1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Util
; use Exp_Util
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch6
; use Exp_Ch6
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch9
; use Exp_Ch9
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Fname
; use Fname
;
41 with Freeze
; use Freeze
;
42 with Itypes
; use Itypes
;
44 with Namet
; use Namet
;
45 with Nmake
; use Nmake
;
46 with Nlists
; use Nlists
;
48 with Restrict
; use Restrict
;
49 with Rident
; use Rident
;
50 with Rtsfind
; use Rtsfind
;
51 with Ttypes
; use Ttypes
;
53 with Sem_Aggr
; use Sem_Aggr
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Ch3
; use Sem_Ch3
;
56 with Sem_Eval
; use Sem_Eval
;
57 with Sem_Res
; use Sem_Res
;
58 with Sem_Util
; use Sem_Util
;
59 with Sinfo
; use Sinfo
;
60 with Snames
; use Snames
;
61 with Stand
; use Stand
;
62 with Stringt
; use Stringt
;
63 with Targparm
; use Targparm
;
64 with Tbuild
; use Tbuild
;
65 with Uintp
; use Uintp
;
67 package body Exp_Aggr
is
69 type Case_Bounds
is record
72 Choice_Node
: Node_Id
;
75 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
76 -- Table type used by Check_Case_Choices procedure
78 procedure Collect_Initialization_Statements
81 Node_After
: Node_Id
);
82 -- If Obj is not frozen, collect actions inserted after N until, but not
83 -- including, Node_After, for initialization of Obj, and move them to an
84 -- expression with actions, which becomes the Initialization_Statements for
87 function Has_Default_Init_Comps
(N
: Node_Id
) return Boolean;
88 -- N is an aggregate (record or array). Checks the presence of default
89 -- initialization (<>) in any component (Ada 2005: AI-287).
91 function In_Object_Declaration
(N
: Node_Id
) return Boolean;
92 -- Return True if N is part of an object declaration, False otherwise
94 function Is_Static_Dispatch_Table_Aggregate
(N
: Node_Id
) return Boolean;
95 -- Returns true if N is an aggregate used to initialize the components
96 -- of a statically allocated dispatch table.
98 function Late_Expansion
101 Target
: Node_Id
) return List_Id
;
102 -- This routine implements top-down expansion of nested aggregates. In
103 -- doing so, it avoids the generation of temporaries at each level. N is
104 -- a nested record or array aggregate with the Expansion_Delayed flag.
105 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
106 -- expression that will hold the result of the aggregate expansion.
108 function Make_OK_Assignment_Statement
111 Expression
: Node_Id
) return Node_Id
;
112 -- This is like Make_Assignment_Statement, except that Assignment_OK
113 -- is set in the left operand. All assignments built by this unit use
114 -- this routine. This is needed to deal with assignments to initialized
115 -- constants that are done in place.
118 (Obj_Type
: Entity_Id
;
119 Typ
: Entity_Id
) return Boolean;
120 -- A static array aggregate in an object declaration can in most cases be
121 -- expanded in place. The one exception is when the aggregate is given
122 -- with component associations that specify different bounds from those of
123 -- the type definition in the object declaration. In this pathological
124 -- case the aggregate must slide, and we must introduce an intermediate
125 -- temporary to hold it.
127 -- The same holds in an assignment to one-dimensional array of arrays,
128 -- when a component may be given with bounds that differ from those of the
131 function Number_Of_Choices
(N
: Node_Id
) return Nat
;
132 -- Returns the number of discrete choices (not including the others choice
133 -- if present) contained in (sub-)aggregate N.
135 procedure Process_Transient_Component
137 Comp_Typ
: Entity_Id
;
139 Fin_Call
: out Node_Id
;
140 Hook_Clear
: out Node_Id
;
141 Aggr
: Node_Id
:= Empty
;
142 Stmts
: List_Id
:= No_List
);
143 -- Subsidiary to the expansion of array and record aggregates. Generate
144 -- part of the necessary code to finalize a transient component. Comp_Typ
145 -- is the component type. Init_Expr is the initialization expression of the
146 -- component which is always a function call. Fin_Call is the finalization
147 -- call used to clean up the transient function result. Hook_Clear is the
148 -- hook reset statement. Aggr and Stmts both control the placement of the
149 -- generated code. Aggr is the related aggregate. If present, all code is
150 -- inserted prior to Aggr using Insert_Action. Stmts is the initialization
151 -- statements of the component. If present, all code is added to Stmts.
153 procedure Process_Transient_Component_Completion
157 Hook_Clear
: Node_Id
;
159 -- Subsidiary to the expansion of array and record aggregates. Generate
160 -- part of the necessary code to finalize a transient component. Aggr is
161 -- the related aggregate. Fin_Clear is the finalization call used to clean
162 -- up the transient component. Hook_Clear is the hook reset statment. Stmts
163 -- is the initialization statement list for the component. All generated
164 -- code is added to Stmts.
166 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
167 -- Sort the Case Table using the Lower Bound of each Choice as the key.
168 -- A simple insertion sort is used since the number of choices in a case
169 -- statement of variant part will usually be small and probably in near
172 ------------------------------------------------------
173 -- Local subprograms for Record Aggregate Expansion --
174 ------------------------------------------------------
176 function Build_Record_Aggr_Code
179 Lhs
: Node_Id
) return List_Id
;
180 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
181 -- aggregate. Target is an expression containing the location on which the
182 -- component by component assignments will take place. Returns the list of
183 -- assignments plus all other adjustments needed for tagged and controlled
186 procedure Convert_To_Assignments
(N
: Node_Id
; Typ
: Entity_Id
);
187 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
188 -- aggregate (which can only be a record type, this procedure is only used
189 -- for record types). Transform the given aggregate into a sequence of
190 -- assignments performed component by component.
192 procedure Expand_Record_Aggregate
194 Orig_Tag
: Node_Id
:= Empty
;
195 Parent_Expr
: Node_Id
:= Empty
);
196 -- This is the top level procedure for record aggregate expansion.
197 -- Expansion for record aggregates needs expand aggregates for tagged
198 -- record types. Specifically Expand_Record_Aggregate adds the Tag
199 -- field in front of the Component_Association list that was created
200 -- during resolution by Resolve_Record_Aggregate.
202 -- N is the record aggregate node.
203 -- Orig_Tag is the value of the Tag that has to be provided for this
204 -- specific aggregate. It carries the tag corresponding to the type
205 -- of the outermost aggregate during the recursive expansion
206 -- Parent_Expr is the ancestor part of the original extension
209 function Has_Mutable_Components
(Typ
: Entity_Id
) return Boolean;
210 -- Return true if one of the components is of a discriminated type with
211 -- defaults. An aggregate for a type with mutable components must be
212 -- expanded into individual assignments.
214 procedure Initialize_Discriminants
(N
: Node_Id
; Typ
: Entity_Id
);
215 -- If the type of the aggregate is a type extension with renamed discrimi-
216 -- nants, we must initialize the hidden discriminants of the parent.
217 -- Otherwise, the target object must not be initialized. The discriminants
218 -- are initialized by calling the initialization procedure for the type.
219 -- This is incorrect if the initialization of other components has any
220 -- side effects. We restrict this call to the case where the parent type
221 -- has a variant part, because this is the only case where the hidden
222 -- discriminants are accessed, namely when calling discriminant checking
223 -- functions of the parent type, and when applying a stream attribute to
224 -- an object of the derived type.
226 -----------------------------------------------------
227 -- Local Subprograms for Array Aggregate Expansion --
228 -----------------------------------------------------
230 function Aggr_Size_OK
(N
: Node_Id
; Typ
: Entity_Id
) return Boolean;
231 -- Very large static aggregates present problems to the back-end, and are
232 -- transformed into assignments and loops. This function verifies that the
233 -- total number of components of an aggregate is acceptable for rewriting
234 -- into a purely positional static form. Aggr_Size_OK must be called before
237 -- This function also detects and warns about one-component aggregates that
238 -- appear in a non-static context. Even if the component value is static,
239 -- such an aggregate must be expanded into an assignment.
241 function Backend_Processing_Possible
(N
: Node_Id
) return Boolean;
242 -- This function checks if array aggregate N can be processed directly
243 -- by the backend. If this is the case, True is returned.
245 function Build_Array_Aggr_Code
250 Scalar_Comp
: Boolean;
251 Indexes
: List_Id
:= No_List
) return List_Id
;
252 -- This recursive routine returns a list of statements containing the
253 -- loops and assignments that are needed for the expansion of the array
256 -- N is the (sub-)aggregate node to be expanded into code. This node has
257 -- been fully analyzed, and its Etype is properly set.
259 -- Index is the index node corresponding to the array subaggregate N
261 -- Into is the target expression into which we are copying the aggregate.
262 -- Note that this node may not have been analyzed yet, and so the Etype
263 -- field may not be set.
265 -- Scalar_Comp is True if the component type of the aggregate is scalar
267 -- Indexes is the current list of expressions used to index the object we
270 procedure Convert_Array_Aggr_In_Allocator
274 -- If the aggregate appears within an allocator and can be expanded in
275 -- place, this routine generates the individual assignments to components
276 -- of the designated object. This is an optimization over the general
277 -- case, where a temporary is first created on the stack and then used to
278 -- construct the allocated object on the heap.
280 procedure Convert_To_Positional
282 Max_Others_Replicate
: Nat
:= 5;
283 Handle_Bit_Packed
: Boolean := False);
284 -- If possible, convert named notation to positional notation. This
285 -- conversion is possible only in some static cases. If the conversion is
286 -- possible, then N is rewritten with the analyzed converted aggregate.
287 -- The parameter Max_Others_Replicate controls the maximum number of
288 -- values corresponding to an others choice that will be converted to
289 -- positional notation (the default of 5 is the normal limit, and reflects
290 -- the fact that normally the loop is better than a lot of separate
291 -- assignments). Note that this limit gets overridden in any case if
292 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
293 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
294 -- not expect the back end to handle bit packed arrays, so the normal case
295 -- of conversion is pointless), but in the special case of a call from
296 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
297 -- these are cases we handle in there.
299 -- It would seem useful to have a higher default for Max_Others_Replicate,
300 -- but aggregates in the compiler make this impossible: the compiler
301 -- bootstrap fails if Max_Others_Replicate is greater than 25. This
304 procedure Expand_Array_Aggregate
(N
: Node_Id
);
305 -- This is the top-level routine to perform array aggregate expansion.
306 -- N is the N_Aggregate node to be expanded.
308 function Is_Two_Dim_Packed_Array
(Typ
: Entity_Id
) return Boolean;
309 -- For two-dimensional packed aggregates with constant bounds and constant
310 -- components, it is preferable to pack the inner aggregates because the
311 -- whole matrix can then be presented to the back-end as a one-dimensional
312 -- list of literals. This is much more efficient than expanding into single
313 -- component assignments. This function determines if the type Typ is for
314 -- an array that is suitable for this optimization: it returns True if Typ
315 -- is a two dimensional bit packed array with component size 1, 2, or 4.
317 function Packed_Array_Aggregate_Handled
(N
: Node_Id
) return Boolean;
318 -- Given an array aggregate, this function handles the case of a packed
319 -- array aggregate with all constant values, where the aggregate can be
320 -- evaluated at compile time. If this is possible, then N is rewritten
321 -- to be its proper compile time value with all the components properly
322 -- assembled. The expression is analyzed and resolved and True is returned.
323 -- If this transformation is not possible, N is unchanged and False is
326 function Two_Dim_Packed_Array_Handled
(N
: Node_Id
) return Boolean;
327 -- If the type of the aggregate is a two-dimensional bit_packed array
328 -- it may be transformed into an array of bytes with constant values,
329 -- and presented to the back-end as a static value. The function returns
330 -- false if this transformation cannot be performed. THis is similar to,
331 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
337 function Aggr_Size_OK
(N
: Node_Id
; Typ
: Entity_Id
) return Boolean is
346 -- Determines the maximum size of an array aggregate produced by
347 -- converting named to positional notation (e.g. from others clauses).
348 -- This avoids running away with attempts to convert huge aggregates,
349 -- which hit memory limits in the backend.
351 function Component_Count
(T
: Entity_Id
) return Nat
;
352 -- The limit is applied to the total number of components that the
353 -- aggregate will have, which is the number of static expressions
354 -- that will appear in the flattened array. This requires a recursive
355 -- computation of the number of scalar components of the structure.
357 ---------------------
358 -- Component_Count --
359 ---------------------
361 function Component_Count
(T
: Entity_Id
) return Nat
is
366 if Is_Scalar_Type
(T
) then
369 elsif Is_Record_Type
(T
) then
370 Comp
:= First_Component
(T
);
371 while Present
(Comp
) loop
372 Res
:= Res
+ Component_Count
(Etype
(Comp
));
373 Next_Component
(Comp
);
378 elsif Is_Array_Type
(T
) then
380 Lo
: constant Node_Id
:=
381 Type_Low_Bound
(Etype
(First_Index
(T
)));
382 Hi
: constant Node_Id
:=
383 Type_High_Bound
(Etype
(First_Index
(T
)));
385 Siz
: constant Nat
:= Component_Count
(Component_Type
(T
));
388 -- Check for superflat arrays, i.e. arrays with such bounds
389 -- as 4 .. 2, to insure that this function never returns a
390 -- meaningless negative value.
392 if not Compile_Time_Known_Value
(Lo
)
393 or else not Compile_Time_Known_Value
(Hi
)
394 or else Expr_Value
(Hi
) < Expr_Value
(Lo
)
400 Siz
* UI_To_Int
(Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1);
405 -- Can only be a null for an access type
411 -- Start of processing for Aggr_Size_OK
414 -- The normal aggregate limit is 50000, but we increase this limit to
415 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
416 -- Restrictions (No_Implicit_Loops) is specified, since in either case
417 -- we are at risk of declaring the program illegal because of this
418 -- limit. We also increase the limit when Static_Elaboration_Desired,
419 -- given that this means that objects are intended to be placed in data
422 -- We also increase the limit if the aggregate is for a packed two-
423 -- dimensional array, because if components are static it is much more
424 -- efficient to construct a one-dimensional equivalent array with static
427 -- Conversely, we decrease the maximum size if none of the above
428 -- requirements apply, and if the aggregate has a single component
429 -- association, which will be more efficient if implemented with a loop.
431 -- Finally, we use a small limit in CodePeer mode where we favor loops
432 -- instead of thousands of single assignments (from large aggregates).
434 Max_Aggr_Size
:= 50000;
436 if CodePeer_Mode
then
437 Max_Aggr_Size
:= 100;
439 elsif Restriction_Active
(No_Elaboration_Code
)
440 or else Restriction_Active
(No_Implicit_Loops
)
441 or else Is_Two_Dim_Packed_Array
(Typ
)
442 or else (Ekind
(Current_Scope
) = E_Package
443 and then Static_Elaboration_Desired
(Current_Scope
))
445 Max_Aggr_Size
:= 2 ** 24;
447 elsif No
(Expressions
(N
))
448 and then No
(Next
(First
(Component_Associations
(N
))))
450 Max_Aggr_Size
:= 5000;
453 Siz
:= Component_Count
(Component_Type
(Typ
));
455 Indx
:= First_Index
(Typ
);
456 while Present
(Indx
) loop
457 Lo
:= Type_Low_Bound
(Etype
(Indx
));
458 Hi
:= Type_High_Bound
(Etype
(Indx
));
460 -- Bounds need to be known at compile time
462 if not Compile_Time_Known_Value
(Lo
)
463 or else not Compile_Time_Known_Value
(Hi
)
468 Lov
:= Expr_Value
(Lo
);
469 Hiv
:= Expr_Value
(Hi
);
471 -- A flat array is always safe
477 -- One-component aggregates are suspicious, and if the context type
478 -- is an object declaration with non-static bounds it will trip gcc;
479 -- such an aggregate must be expanded into a single assignment.
481 if Hiv
= Lov
and then Nkind
(Parent
(N
)) = N_Object_Declaration
then
483 Index_Type
: constant Entity_Id
:=
485 (First_Index
(Etype
(Defining_Identifier
(Parent
(N
)))));
489 if not Compile_Time_Known_Value
(Type_Low_Bound
(Index_Type
))
490 or else not Compile_Time_Known_Value
491 (Type_High_Bound
(Index_Type
))
493 if Present
(Component_Associations
(N
)) then
495 First
(Choices
(First
(Component_Associations
(N
))));
497 if Is_Entity_Name
(Indx
)
498 and then not Is_Type
(Entity
(Indx
))
501 ("single component aggregate in "
502 & "non-static context??", Indx
);
503 Error_Msg_N
("\maybe subtype name was meant??", Indx
);
513 Rng
: constant Uint
:= Hiv
- Lov
+ 1;
516 -- Check if size is too large
518 if not UI_Is_In_Int_Range
(Rng
) then
522 Siz
:= Siz
* UI_To_Int
(Rng
);
526 or else Siz
> Max_Aggr_Size
531 -- Bounds must be in integer range, for later array construction
533 if not UI_Is_In_Int_Range
(Lov
)
535 not UI_Is_In_Int_Range
(Hiv
)
546 ---------------------------------
547 -- Backend_Processing_Possible --
548 ---------------------------------
550 -- Backend processing by Gigi/gcc is possible only if all the following
551 -- conditions are met:
553 -- 1. N is fully positional
555 -- 2. N is not a bit-packed array aggregate;
557 -- 3. The size of N's array type must be known at compile time. Note
558 -- that this implies that the component size is also known
560 -- 4. The array type of N does not follow the Fortran layout convention
561 -- or if it does it must be 1 dimensional.
563 -- 5. The array component type may not be tagged (which could necessitate
564 -- reassignment of proper tags).
566 -- 6. The array component type must not have unaligned bit components
568 -- 7. None of the components of the aggregate may be bit unaligned
571 -- 8. There cannot be delayed components, since we do not know enough
572 -- at this stage to know if back end processing is possible.
574 -- 9. There cannot be any discriminated record components, since the
575 -- back end cannot handle this complex case.
577 -- 10. No controlled actions need to be generated for components
579 -- 11. When generating C code, N must be part of a N_Object_Declaration
581 -- 12. When generating C code, N must not include function calls
583 function Backend_Processing_Possible
(N
: Node_Id
) return Boolean is
584 Typ
: constant Entity_Id
:= Etype
(N
);
585 -- Typ is the correct constrained array subtype of the aggregate
587 function Component_Check
(N
: Node_Id
; Index
: Node_Id
) return Boolean;
588 -- This routine checks components of aggregate N, enforcing checks
589 -- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
590 -- are performed on subaggregates. The Index value is the current index
591 -- being checked in the multidimensional case.
593 ---------------------
594 -- Component_Check --
595 ---------------------
597 function Component_Check
(N
: Node_Id
; Index
: Node_Id
) return Boolean is
598 function Ultimate_Original_Expression
(N
: Node_Id
) return Node_Id
;
599 -- Given a type conversion or an unchecked type conversion N, return
600 -- its innermost original expression.
602 ----------------------------------
603 -- Ultimate_Original_Expression --
604 ----------------------------------
606 function Ultimate_Original_Expression
(N
: Node_Id
) return Node_Id
is
607 Expr
: Node_Id
:= Original_Node
(N
);
610 while Nkind_In
(Expr
, N_Type_Conversion
,
611 N_Unchecked_Type_Conversion
)
613 Expr
:= Original_Node
(Expression
(Expr
));
617 end Ultimate_Original_Expression
;
623 -- Start of processing for Component_Check
626 -- Checks 1: (no component associations)
628 if Present
(Component_Associations
(N
)) then
632 -- Checks 11: (part of an object declaration)
635 and then Nkind
(Parent
(N
)) /= N_Object_Declaration
637 (Nkind
(Parent
(N
)) /= N_Qualified_Expression
638 or else Nkind
(Parent
(Parent
(N
))) /= N_Object_Declaration
)
643 -- Checks on components
645 -- Recurse to check subaggregates, which may appear in qualified
646 -- expressions. If delayed, the front-end will have to expand.
647 -- If the component is a discriminated record, treat as non-static,
648 -- as the back-end cannot handle this properly.
650 Expr
:= First
(Expressions
(N
));
651 while Present
(Expr
) loop
653 -- Checks 8: (no delayed components)
655 if Is_Delayed_Aggregate
(Expr
) then
659 -- Checks 9: (no discriminated records)
661 if Present
(Etype
(Expr
))
662 and then Is_Record_Type
(Etype
(Expr
))
663 and then Has_Discriminants
(Etype
(Expr
))
668 -- Checks 7. Component must not be bit aligned component
670 if Possible_Bit_Aligned_Component
(Expr
) then
674 -- Checks 12: (no function call)
678 Nkind
(Ultimate_Original_Expression
(Expr
)) = N_Function_Call
683 -- Recursion to following indexes for multiple dimension case
685 if Present
(Next_Index
(Index
))
686 and then not Component_Check
(Expr
, Next_Index
(Index
))
691 -- All checks for that component finished, on to next
699 -- Start of processing for Backend_Processing_Possible
702 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
704 if Is_Bit_Packed_Array
(Typ
) or else Needs_Finalization
(Typ
) then
708 -- If component is limited, aggregate must be expanded because each
709 -- component assignment must be built in place.
711 if Is_Limited_View
(Component_Type
(Typ
)) then
715 -- Checks 4 (array must not be multidimensional Fortran case)
717 if Convention
(Typ
) = Convention_Fortran
718 and then Number_Dimensions
(Typ
) > 1
723 -- Checks 3 (size of array must be known at compile time)
725 if not Size_Known_At_Compile_Time
(Typ
) then
729 -- Checks on components
731 if not Component_Check
(N
, First_Index
(Typ
)) then
735 -- Checks 5 (if the component type is tagged, then we may need to do
736 -- tag adjustments. Perhaps this should be refined to check for any
737 -- component associations that actually need tag adjustment, similar
738 -- to the test in Component_Not_OK_For_Backend for record aggregates
739 -- with tagged components, but not clear whether it's worthwhile ???;
740 -- in the case of virtual machines (no Tagged_Type_Expansion), object
741 -- tags are handled implicitly).
743 if Is_Tagged_Type
(Component_Type
(Typ
))
744 and then Tagged_Type_Expansion
749 -- Checks 6 (component type must not have bit aligned components)
751 if Type_May_Have_Bit_Aligned_Components
(Component_Type
(Typ
)) then
755 -- Backend processing is possible
757 Set_Size_Known_At_Compile_Time
(Etype
(N
), True);
759 end Backend_Processing_Possible
;
761 ---------------------------
762 -- Build_Array_Aggr_Code --
763 ---------------------------
765 -- The code that we generate from a one dimensional aggregate is
767 -- 1. If the subaggregate contains discrete choices we
769 -- (a) Sort the discrete choices
771 -- (b) Otherwise for each discrete choice that specifies a range we
772 -- emit a loop. If a range specifies a maximum of three values, or
773 -- we are dealing with an expression we emit a sequence of
774 -- assignments instead of a loop.
776 -- (c) Generate the remaining loops to cover the others choice if any
778 -- 2. If the aggregate contains positional elements we
780 -- (a) translate the positional elements in a series of assignments
782 -- (b) Generate a final loop to cover the others choice if any.
783 -- Note that this final loop has to be a while loop since the case
785 -- L : Integer := Integer'Last;
786 -- H : Integer := Integer'Last;
787 -- A : array (L .. H) := (1, others =>0);
789 -- cannot be handled by a for loop. Thus for the following
791 -- array (L .. H) := (.. positional elements.., others =>E);
793 -- we always generate something like:
795 -- J : Index_Type := Index_Of_Last_Positional_Element;
797 -- J := Index_Base'Succ (J)
801 function Build_Array_Aggr_Code
806 Scalar_Comp
: Boolean;
807 Indexes
: List_Id
:= No_List
) return List_Id
809 Loc
: constant Source_Ptr
:= Sloc
(N
);
810 Index_Base
: constant Entity_Id
:= Base_Type
(Etype
(Index
));
811 Index_Base_L
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
812 Index_Base_H
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
814 function Add
(Val
: Int
; To
: Node_Id
) return Node_Id
;
815 -- Returns an expression where Val is added to expression To, unless
816 -- To+Val is provably out of To's base type range. To must be an
817 -- already analyzed expression.
819 function Empty_Range
(L
, H
: Node_Id
) return Boolean;
820 -- Returns True if the range defined by L .. H is certainly empty
822 function Equal
(L
, H
: Node_Id
) return Boolean;
823 -- Returns True if L = H for sure
825 function Index_Base_Name
return Node_Id
;
826 -- Returns a new reference to the index type name
831 In_Loop
: Boolean := False) return List_Id
;
832 -- Ind must be a side-effect-free expression. If the input aggregate N
833 -- to Build_Loop contains no subaggregates, then this function returns
834 -- the assignment statement:
836 -- Into (Indexes, Ind) := Expr;
838 -- Otherwise we call Build_Code recursively. Flag In_Loop should be set
839 -- when the assignment appears within a generated loop.
841 -- Ada 2005 (AI-287): In case of default initialized component, Expr
842 -- is empty and we generate a call to the corresponding IP subprogram.
844 function Gen_Loop
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
;
845 -- Nodes L and H must be side-effect-free expressions. If the input
846 -- aggregate N to Build_Loop contains no subaggregates, this routine
847 -- returns the for loop statement:
849 -- for J in Index_Base'(L) .. Index_Base'(H) loop
850 -- Into (Indexes, J) := Expr;
853 -- Otherwise we call Build_Code recursively. As an optimization if the
854 -- loop covers 3 or fewer scalar elements we generate a sequence of
857 function Gen_While
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
;
858 -- Nodes L and H must be side-effect-free expressions. If the input
859 -- aggregate N to Build_Loop contains no subaggregates, this routine
860 -- returns the while loop statement:
862 -- J : Index_Base := L;
864 -- J := Index_Base'Succ (J);
865 -- Into (Indexes, J) := Expr;
868 -- Otherwise we call Build_Code recursively
870 function Get_Assoc_Expr
(Assoc
: Node_Id
) return Node_Id
;
871 -- For an association with a box, use value given by aspect
872 -- Default_Component_Value of array type if specified, else use
873 -- value given by aspect Default_Value for component type itself
874 -- if specified, else return Empty.
876 function Local_Compile_Time_Known_Value
(E
: Node_Id
) return Boolean;
877 function Local_Expr_Value
(E
: Node_Id
) return Uint
;
878 -- These two Local routines are used to replace the corresponding ones
879 -- in sem_eval because while processing the bounds of an aggregate with
880 -- discrete choices whose index type is an enumeration, we build static
881 -- expressions not recognized by Compile_Time_Known_Value as such since
882 -- they have not yet been analyzed and resolved. All the expressions in
883 -- question are things like Index_Base_Name'Val (Const) which we can
884 -- easily recognize as being constant.
890 function Add
(Val
: Int
; To
: Node_Id
) return Node_Id
is
895 U_Val
: constant Uint
:= UI_From_Int
(Val
);
898 -- Note: do not try to optimize the case of Val = 0, because
899 -- we need to build a new node with the proper Sloc value anyway.
901 -- First test if we can do constant folding
903 if Local_Compile_Time_Known_Value
(To
) then
904 U_To
:= Local_Expr_Value
(To
) + Val
;
906 -- Determine if our constant is outside the range of the index.
907 -- If so return an Empty node. This empty node will be caught
908 -- by Empty_Range below.
910 if Compile_Time_Known_Value
(Index_Base_L
)
911 and then U_To
< Expr_Value
(Index_Base_L
)
915 elsif Compile_Time_Known_Value
(Index_Base_H
)
916 and then U_To
> Expr_Value
(Index_Base_H
)
921 Expr_Pos
:= Make_Integer_Literal
(Loc
, U_To
);
922 Set_Is_Static_Expression
(Expr_Pos
);
924 if not Is_Enumeration_Type
(Index_Base
) then
927 -- If we are dealing with enumeration return
928 -- Index_Base'Val (Expr_Pos)
932 Make_Attribute_Reference
934 Prefix
=> Index_Base_Name
,
935 Attribute_Name
=> Name_Val
,
936 Expressions
=> New_List
(Expr_Pos
));
942 -- If we are here no constant folding possible
944 if not Is_Enumeration_Type
(Index_Base
) then
947 Left_Opnd
=> Duplicate_Subexpr
(To
),
948 Right_Opnd
=> Make_Integer_Literal
(Loc
, U_Val
));
950 -- If we are dealing with enumeration return
951 -- Index_Base'Val (Index_Base'Pos (To) + Val)
955 Make_Attribute_Reference
957 Prefix
=> Index_Base_Name
,
958 Attribute_Name
=> Name_Pos
,
959 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
964 Right_Opnd
=> Make_Integer_Literal
(Loc
, U_Val
));
967 Make_Attribute_Reference
969 Prefix
=> Index_Base_Name
,
970 Attribute_Name
=> Name_Val
,
971 Expressions
=> New_List
(Expr_Pos
));
981 function Empty_Range
(L
, H
: Node_Id
) return Boolean is
982 Is_Empty
: Boolean := False;
987 -- First check if L or H were already detected as overflowing the
988 -- index base range type by function Add above. If this is so Add
989 -- returns the empty node.
991 if No
(L
) or else No
(H
) then
998 -- L > H range is empty
1004 -- B_L > H range must be empty
1007 Low
:= Index_Base_L
;
1010 -- L > B_H range must be empty
1014 High
:= Index_Base_H
;
1017 if Local_Compile_Time_Known_Value
(Low
)
1019 Local_Compile_Time_Known_Value
(High
)
1022 UI_Gt
(Local_Expr_Value
(Low
), Local_Expr_Value
(High
));
1035 function Equal
(L
, H
: Node_Id
) return Boolean is
1040 elsif Local_Compile_Time_Known_Value
(L
)
1042 Local_Compile_Time_Known_Value
(H
)
1044 return UI_Eq
(Local_Expr_Value
(L
), Local_Expr_Value
(H
));
1057 In_Loop
: Boolean := False) return List_Id
1059 function Add_Loop_Actions
(Lis
: List_Id
) return List_Id
;
1060 -- Collect insert_actions generated in the construction of a loop,
1061 -- and prepend them to the sequence of assignments to complete the
1062 -- eventual body of the loop.
1064 procedure Initialize_Array_Component
1065 (Arr_Comp
: Node_Id
;
1067 Init_Expr
: Node_Id
;
1069 -- Perform the initialization of array component Arr_Comp with
1070 -- expected type Comp_Typ. Init_Expr denotes the initialization
1071 -- expression of the array component. All generated code is added
1074 procedure Initialize_Ctrl_Array_Component
1075 (Arr_Comp
: Node_Id
;
1076 Comp_Typ
: Entity_Id
;
1077 Init_Expr
: Node_Id
;
1079 -- Perform the initialization of array component Arr_Comp when its
1080 -- expected type Comp_Typ needs finalization actions. Init_Expr is
1081 -- the initialization expression of the array component. All hook-
1082 -- related declarations are inserted prior to aggregate N. Remaining
1083 -- code is added to list Stmts.
1085 ----------------------
1086 -- Add_Loop_Actions --
1087 ----------------------
1089 function Add_Loop_Actions
(Lis
: List_Id
) return List_Id
is
1093 -- Ada 2005 (AI-287): Do nothing else in case of default
1094 -- initialized component.
1099 elsif Nkind
(Parent
(Expr
)) = N_Component_Association
1100 and then Present
(Loop_Actions
(Parent
(Expr
)))
1102 Append_List
(Lis
, Loop_Actions
(Parent
(Expr
)));
1103 Res
:= Loop_Actions
(Parent
(Expr
));
1104 Set_Loop_Actions
(Parent
(Expr
), No_List
);
1110 end Add_Loop_Actions
;
1112 --------------------------------
1113 -- Initialize_Array_Component --
1114 --------------------------------
1116 procedure Initialize_Array_Component
1117 (Arr_Comp
: Node_Id
;
1119 Init_Expr
: Node_Id
;
1122 Exceptions_OK
: constant Boolean :=
1123 not Restriction_Active
1124 (No_Exception_Propagation
);
1126 Finalization_OK
: constant Boolean :=
1128 and then Needs_Finalization
(Comp_Typ
);
1130 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Comp_Typ
);
1131 Blk_Stmts
: List_Id
;
1132 Init_Stmt
: Node_Id
;
1135 -- Protect the initialization statements from aborts. Generate:
1139 if Finalization_OK
and Abort_Allowed
then
1140 if Exceptions_OK
then
1141 Blk_Stmts
:= New_List
;
1146 Append_To
(Blk_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
1148 -- Otherwise aborts are not allowed. All generated code is added
1149 -- directly to the input list.
1155 -- Initialize the array element. Generate:
1157 -- Arr_Comp := Init_Expr;
1159 -- Note that the initialization expression is replicated because
1160 -- it has to be reevaluated within a generated loop.
1163 Make_OK_Assignment_Statement
(Loc
,
1164 Name
=> New_Copy_Tree
(Arr_Comp
),
1165 Expression
=> New_Copy_Tree
(Init_Expr
));
1166 Set_No_Ctrl_Actions
(Init_Stmt
);
1168 -- If this is an aggregate for an array of arrays, each
1169 -- subaggregate will be expanded as well, and even with
1170 -- No_Ctrl_Actions the assignments of inner components will
1171 -- require attachment in their assignments to temporaries. These
1172 -- temporaries must be finalized for each subaggregate. Generate:
1175 -- Arr_Comp := Init_Expr;
1178 if Finalization_OK
and then Is_Array_Type
(Comp_Typ
) then
1180 Make_Block_Statement
(Loc
,
1181 Handled_Statement_Sequence
=>
1182 Make_Handled_Sequence_Of_Statements
(Loc
,
1183 Statements
=> New_List
(Init_Stmt
)));
1186 Append_To
(Blk_Stmts
, Init_Stmt
);
1188 -- Adjust the tag due to a possible view conversion. Generate:
1190 -- Arr_Comp._tag := Full_TypP;
1192 if Tagged_Type_Expansion
1193 and then Present
(Comp_Typ
)
1194 and then Is_Tagged_Type
(Comp_Typ
)
1196 Append_To
(Blk_Stmts
,
1197 Make_OK_Assignment_Statement
(Loc
,
1199 Make_Selected_Component
(Loc
,
1200 Prefix
=> New_Copy_Tree
(Arr_Comp
),
1203 (First_Tag_Component
(Full_Typ
), Loc
)),
1206 Unchecked_Convert_To
(RTE
(RE_Tag
),
1208 (Node
(First_Elmt
(Access_Disp_Table
(Full_Typ
))),
1212 -- Adjust the array component. Controlled subaggregates are not
1213 -- considered because each of their individual elements will
1214 -- receive an adjustment of its own. Generate:
1216 -- [Deep_]Adjust (Arr_Comp);
1219 and then not Is_Limited_Type
(Comp_Typ
)
1221 (Is_Array_Type
(Comp_Typ
)
1222 and then Is_Controlled
(Component_Type
(Comp_Typ
))
1223 and then Nkind
(Expr
) = N_Aggregate
)
1225 Append_To
(Blk_Stmts
,
1227 (Obj_Ref
=> New_Copy_Tree
(Arr_Comp
),
1231 -- Complete the protection of the initialization statements
1233 if Finalization_OK
and Abort_Allowed
then
1235 -- Wrap the initialization statements in a block to catch a
1236 -- potential exception. Generate:
1240 -- Arr_Comp := Init_Expr;
1241 -- Arr_Comp._tag := Full_TypP;
1242 -- [Deep_]Adjust (Arr_Comp);
1244 -- Abort_Undefer_Direct;
1247 if Exceptions_OK
then
1249 Build_Abort_Undefer_Block
(Loc
,
1253 -- Otherwise exceptions are not propagated. Generate:
1256 -- Arr_Comp := Init_Expr;
1257 -- Arr_Comp._tag := Full_TypP;
1258 -- [Deep_]Adjust (Arr_Comp);
1262 Append_To
(Blk_Stmts
,
1263 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
1266 end Initialize_Array_Component
;
1268 -------------------------------------
1269 -- Initialize_Ctrl_Array_Component --
1270 -------------------------------------
1272 procedure Initialize_Ctrl_Array_Component
1273 (Arr_Comp
: Node_Id
;
1274 Comp_Typ
: Entity_Id
;
1275 Init_Expr
: Node_Id
;
1279 Act_Stmts
: List_Id
;
1282 Hook_Clear
: Node_Id
;
1284 In_Place_Expansion
: Boolean;
1285 -- Flag set when a nonlimited controlled function call requires
1286 -- in-place expansion.
1289 -- Duplicate the initialization expression in case the context is
1290 -- a multi choice list or an "others" choice which plugs various
1291 -- holes in the aggregate. As a result the expression is no longer
1292 -- shared between the various components and is reevaluated for
1293 -- each such component.
1295 Expr
:= New_Copy_Tree
(Init_Expr
);
1296 Set_Parent
(Expr
, Parent
(Init_Expr
));
1298 -- Perform a preliminary analysis and resolution to determine what
1299 -- the initialization expression denotes. An unanalyzed function
1300 -- call may appear as an identifier or an indexed component.
1302 if Nkind_In
(Expr
, N_Function_Call
,
1304 N_Indexed_Component
)
1305 and then not Analyzed
(Expr
)
1307 Preanalyze_And_Resolve
(Expr
, Comp_Typ
);
1310 In_Place_Expansion
:=
1311 Nkind
(Expr
) = N_Function_Call
1312 and then not Is_Limited_Type
(Comp_Typ
);
1314 -- The initialization expression is a controlled function call.
1315 -- Perform in-place removal of side effects to avoid creating a
1316 -- transient scope, which leads to premature finalization.
1318 -- This in-place expansion is not performed for limited transient
1319 -- objects because the initialization is already done in-place.
1321 if In_Place_Expansion
then
1323 -- Suppress the removal of side effects by general analysis
1324 -- because this behavior is emulated here. This avoids the
1325 -- generation of a transient scope, which leads to out-of-order
1326 -- adjustment and finalization.
1328 Set_No_Side_Effect_Removal
(Expr
);
1330 -- When the transient component initialization is related to a
1331 -- range or an "others", keep all generated statements within
1332 -- the enclosing loop. This way the controlled function call
1333 -- will be evaluated at each iteration, and its result will be
1334 -- finalized at the end of each iteration.
1340 -- Otherwise this is a single component initialization. Hook-
1341 -- related statements are inserted prior to the aggregate.
1345 Act_Stmts
:= No_List
;
1348 -- Install all hook-related declarations and prepare the clean
1351 Process_Transient_Component
1353 Comp_Typ
=> Comp_Typ
,
1355 Fin_Call
=> Fin_Call
,
1356 Hook_Clear
=> Hook_Clear
,
1358 Stmts
=> Act_Stmts
);
1361 -- Use the noncontrolled component initialization circuitry to
1362 -- assign the result of the function call to the array element.
1363 -- This also performs subaggregate wrapping, tag adjustment, and
1364 -- [deep] adjustment of the array element.
1366 Initialize_Array_Component
1367 (Arr_Comp
=> Arr_Comp
,
1368 Comp_Typ
=> Comp_Typ
,
1372 -- At this point the array element is fully initialized. Complete
1373 -- the processing of the controlled array component by finalizing
1374 -- the transient function result.
1376 if In_Place_Expansion
then
1377 Process_Transient_Component_Completion
1380 Fin_Call
=> Fin_Call
,
1381 Hook_Clear
=> Hook_Clear
,
1384 end Initialize_Ctrl_Array_Component
;
1388 Stmts
: constant List_Id
:= New_List
;
1390 Comp_Typ
: Entity_Id
:= Empty
;
1392 Indexed_Comp
: Node_Id
;
1393 New_Indexes
: List_Id
;
1395 -- Start of processing for Gen_Assign
1398 if No
(Indexes
) then
1399 New_Indexes
:= New_List
;
1401 New_Indexes
:= New_Copy_List_Tree
(Indexes
);
1404 Append_To
(New_Indexes
, Ind
);
1406 if Present
(Next_Index
(Index
)) then
1409 Build_Array_Aggr_Code
1412 Index
=> Next_Index
(Index
),
1414 Scalar_Comp
=> Scalar_Comp
,
1415 Indexes
=> New_Indexes
));
1418 -- If we get here then we are at a bottom-level (sub-)aggregate
1422 (Make_Indexed_Component
(Loc
,
1423 Prefix
=> New_Copy_Tree
(Into
),
1424 Expressions
=> New_Indexes
));
1426 Set_Assignment_OK
(Indexed_Comp
);
1428 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1429 -- is not present (and therefore we also initialize Expr_Q to empty).
1433 elsif Nkind
(Expr
) = N_Qualified_Expression
then
1434 Expr_Q
:= Expression
(Expr
);
1439 if Present
(Etype
(N
)) and then Etype
(N
) /= Any_Composite
then
1440 Comp_Typ
:= Component_Type
(Etype
(N
));
1441 pragma Assert
(Comp_Typ
= Ctype
); -- AI-287
1443 elsif Present
(Next
(First
(New_Indexes
))) then
1445 -- Ada 2005 (AI-287): Do nothing in case of default initialized
1446 -- component because we have received the component type in
1447 -- the formal parameter Ctype.
1449 -- ??? Some assert pragmas have been added to check if this new
1450 -- formal can be used to replace this code in all cases.
1452 if Present
(Expr
) then
1454 -- This is a multidimensional array. Recover the component type
1455 -- from the outermost aggregate, because subaggregates do not
1456 -- have an assigned type.
1463 while Present
(P
) loop
1464 if Nkind
(P
) = N_Aggregate
1465 and then Present
(Etype
(P
))
1467 Comp_Typ
:= Component_Type
(Etype
(P
));
1475 pragma Assert
(Comp_Typ
= Ctype
); -- AI-287
1480 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
1481 -- default initialized components (otherwise Expr_Q is not present).
1484 and then Nkind_In
(Expr_Q
, N_Aggregate
, N_Extension_Aggregate
)
1486 -- At this stage the Expression may not have been analyzed yet
1487 -- because the array aggregate code has not been updated to use
1488 -- the Expansion_Delayed flag and avoid analysis altogether to
1489 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1490 -- the analysis of non-array aggregates now in order to get the
1491 -- value of Expansion_Delayed flag for the inner aggregate ???
1493 if Present
(Comp_Typ
) and then not Is_Array_Type
(Comp_Typ
) then
1494 Analyze_And_Resolve
(Expr_Q
, Comp_Typ
);
1497 if Is_Delayed_Aggregate
(Expr_Q
) then
1499 -- This is either a subaggregate of a multidimensional array,
1500 -- or a component of an array type whose component type is
1501 -- also an array. In the latter case, the expression may have
1502 -- component associations that provide different bounds from
1503 -- those of the component type, and sliding must occur. Instead
1504 -- of decomposing the current aggregate assignment, force the
1505 -- reanalysis of the assignment, so that a temporary will be
1506 -- generated in the usual fashion, and sliding will take place.
1508 if Nkind
(Parent
(N
)) = N_Assignment_Statement
1509 and then Is_Array_Type
(Comp_Typ
)
1510 and then Present
(Component_Associations
(Expr_Q
))
1511 and then Must_Slide
(Comp_Typ
, Etype
(Expr_Q
))
1513 Set_Expansion_Delayed
(Expr_Q
, False);
1514 Set_Analyzed
(Expr_Q
, False);
1519 Late_Expansion
(Expr_Q
, Etype
(Expr_Q
), Indexed_Comp
));
1524 if Present
(Expr
) then
1526 -- Handle an initialization expression of a controlled type in
1527 -- case it denotes a function call. In general such a scenario
1528 -- will produce a transient scope, but this will lead to wrong
1529 -- order of initialization, adjustment, and finalization in the
1530 -- context of aggregates.
1532 -- Target (1) := Ctrl_Func_Call;
1535 -- Trans_Obj : ... := Ctrl_Func_Call; -- object
1536 -- Target (1) := Trans_Obj;
1537 -- Finalize (Trans_Obj);
1539 -- Target (1)._tag := ...;
1540 -- Adjust (Target (1));
1542 -- In the example above, the call to Finalize occurs too early
1543 -- and as a result it may leave the array component in a bad
1544 -- state. Finalization of the transient object should really
1545 -- happen after adjustment.
1547 -- To avoid this scenario, perform in-place side-effect removal
1548 -- of the function call. This eliminates the transient property
1549 -- of the function result and ensures correct order of actions.
1551 -- Res : ... := Ctrl_Func_Call;
1552 -- Target (1) := Res;
1553 -- Target (1)._tag := ...;
1554 -- Adjust (Target (1));
1557 if Present
(Comp_Typ
)
1558 and then Needs_Finalization
(Comp_Typ
)
1559 and then Nkind
(Expr
) /= N_Aggregate
1561 Initialize_Ctrl_Array_Component
1562 (Arr_Comp
=> Indexed_Comp
,
1563 Comp_Typ
=> Comp_Typ
,
1567 -- Otherwise perform simple component initialization
1570 Initialize_Array_Component
1571 (Arr_Comp
=> Indexed_Comp
,
1572 Comp_Typ
=> Comp_Typ
,
1577 -- Ada 2005 (AI-287): In case of default initialized component, call
1578 -- the initialization subprogram associated with the component type.
1579 -- If the component type is an access type, add an explicit null
1580 -- assignment, because for the back-end there is an initialization
1581 -- present for the whole aggregate, and no default initialization
1584 -- In addition, if the component type is controlled, we must call
1585 -- its Initialize procedure explicitly, because there is no explicit
1586 -- object creation that will invoke it otherwise.
1589 if Present
(Base_Init_Proc
(Base_Type
(Ctype
)))
1590 or else Has_Task
(Base_Type
(Ctype
))
1592 Append_List_To
(Stmts
,
1593 Build_Initialization_Call
(Loc
,
1594 Id_Ref
=> Indexed_Comp
,
1596 With_Default_Init
=> True));
1598 -- If the component type has invariants, add an invariant
1599 -- check after the component is default-initialized. It will
1600 -- be analyzed and resolved before the code for initialization
1601 -- of other components.
1603 if Has_Invariants
(Ctype
) then
1604 Set_Etype
(Indexed_Comp
, Ctype
);
1605 Append_To
(Stmts
, Make_Invariant_Call
(Indexed_Comp
));
1608 elsif Is_Access_Type
(Ctype
) then
1610 Make_Assignment_Statement
(Loc
,
1611 Name
=> New_Copy_Tree
(Indexed_Comp
),
1612 Expression
=> Make_Null
(Loc
)));
1615 if Needs_Finalization
(Ctype
) then
1618 (Obj_Ref
=> New_Copy_Tree
(Indexed_Comp
),
1623 return Add_Loop_Actions
(Stmts
);
1630 function Gen_Loop
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
is
1640 -- Index_Base'(L) .. Index_Base'(H)
1642 L_Iteration_Scheme
: Node_Id
;
1643 -- L_J in Index_Base'(L) .. Index_Base'(H)
1646 -- The statements to execute in the loop
1648 S
: constant List_Id
:= New_List
;
1649 -- List of statements
1652 -- Copy of expression tree, used for checking purposes
1655 -- If loop bounds define an empty range return the null statement
1657 if Empty_Range
(L
, H
) then
1658 Append_To
(S
, Make_Null_Statement
(Loc
));
1660 -- Ada 2005 (AI-287): Nothing else need to be done in case of
1661 -- default initialized component.
1667 -- The expression must be type-checked even though no component
1668 -- of the aggregate will have this value. This is done only for
1669 -- actual components of the array, not for subaggregates. Do
1670 -- the check on a copy, because the expression may be shared
1671 -- among several choices, some of which might be non-null.
1673 if Present
(Etype
(N
))
1674 and then Is_Array_Type
(Etype
(N
))
1675 and then No
(Next_Index
(Index
))
1677 Expander_Mode_Save_And_Set
(False);
1678 Tcopy
:= New_Copy_Tree
(Expr
);
1679 Set_Parent
(Tcopy
, N
);
1680 Analyze_And_Resolve
(Tcopy
, Component_Type
(Etype
(N
)));
1681 Expander_Mode_Restore
;
1687 -- If loop bounds are the same then generate an assignment
1689 elsif Equal
(L
, H
) then
1690 return Gen_Assign
(New_Copy_Tree
(L
), Expr
);
1692 -- If H - L <= 2 then generate a sequence of assignments when we are
1693 -- processing the bottom most aggregate and it contains scalar
1696 elsif No
(Next_Index
(Index
))
1697 and then Scalar_Comp
1698 and then Local_Compile_Time_Known_Value
(L
)
1699 and then Local_Compile_Time_Known_Value
(H
)
1700 and then Local_Expr_Value
(H
) - Local_Expr_Value
(L
) <= 2
1702 Append_List_To
(S
, Gen_Assign
(New_Copy_Tree
(L
), Expr
));
1703 Append_List_To
(S
, Gen_Assign
(Add
(1, To
=> L
), Expr
));
1705 if Local_Expr_Value
(H
) - Local_Expr_Value
(L
) = 2 then
1706 Append_List_To
(S
, Gen_Assign
(Add
(2, To
=> L
), Expr
));
1712 -- Otherwise construct the loop, starting with the loop index L_J
1714 L_J
:= Make_Temporary
(Loc
, 'J', L
);
1716 -- Construct "L .. H" in Index_Base. We use a qualified expression
1717 -- for the bound to convert to the index base, but we don't need
1718 -- to do that if we already have the base type at hand.
1720 if Etype
(L
) = Index_Base
then
1724 Make_Qualified_Expression
(Loc
,
1725 Subtype_Mark
=> Index_Base_Name
,
1729 if Etype
(H
) = Index_Base
then
1733 Make_Qualified_Expression
(Loc
,
1734 Subtype_Mark
=> Index_Base_Name
,
1743 -- Construct "for L_J in Index_Base range L .. H"
1745 L_Iteration_Scheme
:=
1746 Make_Iteration_Scheme
1748 Loop_Parameter_Specification
=>
1749 Make_Loop_Parameter_Specification
1751 Defining_Identifier
=> L_J
,
1752 Discrete_Subtype_Definition
=> L_Range
));
1754 -- Construct the statements to execute in the loop body
1757 Gen_Assign
(New_Occurrence_Of
(L_J
, Loc
), Expr
, In_Loop
=> True);
1759 -- Construct the final loop
1762 Make_Implicit_Loop_Statement
1764 Identifier
=> Empty
,
1765 Iteration_Scheme
=> L_Iteration_Scheme
,
1766 Statements
=> L_Body
));
1768 -- A small optimization: if the aggregate is initialized with a box
1769 -- and the component type has no initialization procedure, remove the
1770 -- useless empty loop.
1772 if Nkind
(First
(S
)) = N_Loop_Statement
1773 and then Is_Empty_List
(Statements
(First
(S
)))
1775 return New_List
(Make_Null_Statement
(Loc
));
1785 -- The code built is
1787 -- W_J : Index_Base := L;
1788 -- while W_J < H loop
1789 -- W_J := Index_Base'Succ (W);
1793 function Gen_While
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
is
1797 -- W_J : Base_Type := L;
1799 W_Iteration_Scheme
: Node_Id
;
1802 W_Index_Succ
: Node_Id
;
1803 -- Index_Base'Succ (J)
1805 W_Increment
: Node_Id
;
1806 -- W_J := Index_Base'Succ (W)
1808 W_Body
: constant List_Id
:= New_List
;
1809 -- The statements to execute in the loop
1811 S
: constant List_Id
:= New_List
;
1812 -- list of statement
1815 -- If loop bounds define an empty range or are equal return null
1817 if Empty_Range
(L
, H
) or else Equal
(L
, H
) then
1818 Append_To
(S
, Make_Null_Statement
(Loc
));
1822 -- Build the decl of W_J
1824 W_J
:= Make_Temporary
(Loc
, 'J', L
);
1826 Make_Object_Declaration
1828 Defining_Identifier
=> W_J
,
1829 Object_Definition
=> Index_Base_Name
,
1832 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1833 -- that in this particular case L is a fresh Expr generated by
1834 -- Add which we are the only ones to use.
1836 Append_To
(S
, W_Decl
);
1838 -- Construct " while W_J < H"
1840 W_Iteration_Scheme
:=
1841 Make_Iteration_Scheme
1843 Condition
=> Make_Op_Lt
1845 Left_Opnd
=> New_Occurrence_Of
(W_J
, Loc
),
1846 Right_Opnd
=> New_Copy_Tree
(H
)));
1848 -- Construct the statements to execute in the loop body
1851 Make_Attribute_Reference
1853 Prefix
=> Index_Base_Name
,
1854 Attribute_Name
=> Name_Succ
,
1855 Expressions
=> New_List
(New_Occurrence_Of
(W_J
, Loc
)));
1858 Make_OK_Assignment_Statement
1860 Name
=> New_Occurrence_Of
(W_J
, Loc
),
1861 Expression
=> W_Index_Succ
);
1863 Append_To
(W_Body
, W_Increment
);
1865 Append_List_To
(W_Body
,
1866 Gen_Assign
(New_Occurrence_Of
(W_J
, Loc
), Expr
, In_Loop
=> True));
1868 -- Construct the final loop
1871 Make_Implicit_Loop_Statement
1873 Identifier
=> Empty
,
1874 Iteration_Scheme
=> W_Iteration_Scheme
,
1875 Statements
=> W_Body
));
1880 --------------------
1881 -- Get_Assoc_Expr --
1882 --------------------
1884 function Get_Assoc_Expr
(Assoc
: Node_Id
) return Node_Id
is
1885 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
1888 if Box_Present
(Assoc
) then
1889 if Is_Scalar_Type
(Ctype
) then
1890 if Present
(Default_Aspect_Component_Value
(Typ
)) then
1891 return Default_Aspect_Component_Value
(Typ
);
1892 elsif Present
(Default_Aspect_Value
(Ctype
)) then
1893 return Default_Aspect_Value
(Ctype
);
1903 return Expression
(Assoc
);
1907 ---------------------
1908 -- Index_Base_Name --
1909 ---------------------
1911 function Index_Base_Name
return Node_Id
is
1913 return New_Occurrence_Of
(Index_Base
, Sloc
(N
));
1914 end Index_Base_Name
;
1916 ------------------------------------
1917 -- Local_Compile_Time_Known_Value --
1918 ------------------------------------
1920 function Local_Compile_Time_Known_Value
(E
: Node_Id
) return Boolean is
1922 return Compile_Time_Known_Value
(E
)
1924 (Nkind
(E
) = N_Attribute_Reference
1925 and then Attribute_Name
(E
) = Name_Val
1926 and then Compile_Time_Known_Value
(First
(Expressions
(E
))));
1927 end Local_Compile_Time_Known_Value
;
1929 ----------------------
1930 -- Local_Expr_Value --
1931 ----------------------
1933 function Local_Expr_Value
(E
: Node_Id
) return Uint
is
1935 if Compile_Time_Known_Value
(E
) then
1936 return Expr_Value
(E
);
1938 return Expr_Value
(First
(Expressions
(E
)));
1940 end Local_Expr_Value
;
1944 New_Code
: constant List_Id
:= New_List
;
1946 Aggr_L
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
1947 Aggr_H
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
1948 -- The aggregate bounds of this specific subaggregate. Note that if the
1949 -- code generated by Build_Array_Aggr_Code is executed then these bounds
1950 -- are OK. Otherwise a Constraint_Error would have been raised.
1952 Aggr_Low
: constant Node_Id
:= Duplicate_Subexpr_No_Checks
(Aggr_L
);
1953 Aggr_High
: constant Node_Id
:= Duplicate_Subexpr_No_Checks
(Aggr_H
);
1954 -- After Duplicate_Subexpr these are side-effect free
1963 Nb_Choices
: Nat
:= 0;
1964 Table
: Case_Table_Type
(1 .. Number_Of_Choices
(N
));
1965 -- Used to sort all the different choice values
1968 -- Number of elements in the positional aggregate
1970 Others_Assoc
: Node_Id
:= Empty
;
1972 -- Start of processing for Build_Array_Aggr_Code
1975 -- First before we start, a special case. if we have a bit packed
1976 -- array represented as a modular type, then clear the value to
1977 -- zero first, to ensure that unused bits are properly cleared.
1982 and then Is_Bit_Packed_Array
(Typ
)
1983 and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type
(Typ
))
1985 Append_To
(New_Code
,
1986 Make_Assignment_Statement
(Loc
,
1987 Name
=> New_Copy_Tree
(Into
),
1989 Unchecked_Convert_To
(Typ
,
1990 Make_Integer_Literal
(Loc
, Uint_0
))));
1993 -- If the component type contains tasks, we need to build a Master
1994 -- entity in the current scope, because it will be needed if build-
1995 -- in-place functions are called in the expanded code.
1997 if Nkind
(Parent
(N
)) = N_Object_Declaration
and then Has_Task
(Typ
) then
1998 Build_Master_Entity
(Defining_Identifier
(Parent
(N
)));
2001 -- STEP 1: Process component associations
2003 -- For those associations that may generate a loop, initialize
2004 -- Loop_Actions to collect inserted actions that may be crated.
2006 -- Skip this if no component associations
2008 if No
(Expressions
(N
)) then
2010 -- STEP 1 (a): Sort the discrete choices
2012 Assoc
:= First
(Component_Associations
(N
));
2013 while Present
(Assoc
) loop
2014 Choice
:= First
(Choices
(Assoc
));
2015 while Present
(Choice
) loop
2016 if Nkind
(Choice
) = N_Others_Choice
then
2017 Set_Loop_Actions
(Assoc
, New_List
);
2018 Others_Assoc
:= Assoc
;
2022 Get_Index_Bounds
(Choice
, Low
, High
);
2025 Set_Loop_Actions
(Assoc
, New_List
);
2028 Nb_Choices
:= Nb_Choices
+ 1;
2030 Table
(Nb_Choices
) :=
2033 Choice_Node
=> Get_Assoc_Expr
(Assoc
));
2041 -- If there is more than one set of choices these must be static
2042 -- and we can therefore sort them. Remember that Nb_Choices does not
2043 -- account for an others choice.
2045 if Nb_Choices
> 1 then
2046 Sort_Case_Table
(Table
);
2049 -- STEP 1 (b): take care of the whole set of discrete choices
2051 for J
in 1 .. Nb_Choices
loop
2052 Low
:= Table
(J
).Choice_Lo
;
2053 High
:= Table
(J
).Choice_Hi
;
2054 Expr
:= Table
(J
).Choice_Node
;
2055 Append_List
(Gen_Loop
(Low
, High
, Expr
), To
=> New_Code
);
2058 -- STEP 1 (c): generate the remaining loops to cover others choice
2059 -- We don't need to generate loops over empty gaps, but if there is
2060 -- a single empty range we must analyze the expression for semantics
2062 if Present
(Others_Assoc
) then
2064 First
: Boolean := True;
2067 for J
in 0 .. Nb_Choices
loop
2071 Low
:= Add
(1, To
=> Table
(J
).Choice_Hi
);
2074 if J
= Nb_Choices
then
2077 High
:= Add
(-1, To
=> Table
(J
+ 1).Choice_Lo
);
2080 -- If this is an expansion within an init proc, make
2081 -- sure that discriminant references are replaced by
2082 -- the corresponding discriminal.
2084 if Inside_Init_Proc
then
2085 if Is_Entity_Name
(Low
)
2086 and then Ekind
(Entity
(Low
)) = E_Discriminant
2088 Set_Entity
(Low
, Discriminal
(Entity
(Low
)));
2091 if Is_Entity_Name
(High
)
2092 and then Ekind
(Entity
(High
)) = E_Discriminant
2094 Set_Entity
(High
, Discriminal
(Entity
(High
)));
2099 or else not Empty_Range
(Low
, High
)
2103 (Gen_Loop
(Low
, High
,
2104 Get_Assoc_Expr
(Others_Assoc
)), To
=> New_Code
);
2110 -- STEP 2: Process positional components
2113 -- STEP 2 (a): Generate the assignments for each positional element
2114 -- Note that here we have to use Aggr_L rather than Aggr_Low because
2115 -- Aggr_L is analyzed and Add wants an analyzed expression.
2117 Expr
:= First
(Expressions
(N
));
2119 while Present
(Expr
) loop
2120 Nb_Elements
:= Nb_Elements
+ 1;
2121 Append_List
(Gen_Assign
(Add
(Nb_Elements
, To
=> Aggr_L
), Expr
),
2126 -- STEP 2 (b): Generate final loop if an others choice is present
2127 -- Here Nb_Elements gives the offset of the last positional element.
2129 if Present
(Component_Associations
(N
)) then
2130 Assoc
:= Last
(Component_Associations
(N
));
2132 -- Ada 2005 (AI-287)
2134 Append_List
(Gen_While
(Add
(Nb_Elements
, To
=> Aggr_L
),
2136 Get_Assoc_Expr
(Assoc
)), -- AI-287
2142 end Build_Array_Aggr_Code
;
2144 ----------------------------
2145 -- Build_Record_Aggr_Code --
2146 ----------------------------
2148 function Build_Record_Aggr_Code
2151 Lhs
: Node_Id
) return List_Id
2153 Loc
: constant Source_Ptr
:= Sloc
(N
);
2154 L
: constant List_Id
:= New_List
;
2155 N_Typ
: constant Entity_Id
:= Etype
(N
);
2161 Comp_Type
: Entity_Id
;
2162 Selector
: Entity_Id
;
2163 Comp_Expr
: Node_Id
;
2166 -- If this is an internal aggregate, the External_Final_List is an
2167 -- expression for the controller record of the enclosing type.
2169 -- If the current aggregate has several controlled components, this
2170 -- expression will appear in several calls to attach to the finali-
2171 -- zation list, and it must not be shared.
2173 Ancestor_Is_Expression
: Boolean := False;
2174 Ancestor_Is_Subtype_Mark
: Boolean := False;
2176 Init_Typ
: Entity_Id
:= Empty
;
2178 Finalization_Done
: Boolean := False;
2179 -- True if Generate_Finalization_Actions has already been called; calls
2180 -- after the first do nothing.
2182 function Ancestor_Discriminant_Value
(Disc
: Entity_Id
) return Node_Id
;
2183 -- Returns the value that the given discriminant of an ancestor type
2184 -- should receive (in the absence of a conflict with the value provided
2185 -- by an ancestor part of an extension aggregate).
2187 procedure Check_Ancestor_Discriminants
(Anc_Typ
: Entity_Id
);
2188 -- Check that each of the discriminant values defined by the ancestor
2189 -- part of an extension aggregate match the corresponding values
2190 -- provided by either an association of the aggregate or by the
2191 -- constraint imposed by a parent type (RM95-4.3.2(8)).
2193 function Compatible_Int_Bounds
2194 (Agg_Bounds
: Node_Id
;
2195 Typ_Bounds
: Node_Id
) return Boolean;
2196 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
2197 -- assumed that both bounds are integer ranges.
2199 procedure Generate_Finalization_Actions
;
2200 -- Deal with the various controlled type data structure initializations
2201 -- (but only if it hasn't been done already).
2203 function Get_Constraint_Association
(T
: Entity_Id
) return Node_Id
;
2204 -- Returns the first discriminant association in the constraint
2205 -- associated with T, if any, otherwise returns Empty.
2207 function Get_Explicit_Discriminant_Value
(D
: Entity_Id
) return Node_Id
;
2208 -- If the ancestor part is an unconstrained type and further ancestors
2209 -- do not provide discriminants for it, check aggregate components for
2210 -- values of the discriminants.
2212 procedure Init_Hidden_Discriminants
(Typ
: Entity_Id
; List
: List_Id
);
2213 -- If Typ is derived, and constrains discriminants of the parent type,
2214 -- these discriminants are not components of the aggregate, and must be
2215 -- initialized. The assignments are appended to List. The same is done
2216 -- if Typ derives fron an already constrained subtype of a discriminated
2219 procedure Init_Stored_Discriminants
;
2220 -- If the type is derived and has inherited discriminants, generate
2221 -- explicit assignments for each, using the store constraint of the
2222 -- type. Note that both visible and stored discriminants must be
2223 -- initialized in case the derived type has some renamed and some
2224 -- constrained discriminants.
2226 procedure Init_Visible_Discriminants
;
2227 -- If type has discriminants, retrieve their values from aggregate,
2228 -- and generate explicit assignments for each. This does not include
2229 -- discriminants inherited from ancestor, which are handled above.
2230 -- The type of the aggregate is a subtype created ealier using the
2231 -- given values of the discriminant components of the aggregate.
2233 procedure Initialize_Ctrl_Record_Component
2234 (Rec_Comp
: Node_Id
;
2235 Comp_Typ
: Entity_Id
;
2236 Init_Expr
: Node_Id
;
2238 -- Perform the initialization of controlled record component Rec_Comp.
2239 -- Comp_Typ is the component type. Init_Expr is the initialization
2240 -- expression for the record component. Hook-related declarations are
2241 -- inserted prior to aggregate N using Insert_Action. All remaining
2242 -- generated code is added to list Stmts.
2244 procedure Initialize_Record_Component
2245 (Rec_Comp
: Node_Id
;
2246 Comp_Typ
: Entity_Id
;
2247 Init_Expr
: Node_Id
;
2249 -- Perform the initialization of record component Rec_Comp. Comp_Typ
2250 -- is the component type. Init_Expr is the initialization expression
2251 -- of the record component. All generated code is added to list Stmts.
2253 function Is_Int_Range_Bounds
(Bounds
: Node_Id
) return Boolean;
2254 -- Check whether Bounds is a range node and its lower and higher bounds
2255 -- are integers literals.
2257 function Replace_Type
(Expr
: Node_Id
) return Traverse_Result
;
2258 -- If the aggregate contains a self-reference, traverse each expression
2259 -- to replace a possible self-reference with a reference to the proper
2260 -- component of the target of the assignment.
2262 function Rewrite_Discriminant
(Expr
: Node_Id
) return Traverse_Result
;
2263 -- If default expression of a component mentions a discriminant of the
2264 -- type, it must be rewritten as the discriminant of the target object.
2266 ---------------------------------
2267 -- Ancestor_Discriminant_Value --
2268 ---------------------------------
2270 function Ancestor_Discriminant_Value
(Disc
: Entity_Id
) return Node_Id
is
2272 Assoc_Elmt
: Elmt_Id
;
2273 Aggr_Comp
: Entity_Id
;
2274 Corresp_Disc
: Entity_Id
;
2275 Current_Typ
: Entity_Id
:= Base_Type
(Typ
);
2276 Parent_Typ
: Entity_Id
;
2277 Parent_Disc
: Entity_Id
;
2278 Save_Assoc
: Node_Id
:= Empty
;
2281 -- First check any discriminant associations to see if any of them
2282 -- provide a value for the discriminant.
2284 if Present
(Discriminant_Specifications
(Parent
(Current_Typ
))) then
2285 Assoc
:= First
(Component_Associations
(N
));
2286 while Present
(Assoc
) loop
2287 Aggr_Comp
:= Entity
(First
(Choices
(Assoc
)));
2289 if Ekind
(Aggr_Comp
) = E_Discriminant
then
2290 Save_Assoc
:= Expression
(Assoc
);
2292 Corresp_Disc
:= Corresponding_Discriminant
(Aggr_Comp
);
2293 while Present
(Corresp_Disc
) loop
2295 -- If found a corresponding discriminant then return the
2296 -- value given in the aggregate. (Note: this is not
2297 -- correct in the presence of side effects. ???)
2299 if Disc
= Corresp_Disc
then
2300 return Duplicate_Subexpr
(Expression
(Assoc
));
2303 Corresp_Disc
:= Corresponding_Discriminant
(Corresp_Disc
);
2311 -- No match found in aggregate, so chain up parent types to find
2312 -- a constraint that defines the value of the discriminant.
2314 Parent_Typ
:= Etype
(Current_Typ
);
2315 while Current_Typ
/= Parent_Typ
loop
2316 if Has_Discriminants
(Parent_Typ
)
2317 and then not Has_Unknown_Discriminants
(Parent_Typ
)
2319 Parent_Disc
:= First_Discriminant
(Parent_Typ
);
2321 -- We either get the association from the subtype indication
2322 -- of the type definition itself, or from the discriminant
2323 -- constraint associated with the type entity (which is
2324 -- preferable, but it's not always present ???)
2326 if Is_Empty_Elmt_List
(Discriminant_Constraint
(Current_Typ
))
2328 Assoc
:= Get_Constraint_Association
(Current_Typ
);
2329 Assoc_Elmt
:= No_Elmt
;
2332 First_Elmt
(Discriminant_Constraint
(Current_Typ
));
2333 Assoc
:= Node
(Assoc_Elmt
);
2336 -- Traverse the discriminants of the parent type looking
2337 -- for one that corresponds.
2339 while Present
(Parent_Disc
) and then Present
(Assoc
) loop
2340 Corresp_Disc
:= Parent_Disc
;
2341 while Present
(Corresp_Disc
)
2342 and then Disc
/= Corresp_Disc
2344 Corresp_Disc
:= Corresponding_Discriminant
(Corresp_Disc
);
2347 if Disc
= Corresp_Disc
then
2348 if Nkind
(Assoc
) = N_Discriminant_Association
then
2349 Assoc
:= Expression
(Assoc
);
2352 -- If the located association directly denotes
2353 -- a discriminant, then use the value of a saved
2354 -- association of the aggregate. This is an approach
2355 -- used to handle certain cases involving multiple
2356 -- discriminants mapped to a single discriminant of
2357 -- a descendant. It's not clear how to locate the
2358 -- appropriate discriminant value for such cases. ???
2360 if Is_Entity_Name
(Assoc
)
2361 and then Ekind
(Entity
(Assoc
)) = E_Discriminant
2363 Assoc
:= Save_Assoc
;
2366 return Duplicate_Subexpr
(Assoc
);
2369 Next_Discriminant
(Parent_Disc
);
2371 if No
(Assoc_Elmt
) then
2375 Next_Elmt
(Assoc_Elmt
);
2377 if Present
(Assoc_Elmt
) then
2378 Assoc
:= Node
(Assoc_Elmt
);
2386 Current_Typ
:= Parent_Typ
;
2387 Parent_Typ
:= Etype
(Current_Typ
);
2390 -- In some cases there's no ancestor value to locate (such as
2391 -- when an ancestor part given by an expression defines the
2392 -- discriminant value).
2395 end Ancestor_Discriminant_Value
;
2397 ----------------------------------
2398 -- Check_Ancestor_Discriminants --
2399 ----------------------------------
2401 procedure Check_Ancestor_Discriminants
(Anc_Typ
: Entity_Id
) is
2403 Disc_Value
: Node_Id
;
2407 Discr
:= First_Discriminant
(Base_Type
(Anc_Typ
));
2408 while Present
(Discr
) loop
2409 Disc_Value
:= Ancestor_Discriminant_Value
(Discr
);
2411 if Present
(Disc_Value
) then
2412 Cond
:= Make_Op_Ne
(Loc
,
2414 Make_Selected_Component
(Loc
,
2415 Prefix
=> New_Copy_Tree
(Target
),
2416 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)),
2417 Right_Opnd
=> Disc_Value
);
2420 Make_Raise_Constraint_Error
(Loc
,
2422 Reason
=> CE_Discriminant_Check_Failed
));
2425 Next_Discriminant
(Discr
);
2427 end Check_Ancestor_Discriminants
;
2429 ---------------------------
2430 -- Compatible_Int_Bounds --
2431 ---------------------------
2433 function Compatible_Int_Bounds
2434 (Agg_Bounds
: Node_Id
;
2435 Typ_Bounds
: Node_Id
) return Boolean
2437 Agg_Lo
: constant Uint
:= Intval
(Low_Bound
(Agg_Bounds
));
2438 Agg_Hi
: constant Uint
:= Intval
(High_Bound
(Agg_Bounds
));
2439 Typ_Lo
: constant Uint
:= Intval
(Low_Bound
(Typ_Bounds
));
2440 Typ_Hi
: constant Uint
:= Intval
(High_Bound
(Typ_Bounds
));
2442 return Typ_Lo
<= Agg_Lo
and then Agg_Hi
<= Typ_Hi
;
2443 end Compatible_Int_Bounds
;
2445 -----------------------------------
2446 -- Generate_Finalization_Actions --
2447 -----------------------------------
2449 procedure Generate_Finalization_Actions
is
2451 -- Do the work only the first time this is called
2453 if Finalization_Done
then
2457 Finalization_Done
:= True;
2459 -- Determine the external finalization list. It is either the
2460 -- finalization list of the outer scope or the one coming from an
2461 -- outer aggregate. When the target is not a temporary, the proper
2462 -- scope is the scope of the target rather than the potentially
2463 -- transient current scope.
2465 if Is_Controlled
(Typ
) and then Ancestor_Is_Subtype_Mark
then
2466 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
2467 Set_Assignment_OK
(Ref
);
2470 Make_Procedure_Call_Statement
(Loc
,
2473 (Find_Prim_Op
(Init_Typ
, Name_Initialize
), Loc
),
2474 Parameter_Associations
=> New_List
(New_Copy_Tree
(Ref
))));
2476 end Generate_Finalization_Actions
;
2478 --------------------------------
2479 -- Get_Constraint_Association --
2480 --------------------------------
2482 function Get_Constraint_Association
(T
: Entity_Id
) return Node_Id
is
2489 -- If type is private, get constraint from full view. This was
2490 -- previously done in an instance context, but is needed whenever
2491 -- the ancestor part has a discriminant, possibly inherited through
2492 -- multiple derivations.
2494 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
2495 Typ
:= Full_View
(Typ
);
2498 Indic
:= Subtype_Indication
(Type_Definition
(Parent
(Typ
)));
2500 -- Verify that the subtype indication carries a constraint
2502 if Nkind
(Indic
) = N_Subtype_Indication
2503 and then Present
(Constraint
(Indic
))
2505 return First
(Constraints
(Constraint
(Indic
)));
2509 end Get_Constraint_Association
;
2511 -------------------------------------
2512 -- Get_Explicit_Discriminant_Value --
2513 -------------------------------------
2515 function Get_Explicit_Discriminant_Value
2516 (D
: Entity_Id
) return Node_Id
2523 -- The aggregate has been normalized and all associations have a
2526 Assoc
:= First
(Component_Associations
(N
));
2527 while Present
(Assoc
) loop
2528 Choice
:= First
(Choices
(Assoc
));
2530 if Chars
(Choice
) = Chars
(D
) then
2531 Val
:= Expression
(Assoc
);
2540 end Get_Explicit_Discriminant_Value
;
2542 -------------------------------
2543 -- Init_Hidden_Discriminants --
2544 -------------------------------
2546 procedure Init_Hidden_Discriminants
(Typ
: Entity_Id
; List
: List_Id
) is
2547 function Is_Completely_Hidden_Discriminant
2548 (Discr
: Entity_Id
) return Boolean;
2549 -- Determine whether Discr is a completely hidden discriminant of
2552 ---------------------------------------
2553 -- Is_Completely_Hidden_Discriminant --
2554 ---------------------------------------
2556 function Is_Completely_Hidden_Discriminant
2557 (Discr
: Entity_Id
) return Boolean
2562 -- Use First/Next_Entity as First/Next_Discriminant do not yield
2563 -- completely hidden discriminants.
2565 Item
:= First_Entity
(Typ
);
2566 while Present
(Item
) loop
2567 if Ekind
(Item
) = E_Discriminant
2568 and then Is_Completely_Hidden
(Item
)
2569 and then Chars
(Original_Record_Component
(Item
)) =
2579 end Is_Completely_Hidden_Discriminant
;
2583 Base_Typ
: Entity_Id
;
2585 Discr_Constr
: Elmt_Id
;
2586 Discr_Init
: Node_Id
;
2587 Discr_Val
: Node_Id
;
2588 In_Aggr_Type
: Boolean;
2589 Par_Typ
: Entity_Id
;
2591 -- Start of processing for Init_Hidden_Discriminants
2594 -- The constraints on the hidden discriminants, if present, are kept
2595 -- in the Stored_Constraint list of the type itself, or in that of
2596 -- the base type. If not in the constraints of the aggregate itself,
2597 -- we examine ancestors to find discriminants that are not renamed
2598 -- by other discriminants but constrained explicitly.
2600 In_Aggr_Type
:= True;
2602 Base_Typ
:= Base_Type
(Typ
);
2603 while Is_Derived_Type
(Base_Typ
)
2605 (Present
(Stored_Constraint
(Base_Typ
))
2607 (In_Aggr_Type
and then Present
(Stored_Constraint
(Typ
))))
2609 Par_Typ
:= Etype
(Base_Typ
);
2611 if not Has_Discriminants
(Par_Typ
) then
2615 Discr
:= First_Discriminant
(Par_Typ
);
2617 -- We know that one of the stored-constraint lists is present
2619 if Present
(Stored_Constraint
(Base_Typ
)) then
2620 Discr_Constr
:= First_Elmt
(Stored_Constraint
(Base_Typ
));
2622 -- For private extension, stored constraint may be on full view
2624 elsif Is_Private_Type
(Base_Typ
)
2625 and then Present
(Full_View
(Base_Typ
))
2626 and then Present
(Stored_Constraint
(Full_View
(Base_Typ
)))
2629 First_Elmt
(Stored_Constraint
(Full_View
(Base_Typ
)));
2632 Discr_Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
2635 while Present
(Discr
) and then Present
(Discr_Constr
) loop
2636 Discr_Val
:= Node
(Discr_Constr
);
2638 -- The parent discriminant is renamed in the derived type,
2639 -- nothing to initialize.
2641 -- type Deriv_Typ (Discr : ...)
2642 -- is new Parent_Typ (Discr => Discr);
2644 if Is_Entity_Name
(Discr_Val
)
2645 and then Ekind
(Entity
(Discr_Val
)) = E_Discriminant
2649 -- When the parent discriminant is constrained at the type
2650 -- extension level, it does not appear in the derived type.
2652 -- type Deriv_Typ (Discr : ...)
2653 -- is new Parent_Typ (Discr => Discr,
2654 -- Hidden_Discr => Expression);
2656 elsif Is_Completely_Hidden_Discriminant
(Discr
) then
2659 -- Otherwise initialize the discriminant
2663 Make_OK_Assignment_Statement
(Loc
,
2665 Make_Selected_Component
(Loc
,
2666 Prefix
=> New_Copy_Tree
(Target
),
2667 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)),
2668 Expression
=> New_Copy_Tree
(Discr_Val
));
2670 Set_No_Ctrl_Actions
(Discr_Init
);
2671 Append_To
(List
, Discr_Init
);
2674 Next_Elmt
(Discr_Constr
);
2675 Next_Discriminant
(Discr
);
2678 In_Aggr_Type
:= False;
2679 Base_Typ
:= Base_Type
(Par_Typ
);
2681 end Init_Hidden_Discriminants
;
2683 --------------------------------
2684 -- Init_Visible_Discriminants --
2685 --------------------------------
2687 procedure Init_Visible_Discriminants
is
2688 Discriminant
: Entity_Id
;
2689 Discriminant_Value
: Node_Id
;
2692 Discriminant
:= First_Discriminant
(Typ
);
2693 while Present
(Discriminant
) loop
2695 Make_Selected_Component
(Loc
,
2696 Prefix
=> New_Copy_Tree
(Target
),
2697 Selector_Name
=> New_Occurrence_Of
(Discriminant
, Loc
));
2699 Discriminant_Value
:=
2700 Get_Discriminant_Value
2701 (Discriminant
, Typ
, Discriminant_Constraint
(N_Typ
));
2704 Make_OK_Assignment_Statement
(Loc
,
2706 Expression
=> New_Copy_Tree
(Discriminant_Value
));
2708 Set_No_Ctrl_Actions
(Instr
);
2709 Append_To
(L
, Instr
);
2711 Next_Discriminant
(Discriminant
);
2713 end Init_Visible_Discriminants
;
2715 -------------------------------
2716 -- Init_Stored_Discriminants --
2717 -------------------------------
2719 procedure Init_Stored_Discriminants
is
2720 Discriminant
: Entity_Id
;
2721 Discriminant_Value
: Node_Id
;
2724 Discriminant
:= First_Stored_Discriminant
(Typ
);
2725 while Present
(Discriminant
) loop
2727 Make_Selected_Component
(Loc
,
2728 Prefix
=> New_Copy_Tree
(Target
),
2729 Selector_Name
=> New_Occurrence_Of
(Discriminant
, Loc
));
2731 Discriminant_Value
:=
2732 Get_Discriminant_Value
2733 (Discriminant
, N_Typ
, Discriminant_Constraint
(N_Typ
));
2736 Make_OK_Assignment_Statement
(Loc
,
2738 Expression
=> New_Copy_Tree
(Discriminant_Value
));
2740 Set_No_Ctrl_Actions
(Instr
);
2741 Append_To
(L
, Instr
);
2743 Next_Stored_Discriminant
(Discriminant
);
2745 end Init_Stored_Discriminants
;
2747 --------------------------------------
2748 -- Initialize_Ctrl_Record_Component --
2749 --------------------------------------
2751 procedure Initialize_Ctrl_Record_Component
2752 (Rec_Comp
: Node_Id
;
2753 Comp_Typ
: Entity_Id
;
2754 Init_Expr
: Node_Id
;
2758 Hook_Clear
: Node_Id
;
2760 In_Place_Expansion
: Boolean;
2761 -- Flag set when a nonlimited controlled function call requires
2762 -- in-place expansion.
2765 -- Perform a preliminary analysis and resolution to determine what
2766 -- the initialization expression denotes. Unanalyzed function calls
2767 -- may appear as identifiers or indexed components.
2769 if Nkind_In
(Init_Expr
, N_Function_Call
,
2771 N_Indexed_Component
)
2772 and then not Analyzed
(Init_Expr
)
2774 Preanalyze_And_Resolve
(Init_Expr
, Comp_Typ
);
2777 In_Place_Expansion
:=
2778 Nkind
(Init_Expr
) = N_Function_Call
2779 and then not Is_Limited_Type
(Comp_Typ
);
2781 -- The initialization expression is a controlled function call.
2782 -- Perform in-place removal of side effects to avoid creating a
2785 -- This in-place expansion is not performed for limited transient
2786 -- objects because the initialization is already done in place.
2788 if In_Place_Expansion
then
2790 -- Suppress the removal of side effects by general analysis
2791 -- because this behavior is emulated here. This avoids the
2792 -- generation of a transient scope, which leads to out-of-order
2793 -- adjustment and finalization.
2795 Set_No_Side_Effect_Removal
(Init_Expr
);
2797 -- Install all hook-related declarations and prepare the clean up
2800 Process_Transient_Component
2802 Comp_Typ
=> Comp_Typ
,
2803 Init_Expr
=> Init_Expr
,
2804 Fin_Call
=> Fin_Call
,
2805 Hook_Clear
=> Hook_Clear
,
2809 -- Use the noncontrolled component initialization circuitry to
2810 -- assign the result of the function call to the record component.
2811 -- This also performs tag adjustment and [deep] adjustment of the
2812 -- record component.
2814 Initialize_Record_Component
2815 (Rec_Comp
=> Rec_Comp
,
2816 Comp_Typ
=> Comp_Typ
,
2817 Init_Expr
=> Init_Expr
,
2820 -- At this point the record component is fully initialized. Complete
2821 -- the processing of the controlled record component by finalizing
2822 -- the transient function result.
2824 if In_Place_Expansion
then
2825 Process_Transient_Component_Completion
2828 Fin_Call
=> Fin_Call
,
2829 Hook_Clear
=> Hook_Clear
,
2832 end Initialize_Ctrl_Record_Component
;
2834 ---------------------------------
2835 -- Initialize_Record_Component --
2836 ---------------------------------
2838 procedure Initialize_Record_Component
2839 (Rec_Comp
: Node_Id
;
2840 Comp_Typ
: Entity_Id
;
2841 Init_Expr
: Node_Id
;
2844 Exceptions_OK
: constant Boolean :=
2845 not Restriction_Active
(No_Exception_Propagation
);
2847 Finalization_OK
: constant Boolean := Needs_Finalization
(Comp_Typ
);
2849 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Comp_Typ
);
2850 Blk_Stmts
: List_Id
;
2851 Init_Stmt
: Node_Id
;
2854 -- Protect the initialization statements from aborts. Generate:
2858 if Finalization_OK
and Abort_Allowed
then
2859 if Exceptions_OK
then
2860 Blk_Stmts
:= New_List
;
2865 Append_To
(Blk_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
2867 -- Otherwise aborts are not allowed. All generated code is added
2868 -- directly to the input list.
2874 -- Initialize the record component. Generate:
2876 -- Rec_Comp := Init_Expr;
2878 -- Note that the initialization expression is NOT replicated because
2879 -- only a single component may be initialized by it.
2882 Make_OK_Assignment_Statement
(Loc
,
2883 Name
=> New_Copy_Tree
(Rec_Comp
),
2884 Expression
=> Init_Expr
);
2885 Set_No_Ctrl_Actions
(Init_Stmt
);
2887 Append_To
(Blk_Stmts
, Init_Stmt
);
2889 -- Adjust the tag due to a possible view conversion. Generate:
2891 -- Rec_Comp._tag := Full_TypeP;
2893 if Tagged_Type_Expansion
and then Is_Tagged_Type
(Comp_Typ
) then
2894 Append_To
(Blk_Stmts
,
2895 Make_OK_Assignment_Statement
(Loc
,
2897 Make_Selected_Component
(Loc
,
2898 Prefix
=> New_Copy_Tree
(Rec_Comp
),
2901 (First_Tag_Component
(Full_Typ
), Loc
)),
2904 Unchecked_Convert_To
(RTE
(RE_Tag
),
2906 (Node
(First_Elmt
(Access_Disp_Table
(Full_Typ
))),
2910 -- Adjust the component. Generate:
2912 -- [Deep_]Adjust (Rec_Comp);
2914 if Finalization_OK
and then not Is_Limited_Type
(Comp_Typ
) then
2915 Append_To
(Blk_Stmts
,
2917 (Obj_Ref
=> New_Copy_Tree
(Rec_Comp
),
2921 -- Complete the protection of the initialization statements
2923 if Finalization_OK
and Abort_Allowed
then
2925 -- Wrap the initialization statements in a block to catch a
2926 -- potential exception. Generate:
2930 -- Rec_Comp := Init_Expr;
2931 -- Rec_Comp._tag := Full_TypP;
2932 -- [Deep_]Adjust (Rec_Comp);
2934 -- Abort_Undefer_Direct;
2937 if Exceptions_OK
then
2939 Build_Abort_Undefer_Block
(Loc
,
2943 -- Otherwise exceptions are not propagated. Generate:
2946 -- Rec_Comp := Init_Expr;
2947 -- Rec_Comp._tag := Full_TypP;
2948 -- [Deep_]Adjust (Rec_Comp);
2952 Append_To
(Blk_Stmts
,
2953 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
2956 end Initialize_Record_Component
;
2958 -------------------------
2959 -- Is_Int_Range_Bounds --
2960 -------------------------
2962 function Is_Int_Range_Bounds
(Bounds
: Node_Id
) return Boolean is
2964 return Nkind
(Bounds
) = N_Range
2965 and then Nkind
(Low_Bound
(Bounds
)) = N_Integer_Literal
2966 and then Nkind
(High_Bound
(Bounds
)) = N_Integer_Literal
;
2967 end Is_Int_Range_Bounds
;
2973 function Replace_Type
(Expr
: Node_Id
) return Traverse_Result
is
2975 -- Note regarding the Root_Type test below: Aggregate components for
2976 -- self-referential types include attribute references to the current
2977 -- instance, of the form: Typ'access, etc.. These references are
2978 -- rewritten as references to the target of the aggregate: the
2979 -- left-hand side of an assignment, the entity in a declaration,
2980 -- or a temporary. Without this test, we would improperly extended
2981 -- this rewriting to attribute references whose prefix was not the
2982 -- type of the aggregate.
2984 if Nkind
(Expr
) = N_Attribute_Reference
2985 and then Is_Entity_Name
(Prefix
(Expr
))
2986 and then Is_Type
(Entity
(Prefix
(Expr
)))
2987 and then Root_Type
(Etype
(N
)) = Root_Type
(Entity
(Prefix
(Expr
)))
2989 if Is_Entity_Name
(Lhs
) then
2990 Rewrite
(Prefix
(Expr
),
2991 New_Occurrence_Of
(Entity
(Lhs
), Loc
));
2993 elsif Nkind
(Lhs
) = N_Selected_Component
then
2995 Make_Attribute_Reference
(Loc
,
2996 Attribute_Name
=> Name_Unrestricted_Access
,
2997 Prefix
=> New_Copy_Tree
(Lhs
)));
2998 Set_Analyzed
(Parent
(Expr
), False);
3002 Make_Attribute_Reference
(Loc
,
3003 Attribute_Name
=> Name_Unrestricted_Access
,
3004 Prefix
=> New_Copy_Tree
(Lhs
)));
3005 Set_Analyzed
(Parent
(Expr
), False);
3012 --------------------------
3013 -- Rewrite_Discriminant --
3014 --------------------------
3016 function Rewrite_Discriminant
(Expr
: Node_Id
) return Traverse_Result
is
3018 if Is_Entity_Name
(Expr
)
3019 and then Present
(Entity
(Expr
))
3020 and then Ekind
(Entity
(Expr
)) = E_In_Parameter
3021 and then Present
(Discriminal_Link
(Entity
(Expr
)))
3022 and then Scope
(Discriminal_Link
(Entity
(Expr
))) =
3023 Base_Type
(Etype
(N
))
3026 Make_Selected_Component
(Loc
,
3027 Prefix
=> New_Copy_Tree
(Lhs
),
3028 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Expr
))));
3032 end Rewrite_Discriminant
;
3034 procedure Replace_Discriminants
is
3035 new Traverse_Proc
(Rewrite_Discriminant
);
3037 procedure Replace_Self_Reference
is
3038 new Traverse_Proc
(Replace_Type
);
3040 -- Start of processing for Build_Record_Aggr_Code
3043 if Has_Self_Reference
(N
) then
3044 Replace_Self_Reference
(N
);
3047 -- If the target of the aggregate is class-wide, we must convert it
3048 -- to the actual type of the aggregate, so that the proper components
3049 -- are visible. We know already that the types are compatible.
3051 if Present
(Etype
(Lhs
))
3052 and then Is_Class_Wide_Type
(Etype
(Lhs
))
3054 Target
:= Unchecked_Convert_To
(Typ
, Lhs
);
3059 -- Deal with the ancestor part of extension aggregates or with the
3060 -- discriminants of the root type.
3062 if Nkind
(N
) = N_Extension_Aggregate
then
3064 Ancestor
: constant Node_Id
:= Ancestor_Part
(N
);
3068 -- If the ancestor part is a subtype mark "T", we generate
3070 -- init-proc (T (tmp)); if T is constrained and
3071 -- init-proc (S (tmp)); where S applies an appropriate
3072 -- constraint if T is unconstrained
3074 if Is_Entity_Name
(Ancestor
)
3075 and then Is_Type
(Entity
(Ancestor
))
3077 Ancestor_Is_Subtype_Mark
:= True;
3079 if Is_Constrained
(Entity
(Ancestor
)) then
3080 Init_Typ
:= Entity
(Ancestor
);
3082 -- For an ancestor part given by an unconstrained type mark,
3083 -- create a subtype constrained by appropriate corresponding
3084 -- discriminant values coming from either associations of the
3085 -- aggregate or a constraint on a parent type. The subtype will
3086 -- be used to generate the correct default value for the
3089 elsif Has_Discriminants
(Entity
(Ancestor
)) then
3091 Anc_Typ
: constant Entity_Id
:= Entity
(Ancestor
);
3092 Anc_Constr
: constant List_Id
:= New_List
;
3093 Discrim
: Entity_Id
;
3094 Disc_Value
: Node_Id
;
3095 New_Indic
: Node_Id
;
3096 Subt_Decl
: Node_Id
;
3099 Discrim
:= First_Discriminant
(Anc_Typ
);
3100 while Present
(Discrim
) loop
3101 Disc_Value
:= Ancestor_Discriminant_Value
(Discrim
);
3103 -- If no usable discriminant in ancestors, check
3104 -- whether aggregate has an explicit value for it.
3106 if No
(Disc_Value
) then
3108 Get_Explicit_Discriminant_Value
(Discrim
);
3111 Append_To
(Anc_Constr
, Disc_Value
);
3112 Next_Discriminant
(Discrim
);
3116 Make_Subtype_Indication
(Loc
,
3117 Subtype_Mark
=> New_Occurrence_Of
(Anc_Typ
, Loc
),
3119 Make_Index_Or_Discriminant_Constraint
(Loc
,
3120 Constraints
=> Anc_Constr
));
3122 Init_Typ
:= Create_Itype
(Ekind
(Anc_Typ
), N
);
3125 Make_Subtype_Declaration
(Loc
,
3126 Defining_Identifier
=> Init_Typ
,
3127 Subtype_Indication
=> New_Indic
);
3129 -- Itypes must be analyzed with checks off Declaration
3130 -- must have a parent for proper handling of subsidiary
3133 Set_Parent
(Subt_Decl
, N
);
3134 Analyze
(Subt_Decl
, Suppress
=> All_Checks
);
3138 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
3139 Set_Assignment_OK
(Ref
);
3141 if not Is_Interface
(Init_Typ
) then
3143 Build_Initialization_Call
(Loc
,
3146 In_Init_Proc
=> Within_Init_Proc
,
3147 With_Default_Init
=> Has_Default_Init_Comps
(N
)
3149 Has_Task
(Base_Type
(Init_Typ
))));
3151 if Is_Constrained
(Entity
(Ancestor
))
3152 and then Has_Discriminants
(Entity
(Ancestor
))
3154 Check_Ancestor_Discriminants
(Entity
(Ancestor
));
3158 -- Handle calls to C++ constructors
3160 elsif Is_CPP_Constructor_Call
(Ancestor
) then
3161 Init_Typ
:= Etype
(Ancestor
);
3162 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
3163 Set_Assignment_OK
(Ref
);
3166 Build_Initialization_Call
(Loc
,
3169 In_Init_Proc
=> Within_Init_Proc
,
3170 With_Default_Init
=> Has_Default_Init_Comps
(N
),
3171 Constructor_Ref
=> Ancestor
));
3173 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
3174 -- limited type, a recursive call expands the ancestor. Note that
3175 -- in the limited case, the ancestor part must be either a
3176 -- function call (possibly qualified, or wrapped in an unchecked
3177 -- conversion) or aggregate (definitely qualified).
3179 -- The ancestor part can also be a function call (that may be
3180 -- transformed into an explicit dereference) or a qualification
3183 elsif Is_Limited_Type
(Etype
(Ancestor
))
3184 and then Nkind_In
(Unqualify
(Ancestor
), N_Aggregate
,
3185 N_Extension_Aggregate
)
3187 Ancestor_Is_Expression
:= True;
3189 -- Set up finalization data for enclosing record, because
3190 -- controlled subcomponents of the ancestor part will be
3193 Generate_Finalization_Actions
;
3196 Build_Record_Aggr_Code
3197 (N
=> Unqualify
(Ancestor
),
3198 Typ
=> Etype
(Unqualify
(Ancestor
)),
3201 -- If the ancestor part is an expression "E", we generate
3205 -- In Ada 2005, this includes the case of a (possibly qualified)
3206 -- limited function call. The assignment will turn into a
3207 -- build-in-place function call (for further details, see
3208 -- Make_Build_In_Place_Call_In_Assignment).
3211 Ancestor_Is_Expression
:= True;
3212 Init_Typ
:= Etype
(Ancestor
);
3214 -- If the ancestor part is an aggregate, force its full
3215 -- expansion, which was delayed.
3217 if Nkind_In
(Unqualify
(Ancestor
), N_Aggregate
,
3218 N_Extension_Aggregate
)
3220 Set_Analyzed
(Ancestor
, False);
3221 Set_Analyzed
(Expression
(Ancestor
), False);
3224 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
3225 Set_Assignment_OK
(Ref
);
3227 -- Make the assignment without usual controlled actions, since
3228 -- we only want to Adjust afterwards, but not to Finalize
3229 -- beforehand. Add manual Adjust when necessary.
3231 Assign
:= New_List
(
3232 Make_OK_Assignment_Statement
(Loc
,
3234 Expression
=> Ancestor
));
3235 Set_No_Ctrl_Actions
(First
(Assign
));
3237 -- Assign the tag now to make sure that the dispatching call in
3238 -- the subsequent deep_adjust works properly (unless
3239 -- Tagged_Type_Expansion where tags are implicit).
3241 if Tagged_Type_Expansion
then
3243 Make_OK_Assignment_Statement
(Loc
,
3245 Make_Selected_Component
(Loc
,
3246 Prefix
=> New_Copy_Tree
(Target
),
3249 (First_Tag_Component
(Base_Type
(Typ
)), Loc
)),
3252 Unchecked_Convert_To
(RTE
(RE_Tag
),
3255 (Access_Disp_Table
(Base_Type
(Typ
)))),
3258 Set_Assignment_OK
(Name
(Instr
));
3259 Append_To
(Assign
, Instr
);
3261 -- Ada 2005 (AI-251): If tagged type has progenitors we must
3262 -- also initialize tags of the secondary dispatch tables.
3264 if Has_Interfaces
(Base_Type
(Typ
)) then
3266 (Typ
=> Base_Type
(Typ
),
3268 Stmts_List
=> Assign
);
3272 -- Call Adjust manually
3274 if Needs_Finalization
(Etype
(Ancestor
))
3275 and then not Is_Limited_Type
(Etype
(Ancestor
))
3279 (Obj_Ref
=> New_Copy_Tree
(Ref
),
3280 Typ
=> Etype
(Ancestor
)));
3284 Make_Unsuppress_Block
(Loc
, Name_Discriminant_Check
, Assign
));
3286 if Has_Discriminants
(Init_Typ
) then
3287 Check_Ancestor_Discriminants
(Init_Typ
);
3292 -- Generate assignments of hidden discriminants. If the base type is
3293 -- an unchecked union, the discriminants are unknown to the back-end
3294 -- and absent from a value of the type, so assignments for them are
3297 if Has_Discriminants
(Typ
)
3298 and then not Is_Unchecked_Union
(Base_Type
(Typ
))
3300 Init_Hidden_Discriminants
(Typ
, L
);
3303 -- Normal case (not an extension aggregate)
3306 -- Generate the discriminant expressions, component by component.
3307 -- If the base type is an unchecked union, the discriminants are
3308 -- unknown to the back-end and absent from a value of the type, so
3309 -- assignments for them are not emitted.
3311 if Has_Discriminants
(Typ
)
3312 and then not Is_Unchecked_Union
(Base_Type
(Typ
))
3314 Init_Hidden_Discriminants
(Typ
, L
);
3316 -- Generate discriminant init values for the visible discriminants
3318 Init_Visible_Discriminants
;
3320 if Is_Derived_Type
(N_Typ
) then
3321 Init_Stored_Discriminants
;
3326 -- For CPP types we generate an implicit call to the C++ default
3327 -- constructor to ensure the proper initialization of the _Tag
3330 if Is_CPP_Class
(Root_Type
(Typ
)) and then CPP_Num_Prims
(Typ
) > 0 then
3331 Invoke_Constructor
: declare
3332 CPP_Parent
: constant Entity_Id
:= Enclosing_CPP_Parent
(Typ
);
3334 procedure Invoke_IC_Proc
(T
: Entity_Id
);
3335 -- Recursive routine used to climb to parents. Required because
3336 -- parents must be initialized before descendants to ensure
3337 -- propagation of inherited C++ slots.
3339 --------------------
3340 -- Invoke_IC_Proc --
3341 --------------------
3343 procedure Invoke_IC_Proc
(T
: Entity_Id
) is
3345 -- Avoid generating extra calls. Initialization required
3346 -- only for types defined from the level of derivation of
3347 -- type of the constructor and the type of the aggregate.
3349 if T
= CPP_Parent
then
3353 Invoke_IC_Proc
(Etype
(T
));
3355 -- Generate call to the IC routine
3357 if Present
(CPP_Init_Proc
(T
)) then
3359 Make_Procedure_Call_Statement
(Loc
,
3360 Name
=> New_Occurrence_Of
(CPP_Init_Proc
(T
), Loc
)));
3364 -- Start of processing for Invoke_Constructor
3367 -- Implicit invocation of the C++ constructor
3369 if Nkind
(N
) = N_Aggregate
then
3371 Make_Procedure_Call_Statement
(Loc
,
3373 New_Occurrence_Of
(Base_Init_Proc
(CPP_Parent
), Loc
),
3374 Parameter_Associations
=> New_List
(
3375 Unchecked_Convert_To
(CPP_Parent
,
3376 New_Copy_Tree
(Lhs
)))));
3379 Invoke_IC_Proc
(Typ
);
3380 end Invoke_Constructor
;
3383 -- Generate the assignments, component by component
3385 -- tmp.comp1 := Expr1_From_Aggr;
3386 -- tmp.comp2 := Expr2_From_Aggr;
3389 Comp
:= First
(Component_Associations
(N
));
3390 while Present
(Comp
) loop
3391 Selector
:= Entity
(First
(Choices
(Comp
)));
3395 if Is_CPP_Constructor_Call
(Expression
(Comp
)) then
3397 Build_Initialization_Call
(Loc
,
3399 Make_Selected_Component
(Loc
,
3400 Prefix
=> New_Copy_Tree
(Target
),
3401 Selector_Name
=> New_Occurrence_Of
(Selector
, Loc
)),
3402 Typ
=> Etype
(Selector
),
3404 With_Default_Init
=> True,
3405 Constructor_Ref
=> Expression
(Comp
)));
3407 -- Ada 2005 (AI-287): For each default-initialized component generate
3408 -- a call to the corresponding IP subprogram if available.
3410 elsif Box_Present
(Comp
)
3411 and then Has_Non_Null_Base_Init_Proc
(Etype
(Selector
))
3413 if Ekind
(Selector
) /= E_Discriminant
then
3414 Generate_Finalization_Actions
;
3417 -- Ada 2005 (AI-287): If the component type has tasks then
3418 -- generate the activation chain and master entities (except
3419 -- in case of an allocator because in that case these entities
3420 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
3423 Ctype
: constant Entity_Id
:= Etype
(Selector
);
3424 Inside_Allocator
: Boolean := False;
3425 P
: Node_Id
:= Parent
(N
);
3428 if Is_Task_Type
(Ctype
) or else Has_Task
(Ctype
) then
3429 while Present
(P
) loop
3430 if Nkind
(P
) = N_Allocator
then
3431 Inside_Allocator
:= True;
3438 if not Inside_Init_Proc
and not Inside_Allocator
then
3439 Build_Activation_Chain_Entity
(N
);
3445 Build_Initialization_Call
(Loc
,
3446 Id_Ref
=> Make_Selected_Component
(Loc
,
3447 Prefix
=> New_Copy_Tree
(Target
),
3449 New_Occurrence_Of
(Selector
, Loc
)),
3450 Typ
=> Etype
(Selector
),
3452 With_Default_Init
=> True));
3454 -- Prepare for component assignment
3456 elsif Ekind
(Selector
) /= E_Discriminant
3457 or else Nkind
(N
) = N_Extension_Aggregate
3459 -- All the discriminants have now been assigned
3461 -- This is now a good moment to initialize and attach all the
3462 -- controllers. Their position may depend on the discriminants.
3464 if Ekind
(Selector
) /= E_Discriminant
then
3465 Generate_Finalization_Actions
;
3468 Comp_Type
:= Underlying_Type
(Etype
(Selector
));
3470 Make_Selected_Component
(Loc
,
3471 Prefix
=> New_Copy_Tree
(Target
),
3472 Selector_Name
=> New_Occurrence_Of
(Selector
, Loc
));
3474 if Nkind
(Expression
(Comp
)) = N_Qualified_Expression
then
3475 Expr_Q
:= Expression
(Expression
(Comp
));
3477 Expr_Q
:= Expression
(Comp
);
3480 -- Now either create the assignment or generate the code for the
3481 -- inner aggregate top-down.
3483 if Is_Delayed_Aggregate
(Expr_Q
) then
3485 -- We have the following case of aggregate nesting inside
3486 -- an object declaration:
3488 -- type Arr_Typ is array (Integer range <>) of ...;
3490 -- type Rec_Typ (...) is record
3491 -- Obj_Arr_Typ : Arr_Typ (A .. B);
3494 -- Obj_Rec_Typ : Rec_Typ := (...,
3495 -- Obj_Arr_Typ => (X => (...), Y => (...)));
3497 -- The length of the ranges of the aggregate and Obj_Add_Typ
3498 -- are equal (B - A = Y - X), but they do not coincide (X /=
3499 -- A and B /= Y). This case requires array sliding which is
3500 -- performed in the following manner:
3502 -- subtype Arr_Sub is Arr_Typ (X .. Y);
3504 -- Temp (X) := (...);
3506 -- Temp (Y) := (...);
3507 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
3509 if Ekind
(Comp_Type
) = E_Array_Subtype
3510 and then Is_Int_Range_Bounds
(Aggregate_Bounds
(Expr_Q
))
3511 and then Is_Int_Range_Bounds
(First_Index
(Comp_Type
))
3513 Compatible_Int_Bounds
3514 (Agg_Bounds
=> Aggregate_Bounds
(Expr_Q
),
3515 Typ_Bounds
=> First_Index
(Comp_Type
))
3517 -- Create the array subtype with bounds equal to those of
3518 -- the corresponding aggregate.
3521 SubE
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
3523 SubD
: constant Node_Id
:=
3524 Make_Subtype_Declaration
(Loc
,
3525 Defining_Identifier
=> SubE
,
3526 Subtype_Indication
=>
3527 Make_Subtype_Indication
(Loc
,
3529 New_Occurrence_Of
(Etype
(Comp_Type
), Loc
),
3531 Make_Index_Or_Discriminant_Constraint
3533 Constraints
=> New_List
(
3535 (Aggregate_Bounds
(Expr_Q
))))));
3537 -- Create a temporary array of the above subtype which
3538 -- will be used to capture the aggregate assignments.
3540 TmpE
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A', N
);
3542 TmpD
: constant Node_Id
:=
3543 Make_Object_Declaration
(Loc
,
3544 Defining_Identifier
=> TmpE
,
3545 Object_Definition
=> New_Occurrence_Of
(SubE
, Loc
));
3548 Set_No_Initialization
(TmpD
);
3549 Append_To
(L
, SubD
);
3550 Append_To
(L
, TmpD
);
3552 -- Expand aggregate into assignments to the temp array
3555 Late_Expansion
(Expr_Q
, Comp_Type
,
3556 New_Occurrence_Of
(TmpE
, Loc
)));
3561 Make_Assignment_Statement
(Loc
,
3562 Name
=> New_Copy_Tree
(Comp_Expr
),
3563 Expression
=> New_Occurrence_Of
(TmpE
, Loc
)));
3566 -- Normal case (sliding not required)
3570 Late_Expansion
(Expr_Q
, Comp_Type
, Comp_Expr
));
3573 -- Expr_Q is not delayed aggregate
3576 if Has_Discriminants
(Typ
) then
3577 Replace_Discriminants
(Expr_Q
);
3579 -- If the component is an array type that depends on
3580 -- discriminants, and the expression is a single Others
3581 -- clause, create an explicit subtype for it because the
3582 -- backend has troubles recovering the actual bounds.
3584 if Nkind
(Expr_Q
) = N_Aggregate
3585 and then Is_Array_Type
(Comp_Type
)
3586 and then Present
(Component_Associations
(Expr_Q
))
3589 Assoc
: constant Node_Id
:=
3590 First
(Component_Associations
(Expr_Q
));
3594 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
3597 Build_Actual_Subtype_Of_Component
3598 (Comp_Type
, Comp_Expr
);
3600 -- If the component type does not in fact depend on
3601 -- discriminants, the subtype declaration is empty.
3603 if Present
(Decl
) then
3604 Append_To
(L
, Decl
);
3605 Set_Etype
(Comp_Expr
, Defining_Entity
(Decl
));
3613 and then Nkind
(Expr_Q
) = N_Aggregate
3614 and then Is_Array_Type
(Etype
(Expr_Q
))
3615 and then Present
(First_Index
(Etype
(Expr_Q
)))
3618 Expr_Q_Type
: constant Node_Id
:= Etype
(Expr_Q
);
3621 Build_Array_Aggr_Code
3623 Ctype
=> Component_Type
(Expr_Q_Type
),
3624 Index
=> First_Index
(Expr_Q_Type
),
3627 Is_Scalar_Type
(Component_Type
(Expr_Q_Type
))));
3631 -- Handle an initialization expression of a controlled type
3632 -- in case it denotes a function call. In general such a
3633 -- scenario will produce a transient scope, but this will
3634 -- lead to wrong order of initialization, adjustment, and
3635 -- finalization in the context of aggregates.
3637 -- Target.Comp := Ctrl_Func_Call;
3640 -- Trans_Obj : ... := Ctrl_Func_Call; -- object
3641 -- Target.Comp := Trans_Obj;
3642 -- Finalize (Trans_Obj);
3644 -- Target.Comp._tag := ...;
3645 -- Adjust (Target.Comp);
3647 -- In the example above, the call to Finalize occurs too
3648 -- early and as a result it may leave the record component
3649 -- in a bad state. Finalization of the transient object
3650 -- should really happen after adjustment.
3652 -- To avoid this scenario, perform in-place side-effect
3653 -- removal of the function call. This eliminates the
3654 -- transient property of the function result and ensures
3655 -- correct order of actions.
3657 -- Res : ... := Ctrl_Func_Call;
3658 -- Target.Comp := Res;
3659 -- Target.Comp._tag := ...;
3660 -- Adjust (Target.Comp);
3663 if Needs_Finalization
(Comp_Type
)
3664 and then Nkind
(Expr_Q
) /= N_Aggregate
3666 Initialize_Ctrl_Record_Component
3667 (Rec_Comp
=> Comp_Expr
,
3668 Comp_Typ
=> Etype
(Selector
),
3669 Init_Expr
=> Expr_Q
,
3672 -- Otherwise perform single component initialization
3675 Initialize_Record_Component
3676 (Rec_Comp
=> Comp_Expr
,
3677 Comp_Typ
=> Etype
(Selector
),
3678 Init_Expr
=> Expr_Q
,
3684 -- comment would be good here ???
3686 elsif Ekind
(Selector
) = E_Discriminant
3687 and then Nkind
(N
) /= N_Extension_Aggregate
3688 and then Nkind
(Parent
(N
)) = N_Component_Association
3689 and then Is_Constrained
(Typ
)
3691 -- We must check that the discriminant value imposed by the
3692 -- context is the same as the value given in the subaggregate,
3693 -- because after the expansion into assignments there is no
3694 -- record on which to perform a regular discriminant check.
3701 D_Val
:= First_Elmt
(Discriminant_Constraint
(Typ
));
3702 Disc
:= First_Discriminant
(Typ
);
3703 while Chars
(Disc
) /= Chars
(Selector
) loop
3704 Next_Discriminant
(Disc
);
3708 pragma Assert
(Present
(D_Val
));
3710 -- This check cannot performed for components that are
3711 -- constrained by a current instance, because this is not a
3712 -- value that can be compared with the actual constraint.
3714 if Nkind
(Node
(D_Val
)) /= N_Attribute_Reference
3715 or else not Is_Entity_Name
(Prefix
(Node
(D_Val
)))
3716 or else not Is_Type
(Entity
(Prefix
(Node
(D_Val
))))
3719 Make_Raise_Constraint_Error
(Loc
,
3722 Left_Opnd
=> New_Copy_Tree
(Node
(D_Val
)),
3723 Right_Opnd
=> Expression
(Comp
)),
3724 Reason
=> CE_Discriminant_Check_Failed
));
3727 -- Find self-reference in previous discriminant assignment,
3728 -- and replace with proper expression.
3735 while Present
(Ass
) loop
3736 if Nkind
(Ass
) = N_Assignment_Statement
3737 and then Nkind
(Name
(Ass
)) = N_Selected_Component
3738 and then Chars
(Selector_Name
(Name
(Ass
))) =
3742 (Ass
, New_Copy_Tree
(Expression
(Comp
)));
3755 -- If the type is tagged, the tag needs to be initialized (unless we
3756 -- are in VM-mode where tags are implicit). It is done late in the
3757 -- initialization process because in some cases, we call the init
3758 -- proc of an ancestor which will not leave out the right tag.
3760 if Ancestor_Is_Expression
then
3763 -- For CPP types we generated a call to the C++ default constructor
3764 -- before the components have been initialized to ensure the proper
3765 -- initialization of the _Tag component (see above).
3767 elsif Is_CPP_Class
(Typ
) then
3770 elsif Is_Tagged_Type
(Typ
) and then Tagged_Type_Expansion
then
3772 Make_OK_Assignment_Statement
(Loc
,
3774 Make_Selected_Component
(Loc
,
3775 Prefix
=> New_Copy_Tree
(Target
),
3778 (First_Tag_Component
(Base_Type
(Typ
)), Loc
)),
3781 Unchecked_Convert_To
(RTE
(RE_Tag
),
3783 (Node
(First_Elmt
(Access_Disp_Table
(Base_Type
(Typ
)))),
3786 Append_To
(L
, Instr
);
3788 -- Ada 2005 (AI-251): If the tagged type has been derived from an
3789 -- abstract interfaces we must also initialize the tags of the
3790 -- secondary dispatch tables.
3792 if Has_Interfaces
(Base_Type
(Typ
)) then
3794 (Typ
=> Base_Type
(Typ
),
3800 -- If the controllers have not been initialized yet (by lack of non-
3801 -- discriminant components), let's do it now.
3803 Generate_Finalization_Actions
;
3806 end Build_Record_Aggr_Code
;
3808 ---------------------------------------
3809 -- Collect_Initialization_Statements --
3810 ---------------------------------------
3812 procedure Collect_Initialization_Statements
3815 Node_After
: Node_Id
)
3817 Loc
: constant Source_Ptr
:= Sloc
(N
);
3818 Init_Actions
: constant List_Id
:= New_List
;
3819 Init_Node
: Node_Id
;
3820 Comp_Stmt
: Node_Id
;
3823 -- Nothing to do if Obj is already frozen, as in this case we known we
3824 -- won't need to move the initialization statements about later on.
3826 if Is_Frozen
(Obj
) then
3831 while Next
(Init_Node
) /= Node_After
loop
3832 Append_To
(Init_Actions
, Remove_Next
(Init_Node
));
3835 if not Is_Empty_List
(Init_Actions
) then
3836 Comp_Stmt
:= Make_Compound_Statement
(Loc
, Actions
=> Init_Actions
);
3837 Insert_Action_After
(Init_Node
, Comp_Stmt
);
3838 Set_Initialization_Statements
(Obj
, Comp_Stmt
);
3840 end Collect_Initialization_Statements
;
3842 -------------------------------
3843 -- Convert_Aggr_In_Allocator --
3844 -------------------------------
3846 procedure Convert_Aggr_In_Allocator
3851 Loc
: constant Source_Ptr
:= Sloc
(Aggr
);
3852 Typ
: constant Entity_Id
:= Etype
(Aggr
);
3853 Temp
: constant Entity_Id
:= Defining_Identifier
(Decl
);
3855 Occ
: constant Node_Id
:=
3856 Unchecked_Convert_To
(Typ
,
3857 Make_Explicit_Dereference
(Loc
, New_Occurrence_Of
(Temp
, Loc
)));
3860 if Is_Array_Type
(Typ
) then
3861 Convert_Array_Aggr_In_Allocator
(Decl
, Aggr
, Occ
);
3863 elsif Has_Default_Init_Comps
(Aggr
) then
3865 L
: constant List_Id
:= New_List
;
3866 Init_Stmts
: List_Id
;
3869 Init_Stmts
:= Late_Expansion
(Aggr
, Typ
, Occ
);
3871 if Has_Task
(Typ
) then
3872 Build_Task_Allocate_Block_With_Init_Stmts
(L
, Aggr
, Init_Stmts
);
3873 Insert_Actions
(Alloc
, L
);
3875 Insert_Actions
(Alloc
, Init_Stmts
);
3880 Insert_Actions
(Alloc
, Late_Expansion
(Aggr
, Typ
, Occ
));
3882 end Convert_Aggr_In_Allocator
;
3884 --------------------------------
3885 -- Convert_Aggr_In_Assignment --
3886 --------------------------------
3888 procedure Convert_Aggr_In_Assignment
(N
: Node_Id
) is
3889 Aggr
: Node_Id
:= Expression
(N
);
3890 Typ
: constant Entity_Id
:= Etype
(Aggr
);
3891 Occ
: constant Node_Id
:= New_Copy_Tree
(Name
(N
));
3894 if Nkind
(Aggr
) = N_Qualified_Expression
then
3895 Aggr
:= Expression
(Aggr
);
3898 Insert_Actions_After
(N
, Late_Expansion
(Aggr
, Typ
, Occ
));
3899 end Convert_Aggr_In_Assignment
;
3901 ---------------------------------
3902 -- Convert_Aggr_In_Object_Decl --
3903 ---------------------------------
3905 procedure Convert_Aggr_In_Object_Decl
(N
: Node_Id
) is
3906 Obj
: constant Entity_Id
:= Defining_Identifier
(N
);
3907 Aggr
: Node_Id
:= Expression
(N
);
3908 Loc
: constant Source_Ptr
:= Sloc
(Aggr
);
3909 Typ
: constant Entity_Id
:= Etype
(Aggr
);
3910 Occ
: constant Node_Id
:= New_Occurrence_Of
(Obj
, Loc
);
3912 function Discriminants_Ok
return Boolean;
3913 -- If the object type is constrained, the discriminants in the
3914 -- aggregate must be checked against the discriminants of the subtype.
3915 -- This cannot be done using Apply_Discriminant_Checks because after
3916 -- expansion there is no aggregate left to check.
3918 ----------------------
3919 -- Discriminants_Ok --
3920 ----------------------
3922 function Discriminants_Ok
return Boolean is
3923 Cond
: Node_Id
:= Empty
;
3932 D
:= First_Discriminant
(Typ
);
3933 Disc1
:= First_Elmt
(Discriminant_Constraint
(Typ
));
3934 Disc2
:= First_Elmt
(Discriminant_Constraint
(Etype
(Obj
)));
3935 while Present
(Disc1
) and then Present
(Disc2
) loop
3936 Val1
:= Node
(Disc1
);
3937 Val2
:= Node
(Disc2
);
3939 if not Is_OK_Static_Expression
(Val1
)
3940 or else not Is_OK_Static_Expression
(Val2
)
3942 Check
:= Make_Op_Ne
(Loc
,
3943 Left_Opnd
=> Duplicate_Subexpr
(Val1
),
3944 Right_Opnd
=> Duplicate_Subexpr
(Val2
));
3950 Cond
:= Make_Or_Else
(Loc
,
3952 Right_Opnd
=> Check
);
3955 elsif Expr_Value
(Val1
) /= Expr_Value
(Val2
) then
3956 Apply_Compile_Time_Constraint_Error
(Aggr
,
3957 Msg
=> "incorrect value for discriminant&??",
3958 Reason
=> CE_Discriminant_Check_Failed
,
3963 Next_Discriminant
(D
);
3968 -- If any discriminant constraint is non-static, emit a check
3970 if Present
(Cond
) then
3972 Make_Raise_Constraint_Error
(Loc
,
3974 Reason
=> CE_Discriminant_Check_Failed
));
3978 end Discriminants_Ok
;
3980 -- Start of processing for Convert_Aggr_In_Object_Decl
3983 Set_Assignment_OK
(Occ
);
3985 if Nkind
(Aggr
) = N_Qualified_Expression
then
3986 Aggr
:= Expression
(Aggr
);
3989 if Has_Discriminants
(Typ
)
3990 and then Typ
/= Etype
(Obj
)
3991 and then Is_Constrained
(Etype
(Obj
))
3992 and then not Discriminants_Ok
3997 -- If the context is an extended return statement, it has its own
3998 -- finalization machinery (i.e. works like a transient scope) and
3999 -- we do not want to create an additional one, because objects on
4000 -- the finalization list of the return must be moved to the caller's
4001 -- finalization list to complete the return.
4003 -- However, if the aggregate is limited, it is built in place, and the
4004 -- controlled components are not assigned to intermediate temporaries
4005 -- so there is no need for a transient scope in this case either.
4007 if Requires_Transient_Scope
(Typ
)
4008 and then Ekind
(Current_Scope
) /= E_Return_Statement
4009 and then not Is_Limited_Type
(Typ
)
4011 Establish_Transient_Scope
4014 Is_Controlled
(Typ
) or else Has_Controlled_Component
(Typ
));
4018 Node_After
: constant Node_Id
:= Next
(N
);
4020 Insert_Actions_After
(N
, Late_Expansion
(Aggr
, Typ
, Occ
));
4021 Collect_Initialization_Statements
(Obj
, N
, Node_After
);
4023 Set_No_Initialization
(N
);
4024 Initialize_Discriminants
(N
, Typ
);
4025 end Convert_Aggr_In_Object_Decl
;
4027 -------------------------------------
4028 -- Convert_Array_Aggr_In_Allocator --
4029 -------------------------------------
4031 procedure Convert_Array_Aggr_In_Allocator
4036 Aggr_Code
: List_Id
;
4037 Typ
: constant Entity_Id
:= Etype
(Aggr
);
4038 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
4041 -- The target is an explicit dereference of the allocated object.
4042 -- Generate component assignments to it, as for an aggregate that
4043 -- appears on the right-hand side of an assignment statement.
4046 Build_Array_Aggr_Code
(Aggr
,
4048 Index
=> First_Index
(Typ
),
4050 Scalar_Comp
=> Is_Scalar_Type
(Ctyp
));
4052 Insert_Actions_After
(Decl
, Aggr_Code
);
4053 end Convert_Array_Aggr_In_Allocator
;
4055 ----------------------------
4056 -- Convert_To_Assignments --
4057 ----------------------------
4059 procedure Convert_To_Assignments
(N
: Node_Id
; Typ
: Entity_Id
) is
4060 Loc
: constant Source_Ptr
:= Sloc
(N
);
4064 Aggr_Code
: List_Id
;
4066 Target_Expr
: Node_Id
;
4067 Parent_Kind
: Node_Kind
;
4068 Unc_Decl
: Boolean := False;
4069 Parent_Node
: Node_Id
;
4072 pragma Assert
(not Is_Static_Dispatch_Table_Aggregate
(N
));
4073 pragma Assert
(Is_Record_Type
(Typ
));
4075 Parent_Node
:= Parent
(N
);
4076 Parent_Kind
:= Nkind
(Parent_Node
);
4078 if Parent_Kind
= N_Qualified_Expression
then
4080 -- Check if we are in a unconstrained declaration because in this
4081 -- case the current delayed expansion mechanism doesn't work when
4082 -- the declared object size depend on the initializing expr.
4084 Parent_Node
:= Parent
(Parent_Node
);
4085 Parent_Kind
:= Nkind
(Parent_Node
);
4087 if Parent_Kind
= N_Object_Declaration
then
4089 not Is_Entity_Name
(Object_Definition
(Parent_Node
))
4090 or else Has_Discriminants
4091 (Entity
(Object_Definition
(Parent_Node
)))
4092 or else Is_Class_Wide_Type
4093 (Entity
(Object_Definition
(Parent_Node
)));
4097 -- Just set the Delay flag in the cases where the transformation will be
4098 -- done top down from above.
4102 -- Internal aggregate (transformed when expanding the parent)
4104 or else Parent_Kind
= N_Aggregate
4105 or else Parent_Kind
= N_Extension_Aggregate
4106 or else Parent_Kind
= N_Component_Association
4108 -- Allocator (see Convert_Aggr_In_Allocator)
4110 or else Parent_Kind
= N_Allocator
4112 -- Object declaration (see Convert_Aggr_In_Object_Decl)
4114 or else (Parent_Kind
= N_Object_Declaration
and then not Unc_Decl
)
4116 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
4117 -- assignments in init procs are taken into account.
4119 or else (Parent_Kind
= N_Assignment_Statement
4120 and then Inside_Init_Proc
)
4122 -- (Ada 2005) An inherently limited type in a return statement, which
4123 -- will be handled in a build-in-place fashion, and may be rewritten
4124 -- as an extended return and have its own finalization machinery.
4125 -- In the case of a simple return, the aggregate needs to be delayed
4126 -- until the scope for the return statement has been created, so
4127 -- that any finalization chain will be associated with that scope.
4128 -- For extended returns, we delay expansion to avoid the creation
4129 -- of an unwanted transient scope that could result in premature
4130 -- finalization of the return object (which is built in place
4131 -- within the caller's scope).
4134 (Is_Limited_View
(Typ
)
4136 (Nkind
(Parent
(Parent_Node
)) = N_Extended_Return_Statement
4137 or else Nkind
(Parent_Node
) = N_Simple_Return_Statement
))
4139 Set_Expansion_Delayed
(N
);
4143 -- Otherwise, if a transient scope is required, create it now. If we
4144 -- are within an initialization procedure do not create such, because
4145 -- the target of the assignment must not be declared within a local
4146 -- block, and because cleanup will take place on return from the
4147 -- initialization procedure.
4149 -- Should the condition be more restrictive ???
4151 if Requires_Transient_Scope
(Typ
) and then not Inside_Init_Proc
then
4152 Establish_Transient_Scope
(N
, Sec_Stack
=> Needs_Finalization
(Typ
));
4155 -- If the aggregate is nonlimited, create a temporary. If it is limited
4156 -- and context is an assignment, this is a subaggregate for an enclosing
4157 -- aggregate being expanded. It must be built in place, so use target of
4158 -- the current assignment.
4160 if Is_Limited_Type
(Typ
)
4161 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
4163 Target_Expr
:= New_Copy_Tree
(Name
(Parent
(N
)));
4164 Insert_Actions
(Parent
(N
),
4165 Build_Record_Aggr_Code
(N
, Typ
, Target_Expr
));
4166 Rewrite
(Parent
(N
), Make_Null_Statement
(Loc
));
4169 Temp
:= Make_Temporary
(Loc
, 'A', N
);
4171 -- If the type inherits unknown discriminants, use the view with
4172 -- known discriminants if available.
4174 if Has_Unknown_Discriminants
(Typ
)
4175 and then Present
(Underlying_Record_View
(Typ
))
4177 T
:= Underlying_Record_View
(Typ
);
4183 Make_Object_Declaration
(Loc
,
4184 Defining_Identifier
=> Temp
,
4185 Object_Definition
=> New_Occurrence_Of
(T
, Loc
));
4187 Set_No_Initialization
(Instr
);
4188 Insert_Action
(N
, Instr
);
4189 Initialize_Discriminants
(Instr
, T
);
4191 Target_Expr
:= New_Occurrence_Of
(Temp
, Loc
);
4192 Aggr_Code
:= Build_Record_Aggr_Code
(N
, T
, Target_Expr
);
4194 -- Save the last assignment statement associated with the aggregate
4195 -- when building a controlled object. This reference is utilized by
4196 -- the finalization machinery when marking an object as successfully
4199 if Needs_Finalization
(T
) then
4200 Set_Last_Aggregate_Assignment
(Temp
, Last
(Aggr_Code
));
4203 Insert_Actions
(N
, Aggr_Code
);
4204 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4205 Analyze_And_Resolve
(N
, T
);
4207 end Convert_To_Assignments
;
4209 ---------------------------
4210 -- Convert_To_Positional --
4211 ---------------------------
4213 procedure Convert_To_Positional
4215 Max_Others_Replicate
: Nat
:= 5;
4216 Handle_Bit_Packed
: Boolean := False)
4218 Typ
: constant Entity_Id
:= Etype
(N
);
4220 Static_Components
: Boolean := True;
4222 procedure Check_Static_Components
;
4223 -- Check whether all components of the aggregate are compile-time known
4224 -- values, and can be passed as is to the back-end without further
4230 Ixb
: Node_Id
) return Boolean;
4231 -- Convert the aggregate into a purely positional form if possible. On
4232 -- entry the bounds of all dimensions are known to be static, and the
4233 -- total number of components is safe enough to expand.
4235 function Is_Flat
(N
: Node_Id
; Dims
: Int
) return Boolean;
4236 -- Return True iff the array N is flat (which is not trivial in the case
4237 -- of multidimensional aggregates).
4239 -----------------------------
4240 -- Check_Static_Components --
4241 -----------------------------
4243 -- Could use some comments in this body ???
4245 procedure Check_Static_Components
is
4249 Static_Components
:= True;
4251 if Nkind
(N
) = N_String_Literal
then
4254 elsif Present
(Expressions
(N
)) then
4255 Expr
:= First
(Expressions
(N
));
4256 while Present
(Expr
) loop
4257 if Nkind
(Expr
) /= N_Aggregate
4258 or else not Compile_Time_Known_Aggregate
(Expr
)
4259 or else Expansion_Delayed
(Expr
)
4261 Static_Components
:= False;
4269 if Nkind
(N
) = N_Aggregate
4270 and then Present
(Component_Associations
(N
))
4272 Expr
:= First
(Component_Associations
(N
));
4273 while Present
(Expr
) loop
4274 if Nkind_In
(Expression
(Expr
), N_Integer_Literal
,
4279 elsif Is_Entity_Name
(Expression
(Expr
))
4280 and then Present
(Entity
(Expression
(Expr
)))
4281 and then Ekind
(Entity
(Expression
(Expr
))) =
4282 E_Enumeration_Literal
4286 elsif Nkind
(Expression
(Expr
)) /= N_Aggregate
4287 or else not Compile_Time_Known_Aggregate
(Expression
(Expr
))
4288 or else Expansion_Delayed
(Expression
(Expr
))
4290 Static_Components
:= False;
4297 end Check_Static_Components
;
4306 Ixb
: Node_Id
) return Boolean
4308 Loc
: constant Source_Ptr
:= Sloc
(N
);
4309 Blo
: constant Node_Id
:= Type_Low_Bound
(Etype
(Ixb
));
4310 Lo
: constant Node_Id
:= Type_Low_Bound
(Etype
(Ix
));
4311 Hi
: constant Node_Id
:= Type_High_Bound
(Etype
(Ix
));
4315 Others_Present
: Boolean := False;
4318 if Nkind
(Original_Node
(N
)) = N_String_Literal
then
4322 if not Compile_Time_Known_Value
(Lo
)
4323 or else not Compile_Time_Known_Value
(Hi
)
4328 Lov
:= Expr_Value
(Lo
);
4329 Hiv
:= Expr_Value
(Hi
);
4331 -- Check if there is an others choice
4333 if Present
(Component_Associations
(N
)) then
4339 Assoc
:= First
(Component_Associations
(N
));
4340 while Present
(Assoc
) loop
4342 -- If this is a box association, flattening is in general
4343 -- not possible because at this point we cannot tell if the
4344 -- default is static or even exists.
4346 if Box_Present
(Assoc
) then
4350 Choice
:= First
(Choices
(Assoc
));
4352 while Present
(Choice
) loop
4353 if Nkind
(Choice
) = N_Others_Choice
then
4354 Others_Present
:= True;
4365 -- If the low bound is not known at compile time and others is not
4366 -- present we can proceed since the bounds can be obtained from the
4370 or else (not Compile_Time_Known_Value
(Blo
) and then Others_Present
)
4375 -- Determine if set of alternatives is suitable for conversion and
4376 -- build an array containing the values in sequence.
4379 Vals
: array (UI_To_Int
(Lov
) .. UI_To_Int
(Hiv
))
4380 of Node_Id
:= (others => Empty
);
4381 -- The values in the aggregate sorted appropriately
4384 -- Same data as Vals in list form
4387 -- Used to validate Max_Others_Replicate limit
4390 Num
: Int
:= UI_To_Int
(Lov
);
4396 if Present
(Expressions
(N
)) then
4397 Elmt
:= First
(Expressions
(N
));
4398 while Present
(Elmt
) loop
4399 if Nkind
(Elmt
) = N_Aggregate
4400 and then Present
(Next_Index
(Ix
))
4402 not Flatten
(Elmt
, Next_Index
(Ix
), Next_Index
(Ixb
))
4407 Vals
(Num
) := Relocate_Node
(Elmt
);
4414 if No
(Component_Associations
(N
)) then
4418 Elmt
:= First
(Component_Associations
(N
));
4420 if Nkind
(Expression
(Elmt
)) = N_Aggregate
then
4421 if Present
(Next_Index
(Ix
))
4424 (Expression
(Elmt
), Next_Index
(Ix
), Next_Index
(Ixb
))
4430 Component_Loop
: while Present
(Elmt
) loop
4431 Choice
:= First
(Choices
(Elmt
));
4432 Choice_Loop
: while Present
(Choice
) loop
4434 -- If we have an others choice, fill in the missing elements
4435 -- subject to the limit established by Max_Others_Replicate.
4437 if Nkind
(Choice
) = N_Others_Choice
then
4440 for J
in Vals
'Range loop
4441 if No
(Vals
(J
)) then
4442 Vals
(J
) := New_Copy_Tree
(Expression
(Elmt
));
4443 Rep_Count
:= Rep_Count
+ 1;
4445 -- Check for maximum others replication. Note that
4446 -- we skip this test if either of the restrictions
4447 -- No_Elaboration_Code or No_Implicit_Loops is
4448 -- active, if this is a preelaborable unit or
4449 -- a predefined unit, or if the unit must be
4450 -- placed in data memory. This also ensures that
4451 -- predefined units get the same level of constant
4452 -- folding in Ada 95 and Ada 2005, where their
4453 -- categorization has changed.
4456 P
: constant Entity_Id
:=
4457 Cunit_Entity
(Current_Sem_Unit
);
4460 -- Check if duplication OK and if so continue
4463 if Restriction_Active
(No_Elaboration_Code
)
4464 or else Restriction_Active
(No_Implicit_Loops
)
4466 (Ekind
(Current_Scope
) = E_Package
4467 and then Static_Elaboration_Desired
4469 or else Is_Preelaborated
(P
)
4470 or else (Ekind
(P
) = E_Package_Body
4472 Is_Preelaborated
(Spec_Entity
(P
)))
4474 Is_Predefined_File_Name
4475 (Unit_File_Name
(Get_Source_Unit
(P
)))
4479 -- If duplication not OK, then we return False
4480 -- if the replication count is too high
4482 elsif Rep_Count
> Max_Others_Replicate
then
4485 -- Continue on if duplication not OK, but the
4486 -- replication count is not excessive.
4495 exit Component_Loop
;
4497 -- Case of a subtype mark, identifier or expanded name
4499 elsif Is_Entity_Name
(Choice
)
4500 and then Is_Type
(Entity
(Choice
))
4502 Lo
:= Type_Low_Bound
(Etype
(Choice
));
4503 Hi
:= Type_High_Bound
(Etype
(Choice
));
4505 -- Case of subtype indication
4507 elsif Nkind
(Choice
) = N_Subtype_Indication
then
4508 Lo
:= Low_Bound
(Range_Expression
(Constraint
(Choice
)));
4509 Hi
:= High_Bound
(Range_Expression
(Constraint
(Choice
)));
4513 elsif Nkind
(Choice
) = N_Range
then
4514 Lo
:= Low_Bound
(Choice
);
4515 Hi
:= High_Bound
(Choice
);
4517 -- Normal subexpression case
4519 else pragma Assert
(Nkind
(Choice
) in N_Subexpr
);
4520 if not Compile_Time_Known_Value
(Choice
) then
4524 Choice_Index
:= UI_To_Int
(Expr_Value
(Choice
));
4526 if Choice_Index
in Vals
'Range then
4527 Vals
(Choice_Index
) :=
4528 New_Copy_Tree
(Expression
(Elmt
));
4531 -- Choice is statically out-of-range, will be
4532 -- rewritten to raise Constraint_Error.
4540 -- Range cases merge with Lo,Hi set
4542 if not Compile_Time_Known_Value
(Lo
)
4544 not Compile_Time_Known_Value
(Hi
)
4549 for J
in UI_To_Int
(Expr_Value
(Lo
)) ..
4550 UI_To_Int
(Expr_Value
(Hi
))
4552 Vals
(J
) := New_Copy_Tree
(Expression
(Elmt
));
4558 end loop Choice_Loop
;
4561 end loop Component_Loop
;
4563 -- If we get here the conversion is possible
4566 for J
in Vals
'Range loop
4567 Append
(Vals
(J
), Vlist
);
4570 Rewrite
(N
, Make_Aggregate
(Loc
, Expressions
=> Vlist
));
4571 Set_Aggregate_Bounds
(N
, Aggregate_Bounds
(Original_Node
(N
)));
4580 function Is_Flat
(N
: Node_Id
; Dims
: Int
) return Boolean is
4587 elsif Nkind
(N
) = N_Aggregate
then
4588 if Present
(Component_Associations
(N
)) then
4592 Elmt
:= First
(Expressions
(N
));
4593 while Present
(Elmt
) loop
4594 if not Is_Flat
(Elmt
, Dims
- 1) then
4608 -- Start of processing for Convert_To_Positional
4611 -- Only convert to positional when generating C in case of an
4612 -- object declaration, this is the only case where aggregates are
4615 if Modify_Tree_For_C
and then not In_Object_Declaration
(N
) then
4619 -- Ada 2005 (AI-287): Do not convert in case of default initialized
4620 -- components because in this case will need to call the corresponding
4623 if Has_Default_Init_Comps
(N
) then
4627 if Is_Flat
(N
, Number_Dimensions
(Typ
)) then
4631 if Is_Bit_Packed_Array
(Typ
) and then not Handle_Bit_Packed
then
4635 -- Do not convert to positional if controlled components are involved
4636 -- since these require special processing
4638 if Has_Controlled_Component
(Typ
) then
4642 Check_Static_Components
;
4644 -- If the size is known, or all the components are static, try to
4645 -- build a fully positional aggregate.
4647 -- The size of the type may not be known for an aggregate with
4648 -- discriminated array components, but if the components are static
4649 -- it is still possible to verify statically that the length is
4650 -- compatible with the upper bound of the type, and therefore it is
4651 -- worth flattening such aggregates as well.
4653 -- For now the back-end expands these aggregates into individual
4654 -- assignments to the target anyway, but it is conceivable that
4655 -- it will eventually be able to treat such aggregates statically???
4657 if Aggr_Size_OK
(N
, Typ
)
4658 and then Flatten
(N
, First_Index
(Typ
), First_Index
(Base_Type
(Typ
)))
4660 if Static_Components
then
4661 Set_Compile_Time_Known_Aggregate
(N
);
4662 Set_Expansion_Delayed
(N
, False);
4665 Analyze_And_Resolve
(N
, Typ
);
4668 -- If Static_Elaboration_Desired has been specified, diagnose aggregates
4669 -- that will still require initialization code.
4671 if (Ekind
(Current_Scope
) = E_Package
4672 and then Static_Elaboration_Desired
(Current_Scope
))
4673 and then Nkind
(Parent
(N
)) = N_Object_Declaration
4679 if Nkind
(N
) = N_Aggregate
and then Present
(Expressions
(N
)) then
4680 Expr
:= First
(Expressions
(N
));
4681 while Present
(Expr
) loop
4682 if Nkind_In
(Expr
, N_Integer_Literal
, N_Real_Literal
)
4684 (Is_Entity_Name
(Expr
)
4685 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
)
4691 ("non-static object requires elaboration code??", N
);
4698 if Present
(Component_Associations
(N
)) then
4699 Error_Msg_N
("object requires elaboration code??", N
);
4704 end Convert_To_Positional
;
4706 ----------------------------
4707 -- Expand_Array_Aggregate --
4708 ----------------------------
4710 -- Array aggregate expansion proceeds as follows:
4712 -- 1. If requested we generate code to perform all the array aggregate
4713 -- bound checks, specifically
4715 -- (a) Check that the index range defined by aggregate bounds is
4716 -- compatible with corresponding index subtype.
4718 -- (b) If an others choice is present check that no aggregate
4719 -- index is outside the bounds of the index constraint.
4721 -- (c) For multidimensional arrays make sure that all subaggregates
4722 -- corresponding to the same dimension have the same bounds.
4724 -- 2. Check for packed array aggregate which can be converted to a
4725 -- constant so that the aggregate disappears completely.
4727 -- 3. Check case of nested aggregate. Generally nested aggregates are
4728 -- handled during the processing of the parent aggregate.
4730 -- 4. Check if the aggregate can be statically processed. If this is the
4731 -- case pass it as is to Gigi. Note that a necessary condition for
4732 -- static processing is that the aggregate be fully positional.
4734 -- 5. If in place aggregate expansion is possible (i.e. no need to create
4735 -- a temporary) then mark the aggregate as such and return. Otherwise
4736 -- create a new temporary and generate the appropriate initialization
4739 procedure Expand_Array_Aggregate
(N
: Node_Id
) is
4740 Loc
: constant Source_Ptr
:= Sloc
(N
);
4742 Typ
: constant Entity_Id
:= Etype
(N
);
4743 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
4744 -- Typ is the correct constrained array subtype of the aggregate
4745 -- Ctyp is the corresponding component type.
4747 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
4748 -- Number of aggregate index dimensions
4750 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
;
4751 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
;
4752 -- Low and High bounds of the constraint for each aggregate index
4754 Aggr_Index_Typ
: array (1 .. Aggr_Dimension
) of Entity_Id
;
4755 -- The type of each index
4757 In_Place_Assign_OK_For_Declaration
: Boolean := False;
4758 -- True if we are to generate an in place assignment for a declaration
4760 Maybe_In_Place_OK
: Boolean;
4761 -- If the type is neither controlled nor packed and the aggregate
4762 -- is the expression in an assignment, assignment in place may be
4763 -- possible, provided other conditions are met on the LHS.
4765 Others_Present
: array (1 .. Aggr_Dimension
) of Boolean :=
4767 -- If Others_Present (J) is True, then there is an others choice in one
4768 -- of the subaggregates of N at dimension J.
4770 function Aggr_Assignment_OK_For_Backend
(N
: Node_Id
) return Boolean;
4771 -- Returns true if an aggregate assignment can be done by the back end
4773 procedure Build_Constrained_Type
(Positional
: Boolean);
4774 -- If the subtype is not static or unconstrained, build a constrained
4775 -- type using the computable sizes of the aggregate and its sub-
4778 procedure Check_Bounds
(Aggr_Bounds
: Node_Id
; Index_Bounds
: Node_Id
);
4779 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
4782 procedure Check_Same_Aggr_Bounds
(Sub_Aggr
: Node_Id
; Dim
: Pos
);
4783 -- Checks that in a multidimensional array aggregate all subaggregates
4784 -- corresponding to the same dimension have the same bounds. Sub_Aggr is
4785 -- an array subaggregate. Dim is the dimension corresponding to the
4788 procedure Compute_Others_Present
(Sub_Aggr
: Node_Id
; Dim
: Pos
);
4789 -- Computes the values of array Others_Present. Sub_Aggr is the array
4790 -- subaggregate we start the computation from. Dim is the dimension
4791 -- corresponding to the subaggregate.
4793 function In_Place_Assign_OK
return Boolean;
4794 -- Simple predicate to determine whether an aggregate assignment can
4795 -- be done in place, because none of the new values can depend on the
4796 -- components of the target of the assignment.
4798 procedure Others_Check
(Sub_Aggr
: Node_Id
; Dim
: Pos
);
4799 -- Checks that if an others choice is present in any subaggregate, no
4800 -- aggregate index is outside the bounds of the index constraint.
4801 -- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
4802 -- to the subaggregate.
4804 function Safe_Left_Hand_Side
(N
: Node_Id
) return Boolean;
4805 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4806 -- built directly into the target of the assignment it must be free
4809 ------------------------------------
4810 -- Aggr_Assignment_OK_For_Backend --
4811 ------------------------------------
4813 -- Backend processing by Gigi/gcc is possible only if all the following
4814 -- conditions are met:
4816 -- 1. N consists of a single OTHERS choice, possibly recursively
4818 -- 2. The array type is not packed
4820 -- 3. The array type has no atomic components
4822 -- 4. The array type has no null ranges (the purpose of this is to
4823 -- avoid a bogus warning for an out-of-range value).
4825 -- 5. The component type is discrete
4827 -- 6. The component size is Storage_Unit or the value is of the form
4828 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4829 -- and M in 1 .. A-1. This can also be viewed as K occurrences of
4830 -- the 8-bit value M, concatenated together.
4832 -- The ultimate goal is to generate a call to a fast memset routine
4833 -- specifically optimized for the target.
4835 function Aggr_Assignment_OK_For_Backend
(N
: Node_Id
) return Boolean is
4838 Expr
: Node_Id
:= N
;
4846 -- Recurse as far as possible to find the innermost component type
4849 while Is_Array_Type
(Ctyp
) loop
4850 if Nkind
(Expr
) /= N_Aggregate
4851 or else not Is_Others_Aggregate
(Expr
)
4856 if Present
(Packed_Array_Impl_Type
(Ctyp
)) then
4860 if Has_Atomic_Components
(Ctyp
) then
4864 Index
:= First_Index
(Ctyp
);
4865 while Present
(Index
) loop
4866 Get_Index_Bounds
(Index
, Low
, High
);
4868 if Is_Null_Range
(Low
, High
) then
4875 Expr
:= Expression
(First
(Component_Associations
(Expr
)));
4877 for J
in 1 .. Number_Dimensions
(Ctyp
) - 1 loop
4878 if Nkind
(Expr
) /= N_Aggregate
4879 or else not Is_Others_Aggregate
(Expr
)
4884 Expr
:= Expression
(First
(Component_Associations
(Expr
)));
4887 Ctyp
:= Component_Type
(Ctyp
);
4889 if Is_Atomic_Or_VFA
(Ctyp
) then
4894 if not Is_Discrete_Type
(Ctyp
) then
4898 -- The expression needs to be analyzed if True is returned
4900 Analyze_And_Resolve
(Expr
, Ctyp
);
4902 -- The back end uses the Esize as the precision of the type
4904 Nunits
:= UI_To_Int
(Esize
(Ctyp
)) / System_Storage_Unit
;
4910 if not Compile_Time_Known_Value
(Expr
) then
4914 Value
:= Expr_Value
(Expr
);
4916 if Has_Biased_Representation
(Ctyp
) then
4917 Value
:= Value
- Expr_Value
(Type_Low_Bound
(Ctyp
));
4920 -- Values 0 and -1 immediately satisfy the last check
4922 if Value
= Uint_0
or else Value
= Uint_Minus_1
then
4926 -- We need to work with an unsigned value
4929 Value
:= Value
+ 2**(System_Storage_Unit
* Nunits
);
4932 Remainder
:= Value
rem 2**System_Storage_Unit
;
4934 for J
in 1 .. Nunits
- 1 loop
4935 Value
:= Value
/ 2**System_Storage_Unit
;
4937 if Value
rem 2**System_Storage_Unit
/= Remainder
then
4943 end Aggr_Assignment_OK_For_Backend
;
4945 ----------------------------
4946 -- Build_Constrained_Type --
4947 ----------------------------
4949 procedure Build_Constrained_Type
(Positional
: Boolean) is
4950 Loc
: constant Source_Ptr
:= Sloc
(N
);
4951 Agg_Type
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
4954 Typ
: constant Entity_Id
:= Etype
(N
);
4955 Indexes
: constant List_Id
:= New_List
;
4960 -- If the aggregate is purely positional, all its subaggregates
4961 -- have the same size. We collect the dimensions from the first
4962 -- subaggregate at each level.
4967 for D
in 1 .. Number_Dimensions
(Typ
) loop
4968 Sub_Agg
:= First
(Expressions
(Sub_Agg
));
4972 while Present
(Comp
) loop
4979 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
4980 High_Bound
=> Make_Integer_Literal
(Loc
, Num
)));
4984 -- We know the aggregate type is unconstrained and the aggregate
4985 -- is not processable by the back end, therefore not necessarily
4986 -- positional. Retrieve each dimension bounds (computed earlier).
4988 for D
in 1 .. Number_Dimensions
(Typ
) loop
4991 Low_Bound
=> Aggr_Low
(D
),
4992 High_Bound
=> Aggr_High
(D
)));
4997 Make_Full_Type_Declaration
(Loc
,
4998 Defining_Identifier
=> Agg_Type
,
5000 Make_Constrained_Array_Definition
(Loc
,
5001 Discrete_Subtype_Definitions
=> Indexes
,
5002 Component_Definition
=>
5003 Make_Component_Definition
(Loc
,
5004 Aliased_Present
=> False,
5005 Subtype_Indication
=>
5006 New_Occurrence_Of
(Component_Type
(Typ
), Loc
))));
5008 Insert_Action
(N
, Decl
);
5010 Set_Etype
(N
, Agg_Type
);
5011 Set_Is_Itype
(Agg_Type
);
5012 Freeze_Itype
(Agg_Type
, N
);
5013 end Build_Constrained_Type
;
5019 procedure Check_Bounds
(Aggr_Bounds
: Node_Id
; Index_Bounds
: Node_Id
) is
5026 Cond
: Node_Id
:= Empty
;
5029 Get_Index_Bounds
(Aggr_Bounds
, Aggr_Lo
, Aggr_Hi
);
5030 Get_Index_Bounds
(Index_Bounds
, Ind_Lo
, Ind_Hi
);
5032 -- Generate the following test:
5034 -- [constraint_error when
5035 -- Aggr_Lo <= Aggr_Hi and then
5036 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
5038 -- As an optimization try to see if some tests are trivially vacuous
5039 -- because we are comparing an expression against itself.
5041 if Aggr_Lo
= Ind_Lo
and then Aggr_Hi
= Ind_Hi
then
5044 elsif Aggr_Hi
= Ind_Hi
then
5047 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5048 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ind_Lo
));
5050 elsif Aggr_Lo
= Ind_Lo
then
5053 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Hi
),
5054 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ind_Hi
));
5061 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5062 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ind_Lo
)),
5066 Left_Opnd
=> Duplicate_Subexpr
(Aggr_Hi
),
5067 Right_Opnd
=> Duplicate_Subexpr
(Ind_Hi
)));
5070 if Present
(Cond
) then
5075 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5076 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Hi
)),
5078 Right_Opnd
=> Cond
);
5080 Set_Analyzed
(Left_Opnd
(Left_Opnd
(Cond
)), False);
5081 Set_Analyzed
(Right_Opnd
(Left_Opnd
(Cond
)), False);
5083 Make_Raise_Constraint_Error
(Loc
,
5085 Reason
=> CE_Range_Check_Failed
));
5089 ----------------------------
5090 -- Check_Same_Aggr_Bounds --
5091 ----------------------------
5093 procedure Check_Same_Aggr_Bounds
(Sub_Aggr
: Node_Id
; Dim
: Pos
) is
5094 Sub_Lo
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(Sub_Aggr
));
5095 Sub_Hi
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(Sub_Aggr
));
5096 -- The bounds of this specific subaggregate
5098 Aggr_Lo
: constant Node_Id
:= Aggr_Low
(Dim
);
5099 Aggr_Hi
: constant Node_Id
:= Aggr_High
(Dim
);
5100 -- The bounds of the aggregate for this dimension
5102 Ind_Typ
: constant Entity_Id
:= Aggr_Index_Typ
(Dim
);
5103 -- The index type for this dimension.xxx
5105 Cond
: Node_Id
:= Empty
;
5110 -- If index checks are on generate the test
5112 -- [constraint_error when
5113 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
5115 -- As an optimization try to see if some tests are trivially vacuos
5116 -- because we are comparing an expression against itself. Also for
5117 -- the first dimension the test is trivially vacuous because there
5118 -- is just one aggregate for dimension 1.
5120 if Index_Checks_Suppressed
(Ind_Typ
) then
5123 elsif Dim
= 1 or else (Aggr_Lo
= Sub_Lo
and then Aggr_Hi
= Sub_Hi
)
5127 elsif Aggr_Hi
= Sub_Hi
then
5130 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5131 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Sub_Lo
));
5133 elsif Aggr_Lo
= Sub_Lo
then
5136 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Hi
),
5137 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Sub_Hi
));
5144 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5145 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Sub_Lo
)),
5149 Left_Opnd
=> Duplicate_Subexpr
(Aggr_Hi
),
5150 Right_Opnd
=> Duplicate_Subexpr
(Sub_Hi
)));
5153 if Present
(Cond
) then
5155 Make_Raise_Constraint_Error
(Loc
,
5157 Reason
=> CE_Length_Check_Failed
));
5160 -- Now look inside the subaggregate to see if there is more work
5162 if Dim
< Aggr_Dimension
then
5164 -- Process positional components
5166 if Present
(Expressions
(Sub_Aggr
)) then
5167 Expr
:= First
(Expressions
(Sub_Aggr
));
5168 while Present
(Expr
) loop
5169 Check_Same_Aggr_Bounds
(Expr
, Dim
+ 1);
5174 -- Process component associations
5176 if Present
(Component_Associations
(Sub_Aggr
)) then
5177 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5178 while Present
(Assoc
) loop
5179 Expr
:= Expression
(Assoc
);
5180 Check_Same_Aggr_Bounds
(Expr
, Dim
+ 1);
5185 end Check_Same_Aggr_Bounds
;
5187 ----------------------------
5188 -- Compute_Others_Present --
5189 ----------------------------
5191 procedure Compute_Others_Present
(Sub_Aggr
: Node_Id
; Dim
: Pos
) is
5196 if Present
(Component_Associations
(Sub_Aggr
)) then
5197 Assoc
:= Last
(Component_Associations
(Sub_Aggr
));
5199 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
then
5200 Others_Present
(Dim
) := True;
5204 -- Now look inside the subaggregate to see if there is more work
5206 if Dim
< Aggr_Dimension
then
5208 -- Process positional components
5210 if Present
(Expressions
(Sub_Aggr
)) then
5211 Expr
:= First
(Expressions
(Sub_Aggr
));
5212 while Present
(Expr
) loop
5213 Compute_Others_Present
(Expr
, Dim
+ 1);
5218 -- Process component associations
5220 if Present
(Component_Associations
(Sub_Aggr
)) then
5221 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5222 while Present
(Assoc
) loop
5223 Expr
:= Expression
(Assoc
);
5224 Compute_Others_Present
(Expr
, Dim
+ 1);
5229 end Compute_Others_Present
;
5231 ------------------------
5232 -- In_Place_Assign_OK --
5233 ------------------------
5235 function In_Place_Assign_OK
return Boolean is
5243 function Safe_Aggregate
(Aggr
: Node_Id
) return Boolean;
5244 -- Check recursively that each component of a (sub)aggregate does not
5245 -- depend on the variable being assigned to.
5247 function Safe_Component
(Expr
: Node_Id
) return Boolean;
5248 -- Verify that an expression cannot depend on the variable being
5249 -- assigned to. Room for improvement here (but less than before).
5251 --------------------
5252 -- Safe_Aggregate --
5253 --------------------
5255 function Safe_Aggregate
(Aggr
: Node_Id
) return Boolean is
5259 if Present
(Expressions
(Aggr
)) then
5260 Expr
:= First
(Expressions
(Aggr
));
5261 while Present
(Expr
) loop
5262 if Nkind
(Expr
) = N_Aggregate
then
5263 if not Safe_Aggregate
(Expr
) then
5267 elsif not Safe_Component
(Expr
) then
5275 if Present
(Component_Associations
(Aggr
)) then
5276 Expr
:= First
(Component_Associations
(Aggr
));
5277 while Present
(Expr
) loop
5278 if Nkind
(Expression
(Expr
)) = N_Aggregate
then
5279 if not Safe_Aggregate
(Expression
(Expr
)) then
5283 -- If association has a box, no way to determine yet
5284 -- whether default can be assigned in place.
5286 elsif Box_Present
(Expr
) then
5289 elsif not Safe_Component
(Expression
(Expr
)) then
5300 --------------------
5301 -- Safe_Component --
5302 --------------------
5304 function Safe_Component
(Expr
: Node_Id
) return Boolean is
5305 Comp
: Node_Id
:= Expr
;
5307 function Check_Component
(Comp
: Node_Id
) return Boolean;
5308 -- Do the recursive traversal, after copy
5310 ---------------------
5311 -- Check_Component --
5312 ---------------------
5314 function Check_Component
(Comp
: Node_Id
) return Boolean is
5316 if Is_Overloaded
(Comp
) then
5320 return Compile_Time_Known_Value
(Comp
)
5322 or else (Is_Entity_Name
(Comp
)
5323 and then Present
(Entity
(Comp
))
5324 and then No
(Renamed_Object
(Entity
(Comp
))))
5326 or else (Nkind
(Comp
) = N_Attribute_Reference
5327 and then Check_Component
(Prefix
(Comp
)))
5329 or else (Nkind
(Comp
) in N_Binary_Op
5330 and then Check_Component
(Left_Opnd
(Comp
))
5331 and then Check_Component
(Right_Opnd
(Comp
)))
5333 or else (Nkind
(Comp
) in N_Unary_Op
5334 and then Check_Component
(Right_Opnd
(Comp
)))
5336 or else (Nkind
(Comp
) = N_Selected_Component
5337 and then Check_Component
(Prefix
(Comp
)))
5339 or else (Nkind
(Comp
) = N_Unchecked_Type_Conversion
5340 and then Check_Component
(Expression
(Comp
)));
5341 end Check_Component
;
5343 -- Start of processing for Safe_Component
5346 -- If the component appears in an association that may correspond
5347 -- to more than one element, it is not analyzed before expansion
5348 -- into assignments, to avoid side effects. We analyze, but do not
5349 -- resolve the copy, to obtain sufficient entity information for
5350 -- the checks that follow. If component is overloaded we assume
5351 -- an unsafe function call.
5353 if not Analyzed
(Comp
) then
5354 if Is_Overloaded
(Expr
) then
5357 elsif Nkind
(Expr
) = N_Aggregate
5358 and then not Is_Others_Aggregate
(Expr
)
5362 elsif Nkind
(Expr
) = N_Allocator
then
5364 -- For now, too complex to analyze
5369 Comp
:= New_Copy_Tree
(Expr
);
5370 Set_Parent
(Comp
, Parent
(Expr
));
5374 if Nkind
(Comp
) = N_Aggregate
then
5375 return Safe_Aggregate
(Comp
);
5377 return Check_Component
(Comp
);
5381 -- Start of processing for In_Place_Assign_OK
5384 if Present
(Component_Associations
(N
)) then
5386 -- On assignment, sliding can take place, so we cannot do the
5387 -- assignment in place unless the bounds of the aggregate are
5388 -- statically equal to those of the target.
5390 -- If the aggregate is given by an others choice, the bounds are
5391 -- derived from the left-hand side, and the assignment is safe if
5392 -- the expression is.
5394 if Is_Others_Aggregate
(N
) then
5397 (Expression
(First
(Component_Associations
(N
))));
5400 Aggr_In
:= First_Index
(Etype
(N
));
5402 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
5403 Obj_In
:= First_Index
(Etype
(Name
(Parent
(N
))));
5406 -- Context is an allocator. Check bounds of aggregate against
5407 -- given type in qualified expression.
5409 pragma Assert
(Nkind
(Parent
(Parent
(N
))) = N_Allocator
);
5411 First_Index
(Etype
(Entity
(Subtype_Mark
(Parent
(N
)))));
5414 while Present
(Aggr_In
) loop
5415 Get_Index_Bounds
(Aggr_In
, Aggr_Lo
, Aggr_Hi
);
5416 Get_Index_Bounds
(Obj_In
, Obj_Lo
, Obj_Hi
);
5418 if not Compile_Time_Known_Value
(Aggr_Lo
)
5419 or else not Compile_Time_Known_Value
(Aggr_Hi
)
5420 or else not Compile_Time_Known_Value
(Obj_Lo
)
5421 or else not Compile_Time_Known_Value
(Obj_Hi
)
5422 or else Expr_Value
(Aggr_Lo
) /= Expr_Value
(Obj_Lo
)
5423 or else Expr_Value
(Aggr_Hi
) /= Expr_Value
(Obj_Hi
)
5428 Next_Index
(Aggr_In
);
5429 Next_Index
(Obj_In
);
5433 -- Now check the component values themselves
5435 return Safe_Aggregate
(N
);
5436 end In_Place_Assign_OK
;
5442 procedure Others_Check
(Sub_Aggr
: Node_Id
; Dim
: Pos
) is
5443 Aggr_Lo
: constant Node_Id
:= Aggr_Low
(Dim
);
5444 Aggr_Hi
: constant Node_Id
:= Aggr_High
(Dim
);
5445 -- The bounds of the aggregate for this dimension
5447 Ind_Typ
: constant Entity_Id
:= Aggr_Index_Typ
(Dim
);
5448 -- The index type for this dimension
5450 Need_To_Check
: Boolean := False;
5452 Choices_Lo
: Node_Id
:= Empty
;
5453 Choices_Hi
: Node_Id
:= Empty
;
5454 -- The lowest and highest discrete choices for a named subaggregate
5456 Nb_Choices
: Int
:= -1;
5457 -- The number of discrete non-others choices in this subaggregate
5459 Nb_Elements
: Uint
:= Uint_0
;
5460 -- The number of elements in a positional aggregate
5462 Cond
: Node_Id
:= Empty
;
5469 -- Check if we have an others choice. If we do make sure that this
5470 -- subaggregate contains at least one element in addition to the
5473 if Range_Checks_Suppressed
(Ind_Typ
) then
5474 Need_To_Check
:= False;
5476 elsif Present
(Expressions
(Sub_Aggr
))
5477 and then Present
(Component_Associations
(Sub_Aggr
))
5479 Need_To_Check
:= True;
5481 elsif Present
(Component_Associations
(Sub_Aggr
)) then
5482 Assoc
:= Last
(Component_Associations
(Sub_Aggr
));
5484 if Nkind
(First
(Choices
(Assoc
))) /= N_Others_Choice
then
5485 Need_To_Check
:= False;
5488 -- Count the number of discrete choices. Start with -1 because
5489 -- the others choice does not count.
5491 -- Is there some reason we do not use List_Length here ???
5494 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5495 while Present
(Assoc
) loop
5496 Choice
:= First
(Choices
(Assoc
));
5497 while Present
(Choice
) loop
5498 Nb_Choices
:= Nb_Choices
+ 1;
5505 -- If there is only an others choice nothing to do
5507 Need_To_Check
:= (Nb_Choices
> 0);
5511 Need_To_Check
:= False;
5514 -- If we are dealing with a positional subaggregate with an others
5515 -- choice then compute the number or positional elements.
5517 if Need_To_Check
and then Present
(Expressions
(Sub_Aggr
)) then
5518 Expr
:= First
(Expressions
(Sub_Aggr
));
5519 Nb_Elements
:= Uint_0
;
5520 while Present
(Expr
) loop
5521 Nb_Elements
:= Nb_Elements
+ 1;
5525 -- If the aggregate contains discrete choices and an others choice
5526 -- compute the smallest and largest discrete choice values.
5528 elsif Need_To_Check
then
5529 Compute_Choices_Lo_And_Choices_Hi
: declare
5531 Table
: Case_Table_Type
(1 .. Nb_Choices
);
5532 -- Used to sort all the different choice values
5539 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5540 while Present
(Assoc
) loop
5541 Choice
:= First
(Choices
(Assoc
));
5542 while Present
(Choice
) loop
5543 if Nkind
(Choice
) = N_Others_Choice
then
5547 Get_Index_Bounds
(Choice
, Low
, High
);
5548 Table
(J
).Choice_Lo
:= Low
;
5549 Table
(J
).Choice_Hi
:= High
;
5558 -- Sort the discrete choices
5560 Sort_Case_Table
(Table
);
5562 Choices_Lo
:= Table
(1).Choice_Lo
;
5563 Choices_Hi
:= Table
(Nb_Choices
).Choice_Hi
;
5564 end Compute_Choices_Lo_And_Choices_Hi
;
5567 -- If no others choice in this subaggregate, or the aggregate
5568 -- comprises only an others choice, nothing to do.
5570 if not Need_To_Check
then
5573 -- If we are dealing with an aggregate containing an others choice
5574 -- and positional components, we generate the following test:
5576 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
5577 -- Ind_Typ'Pos (Aggr_Hi)
5579 -- raise Constraint_Error;
5582 elsif Nb_Elements
> Uint_0
then
5588 Make_Attribute_Reference
(Loc
,
5589 Prefix
=> New_Occurrence_Of
(Ind_Typ
, Loc
),
5590 Attribute_Name
=> Name_Pos
,
5593 (Duplicate_Subexpr_Move_Checks
(Aggr_Lo
))),
5594 Right_Opnd
=> Make_Integer_Literal
(Loc
, Nb_Elements
- 1)),
5597 Make_Attribute_Reference
(Loc
,
5598 Prefix
=> New_Occurrence_Of
(Ind_Typ
, Loc
),
5599 Attribute_Name
=> Name_Pos
,
5600 Expressions
=> New_List
(
5601 Duplicate_Subexpr_Move_Checks
(Aggr_Hi
))));
5603 -- If we are dealing with an aggregate containing an others choice
5604 -- and discrete choices we generate the following test:
5606 -- [constraint_error when
5607 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
5614 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Choices_Lo
),
5615 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
)),
5619 Left_Opnd
=> Duplicate_Subexpr
(Choices_Hi
),
5620 Right_Opnd
=> Duplicate_Subexpr
(Aggr_Hi
)));
5623 if Present
(Cond
) then
5625 Make_Raise_Constraint_Error
(Loc
,
5627 Reason
=> CE_Length_Check_Failed
));
5628 -- Questionable reason code, shouldn't that be a
5629 -- CE_Range_Check_Failed ???
5632 -- Now look inside the subaggregate to see if there is more work
5634 if Dim
< Aggr_Dimension
then
5636 -- Process positional components
5638 if Present
(Expressions
(Sub_Aggr
)) then
5639 Expr
:= First
(Expressions
(Sub_Aggr
));
5640 while Present
(Expr
) loop
5641 Others_Check
(Expr
, Dim
+ 1);
5646 -- Process component associations
5648 if Present
(Component_Associations
(Sub_Aggr
)) then
5649 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5650 while Present
(Assoc
) loop
5651 Expr
:= Expression
(Assoc
);
5652 Others_Check
(Expr
, Dim
+ 1);
5659 -------------------------
5660 -- Safe_Left_Hand_Side --
5661 -------------------------
5663 function Safe_Left_Hand_Side
(N
: Node_Id
) return Boolean is
5664 function Is_Safe_Index
(Indx
: Node_Id
) return Boolean;
5665 -- If the left-hand side includes an indexed component, check that
5666 -- the indexes are free of side effects.
5672 function Is_Safe_Index
(Indx
: Node_Id
) return Boolean is
5674 if Is_Entity_Name
(Indx
) then
5677 elsif Nkind
(Indx
) = N_Integer_Literal
then
5680 elsif Nkind
(Indx
) = N_Function_Call
5681 and then Is_Entity_Name
(Name
(Indx
))
5682 and then Has_Pragma_Pure_Function
(Entity
(Name
(Indx
)))
5686 elsif Nkind
(Indx
) = N_Type_Conversion
5687 and then Is_Safe_Index
(Expression
(Indx
))
5696 -- Start of processing for Safe_Left_Hand_Side
5699 if Is_Entity_Name
(N
) then
5702 elsif Nkind_In
(N
, N_Explicit_Dereference
, N_Selected_Component
)
5703 and then Safe_Left_Hand_Side
(Prefix
(N
))
5707 elsif Nkind
(N
) = N_Indexed_Component
5708 and then Safe_Left_Hand_Side
(Prefix
(N
))
5709 and then Is_Safe_Index
(First
(Expressions
(N
)))
5713 elsif Nkind
(N
) = N_Unchecked_Type_Conversion
then
5714 return Safe_Left_Hand_Side
(Expression
(N
));
5719 end Safe_Left_Hand_Side
;
5724 -- Holds the temporary aggregate value
5727 -- Holds the declaration of Tmp
5729 Aggr_Code
: List_Id
;
5730 Parent_Node
: Node_Id
;
5731 Parent_Kind
: Node_Kind
;
5733 -- Start of processing for Expand_Array_Aggregate
5736 -- Do not touch the special aggregates of attributes used for Asm calls
5738 if Is_RTE
(Ctyp
, RE_Asm_Input_Operand
)
5739 or else Is_RTE
(Ctyp
, RE_Asm_Output_Operand
)
5743 -- Do not expand an aggregate for an array type which contains tasks if
5744 -- the aggregate is associated with an unexpanded return statement of a
5745 -- build-in-place function. The aggregate is expanded when the related
5746 -- return statement (rewritten into an extended return) is processed.
5747 -- This delay ensures that any temporaries and initialization code
5748 -- generated for the aggregate appear in the proper return block and
5749 -- use the correct _chain and _master.
5751 elsif Has_Task
(Base_Type
(Etype
(N
)))
5752 and then Nkind
(Parent
(N
)) = N_Simple_Return_Statement
5753 and then Is_Build_In_Place_Function
5754 (Return_Applies_To
(Return_Statement_Entity
(Parent
(N
))))
5758 -- Do not attempt expansion if error already detected. We may reach this
5759 -- point in spite of previous errors when compiling with -gnatq, to
5760 -- force all possible errors (this is the usual ACATS mode).
5762 elsif Error_Posted
(N
) then
5766 -- If the semantic analyzer has determined that aggregate N will raise
5767 -- Constraint_Error at run time, then the aggregate node has been
5768 -- replaced with an N_Raise_Constraint_Error node and we should
5771 pragma Assert
(not Raises_Constraint_Error
(N
));
5775 -- Check that the index range defined by aggregate bounds is
5776 -- compatible with corresponding index subtype.
5778 Index_Compatibility_Check
: declare
5779 Aggr_Index_Range
: Node_Id
:= First_Index
(Typ
);
5780 -- The current aggregate index range
5782 Index_Constraint
: Node_Id
:= First_Index
(Etype
(Typ
));
5783 -- The corresponding index constraint against which we have to
5784 -- check the above aggregate index range.
5787 Compute_Others_Present
(N
, 1);
5789 for J
in 1 .. Aggr_Dimension
loop
5790 -- There is no need to emit a check if an others choice is present
5791 -- for this array aggregate dimension since in this case one of
5792 -- N's subaggregates has taken its bounds from the context and
5793 -- these bounds must have been checked already. In addition all
5794 -- subaggregates corresponding to the same dimension must all have
5795 -- the same bounds (checked in (c) below).
5797 if not Range_Checks_Suppressed
(Etype
(Index_Constraint
))
5798 and then not Others_Present
(J
)
5800 -- We don't use Checks.Apply_Range_Check here because it emits
5801 -- a spurious check. Namely it checks that the range defined by
5802 -- the aggregate bounds is nonempty. But we know this already
5805 Check_Bounds
(Aggr_Index_Range
, Index_Constraint
);
5808 -- Save the low and high bounds of the aggregate index as well as
5809 -- the index type for later use in checks (b) and (c) below.
5811 Aggr_Low
(J
) := Low_Bound
(Aggr_Index_Range
);
5812 Aggr_High
(J
) := High_Bound
(Aggr_Index_Range
);
5814 Aggr_Index_Typ
(J
) := Etype
(Index_Constraint
);
5816 Next_Index
(Aggr_Index_Range
);
5817 Next_Index
(Index_Constraint
);
5819 end Index_Compatibility_Check
;
5823 -- If an others choice is present check that no aggregate index is
5824 -- outside the bounds of the index constraint.
5826 Others_Check
(N
, 1);
5830 -- For multidimensional arrays make sure that all subaggregates
5831 -- corresponding to the same dimension have the same bounds.
5833 if Aggr_Dimension
> 1 then
5834 Check_Same_Aggr_Bounds
(N
, 1);
5839 -- If we have a default component value, or simple initialization is
5840 -- required for the component type, then we replace <> in component
5841 -- associations by the required default value.
5844 Default_Val
: Node_Id
;
5848 if (Present
(Default_Aspect_Component_Value
(Typ
))
5849 or else Needs_Simple_Initialization
(Ctyp
))
5850 and then Present
(Component_Associations
(N
))
5852 Assoc
:= First
(Component_Associations
(N
));
5853 while Present
(Assoc
) loop
5854 if Nkind
(Assoc
) = N_Component_Association
5855 and then Box_Present
(Assoc
)
5857 Set_Box_Present
(Assoc
, False);
5859 if Present
(Default_Aspect_Component_Value
(Typ
)) then
5860 Default_Val
:= Default_Aspect_Component_Value
(Typ
);
5862 Default_Val
:= Get_Simple_Init_Val
(Ctyp
, N
);
5865 Set_Expression
(Assoc
, New_Copy_Tree
(Default_Val
));
5866 Analyze_And_Resolve
(Expression
(Assoc
), Ctyp
);
5876 -- Here we test for is packed array aggregate that we can handle at
5877 -- compile time. If so, return with transformation done. Note that we do
5878 -- this even if the aggregate is nested, because once we have done this
5879 -- processing, there is no more nested aggregate.
5881 if Packed_Array_Aggregate_Handled
(N
) then
5885 -- At this point we try to convert to positional form
5887 if Ekind
(Current_Scope
) = E_Package
5888 and then Static_Elaboration_Desired
(Current_Scope
)
5890 Convert_To_Positional
(N
, Max_Others_Replicate
=> 100);
5892 Convert_To_Positional
(N
);
5895 -- if the result is no longer an aggregate (e.g. it may be a string
5896 -- literal, or a temporary which has the needed value), then we are
5897 -- done, since there is no longer a nested aggregate.
5899 if Nkind
(N
) /= N_Aggregate
then
5902 -- We are also done if the result is an analyzed aggregate, indicating
5903 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
5906 elsif Analyzed
(N
) and then N
/= Original_Node
(N
) then
5910 -- If all aggregate components are compile-time known and the aggregate
5911 -- has been flattened, nothing left to do. The same occurs if the
5912 -- aggregate is used to initialize the components of a statically
5913 -- allocated dispatch table.
5915 if Compile_Time_Known_Aggregate
(N
)
5916 or else Is_Static_Dispatch_Table_Aggregate
(N
)
5918 Set_Expansion_Delayed
(N
, False);
5922 -- Now see if back end processing is possible
5924 if Backend_Processing_Possible
(N
) then
5926 -- If the aggregate is static but the constraints are not, build
5927 -- a static subtype for the aggregate, so that Gigi can place it
5928 -- in static memory. Perform an unchecked_conversion to the non-
5929 -- static type imposed by the context.
5932 Itype
: constant Entity_Id
:= Etype
(N
);
5934 Needs_Type
: Boolean := False;
5937 Index
:= First_Index
(Itype
);
5938 while Present
(Index
) loop
5939 if not Is_OK_Static_Subtype
(Etype
(Index
)) then
5948 Build_Constrained_Type
(Positional
=> True);
5949 Rewrite
(N
, Unchecked_Convert_To
(Itype
, N
));
5959 -- Delay expansion for nested aggregates: it will be taken care of when
5960 -- the parent aggregate is expanded.
5962 Parent_Node
:= Parent
(N
);
5963 Parent_Kind
:= Nkind
(Parent_Node
);
5965 if Parent_Kind
= N_Qualified_Expression
then
5966 Parent_Node
:= Parent
(Parent_Node
);
5967 Parent_Kind
:= Nkind
(Parent_Node
);
5970 if Parent_Kind
= N_Aggregate
5971 or else Parent_Kind
= N_Extension_Aggregate
5972 or else Parent_Kind
= N_Component_Association
5973 or else (Parent_Kind
= N_Object_Declaration
5974 and then Needs_Finalization
(Typ
))
5975 or else (Parent_Kind
= N_Assignment_Statement
5976 and then Inside_Init_Proc
)
5978 if Static_Array_Aggregate
(N
)
5979 or else Compile_Time_Known_Aggregate
(N
)
5981 Set_Expansion_Delayed
(N
, False);
5984 Set_Expansion_Delayed
(N
);
5991 -- Look if in place aggregate expansion is possible
5993 -- For object declarations we build the aggregate in place, unless
5994 -- the array is bit-packed or the component is controlled.
5996 -- For assignments we do the assignment in place if all the component
5997 -- associations have compile-time known values. For other cases we
5998 -- create a temporary. The analysis for safety of on-line assignment
5999 -- is delicate, i.e. we don't know how to do it fully yet ???
6001 -- For allocators we assign to the designated object in place if the
6002 -- aggregate meets the same conditions as other in-place assignments.
6003 -- In this case the aggregate may not come from source but was created
6004 -- for default initialization, e.g. with Initialize_Scalars.
6006 if Requires_Transient_Scope
(Typ
) then
6007 Establish_Transient_Scope
6008 (N
, Sec_Stack
=> Has_Controlled_Component
(Typ
));
6011 if Has_Default_Init_Comps
(N
) then
6012 Maybe_In_Place_OK
:= False;
6014 elsif Is_Bit_Packed_Array
(Typ
)
6015 or else Has_Controlled_Component
(Typ
)
6017 Maybe_In_Place_OK
:= False;
6020 Maybe_In_Place_OK
:=
6021 (Nkind
(Parent
(N
)) = N_Assignment_Statement
6022 and then In_Place_Assign_OK
)
6025 (Nkind
(Parent
(Parent
(N
))) = N_Allocator
6026 and then In_Place_Assign_OK
);
6029 -- If this is an array of tasks, it will be expanded into build-in-place
6030 -- assignments. Build an activation chain for the tasks now.
6032 if Has_Task
(Etype
(N
)) then
6033 Build_Activation_Chain_Entity
(N
);
6036 -- Perform in-place expansion of aggregate in an object declaration.
6037 -- Note: actions generated for the aggregate will be captured in an
6038 -- expression-with-actions statement so that they can be transferred
6039 -- to freeze actions later if there is an address clause for the
6040 -- object. (Note: we don't use a block statement because this would
6041 -- cause generated freeze nodes to be elaborated in the wrong scope).
6043 -- Do not perform in-place expansion for SPARK 05 because aggregates are
6044 -- expected to appear in qualified form. In-place expansion eliminates
6045 -- the qualification and eventually violates this SPARK 05 restiction.
6047 -- Should document the rest of the guards ???
6049 if not Has_Default_Init_Comps
(N
)
6050 and then Comes_From_Source
(Parent_Node
)
6051 and then Parent_Kind
= N_Object_Declaration
6052 and then Present
(Expression
(Parent_Node
))
6054 Must_Slide
(Etype
(Defining_Identifier
(Parent_Node
)), Typ
)
6055 and then not Has_Controlled_Component
(Typ
)
6056 and then not Is_Bit_Packed_Array
(Typ
)
6057 and then not Restriction_Check_Required
(SPARK_05
)
6059 In_Place_Assign_OK_For_Declaration
:= True;
6060 Tmp
:= Defining_Identifier
(Parent_Node
);
6061 Set_No_Initialization
(Parent_Node
);
6062 Set_Expression
(Parent_Node
, Empty
);
6064 -- Set kind and type of the entity, for use in the analysis
6065 -- of the subsequent assignments. If the nominal type is not
6066 -- constrained, build a subtype from the known bounds of the
6067 -- aggregate. If the declaration has a subtype mark, use it,
6068 -- otherwise use the itype of the aggregate.
6070 Set_Ekind
(Tmp
, E_Variable
);
6072 if not Is_Constrained
(Typ
) then
6073 Build_Constrained_Type
(Positional
=> False);
6075 elsif Is_Entity_Name
(Object_Definition
(Parent_Node
))
6076 and then Is_Constrained
(Entity
(Object_Definition
(Parent_Node
)))
6078 Set_Etype
(Tmp
, Entity
(Object_Definition
(Parent_Node
)));
6081 Set_Size_Known_At_Compile_Time
(Typ
, False);
6082 Set_Etype
(Tmp
, Typ
);
6085 elsif Maybe_In_Place_OK
6086 and then Nkind
(Parent
(N
)) = N_Qualified_Expression
6087 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
6089 Set_Expansion_Delayed
(N
);
6092 -- In the remaining cases the aggregate is the RHS of an assignment
6094 elsif Maybe_In_Place_OK
6095 and then Safe_Left_Hand_Side
(Name
(Parent
(N
)))
6097 Tmp
:= Name
(Parent
(N
));
6099 if Etype
(Tmp
) /= Etype
(N
) then
6100 Apply_Length_Check
(N
, Etype
(Tmp
));
6102 if Nkind
(N
) = N_Raise_Constraint_Error
then
6104 -- Static error, nothing further to expand
6110 -- If a slice assignment has an aggregate with a single others_choice,
6111 -- the assignment can be done in place even if bounds are not static,
6112 -- by converting it into a loop over the discrete range of the slice.
6114 elsif Maybe_In_Place_OK
6115 and then Nkind
(Name
(Parent
(N
))) = N_Slice
6116 and then Is_Others_Aggregate
(N
)
6118 Tmp
:= Name
(Parent
(N
));
6120 -- Set type of aggregate to be type of lhs in assignment, in order
6121 -- to suppress redundant length checks.
6123 Set_Etype
(N
, Etype
(Tmp
));
6127 -- In place aggregate expansion is not possible
6130 Maybe_In_Place_OK
:= False;
6131 Tmp
:= Make_Temporary
(Loc
, 'A', N
);
6133 Make_Object_Declaration
(Loc
,
6134 Defining_Identifier
=> Tmp
,
6135 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
6136 Set_No_Initialization
(Tmp_Decl
, True);
6138 -- If we are within a loop, the temporary will be pushed on the
6139 -- stack at each iteration. If the aggregate is the expression for an
6140 -- allocator, it will be immediately copied to the heap and can
6141 -- be reclaimed at once. We create a transient scope around the
6142 -- aggregate for this purpose.
6144 if Ekind
(Current_Scope
) = E_Loop
6145 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
6147 Establish_Transient_Scope
(N
, False);
6150 Insert_Action
(N
, Tmp_Decl
);
6153 -- Construct and insert the aggregate code. We can safely suppress index
6154 -- checks because this code is guaranteed not to raise CE on index
6155 -- checks. However we should *not* suppress all checks.
6161 if Nkind
(Tmp
) = N_Defining_Identifier
then
6162 Target
:= New_Occurrence_Of
(Tmp
, Loc
);
6165 if Has_Default_Init_Comps
(N
) then
6167 -- Ada 2005 (AI-287): This case has not been analyzed???
6169 raise Program_Error
;
6172 -- Name in assignment is explicit dereference
6174 Target
:= New_Copy
(Tmp
);
6177 -- If we are to generate an in place assignment for a declaration or
6178 -- an assignment statement, and the assignment can be done directly
6179 -- by the back end, then do not expand further.
6181 -- ??? We can also do that if in place expansion is not possible but
6182 -- then we could go into an infinite recursion.
6184 if (In_Place_Assign_OK_For_Declaration
or else Maybe_In_Place_OK
)
6185 and then not AAMP_On_Target
6186 and then not CodePeer_Mode
6187 and then not Generate_C_Code
6188 and then not Possible_Bit_Aligned_Component
(Target
)
6189 and then not Is_Possibly_Unaligned_Slice
(Target
)
6190 and then Aggr_Assignment_OK_For_Backend
(N
)
6192 if Maybe_In_Place_OK
then
6198 Make_Assignment_Statement
(Loc
,
6200 Expression
=> New_Copy
(N
)));
6204 Build_Array_Aggr_Code
(N
,
6206 Index
=> First_Index
(Typ
),
6208 Scalar_Comp
=> Is_Scalar_Type
(Ctyp
));
6211 -- Save the last assignment statement associated with the aggregate
6212 -- when building a controlled object. This reference is utilized by
6213 -- the finalization machinery when marking an object as successfully
6216 if Needs_Finalization
(Typ
)
6217 and then Is_Entity_Name
(Target
)
6218 and then Present
(Entity
(Target
))
6219 and then Ekind_In
(Entity
(Target
), E_Constant
, E_Variable
)
6221 Set_Last_Aggregate_Assignment
(Entity
(Target
), Last
(Aggr_Code
));
6225 -- If the aggregate is the expression in a declaration, the expanded
6226 -- code must be inserted after it. The defining entity might not come
6227 -- from source if this is part of an inlined body, but the declaration
6230 if Comes_From_Source
(Tmp
)
6232 (Nkind
(Parent
(N
)) = N_Object_Declaration
6233 and then Comes_From_Source
(Parent
(N
))
6234 and then Tmp
= Defining_Entity
(Parent
(N
)))
6237 Node_After
: constant Node_Id
:= Next
(Parent_Node
);
6240 Insert_Actions_After
(Parent_Node
, Aggr_Code
);
6242 if Parent_Kind
= N_Object_Declaration
then
6243 Collect_Initialization_Statements
6244 (Obj
=> Tmp
, N
=> Parent_Node
, Node_After
=> Node_After
);
6249 Insert_Actions
(N
, Aggr_Code
);
6252 -- If the aggregate has been assigned in place, remove the original
6255 if Nkind
(Parent
(N
)) = N_Assignment_Statement
6256 and then Maybe_In_Place_OK
6258 Rewrite
(Parent
(N
), Make_Null_Statement
(Loc
));
6260 elsif Nkind
(Parent
(N
)) /= N_Object_Declaration
6261 or else Tmp
/= Defining_Identifier
(Parent
(N
))
6263 Rewrite
(N
, New_Occurrence_Of
(Tmp
, Loc
));
6264 Analyze_And_Resolve
(N
, Typ
);
6266 end Expand_Array_Aggregate
;
6268 ------------------------
6269 -- Expand_N_Aggregate --
6270 ------------------------
6272 procedure Expand_N_Aggregate
(N
: Node_Id
) is
6274 -- Record aggregate case
6276 if Is_Record_Type
(Etype
(N
)) then
6277 Expand_Record_Aggregate
(N
);
6279 -- Array aggregate case
6282 -- A special case, if we have a string subtype with bounds 1 .. N,
6283 -- where N is known at compile time, and the aggregate is of the
6284 -- form (others => 'x'), with a single choice and no expressions,
6285 -- and N is less than 80 (an arbitrary limit for now), then replace
6286 -- the aggregate by the equivalent string literal (but do not mark
6287 -- it as static since it is not).
6289 -- Note: this entire circuit is redundant with respect to code in
6290 -- Expand_Array_Aggregate that collapses others choices to positional
6291 -- form, but there are two problems with that circuit:
6293 -- a) It is limited to very small cases due to ill-understood
6294 -- interactions with bootstrapping. That limit is removed by
6295 -- use of the No_Implicit_Loops restriction.
6297 -- b) It incorrectly ends up with the resulting expressions being
6298 -- considered static when they are not. For example, the
6299 -- following test should fail:
6301 -- pragma Restrictions (No_Implicit_Loops);
6302 -- package NonSOthers4 is
6303 -- B : constant String (1 .. 6) := (others => 'A');
6304 -- DH : constant String (1 .. 8) := B & "BB";
6306 -- pragma Export (C, X, Link_Name => DH);
6309 -- But it succeeds (DH looks static to pragma Export)
6311 -- To be sorted out ???
6313 if Present
(Component_Associations
(N
)) then
6315 CA
: constant Node_Id
:= First
(Component_Associations
(N
));
6316 MX
: constant := 80;
6319 if Nkind
(First
(Choices
(CA
))) = N_Others_Choice
6320 and then Nkind
(Expression
(CA
)) = N_Character_Literal
6321 and then No
(Expressions
(N
))
6324 T
: constant Entity_Id
:= Etype
(N
);
6325 X
: constant Node_Id
:= First_Index
(T
);
6326 EC
: constant Node_Id
:= Expression
(CA
);
6327 CV
: constant Uint
:= Char_Literal_Value
(EC
);
6328 CC
: constant Int
:= UI_To_Int
(CV
);
6331 if Nkind
(X
) = N_Range
6332 and then Compile_Time_Known_Value
(Low_Bound
(X
))
6333 and then Expr_Value
(Low_Bound
(X
)) = 1
6334 and then Compile_Time_Known_Value
(High_Bound
(X
))
6337 Hi
: constant Uint
:= Expr_Value
(High_Bound
(X
));
6343 for J
in 1 .. UI_To_Int
(Hi
) loop
6344 Store_String_Char
(Char_Code
(CC
));
6348 Make_String_Literal
(Sloc
(N
),
6349 Strval
=> End_String
));
6351 if CC
>= Int
(2 ** 16) then
6352 Set_Has_Wide_Wide_Character
(N
);
6353 elsif CC
>= Int
(2 ** 8) then
6354 Set_Has_Wide_Character
(N
);
6357 Analyze_And_Resolve
(N
, T
);
6358 Set_Is_Static_Expression
(N
, False);
6368 -- Not that special case, so normal expansion of array aggregate
6370 Expand_Array_Aggregate
(N
);
6374 when RE_Not_Available
=>
6376 end Expand_N_Aggregate
;
6378 ----------------------------------
6379 -- Expand_N_Extension_Aggregate --
6380 ----------------------------------
6382 -- If the ancestor part is an expression, add a component association for
6383 -- the parent field. If the type of the ancestor part is not the direct
6384 -- parent of the expected type, build recursively the needed ancestors.
6385 -- If the ancestor part is a subtype_mark, replace aggregate with a decla-
6386 -- ration for a temporary of the expected type, followed by individual
6387 -- assignments to the given components.
6389 procedure Expand_N_Extension_Aggregate
(N
: Node_Id
) is
6390 Loc
: constant Source_Ptr
:= Sloc
(N
);
6391 A
: constant Node_Id
:= Ancestor_Part
(N
);
6392 Typ
: constant Entity_Id
:= Etype
(N
);
6395 -- If the ancestor is a subtype mark, an init proc must be called
6396 -- on the resulting object which thus has to be materialized in
6399 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
6400 Convert_To_Assignments
(N
, Typ
);
6402 -- The extension aggregate is transformed into a record aggregate
6403 -- of the following form (c1 and c2 are inherited components)
6405 -- (Exp with c3 => a, c4 => b)
6406 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
6411 if Tagged_Type_Expansion
then
6412 Expand_Record_Aggregate
(N
,
6415 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
),
6418 -- No tag is needed in the case of a VM
6421 Expand_Record_Aggregate
(N
, Parent_Expr
=> A
);
6426 when RE_Not_Available
=>
6428 end Expand_N_Extension_Aggregate
;
6430 -----------------------------
6431 -- Expand_Record_Aggregate --
6432 -----------------------------
6434 procedure Expand_Record_Aggregate
6436 Orig_Tag
: Node_Id
:= Empty
;
6437 Parent_Expr
: Node_Id
:= Empty
)
6439 Loc
: constant Source_Ptr
:= Sloc
(N
);
6440 Comps
: constant List_Id
:= Component_Associations
(N
);
6441 Typ
: constant Entity_Id
:= Etype
(N
);
6442 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6444 Static_Components
: Boolean := True;
6445 -- Flag to indicate whether all components are compile-time known,
6446 -- and the aggregate can be constructed statically and handled by
6449 function Compile_Time_Known_Composite_Value
(N
: Node_Id
) return Boolean;
6450 -- Returns true if N is an expression of composite type which can be
6451 -- fully evaluated at compile time without raising constraint error.
6452 -- Such expressions can be passed as is to Gigi without any expansion.
6454 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
6455 -- set and constants whose expression is such an aggregate, recursively.
6457 function Component_Not_OK_For_Backend
return Boolean;
6458 -- Check for presence of a component which makes it impossible for the
6459 -- backend to process the aggregate, thus requiring the use of a series
6460 -- of assignment statements. Cases checked for are a nested aggregate
6461 -- needing Late_Expansion, the presence of a tagged component which may
6462 -- need tag adjustment, and a bit unaligned component reference.
6464 -- We also force expansion into assignments if a component is of a
6465 -- mutable type (including a private type with discriminants) because
6466 -- in that case the size of the component to be copied may be smaller
6467 -- than the side of the target, and there is no simple way for gigi
6468 -- to compute the size of the object to be copied.
6470 -- NOTE: This is part of the ongoing work to define precisely the
6471 -- interface between front-end and back-end handling of aggregates.
6472 -- In general it is desirable to pass aggregates as they are to gigi,
6473 -- in order to minimize elaboration code. This is one case where the
6474 -- semantics of Ada complicate the analysis and lead to anomalies in
6475 -- the gcc back-end if the aggregate is not expanded into assignments.
6477 function Has_Per_Object_Constraint
(L
: List_Id
) return Boolean;
6478 -- Return True if any element of L has Has_Per_Object_Constraint set.
6479 -- L should be the Choices component of an N_Component_Association.
6481 function Has_Visible_Private_Ancestor
(Id
: E
) return Boolean;
6482 -- If any ancestor of the current type is private, the aggregate
6483 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
6484 -- because it will not be set when type and its parent are in the
6485 -- same scope, and the parent component needs expansion.
6487 function Top_Level_Aggregate
(N
: Node_Id
) return Node_Id
;
6488 -- For nested aggregates return the ultimate enclosing aggregate; for
6489 -- non-nested aggregates return N.
6491 ----------------------------------------
6492 -- Compile_Time_Known_Composite_Value --
6493 ----------------------------------------
6495 function Compile_Time_Known_Composite_Value
6496 (N
: Node_Id
) return Boolean
6499 -- If we have an entity name, then see if it is the name of a
6500 -- constant and if so, test the corresponding constant value.
6502 if Is_Entity_Name
(N
) then
6504 E
: constant Entity_Id
:= Entity
(N
);
6507 if Ekind
(E
) /= E_Constant
then
6510 V
:= Constant_Value
(E
);
6512 and then Compile_Time_Known_Composite_Value
(V
);
6516 -- We have a value, see if it is compile time known
6519 if Nkind
(N
) = N_Aggregate
then
6520 return Compile_Time_Known_Aggregate
(N
);
6523 -- All other types of values are not known at compile time
6528 end Compile_Time_Known_Composite_Value
;
6530 ----------------------------------
6531 -- Component_Not_OK_For_Backend --
6532 ----------------------------------
6534 function Component_Not_OK_For_Backend
return Boolean is
6544 while Present
(C
) loop
6546 -- If the component has box initialization, expansion is needed
6547 -- and component is not ready for backend.
6549 if Box_Present
(C
) then
6553 if Nkind
(Expression
(C
)) = N_Qualified_Expression
then
6554 Expr_Q
:= Expression
(Expression
(C
));
6556 Expr_Q
:= Expression
(C
);
6559 -- Return true if the aggregate has any associations for tagged
6560 -- components that may require tag adjustment.
6562 -- These are cases where the source expression may have a tag that
6563 -- could differ from the component tag (e.g., can occur for type
6564 -- conversions and formal parameters). (Tag adjustment not needed
6565 -- if Tagged_Type_Expansion because object tags are implicit in
6568 if Is_Tagged_Type
(Etype
(Expr_Q
))
6569 and then (Nkind
(Expr_Q
) = N_Type_Conversion
6570 or else (Is_Entity_Name
(Expr_Q
)
6572 Ekind
(Entity
(Expr_Q
)) in Formal_Kind
))
6573 and then Tagged_Type_Expansion
6575 Static_Components
:= False;
6578 elsif Is_Delayed_Aggregate
(Expr_Q
) then
6579 Static_Components
:= False;
6582 elsif Possible_Bit_Aligned_Component
(Expr_Q
) then
6583 Static_Components
:= False;
6586 elsif Modify_Tree_For_C
6587 and then Nkind
(C
) = N_Component_Association
6588 and then Has_Per_Object_Constraint
(Choices
(C
))
6590 Static_Components
:= False;
6593 elsif Modify_Tree_For_C
6594 and then Nkind
(Expr_Q
) = N_Identifier
6595 and then Is_Array_Type
(Etype
(Expr_Q
))
6597 Static_Components
:= False;
6601 if Is_Elementary_Type
(Etype
(Expr_Q
)) then
6602 if not Compile_Time_Known_Value
(Expr_Q
) then
6603 Static_Components
:= False;
6606 elsif not Compile_Time_Known_Composite_Value
(Expr_Q
) then
6607 Static_Components
:= False;
6609 if Is_Private_Type
(Etype
(Expr_Q
))
6610 and then Has_Discriminants
(Etype
(Expr_Q
))
6620 end Component_Not_OK_For_Backend
;
6622 -------------------------------
6623 -- Has_Per_Object_Constraint --
6624 -------------------------------
6626 function Has_Per_Object_Constraint
(L
: List_Id
) return Boolean is
6627 N
: Node_Id
:= First
(L
);
6629 while Present
(N
) loop
6630 if Is_Entity_Name
(N
)
6631 and then Present
(Entity
(N
))
6632 and then Has_Per_Object_Constraint
(Entity
(N
))
6641 end Has_Per_Object_Constraint
;
6643 -----------------------------------
6644 -- Has_Visible_Private_Ancestor --
6645 -----------------------------------
6647 function Has_Visible_Private_Ancestor
(Id
: E
) return Boolean is
6648 R
: constant Entity_Id
:= Root_Type
(Id
);
6649 T1
: Entity_Id
:= Id
;
6653 if Is_Private_Type
(T1
) then
6663 end Has_Visible_Private_Ancestor
;
6665 -------------------------
6666 -- Top_Level_Aggregate --
6667 -------------------------
6669 function Top_Level_Aggregate
(N
: Node_Id
) return Node_Id
is
6674 while Present
(Parent
(Aggr
))
6675 and then Nkind_In
(Parent
(Aggr
), N_Component_Association
,
6678 Aggr
:= Parent
(Aggr
);
6682 end Top_Level_Aggregate
;
6686 Top_Level_Aggr
: constant Node_Id
:= Top_Level_Aggregate
(N
);
6687 Tag_Value
: Node_Id
;
6691 -- Start of processing for Expand_Record_Aggregate
6694 -- If the aggregate is to be assigned to an atomic/VFA variable, we have
6695 -- to prevent a piecemeal assignment even if the aggregate is to be
6696 -- expanded. We create a temporary for the aggregate, and assign the
6697 -- temporary instead, so that the back end can generate an atomic move
6700 if Is_Atomic_VFA_Aggregate
(N
) then
6703 -- No special management required for aggregates used to initialize
6704 -- statically allocated dispatch tables
6706 elsif Is_Static_Dispatch_Table_Aggregate
(N
) then
6710 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
6711 -- are build-in-place function calls. The assignments will each turn
6712 -- into a build-in-place function call. If components are all static,
6713 -- we can pass the aggregate to the backend regardless of limitedness.
6715 -- Extension aggregates, aggregates in extended return statements, and
6716 -- aggregates for C++ imported types must be expanded.
6718 if Ada_Version
>= Ada_2005
and then Is_Limited_View
(Typ
) then
6719 if not Nkind_In
(Parent
(N
), N_Object_Declaration
,
6720 N_Component_Association
)
6722 Convert_To_Assignments
(N
, Typ
);
6724 elsif Nkind
(N
) = N_Extension_Aggregate
6725 or else Convention
(Typ
) = Convention_CPP
6727 Convert_To_Assignments
(N
, Typ
);
6729 elsif not Size_Known_At_Compile_Time
(Typ
)
6730 or else Component_Not_OK_For_Backend
6731 or else not Static_Components
6733 Convert_To_Assignments
(N
, Typ
);
6736 Set_Compile_Time_Known_Aggregate
(N
);
6737 Set_Expansion_Delayed
(N
, False);
6740 -- Gigi doesn't properly handle temporaries of variable size so we
6741 -- generate it in the front-end
6743 elsif not Size_Known_At_Compile_Time
(Typ
)
6744 and then Tagged_Type_Expansion
6746 Convert_To_Assignments
(N
, Typ
);
6748 -- An aggregate used to initialize a controlled object must be turned
6749 -- into component assignments as the components themselves may require
6750 -- finalization actions such as adjustment.
6752 elsif Needs_Finalization
(Typ
) then
6753 Convert_To_Assignments
(N
, Typ
);
6755 -- Ada 2005 (AI-287): In case of default initialized components we
6756 -- convert the aggregate into assignments.
6758 elsif Has_Default_Init_Comps
(N
) then
6759 Convert_To_Assignments
(N
, Typ
);
6763 elsif Component_Not_OK_For_Backend
then
6764 Convert_To_Assignments
(N
, Typ
);
6766 -- If an ancestor is private, some components are not inherited and we
6767 -- cannot expand into a record aggregate.
6769 elsif Has_Visible_Private_Ancestor
(Typ
) then
6770 Convert_To_Assignments
(N
, Typ
);
6772 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
6773 -- is not able to handle the aggregate for Late_Request.
6775 elsif Is_Tagged_Type
(Typ
) and then Has_Discriminants
(Typ
) then
6776 Convert_To_Assignments
(N
, Typ
);
6778 -- If the tagged types covers interface types we need to initialize all
6779 -- hidden components containing pointers to secondary dispatch tables.
6781 elsif Is_Tagged_Type
(Typ
) and then Has_Interfaces
(Typ
) then
6782 Convert_To_Assignments
(N
, Typ
);
6784 -- If some components are mutable, the size of the aggregate component
6785 -- may be distinct from the default size of the type component, so
6786 -- we need to expand to insure that the back-end copies the proper
6787 -- size of the data. However, if the aggregate is the initial value of
6788 -- a constant, the target is immutable and might be built statically
6789 -- if components are appropriate.
6791 elsif Has_Mutable_Components
(Typ
)
6793 (Nkind
(Parent
(Top_Level_Aggr
)) /= N_Object_Declaration
6794 or else not Constant_Present
(Parent
(Top_Level_Aggr
))
6795 or else not Static_Components
)
6797 Convert_To_Assignments
(N
, Typ
);
6799 -- If the type involved has bit aligned components, then we are not sure
6800 -- that the back end can handle this case correctly.
6802 elsif Type_May_Have_Bit_Aligned_Components
(Typ
) then
6803 Convert_To_Assignments
(N
, Typ
);
6805 -- When generating C, only generate an aggregate when declaring objects
6806 -- since C does not support aggregates in e.g. assignment statements.
6808 elsif Modify_Tree_For_C
and then not In_Object_Declaration
(N
) then
6809 Convert_To_Assignments
(N
, Typ
);
6811 -- In all other cases, build a proper aggregate to be handled by gigi
6814 if Nkind
(N
) = N_Aggregate
then
6816 -- If the aggregate is static and can be handled by the back-end,
6817 -- nothing left to do.
6819 if Static_Components
then
6820 Set_Compile_Time_Known_Aggregate
(N
);
6821 Set_Expansion_Delayed
(N
, False);
6825 -- If no discriminants, nothing special to do
6827 if not Has_Discriminants
(Typ
) then
6830 -- Case of discriminants present
6832 elsif Is_Derived_Type
(Typ
) then
6834 -- For untagged types, non-stored discriminants are replaced
6835 -- with stored discriminants, which are the ones that gigi uses
6836 -- to describe the type and its components.
6838 Generate_Aggregate_For_Derived_Type
: declare
6839 Constraints
: constant List_Id
:= New_List
;
6840 First_Comp
: Node_Id
;
6841 Discriminant
: Entity_Id
;
6843 Num_Disc
: Nat
:= 0;
6844 Num_Gird
: Nat
:= 0;
6846 procedure Prepend_Stored_Values
(T
: Entity_Id
);
6847 -- Scan the list of stored discriminants of the type, and add
6848 -- their values to the aggregate being built.
6850 ---------------------------
6851 -- Prepend_Stored_Values --
6852 ---------------------------
6854 procedure Prepend_Stored_Values
(T
: Entity_Id
) is
6856 Discriminant
:= First_Stored_Discriminant
(T
);
6857 while Present
(Discriminant
) loop
6859 Make_Component_Association
(Loc
,
6861 New_List
(New_Occurrence_Of
(Discriminant
, Loc
)),
6865 (Get_Discriminant_Value
6868 Discriminant_Constraint
(Typ
))));
6870 if No
(First_Comp
) then
6871 Prepend_To
(Component_Associations
(N
), New_Comp
);
6873 Insert_After
(First_Comp
, New_Comp
);
6876 First_Comp
:= New_Comp
;
6877 Next_Stored_Discriminant
(Discriminant
);
6879 end Prepend_Stored_Values
;
6881 -- Start of processing for Generate_Aggregate_For_Derived_Type
6884 -- Remove the associations for the discriminant of derived type
6886 First_Comp
:= First
(Component_Associations
(N
));
6887 while Present
(First_Comp
) loop
6891 if Ekind
(Entity
(First
(Choices
(Comp
)))) = E_Discriminant
6894 Num_Disc
:= Num_Disc
+ 1;
6898 -- Insert stored discriminant associations in the correct
6899 -- order. If there are more stored discriminants than new
6900 -- discriminants, there is at least one new discriminant that
6901 -- constrains more than one of the stored discriminants. In
6902 -- this case we need to construct a proper subtype of the
6903 -- parent type, in order to supply values to all the
6904 -- components. Otherwise there is one-one correspondence
6905 -- between the constraints and the stored discriminants.
6907 First_Comp
:= Empty
;
6909 Discriminant
:= First_Stored_Discriminant
(Base_Type
(Typ
));
6910 while Present
(Discriminant
) loop
6911 Num_Gird
:= Num_Gird
+ 1;
6912 Next_Stored_Discriminant
(Discriminant
);
6915 -- Case of more stored discriminants than new discriminants
6917 if Num_Gird
> Num_Disc
then
6919 -- Create a proper subtype of the parent type, which is the
6920 -- proper implementation type for the aggregate, and convert
6921 -- it to the intended target type.
6923 Discriminant
:= First_Stored_Discriminant
(Base_Type
(Typ
));
6924 while Present
(Discriminant
) loop
6927 (Get_Discriminant_Value
6930 Discriminant_Constraint
(Typ
)));
6931 Append
(New_Comp
, Constraints
);
6932 Next_Stored_Discriminant
(Discriminant
);
6936 Make_Subtype_Declaration
(Loc
,
6937 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
6938 Subtype_Indication
=>
6939 Make_Subtype_Indication
(Loc
,
6941 New_Occurrence_Of
(Etype
(Base_Type
(Typ
)), Loc
),
6943 Make_Index_Or_Discriminant_Constraint
6944 (Loc
, Constraints
)));
6946 Insert_Action
(N
, Decl
);
6947 Prepend_Stored_Values
(Base_Type
(Typ
));
6949 Set_Etype
(N
, Defining_Identifier
(Decl
));
6952 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
6955 -- Case where we do not have fewer new discriminants than
6956 -- stored discriminants, so in this case we can simply use the
6957 -- stored discriminants of the subtype.
6960 Prepend_Stored_Values
(Typ
);
6962 end Generate_Aggregate_For_Derived_Type
;
6965 if Is_Tagged_Type
(Typ
) then
6967 -- In the tagged case, _parent and _tag component must be created
6969 -- Reset Null_Present unconditionally. Tagged records always have
6970 -- at least one field (the tag or the parent).
6972 Set_Null_Record_Present
(N
, False);
6974 -- When the current aggregate comes from the expansion of an
6975 -- extension aggregate, the parent expr is replaced by an
6976 -- aggregate formed by selected components of this expr.
6978 if Present
(Parent_Expr
) and then Is_Empty_List
(Comps
) then
6979 Comp
:= First_Component_Or_Discriminant
(Typ
);
6980 while Present
(Comp
) loop
6982 -- Skip all expander-generated components
6984 if not Comes_From_Source
(Original_Record_Component
(Comp
))
6990 Make_Selected_Component
(Loc
,
6992 Unchecked_Convert_To
(Typ
,
6993 Duplicate_Subexpr
(Parent_Expr
, True)),
6994 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
));
6997 Make_Component_Association
(Loc
,
6999 New_List
(New_Occurrence_Of
(Comp
, Loc
)),
7000 Expression
=> New_Comp
));
7002 Analyze_And_Resolve
(New_Comp
, Etype
(Comp
));
7005 Next_Component_Or_Discriminant
(Comp
);
7009 -- Compute the value for the Tag now, if the type is a root it
7010 -- will be included in the aggregate right away, otherwise it will
7011 -- be propagated to the parent aggregate.
7013 if Present
(Orig_Tag
) then
7014 Tag_Value
:= Orig_Tag
;
7015 elsif not Tagged_Type_Expansion
then
7020 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
);
7023 -- For a derived type, an aggregate for the parent is formed with
7024 -- all the inherited components.
7026 if Is_Derived_Type
(Typ
) then
7029 First_Comp
: Node_Id
;
7030 Parent_Comps
: List_Id
;
7031 Parent_Aggr
: Node_Id
;
7032 Parent_Name
: Node_Id
;
7035 -- Remove the inherited component association from the
7036 -- aggregate and store them in the parent aggregate
7038 First_Comp
:= First
(Component_Associations
(N
));
7039 Parent_Comps
:= New_List
;
7040 while Present
(First_Comp
)
7042 Scope
(Original_Record_Component
7043 (Entity
(First
(Choices
(First_Comp
))))) /=
7049 Append
(Comp
, Parent_Comps
);
7053 Make_Aggregate
(Loc
,
7054 Component_Associations
=> Parent_Comps
);
7055 Set_Etype
(Parent_Aggr
, Etype
(Base_Type
(Typ
)));
7057 -- Find the _parent component
7059 Comp
:= First_Component
(Typ
);
7060 while Chars
(Comp
) /= Name_uParent
loop
7061 Comp
:= Next_Component
(Comp
);
7064 Parent_Name
:= New_Occurrence_Of
(Comp
, Loc
);
7066 -- Insert the parent aggregate
7068 Prepend_To
(Component_Associations
(N
),
7069 Make_Component_Association
(Loc
,
7070 Choices
=> New_List
(Parent_Name
),
7071 Expression
=> Parent_Aggr
));
7073 -- Expand recursively the parent propagating the right Tag
7075 Expand_Record_Aggregate
7076 (Parent_Aggr
, Tag_Value
, Parent_Expr
);
7078 -- The ancestor part may be a nested aggregate that has
7079 -- delayed expansion: recheck now.
7081 if Component_Not_OK_For_Backend
then
7082 Convert_To_Assignments
(N
, Typ
);
7086 -- For a root type, the tag component is added (unless compiling
7087 -- for the VMs, where tags are implicit).
7089 elsif Tagged_Type_Expansion
then
7091 Tag_Name
: constant Node_Id
:=
7092 New_Occurrence_Of
(First_Tag_Component
(Typ
), Loc
);
7093 Typ_Tag
: constant Entity_Id
:= RTE
(RE_Tag
);
7094 Conv_Node
: constant Node_Id
:=
7095 Unchecked_Convert_To
(Typ_Tag
, Tag_Value
);
7098 Set_Etype
(Conv_Node
, Typ_Tag
);
7099 Prepend_To
(Component_Associations
(N
),
7100 Make_Component_Association
(Loc
,
7101 Choices
=> New_List
(Tag_Name
),
7102 Expression
=> Conv_Node
));
7108 end Expand_Record_Aggregate
;
7110 ----------------------------
7111 -- Has_Default_Init_Comps --
7112 ----------------------------
7114 function Has_Default_Init_Comps
(N
: Node_Id
) return Boolean is
7115 Comps
: constant List_Id
:= Component_Associations
(N
);
7120 pragma Assert
(Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
));
7126 if Has_Self_Reference
(N
) then
7130 -- Check if any direct component has default initialized components
7133 while Present
(C
) loop
7134 if Box_Present
(C
) then
7141 -- Recursive call in case of aggregate expression
7144 while Present
(C
) loop
7145 Expr
:= Expression
(C
);
7148 and then Nkind_In
(Expr
, N_Aggregate
, N_Extension_Aggregate
)
7149 and then Has_Default_Init_Comps
(Expr
)
7158 end Has_Default_Init_Comps
;
7160 --------------------------
7161 -- Is_Delayed_Aggregate --
7162 --------------------------
7164 function Is_Delayed_Aggregate
(N
: Node_Id
) return Boolean is
7165 Node
: Node_Id
:= N
;
7166 Kind
: Node_Kind
:= Nkind
(Node
);
7169 if Kind
= N_Qualified_Expression
then
7170 Node
:= Expression
(Node
);
7171 Kind
:= Nkind
(Node
);
7174 if not Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
) then
7177 return Expansion_Delayed
(Node
);
7179 end Is_Delayed_Aggregate
;
7181 ---------------------------
7182 -- In_Object_Declaration --
7183 ---------------------------
7185 function In_Object_Declaration
(N
: Node_Id
) return Boolean is
7186 P
: Node_Id
:= Parent
(N
);
7188 while Present
(P
) loop
7189 if Nkind
(P
) = N_Object_Declaration
then
7197 end In_Object_Declaration
;
7199 ----------------------------------------
7200 -- Is_Static_Dispatch_Table_Aggregate --
7201 ----------------------------------------
7203 function Is_Static_Dispatch_Table_Aggregate
(N
: Node_Id
) return Boolean is
7204 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
7207 return Static_Dispatch_Tables
7208 and then Tagged_Type_Expansion
7209 and then RTU_Loaded
(Ada_Tags
)
7211 -- Avoid circularity when rebuilding the compiler
7213 and then Cunit_Entity
(Get_Source_Unit
(N
)) /= RTU_Entity
(Ada_Tags
)
7214 and then (Typ
= RTE
(RE_Dispatch_Table_Wrapper
)
7216 Typ
= RTE
(RE_Address_Array
)
7218 Typ
= RTE
(RE_Type_Specific_Data
)
7220 Typ
= RTE
(RE_Tag_Table
)
7222 (RTE_Available
(RE_Interface_Data
)
7223 and then Typ
= RTE
(RE_Interface_Data
))
7225 (RTE_Available
(RE_Interfaces_Array
)
7226 and then Typ
= RTE
(RE_Interfaces_Array
))
7228 (RTE_Available
(RE_Interface_Data_Element
)
7229 and then Typ
= RTE
(RE_Interface_Data_Element
)));
7230 end Is_Static_Dispatch_Table_Aggregate
;
7232 -----------------------------
7233 -- Is_Two_Dim_Packed_Array --
7234 -----------------------------
7236 function Is_Two_Dim_Packed_Array
(Typ
: Entity_Id
) return Boolean is
7237 C
: constant Int
:= UI_To_Int
(Component_Size
(Typ
));
7239 return Number_Dimensions
(Typ
) = 2
7240 and then Is_Bit_Packed_Array
(Typ
)
7241 and then (C
= 1 or else C
= 2 or else C
= 4);
7242 end Is_Two_Dim_Packed_Array
;
7244 --------------------
7245 -- Late_Expansion --
7246 --------------------
7248 function Late_Expansion
7251 Target
: Node_Id
) return List_Id
7253 Aggr_Code
: List_Id
;
7256 if Is_Array_Type
(Etype
(N
)) then
7258 Build_Array_Aggr_Code
7260 Ctype
=> Component_Type
(Etype
(N
)),
7261 Index
=> First_Index
(Typ
),
7263 Scalar_Comp
=> Is_Scalar_Type
(Component_Type
(Typ
)),
7264 Indexes
=> No_List
);
7266 -- Directly or indirectly (e.g. access protected procedure) a record
7269 Aggr_Code
:= Build_Record_Aggr_Code
(N
, Typ
, Target
);
7272 -- Save the last assignment statement associated with the aggregate
7273 -- when building a controlled object. This reference is utilized by
7274 -- the finalization machinery when marking an object as successfully
7277 if Needs_Finalization
(Typ
)
7278 and then Is_Entity_Name
(Target
)
7279 and then Present
(Entity
(Target
))
7280 and then Ekind_In
(Entity
(Target
), E_Constant
, E_Variable
)
7282 Set_Last_Aggregate_Assignment
(Entity
(Target
), Last
(Aggr_Code
));
7288 ----------------------------------
7289 -- Make_OK_Assignment_Statement --
7290 ----------------------------------
7292 function Make_OK_Assignment_Statement
7295 Expression
: Node_Id
) return Node_Id
7298 Set_Assignment_OK
(Name
);
7299 return Make_Assignment_Statement
(Sloc
, Name
, Expression
);
7300 end Make_OK_Assignment_Statement
;
7302 -----------------------
7303 -- Number_Of_Choices --
7304 -----------------------
7306 function Number_Of_Choices
(N
: Node_Id
) return Nat
is
7310 Nb_Choices
: Nat
:= 0;
7313 if Present
(Expressions
(N
)) then
7317 Assoc
:= First
(Component_Associations
(N
));
7318 while Present
(Assoc
) loop
7319 Choice
:= First
(Choices
(Assoc
));
7320 while Present
(Choice
) loop
7321 if Nkind
(Choice
) /= N_Others_Choice
then
7322 Nb_Choices
:= Nb_Choices
+ 1;
7332 end Number_Of_Choices
;
7334 ------------------------------------
7335 -- Packed_Array_Aggregate_Handled --
7336 ------------------------------------
7338 -- The current version of this procedure will handle at compile time
7339 -- any array aggregate that meets these conditions:
7341 -- One and two dimensional, bit packed
7342 -- Underlying packed type is modular type
7343 -- Bounds are within 32-bit Int range
7344 -- All bounds and values are static
7346 -- Note: for now, in the 2-D case, we only handle component sizes of
7347 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
7349 function Packed_Array_Aggregate_Handled
(N
: Node_Id
) return Boolean is
7350 Loc
: constant Source_Ptr
:= Sloc
(N
);
7351 Typ
: constant Entity_Id
:= Etype
(N
);
7352 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
7354 Not_Handled
: exception;
7355 -- Exception raised if this aggregate cannot be handled
7358 -- Handle one- or two dimensional bit packed array
7360 if not Is_Bit_Packed_Array
(Typ
)
7361 or else Number_Dimensions
(Typ
) > 2
7366 -- If two-dimensional, check whether it can be folded, and transformed
7367 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
7368 -- the original type.
7370 if Number_Dimensions
(Typ
) = 2 then
7371 return Two_Dim_Packed_Array_Handled
(N
);
7374 if not Is_Modular_Integer_Type
(Packed_Array_Impl_Type
(Typ
)) then
7378 if not Is_Scalar_Type
(Component_Type
(Typ
))
7379 and then Has_Non_Standard_Rep
(Component_Type
(Typ
))
7385 Csiz
: constant Nat
:= UI_To_Int
(Component_Size
(Typ
));
7389 -- Bounds of index type
7393 -- Values of bounds if compile time known
7395 function Get_Component_Val
(N
: Node_Id
) return Uint
;
7396 -- Given a expression value N of the component type Ctyp, returns a
7397 -- value of Csiz (component size) bits representing this value. If
7398 -- the value is non-static or any other reason exists why the value
7399 -- cannot be returned, then Not_Handled is raised.
7401 -----------------------
7402 -- Get_Component_Val --
7403 -----------------------
7405 function Get_Component_Val
(N
: Node_Id
) return Uint
is
7409 -- We have to analyze the expression here before doing any further
7410 -- processing here. The analysis of such expressions is deferred
7411 -- till expansion to prevent some problems of premature analysis.
7413 Analyze_And_Resolve
(N
, Ctyp
);
7415 -- Must have a compile time value. String literals have to be
7416 -- converted into temporaries as well, because they cannot easily
7417 -- be converted into their bit representation.
7419 if not Compile_Time_Known_Value
(N
)
7420 or else Nkind
(N
) = N_String_Literal
7425 Val
:= Expr_Rep_Value
(N
);
7427 -- Adjust for bias, and strip proper number of bits
7429 if Has_Biased_Representation
(Ctyp
) then
7430 Val
:= Val
- Expr_Value
(Type_Low_Bound
(Ctyp
));
7433 return Val
mod Uint_2
** Csiz
;
7434 end Get_Component_Val
;
7436 -- Here we know we have a one dimensional bit packed array
7439 Get_Index_Bounds
(First_Index
(Typ
), Lo
, Hi
);
7441 -- Cannot do anything if bounds are dynamic
7443 if not Compile_Time_Known_Value
(Lo
)
7445 not Compile_Time_Known_Value
(Hi
)
7450 -- Or are silly out of range of int bounds
7452 Lob
:= Expr_Value
(Lo
);
7453 Hib
:= Expr_Value
(Hi
);
7455 if not UI_Is_In_Int_Range
(Lob
)
7457 not UI_Is_In_Int_Range
(Hib
)
7462 -- At this stage we have a suitable aggregate for handling at compile
7463 -- time. The only remaining checks are that the values of expressions
7464 -- in the aggregate are compile-time known (checks are performed by
7465 -- Get_Component_Val), and that any subtypes or ranges are statically
7468 -- If the aggregate is not fully positional at this stage, then
7469 -- convert it to positional form. Either this will fail, in which
7470 -- case we can do nothing, or it will succeed, in which case we have
7471 -- succeeded in handling the aggregate and transforming it into a
7472 -- modular value, or it will stay an aggregate, in which case we
7473 -- have failed to create a packed value for it.
7475 if Present
(Component_Associations
(N
)) then
7476 Convert_To_Positional
7477 (N
, Max_Others_Replicate
=> 64, Handle_Bit_Packed
=> True);
7478 return Nkind
(N
) /= N_Aggregate
;
7481 -- Otherwise we are all positional, so convert to proper value
7484 Lov
: constant Int
:= UI_To_Int
(Lob
);
7485 Hiv
: constant Int
:= UI_To_Int
(Hib
);
7487 Len
: constant Nat
:= Int
'Max (0, Hiv
- Lov
+ 1);
7488 -- The length of the array (number of elements)
7490 Aggregate_Val
: Uint
;
7491 -- Value of aggregate. The value is set in the low order bits of
7492 -- this value. For the little-endian case, the values are stored
7493 -- from low-order to high-order and for the big-endian case the
7494 -- values are stored from high-order to low-order. Note that gigi
7495 -- will take care of the conversions to left justify the value in
7496 -- the big endian case (because of left justified modular type
7497 -- processing), so we do not have to worry about that here.
7500 -- Integer literal for resulting constructed value
7503 -- Shift count from low order for next value
7506 -- Shift increment for loop
7509 -- Next expression from positional parameters of aggregate
7511 Left_Justified
: Boolean;
7512 -- Set True if we are filling the high order bits of the target
7513 -- value (i.e. the value is left justified).
7516 -- For little endian, we fill up the low order bits of the target
7517 -- value. For big endian we fill up the high order bits of the
7518 -- target value (which is a left justified modular value).
7520 Left_Justified
:= Bytes_Big_Endian
;
7522 -- Switch justification if using -gnatd8
7524 if Debug_Flag_8
then
7525 Left_Justified
:= not Left_Justified
;
7528 -- Switch justfification if reverse storage order
7530 if Reverse_Storage_Order
(Base_Type
(Typ
)) then
7531 Left_Justified
:= not Left_Justified
;
7534 if Left_Justified
then
7535 Shift
:= Csiz
* (Len
- 1);
7542 -- Loop to set the values
7545 Aggregate_Val
:= Uint_0
;
7547 Expr
:= First
(Expressions
(N
));
7548 Aggregate_Val
:= Get_Component_Val
(Expr
) * Uint_2
** Shift
;
7550 for J
in 2 .. Len
loop
7551 Shift
:= Shift
+ Incr
;
7554 Aggregate_Val
+ Get_Component_Val
(Expr
) * Uint_2
** Shift
;
7558 -- Now we can rewrite with the proper value
7560 Lit
:= Make_Integer_Literal
(Loc
, Intval
=> Aggregate_Val
);
7561 Set_Print_In_Hex
(Lit
);
7563 -- Construct the expression using this literal. Note that it is
7564 -- important to qualify the literal with its proper modular type
7565 -- since universal integer does not have the required range and
7566 -- also this is a left justified modular type, which is important
7567 -- in the big-endian case.
7570 Unchecked_Convert_To
(Typ
,
7571 Make_Qualified_Expression
(Loc
,
7573 New_Occurrence_Of
(Packed_Array_Impl_Type
(Typ
), Loc
),
7574 Expression
=> Lit
)));
7576 Analyze_And_Resolve
(N
, Typ
);
7584 end Packed_Array_Aggregate_Handled
;
7586 ----------------------------
7587 -- Has_Mutable_Components --
7588 ----------------------------
7590 function Has_Mutable_Components
(Typ
: Entity_Id
) return Boolean is
7594 Comp
:= First_Component
(Typ
);
7595 while Present
(Comp
) loop
7596 if Is_Record_Type
(Etype
(Comp
))
7597 and then Has_Discriminants
(Etype
(Comp
))
7598 and then not Is_Constrained
(Etype
(Comp
))
7603 Next_Component
(Comp
);
7607 end Has_Mutable_Components
;
7609 ------------------------------
7610 -- Initialize_Discriminants --
7611 ------------------------------
7613 procedure Initialize_Discriminants
(N
: Node_Id
; Typ
: Entity_Id
) is
7614 Loc
: constant Source_Ptr
:= Sloc
(N
);
7615 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
7616 Par
: constant Entity_Id
:= Etype
(Bas
);
7617 Decl
: constant Node_Id
:= Parent
(Par
);
7621 if Is_Tagged_Type
(Bas
)
7622 and then Is_Derived_Type
(Bas
)
7623 and then Has_Discriminants
(Par
)
7624 and then Has_Discriminants
(Bas
)
7625 and then Number_Discriminants
(Bas
) /= Number_Discriminants
(Par
)
7626 and then Nkind
(Decl
) = N_Full_Type_Declaration
7627 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
7629 Present
(Variant_Part
(Component_List
(Type_Definition
(Decl
))))
7630 and then Nkind
(N
) /= N_Extension_Aggregate
7633 -- Call init proc to set discriminants.
7634 -- There should eventually be a special procedure for this ???
7636 Ref
:= New_Occurrence_Of
(Defining_Identifier
(N
), Loc
);
7637 Insert_Actions_After
(N
,
7638 Build_Initialization_Call
(Sloc
(N
), Ref
, Typ
));
7640 end Initialize_Discriminants
;
7647 (Obj_Type
: Entity_Id
;
7648 Typ
: Entity_Id
) return Boolean
7650 L1
, L2
, H1
, H2
: Node_Id
;
7653 -- No sliding if the type of the object is not established yet, if it is
7654 -- an unconstrained type whose actual subtype comes from the aggregate,
7655 -- or if the two types are identical.
7657 if not Is_Array_Type
(Obj_Type
) then
7660 elsif not Is_Constrained
(Obj_Type
) then
7663 elsif Typ
= Obj_Type
then
7667 -- Sliding can only occur along the first dimension
7669 Get_Index_Bounds
(First_Index
(Typ
), L1
, H1
);
7670 Get_Index_Bounds
(First_Index
(Obj_Type
), L2
, H2
);
7672 if not Is_OK_Static_Expression
(L1
) or else
7673 not Is_OK_Static_Expression
(L2
) or else
7674 not Is_OK_Static_Expression
(H1
) or else
7675 not Is_OK_Static_Expression
(H2
)
7679 return Expr_Value
(L1
) /= Expr_Value
(L2
)
7681 Expr_Value
(H1
) /= Expr_Value
(H2
);
7686 ---------------------------------
7687 -- Process_Transient_Component --
7688 ---------------------------------
7690 procedure Process_Transient_Component
7692 Comp_Typ
: Entity_Id
;
7693 Init_Expr
: Node_Id
;
7694 Fin_Call
: out Node_Id
;
7695 Hook_Clear
: out Node_Id
;
7696 Aggr
: Node_Id
:= Empty
;
7697 Stmts
: List_Id
:= No_List
)
7699 procedure Add_Item
(Item
: Node_Id
);
7700 -- Insert arbitrary node Item into the tree depending on the values of
7707 procedure Add_Item
(Item
: Node_Id
) is
7709 if Present
(Aggr
) then
7710 Insert_Action
(Aggr
, Item
);
7712 pragma Assert
(Present
(Stmts
));
7713 Append_To
(Stmts
, Item
);
7719 Hook_Assign
: Node_Id
;
7720 Hook_Decl
: Node_Id
;
7724 Res_Typ
: Entity_Id
;
7726 -- Start of processing for Process_Transient_Component
7729 -- Add the access type, which provides a reference to the function
7730 -- result. Generate:
7732 -- type Res_Typ is access all Comp_Typ;
7734 Res_Typ
:= Make_Temporary
(Loc
, 'A');
7735 Set_Ekind
(Res_Typ
, E_General_Access_Type
);
7736 Set_Directly_Designated_Type
(Res_Typ
, Comp_Typ
);
7739 (Make_Full_Type_Declaration
(Loc
,
7740 Defining_Identifier
=> Res_Typ
,
7742 Make_Access_To_Object_Definition
(Loc
,
7743 All_Present
=> True,
7744 Subtype_Indication
=> New_Occurrence_Of
(Comp_Typ
, Loc
))));
7746 -- Add the temporary which captures the result of the function call.
7749 -- Res : constant Res_Typ := Init_Expr'Reference;
7751 -- Note that this temporary is effectively a transient object because
7752 -- its lifetime is bounded by the current array or record component.
7754 Res_Id
:= Make_Temporary
(Loc
, 'R');
7755 Set_Ekind
(Res_Id
, E_Constant
);
7756 Set_Etype
(Res_Id
, Res_Typ
);
7758 -- Mark the transient object as successfully processed to avoid double
7761 Set_Is_Finalized_Transient
(Res_Id
);
7763 -- Signal the general finalization machinery that this transient object
7764 -- should not be considered for finalization actions because its cleanup
7765 -- will be performed by Process_Transient_Component_Completion.
7767 Set_Is_Ignored_Transient
(Res_Id
);
7770 Make_Object_Declaration
(Loc
,
7771 Defining_Identifier
=> Res_Id
,
7772 Constant_Present
=> True,
7773 Object_Definition
=> New_Occurrence_Of
(Res_Typ
, Loc
),
7775 Make_Reference
(Loc
, New_Copy_Tree
(Init_Expr
)));
7777 Add_Item
(Res_Decl
);
7779 -- Construct all pieces necessary to hook and finalize the transient
7782 Build_Transient_Object_Statements
7783 (Obj_Decl
=> Res_Decl
,
7784 Fin_Call
=> Fin_Call
,
7785 Hook_Assign
=> Hook_Assign
,
7786 Hook_Clear
=> Hook_Clear
,
7787 Hook_Decl
=> Hook_Decl
,
7788 Ptr_Decl
=> Ptr_Decl
);
7790 -- Add the access type which provides a reference to the transient
7791 -- result. Generate:
7793 -- type Ptr_Typ is access all Comp_Typ;
7795 Add_Item
(Ptr_Decl
);
7797 -- Add the temporary which acts as a hook to the transient result.
7800 -- Hook : Ptr_Typ := null;
7802 Add_Item
(Hook_Decl
);
7804 -- Attach the transient result to the hook. Generate:
7806 -- Hook := Ptr_Typ (Res);
7808 Add_Item
(Hook_Assign
);
7810 -- The original initialization expression now references the value of
7811 -- the temporary function result. Generate:
7816 Make_Explicit_Dereference
(Loc
,
7817 Prefix
=> New_Occurrence_Of
(Res_Id
, Loc
)));
7818 end Process_Transient_Component
;
7820 --------------------------------------------
7821 -- Process_Transient_Component_Completion --
7822 --------------------------------------------
7824 procedure Process_Transient_Component_Completion
7828 Hook_Clear
: Node_Id
;
7831 Exceptions_OK
: constant Boolean :=
7832 not Restriction_Active
(No_Exception_Propagation
);
7835 pragma Assert
(Present
(Fin_Call
));
7836 pragma Assert
(Present
(Hook_Clear
));
7838 -- Generate the following code if exception propagation is allowed:
7841 -- Abort : constant Boolean := Triggered_By_Abort;
7843 -- Abort : constant Boolean := False; -- no abort
7845 -- E : Exception_Occurrence;
7846 -- Raised : Boolean := False;
7853 -- [Deep_]Finalize (Res.all);
7857 -- if not Raised then
7859 -- Save_Occurrence (E,
7860 -- Get_Curent_Excep.all.all);
7866 -- if Raised and then not Abort then
7867 -- Raise_From_Controlled_Operation (E);
7871 if Exceptions_OK
then
7872 Abort_And_Exception
: declare
7873 Blk_Decls
: constant List_Id
:= New_List
;
7874 Blk_Stmts
: constant List_Id
:= New_List
;
7876 Fin_Data
: Finalization_Exception_Data
;
7879 -- Create the declarations of the two flags and the exception
7882 Build_Object_Declarations
(Fin_Data
, Blk_Decls
, Loc
);
7887 if Abort_Allowed
then
7888 Append_To
(Blk_Stmts
,
7889 Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
7892 -- Wrap the hook clear and the finalization call in order to trap
7893 -- a potential exception.
7895 Append_To
(Blk_Stmts
,
7896 Make_Block_Statement
(Loc
,
7897 Handled_Statement_Sequence
=>
7898 Make_Handled_Sequence_Of_Statements
(Loc
,
7899 Statements
=> New_List
(
7902 Exception_Handlers
=> New_List
(
7903 Build_Exception_Handler
(Fin_Data
)))));
7908 if Abort_Allowed
then
7909 Append_To
(Blk_Stmts
,
7910 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
7913 -- Reraise the potential exception with a proper "upgrade" to
7914 -- Program_Error if needed.
7916 Append_To
(Blk_Stmts
, Build_Raise_Statement
(Fin_Data
));
7918 -- Wrap everything in a block
7921 Make_Block_Statement
(Loc
,
7922 Declarations
=> Blk_Decls
,
7923 Handled_Statement_Sequence
=>
7924 Make_Handled_Sequence_Of_Statements
(Loc
,
7925 Statements
=> Blk_Stmts
)));
7926 end Abort_And_Exception
;
7928 -- Generate the following code if exception propagation is not allowed
7929 -- and aborts are allowed:
7934 -- [Deep_]Finalize (Res.all);
7936 -- Abort_Undefer_Direct;
7939 elsif Abort_Allowed
then
7940 Abort_Only
: declare
7941 Blk_Stmts
: constant List_Id
:= New_List
;
7944 Append_To
(Blk_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
7945 Append_To
(Blk_Stmts
, Hook_Clear
);
7946 Append_To
(Blk_Stmts
, Fin_Call
);
7949 Build_Abort_Undefer_Block
(Loc
,
7954 -- Otherwise generate:
7957 -- [Deep_]Finalize (Res.all);
7960 Append_To
(Stmts
, Hook_Clear
);
7961 Append_To
(Stmts
, Fin_Call
);
7963 end Process_Transient_Component_Completion
;
7965 ---------------------
7966 -- Sort_Case_Table --
7967 ---------------------
7969 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
7970 L
: constant Int
:= Case_Table
'First;
7971 U
: constant Int
:= Case_Table
'Last;
7979 T
:= Case_Table
(K
+ 1);
7983 and then Expr_Value
(Case_Table
(J
- 1).Choice_Lo
) >
7984 Expr_Value
(T
.Choice_Lo
)
7986 Case_Table
(J
) := Case_Table
(J
- 1);
7990 Case_Table
(J
) := T
;
7993 end Sort_Case_Table
;
7995 ----------------------------
7996 -- Static_Array_Aggregate --
7997 ----------------------------
7999 function Static_Array_Aggregate
(N
: Node_Id
) return Boolean is
8000 Bounds
: constant Node_Id
:= Aggregate_Bounds
(N
);
8002 Typ
: constant Entity_Id
:= Etype
(N
);
8003 Comp_Type
: constant Entity_Id
:= Component_Type
(Typ
);
8010 if Is_Tagged_Type
(Typ
)
8011 or else Is_Controlled
(Typ
)
8012 or else Is_Packed
(Typ
)
8018 and then Nkind
(Bounds
) = N_Range
8019 and then Nkind
(Low_Bound
(Bounds
)) = N_Integer_Literal
8020 and then Nkind
(High_Bound
(Bounds
)) = N_Integer_Literal
8022 Lo
:= Low_Bound
(Bounds
);
8023 Hi
:= High_Bound
(Bounds
);
8025 if No
(Component_Associations
(N
)) then
8027 -- Verify that all components are static integers
8029 Expr
:= First
(Expressions
(N
));
8030 while Present
(Expr
) loop
8031 if Nkind
(Expr
) /= N_Integer_Literal
then
8041 -- We allow only a single named association, either a static
8042 -- range or an others_clause, with a static expression.
8044 Expr
:= First
(Component_Associations
(N
));
8046 if Present
(Expressions
(N
)) then
8049 elsif Present
(Next
(Expr
)) then
8052 elsif Present
(Next
(First
(Choices
(Expr
)))) then
8056 -- The aggregate is static if all components are literals,
8057 -- or else all its components are static aggregates for the
8058 -- component type. We also limit the size of a static aggregate
8059 -- to prevent runaway static expressions.
8061 if Is_Array_Type
(Comp_Type
)
8062 or else Is_Record_Type
(Comp_Type
)
8064 if Nkind
(Expression
(Expr
)) /= N_Aggregate
8066 not Compile_Time_Known_Aggregate
(Expression
(Expr
))
8071 elsif Nkind
(Expression
(Expr
)) /= N_Integer_Literal
then
8075 if not Aggr_Size_OK
(N
, Typ
) then
8079 -- Create a positional aggregate with the right number of
8080 -- copies of the expression.
8082 Agg
:= Make_Aggregate
(Sloc
(N
), New_List
, No_List
);
8084 for I
in UI_To_Int
(Intval
(Lo
)) .. UI_To_Int
(Intval
(Hi
))
8086 Append_To
(Expressions
(Agg
), New_Copy
(Expression
(Expr
)));
8088 -- The copied expression must be analyzed and resolved.
8089 -- Besides setting the type, this ensures that static
8090 -- expressions are appropriately marked as such.
8093 (Last
(Expressions
(Agg
)), Component_Type
(Typ
));
8096 Set_Aggregate_Bounds
(Agg
, Bounds
);
8097 Set_Etype
(Agg
, Typ
);
8100 Set_Compile_Time_Known_Aggregate
(N
);
8109 end Static_Array_Aggregate
;
8111 ----------------------------------
8112 -- Two_Dim_Packed_Array_Handled --
8113 ----------------------------------
8115 function Two_Dim_Packed_Array_Handled
(N
: Node_Id
) return Boolean is
8116 Loc
: constant Source_Ptr
:= Sloc
(N
);
8117 Typ
: constant Entity_Id
:= Etype
(N
);
8118 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
8119 Comp_Size
: constant Int
:= UI_To_Int
(Component_Size
(Typ
));
8120 Packed_Array
: constant Entity_Id
:=
8121 Packed_Array_Impl_Type
(Base_Type
(Typ
));
8124 -- Expression in original aggregate
8127 -- One-dimensional subaggregate
8131 -- For now, only deal with cases where an integral number of elements
8132 -- fit in a single byte. This includes the most common boolean case.
8134 if not (Comp_Size
= 1 or else
8135 Comp_Size
= 2 or else
8141 Convert_To_Positional
8142 (N
, Max_Others_Replicate
=> 64, Handle_Bit_Packed
=> True);
8144 -- Verify that all components are static
8146 if Nkind
(N
) = N_Aggregate
8147 and then Compile_Time_Known_Aggregate
(N
)
8151 -- The aggregate may have been reanalyzed and converted already
8153 elsif Nkind
(N
) /= N_Aggregate
then
8156 -- If component associations remain, the aggregate is not static
8158 elsif Present
(Component_Associations
(N
)) then
8162 One_Dim
:= First
(Expressions
(N
));
8163 while Present
(One_Dim
) loop
8164 if Present
(Component_Associations
(One_Dim
)) then
8168 One_Comp
:= First
(Expressions
(One_Dim
));
8169 while Present
(One_Comp
) loop
8170 if not Is_OK_Static_Expression
(One_Comp
) then
8181 -- Two-dimensional aggregate is now fully positional so pack one
8182 -- dimension to create a static one-dimensional array, and rewrite
8183 -- as an unchecked conversion to the original type.
8186 Byte_Size
: constant Int
:= UI_To_Int
(Component_Size
(Packed_Array
));
8187 -- The packed array type is a byte array
8190 -- Number of components accumulated in current byte
8193 -- Assembled list of packed values for equivalent aggregate
8196 -- Integer value of component
8199 -- Step size for packing
8202 -- Endian-dependent start position for packing
8205 -- Current insertion position
8208 -- Component of packed array being assembled
8215 -- Account for endianness. See corresponding comment in
8216 -- Packed_Array_Aggregate_Handled concerning the following.
8220 xor Reverse_Storage_Order
(Base_Type
(Typ
))
8222 Init_Shift
:= Byte_Size
- Comp_Size
;
8229 -- Iterate over each subaggregate
8231 Shift
:= Init_Shift
;
8232 One_Dim
:= First
(Expressions
(N
));
8233 while Present
(One_Dim
) loop
8234 One_Comp
:= First
(Expressions
(One_Dim
));
8235 while Present
(One_Comp
) loop
8236 if Packed_Num
= Byte_Size
/ Comp_Size
then
8238 -- Byte is complete, add to list of expressions
8240 Append
(Make_Integer_Literal
(Sloc
(One_Dim
), Val
), Comps
);
8242 Shift
:= Init_Shift
;
8246 Comp_Val
:= Expr_Rep_Value
(One_Comp
);
8248 -- Adjust for bias, and strip proper number of bits
8250 if Has_Biased_Representation
(Ctyp
) then
8251 Comp_Val
:= Comp_Val
- Expr_Value
(Type_Low_Bound
(Ctyp
));
8254 Comp_Val
:= Comp_Val
mod Uint_2
** Comp_Size
;
8255 Val
:= UI_To_Int
(Val
+ Comp_Val
* Uint_2
** Shift
);
8256 Shift
:= Shift
+ Incr
;
8257 One_Comp
:= Next
(One_Comp
);
8258 Packed_Num
:= Packed_Num
+ 1;
8262 One_Dim
:= Next
(One_Dim
);
8265 if Packed_Num
> 0 then
8267 -- Add final incomplete byte if present
8269 Append
(Make_Integer_Literal
(Sloc
(One_Dim
), Val
), Comps
);
8273 Unchecked_Convert_To
(Typ
,
8274 Make_Qualified_Expression
(Loc
,
8275 Subtype_Mark
=> New_Occurrence_Of
(Packed_Array
, Loc
),
8276 Expression
=> Make_Aggregate
(Loc
, Expressions
=> Comps
))));
8277 Analyze_And_Resolve
(N
);
8280 end Two_Dim_Packed_Array_Handled
;