
11158 return;
11159 else
11160 Lval := Lval / 2;
11161 end if;
11162 end loop;
11164 exit Opnd_Loop;
11165 end if;
11166 end if;
11168 -- Keep looking at left operands
11170 Opnd := Left_Opnd (Opnd);
11171 end loop Opnd_Loop;
11173 -- For rem or "/" we can only have a problematic situation
11174 -- if the divisor has a value of minus one or one. Otherwise
11175 -- overflow is impossible (divisor > 1) or we have a case of
11176 -- division by zero in any case.
11178 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11179 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11180 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11181 then
11182 return;
11183 end if;
11185 -- If we fall through warning should be issued
11187 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11189 Error_Msg_N
11190 ("??unary minus expression should be parenthesized here!", N);
11191 end if;
11192 end if;
11193 end;
11194 end Resolve_Unary_Op;
11196 ----------------------------------
11197 -- Resolve_Unchecked_Expression --
11198 ----------------------------------
11200 procedure Resolve_Unchecked_Expression
11201 (N : Node_Id;
11202 Typ : Entity_Id)
11204 begin
11205 Resolve (Expression (N), Typ, Suppress => All_Checks);
11206 Set_Etype (N, Typ);
11207 end Resolve_Unchecked_Expression;
11209 ---------------------------------------
11210 -- Resolve_Unchecked_Type_Conversion --
11211 ---------------------------------------
11213 procedure Resolve_Unchecked_Type_Conversion
11214 (N : Node_Id;
11215 Typ : Entity_Id)
11217 pragma Warnings (Off, Typ);
11219 Operand : constant Node_Id := Expression (N);
11220 Opnd_Type : constant Entity_Id := Etype (Operand);
11222 begin
11223 -- Resolve operand using its own type
11225 Resolve (Operand, Opnd_Type);
11227 -- In an inlined context, the unchecked conversion may be applied
11228 -- to a literal, in which case its type is the type of the context.
11229 -- (In other contexts conversions cannot apply to literals).
11231 if In_Inlined_Body
11232 and then (Opnd_Type = Any_Character or else
11233 Opnd_Type = Any_Integer or else
11234 Opnd_Type = Any_Real)
11235 then
11236 Set_Etype (Operand, Typ);
11237 end if;
11239 Analyze_Dimension (N);
11240 Eval_Unchecked_Conversion (N);
11241 end Resolve_Unchecked_Type_Conversion;
11243 ------------------------------
11244 -- Rewrite_Operator_As_Call --
11245 ------------------------------
11247 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11248 Loc : constant Source_Ptr := Sloc (N);
11249 Actuals : constant List_Id := New_List;
11250 New_N : Node_Id;
11252 begin
11253 if Nkind (N) in N_Binary_Op then
11254 Append (Left_Opnd (N), Actuals);
11255 end if;
11257 Append (Right_Opnd (N), Actuals);
11259 New_N :=
11260 Make_Function_Call (Sloc => Loc,
11261 Name => New_Occurrence_Of (Nam, Loc),
11262 Parameter_Associations => Actuals);
11264 Preserve_Comes_From_Source (New_N, N);
11265 Preserve_Comes_From_Source (Name (New_N), N);
11266 Rewrite (N, New_N);
11267 Set_Etype (N, Etype (Nam));
11268 end Rewrite_Operator_As_Call;
11270 ------------------------------
11271 -- Rewrite_Renamed_Operator --
11272 ------------------------------
11274 procedure Rewrite_Renamed_Operator
11275 (N : Node_Id;
11276 Op : Entity_Id;
11277 Typ : Entity_Id)
11279 Nam : constant Name_Id := Chars (Op);
11280 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11281 Op_Node : Node_Id;
11283 begin
11284 -- Do not perform this transformation within a pre/postcondition,
11285 -- because the expression will be re-analyzed, and the transformation
11286 -- might affect the visibility of the operator, e.g. in an instance.
11287 -- Note that fully analyzed and expanded pre/postconditions appear as
11288 -- pragma Check equivalents.
11290 if In_Pre_Post_Condition (N) then
11291 return;
11292 end if;
11294 -- Rewrite the operator node using the real operator, not its renaming.
11295 -- Exclude user-defined intrinsic operations of the same name, which are
11296 -- treated separately and rewritten as calls.
11298 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11299 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11300 Set_Chars (Op_Node, Nam);
11301 Set_Etype (Op_Node, Etype (N));
11302 Set_Entity (Op_Node, Op);
11303 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11305 -- Indicate that both the original entity and its renaming are
11306 -- referenced at this point.
11308 Generate_Reference (Entity (N), N);
11309 Generate_Reference (Op, N);
11311 if Is_Binary then
11312 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11313 end if;
11315 Rewrite (N, Op_Node);
11317 -- If the context type is private, add the appropriate conversions so
11318 -- that the operator is applied to the full view. This is done in the
11319 -- routines that resolve intrinsic operators.
11321 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11322 case Nkind (N) is
11323 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11324 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
11325 Resolve_Intrinsic_Operator (N, Typ);
11327 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
11328 Resolve_Intrinsic_Unary_Operator (N, Typ);
11330 when others =>
11331 Resolve (N, Typ);
11332 end case;
11333 end if;
11335 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11337 -- Operator renames a user-defined operator of the same name. Use the
11338 -- original operator in the node, which is the one Gigi knows about.
11340 Set_Entity (N, Op);
11341 Set_Is_Overloaded (N, False);
11342 end if;
11343 end Rewrite_Renamed_Operator;
11345 -----------------------
11346 -- Set_Slice_Subtype --
11347 -----------------------
11349 -- Build an implicit subtype declaration to represent the type delivered by
11350 -- the slice. This is an abbreviated version of an array subtype. We define
11351 -- an index subtype for the slice, using either the subtype name or the
11352 -- discrete range of the slice. To be consistent with index usage elsewhere
11353 -- we create a list header to hold the single index. This list is not
11354 -- otherwise attached to the syntax tree.
11356 procedure Set_Slice_Subtype (N : Node_Id) is
11357 Loc : constant Source_Ptr := Sloc (N);
11358 Index_List : constant List_Id := New_List;
11359 Index : Node_Id;
11360 Index_Subtype : Entity_Id;
11361 Index_Type : Entity_Id;
11362 Slice_Subtype : Entity_Id;
11363 Drange : constant Node_Id := Discrete_Range (N);
11365 begin
11366 Index_Type := Base_Type (Etype (Drange));
11368 if Is_Entity_Name (Drange) then
11369 Index_Subtype := Entity (Drange);
11371 else
11372 -- We force the evaluation of a range. This is definitely needed in
11373 -- the renamed case, and seems safer to do unconditionally. Note in
11374 -- any case that since we will create and insert an Itype referring
11375 -- to this range, we must make sure any side effect removal actions
11376 -- are inserted before the Itype definition.
11378 if Nkind (Drange) = N_Range then
11379 Force_Evaluation (Low_Bound (Drange));
11380 Force_Evaluation (High_Bound (Drange));
11382 -- If the discrete range is given by a subtype indication, the
11383 -- type of the slice is the base of the subtype mark.
11385 elsif Nkind (Drange) = N_Subtype_Indication then
11386 declare
11387 R : constant Node_Id := Range_Expression (Constraint (Drange));
11388 begin
11389 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11390 Force_Evaluation (Low_Bound (R));
11391 Force_Evaluation (High_Bound (R));
11392 end;
11393 end if;
11395 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11397 -- Take a new copy of Drange (where bounds have been rewritten to
11398 -- reference side-effect-free names). Using a separate tree ensures
11399 -- that further expansion (e.g. while rewriting a slice assignment
11400 -- into a FOR loop) does not attempt to remove side effects on the
11401 -- bounds again (which would cause the bounds in the index subtype
11402 -- definition to refer to temporaries before they are defined) (the
11403 -- reason is that some names are considered side effect free here
11404 -- for the subtype, but not in the context of a loop iteration
11405 -- scheme).
11407 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11408 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11409 Set_Etype (Index_Subtype, Index_Type);
11410 Set_Size_Info (Index_Subtype, Index_Type);
11411 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11412 end if;
11414 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11416 Index := New_Occurrence_Of (Index_Subtype, Loc);
11417 Set_Etype (Index, Index_Subtype);
11418 Append (Index, Index_List);
11420 Set_First_Index (Slice_Subtype, Index);
11421 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11422 Set_Is_Constrained (Slice_Subtype, True);
11424 Check_Compile_Time_Size (Slice_Subtype);
11426 -- The Etype of the existing Slice node is reset to this slice subtype.
11427 -- Its bounds are obtained from its first index.
11429 Set_Etype (N, Slice_Subtype);
11431 -- For packed slice subtypes, freeze immediately (except in the case of
11432 -- being in a "spec expression" where we never freeze when we first see
11433 -- the expression).
11435 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11436 Freeze_Itype (Slice_Subtype, N);
11438 -- For all other cases insert an itype reference in the slice's actions
11439 -- so that the itype is frozen at the proper place in the tree (i.e. at
11440 -- the point where actions for the slice are analyzed). Note that this
11441 -- is different from freezing the itype immediately, which might be
11442 -- premature (e.g. if the slice is within a transient scope). This needs
11443 -- to be done only if expansion is enabled.
11445 elsif Expander_Active then
11446 Ensure_Defined (Typ => Slice_Subtype, N => N);
11447 end if;
11448 end Set_Slice_Subtype;
11450 --------------------------------
11451 -- Set_String_Literal_Subtype --
11452 --------------------------------
11454 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11455 Loc : constant Source_Ptr := Sloc (N);
11456 Low_Bound : constant Node_Id :=
11457 Type_Low_Bound (Etype (First_Index (Typ)));
11458 Subtype_Id : Entity_Id;
11460 begin
11461 if Nkind (N) /= N_String_Literal then
11462 return;
11463 end if;
11465 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11466 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11467 (String_Length (Strval (N))));
11468 Set_Etype (Subtype_Id, Base_Type (Typ));
11469 Set_Is_Constrained (Subtype_Id);
11470 Set_Etype (N, Subtype_Id);
11472 -- The low bound is set from the low bound of the corresponding index
11473 -- type. Note that we do not store the high bound in the string literal
11474 -- subtype, but it can be deduced if necessary from the length and the
11475 -- low bound.
11477 if Is_OK_Static_Expression (Low_Bound) then
11478 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11480 -- If the lower bound is not static we create a range for the string
11481 -- literal, using the index type and the known length of the literal.
11482 -- The index type is not necessarily Positive, so the upper bound is
11483 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11485 else
11486 declare
11487 Index_List : constant List_Id := New_List;
11488 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11489 High_Bound : constant Node_Id :=
11490 Make_Attribute_Reference (Loc,
11491 Attribute_Name => Name_Val,
11492 Prefix =>
11493 New_Occurrence_Of (Index_Type, Loc),
11494 Expressions => New_List (
11495 Make_Op_Add (Loc,
11496 Left_Opnd =>
11497 Make_Attribute_Reference (Loc,
11498 Attribute_Name => Name_Pos,
11499 Prefix =>
11500 New_Occurrence_Of (Index_Type, Loc),
11501 Expressions =>
11502 New_List (New_Copy_Tree (Low_Bound))),
11503 Right_Opnd =>
11504 Make_Integer_Literal (Loc,
11505 String_Length (Strval (N)) - 1))));
11507 Array_Subtype : Entity_Id;
11508 Drange : Node_Id;
11509 Index : Node_Id;
11510 Index_Subtype : Entity_Id;
11512 begin
11513 if Is_Integer_Type (Index_Type) then
11514 Set_String_Literal_Low_Bound
11515 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11517 else
11518 -- If the index type is an enumeration type, build bounds
11519 -- expression with attributes.
11521 Set_String_Literal_Low_Bound
11522 (Subtype_Id,
11523 Make_Attribute_Reference (Loc,
11524 Attribute_Name => Name_First,
11525 Prefix =>
11526 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11527 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11528 end if;
11530 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11532 -- Build bona fide subtype for the string, and wrap it in an
11533 -- unchecked conversion, because the backend expects the
11534 -- String_Literal_Subtype to have a static lower bound.
11536 Index_Subtype :=
11537 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11538 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11539 Set_Scalar_Range (Index_Subtype, Drange);
11540 Set_Parent (Drange, N);
11541 Analyze_And_Resolve (Drange, Index_Type);
11543 -- In the context, the Index_Type may already have a constraint,
11544 -- so use common base type on string subtype. The base type may
11545 -- be used when generating attributes of the string, for example
11546 -- in the context of a slice assignment.
11548 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11549 Set_Size_Info (Index_Subtype, Index_Type);
11550 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11552 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11554 Index := New_Occurrence_Of (Index_Subtype, Loc);
11555 Set_Etype (Index, Index_Subtype);
11556 Append (Index, Index_List);
11558 Set_First_Index (Array_Subtype, Index);
11559 Set_Etype (Array_Subtype, Base_Type (Typ));
11560 Set_Is_Constrained (Array_Subtype, True);
11562 Rewrite (N,
11563 Make_Unchecked_Type_Conversion (Loc,
11564 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11565 Expression => Relocate_Node (N)));
11566 Set_Etype (N, Array_Subtype);
11567 end;
11568 end if;
11569 end Set_String_Literal_Subtype;
11571 ------------------------------
11572 -- Simplify_Type_Conversion --
11573 ------------------------------
11575 procedure Simplify_Type_Conversion (N : Node_Id) is
11576 begin
11577 if Nkind (N) = N_Type_Conversion then
11578 declare
11579 Operand : constant Node_Id := Expression (N);
11580 Target_Typ : constant Entity_Id := Etype (N);
11581 Opnd_Typ : constant Entity_Id := Etype (Operand);
11583 begin
11584 -- Special processing if the conversion is the expression of a
11585 -- Rounding or Truncation attribute reference. In this case we
11586 -- replace:
11588 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11590 -- by
11592 -- ityp (x)
11594 -- with the Float_Truncate flag set to False or True respectively,
11595 -- which is more efficient.
11597 if Is_Floating_Point_Type (Opnd_Typ)
11598 and then
11599 (Is_Integer_Type (Target_Typ)
11600 or else (Is_Fixed_Point_Type (Target_Typ)
11601 and then Conversion_OK (N)))
11602 and then Nkind (Operand) = N_Attribute_Reference
11603 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11604 Name_Truncation)
11605 then
11606 declare
11607 Truncate : constant Boolean :=
11608 Attribute_Name (Operand) = Name_Truncation;
11609 begin
11610 Rewrite (Operand,
11611 Relocate_Node (First (Expressions (Operand))));
11612 Set_Float_Truncate (N, Truncate);
11613 end;
11614 end if;
11615 end;
11616 end if;
11617 end Simplify_Type_Conversion;
11619 -----------------------------
11620 -- Unique_Fixed_Point_Type --
11621 -----------------------------
11623 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11624 T1 : Entity_Id := Empty;
11625 T2 : Entity_Id;
11626 Item : Node_Id;
11627 Scop : Entity_Id;
11629 procedure Fixed_Point_Error;
11630 -- Give error messages for true ambiguity. Messages are posted on node
11631 -- N, and entities T1, T2 are the possible interpretations.
11633 -----------------------
11634 -- Fixed_Point_Error --
11635 -----------------------
11637 procedure Fixed_Point_Error is
11638 begin
11639 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11640 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11641 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11642 end Fixed_Point_Error;
11644 -- Start of processing for Unique_Fixed_Point_Type
11646 begin
11647 -- The operations on Duration are visible, so Duration is always a
11648 -- possible interpretation.
11650 T1 := Standard_Duration;
11652 -- Look for fixed-point types in enclosing scopes
11654 Scop := Current_Scope;
11655 while Scop /= Standard_Standard loop
11656 T2 := First_Entity (Scop);
11657 while Present (T2) loop
11658 if Is_Fixed_Point_Type (T2)
11659 and then Current_Entity (T2) = T2
11660 and then Scope (Base_Type (T2)) = Scop
11661 then
11662 if Present (T1) then
11663 Fixed_Point_Error;
11664 return Any_Type;
11665 else
11666 T1 := T2;
11667 end if;
11668 end if;
11670 Next_Entity (T2);
11671 end loop;
11673 Scop := Scope (Scop);
11674 end loop;
11676 -- Look for visible fixed type declarations in the context
11678 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11679 while Present (Item) loop
11680 if Nkind (Item) = N_With_Clause then
11681 Scop := Entity (Name (Item));
11682 T2 := First_Entity (Scop);
11683 while Present (T2) loop
11684 if Is_Fixed_Point_Type (T2)
11685 and then Scope (Base_Type (T2)) = Scop
11686 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11687 then
11688 if Present (T1) then
11689 Fixed_Point_Error;
11690 return Any_Type;
11691 else
11692 T1 := T2;
11693 end if;
11694 end if;
11696 Next_Entity (T2);
11697 end loop;
11698 end if;
11700 Next (Item);
11701 end loop;
11703 if Nkind (N) = N_Real_Literal then
11704 Error_Msg_NE
11705 ("??real literal interpreted as }!", N, T1);
11706 else
11707 Error_Msg_NE
11708 ("??universal_fixed expression interpreted as }!", N, T1);
11709 end if;
11711 return T1;
11712 end Unique_Fixed_Point_Type;
11714 ----------------------
11715 -- Valid_Conversion --
11716 ----------------------
11718 function Valid_Conversion
11719 (N : Node_Id;
11720 Target : Entity_Id;
11721 Operand : Node_Id;
11722 Report_Errs : Boolean := True) return Boolean
11724 Target_Type : constant Entity_Id := Base_Type (Target);
11725 Opnd_Type : Entity_Id := Etype (Operand);
11726 Inc_Ancestor : Entity_Id;
11728 function Conversion_Check
11729 (Valid : Boolean;
11730 Msg : String) return Boolean;
11731 -- Little routine to post Msg if Valid is False, returns Valid value
11733 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11734 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11736 procedure Conversion_Error_NE
11737 (Msg : String;
11738 N : Node_Or_Entity_Id;
11739 E : Node_Or_Entity_Id);
11740 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11742 function Valid_Tagged_Conversion
11743 (Target_Type : Entity_Id;
11744 Opnd_Type : Entity_Id) return Boolean;
11745 -- Specifically test for validity of tagged conversions
11747 function Valid_Array_Conversion return Boolean;
11748 -- Check index and component conformance, and accessibility levels if
11749 -- the component types are anonymous access types (Ada 2005).
11751 ----------------------
11752 -- Conversion_Check --
11753 ----------------------
11755 function Conversion_Check
11756 (Valid : Boolean;
11757 Msg : String) return Boolean
11759 begin
11760 if not Valid
11762 -- A generic unit has already been analyzed and we have verified
11763 -- that a particular conversion is OK in that context. Since the
11764 -- instance is reanalyzed without relying on the relationships
11765 -- established during the analysis of the generic, it is possible
11766 -- to end up with inconsistent views of private types. Do not emit
11767 -- the error message in such cases. The rest of the machinery in
11768 -- Valid_Conversion still ensures the proper compatibility of
11769 -- target and operand types.
11771 and then not In_Instance
11772 then
11773 Conversion_Error_N (Msg, Operand);
11774 end if;
11776 return Valid;
11777 end Conversion_Check;
11779 ------------------------
11780 -- Conversion_Error_N --
11781 ------------------------
11783 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11784 begin
11785 if Report_Errs then
11786 Error_Msg_N (Msg, N);
11787 end if;
11788 end Conversion_Error_N;
11790 -------------------------
11791 -- Conversion_Error_NE --
11792 -------------------------
11794 procedure Conversion_Error_NE
11795 (Msg : String;
11796 N : Node_Or_Entity_Id;
11797 E : Node_Or_Entity_Id)
11799 begin
11800 if Report_Errs then
11801 Error_Msg_NE (Msg, N, E);
11802 end if;
11803 end Conversion_Error_NE;
11805 ----------------------------
11806 -- Valid_Array_Conversion --
11807 ----------------------------
11809 function Valid_Array_Conversion return Boolean
11811 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11812 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11814 Opnd_Index : Node_Id;
11815 Opnd_Index_Type : Entity_Id;
11817 Target_Comp_Type : constant Entity_Id :=
11818 Component_Type (Target_Type);
11819 Target_Comp_Base : constant Entity_Id :=
11820 Base_Type (Target_Comp_Type);
11822 Target_Index : Node_Id;
11823 Target_Index_Type : Entity_Id;
11825 begin
11826 -- Error if wrong number of dimensions
11829 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11830 then
11831 Conversion_Error_N
11832 ("incompatible number of dimensions for conversion", Operand);
11833 return False;
11835 -- Number of dimensions matches
11837 else
11838 -- Loop through indexes of the two arrays
11840 Target_Index := First_Index (Target_Type);
11841 Opnd_Index := First_Index (Opnd_Type);
11842 while Present (Target_Index) and then Present (Opnd_Index) loop
11843 Target_Index_Type := Etype (Target_Index);
11844 Opnd_Index_Type := Etype (Opnd_Index);
11846 -- Error if index types are incompatible
11848 if not (Is_Integer_Type (Target_Index_Type)
11849 and then Is_Integer_Type (Opnd_Index_Type))
11850 and then (Root_Type (Target_Index_Type)
11851 /= Root_Type (Opnd_Index_Type))
11852 then
11853 Conversion_Error_N
11854 ("incompatible index types for array conversion",
11855 Operand);
11856 return False;
11857 end if;
11859 Next_Index (Target_Index);
11860 Next_Index (Opnd_Index);
11861 end loop;
11863 -- If component types have same base type, all set
11865 if Target_Comp_Base = Opnd_Comp_Base then
11866 null;
11868 -- Here if base types of components are not the same. The only
11869 -- time this is allowed is if we have anonymous access types.
11871 -- The conversion of arrays of anonymous access types can lead
11872 -- to dangling pointers. AI-392 formalizes the accessibility
11873 -- checks that must be applied to such conversions to prevent
11874 -- out-of-scope references.
11876 elsif Ekind_In
11877 (Target_Comp_Base, E_Anonymous_Access_Type,
11878 E_Anonymous_Access_Subprogram_Type)
11879 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11880 and then
11881 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11882 then
11883 if Type_Access_Level (Target_Type) <
11884 Deepest_Type_Access_Level (Opnd_Type)
11885 then
11886 if In_Instance_Body then
11887 Error_Msg_Warn := SPARK_Mode /= On;
11888 Conversion_Error_N
11889 ("source array type has deeper accessibility "
11890 & "level than target<<", Operand);
11891 Conversion_Error_N ("\Program_Error [<<", Operand);
11892 Rewrite (N,
11893 Make_Raise_Program_Error (Sloc (N),
11894 Reason => PE_Accessibility_Check_Failed));
11895 Set_Etype (N, Target_Type);
11896 return False;
11898 -- Conversion not allowed because of accessibility levels
11900 else
11901 Conversion_Error_N
11902 ("source array type has deeper accessibility "
11903 & "level than target", Operand);
11904 return False;
11905 end if;
11907 else
11908 null;
11909 end if;
11911 -- All other cases where component base types do not match
11913 else
11914 Conversion_Error_N
11915 ("incompatible component types for array conversion",
11916 Operand);
11917 return False;
11918 end if;
11920 -- Check that component subtypes statically match. For numeric
11921 -- types this means that both must be either constrained or
11922 -- unconstrained. For enumeration types the bounds must match.
11923 -- All of this is checked in Subtypes_Statically_Match.
11925 if not Subtypes_Statically_Match
11926 (Target_Comp_Type, Opnd_Comp_Type)
11927 then
11928 Conversion_Error_N
11929 ("component subtypes must statically match", Operand);
11930 return False;
11931 end if;
11932 end if;
11934 return True;
11935 end Valid_Array_Conversion;
11937 -----------------------------
11938 -- Valid_Tagged_Conversion --
11939 -----------------------------
11941 function Valid_Tagged_Conversion
11942 (Target_Type : Entity_Id;
11943 Opnd_Type : Entity_Id) return Boolean
11945 begin
11946 -- Upward conversions are allowed (RM 4.6(22))
11948 if Covers (Target_Type, Opnd_Type)
11949 or else Is_Ancestor (Target_Type, Opnd_Type)
11950 then
11951 return True;
11953 -- Downward conversion are allowed if the operand is class-wide
11954 -- (RM 4.6(23)).
11956 elsif Is_Class_Wide_Type (Opnd_Type)
11957 and then Covers (Opnd_Type, Target_Type)
11958 then
11959 return True;
11961 elsif Covers (Opnd_Type, Target_Type)
11962 or else Is_Ancestor (Opnd_Type, Target_Type)
11963 then
11964 return
11965 Conversion_Check (False,
11966 "downward conversion of tagged objects not allowed");
11968 -- Ada 2005 (AI-251): The conversion to/from interface types is
11969 -- always valid. The types involved may be class-wide (sub)types.
11971 elsif Is_Interface (Etype (Base_Type (Target_Type)))
11972 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
11973 then
11974 return True;
11976 -- If the operand is a class-wide type obtained through a limited_
11977 -- with clause, and the context includes the nonlimited view, use
11978 -- it to determine whether the conversion is legal.
11980 elsif Is_Class_Wide_Type (Opnd_Type)
11981 and then From_Limited_With (Opnd_Type)
11982 and then Present (Non_Limited_View (Etype (Opnd_Type)))
11983 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11984 then
11985 return True;
11987 elsif Is_Access_Type (Opnd_Type)
11988 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11989 then
11990 return True;
11992 else
11993 Conversion_Error_NE
11994 ("invalid tagged conversion, not compatible with}",
11995 N, First_Subtype (Opnd_Type));
11996 return False;
11997 end if;
11998 end Valid_Tagged_Conversion;
12000 -- Start of processing for Valid_Conversion
12002 begin
12003 Check_Parameterless_Call (Operand);
12005 if Is_Overloaded (Operand) then
12006 declare
12007 I : Interp_Index;
12008 I1 : Interp_Index;
12009 It : Interp;
12010 It1 : Interp;
12011 N1 : Entity_Id;
12012 T1 : Entity_Id;
12014 begin
12015 -- Remove procedure calls, which syntactically cannot appear in
12016 -- this context, but which cannot be removed by type checking,
12017 -- because the context does not impose a type.
12019 -- The node may be labelled overloaded, but still contain only one
12020 -- interpretation because others were discarded earlier. If this
12021 -- is the case, retain the single interpretation if legal.
12023 Get_First_Interp (Operand, I, It);
12024 Opnd_Type := It.Typ;
12025 Get_Next_Interp (I, It);
12027 if Present (It.Typ)
12028 and then Opnd_Type /= Standard_Void_Type
12029 then
12030 -- More than one candidate interpretation is available
12032 Get_First_Interp (Operand, I, It);
12033 while Present (It.Typ) loop
12034 if It.Typ = Standard_Void_Type then
12035 Remove_Interp (I);
12036 end if;
12038 -- When compiling for a system where Address is of a visible
12039 -- integer type, spurious ambiguities can be produced when
12040 -- arithmetic operations have a literal operand and return
12041 -- System.Address or a descendant of it. These ambiguities
12042 -- are usually resolved by the context, but for conversions
12043 -- there is no context type and the removal of the spurious
12044 -- operations must be done explicitly here.
12046 if not Address_Is_Private
12047 and then Is_Descendant_Of_Address (It.Typ)
12048 then
12049 Remove_Interp (I);
12050 end if;
12052 Get_Next_Interp (I, It);
12053 end loop;
12054 end if;
12056 Get_First_Interp (Operand, I, It);
12057 I1 := I;
12058 It1 := It;
12060 if No (It.Typ) then
12061 Conversion_Error_N ("illegal operand in conversion", Operand);
12062 return False;
12063 end if;
12065 Get_Next_Interp (I, It);
12067 if Present (It.Typ) then
12068 N1 := It1.Nam;
12069 T1 := It1.Typ;
12070 It1 := Disambiguate (Operand, I1, I, Any_Type);
12072 if It1 = No_Interp then
12073 Conversion_Error_N
12074 ("ambiguous operand in conversion", Operand);
12076 -- If the interpretation involves a standard operator, use
12077 -- the location of the type, which may be user-defined.
12079 if Sloc (It.Nam) = Standard_Location then
12080 Error_Msg_Sloc := Sloc (It.Typ);
12081 else
12082 Error_Msg_Sloc := Sloc (It.Nam);
12083 end if;
12085 Conversion_Error_N -- CODEFIX
12086 ("\\possible interpretation#!", Operand);
12088 if Sloc (N1) = Standard_Location then
12089 Error_Msg_Sloc := Sloc (T1);
12090 else
12091 Error_Msg_Sloc := Sloc (N1);
12092 end if;
12094 Conversion_Error_N -- CODEFIX
12095 ("\\possible interpretation#!", Operand);
12097 return False;
12098 end if;
12099 end if;
12101 Set_Etype (Operand, It1.Typ);
12102 Opnd_Type := It1.Typ;
12103 end;
12104 end if;
12106 -- Deal with conversion of integer type to address if the pragma
12107 -- Allow_Integer_Address is in effect. We convert the conversion to
12108 -- an unchecked conversion in this case and we are all done.
12110 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12111 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12112 Analyze_And_Resolve (N, Target_Type);
12113 return True;
12114 end if;
12116 -- If we are within a child unit, check whether the type of the
12117 -- expression has an ancestor in a parent unit, in which case it
12118 -- belongs to its derivation class even if the ancestor is private.
12119 -- See RM 7.3.1 (5.2/3).
12121 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12123 -- Numeric types
12125 if Is_Numeric_Type (Target_Type) then
12127 -- A universal fixed expression can be converted to any numeric type
12129 if Opnd_Type = Universal_Fixed then
12130 return True;
12132 -- Also no need to check when in an instance or inlined body, because
12133 -- the legality has been established when the template was analyzed.
12134 -- Furthermore, numeric conversions may occur where only a private
12135 -- view of the operand type is visible at the instantiation point.
12136 -- This results in a spurious error if we check that the operand type
12137 -- is a numeric type.
12139 -- Note: in a previous version of this unit, the following tests were
12140 -- applied only for generated code (Comes_From_Source set to False),
12141 -- but in fact the test is required for source code as well, since
12142 -- this situation can arise in source code.
12144 elsif In_Instance or else In_Inlined_Body then
12145 return True;
12147 -- Otherwise we need the conversion check
12149 else
12150 return Conversion_Check
12151 (Is_Numeric_Type (Opnd_Type)
12152 or else
12153 (Present (Inc_Ancestor)
12154 and then Is_Numeric_Type (Inc_Ancestor)),
12155 "illegal operand for numeric conversion");
12156 end if;
12158 -- Array types
12160 elsif Is_Array_Type (Target_Type) then
12161 if not Is_Array_Type (Opnd_Type)
12162 or else Opnd_Type = Any_Composite
12163 or else Opnd_Type = Any_String
12164 then
12165 Conversion_Error_N
12166 ("illegal operand for array conversion", Operand);
12167 return False;
12169 else
12170 return Valid_Array_Conversion;
12171 end if;
12173 -- Ada 2005 (AI-251): Internally generated conversions of access to
12174 -- interface types added to force the displacement of the pointer to
12175 -- reference the corresponding dispatch table.
12177 elsif not Comes_From_Source (N)
12178 and then Is_Access_Type (Target_Type)
12179 and then Is_Interface (Designated_Type (Target_Type))
12180 then
12181 return True;
12183 -- Ada 2005 (AI-251): Anonymous access types where target references an
12184 -- interface type.
12186 elsif Is_Access_Type (Opnd_Type)
12187 and then Ekind_In (Target_Type, E_General_Access_Type,
12188 E_Anonymous_Access_Type)
12189 and then Is_Interface (Directly_Designated_Type (Target_Type))
12190 then
12191 -- Check the static accessibility rule of 4.6(17). Note that the
12192 -- check is not enforced when within an instance body, since the
12193 -- RM requires such cases to be caught at run time.
12195 -- If the operand is a rewriting of an allocator no check is needed
12196 -- because there are no accessibility issues.
12198 if Nkind (Original_Node (N)) = N_Allocator then
12199 null;
12201 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12202 if Type_Access_Level (Opnd_Type) >
12203 Deepest_Type_Access_Level (Target_Type)
12204 then
12205 -- In an instance, this is a run-time check, but one we know
12206 -- will fail, so generate an appropriate warning. The raise
12207 -- will be generated by Expand_N_Type_Conversion.
12209 if In_Instance_Body then
12210 Error_Msg_Warn := SPARK_Mode /= On;
12211 Conversion_Error_N
12212 ("cannot convert local pointer to non-local access type<<",
12213 Operand);
12214 Conversion_Error_N ("\Program_Error [<<", Operand);
12216 else
12217 Conversion_Error_N
12218 ("cannot convert local pointer to non-local access type",
12219 Operand);
12220 return False;
12221 end if;
12223 -- Special accessibility checks are needed in the case of access
12224 -- discriminants declared for a limited type.
12226 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12227 and then not Is_Local_Anonymous_Access (Opnd_Type)
12228 then
12229 -- When the operand is a selected access discriminant the check
12230 -- needs to be made against the level of the object denoted by
12231 -- the prefix of the selected name (Object_Access_Level handles
12232 -- checking the prefix of the operand for this case).
12234 if Nkind (Operand) = N_Selected_Component
12235 and then Object_Access_Level (Operand) >
12236 Deepest_Type_Access_Level (Target_Type)
12237 then
12238 -- In an instance, this is a run-time check, but one we know
12239 -- will fail, so generate an appropriate warning. The raise
12240 -- will be generated by Expand_N_Type_Conversion.
12242 if In_Instance_Body then
12243 Error_Msg_Warn := SPARK_Mode /= On;
12244 Conversion_Error_N
12245 ("cannot convert access discriminant to non-local "
12246 & "access type<<", Operand);
12247 Conversion_Error_N ("\Program_Error [<<", Operand);
12249 -- Real error if not in instance body
12251 else
12252 Conversion_Error_N
12253 ("cannot convert access discriminant to non-local "
12254 & "access type", Operand);
12255 return False;
12256 end if;
12257 end if;
12259 -- The case of a reference to an access discriminant from
12260 -- within a limited type declaration (which will appear as
12261 -- a discriminal) is always illegal because the level of the
12262 -- discriminant is considered to be deeper than any (nameable)
12263 -- access type.
12265 if Is_Entity_Name (Operand)
12266 and then not Is_Local_Anonymous_Access (Opnd_Type)
12267 and then
12268 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12269 and then Present (Discriminal_Link (Entity (Operand)))
12270 then
12271 Conversion_Error_N
12272 ("discriminant has deeper accessibility level than target",
12273 Operand);
12274 return False;
12275 end if;
12276 end if;
12277 end if;
12279 return True;
12281 -- General and anonymous access types
12283 elsif Ekind_In (Target_Type, E_General_Access_Type,
12284 E_Anonymous_Access_Type)
12285 and then
12286 Conversion_Check
12287 (Is_Access_Type (Opnd_Type)
12288 and then not
12289 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12290 E_Access_Protected_Subprogram_Type),
12291 "must be an access-to-object type")
12292 then
12293 if Is_Access_Constant (Opnd_Type)
12294 and then not Is_Access_Constant (Target_Type)
12295 then
12296 Conversion_Error_N
12297 ("access-to-constant operand type not allowed", Operand);
12298 return False;
12299 end if;
12301 -- Check the static accessibility rule of 4.6(17). Note that the
12302 -- check is not enforced when within an instance body, since the RM
12303 -- requires such cases to be caught at run time.
12305 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12306 or else Is_Local_Anonymous_Access (Target_Type)
12307 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12308 N_Object_Declaration
12309 then
12310 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12311 -- conversions from an anonymous access type to a named general
12312 -- access type. Such conversions are not allowed in the case of
12313 -- access parameters and stand-alone objects of an anonymous
12314 -- access type. The implicit conversion case is recognized by
12315 -- testing that Comes_From_Source is False and that it's been
12316 -- rewritten. The Comes_From_Source test isn't sufficient because
12317 -- nodes in inlined calls to predefined library routines can have
12318 -- Comes_From_Source set to False. (Is there a better way to test
12319 -- for implicit conversions???)
12321 if Ada_Version >= Ada_2012
12322 and then not Comes_From_Source (N)
12323 and then N /= Original_Node (N)
12324 and then Ekind (Target_Type) = E_General_Access_Type
12325 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12326 then
12327 if Is_Itype (Opnd_Type) then
12329 -- Implicit conversions aren't allowed for objects of an
12330 -- anonymous access type, since such objects have nonstatic
12331 -- levels in Ada 2012.
12333 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12334 N_Object_Declaration
12335 then
12336 Conversion_Error_N
12337 ("implicit conversion of stand-alone anonymous "
12338 & "access object not allowed", Operand);
12339 return False;
12341 -- Implicit conversions aren't allowed for anonymous access
12342 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12343 -- is done to exclude anonymous access results.
12345 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12346 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12347 N_Function_Specification,
12348 N_Procedure_Specification)
12349 then
12350 Conversion_Error_N
12351 ("implicit conversion of anonymous access formal "
12352 & "not allowed", Operand);
12353 return False;
12355 -- This is a case where there's an enclosing object whose
12356 -- to which the "statically deeper than" relationship does
12357 -- not apply (such as an access discriminant selected from
12358 -- a dereference of an access parameter).
12360 elsif Object_Access_Level (Operand)
12361 = Scope_Depth (Standard_Standard)
12362 then
12363 Conversion_Error_N
12364 ("implicit conversion of anonymous access value "
12365 & "not allowed", Operand);
12366 return False;
12368 -- In other cases, the level of the operand's type must be
12369 -- statically less deep than that of the target type, else
12370 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12372 elsif Type_Access_Level (Opnd_Type) >
12373 Deepest_Type_Access_Level (Target_Type)
12374 then
12375 Conversion_Error_N
12376 ("implicit conversion of anonymous access value "
12377 & "violates accessibility", Operand);
12378 return False;
12379 end if;
12380 end if;
12382 elsif Type_Access_Level (Opnd_Type) >
12383 Deepest_Type_Access_Level (Target_Type)
12384 then
12385 -- In an instance, this is a run-time check, but one we know
12386 -- will fail, so generate an appropriate warning. The raise
12387 -- will be generated by Expand_N_Type_Conversion.
12389 if In_Instance_Body then
12390 Error_Msg_Warn := SPARK_Mode /= On;
12391 Conversion_Error_N
12392 ("cannot convert local pointer to non-local access type<<",
12393 Operand);
12394 Conversion_Error_N ("\Program_Error [<<", Operand);
12396 -- If not in an instance body, this is a real error
12398 else
12399 -- Avoid generation of spurious error message
12401 if not Error_Posted (N) then
12402 Conversion_Error_N
12403 ("cannot convert local pointer to non-local access type",
12404 Operand);
12405 end if;
12407 return False;
12408 end if;
12410 -- Special accessibility checks are needed in the case of access
12411 -- discriminants declared for a limited type.
12413 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12414 and then not Is_Local_Anonymous_Access (Opnd_Type)
12415 then
12416 -- When the operand is a selected access discriminant the check
12417 -- needs to be made against the level of the object denoted by
12418 -- the prefix of the selected name (Object_Access_Level handles
12419 -- checking the prefix of the operand for this case).
12421 if Nkind (Operand) = N_Selected_Component
12422 and then Object_Access_Level (Operand) >
12423 Deepest_Type_Access_Level (Target_Type)
12424 then
12425 -- In an instance, this is a run-time check, but one we know
12426 -- will fail, so generate an appropriate warning. The raise
12427 -- will be generated by Expand_N_Type_Conversion.
12429 if In_Instance_Body then
12430 Error_Msg_Warn := SPARK_Mode /= On;
12431 Conversion_Error_N
12432 ("cannot convert access discriminant to non-local "
12433 & "access type<<", Operand);
12434 Conversion_Error_N ("\Program_Error [<<", Operand);
12436 -- If not in an instance body, this is a real error
12438 else
12439 Conversion_Error_N
12440 ("cannot convert access discriminant to non-local "
12441 & "access type", Operand);
12442 return False;
12443 end if;
12444 end if;
12446 -- The case of a reference to an access discriminant from
12447 -- within a limited type declaration (which will appear as
12448 -- a discriminal) is always illegal because the level of the
12449 -- discriminant is considered to be deeper than any (nameable)
12450 -- access type.
12452 if Is_Entity_Name (Operand)
12453 and then
12454 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12455 and then Present (Discriminal_Link (Entity (Operand)))
12456 then
12457 Conversion_Error_N
12458 ("discriminant has deeper accessibility level than target",
12459 Operand);
12460 return False;
12461 end if;
12462 end if;
12463 end if;
12465 -- In the presence of limited_with clauses we have to use nonlimited
12466 -- views, if available.
12468 Check_Limited : declare
12469 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12470 -- Helper function to handle limited views
12472 --------------------------
12473 -- Full_Designated_Type --
12474 --------------------------
12476 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12477 Desig : constant Entity_Id := Designated_Type (T);
12479 begin
12480 -- Handle the limited view of a type
12482 if From_Limited_With (Desig)
12483 and then Has_Non_Limited_View (Desig)
12484 then
12485 return Available_View (Desig);
12486 else
12487 return Desig;
12488 end if;
12489 end Full_Designated_Type;
12491 -- Local Declarations
12493 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12494 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12496 Same_Base : constant Boolean :=
12497 Base_Type (Target) = Base_Type (Opnd);
12499 -- Start of processing for Check_Limited
12501 begin
12502 if Is_Tagged_Type (Target) then
12503 return Valid_Tagged_Conversion (Target, Opnd);
12505 else
12506 if not Same_Base then
12507 Conversion_Error_NE
12508 ("target designated type not compatible with }",
12509 N, Base_Type (Opnd));
12510 return False;
12512 -- Ada 2005 AI-384: legality rule is symmetric in both
12513 -- designated types. The conversion is legal (with possible
12514 -- constraint check) if either designated type is
12515 -- unconstrained.
12517 elsif Subtypes_Statically_Match (Target, Opnd)
12518 or else
12519 (Has_Discriminants (Target)
12520 and then
12521 (not Is_Constrained (Opnd)
12522 or else not Is_Constrained (Target)))
12523 then
12524 -- Special case, if Value_Size has been used to make the
12525 -- sizes different, the conversion is not allowed even
12526 -- though the subtypes statically match.
12528 if Known_Static_RM_Size (Target)
12529 and then Known_Static_RM_Size (Opnd)
12530 and then RM_Size (Target) /= RM_Size (Opnd)
12531 then
12532 Conversion_Error_NE
12533 ("target designated subtype not compatible with }",
12534 N, Opnd);
12535 Conversion_Error_NE
12536 ("\because sizes of the two designated subtypes differ",
12537 N, Opnd);
12538 return False;
12540 -- Normal case where conversion is allowed
12542 else
12543 return True;
12544 end if;
12546 else
12547 Error_Msg_NE
12548 ("target designated subtype not compatible with }",
12549 N, Opnd);
12550 return False;
12551 end if;
12552 end if;
12553 end Check_Limited;
12555 -- Access to subprogram types. If the operand is an access parameter,
12556 -- the type has a deeper accessibility that any master, and cannot be
12557 -- assigned. We must make an exception if the conversion is part of an
12558 -- assignment and the target is the return object of an extended return
12559 -- statement, because in that case the accessibility check takes place
12560 -- after the return.
12562 elsif Is_Access_Subprogram_Type (Target_Type)
12564 -- Note: this test of Opnd_Type is there to prevent entering this
12565 -- branch in the case of a remote access to subprogram type, which
12566 -- is internally represented as an E_Record_Type.
12568 and then Is_Access_Type (Opnd_Type)
12569 then
12570 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12571 and then Is_Entity_Name (Operand)
12572 and then Ekind (Entity (Operand)) = E_In_Parameter
12573 and then
12574 (Nkind (Parent (N)) /= N_Assignment_Statement
12575 or else not Is_Entity_Name (Name (Parent (N)))
12576 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12577 then
12578 Conversion_Error_N
12579 ("illegal attempt to store anonymous access to subprogram",
12580 Operand);
12581 Conversion_Error_N
12582 ("\value has deeper accessibility than any master "
12583 & "(RM 3.10.2 (13))",
12584 Operand);
12586 Error_Msg_NE
12587 ("\use named access type for& instead of access parameter",
12588 Operand, Entity (Operand));
12589 end if;
12591 -- Check that the designated types are subtype conformant
12593 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12594 Old_Id => Designated_Type (Opnd_Type),
12595 Err_Loc => N);
12597 -- Check the static accessibility rule of 4.6(20)
12599 if Type_Access_Level (Opnd_Type) >
12600 Deepest_Type_Access_Level (Target_Type)
12601 then
12602 Conversion_Error_N
12603 ("operand type has deeper accessibility level than target",
12604 Operand);
12606 -- Check that if the operand type is declared in a generic body,
12607 -- then the target type must be declared within that same body
12608 -- (enforces last sentence of 4.6(20)).
12610 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12611 declare
12612 O_Gen : constant Node_Id :=
12613 Enclosing_Generic_Body (Opnd_Type);
12615 T_Gen : Node_Id;
12617 begin
12618 T_Gen := Enclosing_Generic_Body (Target_Type);
12619 while Present (T_Gen) and then T_Gen /= O_Gen loop
12620 T_Gen := Enclosing_Generic_Body (T_Gen);
12621 end loop;
12623 if T_Gen /= O_Gen then
12624 Conversion_Error_N
12625 ("target type must be declared in same generic body "
12626 & "as operand type", N);
12627 end if;
12628 end;
12629 end if;
12631 return True;
12633 -- Remote access to subprogram types
12635 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12636 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12637 then
12638 -- It is valid to convert from one RAS type to another provided
12639 -- that their specification statically match.
12641 -- Note: at this point, remote access to subprogram types have been
12642 -- expanded to their E_Record_Type representation, and we need to
12643 -- go back to the original access type definition using the
12644 -- Corresponding_Remote_Type attribute in order to check that the
12645 -- designated profiles match.
12647 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12648 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12650 Check_Subtype_Conformant
12651 (New_Id =>
12652 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12653 Old_Id =>
12654 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12655 Err_Loc =>
12657 return True;
12659 -- If it was legal in the generic, it's legal in the instance
12661 elsif In_Instance_Body then
12662 return True;
12664 -- If both are tagged types, check legality of view conversions
12666 elsif Is_Tagged_Type (Target_Type)
12667 and then
12668 Is_Tagged_Type (Opnd_Type)
12669 then
12670 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12672 -- Types derived from the same root type are convertible
12674 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12675 return True;
12677 -- In an instance or an inlined body, there may be inconsistent views of
12678 -- the same type, or of types derived from a common root.
12680 elsif (In_Instance or In_Inlined_Body)
12681 and then
12682 Root_Type (Underlying_Type (Target_Type)) =
12683 Root_Type (Underlying_Type (Opnd_Type))
12684 then
12685 return True;
12687 -- Special check for common access type error case
12689 elsif Ekind (Target_Type) = E_Access_Type
12690 and then Is_Access_Type (Opnd_Type)
12691 then
12692 Conversion_Error_N ("target type must be general access type!", N);
12693 Conversion_Error_NE -- CODEFIX
12694 ("add ALL to }!", N, Target_Type);
12695 return False;
12697 -- Here we have a real conversion error
12699 else
12700 Conversion_Error_NE
12701 ("invalid conversion, not compatible with }", N, Opnd_Type);
12702 return False;
12703 end if;
12704 end Valid_Conversion;
12706 end Sem_Res;