always define STACK_GROWS_DOWNWARD
[official-gcc.git] / gcc / expr.c
blob3d691de6baac0465ce1eb644ff14aa45fb8cf855
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "hash-set.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "flags.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "except.h"
44 #include "function.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "hashtab.h"
48 #include "statistics.h"
49 #include "real.h"
50 #include "fixed-value.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "stmt.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
58 #include "expr.h"
59 #include "insn-codes.h"
60 #include "optabs.h"
61 #include "libfuncs.h"
62 #include "recog.h"
63 #include "reload.h"
64 #include "typeclass.h"
65 #include "toplev.h"
66 #include "langhooks.h"
67 #include "intl.h"
68 #include "tm_p.h"
69 #include "tree-iterator.h"
70 #include "predict.h"
71 #include "dominance.h"
72 #include "cfg.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
77 #include "is-a.h"
78 #include "gimple.h"
79 #include "gimple-ssa.h"
80 #include "hash-map.h"
81 #include "plugin-api.h"
82 #include "ipa-ref.h"
83 #include "cgraph.h"
84 #include "tree-ssanames.h"
85 #include "target.h"
86 #include "common/common-target.h"
87 #include "timevar.h"
88 #include "df.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
93 #include "params.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
96 #include "builtins.h"
97 #include "tree-chkp.h"
98 #include "rtl-chkp.h"
99 #include "ccmp.h"
101 #ifndef STACK_PUSH_CODE
102 #if STACK_GROWS_DOWNWARD
103 #define STACK_PUSH_CODE PRE_DEC
104 #else
105 #define STACK_PUSH_CODE PRE_INC
106 #endif
107 #endif
110 /* If this is nonzero, we do not bother generating VOLATILE
111 around volatile memory references, and we are willing to
112 output indirect addresses. If cse is to follow, we reject
113 indirect addresses so a useful potential cse is generated;
114 if it is used only once, instruction combination will produce
115 the same indirect address eventually. */
116 int cse_not_expected;
118 /* This structure is used by move_by_pieces to describe the move to
119 be performed. */
120 struct move_by_pieces_d
122 rtx to;
123 rtx to_addr;
124 int autinc_to;
125 int explicit_inc_to;
126 rtx from;
127 rtx from_addr;
128 int autinc_from;
129 int explicit_inc_from;
130 unsigned HOST_WIDE_INT len;
131 HOST_WIDE_INT offset;
132 int reverse;
135 /* This structure is used by store_by_pieces to describe the clear to
136 be performed. */
138 struct store_by_pieces_d
140 rtx to;
141 rtx to_addr;
142 int autinc_to;
143 int explicit_inc_to;
144 unsigned HOST_WIDE_INT len;
145 HOST_WIDE_INT offset;
146 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode);
147 void *constfundata;
148 int reverse;
151 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
152 struct move_by_pieces_d *);
153 static bool block_move_libcall_safe_for_call_parm (void);
154 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
155 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
156 unsigned HOST_WIDE_INT);
157 static tree emit_block_move_libcall_fn (int);
158 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
159 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode);
160 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
161 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
162 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
163 struct store_by_pieces_d *);
164 static tree clear_storage_libcall_fn (int);
165 static rtx_insn *compress_float_constant (rtx, rtx);
166 static rtx get_subtarget (rtx);
167 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
168 HOST_WIDE_INT, machine_mode,
169 tree, int, alias_set_type);
170 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
171 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
172 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
173 machine_mode, tree, alias_set_type, bool);
175 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
177 static int is_aligning_offset (const_tree, const_tree);
178 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
179 static rtx do_store_flag (sepops, rtx, machine_mode);
180 #ifdef PUSH_ROUNDING
181 static void emit_single_push_insn (machine_mode, rtx, tree);
182 #endif
183 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int);
184 static rtx const_vector_from_tree (tree);
185 static tree tree_expr_size (const_tree);
186 static HOST_WIDE_INT int_expr_size (tree);
189 /* This is run to set up which modes can be used
190 directly in memory and to initialize the block move optab. It is run
191 at the beginning of compilation and when the target is reinitialized. */
193 void
194 init_expr_target (void)
196 rtx insn, pat;
197 machine_mode mode;
198 int num_clobbers;
199 rtx mem, mem1;
200 rtx reg;
202 /* Try indexing by frame ptr and try by stack ptr.
203 It is known that on the Convex the stack ptr isn't a valid index.
204 With luck, one or the other is valid on any machine. */
205 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
206 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
208 /* A scratch register we can modify in-place below to avoid
209 useless RTL allocations. */
210 reg = gen_rtx_REG (word_mode, FIRST_PSEUDO_REGISTER);
212 insn = rtx_alloc (INSN);
213 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
214 PATTERN (insn) = pat;
216 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
217 mode = (machine_mode) ((int) mode + 1))
219 int regno;
221 direct_load[(int) mode] = direct_store[(int) mode] = 0;
222 PUT_MODE (mem, mode);
223 PUT_MODE (mem1, mode);
225 /* See if there is some register that can be used in this mode and
226 directly loaded or stored from memory. */
228 if (mode != VOIDmode && mode != BLKmode)
229 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
230 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
231 regno++)
233 if (! HARD_REGNO_MODE_OK (regno, mode))
234 continue;
236 set_mode_and_regno (reg, mode, regno);
238 SET_SRC (pat) = mem;
239 SET_DEST (pat) = reg;
240 if (recog (pat, insn, &num_clobbers) >= 0)
241 direct_load[(int) mode] = 1;
243 SET_SRC (pat) = mem1;
244 SET_DEST (pat) = reg;
245 if (recog (pat, insn, &num_clobbers) >= 0)
246 direct_load[(int) mode] = 1;
248 SET_SRC (pat) = reg;
249 SET_DEST (pat) = mem;
250 if (recog (pat, insn, &num_clobbers) >= 0)
251 direct_store[(int) mode] = 1;
253 SET_SRC (pat) = reg;
254 SET_DEST (pat) = mem1;
255 if (recog (pat, insn, &num_clobbers) >= 0)
256 direct_store[(int) mode] = 1;
260 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER));
262 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
263 mode = GET_MODE_WIDER_MODE (mode))
265 machine_mode srcmode;
266 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
267 srcmode = GET_MODE_WIDER_MODE (srcmode))
269 enum insn_code ic;
271 ic = can_extend_p (mode, srcmode, 0);
272 if (ic == CODE_FOR_nothing)
273 continue;
275 PUT_MODE (mem, srcmode);
277 if (insn_operand_matches (ic, 1, mem))
278 float_extend_from_mem[mode][srcmode] = true;
283 /* This is run at the start of compiling a function. */
285 void
286 init_expr (void)
288 memset (&crtl->expr, 0, sizeof (crtl->expr));
291 /* Copy data from FROM to TO, where the machine modes are not the same.
292 Both modes may be integer, or both may be floating, or both may be
293 fixed-point.
294 UNSIGNEDP should be nonzero if FROM is an unsigned type.
295 This causes zero-extension instead of sign-extension. */
297 void
298 convert_move (rtx to, rtx from, int unsignedp)
300 machine_mode to_mode = GET_MODE (to);
301 machine_mode from_mode = GET_MODE (from);
302 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
303 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
304 enum insn_code code;
305 rtx libcall;
307 /* rtx code for making an equivalent value. */
308 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
309 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
312 gcc_assert (to_real == from_real);
313 gcc_assert (to_mode != BLKmode);
314 gcc_assert (from_mode != BLKmode);
316 /* If the source and destination are already the same, then there's
317 nothing to do. */
318 if (to == from)
319 return;
321 /* If FROM is a SUBREG that indicates that we have already done at least
322 the required extension, strip it. We don't handle such SUBREGs as
323 TO here. */
325 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
326 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
327 >= GET_MODE_PRECISION (to_mode))
328 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
329 from = gen_lowpart (to_mode, from), from_mode = to_mode;
331 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
333 if (to_mode == from_mode
334 || (from_mode == VOIDmode && CONSTANT_P (from)))
336 emit_move_insn (to, from);
337 return;
340 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
342 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
344 if (VECTOR_MODE_P (to_mode))
345 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
346 else
347 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
349 emit_move_insn (to, from);
350 return;
353 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
355 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
356 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
357 return;
360 if (to_real)
362 rtx value;
363 rtx_insn *insns;
364 convert_optab tab;
366 gcc_assert ((GET_MODE_PRECISION (from_mode)
367 != GET_MODE_PRECISION (to_mode))
368 || (DECIMAL_FLOAT_MODE_P (from_mode)
369 != DECIMAL_FLOAT_MODE_P (to_mode)));
371 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
372 /* Conversion between decimal float and binary float, same size. */
373 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
374 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
375 tab = sext_optab;
376 else
377 tab = trunc_optab;
379 /* Try converting directly if the insn is supported. */
381 code = convert_optab_handler (tab, to_mode, from_mode);
382 if (code != CODE_FOR_nothing)
384 emit_unop_insn (code, to, from,
385 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
386 return;
389 /* Otherwise use a libcall. */
390 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
392 /* Is this conversion implemented yet? */
393 gcc_assert (libcall);
395 start_sequence ();
396 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
397 1, from, from_mode);
398 insns = get_insns ();
399 end_sequence ();
400 emit_libcall_block (insns, to, value,
401 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
402 from)
403 : gen_rtx_FLOAT_EXTEND (to_mode, from));
404 return;
407 /* Handle pointer conversion. */ /* SPEE 900220. */
408 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
410 convert_optab ctab;
412 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
413 ctab = trunc_optab;
414 else if (unsignedp)
415 ctab = zext_optab;
416 else
417 ctab = sext_optab;
419 if (convert_optab_handler (ctab, to_mode, from_mode)
420 != CODE_FOR_nothing)
422 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
423 to, from, UNKNOWN);
424 return;
428 /* Targets are expected to provide conversion insns between PxImode and
429 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
430 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
432 machine_mode full_mode
433 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
435 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
436 != CODE_FOR_nothing);
438 if (full_mode != from_mode)
439 from = convert_to_mode (full_mode, from, unsignedp);
440 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
441 to, from, UNKNOWN);
442 return;
444 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
446 rtx new_from;
447 machine_mode full_mode
448 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
449 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
450 enum insn_code icode;
452 icode = convert_optab_handler (ctab, full_mode, from_mode);
453 gcc_assert (icode != CODE_FOR_nothing);
455 if (to_mode == full_mode)
457 emit_unop_insn (icode, to, from, UNKNOWN);
458 return;
461 new_from = gen_reg_rtx (full_mode);
462 emit_unop_insn (icode, new_from, from, UNKNOWN);
464 /* else proceed to integer conversions below. */
465 from_mode = full_mode;
466 from = new_from;
469 /* Make sure both are fixed-point modes or both are not. */
470 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
471 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
472 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
474 /* If we widen from_mode to to_mode and they are in the same class,
475 we won't saturate the result.
476 Otherwise, always saturate the result to play safe. */
477 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
478 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
479 expand_fixed_convert (to, from, 0, 0);
480 else
481 expand_fixed_convert (to, from, 0, 1);
482 return;
485 /* Now both modes are integers. */
487 /* Handle expanding beyond a word. */
488 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
489 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
491 rtx_insn *insns;
492 rtx lowpart;
493 rtx fill_value;
494 rtx lowfrom;
495 int i;
496 machine_mode lowpart_mode;
497 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
499 /* Try converting directly if the insn is supported. */
500 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
501 != CODE_FOR_nothing)
503 /* If FROM is a SUBREG, put it into a register. Do this
504 so that we always generate the same set of insns for
505 better cse'ing; if an intermediate assignment occurred,
506 we won't be doing the operation directly on the SUBREG. */
507 if (optimize > 0 && GET_CODE (from) == SUBREG)
508 from = force_reg (from_mode, from);
509 emit_unop_insn (code, to, from, equiv_code);
510 return;
512 /* Next, try converting via full word. */
513 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
514 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
515 != CODE_FOR_nothing))
517 rtx word_to = gen_reg_rtx (word_mode);
518 if (REG_P (to))
520 if (reg_overlap_mentioned_p (to, from))
521 from = force_reg (from_mode, from);
522 emit_clobber (to);
524 convert_move (word_to, from, unsignedp);
525 emit_unop_insn (code, to, word_to, equiv_code);
526 return;
529 /* No special multiword conversion insn; do it by hand. */
530 start_sequence ();
532 /* Since we will turn this into a no conflict block, we must ensure the
533 the source does not overlap the target so force it into an isolated
534 register when maybe so. Likewise for any MEM input, since the
535 conversion sequence might require several references to it and we
536 must ensure we're getting the same value every time. */
538 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
539 from = force_reg (from_mode, from);
541 /* Get a copy of FROM widened to a word, if necessary. */
542 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
543 lowpart_mode = word_mode;
544 else
545 lowpart_mode = from_mode;
547 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
549 lowpart = gen_lowpart (lowpart_mode, to);
550 emit_move_insn (lowpart, lowfrom);
552 /* Compute the value to put in each remaining word. */
553 if (unsignedp)
554 fill_value = const0_rtx;
555 else
556 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
557 LT, lowfrom, const0_rtx,
558 lowpart_mode, 0, -1);
560 /* Fill the remaining words. */
561 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
563 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
564 rtx subword = operand_subword (to, index, 1, to_mode);
566 gcc_assert (subword);
568 if (fill_value != subword)
569 emit_move_insn (subword, fill_value);
572 insns = get_insns ();
573 end_sequence ();
575 emit_insn (insns);
576 return;
579 /* Truncating multi-word to a word or less. */
580 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
581 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
583 if (!((MEM_P (from)
584 && ! MEM_VOLATILE_P (from)
585 && direct_load[(int) to_mode]
586 && ! mode_dependent_address_p (XEXP (from, 0),
587 MEM_ADDR_SPACE (from)))
588 || REG_P (from)
589 || GET_CODE (from) == SUBREG))
590 from = force_reg (from_mode, from);
591 convert_move (to, gen_lowpart (word_mode, from), 0);
592 return;
595 /* Now follow all the conversions between integers
596 no more than a word long. */
598 /* For truncation, usually we can just refer to FROM in a narrower mode. */
599 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
600 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
602 if (!((MEM_P (from)
603 && ! MEM_VOLATILE_P (from)
604 && direct_load[(int) to_mode]
605 && ! mode_dependent_address_p (XEXP (from, 0),
606 MEM_ADDR_SPACE (from)))
607 || REG_P (from)
608 || GET_CODE (from) == SUBREG))
609 from = force_reg (from_mode, from);
610 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
611 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
612 from = copy_to_reg (from);
613 emit_move_insn (to, gen_lowpart (to_mode, from));
614 return;
617 /* Handle extension. */
618 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
620 /* Convert directly if that works. */
621 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
622 != CODE_FOR_nothing)
624 emit_unop_insn (code, to, from, equiv_code);
625 return;
627 else
629 machine_mode intermediate;
630 rtx tmp;
631 int shift_amount;
633 /* Search for a mode to convert via. */
634 for (intermediate = from_mode; intermediate != VOIDmode;
635 intermediate = GET_MODE_WIDER_MODE (intermediate))
636 if (((can_extend_p (to_mode, intermediate, unsignedp)
637 != CODE_FOR_nothing)
638 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
639 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
640 && (can_extend_p (intermediate, from_mode, unsignedp)
641 != CODE_FOR_nothing))
643 convert_move (to, convert_to_mode (intermediate, from,
644 unsignedp), unsignedp);
645 return;
648 /* No suitable intermediate mode.
649 Generate what we need with shifts. */
650 shift_amount = (GET_MODE_PRECISION (to_mode)
651 - GET_MODE_PRECISION (from_mode));
652 from = gen_lowpart (to_mode, force_reg (from_mode, from));
653 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
654 to, unsignedp);
655 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
656 to, unsignedp);
657 if (tmp != to)
658 emit_move_insn (to, tmp);
659 return;
663 /* Support special truncate insns for certain modes. */
664 if (convert_optab_handler (trunc_optab, to_mode,
665 from_mode) != CODE_FOR_nothing)
667 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
668 to, from, UNKNOWN);
669 return;
672 /* Handle truncation of volatile memrefs, and so on;
673 the things that couldn't be truncated directly,
674 and for which there was no special instruction.
676 ??? Code above formerly short-circuited this, for most integer
677 mode pairs, with a force_reg in from_mode followed by a recursive
678 call to this routine. Appears always to have been wrong. */
679 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
681 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
682 emit_move_insn (to, temp);
683 return;
686 /* Mode combination is not recognized. */
687 gcc_unreachable ();
690 /* Return an rtx for a value that would result
691 from converting X to mode MODE.
692 Both X and MODE may be floating, or both integer.
693 UNSIGNEDP is nonzero if X is an unsigned value.
694 This can be done by referring to a part of X in place
695 or by copying to a new temporary with conversion. */
698 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
700 return convert_modes (mode, VOIDmode, x, unsignedp);
703 /* Return an rtx for a value that would result
704 from converting X from mode OLDMODE to mode MODE.
705 Both modes may be floating, or both integer.
706 UNSIGNEDP is nonzero if X is an unsigned value.
708 This can be done by referring to a part of X in place
709 or by copying to a new temporary with conversion.
711 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
714 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
716 rtx temp;
718 /* If FROM is a SUBREG that indicates that we have already done at least
719 the required extension, strip it. */
721 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
722 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
723 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
724 x = gen_lowpart (mode, SUBREG_REG (x));
726 if (GET_MODE (x) != VOIDmode)
727 oldmode = GET_MODE (x);
729 if (mode == oldmode)
730 return x;
732 if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
734 /* If the caller did not tell us the old mode, then there is not
735 much to do with respect to canonicalization. We have to
736 assume that all the bits are significant. */
737 if (GET_MODE_CLASS (oldmode) != MODE_INT)
738 oldmode = MAX_MODE_INT;
739 wide_int w = wide_int::from (std::make_pair (x, oldmode),
740 GET_MODE_PRECISION (mode),
741 unsignedp ? UNSIGNED : SIGNED);
742 return immed_wide_int_const (w, mode);
745 /* We can do this with a gen_lowpart if both desired and current modes
746 are integer, and this is either a constant integer, a register, or a
747 non-volatile MEM. */
748 if (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
751 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
752 || (REG_P (x)
753 && (!HARD_REGISTER_P (x)
754 || HARD_REGNO_MODE_OK (REGNO (x), mode))
755 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))
757 return gen_lowpart (mode, x);
759 /* Converting from integer constant into mode is always equivalent to an
760 subreg operation. */
761 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
763 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
764 return simplify_gen_subreg (mode, x, oldmode, 0);
767 temp = gen_reg_rtx (mode);
768 convert_move (temp, x, unsignedp);
769 return temp;
772 /* Return the largest alignment we can use for doing a move (or store)
773 of MAX_PIECES. ALIGN is the largest alignment we could use. */
775 static unsigned int
776 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
778 machine_mode tmode;
780 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
781 if (align >= GET_MODE_ALIGNMENT (tmode))
782 align = GET_MODE_ALIGNMENT (tmode);
783 else
785 machine_mode tmode, xmode;
787 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
788 tmode != VOIDmode;
789 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
790 if (GET_MODE_SIZE (tmode) > max_pieces
791 || SLOW_UNALIGNED_ACCESS (tmode, align))
792 break;
794 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
797 return align;
800 /* Return the widest integer mode no wider than SIZE. If no such mode
801 can be found, return VOIDmode. */
803 static machine_mode
804 widest_int_mode_for_size (unsigned int size)
806 machine_mode tmode, mode = VOIDmode;
808 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
809 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
810 if (GET_MODE_SIZE (tmode) < size)
811 mode = tmode;
813 return mode;
816 /* Determine whether the LEN bytes can be moved by using several move
817 instructions. Return nonzero if a call to move_by_pieces should
818 succeed. */
821 can_move_by_pieces (unsigned HOST_WIDE_INT len,
822 unsigned int align)
824 return targetm.use_by_pieces_infrastructure_p (len, align, MOVE_BY_PIECES,
825 optimize_insn_for_speed_p ());
828 /* Generate several move instructions to copy LEN bytes from block FROM to
829 block TO. (These are MEM rtx's with BLKmode).
831 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
832 used to push FROM to the stack.
834 ALIGN is maximum stack alignment we can assume.
836 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
837 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
838 stpcpy. */
841 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
842 unsigned int align, int endp)
844 struct move_by_pieces_d data;
845 machine_mode to_addr_mode;
846 machine_mode from_addr_mode = get_address_mode (from);
847 rtx to_addr, from_addr = XEXP (from, 0);
848 unsigned int max_size = MOVE_MAX_PIECES + 1;
849 enum insn_code icode;
851 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
853 data.offset = 0;
854 data.from_addr = from_addr;
855 if (to)
857 to_addr_mode = get_address_mode (to);
858 to_addr = XEXP (to, 0);
859 data.to = to;
860 data.autinc_to
861 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
862 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
863 data.reverse
864 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
866 else
868 to_addr_mode = VOIDmode;
869 to_addr = NULL_RTX;
870 data.to = NULL_RTX;
871 data.autinc_to = 1;
872 #if STACK_GROWS_DOWNWARD
873 data.reverse = 1;
874 #else
875 data.reverse = 0;
876 #endif
878 data.to_addr = to_addr;
879 data.from = from;
880 data.autinc_from
881 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
882 || GET_CODE (from_addr) == POST_INC
883 || GET_CODE (from_addr) == POST_DEC);
885 data.explicit_inc_from = 0;
886 data.explicit_inc_to = 0;
887 if (data.reverse) data.offset = len;
888 data.len = len;
890 /* If copying requires more than two move insns,
891 copy addresses to registers (to make displacements shorter)
892 and use post-increment if available. */
893 if (!(data.autinc_from && data.autinc_to)
894 && move_by_pieces_ninsns (len, align, max_size) > 2)
896 /* Find the mode of the largest move...
897 MODE might not be used depending on the definitions of the
898 USE_* macros below. */
899 machine_mode mode ATTRIBUTE_UNUSED
900 = widest_int_mode_for_size (max_size);
902 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
904 data.from_addr = copy_to_mode_reg (from_addr_mode,
905 plus_constant (from_addr_mode,
906 from_addr, len));
907 data.autinc_from = 1;
908 data.explicit_inc_from = -1;
910 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
912 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
913 data.autinc_from = 1;
914 data.explicit_inc_from = 1;
916 if (!data.autinc_from && CONSTANT_P (from_addr))
917 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
918 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
920 data.to_addr = copy_to_mode_reg (to_addr_mode,
921 plus_constant (to_addr_mode,
922 to_addr, len));
923 data.autinc_to = 1;
924 data.explicit_inc_to = -1;
926 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
928 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
929 data.autinc_to = 1;
930 data.explicit_inc_to = 1;
932 if (!data.autinc_to && CONSTANT_P (to_addr))
933 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
936 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
938 /* First move what we can in the largest integer mode, then go to
939 successively smaller modes. */
941 while (max_size > 1 && data.len > 0)
943 machine_mode mode = widest_int_mode_for_size (max_size);
945 if (mode == VOIDmode)
946 break;
948 icode = optab_handler (mov_optab, mode);
949 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
950 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
952 max_size = GET_MODE_SIZE (mode);
955 /* The code above should have handled everything. */
956 gcc_assert (!data.len);
958 if (endp)
960 rtx to1;
962 gcc_assert (!data.reverse);
963 if (data.autinc_to)
965 if (endp == 2)
967 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
968 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
969 else
970 data.to_addr = copy_to_mode_reg (to_addr_mode,
971 plus_constant (to_addr_mode,
972 data.to_addr,
973 -1));
975 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
976 data.offset);
978 else
980 if (endp == 2)
981 --data.offset;
982 to1 = adjust_address (data.to, QImode, data.offset);
984 return to1;
986 else
987 return data.to;
990 /* Return number of insns required to move L bytes by pieces.
991 ALIGN (in bits) is maximum alignment we can assume. */
993 unsigned HOST_WIDE_INT
994 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
995 unsigned int max_size)
997 unsigned HOST_WIDE_INT n_insns = 0;
999 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1001 while (max_size > 1 && l > 0)
1003 machine_mode mode;
1004 enum insn_code icode;
1006 mode = widest_int_mode_for_size (max_size);
1008 if (mode == VOIDmode)
1009 break;
1011 icode = optab_handler (mov_optab, mode);
1012 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1013 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1015 max_size = GET_MODE_SIZE (mode);
1018 gcc_assert (!l);
1019 return n_insns;
1022 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1023 with move instructions for mode MODE. GENFUN is the gen_... function
1024 to make a move insn for that mode. DATA has all the other info. */
1026 static void
1027 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
1028 struct move_by_pieces_d *data)
1030 unsigned int size = GET_MODE_SIZE (mode);
1031 rtx to1 = NULL_RTX, from1;
1033 while (data->len >= size)
1035 if (data->reverse)
1036 data->offset -= size;
1038 if (data->to)
1040 if (data->autinc_to)
1041 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1042 data->offset);
1043 else
1044 to1 = adjust_address (data->to, mode, data->offset);
1047 if (data->autinc_from)
1048 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1049 data->offset);
1050 else
1051 from1 = adjust_address (data->from, mode, data->offset);
1053 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1054 emit_insn (gen_add2_insn (data->to_addr,
1055 gen_int_mode (-(HOST_WIDE_INT) size,
1056 GET_MODE (data->to_addr))));
1057 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1058 emit_insn (gen_add2_insn (data->from_addr,
1059 gen_int_mode (-(HOST_WIDE_INT) size,
1060 GET_MODE (data->from_addr))));
1062 if (data->to)
1063 emit_insn ((*genfun) (to1, from1));
1064 else
1066 #ifdef PUSH_ROUNDING
1067 emit_single_push_insn (mode, from1, NULL);
1068 #else
1069 gcc_unreachable ();
1070 #endif
1073 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1074 emit_insn (gen_add2_insn (data->to_addr,
1075 gen_int_mode (size,
1076 GET_MODE (data->to_addr))));
1077 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1078 emit_insn (gen_add2_insn (data->from_addr,
1079 gen_int_mode (size,
1080 GET_MODE (data->from_addr))));
1082 if (! data->reverse)
1083 data->offset += size;
1085 data->len -= size;
1089 /* Emit code to move a block Y to a block X. This may be done with
1090 string-move instructions, with multiple scalar move instructions,
1091 or with a library call.
1093 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1094 SIZE is an rtx that says how long they are.
1095 ALIGN is the maximum alignment we can assume they have.
1096 METHOD describes what kind of copy this is, and what mechanisms may be used.
1097 MIN_SIZE is the minimal size of block to move
1098 MAX_SIZE is the maximal size of block to move, if it can not be represented
1099 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1101 Return the address of the new block, if memcpy is called and returns it,
1102 0 otherwise. */
1105 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1106 unsigned int expected_align, HOST_WIDE_INT expected_size,
1107 unsigned HOST_WIDE_INT min_size,
1108 unsigned HOST_WIDE_INT max_size,
1109 unsigned HOST_WIDE_INT probable_max_size)
1111 bool may_use_call;
1112 rtx retval = 0;
1113 unsigned int align;
1115 gcc_assert (size);
1116 if (CONST_INT_P (size)
1117 && INTVAL (size) == 0)
1118 return 0;
1120 switch (method)
1122 case BLOCK_OP_NORMAL:
1123 case BLOCK_OP_TAILCALL:
1124 may_use_call = true;
1125 break;
1127 case BLOCK_OP_CALL_PARM:
1128 may_use_call = block_move_libcall_safe_for_call_parm ();
1130 /* Make inhibit_defer_pop nonzero around the library call
1131 to force it to pop the arguments right away. */
1132 NO_DEFER_POP;
1133 break;
1135 case BLOCK_OP_NO_LIBCALL:
1136 may_use_call = false;
1137 break;
1139 default:
1140 gcc_unreachable ();
1143 gcc_assert (MEM_P (x) && MEM_P (y));
1144 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1145 gcc_assert (align >= BITS_PER_UNIT);
1147 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1148 block copy is more efficient for other large modes, e.g. DCmode. */
1149 x = adjust_address (x, BLKmode, 0);
1150 y = adjust_address (y, BLKmode, 0);
1152 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1153 can be incorrect is coming from __builtin_memcpy. */
1154 if (CONST_INT_P (size))
1156 x = shallow_copy_rtx (x);
1157 y = shallow_copy_rtx (y);
1158 set_mem_size (x, INTVAL (size));
1159 set_mem_size (y, INTVAL (size));
1162 if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
1163 move_by_pieces (x, y, INTVAL (size), align, 0);
1164 else if (emit_block_move_via_movmem (x, y, size, align,
1165 expected_align, expected_size,
1166 min_size, max_size, probable_max_size))
1168 else if (may_use_call
1169 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1170 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1172 /* Since x and y are passed to a libcall, mark the corresponding
1173 tree EXPR as addressable. */
1174 tree y_expr = MEM_EXPR (y);
1175 tree x_expr = MEM_EXPR (x);
1176 if (y_expr)
1177 mark_addressable (y_expr);
1178 if (x_expr)
1179 mark_addressable (x_expr);
1180 retval = emit_block_move_via_libcall (x, y, size,
1181 method == BLOCK_OP_TAILCALL);
1184 else
1185 emit_block_move_via_loop (x, y, size, align);
1187 if (method == BLOCK_OP_CALL_PARM)
1188 OK_DEFER_POP;
1190 return retval;
1194 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1196 unsigned HOST_WIDE_INT max, min = 0;
1197 if (GET_CODE (size) == CONST_INT)
1198 min = max = UINTVAL (size);
1199 else
1200 max = GET_MODE_MASK (GET_MODE (size));
1201 return emit_block_move_hints (x, y, size, method, 0, -1,
1202 min, max, max);
1205 /* A subroutine of emit_block_move. Returns true if calling the
1206 block move libcall will not clobber any parameters which may have
1207 already been placed on the stack. */
1209 static bool
1210 block_move_libcall_safe_for_call_parm (void)
1212 #if defined (REG_PARM_STACK_SPACE)
1213 tree fn;
1214 #endif
1216 /* If arguments are pushed on the stack, then they're safe. */
1217 if (PUSH_ARGS)
1218 return true;
1220 /* If registers go on the stack anyway, any argument is sure to clobber
1221 an outgoing argument. */
1222 #if defined (REG_PARM_STACK_SPACE)
1223 fn = emit_block_move_libcall_fn (false);
1224 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1225 depend on its argument. */
1226 (void) fn;
1227 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1228 && REG_PARM_STACK_SPACE (fn) != 0)
1229 return false;
1230 #endif
1232 /* If any argument goes in memory, then it might clobber an outgoing
1233 argument. */
1235 CUMULATIVE_ARGS args_so_far_v;
1236 cumulative_args_t args_so_far;
1237 tree fn, arg;
1239 fn = emit_block_move_libcall_fn (false);
1240 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1241 args_so_far = pack_cumulative_args (&args_so_far_v);
1243 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1244 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1246 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1247 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1248 NULL_TREE, true);
1249 if (!tmp || !REG_P (tmp))
1250 return false;
1251 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1252 return false;
1253 targetm.calls.function_arg_advance (args_so_far, mode,
1254 NULL_TREE, true);
1257 return true;
1260 /* A subroutine of emit_block_move. Expand a movmem pattern;
1261 return true if successful. */
1263 static bool
1264 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1265 unsigned int expected_align, HOST_WIDE_INT expected_size,
1266 unsigned HOST_WIDE_INT min_size,
1267 unsigned HOST_WIDE_INT max_size,
1268 unsigned HOST_WIDE_INT probable_max_size)
1270 int save_volatile_ok = volatile_ok;
1271 machine_mode mode;
1273 if (expected_align < align)
1274 expected_align = align;
1275 if (expected_size != -1)
1277 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1278 expected_size = probable_max_size;
1279 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1280 expected_size = min_size;
1283 /* Since this is a move insn, we don't care about volatility. */
1284 volatile_ok = 1;
1286 /* Try the most limited insn first, because there's no point
1287 including more than one in the machine description unless
1288 the more limited one has some advantage. */
1290 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1291 mode = GET_MODE_WIDER_MODE (mode))
1293 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1295 if (code != CODE_FOR_nothing
1296 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1297 here because if SIZE is less than the mode mask, as it is
1298 returned by the macro, it will definitely be less than the
1299 actual mode mask. Since SIZE is within the Pmode address
1300 space, we limit MODE to Pmode. */
1301 && ((CONST_INT_P (size)
1302 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1303 <= (GET_MODE_MASK (mode) >> 1)))
1304 || max_size <= (GET_MODE_MASK (mode) >> 1)
1305 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1307 struct expand_operand ops[9];
1308 unsigned int nops;
1310 /* ??? When called via emit_block_move_for_call, it'd be
1311 nice if there were some way to inform the backend, so
1312 that it doesn't fail the expansion because it thinks
1313 emitting the libcall would be more efficient. */
1314 nops = insn_data[(int) code].n_generator_args;
1315 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1317 create_fixed_operand (&ops[0], x);
1318 create_fixed_operand (&ops[1], y);
1319 /* The check above guarantees that this size conversion is valid. */
1320 create_convert_operand_to (&ops[2], size, mode, true);
1321 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1322 if (nops >= 6)
1324 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1325 create_integer_operand (&ops[5], expected_size);
1327 if (nops >= 8)
1329 create_integer_operand (&ops[6], min_size);
1330 /* If we can not represent the maximal size,
1331 make parameter NULL. */
1332 if ((HOST_WIDE_INT) max_size != -1)
1333 create_integer_operand (&ops[7], max_size);
1334 else
1335 create_fixed_operand (&ops[7], NULL);
1337 if (nops == 9)
1339 /* If we can not represent the maximal size,
1340 make parameter NULL. */
1341 if ((HOST_WIDE_INT) probable_max_size != -1)
1342 create_integer_operand (&ops[8], probable_max_size);
1343 else
1344 create_fixed_operand (&ops[8], NULL);
1346 if (maybe_expand_insn (code, nops, ops))
1348 volatile_ok = save_volatile_ok;
1349 return true;
1354 volatile_ok = save_volatile_ok;
1355 return false;
1358 /* A subroutine of emit_block_move. Expand a call to memcpy.
1359 Return the return value from memcpy, 0 otherwise. */
1362 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1364 rtx dst_addr, src_addr;
1365 tree call_expr, fn, src_tree, dst_tree, size_tree;
1366 machine_mode size_mode;
1367 rtx retval;
1369 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1370 pseudos. We can then place those new pseudos into a VAR_DECL and
1371 use them later. */
1373 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1374 src_addr = copy_addr_to_reg (XEXP (src, 0));
1376 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1377 src_addr = convert_memory_address (ptr_mode, src_addr);
1379 dst_tree = make_tree (ptr_type_node, dst_addr);
1380 src_tree = make_tree (ptr_type_node, src_addr);
1382 size_mode = TYPE_MODE (sizetype);
1384 size = convert_to_mode (size_mode, size, 1);
1385 size = copy_to_mode_reg (size_mode, size);
1387 /* It is incorrect to use the libcall calling conventions to call
1388 memcpy in this context. This could be a user call to memcpy and
1389 the user may wish to examine the return value from memcpy. For
1390 targets where libcalls and normal calls have different conventions
1391 for returning pointers, we could end up generating incorrect code. */
1393 size_tree = make_tree (sizetype, size);
1395 fn = emit_block_move_libcall_fn (true);
1396 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1397 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1399 retval = expand_normal (call_expr);
1401 return retval;
1404 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1405 for the function we use for block copies. */
1407 static GTY(()) tree block_move_fn;
1409 void
1410 init_block_move_fn (const char *asmspec)
1412 if (!block_move_fn)
1414 tree args, fn, attrs, attr_args;
1416 fn = get_identifier ("memcpy");
1417 args = build_function_type_list (ptr_type_node, ptr_type_node,
1418 const_ptr_type_node, sizetype,
1419 NULL_TREE);
1421 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1422 DECL_EXTERNAL (fn) = 1;
1423 TREE_PUBLIC (fn) = 1;
1424 DECL_ARTIFICIAL (fn) = 1;
1425 TREE_NOTHROW (fn) = 1;
1426 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1427 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1429 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1430 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1432 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1434 block_move_fn = fn;
1437 if (asmspec)
1438 set_user_assembler_name (block_move_fn, asmspec);
1441 static tree
1442 emit_block_move_libcall_fn (int for_call)
1444 static bool emitted_extern;
1446 if (!block_move_fn)
1447 init_block_move_fn (NULL);
1449 if (for_call && !emitted_extern)
1451 emitted_extern = true;
1452 make_decl_rtl (block_move_fn);
1455 return block_move_fn;
1458 /* A subroutine of emit_block_move. Copy the data via an explicit
1459 loop. This is used only when libcalls are forbidden. */
1460 /* ??? It'd be nice to copy in hunks larger than QImode. */
1462 static void
1463 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1464 unsigned int align ATTRIBUTE_UNUSED)
1466 rtx_code_label *cmp_label, *top_label;
1467 rtx iter, x_addr, y_addr, tmp;
1468 machine_mode x_addr_mode = get_address_mode (x);
1469 machine_mode y_addr_mode = get_address_mode (y);
1470 machine_mode iter_mode;
1472 iter_mode = GET_MODE (size);
1473 if (iter_mode == VOIDmode)
1474 iter_mode = word_mode;
1476 top_label = gen_label_rtx ();
1477 cmp_label = gen_label_rtx ();
1478 iter = gen_reg_rtx (iter_mode);
1480 emit_move_insn (iter, const0_rtx);
1482 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1483 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1484 do_pending_stack_adjust ();
1486 emit_jump (cmp_label);
1487 emit_label (top_label);
1489 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1490 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1492 if (x_addr_mode != y_addr_mode)
1493 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1494 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1496 x = change_address (x, QImode, x_addr);
1497 y = change_address (y, QImode, y_addr);
1499 emit_move_insn (x, y);
1501 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1502 true, OPTAB_LIB_WIDEN);
1503 if (tmp != iter)
1504 emit_move_insn (iter, tmp);
1506 emit_label (cmp_label);
1508 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1509 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1512 /* Copy all or part of a value X into registers starting at REGNO.
1513 The number of registers to be filled is NREGS. */
1515 void
1516 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
1518 int i;
1519 #ifdef HAVE_load_multiple
1520 rtx pat;
1521 rtx_insn *last;
1522 #endif
1524 if (nregs == 0)
1525 return;
1527 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1528 x = validize_mem (force_const_mem (mode, x));
1530 /* See if the machine can do this with a load multiple insn. */
1531 #ifdef HAVE_load_multiple
1532 if (HAVE_load_multiple)
1534 last = get_last_insn ();
1535 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1536 GEN_INT (nregs));
1537 if (pat)
1539 emit_insn (pat);
1540 return;
1542 else
1543 delete_insns_since (last);
1545 #endif
1547 for (i = 0; i < nregs; i++)
1548 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1549 operand_subword_force (x, i, mode));
1552 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1553 The number of registers to be filled is NREGS. */
1555 void
1556 move_block_from_reg (int regno, rtx x, int nregs)
1558 int i;
1560 if (nregs == 0)
1561 return;
1563 /* See if the machine can do this with a store multiple insn. */
1564 #ifdef HAVE_store_multiple
1565 if (HAVE_store_multiple)
1567 rtx_insn *last = get_last_insn ();
1568 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1569 GEN_INT (nregs));
1570 if (pat)
1572 emit_insn (pat);
1573 return;
1575 else
1576 delete_insns_since (last);
1578 #endif
1580 for (i = 0; i < nregs; i++)
1582 rtx tem = operand_subword (x, i, 1, BLKmode);
1584 gcc_assert (tem);
1586 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1590 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1591 ORIG, where ORIG is a non-consecutive group of registers represented by
1592 a PARALLEL. The clone is identical to the original except in that the
1593 original set of registers is replaced by a new set of pseudo registers.
1594 The new set has the same modes as the original set. */
1597 gen_group_rtx (rtx orig)
1599 int i, length;
1600 rtx *tmps;
1602 gcc_assert (GET_CODE (orig) == PARALLEL);
1604 length = XVECLEN (orig, 0);
1605 tmps = XALLOCAVEC (rtx, length);
1607 /* Skip a NULL entry in first slot. */
1608 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1610 if (i)
1611 tmps[0] = 0;
1613 for (; i < length; i++)
1615 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1616 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1618 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1621 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1624 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1625 except that values are placed in TMPS[i], and must later be moved
1626 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1628 static void
1629 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1631 rtx src;
1632 int start, i;
1633 machine_mode m = GET_MODE (orig_src);
1635 gcc_assert (GET_CODE (dst) == PARALLEL);
1637 if (m != VOIDmode
1638 && !SCALAR_INT_MODE_P (m)
1639 && !MEM_P (orig_src)
1640 && GET_CODE (orig_src) != CONCAT)
1642 machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1643 if (imode == BLKmode)
1644 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1645 else
1646 src = gen_reg_rtx (imode);
1647 if (imode != BLKmode)
1648 src = gen_lowpart (GET_MODE (orig_src), src);
1649 emit_move_insn (src, orig_src);
1650 /* ...and back again. */
1651 if (imode != BLKmode)
1652 src = gen_lowpart (imode, src);
1653 emit_group_load_1 (tmps, dst, src, type, ssize);
1654 return;
1657 /* Check for a NULL entry, used to indicate that the parameter goes
1658 both on the stack and in registers. */
1659 if (XEXP (XVECEXP (dst, 0, 0), 0))
1660 start = 0;
1661 else
1662 start = 1;
1664 /* Process the pieces. */
1665 for (i = start; i < XVECLEN (dst, 0); i++)
1667 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1668 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1669 unsigned int bytelen = GET_MODE_SIZE (mode);
1670 int shift = 0;
1672 /* Handle trailing fragments that run over the size of the struct. */
1673 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1675 /* Arrange to shift the fragment to where it belongs.
1676 extract_bit_field loads to the lsb of the reg. */
1677 if (
1678 #ifdef BLOCK_REG_PADDING
1679 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1680 == (BYTES_BIG_ENDIAN ? upward : downward)
1681 #else
1682 BYTES_BIG_ENDIAN
1683 #endif
1685 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1686 bytelen = ssize - bytepos;
1687 gcc_assert (bytelen > 0);
1690 /* If we won't be loading directly from memory, protect the real source
1691 from strange tricks we might play; but make sure that the source can
1692 be loaded directly into the destination. */
1693 src = orig_src;
1694 if (!MEM_P (orig_src)
1695 && (!CONSTANT_P (orig_src)
1696 || (GET_MODE (orig_src) != mode
1697 && GET_MODE (orig_src) != VOIDmode)))
1699 if (GET_MODE (orig_src) == VOIDmode)
1700 src = gen_reg_rtx (mode);
1701 else
1702 src = gen_reg_rtx (GET_MODE (orig_src));
1704 emit_move_insn (src, orig_src);
1707 /* Optimize the access just a bit. */
1708 if (MEM_P (src)
1709 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1710 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1711 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1712 && bytelen == GET_MODE_SIZE (mode))
1714 tmps[i] = gen_reg_rtx (mode);
1715 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1717 else if (COMPLEX_MODE_P (mode)
1718 && GET_MODE (src) == mode
1719 && bytelen == GET_MODE_SIZE (mode))
1720 /* Let emit_move_complex do the bulk of the work. */
1721 tmps[i] = src;
1722 else if (GET_CODE (src) == CONCAT)
1724 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1725 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1727 if ((bytepos == 0 && bytelen == slen0)
1728 || (bytepos != 0 && bytepos + bytelen <= slen))
1730 /* The following assumes that the concatenated objects all
1731 have the same size. In this case, a simple calculation
1732 can be used to determine the object and the bit field
1733 to be extracted. */
1734 tmps[i] = XEXP (src, bytepos / slen0);
1735 if (! CONSTANT_P (tmps[i])
1736 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1737 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1738 (bytepos % slen0) * BITS_PER_UNIT,
1739 1, NULL_RTX, mode, mode);
1741 else
1743 rtx mem;
1745 gcc_assert (!bytepos);
1746 mem = assign_stack_temp (GET_MODE (src), slen);
1747 emit_move_insn (mem, src);
1748 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1749 0, 1, NULL_RTX, mode, mode);
1752 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1753 SIMD register, which is currently broken. While we get GCC
1754 to emit proper RTL for these cases, let's dump to memory. */
1755 else if (VECTOR_MODE_P (GET_MODE (dst))
1756 && REG_P (src))
1758 int slen = GET_MODE_SIZE (GET_MODE (src));
1759 rtx mem;
1761 mem = assign_stack_temp (GET_MODE (src), slen);
1762 emit_move_insn (mem, src);
1763 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1765 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1766 && XVECLEN (dst, 0) > 1)
1767 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1768 else if (CONSTANT_P (src))
1770 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1772 if (len == ssize)
1773 tmps[i] = src;
1774 else
1776 rtx first, second;
1778 /* TODO: const_wide_int can have sizes other than this... */
1779 gcc_assert (2 * len == ssize);
1780 split_double (src, &first, &second);
1781 if (i)
1782 tmps[i] = second;
1783 else
1784 tmps[i] = first;
1787 else if (REG_P (src) && GET_MODE (src) == mode)
1788 tmps[i] = src;
1789 else
1790 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1791 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1792 mode, mode);
1794 if (shift)
1795 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1796 shift, tmps[i], 0);
1800 /* Emit code to move a block SRC of type TYPE to a block DST,
1801 where DST is non-consecutive registers represented by a PARALLEL.
1802 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1803 if not known. */
1805 void
1806 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1808 rtx *tmps;
1809 int i;
1811 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1812 emit_group_load_1 (tmps, dst, src, type, ssize);
1814 /* Copy the extracted pieces into the proper (probable) hard regs. */
1815 for (i = 0; i < XVECLEN (dst, 0); i++)
1817 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1818 if (d == NULL)
1819 continue;
1820 emit_move_insn (d, tmps[i]);
1824 /* Similar, but load SRC into new pseudos in a format that looks like
1825 PARALLEL. This can later be fed to emit_group_move to get things
1826 in the right place. */
1829 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1831 rtvec vec;
1832 int i;
1834 vec = rtvec_alloc (XVECLEN (parallel, 0));
1835 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1837 /* Convert the vector to look just like the original PARALLEL, except
1838 with the computed values. */
1839 for (i = 0; i < XVECLEN (parallel, 0); i++)
1841 rtx e = XVECEXP (parallel, 0, i);
1842 rtx d = XEXP (e, 0);
1844 if (d)
1846 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1847 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1849 RTVEC_ELT (vec, i) = e;
1852 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1855 /* Emit code to move a block SRC to block DST, where SRC and DST are
1856 non-consecutive groups of registers, each represented by a PARALLEL. */
1858 void
1859 emit_group_move (rtx dst, rtx src)
1861 int i;
1863 gcc_assert (GET_CODE (src) == PARALLEL
1864 && GET_CODE (dst) == PARALLEL
1865 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1867 /* Skip first entry if NULL. */
1868 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1869 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1870 XEXP (XVECEXP (src, 0, i), 0));
1873 /* Move a group of registers represented by a PARALLEL into pseudos. */
1876 emit_group_move_into_temps (rtx src)
1878 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1879 int i;
1881 for (i = 0; i < XVECLEN (src, 0); i++)
1883 rtx e = XVECEXP (src, 0, i);
1884 rtx d = XEXP (e, 0);
1886 if (d)
1887 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1888 RTVEC_ELT (vec, i) = e;
1891 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1894 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1895 where SRC is non-consecutive registers represented by a PARALLEL.
1896 SSIZE represents the total size of block ORIG_DST, or -1 if not
1897 known. */
1899 void
1900 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1902 rtx *tmps, dst;
1903 int start, finish, i;
1904 machine_mode m = GET_MODE (orig_dst);
1906 gcc_assert (GET_CODE (src) == PARALLEL);
1908 if (!SCALAR_INT_MODE_P (m)
1909 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1911 machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1912 if (imode == BLKmode)
1913 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1914 else
1915 dst = gen_reg_rtx (imode);
1916 emit_group_store (dst, src, type, ssize);
1917 if (imode != BLKmode)
1918 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1919 emit_move_insn (orig_dst, dst);
1920 return;
1923 /* Check for a NULL entry, used to indicate that the parameter goes
1924 both on the stack and in registers. */
1925 if (XEXP (XVECEXP (src, 0, 0), 0))
1926 start = 0;
1927 else
1928 start = 1;
1929 finish = XVECLEN (src, 0);
1931 tmps = XALLOCAVEC (rtx, finish);
1933 /* Copy the (probable) hard regs into pseudos. */
1934 for (i = start; i < finish; i++)
1936 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1937 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1939 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1940 emit_move_insn (tmps[i], reg);
1942 else
1943 tmps[i] = reg;
1946 /* If we won't be storing directly into memory, protect the real destination
1947 from strange tricks we might play. */
1948 dst = orig_dst;
1949 if (GET_CODE (dst) == PARALLEL)
1951 rtx temp;
1953 /* We can get a PARALLEL dst if there is a conditional expression in
1954 a return statement. In that case, the dst and src are the same,
1955 so no action is necessary. */
1956 if (rtx_equal_p (dst, src))
1957 return;
1959 /* It is unclear if we can ever reach here, but we may as well handle
1960 it. Allocate a temporary, and split this into a store/load to/from
1961 the temporary. */
1962 temp = assign_stack_temp (GET_MODE (dst), ssize);
1963 emit_group_store (temp, src, type, ssize);
1964 emit_group_load (dst, temp, type, ssize);
1965 return;
1967 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1969 machine_mode outer = GET_MODE (dst);
1970 machine_mode inner;
1971 HOST_WIDE_INT bytepos;
1972 bool done = false;
1973 rtx temp;
1975 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1976 dst = gen_reg_rtx (outer);
1978 /* Make life a bit easier for combine. */
1979 /* If the first element of the vector is the low part
1980 of the destination mode, use a paradoxical subreg to
1981 initialize the destination. */
1982 if (start < finish)
1984 inner = GET_MODE (tmps[start]);
1985 bytepos = subreg_lowpart_offset (inner, outer);
1986 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1988 temp = simplify_gen_subreg (outer, tmps[start],
1989 inner, 0);
1990 if (temp)
1992 emit_move_insn (dst, temp);
1993 done = true;
1994 start++;
1999 /* If the first element wasn't the low part, try the last. */
2000 if (!done
2001 && start < finish - 1)
2003 inner = GET_MODE (tmps[finish - 1]);
2004 bytepos = subreg_lowpart_offset (inner, outer);
2005 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2007 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2008 inner, 0);
2009 if (temp)
2011 emit_move_insn (dst, temp);
2012 done = true;
2013 finish--;
2018 /* Otherwise, simply initialize the result to zero. */
2019 if (!done)
2020 emit_move_insn (dst, CONST0_RTX (outer));
2023 /* Process the pieces. */
2024 for (i = start; i < finish; i++)
2026 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2027 machine_mode mode = GET_MODE (tmps[i]);
2028 unsigned int bytelen = GET_MODE_SIZE (mode);
2029 unsigned int adj_bytelen;
2030 rtx dest = dst;
2032 /* Handle trailing fragments that run over the size of the struct. */
2033 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2034 adj_bytelen = ssize - bytepos;
2035 else
2036 adj_bytelen = bytelen;
2038 if (GET_CODE (dst) == CONCAT)
2040 if (bytepos + adj_bytelen
2041 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2042 dest = XEXP (dst, 0);
2043 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2045 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2046 dest = XEXP (dst, 1);
2048 else
2050 machine_mode dest_mode = GET_MODE (dest);
2051 machine_mode tmp_mode = GET_MODE (tmps[i]);
2053 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2055 if (GET_MODE_ALIGNMENT (dest_mode)
2056 >= GET_MODE_ALIGNMENT (tmp_mode))
2058 dest = assign_stack_temp (dest_mode,
2059 GET_MODE_SIZE (dest_mode));
2060 emit_move_insn (adjust_address (dest,
2061 tmp_mode,
2062 bytepos),
2063 tmps[i]);
2064 dst = dest;
2066 else
2068 dest = assign_stack_temp (tmp_mode,
2069 GET_MODE_SIZE (tmp_mode));
2070 emit_move_insn (dest, tmps[i]);
2071 dst = adjust_address (dest, dest_mode, bytepos);
2073 break;
2077 /* Handle trailing fragments that run over the size of the struct. */
2078 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2080 /* store_bit_field always takes its value from the lsb.
2081 Move the fragment to the lsb if it's not already there. */
2082 if (
2083 #ifdef BLOCK_REG_PADDING
2084 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2085 == (BYTES_BIG_ENDIAN ? upward : downward)
2086 #else
2087 BYTES_BIG_ENDIAN
2088 #endif
2091 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2092 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2093 shift, tmps[i], 0);
2096 /* Make sure not to write past the end of the struct. */
2097 store_bit_field (dest,
2098 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2099 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2100 VOIDmode, tmps[i]);
2103 /* Optimize the access just a bit. */
2104 else if (MEM_P (dest)
2105 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2106 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2107 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2108 && bytelen == GET_MODE_SIZE (mode))
2109 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2111 else
2112 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2113 0, 0, mode, tmps[i]);
2116 /* Copy from the pseudo into the (probable) hard reg. */
2117 if (orig_dst != dst)
2118 emit_move_insn (orig_dst, dst);
2121 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2122 of the value stored in X. */
2125 maybe_emit_group_store (rtx x, tree type)
2127 machine_mode mode = TYPE_MODE (type);
2128 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2129 if (GET_CODE (x) == PARALLEL)
2131 rtx result = gen_reg_rtx (mode);
2132 emit_group_store (result, x, type, int_size_in_bytes (type));
2133 return result;
2135 return x;
2138 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2140 This is used on targets that return BLKmode values in registers. */
2142 void
2143 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2145 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2146 rtx src = NULL, dst = NULL;
2147 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2148 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2149 machine_mode mode = GET_MODE (srcreg);
2150 machine_mode tmode = GET_MODE (target);
2151 machine_mode copy_mode;
2153 /* BLKmode registers created in the back-end shouldn't have survived. */
2154 gcc_assert (mode != BLKmode);
2156 /* If the structure doesn't take up a whole number of words, see whether
2157 SRCREG is padded on the left or on the right. If it's on the left,
2158 set PADDING_CORRECTION to the number of bits to skip.
2160 In most ABIs, the structure will be returned at the least end of
2161 the register, which translates to right padding on little-endian
2162 targets and left padding on big-endian targets. The opposite
2163 holds if the structure is returned at the most significant
2164 end of the register. */
2165 if (bytes % UNITS_PER_WORD != 0
2166 && (targetm.calls.return_in_msb (type)
2167 ? !BYTES_BIG_ENDIAN
2168 : BYTES_BIG_ENDIAN))
2169 padding_correction
2170 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2172 /* We can use a single move if we have an exact mode for the size. */
2173 else if (MEM_P (target)
2174 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2175 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2176 && bytes == GET_MODE_SIZE (mode))
2178 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2179 return;
2182 /* And if we additionally have the same mode for a register. */
2183 else if (REG_P (target)
2184 && GET_MODE (target) == mode
2185 && bytes == GET_MODE_SIZE (mode))
2187 emit_move_insn (target, srcreg);
2188 return;
2191 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2192 into a new pseudo which is a full word. */
2193 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2195 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2196 mode = word_mode;
2199 /* Copy the structure BITSIZE bits at a time. If the target lives in
2200 memory, take care of not reading/writing past its end by selecting
2201 a copy mode suited to BITSIZE. This should always be possible given
2202 how it is computed.
2204 If the target lives in register, make sure not to select a copy mode
2205 larger than the mode of the register.
2207 We could probably emit more efficient code for machines which do not use
2208 strict alignment, but it doesn't seem worth the effort at the current
2209 time. */
2211 copy_mode = word_mode;
2212 if (MEM_P (target))
2214 machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2215 if (mem_mode != BLKmode)
2216 copy_mode = mem_mode;
2218 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2219 copy_mode = tmode;
2221 for (bitpos = 0, xbitpos = padding_correction;
2222 bitpos < bytes * BITS_PER_UNIT;
2223 bitpos += bitsize, xbitpos += bitsize)
2225 /* We need a new source operand each time xbitpos is on a
2226 word boundary and when xbitpos == padding_correction
2227 (the first time through). */
2228 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2229 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2231 /* We need a new destination operand each time bitpos is on
2232 a word boundary. */
2233 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2234 dst = target;
2235 else if (bitpos % BITS_PER_WORD == 0)
2236 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2238 /* Use xbitpos for the source extraction (right justified) and
2239 bitpos for the destination store (left justified). */
2240 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2241 extract_bit_field (src, bitsize,
2242 xbitpos % BITS_PER_WORD, 1,
2243 NULL_RTX, copy_mode, copy_mode));
2247 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2248 register if it contains any data, otherwise return null.
2250 This is used on targets that return BLKmode values in registers. */
2253 copy_blkmode_to_reg (machine_mode mode, tree src)
2255 int i, n_regs;
2256 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2257 unsigned int bitsize;
2258 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2259 machine_mode dst_mode;
2261 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2263 x = expand_normal (src);
2265 bytes = int_size_in_bytes (TREE_TYPE (src));
2266 if (bytes == 0)
2267 return NULL_RTX;
2269 /* If the structure doesn't take up a whole number of words, see
2270 whether the register value should be padded on the left or on
2271 the right. Set PADDING_CORRECTION to the number of padding
2272 bits needed on the left side.
2274 In most ABIs, the structure will be returned at the least end of
2275 the register, which translates to right padding on little-endian
2276 targets and left padding on big-endian targets. The opposite
2277 holds if the structure is returned at the most significant
2278 end of the register. */
2279 if (bytes % UNITS_PER_WORD != 0
2280 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2281 ? !BYTES_BIG_ENDIAN
2282 : BYTES_BIG_ENDIAN))
2283 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2284 * BITS_PER_UNIT));
2286 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2287 dst_words = XALLOCAVEC (rtx, n_regs);
2288 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2290 /* Copy the structure BITSIZE bits at a time. */
2291 for (bitpos = 0, xbitpos = padding_correction;
2292 bitpos < bytes * BITS_PER_UNIT;
2293 bitpos += bitsize, xbitpos += bitsize)
2295 /* We need a new destination pseudo each time xbitpos is
2296 on a word boundary and when xbitpos == padding_correction
2297 (the first time through). */
2298 if (xbitpos % BITS_PER_WORD == 0
2299 || xbitpos == padding_correction)
2301 /* Generate an appropriate register. */
2302 dst_word = gen_reg_rtx (word_mode);
2303 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2305 /* Clear the destination before we move anything into it. */
2306 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2309 /* We need a new source operand each time bitpos is on a word
2310 boundary. */
2311 if (bitpos % BITS_PER_WORD == 0)
2312 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2314 /* Use bitpos for the source extraction (left justified) and
2315 xbitpos for the destination store (right justified). */
2316 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2317 0, 0, word_mode,
2318 extract_bit_field (src_word, bitsize,
2319 bitpos % BITS_PER_WORD, 1,
2320 NULL_RTX, word_mode, word_mode));
2323 if (mode == BLKmode)
2325 /* Find the smallest integer mode large enough to hold the
2326 entire structure. */
2327 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2328 mode != VOIDmode;
2329 mode = GET_MODE_WIDER_MODE (mode))
2330 /* Have we found a large enough mode? */
2331 if (GET_MODE_SIZE (mode) >= bytes)
2332 break;
2334 /* A suitable mode should have been found. */
2335 gcc_assert (mode != VOIDmode);
2338 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2339 dst_mode = word_mode;
2340 else
2341 dst_mode = mode;
2342 dst = gen_reg_rtx (dst_mode);
2344 for (i = 0; i < n_regs; i++)
2345 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2347 if (mode != dst_mode)
2348 dst = gen_lowpart (mode, dst);
2350 return dst;
2353 /* Add a USE expression for REG to the (possibly empty) list pointed
2354 to by CALL_FUSAGE. REG must denote a hard register. */
2356 void
2357 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2359 gcc_assert (REG_P (reg));
2361 if (!HARD_REGISTER_P (reg))
2362 return;
2364 *call_fusage
2365 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2368 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2369 to by CALL_FUSAGE. REG must denote a hard register. */
2371 void
2372 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2374 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2376 *call_fusage
2377 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2380 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2381 starting at REGNO. All of these registers must be hard registers. */
2383 void
2384 use_regs (rtx *call_fusage, int regno, int nregs)
2386 int i;
2388 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2390 for (i = 0; i < nregs; i++)
2391 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2394 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2395 PARALLEL REGS. This is for calls that pass values in multiple
2396 non-contiguous locations. The Irix 6 ABI has examples of this. */
2398 void
2399 use_group_regs (rtx *call_fusage, rtx regs)
2401 int i;
2403 for (i = 0; i < XVECLEN (regs, 0); i++)
2405 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2407 /* A NULL entry means the parameter goes both on the stack and in
2408 registers. This can also be a MEM for targets that pass values
2409 partially on the stack and partially in registers. */
2410 if (reg != 0 && REG_P (reg))
2411 use_reg (call_fusage, reg);
2415 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2416 assigment and the code of the expresion on the RHS is CODE. Return
2417 NULL otherwise. */
2419 static gimple
2420 get_def_for_expr (tree name, enum tree_code code)
2422 gimple def_stmt;
2424 if (TREE_CODE (name) != SSA_NAME)
2425 return NULL;
2427 def_stmt = get_gimple_for_ssa_name (name);
2428 if (!def_stmt
2429 || gimple_assign_rhs_code (def_stmt) != code)
2430 return NULL;
2432 return def_stmt;
2435 #ifdef HAVE_conditional_move
2436 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2437 assigment and the class of the expresion on the RHS is CLASS. Return
2438 NULL otherwise. */
2440 static gimple
2441 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2443 gimple def_stmt;
2445 if (TREE_CODE (name) != SSA_NAME)
2446 return NULL;
2448 def_stmt = get_gimple_for_ssa_name (name);
2449 if (!def_stmt
2450 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2451 return NULL;
2453 return def_stmt;
2455 #endif
2458 /* Determine whether the LEN bytes generated by CONSTFUN can be
2459 stored to memory using several move instructions. CONSTFUNDATA is
2460 a pointer which will be passed as argument in every CONSTFUN call.
2461 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2462 a memset operation and false if it's a copy of a constant string.
2463 Return nonzero if a call to store_by_pieces should succeed. */
2466 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2467 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
2468 void *constfundata, unsigned int align, bool memsetp)
2470 unsigned HOST_WIDE_INT l;
2471 unsigned int max_size;
2472 HOST_WIDE_INT offset = 0;
2473 machine_mode mode;
2474 enum insn_code icode;
2475 int reverse;
2476 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2477 rtx cst ATTRIBUTE_UNUSED;
2479 if (len == 0)
2480 return 1;
2482 if (!targetm.use_by_pieces_infrastructure_p (len, align,
2483 memsetp
2484 ? SET_BY_PIECES
2485 : STORE_BY_PIECES,
2486 optimize_insn_for_speed_p ()))
2487 return 0;
2489 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2491 /* We would first store what we can in the largest integer mode, then go to
2492 successively smaller modes. */
2494 for (reverse = 0;
2495 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2496 reverse++)
2498 l = len;
2499 max_size = STORE_MAX_PIECES + 1;
2500 while (max_size > 1 && l > 0)
2502 mode = widest_int_mode_for_size (max_size);
2504 if (mode == VOIDmode)
2505 break;
2507 icode = optab_handler (mov_optab, mode);
2508 if (icode != CODE_FOR_nothing
2509 && align >= GET_MODE_ALIGNMENT (mode))
2511 unsigned int size = GET_MODE_SIZE (mode);
2513 while (l >= size)
2515 if (reverse)
2516 offset -= size;
2518 cst = (*constfun) (constfundata, offset, mode);
2519 if (!targetm.legitimate_constant_p (mode, cst))
2520 return 0;
2522 if (!reverse)
2523 offset += size;
2525 l -= size;
2529 max_size = GET_MODE_SIZE (mode);
2532 /* The code above should have handled everything. */
2533 gcc_assert (!l);
2536 return 1;
2539 /* Generate several move instructions to store LEN bytes generated by
2540 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2541 pointer which will be passed as argument in every CONSTFUN call.
2542 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2543 a memset operation and false if it's a copy of a constant string.
2544 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2545 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2546 stpcpy. */
2549 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2550 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
2551 void *constfundata, unsigned int align, bool memsetp, int endp)
2553 machine_mode to_addr_mode = get_address_mode (to);
2554 struct store_by_pieces_d data;
2556 if (len == 0)
2558 gcc_assert (endp != 2);
2559 return to;
2562 gcc_assert (targetm.use_by_pieces_infrastructure_p
2563 (len, align,
2564 memsetp
2565 ? SET_BY_PIECES
2566 : STORE_BY_PIECES,
2567 optimize_insn_for_speed_p ()));
2569 data.constfun = constfun;
2570 data.constfundata = constfundata;
2571 data.len = len;
2572 data.to = to;
2573 store_by_pieces_1 (&data, align);
2574 if (endp)
2576 rtx to1;
2578 gcc_assert (!data.reverse);
2579 if (data.autinc_to)
2581 if (endp == 2)
2583 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2584 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2585 else
2586 data.to_addr = copy_to_mode_reg (to_addr_mode,
2587 plus_constant (to_addr_mode,
2588 data.to_addr,
2589 -1));
2591 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2592 data.offset);
2594 else
2596 if (endp == 2)
2597 --data.offset;
2598 to1 = adjust_address (data.to, QImode, data.offset);
2600 return to1;
2602 else
2603 return data.to;
2606 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2607 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2609 static void
2610 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2612 struct store_by_pieces_d data;
2614 if (len == 0)
2615 return;
2617 data.constfun = clear_by_pieces_1;
2618 data.constfundata = NULL;
2619 data.len = len;
2620 data.to = to;
2621 store_by_pieces_1 (&data, align);
2624 /* Callback routine for clear_by_pieces.
2625 Return const0_rtx unconditionally. */
2627 static rtx
2628 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2629 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2630 machine_mode mode ATTRIBUTE_UNUSED)
2632 return const0_rtx;
2635 /* Subroutine of clear_by_pieces and store_by_pieces.
2636 Generate several move instructions to store LEN bytes of block TO. (A MEM
2637 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2639 static void
2640 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2641 unsigned int align ATTRIBUTE_UNUSED)
2643 machine_mode to_addr_mode = get_address_mode (data->to);
2644 rtx to_addr = XEXP (data->to, 0);
2645 unsigned int max_size = STORE_MAX_PIECES + 1;
2646 enum insn_code icode;
2648 data->offset = 0;
2649 data->to_addr = to_addr;
2650 data->autinc_to
2651 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2652 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2654 data->explicit_inc_to = 0;
2655 data->reverse
2656 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2657 if (data->reverse)
2658 data->offset = data->len;
2660 /* If storing requires more than two move insns,
2661 copy addresses to registers (to make displacements shorter)
2662 and use post-increment if available. */
2663 if (!data->autinc_to
2664 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2666 /* Determine the main mode we'll be using.
2667 MODE might not be used depending on the definitions of the
2668 USE_* macros below. */
2669 machine_mode mode ATTRIBUTE_UNUSED
2670 = widest_int_mode_for_size (max_size);
2672 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2674 data->to_addr = copy_to_mode_reg (to_addr_mode,
2675 plus_constant (to_addr_mode,
2676 to_addr,
2677 data->len));
2678 data->autinc_to = 1;
2679 data->explicit_inc_to = -1;
2682 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2683 && ! data->autinc_to)
2685 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2686 data->autinc_to = 1;
2687 data->explicit_inc_to = 1;
2690 if ( !data->autinc_to && CONSTANT_P (to_addr))
2691 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2694 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2696 /* First store what we can in the largest integer mode, then go to
2697 successively smaller modes. */
2699 while (max_size > 1 && data->len > 0)
2701 machine_mode mode = widest_int_mode_for_size (max_size);
2703 if (mode == VOIDmode)
2704 break;
2706 icode = optab_handler (mov_optab, mode);
2707 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2708 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2710 max_size = GET_MODE_SIZE (mode);
2713 /* The code above should have handled everything. */
2714 gcc_assert (!data->len);
2717 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2718 with move instructions for mode MODE. GENFUN is the gen_... function
2719 to make a move insn for that mode. DATA has all the other info. */
2721 static void
2722 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2723 struct store_by_pieces_d *data)
2725 unsigned int size = GET_MODE_SIZE (mode);
2726 rtx to1, cst;
2728 while (data->len >= size)
2730 if (data->reverse)
2731 data->offset -= size;
2733 if (data->autinc_to)
2734 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2735 data->offset);
2736 else
2737 to1 = adjust_address (data->to, mode, data->offset);
2739 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2740 emit_insn (gen_add2_insn (data->to_addr,
2741 gen_int_mode (-(HOST_WIDE_INT) size,
2742 GET_MODE (data->to_addr))));
2744 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2745 emit_insn ((*genfun) (to1, cst));
2747 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2748 emit_insn (gen_add2_insn (data->to_addr,
2749 gen_int_mode (size,
2750 GET_MODE (data->to_addr))));
2752 if (! data->reverse)
2753 data->offset += size;
2755 data->len -= size;
2759 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2760 its length in bytes. */
2763 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2764 unsigned int expected_align, HOST_WIDE_INT expected_size,
2765 unsigned HOST_WIDE_INT min_size,
2766 unsigned HOST_WIDE_INT max_size,
2767 unsigned HOST_WIDE_INT probable_max_size)
2769 machine_mode mode = GET_MODE (object);
2770 unsigned int align;
2772 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2774 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2775 just move a zero. Otherwise, do this a piece at a time. */
2776 if (mode != BLKmode
2777 && CONST_INT_P (size)
2778 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2780 rtx zero = CONST0_RTX (mode);
2781 if (zero != NULL)
2783 emit_move_insn (object, zero);
2784 return NULL;
2787 if (COMPLEX_MODE_P (mode))
2789 zero = CONST0_RTX (GET_MODE_INNER (mode));
2790 if (zero != NULL)
2792 write_complex_part (object, zero, 0);
2793 write_complex_part (object, zero, 1);
2794 return NULL;
2799 if (size == const0_rtx)
2800 return NULL;
2802 align = MEM_ALIGN (object);
2804 if (CONST_INT_P (size)
2805 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
2806 CLEAR_BY_PIECES,
2807 optimize_insn_for_speed_p ()))
2808 clear_by_pieces (object, INTVAL (size), align);
2809 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2810 expected_align, expected_size,
2811 min_size, max_size, probable_max_size))
2813 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2814 return set_storage_via_libcall (object, size, const0_rtx,
2815 method == BLOCK_OP_TAILCALL);
2816 else
2817 gcc_unreachable ();
2819 return NULL;
2823 clear_storage (rtx object, rtx size, enum block_op_methods method)
2825 unsigned HOST_WIDE_INT max, min = 0;
2826 if (GET_CODE (size) == CONST_INT)
2827 min = max = UINTVAL (size);
2828 else
2829 max = GET_MODE_MASK (GET_MODE (size));
2830 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2834 /* A subroutine of clear_storage. Expand a call to memset.
2835 Return the return value of memset, 0 otherwise. */
2838 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2840 tree call_expr, fn, object_tree, size_tree, val_tree;
2841 machine_mode size_mode;
2842 rtx retval;
2844 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2845 place those into new pseudos into a VAR_DECL and use them later. */
2847 object = copy_addr_to_reg (XEXP (object, 0));
2849 size_mode = TYPE_MODE (sizetype);
2850 size = convert_to_mode (size_mode, size, 1);
2851 size = copy_to_mode_reg (size_mode, size);
2853 /* It is incorrect to use the libcall calling conventions to call
2854 memset in this context. This could be a user call to memset and
2855 the user may wish to examine the return value from memset. For
2856 targets where libcalls and normal calls have different conventions
2857 for returning pointers, we could end up generating incorrect code. */
2859 object_tree = make_tree (ptr_type_node, object);
2860 if (!CONST_INT_P (val))
2861 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2862 size_tree = make_tree (sizetype, size);
2863 val_tree = make_tree (integer_type_node, val);
2865 fn = clear_storage_libcall_fn (true);
2866 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2867 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2869 retval = expand_normal (call_expr);
2871 return retval;
2874 /* A subroutine of set_storage_via_libcall. Create the tree node
2875 for the function we use for block clears. */
2877 tree block_clear_fn;
2879 void
2880 init_block_clear_fn (const char *asmspec)
2882 if (!block_clear_fn)
2884 tree fn, args;
2886 fn = get_identifier ("memset");
2887 args = build_function_type_list (ptr_type_node, ptr_type_node,
2888 integer_type_node, sizetype,
2889 NULL_TREE);
2891 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2892 DECL_EXTERNAL (fn) = 1;
2893 TREE_PUBLIC (fn) = 1;
2894 DECL_ARTIFICIAL (fn) = 1;
2895 TREE_NOTHROW (fn) = 1;
2896 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2897 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2899 block_clear_fn = fn;
2902 if (asmspec)
2903 set_user_assembler_name (block_clear_fn, asmspec);
2906 static tree
2907 clear_storage_libcall_fn (int for_call)
2909 static bool emitted_extern;
2911 if (!block_clear_fn)
2912 init_block_clear_fn (NULL);
2914 if (for_call && !emitted_extern)
2916 emitted_extern = true;
2917 make_decl_rtl (block_clear_fn);
2920 return block_clear_fn;
2923 /* Expand a setmem pattern; return true if successful. */
2925 bool
2926 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2927 unsigned int expected_align, HOST_WIDE_INT expected_size,
2928 unsigned HOST_WIDE_INT min_size,
2929 unsigned HOST_WIDE_INT max_size,
2930 unsigned HOST_WIDE_INT probable_max_size)
2932 /* Try the most limited insn first, because there's no point
2933 including more than one in the machine description unless
2934 the more limited one has some advantage. */
2936 machine_mode mode;
2938 if (expected_align < align)
2939 expected_align = align;
2940 if (expected_size != -1)
2942 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2943 expected_size = max_size;
2944 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2945 expected_size = min_size;
2948 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2949 mode = GET_MODE_WIDER_MODE (mode))
2951 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2953 if (code != CODE_FOR_nothing
2954 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2955 here because if SIZE is less than the mode mask, as it is
2956 returned by the macro, it will definitely be less than the
2957 actual mode mask. Since SIZE is within the Pmode address
2958 space, we limit MODE to Pmode. */
2959 && ((CONST_INT_P (size)
2960 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2961 <= (GET_MODE_MASK (mode) >> 1)))
2962 || max_size <= (GET_MODE_MASK (mode) >> 1)
2963 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2965 struct expand_operand ops[9];
2966 unsigned int nops;
2968 nops = insn_data[(int) code].n_generator_args;
2969 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2971 create_fixed_operand (&ops[0], object);
2972 /* The check above guarantees that this size conversion is valid. */
2973 create_convert_operand_to (&ops[1], size, mode, true);
2974 create_convert_operand_from (&ops[2], val, byte_mode, true);
2975 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2976 if (nops >= 6)
2978 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2979 create_integer_operand (&ops[5], expected_size);
2981 if (nops >= 8)
2983 create_integer_operand (&ops[6], min_size);
2984 /* If we can not represent the maximal size,
2985 make parameter NULL. */
2986 if ((HOST_WIDE_INT) max_size != -1)
2987 create_integer_operand (&ops[7], max_size);
2988 else
2989 create_fixed_operand (&ops[7], NULL);
2991 if (nops == 9)
2993 /* If we can not represent the maximal size,
2994 make parameter NULL. */
2995 if ((HOST_WIDE_INT) probable_max_size != -1)
2996 create_integer_operand (&ops[8], probable_max_size);
2997 else
2998 create_fixed_operand (&ops[8], NULL);
3000 if (maybe_expand_insn (code, nops, ops))
3001 return true;
3005 return false;
3009 /* Write to one of the components of the complex value CPLX. Write VAL to
3010 the real part if IMAG_P is false, and the imaginary part if its true. */
3012 void
3013 write_complex_part (rtx cplx, rtx val, bool imag_p)
3015 machine_mode cmode;
3016 machine_mode imode;
3017 unsigned ibitsize;
3019 if (GET_CODE (cplx) == CONCAT)
3021 emit_move_insn (XEXP (cplx, imag_p), val);
3022 return;
3025 cmode = GET_MODE (cplx);
3026 imode = GET_MODE_INNER (cmode);
3027 ibitsize = GET_MODE_BITSIZE (imode);
3029 /* For MEMs simplify_gen_subreg may generate an invalid new address
3030 because, e.g., the original address is considered mode-dependent
3031 by the target, which restricts simplify_subreg from invoking
3032 adjust_address_nv. Instead of preparing fallback support for an
3033 invalid address, we call adjust_address_nv directly. */
3034 if (MEM_P (cplx))
3036 emit_move_insn (adjust_address_nv (cplx, imode,
3037 imag_p ? GET_MODE_SIZE (imode) : 0),
3038 val);
3039 return;
3042 /* If the sub-object is at least word sized, then we know that subregging
3043 will work. This special case is important, since store_bit_field
3044 wants to operate on integer modes, and there's rarely an OImode to
3045 correspond to TCmode. */
3046 if (ibitsize >= BITS_PER_WORD
3047 /* For hard regs we have exact predicates. Assume we can split
3048 the original object if it spans an even number of hard regs.
3049 This special case is important for SCmode on 64-bit platforms
3050 where the natural size of floating-point regs is 32-bit. */
3051 || (REG_P (cplx)
3052 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3053 && REG_NREGS (cplx) % 2 == 0))
3055 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3056 imag_p ? GET_MODE_SIZE (imode) : 0);
3057 if (part)
3059 emit_move_insn (part, val);
3060 return;
3062 else
3063 /* simplify_gen_subreg may fail for sub-word MEMs. */
3064 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3067 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3070 /* Extract one of the components of the complex value CPLX. Extract the
3071 real part if IMAG_P is false, and the imaginary part if it's true. */
3073 static rtx
3074 read_complex_part (rtx cplx, bool imag_p)
3076 machine_mode cmode, imode;
3077 unsigned ibitsize;
3079 if (GET_CODE (cplx) == CONCAT)
3080 return XEXP (cplx, imag_p);
3082 cmode = GET_MODE (cplx);
3083 imode = GET_MODE_INNER (cmode);
3084 ibitsize = GET_MODE_BITSIZE (imode);
3086 /* Special case reads from complex constants that got spilled to memory. */
3087 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3089 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3090 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3092 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3093 if (CONSTANT_CLASS_P (part))
3094 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3098 /* For MEMs simplify_gen_subreg may generate an invalid new address
3099 because, e.g., the original address is considered mode-dependent
3100 by the target, which restricts simplify_subreg from invoking
3101 adjust_address_nv. Instead of preparing fallback support for an
3102 invalid address, we call adjust_address_nv directly. */
3103 if (MEM_P (cplx))
3104 return adjust_address_nv (cplx, imode,
3105 imag_p ? GET_MODE_SIZE (imode) : 0);
3107 /* If the sub-object is at least word sized, then we know that subregging
3108 will work. This special case is important, since extract_bit_field
3109 wants to operate on integer modes, and there's rarely an OImode to
3110 correspond to TCmode. */
3111 if (ibitsize >= BITS_PER_WORD
3112 /* For hard regs we have exact predicates. Assume we can split
3113 the original object if it spans an even number of hard regs.
3114 This special case is important for SCmode on 64-bit platforms
3115 where the natural size of floating-point regs is 32-bit. */
3116 || (REG_P (cplx)
3117 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3118 && REG_NREGS (cplx) % 2 == 0))
3120 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3121 imag_p ? GET_MODE_SIZE (imode) : 0);
3122 if (ret)
3123 return ret;
3124 else
3125 /* simplify_gen_subreg may fail for sub-word MEMs. */
3126 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3129 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3130 true, NULL_RTX, imode, imode);
3133 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3134 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3135 represented in NEW_MODE. If FORCE is true, this will never happen, as
3136 we'll force-create a SUBREG if needed. */
3138 static rtx
3139 emit_move_change_mode (machine_mode new_mode,
3140 machine_mode old_mode, rtx x, bool force)
3142 rtx ret;
3144 if (push_operand (x, GET_MODE (x)))
3146 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3147 MEM_COPY_ATTRIBUTES (ret, x);
3149 else if (MEM_P (x))
3151 /* We don't have to worry about changing the address since the
3152 size in bytes is supposed to be the same. */
3153 if (reload_in_progress)
3155 /* Copy the MEM to change the mode and move any
3156 substitutions from the old MEM to the new one. */
3157 ret = adjust_address_nv (x, new_mode, 0);
3158 copy_replacements (x, ret);
3160 else
3161 ret = adjust_address (x, new_mode, 0);
3163 else
3165 /* Note that we do want simplify_subreg's behavior of validating
3166 that the new mode is ok for a hard register. If we were to use
3167 simplify_gen_subreg, we would create the subreg, but would
3168 probably run into the target not being able to implement it. */
3169 /* Except, of course, when FORCE is true, when this is exactly what
3170 we want. Which is needed for CCmodes on some targets. */
3171 if (force)
3172 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3173 else
3174 ret = simplify_subreg (new_mode, x, old_mode, 0);
3177 return ret;
3180 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3181 an integer mode of the same size as MODE. Returns the instruction
3182 emitted, or NULL if such a move could not be generated. */
3184 static rtx_insn *
3185 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3187 machine_mode imode;
3188 enum insn_code code;
3190 /* There must exist a mode of the exact size we require. */
3191 imode = int_mode_for_mode (mode);
3192 if (imode == BLKmode)
3193 return NULL;
3195 /* The target must support moves in this mode. */
3196 code = optab_handler (mov_optab, imode);
3197 if (code == CODE_FOR_nothing)
3198 return NULL;
3200 x = emit_move_change_mode (imode, mode, x, force);
3201 if (x == NULL_RTX)
3202 return NULL;
3203 y = emit_move_change_mode (imode, mode, y, force);
3204 if (y == NULL_RTX)
3205 return NULL;
3206 return emit_insn (GEN_FCN (code) (x, y));
3209 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3210 Return an equivalent MEM that does not use an auto-increment. */
3213 emit_move_resolve_push (machine_mode mode, rtx x)
3215 enum rtx_code code = GET_CODE (XEXP (x, 0));
3216 HOST_WIDE_INT adjust;
3217 rtx temp;
3219 adjust = GET_MODE_SIZE (mode);
3220 #ifdef PUSH_ROUNDING
3221 adjust = PUSH_ROUNDING (adjust);
3222 #endif
3223 if (code == PRE_DEC || code == POST_DEC)
3224 adjust = -adjust;
3225 else if (code == PRE_MODIFY || code == POST_MODIFY)
3227 rtx expr = XEXP (XEXP (x, 0), 1);
3228 HOST_WIDE_INT val;
3230 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3231 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3232 val = INTVAL (XEXP (expr, 1));
3233 if (GET_CODE (expr) == MINUS)
3234 val = -val;
3235 gcc_assert (adjust == val || adjust == -val);
3236 adjust = val;
3239 /* Do not use anti_adjust_stack, since we don't want to update
3240 stack_pointer_delta. */
3241 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3242 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3243 0, OPTAB_LIB_WIDEN);
3244 if (temp != stack_pointer_rtx)
3245 emit_move_insn (stack_pointer_rtx, temp);
3247 switch (code)
3249 case PRE_INC:
3250 case PRE_DEC:
3251 case PRE_MODIFY:
3252 temp = stack_pointer_rtx;
3253 break;
3254 case POST_INC:
3255 case POST_DEC:
3256 case POST_MODIFY:
3257 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3258 break;
3259 default:
3260 gcc_unreachable ();
3263 return replace_equiv_address (x, temp);
3266 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3267 X is known to satisfy push_operand, and MODE is known to be complex.
3268 Returns the last instruction emitted. */
3270 rtx_insn *
3271 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3273 machine_mode submode = GET_MODE_INNER (mode);
3274 bool imag_first;
3276 #ifdef PUSH_ROUNDING
3277 unsigned int submodesize = GET_MODE_SIZE (submode);
3279 /* In case we output to the stack, but the size is smaller than the
3280 machine can push exactly, we need to use move instructions. */
3281 if (PUSH_ROUNDING (submodesize) != submodesize)
3283 x = emit_move_resolve_push (mode, x);
3284 return emit_move_insn (x, y);
3286 #endif
3288 /* Note that the real part always precedes the imag part in memory
3289 regardless of machine's endianness. */
3290 switch (GET_CODE (XEXP (x, 0)))
3292 case PRE_DEC:
3293 case POST_DEC:
3294 imag_first = true;
3295 break;
3296 case PRE_INC:
3297 case POST_INC:
3298 imag_first = false;
3299 break;
3300 default:
3301 gcc_unreachable ();
3304 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3305 read_complex_part (y, imag_first));
3306 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3307 read_complex_part (y, !imag_first));
3310 /* A subroutine of emit_move_complex. Perform the move from Y to X
3311 via two moves of the parts. Returns the last instruction emitted. */
3313 rtx_insn *
3314 emit_move_complex_parts (rtx x, rtx y)
3316 /* Show the output dies here. This is necessary for SUBREGs
3317 of pseudos since we cannot track their lifetimes correctly;
3318 hard regs shouldn't appear here except as return values. */
3319 if (!reload_completed && !reload_in_progress
3320 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3321 emit_clobber (x);
3323 write_complex_part (x, read_complex_part (y, false), false);
3324 write_complex_part (x, read_complex_part (y, true), true);
3326 return get_last_insn ();
3329 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3330 MODE is known to be complex. Returns the last instruction emitted. */
3332 static rtx_insn *
3333 emit_move_complex (machine_mode mode, rtx x, rtx y)
3335 bool try_int;
3337 /* Need to take special care for pushes, to maintain proper ordering
3338 of the data, and possibly extra padding. */
3339 if (push_operand (x, mode))
3340 return emit_move_complex_push (mode, x, y);
3342 /* See if we can coerce the target into moving both values at once, except
3343 for floating point where we favor moving as parts if this is easy. */
3344 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3345 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3346 && !(REG_P (x)
3347 && HARD_REGISTER_P (x)
3348 && REG_NREGS (x) == 1)
3349 && !(REG_P (y)
3350 && HARD_REGISTER_P (y)
3351 && REG_NREGS (y) == 1))
3352 try_int = false;
3353 /* Not possible if the values are inherently not adjacent. */
3354 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3355 try_int = false;
3356 /* Is possible if both are registers (or subregs of registers). */
3357 else if (register_operand (x, mode) && register_operand (y, mode))
3358 try_int = true;
3359 /* If one of the operands is a memory, and alignment constraints
3360 are friendly enough, we may be able to do combined memory operations.
3361 We do not attempt this if Y is a constant because that combination is
3362 usually better with the by-parts thing below. */
3363 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3364 && (!STRICT_ALIGNMENT
3365 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3366 try_int = true;
3367 else
3368 try_int = false;
3370 if (try_int)
3372 rtx_insn *ret;
3374 /* For memory to memory moves, optimal behavior can be had with the
3375 existing block move logic. */
3376 if (MEM_P (x) && MEM_P (y))
3378 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3379 BLOCK_OP_NO_LIBCALL);
3380 return get_last_insn ();
3383 ret = emit_move_via_integer (mode, x, y, true);
3384 if (ret)
3385 return ret;
3388 return emit_move_complex_parts (x, y);
3391 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3392 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3394 static rtx_insn *
3395 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3397 rtx_insn *ret;
3399 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3400 if (mode != CCmode)
3402 enum insn_code code = optab_handler (mov_optab, CCmode);
3403 if (code != CODE_FOR_nothing)
3405 x = emit_move_change_mode (CCmode, mode, x, true);
3406 y = emit_move_change_mode (CCmode, mode, y, true);
3407 return emit_insn (GEN_FCN (code) (x, y));
3411 /* Otherwise, find the MODE_INT mode of the same width. */
3412 ret = emit_move_via_integer (mode, x, y, false);
3413 gcc_assert (ret != NULL);
3414 return ret;
3417 /* Return true if word I of OP lies entirely in the
3418 undefined bits of a paradoxical subreg. */
3420 static bool
3421 undefined_operand_subword_p (const_rtx op, int i)
3423 machine_mode innermode, innermostmode;
3424 int offset;
3425 if (GET_CODE (op) != SUBREG)
3426 return false;
3427 innermode = GET_MODE (op);
3428 innermostmode = GET_MODE (SUBREG_REG (op));
3429 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3430 /* The SUBREG_BYTE represents offset, as if the value were stored in
3431 memory, except for a paradoxical subreg where we define
3432 SUBREG_BYTE to be 0; undo this exception as in
3433 simplify_subreg. */
3434 if (SUBREG_BYTE (op) == 0
3435 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3437 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3438 if (WORDS_BIG_ENDIAN)
3439 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3440 if (BYTES_BIG_ENDIAN)
3441 offset += difference % UNITS_PER_WORD;
3443 if (offset >= GET_MODE_SIZE (innermostmode)
3444 || offset <= -GET_MODE_SIZE (word_mode))
3445 return true;
3446 return false;
3449 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3450 MODE is any multi-word or full-word mode that lacks a move_insn
3451 pattern. Note that you will get better code if you define such
3452 patterns, even if they must turn into multiple assembler instructions. */
3454 static rtx_insn *
3455 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3457 rtx_insn *last_insn = 0;
3458 rtx_insn *seq;
3459 rtx inner;
3460 bool need_clobber;
3461 int i;
3463 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3465 /* If X is a push on the stack, do the push now and replace
3466 X with a reference to the stack pointer. */
3467 if (push_operand (x, mode))
3468 x = emit_move_resolve_push (mode, x);
3470 /* If we are in reload, see if either operand is a MEM whose address
3471 is scheduled for replacement. */
3472 if (reload_in_progress && MEM_P (x)
3473 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3474 x = replace_equiv_address_nv (x, inner);
3475 if (reload_in_progress && MEM_P (y)
3476 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3477 y = replace_equiv_address_nv (y, inner);
3479 start_sequence ();
3481 need_clobber = false;
3482 for (i = 0;
3483 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3484 i++)
3486 rtx xpart = operand_subword (x, i, 1, mode);
3487 rtx ypart;
3489 /* Do not generate code for a move if it would come entirely
3490 from the undefined bits of a paradoxical subreg. */
3491 if (undefined_operand_subword_p (y, i))
3492 continue;
3494 ypart = operand_subword (y, i, 1, mode);
3496 /* If we can't get a part of Y, put Y into memory if it is a
3497 constant. Otherwise, force it into a register. Then we must
3498 be able to get a part of Y. */
3499 if (ypart == 0 && CONSTANT_P (y))
3501 y = use_anchored_address (force_const_mem (mode, y));
3502 ypart = operand_subword (y, i, 1, mode);
3504 else if (ypart == 0)
3505 ypart = operand_subword_force (y, i, mode);
3507 gcc_assert (xpart && ypart);
3509 need_clobber |= (GET_CODE (xpart) == SUBREG);
3511 last_insn = emit_move_insn (xpart, ypart);
3514 seq = get_insns ();
3515 end_sequence ();
3517 /* Show the output dies here. This is necessary for SUBREGs
3518 of pseudos since we cannot track their lifetimes correctly;
3519 hard regs shouldn't appear here except as return values.
3520 We never want to emit such a clobber after reload. */
3521 if (x != y
3522 && ! (reload_in_progress || reload_completed)
3523 && need_clobber != 0)
3524 emit_clobber (x);
3526 emit_insn (seq);
3528 return last_insn;
3531 /* Low level part of emit_move_insn.
3532 Called just like emit_move_insn, but assumes X and Y
3533 are basically valid. */
3535 rtx_insn *
3536 emit_move_insn_1 (rtx x, rtx y)
3538 machine_mode mode = GET_MODE (x);
3539 enum insn_code code;
3541 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3543 code = optab_handler (mov_optab, mode);
3544 if (code != CODE_FOR_nothing)
3545 return emit_insn (GEN_FCN (code) (x, y));
3547 /* Expand complex moves by moving real part and imag part. */
3548 if (COMPLEX_MODE_P (mode))
3549 return emit_move_complex (mode, x, y);
3551 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3552 || ALL_FIXED_POINT_MODE_P (mode))
3554 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3556 /* If we can't find an integer mode, use multi words. */
3557 if (result)
3558 return result;
3559 else
3560 return emit_move_multi_word (mode, x, y);
3563 if (GET_MODE_CLASS (mode) == MODE_CC)
3564 return emit_move_ccmode (mode, x, y);
3566 /* Try using a move pattern for the corresponding integer mode. This is
3567 only safe when simplify_subreg can convert MODE constants into integer
3568 constants. At present, it can only do this reliably if the value
3569 fits within a HOST_WIDE_INT. */
3570 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3572 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3574 if (ret)
3576 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3577 return ret;
3581 return emit_move_multi_word (mode, x, y);
3584 /* Generate code to copy Y into X.
3585 Both Y and X must have the same mode, except that
3586 Y can be a constant with VOIDmode.
3587 This mode cannot be BLKmode; use emit_block_move for that.
3589 Return the last instruction emitted. */
3591 rtx_insn *
3592 emit_move_insn (rtx x, rtx y)
3594 machine_mode mode = GET_MODE (x);
3595 rtx y_cst = NULL_RTX;
3596 rtx_insn *last_insn;
3597 rtx set;
3599 gcc_assert (mode != BLKmode
3600 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3602 if (CONSTANT_P (y))
3604 if (optimize
3605 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3606 && (last_insn = compress_float_constant (x, y)))
3607 return last_insn;
3609 y_cst = y;
3611 if (!targetm.legitimate_constant_p (mode, y))
3613 y = force_const_mem (mode, y);
3615 /* If the target's cannot_force_const_mem prevented the spill,
3616 assume that the target's move expanders will also take care
3617 of the non-legitimate constant. */
3618 if (!y)
3619 y = y_cst;
3620 else
3621 y = use_anchored_address (y);
3625 /* If X or Y are memory references, verify that their addresses are valid
3626 for the machine. */
3627 if (MEM_P (x)
3628 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3629 MEM_ADDR_SPACE (x))
3630 && ! push_operand (x, GET_MODE (x))))
3631 x = validize_mem (x);
3633 if (MEM_P (y)
3634 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3635 MEM_ADDR_SPACE (y)))
3636 y = validize_mem (y);
3638 gcc_assert (mode != BLKmode);
3640 last_insn = emit_move_insn_1 (x, y);
3642 if (y_cst && REG_P (x)
3643 && (set = single_set (last_insn)) != NULL_RTX
3644 && SET_DEST (set) == x
3645 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3646 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3648 return last_insn;
3651 /* Generate the body of an instruction to copy Y into X.
3652 It may be a list of insns, if one insn isn't enough. */
3654 rtx_insn *
3655 gen_move_insn (rtx x, rtx y)
3657 rtx_insn *seq;
3659 start_sequence ();
3660 emit_move_insn_1 (x, y);
3661 seq = get_insns ();
3662 end_sequence ();
3663 return seq;
3666 /* Same as above, but return rtx (used as a callback, which must have
3667 prototype compatible with other functions returning rtx). */
3670 gen_move_insn_uncast (rtx x, rtx y)
3672 return gen_move_insn (x, y);
3675 /* If Y is representable exactly in a narrower mode, and the target can
3676 perform the extension directly from constant or memory, then emit the
3677 move as an extension. */
3679 static rtx_insn *
3680 compress_float_constant (rtx x, rtx y)
3682 machine_mode dstmode = GET_MODE (x);
3683 machine_mode orig_srcmode = GET_MODE (y);
3684 machine_mode srcmode;
3685 REAL_VALUE_TYPE r;
3686 int oldcost, newcost;
3687 bool speed = optimize_insn_for_speed_p ();
3689 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3691 if (targetm.legitimate_constant_p (dstmode, y))
3692 oldcost = set_src_cost (y, speed);
3693 else
3694 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3696 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3697 srcmode != orig_srcmode;
3698 srcmode = GET_MODE_WIDER_MODE (srcmode))
3700 enum insn_code ic;
3701 rtx trunc_y;
3702 rtx_insn *last_insn;
3704 /* Skip if the target can't extend this way. */
3705 ic = can_extend_p (dstmode, srcmode, 0);
3706 if (ic == CODE_FOR_nothing)
3707 continue;
3709 /* Skip if the narrowed value isn't exact. */
3710 if (! exact_real_truncate (srcmode, &r))
3711 continue;
3713 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3715 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3717 /* Skip if the target needs extra instructions to perform
3718 the extension. */
3719 if (!insn_operand_matches (ic, 1, trunc_y))
3720 continue;
3721 /* This is valid, but may not be cheaper than the original. */
3722 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3723 speed);
3724 if (oldcost < newcost)
3725 continue;
3727 else if (float_extend_from_mem[dstmode][srcmode])
3729 trunc_y = force_const_mem (srcmode, trunc_y);
3730 /* This is valid, but may not be cheaper than the original. */
3731 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3732 speed);
3733 if (oldcost < newcost)
3734 continue;
3735 trunc_y = validize_mem (trunc_y);
3737 else
3738 continue;
3740 /* For CSE's benefit, force the compressed constant pool entry
3741 into a new pseudo. This constant may be used in different modes,
3742 and if not, combine will put things back together for us. */
3743 trunc_y = force_reg (srcmode, trunc_y);
3745 /* If x is a hard register, perform the extension into a pseudo,
3746 so that e.g. stack realignment code is aware of it. */
3747 rtx target = x;
3748 if (REG_P (x) && HARD_REGISTER_P (x))
3749 target = gen_reg_rtx (dstmode);
3751 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3752 last_insn = get_last_insn ();
3754 if (REG_P (target))
3755 set_unique_reg_note (last_insn, REG_EQUAL, y);
3757 if (target != x)
3758 return emit_move_insn (x, target);
3759 return last_insn;
3762 return NULL;
3765 /* Pushing data onto the stack. */
3767 /* Push a block of length SIZE (perhaps variable)
3768 and return an rtx to address the beginning of the block.
3769 The value may be virtual_outgoing_args_rtx.
3771 EXTRA is the number of bytes of padding to push in addition to SIZE.
3772 BELOW nonzero means this padding comes at low addresses;
3773 otherwise, the padding comes at high addresses. */
3776 push_block (rtx size, int extra, int below)
3778 rtx temp;
3780 size = convert_modes (Pmode, ptr_mode, size, 1);
3781 if (CONSTANT_P (size))
3782 anti_adjust_stack (plus_constant (Pmode, size, extra));
3783 else if (REG_P (size) && extra == 0)
3784 anti_adjust_stack (size);
3785 else
3787 temp = copy_to_mode_reg (Pmode, size);
3788 if (extra != 0)
3789 temp = expand_binop (Pmode, add_optab, temp,
3790 gen_int_mode (extra, Pmode),
3791 temp, 0, OPTAB_LIB_WIDEN);
3792 anti_adjust_stack (temp);
3795 if (STACK_GROWS_DOWNWARD)
3797 temp = virtual_outgoing_args_rtx;
3798 if (extra != 0 && below)
3799 temp = plus_constant (Pmode, temp, extra);
3801 else
3803 if (CONST_INT_P (size))
3804 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3805 -INTVAL (size) - (below ? 0 : extra));
3806 else if (extra != 0 && !below)
3807 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3808 negate_rtx (Pmode, plus_constant (Pmode, size,
3809 extra)));
3810 else
3811 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3812 negate_rtx (Pmode, size));
3815 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3818 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3820 static rtx
3821 mem_autoinc_base (rtx mem)
3823 if (MEM_P (mem))
3825 rtx addr = XEXP (mem, 0);
3826 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3827 return XEXP (addr, 0);
3829 return NULL;
3832 /* A utility routine used here, in reload, and in try_split. The insns
3833 after PREV up to and including LAST are known to adjust the stack,
3834 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3835 placing notes as appropriate. PREV may be NULL, indicating the
3836 entire insn sequence prior to LAST should be scanned.
3838 The set of allowed stack pointer modifications is small:
3839 (1) One or more auto-inc style memory references (aka pushes),
3840 (2) One or more addition/subtraction with the SP as destination,
3841 (3) A single move insn with the SP as destination,
3842 (4) A call_pop insn,
3843 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3845 Insns in the sequence that do not modify the SP are ignored,
3846 except for noreturn calls.
3848 The return value is the amount of adjustment that can be trivially
3849 verified, via immediate operand or auto-inc. If the adjustment
3850 cannot be trivially extracted, the return value is INT_MIN. */
3852 HOST_WIDE_INT
3853 find_args_size_adjust (rtx_insn *insn)
3855 rtx dest, set, pat;
3856 int i;
3858 pat = PATTERN (insn);
3859 set = NULL;
3861 /* Look for a call_pop pattern. */
3862 if (CALL_P (insn))
3864 /* We have to allow non-call_pop patterns for the case
3865 of emit_single_push_insn of a TLS address. */
3866 if (GET_CODE (pat) != PARALLEL)
3867 return 0;
3869 /* All call_pop have a stack pointer adjust in the parallel.
3870 The call itself is always first, and the stack adjust is
3871 usually last, so search from the end. */
3872 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3874 set = XVECEXP (pat, 0, i);
3875 if (GET_CODE (set) != SET)
3876 continue;
3877 dest = SET_DEST (set);
3878 if (dest == stack_pointer_rtx)
3879 break;
3881 /* We'd better have found the stack pointer adjust. */
3882 if (i == 0)
3883 return 0;
3884 /* Fall through to process the extracted SET and DEST
3885 as if it was a standalone insn. */
3887 else if (GET_CODE (pat) == SET)
3888 set = pat;
3889 else if ((set = single_set (insn)) != NULL)
3891 else if (GET_CODE (pat) == PARALLEL)
3893 /* ??? Some older ports use a parallel with a stack adjust
3894 and a store for a PUSH_ROUNDING pattern, rather than a
3895 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3896 /* ??? See h8300 and m68k, pushqi1. */
3897 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3899 set = XVECEXP (pat, 0, i);
3900 if (GET_CODE (set) != SET)
3901 continue;
3902 dest = SET_DEST (set);
3903 if (dest == stack_pointer_rtx)
3904 break;
3906 /* We do not expect an auto-inc of the sp in the parallel. */
3907 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3908 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3909 != stack_pointer_rtx);
3911 if (i < 0)
3912 return 0;
3914 else
3915 return 0;
3917 dest = SET_DEST (set);
3919 /* Look for direct modifications of the stack pointer. */
3920 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3922 /* Look for a trivial adjustment, otherwise assume nothing. */
3923 /* Note that the SPU restore_stack_block pattern refers to
3924 the stack pointer in V4SImode. Consider that non-trivial. */
3925 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3926 && GET_CODE (SET_SRC (set)) == PLUS
3927 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3928 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3929 return INTVAL (XEXP (SET_SRC (set), 1));
3930 /* ??? Reload can generate no-op moves, which will be cleaned
3931 up later. Recognize it and continue searching. */
3932 else if (rtx_equal_p (dest, SET_SRC (set)))
3933 return 0;
3934 else
3935 return HOST_WIDE_INT_MIN;
3937 else
3939 rtx mem, addr;
3941 /* Otherwise only think about autoinc patterns. */
3942 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3944 mem = dest;
3945 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3946 != stack_pointer_rtx);
3948 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3949 mem = SET_SRC (set);
3950 else
3951 return 0;
3953 addr = XEXP (mem, 0);
3954 switch (GET_CODE (addr))
3956 case PRE_INC:
3957 case POST_INC:
3958 return GET_MODE_SIZE (GET_MODE (mem));
3959 case PRE_DEC:
3960 case POST_DEC:
3961 return -GET_MODE_SIZE (GET_MODE (mem));
3962 case PRE_MODIFY:
3963 case POST_MODIFY:
3964 addr = XEXP (addr, 1);
3965 gcc_assert (GET_CODE (addr) == PLUS);
3966 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3967 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3968 return INTVAL (XEXP (addr, 1));
3969 default:
3970 gcc_unreachable ();
3976 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
3978 int args_size = end_args_size;
3979 bool saw_unknown = false;
3980 rtx_insn *insn;
3982 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3984 HOST_WIDE_INT this_delta;
3986 if (!NONDEBUG_INSN_P (insn))
3987 continue;
3989 this_delta = find_args_size_adjust (insn);
3990 if (this_delta == 0)
3992 if (!CALL_P (insn)
3993 || ACCUMULATE_OUTGOING_ARGS
3994 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3995 continue;
3998 gcc_assert (!saw_unknown);
3999 if (this_delta == HOST_WIDE_INT_MIN)
4000 saw_unknown = true;
4002 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
4003 #if STACK_GROWS_DOWNWARD
4004 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
4005 #endif
4006 args_size -= this_delta;
4009 return saw_unknown ? INT_MIN : args_size;
4012 #ifdef PUSH_ROUNDING
4013 /* Emit single push insn. */
4015 static void
4016 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4018 rtx dest_addr;
4019 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4020 rtx dest;
4021 enum insn_code icode;
4023 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4024 /* If there is push pattern, use it. Otherwise try old way of throwing
4025 MEM representing push operation to move expander. */
4026 icode = optab_handler (push_optab, mode);
4027 if (icode != CODE_FOR_nothing)
4029 struct expand_operand ops[1];
4031 create_input_operand (&ops[0], x, mode);
4032 if (maybe_expand_insn (icode, 1, ops))
4033 return;
4035 if (GET_MODE_SIZE (mode) == rounded_size)
4036 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4037 /* If we are to pad downward, adjust the stack pointer first and
4038 then store X into the stack location using an offset. This is
4039 because emit_move_insn does not know how to pad; it does not have
4040 access to type. */
4041 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4043 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4044 HOST_WIDE_INT offset;
4046 emit_move_insn (stack_pointer_rtx,
4047 expand_binop (Pmode,
4048 #if STACK_GROWS_DOWNWARD
4049 sub_optab,
4050 #else
4051 add_optab,
4052 #endif
4053 stack_pointer_rtx,
4054 gen_int_mode (rounded_size, Pmode),
4055 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4057 offset = (HOST_WIDE_INT) padding_size;
4058 #if STACK_GROWS_DOWNWARD
4059 if (STACK_PUSH_CODE == POST_DEC)
4060 /* We have already decremented the stack pointer, so get the
4061 previous value. */
4062 offset += (HOST_WIDE_INT) rounded_size;
4063 #else
4064 if (STACK_PUSH_CODE == POST_INC)
4065 /* We have already incremented the stack pointer, so get the
4066 previous value. */
4067 offset -= (HOST_WIDE_INT) rounded_size;
4068 #endif
4069 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4070 gen_int_mode (offset, Pmode));
4072 else
4074 #if STACK_GROWS_DOWNWARD
4075 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4076 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4077 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4078 Pmode));
4079 #else
4080 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4081 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4082 gen_int_mode (rounded_size, Pmode));
4083 #endif
4084 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4087 dest = gen_rtx_MEM (mode, dest_addr);
4089 if (type != 0)
4091 set_mem_attributes (dest, type, 1);
4093 if (cfun->tail_call_marked)
4094 /* Function incoming arguments may overlap with sibling call
4095 outgoing arguments and we cannot allow reordering of reads
4096 from function arguments with stores to outgoing arguments
4097 of sibling calls. */
4098 set_mem_alias_set (dest, 0);
4100 emit_move_insn (dest, x);
4103 /* Emit and annotate a single push insn. */
4105 static void
4106 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4108 int delta, old_delta = stack_pointer_delta;
4109 rtx_insn *prev = get_last_insn ();
4110 rtx_insn *last;
4112 emit_single_push_insn_1 (mode, x, type);
4114 last = get_last_insn ();
4116 /* Notice the common case where we emitted exactly one insn. */
4117 if (PREV_INSN (last) == prev)
4119 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4120 return;
4123 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4124 gcc_assert (delta == INT_MIN || delta == old_delta);
4126 #endif
4128 /* Generate code to push X onto the stack, assuming it has mode MODE and
4129 type TYPE.
4130 MODE is redundant except when X is a CONST_INT (since they don't
4131 carry mode info).
4132 SIZE is an rtx for the size of data to be copied (in bytes),
4133 needed only if X is BLKmode.
4135 ALIGN (in bits) is maximum alignment we can assume.
4137 If PARTIAL and REG are both nonzero, then copy that many of the first
4138 bytes of X into registers starting with REG, and push the rest of X.
4139 The amount of space pushed is decreased by PARTIAL bytes.
4140 REG must be a hard register in this case.
4141 If REG is zero but PARTIAL is not, take any all others actions for an
4142 argument partially in registers, but do not actually load any
4143 registers.
4145 EXTRA is the amount in bytes of extra space to leave next to this arg.
4146 This is ignored if an argument block has already been allocated.
4148 On a machine that lacks real push insns, ARGS_ADDR is the address of
4149 the bottom of the argument block for this call. We use indexing off there
4150 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4151 argument block has not been preallocated.
4153 ARGS_SO_FAR is the size of args previously pushed for this call.
4155 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4156 for arguments passed in registers. If nonzero, it will be the number
4157 of bytes required. */
4159 void
4160 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4161 unsigned int align, int partial, rtx reg, int extra,
4162 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4163 rtx alignment_pad)
4165 rtx xinner;
4166 enum direction stack_direction
4167 #if STACK_GROWS_DOWNWARD
4168 = downward;
4169 #else
4170 = upward;
4171 #endif
4173 /* Decide where to pad the argument: `downward' for below,
4174 `upward' for above, or `none' for don't pad it.
4175 Default is below for small data on big-endian machines; else above. */
4176 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4178 /* Invert direction if stack is post-decrement.
4179 FIXME: why? */
4180 if (STACK_PUSH_CODE == POST_DEC)
4181 if (where_pad != none)
4182 where_pad = (where_pad == downward ? upward : downward);
4184 xinner = x;
4186 if (mode == BLKmode
4187 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4189 /* Copy a block into the stack, entirely or partially. */
4191 rtx temp;
4192 int used;
4193 int offset;
4194 int skip;
4196 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4197 used = partial - offset;
4199 if (mode != BLKmode)
4201 /* A value is to be stored in an insufficiently aligned
4202 stack slot; copy via a suitably aligned slot if
4203 necessary. */
4204 size = GEN_INT (GET_MODE_SIZE (mode));
4205 if (!MEM_P (xinner))
4207 temp = assign_temp (type, 1, 1);
4208 emit_move_insn (temp, xinner);
4209 xinner = temp;
4213 gcc_assert (size);
4215 /* USED is now the # of bytes we need not copy to the stack
4216 because registers will take care of them. */
4218 if (partial != 0)
4219 xinner = adjust_address (xinner, BLKmode, used);
4221 /* If the partial register-part of the arg counts in its stack size,
4222 skip the part of stack space corresponding to the registers.
4223 Otherwise, start copying to the beginning of the stack space,
4224 by setting SKIP to 0. */
4225 skip = (reg_parm_stack_space == 0) ? 0 : used;
4227 #ifdef PUSH_ROUNDING
4228 /* Do it with several push insns if that doesn't take lots of insns
4229 and if there is no difficulty with push insns that skip bytes
4230 on the stack for alignment purposes. */
4231 if (args_addr == 0
4232 && PUSH_ARGS
4233 && CONST_INT_P (size)
4234 && skip == 0
4235 && MEM_ALIGN (xinner) >= align
4236 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4237 /* Here we avoid the case of a structure whose weak alignment
4238 forces many pushes of a small amount of data,
4239 and such small pushes do rounding that causes trouble. */
4240 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4241 || align >= BIGGEST_ALIGNMENT
4242 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4243 == (align / BITS_PER_UNIT)))
4244 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4246 /* Push padding now if padding above and stack grows down,
4247 or if padding below and stack grows up.
4248 But if space already allocated, this has already been done. */
4249 if (extra && args_addr == 0
4250 && where_pad != none && where_pad != stack_direction)
4251 anti_adjust_stack (GEN_INT (extra));
4253 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4255 else
4256 #endif /* PUSH_ROUNDING */
4258 rtx target;
4260 /* Otherwise make space on the stack and copy the data
4261 to the address of that space. */
4263 /* Deduct words put into registers from the size we must copy. */
4264 if (partial != 0)
4266 if (CONST_INT_P (size))
4267 size = GEN_INT (INTVAL (size) - used);
4268 else
4269 size = expand_binop (GET_MODE (size), sub_optab, size,
4270 gen_int_mode (used, GET_MODE (size)),
4271 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4274 /* Get the address of the stack space.
4275 In this case, we do not deal with EXTRA separately.
4276 A single stack adjust will do. */
4277 if (! args_addr)
4279 temp = push_block (size, extra, where_pad == downward);
4280 extra = 0;
4282 else if (CONST_INT_P (args_so_far))
4283 temp = memory_address (BLKmode,
4284 plus_constant (Pmode, args_addr,
4285 skip + INTVAL (args_so_far)));
4286 else
4287 temp = memory_address (BLKmode,
4288 plus_constant (Pmode,
4289 gen_rtx_PLUS (Pmode,
4290 args_addr,
4291 args_so_far),
4292 skip));
4294 if (!ACCUMULATE_OUTGOING_ARGS)
4296 /* If the source is referenced relative to the stack pointer,
4297 copy it to another register to stabilize it. We do not need
4298 to do this if we know that we won't be changing sp. */
4300 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4301 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4302 temp = copy_to_reg (temp);
4305 target = gen_rtx_MEM (BLKmode, temp);
4307 /* We do *not* set_mem_attributes here, because incoming arguments
4308 may overlap with sibling call outgoing arguments and we cannot
4309 allow reordering of reads from function arguments with stores
4310 to outgoing arguments of sibling calls. We do, however, want
4311 to record the alignment of the stack slot. */
4312 /* ALIGN may well be better aligned than TYPE, e.g. due to
4313 PARM_BOUNDARY. Assume the caller isn't lying. */
4314 set_mem_align (target, align);
4316 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4319 else if (partial > 0)
4321 /* Scalar partly in registers. */
4323 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4324 int i;
4325 int not_stack;
4326 /* # bytes of start of argument
4327 that we must make space for but need not store. */
4328 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4329 int args_offset = INTVAL (args_so_far);
4330 int skip;
4332 /* Push padding now if padding above and stack grows down,
4333 or if padding below and stack grows up.
4334 But if space already allocated, this has already been done. */
4335 if (extra && args_addr == 0
4336 && where_pad != none && where_pad != stack_direction)
4337 anti_adjust_stack (GEN_INT (extra));
4339 /* If we make space by pushing it, we might as well push
4340 the real data. Otherwise, we can leave OFFSET nonzero
4341 and leave the space uninitialized. */
4342 if (args_addr == 0)
4343 offset = 0;
4345 /* Now NOT_STACK gets the number of words that we don't need to
4346 allocate on the stack. Convert OFFSET to words too. */
4347 not_stack = (partial - offset) / UNITS_PER_WORD;
4348 offset /= UNITS_PER_WORD;
4350 /* If the partial register-part of the arg counts in its stack size,
4351 skip the part of stack space corresponding to the registers.
4352 Otherwise, start copying to the beginning of the stack space,
4353 by setting SKIP to 0. */
4354 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4356 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4357 x = validize_mem (force_const_mem (mode, x));
4359 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4360 SUBREGs of such registers are not allowed. */
4361 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4362 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4363 x = copy_to_reg (x);
4365 /* Loop over all the words allocated on the stack for this arg. */
4366 /* We can do it by words, because any scalar bigger than a word
4367 has a size a multiple of a word. */
4368 for (i = size - 1; i >= not_stack; i--)
4369 if (i >= not_stack + offset)
4370 emit_push_insn (operand_subword_force (x, i, mode),
4371 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4372 0, args_addr,
4373 GEN_INT (args_offset + ((i - not_stack + skip)
4374 * UNITS_PER_WORD)),
4375 reg_parm_stack_space, alignment_pad);
4377 else
4379 rtx addr;
4380 rtx dest;
4382 /* Push padding now if padding above and stack grows down,
4383 or if padding below and stack grows up.
4384 But if space already allocated, this has already been done. */
4385 if (extra && args_addr == 0
4386 && where_pad != none && where_pad != stack_direction)
4387 anti_adjust_stack (GEN_INT (extra));
4389 #ifdef PUSH_ROUNDING
4390 if (args_addr == 0 && PUSH_ARGS)
4391 emit_single_push_insn (mode, x, type);
4392 else
4393 #endif
4395 if (CONST_INT_P (args_so_far))
4396 addr
4397 = memory_address (mode,
4398 plus_constant (Pmode, args_addr,
4399 INTVAL (args_so_far)));
4400 else
4401 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4402 args_so_far));
4403 dest = gen_rtx_MEM (mode, addr);
4405 /* We do *not* set_mem_attributes here, because incoming arguments
4406 may overlap with sibling call outgoing arguments and we cannot
4407 allow reordering of reads from function arguments with stores
4408 to outgoing arguments of sibling calls. We do, however, want
4409 to record the alignment of the stack slot. */
4410 /* ALIGN may well be better aligned than TYPE, e.g. due to
4411 PARM_BOUNDARY. Assume the caller isn't lying. */
4412 set_mem_align (dest, align);
4414 emit_move_insn (dest, x);
4418 /* If part should go in registers, copy that part
4419 into the appropriate registers. Do this now, at the end,
4420 since mem-to-mem copies above may do function calls. */
4421 if (partial > 0 && reg != 0)
4423 /* Handle calls that pass values in multiple non-contiguous locations.
4424 The Irix 6 ABI has examples of this. */
4425 if (GET_CODE (reg) == PARALLEL)
4426 emit_group_load (reg, x, type, -1);
4427 else
4429 gcc_assert (partial % UNITS_PER_WORD == 0);
4430 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4434 if (extra && args_addr == 0 && where_pad == stack_direction)
4435 anti_adjust_stack (GEN_INT (extra));
4437 if (alignment_pad && args_addr == 0)
4438 anti_adjust_stack (alignment_pad);
4441 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4442 operations. */
4444 static rtx
4445 get_subtarget (rtx x)
4447 return (optimize
4448 || x == 0
4449 /* Only registers can be subtargets. */
4450 || !REG_P (x)
4451 /* Don't use hard regs to avoid extending their life. */
4452 || REGNO (x) < FIRST_PSEUDO_REGISTER
4453 ? 0 : x);
4456 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4457 FIELD is a bitfield. Returns true if the optimization was successful,
4458 and there's nothing else to do. */
4460 static bool
4461 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4462 unsigned HOST_WIDE_INT bitpos,
4463 unsigned HOST_WIDE_INT bitregion_start,
4464 unsigned HOST_WIDE_INT bitregion_end,
4465 machine_mode mode1, rtx str_rtx,
4466 tree to, tree src)
4468 machine_mode str_mode = GET_MODE (str_rtx);
4469 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4470 tree op0, op1;
4471 rtx value, result;
4472 optab binop;
4473 gimple srcstmt;
4474 enum tree_code code;
4476 if (mode1 != VOIDmode
4477 || bitsize >= BITS_PER_WORD
4478 || str_bitsize > BITS_PER_WORD
4479 || TREE_SIDE_EFFECTS (to)
4480 || TREE_THIS_VOLATILE (to))
4481 return false;
4483 STRIP_NOPS (src);
4484 if (TREE_CODE (src) != SSA_NAME)
4485 return false;
4486 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4487 return false;
4489 srcstmt = get_gimple_for_ssa_name (src);
4490 if (!srcstmt
4491 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4492 return false;
4494 code = gimple_assign_rhs_code (srcstmt);
4496 op0 = gimple_assign_rhs1 (srcstmt);
4498 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4499 to find its initialization. Hopefully the initialization will
4500 be from a bitfield load. */
4501 if (TREE_CODE (op0) == SSA_NAME)
4503 gimple op0stmt = get_gimple_for_ssa_name (op0);
4505 /* We want to eventually have OP0 be the same as TO, which
4506 should be a bitfield. */
4507 if (!op0stmt
4508 || !is_gimple_assign (op0stmt)
4509 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4510 return false;
4511 op0 = gimple_assign_rhs1 (op0stmt);
4514 op1 = gimple_assign_rhs2 (srcstmt);
4516 if (!operand_equal_p (to, op0, 0))
4517 return false;
4519 if (MEM_P (str_rtx))
4521 unsigned HOST_WIDE_INT offset1;
4523 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4524 str_mode = word_mode;
4525 str_mode = get_best_mode (bitsize, bitpos,
4526 bitregion_start, bitregion_end,
4527 MEM_ALIGN (str_rtx), str_mode, 0);
4528 if (str_mode == VOIDmode)
4529 return false;
4530 str_bitsize = GET_MODE_BITSIZE (str_mode);
4532 offset1 = bitpos;
4533 bitpos %= str_bitsize;
4534 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4535 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4537 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4538 return false;
4540 /* If the bit field covers the whole REG/MEM, store_field
4541 will likely generate better code. */
4542 if (bitsize >= str_bitsize)
4543 return false;
4545 /* We can't handle fields split across multiple entities. */
4546 if (bitpos + bitsize > str_bitsize)
4547 return false;
4549 if (BYTES_BIG_ENDIAN)
4550 bitpos = str_bitsize - bitpos - bitsize;
4552 switch (code)
4554 case PLUS_EXPR:
4555 case MINUS_EXPR:
4556 /* For now, just optimize the case of the topmost bitfield
4557 where we don't need to do any masking and also
4558 1 bit bitfields where xor can be used.
4559 We might win by one instruction for the other bitfields
4560 too if insv/extv instructions aren't used, so that
4561 can be added later. */
4562 if (bitpos + bitsize != str_bitsize
4563 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4564 break;
4566 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4567 value = convert_modes (str_mode,
4568 TYPE_MODE (TREE_TYPE (op1)), value,
4569 TYPE_UNSIGNED (TREE_TYPE (op1)));
4571 /* We may be accessing data outside the field, which means
4572 we can alias adjacent data. */
4573 if (MEM_P (str_rtx))
4575 str_rtx = shallow_copy_rtx (str_rtx);
4576 set_mem_alias_set (str_rtx, 0);
4577 set_mem_expr (str_rtx, 0);
4580 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4581 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4583 value = expand_and (str_mode, value, const1_rtx, NULL);
4584 binop = xor_optab;
4586 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4587 result = expand_binop (str_mode, binop, str_rtx,
4588 value, str_rtx, 1, OPTAB_WIDEN);
4589 if (result != str_rtx)
4590 emit_move_insn (str_rtx, result);
4591 return true;
4593 case BIT_IOR_EXPR:
4594 case BIT_XOR_EXPR:
4595 if (TREE_CODE (op1) != INTEGER_CST)
4596 break;
4597 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4598 value = convert_modes (str_mode,
4599 TYPE_MODE (TREE_TYPE (op1)), value,
4600 TYPE_UNSIGNED (TREE_TYPE (op1)));
4602 /* We may be accessing data outside the field, which means
4603 we can alias adjacent data. */
4604 if (MEM_P (str_rtx))
4606 str_rtx = shallow_copy_rtx (str_rtx);
4607 set_mem_alias_set (str_rtx, 0);
4608 set_mem_expr (str_rtx, 0);
4611 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4612 if (bitpos + bitsize != str_bitsize)
4614 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4615 str_mode);
4616 value = expand_and (str_mode, value, mask, NULL_RTX);
4618 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4619 result = expand_binop (str_mode, binop, str_rtx,
4620 value, str_rtx, 1, OPTAB_WIDEN);
4621 if (result != str_rtx)
4622 emit_move_insn (str_rtx, result);
4623 return true;
4625 default:
4626 break;
4629 return false;
4632 /* In the C++ memory model, consecutive bit fields in a structure are
4633 considered one memory location.
4635 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4636 returns the bit range of consecutive bits in which this COMPONENT_REF
4637 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4638 and *OFFSET may be adjusted in the process.
4640 If the access does not need to be restricted, 0 is returned in both
4641 *BITSTART and *BITEND. */
4643 static void
4644 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4645 unsigned HOST_WIDE_INT *bitend,
4646 tree exp,
4647 HOST_WIDE_INT *bitpos,
4648 tree *offset)
4650 HOST_WIDE_INT bitoffset;
4651 tree field, repr;
4653 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4655 field = TREE_OPERAND (exp, 1);
4656 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4657 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4658 need to limit the range we can access. */
4659 if (!repr)
4661 *bitstart = *bitend = 0;
4662 return;
4665 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4666 part of a larger bit field, then the representative does not serve any
4667 useful purpose. This can occur in Ada. */
4668 if (handled_component_p (TREE_OPERAND (exp, 0)))
4670 machine_mode rmode;
4671 HOST_WIDE_INT rbitsize, rbitpos;
4672 tree roffset;
4673 int unsignedp;
4674 int volatilep = 0;
4675 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4676 &roffset, &rmode, &unsignedp, &volatilep, false);
4677 if ((rbitpos % BITS_PER_UNIT) != 0)
4679 *bitstart = *bitend = 0;
4680 return;
4684 /* Compute the adjustment to bitpos from the offset of the field
4685 relative to the representative. DECL_FIELD_OFFSET of field and
4686 repr are the same by construction if they are not constants,
4687 see finish_bitfield_layout. */
4688 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4689 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4690 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4691 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4692 else
4693 bitoffset = 0;
4694 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4695 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4697 /* If the adjustment is larger than bitpos, we would have a negative bit
4698 position for the lower bound and this may wreak havoc later. Adjust
4699 offset and bitpos to make the lower bound non-negative in that case. */
4700 if (bitoffset > *bitpos)
4702 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4703 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4705 *bitpos += adjust;
4706 if (*offset == NULL_TREE)
4707 *offset = size_int (-adjust / BITS_PER_UNIT);
4708 else
4709 *offset
4710 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4711 *bitstart = 0;
4713 else
4714 *bitstart = *bitpos - bitoffset;
4716 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4719 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4720 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4721 DECL_RTL was not set yet, return NORTL. */
4723 static inline bool
4724 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4726 if (TREE_CODE (addr) != ADDR_EXPR)
4727 return false;
4729 tree base = TREE_OPERAND (addr, 0);
4731 if (!DECL_P (base)
4732 || TREE_ADDRESSABLE (base)
4733 || DECL_MODE (base) == BLKmode)
4734 return false;
4736 if (!DECL_RTL_SET_P (base))
4737 return nortl;
4739 return (!MEM_P (DECL_RTL (base)));
4742 /* Returns true if the MEM_REF REF refers to an object that does not
4743 reside in memory and has non-BLKmode. */
4745 static inline bool
4746 mem_ref_refers_to_non_mem_p (tree ref)
4748 tree base = TREE_OPERAND (ref, 0);
4749 return addr_expr_of_non_mem_decl_p_1 (base, false);
4752 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4753 is true, try generating a nontemporal store. */
4755 void
4756 expand_assignment (tree to, tree from, bool nontemporal)
4758 rtx to_rtx = 0;
4759 rtx result;
4760 machine_mode mode;
4761 unsigned int align;
4762 enum insn_code icode;
4764 /* Don't crash if the lhs of the assignment was erroneous. */
4765 if (TREE_CODE (to) == ERROR_MARK)
4767 expand_normal (from);
4768 return;
4771 /* Optimize away no-op moves without side-effects. */
4772 if (operand_equal_p (to, from, 0))
4773 return;
4775 /* Handle misaligned stores. */
4776 mode = TYPE_MODE (TREE_TYPE (to));
4777 if ((TREE_CODE (to) == MEM_REF
4778 || TREE_CODE (to) == TARGET_MEM_REF)
4779 && mode != BLKmode
4780 && !mem_ref_refers_to_non_mem_p (to)
4781 && ((align = get_object_alignment (to))
4782 < GET_MODE_ALIGNMENT (mode))
4783 && (((icode = optab_handler (movmisalign_optab, mode))
4784 != CODE_FOR_nothing)
4785 || SLOW_UNALIGNED_ACCESS (mode, align)))
4787 rtx reg, mem;
4789 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4790 reg = force_not_mem (reg);
4791 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4793 if (icode != CODE_FOR_nothing)
4795 struct expand_operand ops[2];
4797 create_fixed_operand (&ops[0], mem);
4798 create_input_operand (&ops[1], reg, mode);
4799 /* The movmisalign<mode> pattern cannot fail, else the assignment
4800 would silently be omitted. */
4801 expand_insn (icode, 2, ops);
4803 else
4804 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4805 return;
4808 /* Assignment of a structure component needs special treatment
4809 if the structure component's rtx is not simply a MEM.
4810 Assignment of an array element at a constant index, and assignment of
4811 an array element in an unaligned packed structure field, has the same
4812 problem. Same for (partially) storing into a non-memory object. */
4813 if (handled_component_p (to)
4814 || (TREE_CODE (to) == MEM_REF
4815 && mem_ref_refers_to_non_mem_p (to))
4816 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4818 machine_mode mode1;
4819 HOST_WIDE_INT bitsize, bitpos;
4820 unsigned HOST_WIDE_INT bitregion_start = 0;
4821 unsigned HOST_WIDE_INT bitregion_end = 0;
4822 tree offset;
4823 int unsignedp;
4824 int volatilep = 0;
4825 tree tem;
4827 push_temp_slots ();
4828 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4829 &unsignedp, &volatilep, true);
4831 /* Make sure bitpos is not negative, it can wreak havoc later. */
4832 if (bitpos < 0)
4834 gcc_assert (offset == NULL_TREE);
4835 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4836 ? 3 : exact_log2 (BITS_PER_UNIT)));
4837 bitpos &= BITS_PER_UNIT - 1;
4840 if (TREE_CODE (to) == COMPONENT_REF
4841 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4842 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4843 /* The C++ memory model naturally applies to byte-aligned fields.
4844 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4845 BITSIZE are not byte-aligned, there is no need to limit the range
4846 we can access. This can occur with packed structures in Ada. */
4847 else if (bitsize > 0
4848 && bitsize % BITS_PER_UNIT == 0
4849 && bitpos % BITS_PER_UNIT == 0)
4851 bitregion_start = bitpos;
4852 bitregion_end = bitpos + bitsize - 1;
4855 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4857 /* If the field has a mode, we want to access it in the
4858 field's mode, not the computed mode.
4859 If a MEM has VOIDmode (external with incomplete type),
4860 use BLKmode for it instead. */
4861 if (MEM_P (to_rtx))
4863 if (mode1 != VOIDmode)
4864 to_rtx = adjust_address (to_rtx, mode1, 0);
4865 else if (GET_MODE (to_rtx) == VOIDmode)
4866 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4869 if (offset != 0)
4871 machine_mode address_mode;
4872 rtx offset_rtx;
4874 if (!MEM_P (to_rtx))
4876 /* We can get constant negative offsets into arrays with broken
4877 user code. Translate this to a trap instead of ICEing. */
4878 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4879 expand_builtin_trap ();
4880 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4883 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4884 address_mode = get_address_mode (to_rtx);
4885 if (GET_MODE (offset_rtx) != address_mode)
4887 /* We cannot be sure that the RTL in offset_rtx is valid outside
4888 of a memory address context, so force it into a register
4889 before attempting to convert it to the desired mode. */
4890 offset_rtx = force_operand (offset_rtx, NULL_RTX);
4891 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4894 /* If we have an expression in OFFSET_RTX and a non-zero
4895 byte offset in BITPOS, adding the byte offset before the
4896 OFFSET_RTX results in better intermediate code, which makes
4897 later rtl optimization passes perform better.
4899 We prefer intermediate code like this:
4901 r124:DI=r123:DI+0x18
4902 [r124:DI]=r121:DI
4904 ... instead of ...
4906 r124:DI=r123:DI+0x10
4907 [r124:DI+0x8]=r121:DI
4909 This is only done for aligned data values, as these can
4910 be expected to result in single move instructions. */
4911 if (mode1 != VOIDmode
4912 && bitpos != 0
4913 && bitsize > 0
4914 && (bitpos % bitsize) == 0
4915 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4916 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
4918 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4919 bitregion_start = 0;
4920 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4921 bitregion_end -= bitpos;
4922 bitpos = 0;
4925 to_rtx = offset_address (to_rtx, offset_rtx,
4926 highest_pow2_factor_for_target (to,
4927 offset));
4930 /* No action is needed if the target is not a memory and the field
4931 lies completely outside that target. This can occur if the source
4932 code contains an out-of-bounds access to a small array. */
4933 if (!MEM_P (to_rtx)
4934 && GET_MODE (to_rtx) != BLKmode
4935 && (unsigned HOST_WIDE_INT) bitpos
4936 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4938 expand_normal (from);
4939 result = NULL;
4941 /* Handle expand_expr of a complex value returning a CONCAT. */
4942 else if (GET_CODE (to_rtx) == CONCAT)
4944 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4945 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4946 && bitpos == 0
4947 && bitsize == mode_bitsize)
4948 result = store_expr (from, to_rtx, false, nontemporal);
4949 else if (bitsize == mode_bitsize / 2
4950 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4951 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4952 nontemporal);
4953 else if (bitpos + bitsize <= mode_bitsize / 2)
4954 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4955 bitregion_start, bitregion_end,
4956 mode1, from,
4957 get_alias_set (to), nontemporal);
4958 else if (bitpos >= mode_bitsize / 2)
4959 result = store_field (XEXP (to_rtx, 1), bitsize,
4960 bitpos - mode_bitsize / 2,
4961 bitregion_start, bitregion_end,
4962 mode1, from,
4963 get_alias_set (to), nontemporal);
4964 else if (bitpos == 0 && bitsize == mode_bitsize)
4966 rtx from_rtx;
4967 result = expand_normal (from);
4968 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4969 TYPE_MODE (TREE_TYPE (from)), 0);
4970 emit_move_insn (XEXP (to_rtx, 0),
4971 read_complex_part (from_rtx, false));
4972 emit_move_insn (XEXP (to_rtx, 1),
4973 read_complex_part (from_rtx, true));
4975 else
4977 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4978 GET_MODE_SIZE (GET_MODE (to_rtx)));
4979 write_complex_part (temp, XEXP (to_rtx, 0), false);
4980 write_complex_part (temp, XEXP (to_rtx, 1), true);
4981 result = store_field (temp, bitsize, bitpos,
4982 bitregion_start, bitregion_end,
4983 mode1, from,
4984 get_alias_set (to), nontemporal);
4985 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4986 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4989 else
4991 if (MEM_P (to_rtx))
4993 /* If the field is at offset zero, we could have been given the
4994 DECL_RTX of the parent struct. Don't munge it. */
4995 to_rtx = shallow_copy_rtx (to_rtx);
4996 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4997 if (volatilep)
4998 MEM_VOLATILE_P (to_rtx) = 1;
5001 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5002 bitregion_start, bitregion_end,
5003 mode1,
5004 to_rtx, to, from))
5005 result = NULL;
5006 else
5007 result = store_field (to_rtx, bitsize, bitpos,
5008 bitregion_start, bitregion_end,
5009 mode1, from,
5010 get_alias_set (to), nontemporal);
5013 if (result)
5014 preserve_temp_slots (result);
5015 pop_temp_slots ();
5016 return;
5019 /* If the rhs is a function call and its value is not an aggregate,
5020 call the function before we start to compute the lhs.
5021 This is needed for correct code for cases such as
5022 val = setjmp (buf) on machines where reference to val
5023 requires loading up part of an address in a separate insn.
5025 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5026 since it might be a promoted variable where the zero- or sign- extension
5027 needs to be done. Handling this in the normal way is safe because no
5028 computation is done before the call. The same is true for SSA names. */
5029 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5030 && COMPLETE_TYPE_P (TREE_TYPE (from))
5031 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5032 && ! (((TREE_CODE (to) == VAR_DECL
5033 || TREE_CODE (to) == PARM_DECL
5034 || TREE_CODE (to) == RESULT_DECL)
5035 && REG_P (DECL_RTL (to)))
5036 || TREE_CODE (to) == SSA_NAME))
5038 rtx value;
5039 rtx bounds;
5041 push_temp_slots ();
5042 value = expand_normal (from);
5044 /* Split value and bounds to store them separately. */
5045 chkp_split_slot (value, &value, &bounds);
5047 if (to_rtx == 0)
5048 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5050 /* Handle calls that return values in multiple non-contiguous locations.
5051 The Irix 6 ABI has examples of this. */
5052 if (GET_CODE (to_rtx) == PARALLEL)
5054 if (GET_CODE (value) == PARALLEL)
5055 emit_group_move (to_rtx, value);
5056 else
5057 emit_group_load (to_rtx, value, TREE_TYPE (from),
5058 int_size_in_bytes (TREE_TYPE (from)));
5060 else if (GET_CODE (value) == PARALLEL)
5061 emit_group_store (to_rtx, value, TREE_TYPE (from),
5062 int_size_in_bytes (TREE_TYPE (from)));
5063 else if (GET_MODE (to_rtx) == BLKmode)
5065 /* Handle calls that return BLKmode values in registers. */
5066 if (REG_P (value))
5067 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5068 else
5069 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5071 else
5073 if (POINTER_TYPE_P (TREE_TYPE (to)))
5074 value = convert_memory_address_addr_space
5075 (GET_MODE (to_rtx), value,
5076 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5078 emit_move_insn (to_rtx, value);
5081 /* Store bounds if required. */
5082 if (bounds
5083 && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
5085 gcc_assert (MEM_P (to_rtx));
5086 chkp_emit_bounds_store (bounds, value, to_rtx);
5089 preserve_temp_slots (to_rtx);
5090 pop_temp_slots ();
5091 return;
5094 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5095 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5097 /* Don't move directly into a return register. */
5098 if (TREE_CODE (to) == RESULT_DECL
5099 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5101 rtx temp;
5103 push_temp_slots ();
5105 /* If the source is itself a return value, it still is in a pseudo at
5106 this point so we can move it back to the return register directly. */
5107 if (REG_P (to_rtx)
5108 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5109 && TREE_CODE (from) != CALL_EXPR)
5110 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5111 else
5112 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5114 /* Handle calls that return values in multiple non-contiguous locations.
5115 The Irix 6 ABI has examples of this. */
5116 if (GET_CODE (to_rtx) == PARALLEL)
5118 if (GET_CODE (temp) == PARALLEL)
5119 emit_group_move (to_rtx, temp);
5120 else
5121 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5122 int_size_in_bytes (TREE_TYPE (from)));
5124 else if (temp)
5125 emit_move_insn (to_rtx, temp);
5127 preserve_temp_slots (to_rtx);
5128 pop_temp_slots ();
5129 return;
5132 /* In case we are returning the contents of an object which overlaps
5133 the place the value is being stored, use a safe function when copying
5134 a value through a pointer into a structure value return block. */
5135 if (TREE_CODE (to) == RESULT_DECL
5136 && TREE_CODE (from) == INDIRECT_REF
5137 && ADDR_SPACE_GENERIC_P
5138 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5139 && refs_may_alias_p (to, from)
5140 && cfun->returns_struct
5141 && !cfun->returns_pcc_struct)
5143 rtx from_rtx, size;
5145 push_temp_slots ();
5146 size = expr_size (from);
5147 from_rtx = expand_normal (from);
5149 emit_library_call (memmove_libfunc, LCT_NORMAL,
5150 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5151 XEXP (from_rtx, 0), Pmode,
5152 convert_to_mode (TYPE_MODE (sizetype),
5153 size, TYPE_UNSIGNED (sizetype)),
5154 TYPE_MODE (sizetype));
5156 preserve_temp_slots (to_rtx);
5157 pop_temp_slots ();
5158 return;
5161 /* Compute FROM and store the value in the rtx we got. */
5163 push_temp_slots ();
5164 result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, to);
5165 preserve_temp_slots (result);
5166 pop_temp_slots ();
5167 return;
5170 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5171 succeeded, false otherwise. */
5173 bool
5174 emit_storent_insn (rtx to, rtx from)
5176 struct expand_operand ops[2];
5177 machine_mode mode = GET_MODE (to);
5178 enum insn_code code = optab_handler (storent_optab, mode);
5180 if (code == CODE_FOR_nothing)
5181 return false;
5183 create_fixed_operand (&ops[0], to);
5184 create_input_operand (&ops[1], from, mode);
5185 return maybe_expand_insn (code, 2, ops);
5188 /* Generate code for computing expression EXP,
5189 and storing the value into TARGET.
5191 If the mode is BLKmode then we may return TARGET itself.
5192 It turns out that in BLKmode it doesn't cause a problem.
5193 because C has no operators that could combine two different
5194 assignments into the same BLKmode object with different values
5195 with no sequence point. Will other languages need this to
5196 be more thorough?
5198 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5199 stack, and block moves may need to be treated specially.
5201 If NONTEMPORAL is true, try using a nontemporal store instruction.
5203 If BTARGET is not NULL then computed bounds of EXP are
5204 associated with BTARGET. */
5207 store_expr_with_bounds (tree exp, rtx target, int call_param_p,
5208 bool nontemporal, tree btarget)
5210 rtx temp;
5211 rtx alt_rtl = NULL_RTX;
5212 location_t loc = curr_insn_location ();
5214 if (VOID_TYPE_P (TREE_TYPE (exp)))
5216 /* C++ can generate ?: expressions with a throw expression in one
5217 branch and an rvalue in the other. Here, we resolve attempts to
5218 store the throw expression's nonexistent result. */
5219 gcc_assert (!call_param_p);
5220 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5221 return NULL_RTX;
5223 if (TREE_CODE (exp) == COMPOUND_EXPR)
5225 /* Perform first part of compound expression, then assign from second
5226 part. */
5227 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5228 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5229 return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
5230 call_param_p, nontemporal, btarget);
5232 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5234 /* For conditional expression, get safe form of the target. Then
5235 test the condition, doing the appropriate assignment on either
5236 side. This avoids the creation of unnecessary temporaries.
5237 For non-BLKmode, it is more efficient not to do this. */
5239 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5241 do_pending_stack_adjust ();
5242 NO_DEFER_POP;
5243 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5244 store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
5245 nontemporal, btarget);
5246 emit_jump_insn (gen_jump (lab2));
5247 emit_barrier ();
5248 emit_label (lab1);
5249 store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
5250 nontemporal, btarget);
5251 emit_label (lab2);
5252 OK_DEFER_POP;
5254 return NULL_RTX;
5256 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5257 /* If this is a scalar in a register that is stored in a wider mode
5258 than the declared mode, compute the result into its declared mode
5259 and then convert to the wider mode. Our value is the computed
5260 expression. */
5262 rtx inner_target = 0;
5264 /* We can do the conversion inside EXP, which will often result
5265 in some optimizations. Do the conversion in two steps: first
5266 change the signedness, if needed, then the extend. But don't
5267 do this if the type of EXP is a subtype of something else
5268 since then the conversion might involve more than just
5269 converting modes. */
5270 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5271 && TREE_TYPE (TREE_TYPE (exp)) == 0
5272 && GET_MODE_PRECISION (GET_MODE (target))
5273 == TYPE_PRECISION (TREE_TYPE (exp)))
5275 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5276 TYPE_UNSIGNED (TREE_TYPE (exp))))
5278 /* Some types, e.g. Fortran's logical*4, won't have a signed
5279 version, so use the mode instead. */
5280 tree ntype
5281 = (signed_or_unsigned_type_for
5282 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5283 if (ntype == NULL)
5284 ntype = lang_hooks.types.type_for_mode
5285 (TYPE_MODE (TREE_TYPE (exp)),
5286 SUBREG_PROMOTED_SIGN (target));
5288 exp = fold_convert_loc (loc, ntype, exp);
5291 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5292 (GET_MODE (SUBREG_REG (target)),
5293 SUBREG_PROMOTED_SIGN (target)),
5294 exp);
5296 inner_target = SUBREG_REG (target);
5299 temp = expand_expr (exp, inner_target, VOIDmode,
5300 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5302 /* Handle bounds returned by call. */
5303 if (TREE_CODE (exp) == CALL_EXPR)
5305 rtx bounds;
5306 chkp_split_slot (temp, &temp, &bounds);
5307 if (bounds && btarget)
5309 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5310 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5311 chkp_set_rtl_bounds (btarget, tmp);
5315 /* If TEMP is a VOIDmode constant, use convert_modes to make
5316 sure that we properly convert it. */
5317 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5319 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5320 temp, SUBREG_PROMOTED_SIGN (target));
5321 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5322 GET_MODE (target), temp,
5323 SUBREG_PROMOTED_SIGN (target));
5326 convert_move (SUBREG_REG (target), temp,
5327 SUBREG_PROMOTED_SIGN (target));
5329 return NULL_RTX;
5331 else if ((TREE_CODE (exp) == STRING_CST
5332 || (TREE_CODE (exp) == MEM_REF
5333 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5334 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5335 == STRING_CST
5336 && integer_zerop (TREE_OPERAND (exp, 1))))
5337 && !nontemporal && !call_param_p
5338 && MEM_P (target))
5340 /* Optimize initialization of an array with a STRING_CST. */
5341 HOST_WIDE_INT exp_len, str_copy_len;
5342 rtx dest_mem;
5343 tree str = TREE_CODE (exp) == STRING_CST
5344 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5346 exp_len = int_expr_size (exp);
5347 if (exp_len <= 0)
5348 goto normal_expr;
5350 if (TREE_STRING_LENGTH (str) <= 0)
5351 goto normal_expr;
5353 str_copy_len = strlen (TREE_STRING_POINTER (str));
5354 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5355 goto normal_expr;
5357 str_copy_len = TREE_STRING_LENGTH (str);
5358 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5359 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5361 str_copy_len += STORE_MAX_PIECES - 1;
5362 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5364 str_copy_len = MIN (str_copy_len, exp_len);
5365 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5366 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5367 MEM_ALIGN (target), false))
5368 goto normal_expr;
5370 dest_mem = target;
5372 dest_mem = store_by_pieces (dest_mem,
5373 str_copy_len, builtin_strncpy_read_str,
5374 CONST_CAST (char *,
5375 TREE_STRING_POINTER (str)),
5376 MEM_ALIGN (target), false,
5377 exp_len > str_copy_len ? 1 : 0);
5378 if (exp_len > str_copy_len)
5379 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5380 GEN_INT (exp_len - str_copy_len),
5381 BLOCK_OP_NORMAL);
5382 return NULL_RTX;
5384 else
5386 rtx tmp_target;
5388 normal_expr:
5389 /* If we want to use a nontemporal store, force the value to
5390 register first. */
5391 tmp_target = nontemporal ? NULL_RTX : target;
5392 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5393 (call_param_p
5394 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5395 &alt_rtl, false);
5397 /* Handle bounds returned by call. */
5398 if (TREE_CODE (exp) == CALL_EXPR)
5400 rtx bounds;
5401 chkp_split_slot (temp, &temp, &bounds);
5402 if (bounds && btarget)
5404 gcc_assert (TREE_CODE (btarget) == SSA_NAME);
5405 rtx tmp = targetm.calls.load_returned_bounds (bounds);
5406 chkp_set_rtl_bounds (btarget, tmp);
5411 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5412 the same as that of TARGET, adjust the constant. This is needed, for
5413 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5414 only a word-sized value. */
5415 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5416 && TREE_CODE (exp) != ERROR_MARK
5417 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5418 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5419 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5421 /* If value was not generated in the target, store it there.
5422 Convert the value to TARGET's type first if necessary and emit the
5423 pending incrementations that have been queued when expanding EXP.
5424 Note that we cannot emit the whole queue blindly because this will
5425 effectively disable the POST_INC optimization later.
5427 If TEMP and TARGET compare equal according to rtx_equal_p, but
5428 one or both of them are volatile memory refs, we have to distinguish
5429 two cases:
5430 - expand_expr has used TARGET. In this case, we must not generate
5431 another copy. This can be detected by TARGET being equal according
5432 to == .
5433 - expand_expr has not used TARGET - that means that the source just
5434 happens to have the same RTX form. Since temp will have been created
5435 by expand_expr, it will compare unequal according to == .
5436 We must generate a copy in this case, to reach the correct number
5437 of volatile memory references. */
5439 if ((! rtx_equal_p (temp, target)
5440 || (temp != target && (side_effects_p (temp)
5441 || side_effects_p (target))))
5442 && TREE_CODE (exp) != ERROR_MARK
5443 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5444 but TARGET is not valid memory reference, TEMP will differ
5445 from TARGET although it is really the same location. */
5446 && !(alt_rtl
5447 && rtx_equal_p (alt_rtl, target)
5448 && !side_effects_p (alt_rtl)
5449 && !side_effects_p (target))
5450 /* If there's nothing to copy, don't bother. Don't call
5451 expr_size unless necessary, because some front-ends (C++)
5452 expr_size-hook must not be given objects that are not
5453 supposed to be bit-copied or bit-initialized. */
5454 && expr_size (exp) != const0_rtx)
5456 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5458 if (GET_MODE (target) == BLKmode)
5460 /* Handle calls that return BLKmode values in registers. */
5461 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5462 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5463 else
5464 store_bit_field (target,
5465 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5466 0, 0, 0, GET_MODE (temp), temp);
5468 else
5469 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5472 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5474 /* Handle copying a string constant into an array. The string
5475 constant may be shorter than the array. So copy just the string's
5476 actual length, and clear the rest. First get the size of the data
5477 type of the string, which is actually the size of the target. */
5478 rtx size = expr_size (exp);
5480 if (CONST_INT_P (size)
5481 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5482 emit_block_move (target, temp, size,
5483 (call_param_p
5484 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5485 else
5487 machine_mode pointer_mode
5488 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5489 machine_mode address_mode = get_address_mode (target);
5491 /* Compute the size of the data to copy from the string. */
5492 tree copy_size
5493 = size_binop_loc (loc, MIN_EXPR,
5494 make_tree (sizetype, size),
5495 size_int (TREE_STRING_LENGTH (exp)));
5496 rtx copy_size_rtx
5497 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5498 (call_param_p
5499 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5500 rtx_code_label *label = 0;
5502 /* Copy that much. */
5503 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5504 TYPE_UNSIGNED (sizetype));
5505 emit_block_move (target, temp, copy_size_rtx,
5506 (call_param_p
5507 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5509 /* Figure out how much is left in TARGET that we have to clear.
5510 Do all calculations in pointer_mode. */
5511 if (CONST_INT_P (copy_size_rtx))
5513 size = plus_constant (address_mode, size,
5514 -INTVAL (copy_size_rtx));
5515 target = adjust_address (target, BLKmode,
5516 INTVAL (copy_size_rtx));
5518 else
5520 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5521 copy_size_rtx, NULL_RTX, 0,
5522 OPTAB_LIB_WIDEN);
5524 if (GET_MODE (copy_size_rtx) != address_mode)
5525 copy_size_rtx = convert_to_mode (address_mode,
5526 copy_size_rtx,
5527 TYPE_UNSIGNED (sizetype));
5529 target = offset_address (target, copy_size_rtx,
5530 highest_pow2_factor (copy_size));
5531 label = gen_label_rtx ();
5532 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5533 GET_MODE (size), 0, label);
5536 if (size != const0_rtx)
5537 clear_storage (target, size, BLOCK_OP_NORMAL);
5539 if (label)
5540 emit_label (label);
5543 /* Handle calls that return values in multiple non-contiguous locations.
5544 The Irix 6 ABI has examples of this. */
5545 else if (GET_CODE (target) == PARALLEL)
5547 if (GET_CODE (temp) == PARALLEL)
5548 emit_group_move (target, temp);
5549 else
5550 emit_group_load (target, temp, TREE_TYPE (exp),
5551 int_size_in_bytes (TREE_TYPE (exp)));
5553 else if (GET_CODE (temp) == PARALLEL)
5554 emit_group_store (target, temp, TREE_TYPE (exp),
5555 int_size_in_bytes (TREE_TYPE (exp)));
5556 else if (GET_MODE (temp) == BLKmode)
5557 emit_block_move (target, temp, expr_size (exp),
5558 (call_param_p
5559 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5560 /* If we emit a nontemporal store, there is nothing else to do. */
5561 else if (nontemporal && emit_storent_insn (target, temp))
5563 else
5565 temp = force_operand (temp, target);
5566 if (temp != target)
5567 emit_move_insn (target, temp);
5571 return NULL_RTX;
5574 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5576 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5578 return store_expr_with_bounds (exp, target, call_param_p, nontemporal, NULL);
5581 /* Return true if field F of structure TYPE is a flexible array. */
5583 static bool
5584 flexible_array_member_p (const_tree f, const_tree type)
5586 const_tree tf;
5588 tf = TREE_TYPE (f);
5589 return (DECL_CHAIN (f) == NULL
5590 && TREE_CODE (tf) == ARRAY_TYPE
5591 && TYPE_DOMAIN (tf)
5592 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5593 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5594 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5595 && int_size_in_bytes (type) >= 0);
5598 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5599 must have in order for it to completely initialize a value of type TYPE.
5600 Return -1 if the number isn't known.
5602 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5604 static HOST_WIDE_INT
5605 count_type_elements (const_tree type, bool for_ctor_p)
5607 switch (TREE_CODE (type))
5609 case ARRAY_TYPE:
5611 tree nelts;
5613 nelts = array_type_nelts (type);
5614 if (nelts && tree_fits_uhwi_p (nelts))
5616 unsigned HOST_WIDE_INT n;
5618 n = tree_to_uhwi (nelts) + 1;
5619 if (n == 0 || for_ctor_p)
5620 return n;
5621 else
5622 return n * count_type_elements (TREE_TYPE (type), false);
5624 return for_ctor_p ? -1 : 1;
5627 case RECORD_TYPE:
5629 unsigned HOST_WIDE_INT n;
5630 tree f;
5632 n = 0;
5633 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5634 if (TREE_CODE (f) == FIELD_DECL)
5636 if (!for_ctor_p)
5637 n += count_type_elements (TREE_TYPE (f), false);
5638 else if (!flexible_array_member_p (f, type))
5639 /* Don't count flexible arrays, which are not supposed
5640 to be initialized. */
5641 n += 1;
5644 return n;
5647 case UNION_TYPE:
5648 case QUAL_UNION_TYPE:
5650 tree f;
5651 HOST_WIDE_INT n, m;
5653 gcc_assert (!for_ctor_p);
5654 /* Estimate the number of scalars in each field and pick the
5655 maximum. Other estimates would do instead; the idea is simply
5656 to make sure that the estimate is not sensitive to the ordering
5657 of the fields. */
5658 n = 1;
5659 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5660 if (TREE_CODE (f) == FIELD_DECL)
5662 m = count_type_elements (TREE_TYPE (f), false);
5663 /* If the field doesn't span the whole union, add an extra
5664 scalar for the rest. */
5665 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5666 TYPE_SIZE (type)) != 1)
5667 m++;
5668 if (n < m)
5669 n = m;
5671 return n;
5674 case COMPLEX_TYPE:
5675 return 2;
5677 case VECTOR_TYPE:
5678 return TYPE_VECTOR_SUBPARTS (type);
5680 case INTEGER_TYPE:
5681 case REAL_TYPE:
5682 case FIXED_POINT_TYPE:
5683 case ENUMERAL_TYPE:
5684 case BOOLEAN_TYPE:
5685 case POINTER_TYPE:
5686 case OFFSET_TYPE:
5687 case REFERENCE_TYPE:
5688 case NULLPTR_TYPE:
5689 return 1;
5691 case ERROR_MARK:
5692 return 0;
5694 case VOID_TYPE:
5695 case METHOD_TYPE:
5696 case FUNCTION_TYPE:
5697 case LANG_TYPE:
5698 default:
5699 gcc_unreachable ();
5703 /* Helper for categorize_ctor_elements. Identical interface. */
5705 static bool
5706 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5707 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5709 unsigned HOST_WIDE_INT idx;
5710 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5711 tree value, purpose, elt_type;
5713 /* Whether CTOR is a valid constant initializer, in accordance with what
5714 initializer_constant_valid_p does. If inferred from the constructor
5715 elements, true until proven otherwise. */
5716 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5717 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5719 nz_elts = 0;
5720 init_elts = 0;
5721 num_fields = 0;
5722 elt_type = NULL_TREE;
5724 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5726 HOST_WIDE_INT mult = 1;
5728 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5730 tree lo_index = TREE_OPERAND (purpose, 0);
5731 tree hi_index = TREE_OPERAND (purpose, 1);
5733 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5734 mult = (tree_to_uhwi (hi_index)
5735 - tree_to_uhwi (lo_index) + 1);
5737 num_fields += mult;
5738 elt_type = TREE_TYPE (value);
5740 switch (TREE_CODE (value))
5742 case CONSTRUCTOR:
5744 HOST_WIDE_INT nz = 0, ic = 0;
5746 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5747 p_complete);
5749 nz_elts += mult * nz;
5750 init_elts += mult * ic;
5752 if (const_from_elts_p && const_p)
5753 const_p = const_elt_p;
5755 break;
5757 case INTEGER_CST:
5758 case REAL_CST:
5759 case FIXED_CST:
5760 if (!initializer_zerop (value))
5761 nz_elts += mult;
5762 init_elts += mult;
5763 break;
5765 case STRING_CST:
5766 nz_elts += mult * TREE_STRING_LENGTH (value);
5767 init_elts += mult * TREE_STRING_LENGTH (value);
5768 break;
5770 case COMPLEX_CST:
5771 if (!initializer_zerop (TREE_REALPART (value)))
5772 nz_elts += mult;
5773 if (!initializer_zerop (TREE_IMAGPART (value)))
5774 nz_elts += mult;
5775 init_elts += mult;
5776 break;
5778 case VECTOR_CST:
5780 unsigned i;
5781 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5783 tree v = VECTOR_CST_ELT (value, i);
5784 if (!initializer_zerop (v))
5785 nz_elts += mult;
5786 init_elts += mult;
5789 break;
5791 default:
5793 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5794 nz_elts += mult * tc;
5795 init_elts += mult * tc;
5797 if (const_from_elts_p && const_p)
5798 const_p = initializer_constant_valid_p (value, elt_type)
5799 != NULL_TREE;
5801 break;
5805 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5806 num_fields, elt_type))
5807 *p_complete = false;
5809 *p_nz_elts += nz_elts;
5810 *p_init_elts += init_elts;
5812 return const_p;
5815 /* Examine CTOR to discover:
5816 * how many scalar fields are set to nonzero values,
5817 and place it in *P_NZ_ELTS;
5818 * how many scalar fields in total are in CTOR,
5819 and place it in *P_ELT_COUNT.
5820 * whether the constructor is complete -- in the sense that every
5821 meaningful byte is explicitly given a value --
5822 and place it in *P_COMPLETE.
5824 Return whether or not CTOR is a valid static constant initializer, the same
5825 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5827 bool
5828 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5829 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5831 *p_nz_elts = 0;
5832 *p_init_elts = 0;
5833 *p_complete = true;
5835 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5838 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5839 of which had type LAST_TYPE. Each element was itself a complete
5840 initializer, in the sense that every meaningful byte was explicitly
5841 given a value. Return true if the same is true for the constructor
5842 as a whole. */
5844 bool
5845 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5846 const_tree last_type)
5848 if (TREE_CODE (type) == UNION_TYPE
5849 || TREE_CODE (type) == QUAL_UNION_TYPE)
5851 if (num_elts == 0)
5852 return false;
5854 gcc_assert (num_elts == 1 && last_type);
5856 /* ??? We could look at each element of the union, and find the
5857 largest element. Which would avoid comparing the size of the
5858 initialized element against any tail padding in the union.
5859 Doesn't seem worth the effort... */
5860 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5863 return count_type_elements (type, true) == num_elts;
5866 /* Return 1 if EXP contains mostly (3/4) zeros. */
5868 static int
5869 mostly_zeros_p (const_tree exp)
5871 if (TREE_CODE (exp) == CONSTRUCTOR)
5873 HOST_WIDE_INT nz_elts, init_elts;
5874 bool complete_p;
5876 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5877 return !complete_p || nz_elts < init_elts / 4;
5880 return initializer_zerop (exp);
5883 /* Return 1 if EXP contains all zeros. */
5885 static int
5886 all_zeros_p (const_tree exp)
5888 if (TREE_CODE (exp) == CONSTRUCTOR)
5890 HOST_WIDE_INT nz_elts, init_elts;
5891 bool complete_p;
5893 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5894 return nz_elts == 0;
5897 return initializer_zerop (exp);
5900 /* Helper function for store_constructor.
5901 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5902 CLEARED is as for store_constructor.
5903 ALIAS_SET is the alias set to use for any stores.
5905 This provides a recursive shortcut back to store_constructor when it isn't
5906 necessary to go through store_field. This is so that we can pass through
5907 the cleared field to let store_constructor know that we may not have to
5908 clear a substructure if the outer structure has already been cleared. */
5910 static void
5911 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5912 HOST_WIDE_INT bitpos, machine_mode mode,
5913 tree exp, int cleared, alias_set_type alias_set)
5915 if (TREE_CODE (exp) == CONSTRUCTOR
5916 /* We can only call store_constructor recursively if the size and
5917 bit position are on a byte boundary. */
5918 && bitpos % BITS_PER_UNIT == 0
5919 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5920 /* If we have a nonzero bitpos for a register target, then we just
5921 let store_field do the bitfield handling. This is unlikely to
5922 generate unnecessary clear instructions anyways. */
5923 && (bitpos == 0 || MEM_P (target)))
5925 if (MEM_P (target))
5926 target
5927 = adjust_address (target,
5928 GET_MODE (target) == BLKmode
5929 || 0 != (bitpos
5930 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5931 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5934 /* Update the alias set, if required. */
5935 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5936 && MEM_ALIAS_SET (target) != 0)
5938 target = copy_rtx (target);
5939 set_mem_alias_set (target, alias_set);
5942 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5944 else
5945 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5949 /* Returns the number of FIELD_DECLs in TYPE. */
5951 static int
5952 fields_length (const_tree type)
5954 tree t = TYPE_FIELDS (type);
5955 int count = 0;
5957 for (; t; t = DECL_CHAIN (t))
5958 if (TREE_CODE (t) == FIELD_DECL)
5959 ++count;
5961 return count;
5965 /* Store the value of constructor EXP into the rtx TARGET.
5966 TARGET is either a REG or a MEM; we know it cannot conflict, since
5967 safe_from_p has been called.
5968 CLEARED is true if TARGET is known to have been zero'd.
5969 SIZE is the number of bytes of TARGET we are allowed to modify: this
5970 may not be the same as the size of EXP if we are assigning to a field
5971 which has been packed to exclude padding bits. */
5973 static void
5974 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5976 tree type = TREE_TYPE (exp);
5977 #ifdef WORD_REGISTER_OPERATIONS
5978 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5979 #endif
5981 switch (TREE_CODE (type))
5983 case RECORD_TYPE:
5984 case UNION_TYPE:
5985 case QUAL_UNION_TYPE:
5987 unsigned HOST_WIDE_INT idx;
5988 tree field, value;
5990 /* If size is zero or the target is already cleared, do nothing. */
5991 if (size == 0 || cleared)
5992 cleared = 1;
5993 /* We either clear the aggregate or indicate the value is dead. */
5994 else if ((TREE_CODE (type) == UNION_TYPE
5995 || TREE_CODE (type) == QUAL_UNION_TYPE)
5996 && ! CONSTRUCTOR_ELTS (exp))
5997 /* If the constructor is empty, clear the union. */
5999 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6000 cleared = 1;
6003 /* If we are building a static constructor into a register,
6004 set the initial value as zero so we can fold the value into
6005 a constant. But if more than one register is involved,
6006 this probably loses. */
6007 else if (REG_P (target) && TREE_STATIC (exp)
6008 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
6010 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6011 cleared = 1;
6014 /* If the constructor has fewer fields than the structure or
6015 if we are initializing the structure to mostly zeros, clear
6016 the whole structure first. Don't do this if TARGET is a
6017 register whose mode size isn't equal to SIZE since
6018 clear_storage can't handle this case. */
6019 else if (size > 0
6020 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
6021 != fields_length (type))
6022 || mostly_zeros_p (exp))
6023 && (!REG_P (target)
6024 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
6025 == size)))
6027 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6028 cleared = 1;
6031 if (REG_P (target) && !cleared)
6032 emit_clobber (target);
6034 /* Store each element of the constructor into the
6035 corresponding field of TARGET. */
6036 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6038 machine_mode mode;
6039 HOST_WIDE_INT bitsize;
6040 HOST_WIDE_INT bitpos = 0;
6041 tree offset;
6042 rtx to_rtx = target;
6044 /* Just ignore missing fields. We cleared the whole
6045 structure, above, if any fields are missing. */
6046 if (field == 0)
6047 continue;
6049 if (cleared && initializer_zerop (value))
6050 continue;
6052 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6053 bitsize = tree_to_uhwi (DECL_SIZE (field));
6054 else
6055 bitsize = -1;
6057 mode = DECL_MODE (field);
6058 if (DECL_BIT_FIELD (field))
6059 mode = VOIDmode;
6061 offset = DECL_FIELD_OFFSET (field);
6062 if (tree_fits_shwi_p (offset)
6063 && tree_fits_shwi_p (bit_position (field)))
6065 bitpos = int_bit_position (field);
6066 offset = 0;
6068 else
6069 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
6071 if (offset)
6073 machine_mode address_mode;
6074 rtx offset_rtx;
6076 offset
6077 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
6078 make_tree (TREE_TYPE (exp),
6079 target));
6081 offset_rtx = expand_normal (offset);
6082 gcc_assert (MEM_P (to_rtx));
6084 address_mode = get_address_mode (to_rtx);
6085 if (GET_MODE (offset_rtx) != address_mode)
6086 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6088 to_rtx = offset_address (to_rtx, offset_rtx,
6089 highest_pow2_factor (offset));
6092 #ifdef WORD_REGISTER_OPERATIONS
6093 /* If this initializes a field that is smaller than a
6094 word, at the start of a word, try to widen it to a full
6095 word. This special case allows us to output C++ member
6096 function initializations in a form that the optimizers
6097 can understand. */
6098 if (REG_P (target)
6099 && bitsize < BITS_PER_WORD
6100 && bitpos % BITS_PER_WORD == 0
6101 && GET_MODE_CLASS (mode) == MODE_INT
6102 && TREE_CODE (value) == INTEGER_CST
6103 && exp_size >= 0
6104 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6106 tree type = TREE_TYPE (value);
6108 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6110 type = lang_hooks.types.type_for_mode
6111 (word_mode, TYPE_UNSIGNED (type));
6112 value = fold_convert (type, value);
6115 if (BYTES_BIG_ENDIAN)
6116 value
6117 = fold_build2 (LSHIFT_EXPR, type, value,
6118 build_int_cst (type,
6119 BITS_PER_WORD - bitsize));
6120 bitsize = BITS_PER_WORD;
6121 mode = word_mode;
6123 #endif
6125 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6126 && DECL_NONADDRESSABLE_P (field))
6128 to_rtx = copy_rtx (to_rtx);
6129 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6132 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6133 value, cleared,
6134 get_alias_set (TREE_TYPE (field)));
6136 break;
6138 case ARRAY_TYPE:
6140 tree value, index;
6141 unsigned HOST_WIDE_INT i;
6142 int need_to_clear;
6143 tree domain;
6144 tree elttype = TREE_TYPE (type);
6145 int const_bounds_p;
6146 HOST_WIDE_INT minelt = 0;
6147 HOST_WIDE_INT maxelt = 0;
6149 domain = TYPE_DOMAIN (type);
6150 const_bounds_p = (TYPE_MIN_VALUE (domain)
6151 && TYPE_MAX_VALUE (domain)
6152 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6153 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6155 /* If we have constant bounds for the range of the type, get them. */
6156 if (const_bounds_p)
6158 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6159 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6162 /* If the constructor has fewer elements than the array, clear
6163 the whole array first. Similarly if this is static
6164 constructor of a non-BLKmode object. */
6165 if (cleared)
6166 need_to_clear = 0;
6167 else if (REG_P (target) && TREE_STATIC (exp))
6168 need_to_clear = 1;
6169 else
6171 unsigned HOST_WIDE_INT idx;
6172 tree index, value;
6173 HOST_WIDE_INT count = 0, zero_count = 0;
6174 need_to_clear = ! const_bounds_p;
6176 /* This loop is a more accurate version of the loop in
6177 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6178 is also needed to check for missing elements. */
6179 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6181 HOST_WIDE_INT this_node_count;
6183 if (need_to_clear)
6184 break;
6186 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6188 tree lo_index = TREE_OPERAND (index, 0);
6189 tree hi_index = TREE_OPERAND (index, 1);
6191 if (! tree_fits_uhwi_p (lo_index)
6192 || ! tree_fits_uhwi_p (hi_index))
6194 need_to_clear = 1;
6195 break;
6198 this_node_count = (tree_to_uhwi (hi_index)
6199 - tree_to_uhwi (lo_index) + 1);
6201 else
6202 this_node_count = 1;
6204 count += this_node_count;
6205 if (mostly_zeros_p (value))
6206 zero_count += this_node_count;
6209 /* Clear the entire array first if there are any missing
6210 elements, or if the incidence of zero elements is >=
6211 75%. */
6212 if (! need_to_clear
6213 && (count < maxelt - minelt + 1
6214 || 4 * zero_count >= 3 * count))
6215 need_to_clear = 1;
6218 if (need_to_clear && size > 0)
6220 if (REG_P (target))
6221 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6222 else
6223 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6224 cleared = 1;
6227 if (!cleared && REG_P (target))
6228 /* Inform later passes that the old value is dead. */
6229 emit_clobber (target);
6231 /* Store each element of the constructor into the
6232 corresponding element of TARGET, determined by counting the
6233 elements. */
6234 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6236 machine_mode mode;
6237 HOST_WIDE_INT bitsize;
6238 HOST_WIDE_INT bitpos;
6239 rtx xtarget = target;
6241 if (cleared && initializer_zerop (value))
6242 continue;
6244 mode = TYPE_MODE (elttype);
6245 if (mode == BLKmode)
6246 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6247 ? tree_to_uhwi (TYPE_SIZE (elttype))
6248 : -1);
6249 else
6250 bitsize = GET_MODE_BITSIZE (mode);
6252 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6254 tree lo_index = TREE_OPERAND (index, 0);
6255 tree hi_index = TREE_OPERAND (index, 1);
6256 rtx index_r, pos_rtx;
6257 HOST_WIDE_INT lo, hi, count;
6258 tree position;
6260 /* If the range is constant and "small", unroll the loop. */
6261 if (const_bounds_p
6262 && tree_fits_shwi_p (lo_index)
6263 && tree_fits_shwi_p (hi_index)
6264 && (lo = tree_to_shwi (lo_index),
6265 hi = tree_to_shwi (hi_index),
6266 count = hi - lo + 1,
6267 (!MEM_P (target)
6268 || count <= 2
6269 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6270 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6271 <= 40 * 8)))))
6273 lo -= minelt; hi -= minelt;
6274 for (; lo <= hi; lo++)
6276 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6278 if (MEM_P (target)
6279 && !MEM_KEEP_ALIAS_SET_P (target)
6280 && TREE_CODE (type) == ARRAY_TYPE
6281 && TYPE_NONALIASED_COMPONENT (type))
6283 target = copy_rtx (target);
6284 MEM_KEEP_ALIAS_SET_P (target) = 1;
6287 store_constructor_field
6288 (target, bitsize, bitpos, mode, value, cleared,
6289 get_alias_set (elttype));
6292 else
6294 rtx_code_label *loop_start = gen_label_rtx ();
6295 rtx_code_label *loop_end = gen_label_rtx ();
6296 tree exit_cond;
6298 expand_normal (hi_index);
6300 index = build_decl (EXPR_LOCATION (exp),
6301 VAR_DECL, NULL_TREE, domain);
6302 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6303 SET_DECL_RTL (index, index_r);
6304 store_expr (lo_index, index_r, 0, false);
6306 /* Build the head of the loop. */
6307 do_pending_stack_adjust ();
6308 emit_label (loop_start);
6310 /* Assign value to element index. */
6311 position =
6312 fold_convert (ssizetype,
6313 fold_build2 (MINUS_EXPR,
6314 TREE_TYPE (index),
6315 index,
6316 TYPE_MIN_VALUE (domain)));
6318 position =
6319 size_binop (MULT_EXPR, position,
6320 fold_convert (ssizetype,
6321 TYPE_SIZE_UNIT (elttype)));
6323 pos_rtx = expand_normal (position);
6324 xtarget = offset_address (target, pos_rtx,
6325 highest_pow2_factor (position));
6326 xtarget = adjust_address (xtarget, mode, 0);
6327 if (TREE_CODE (value) == CONSTRUCTOR)
6328 store_constructor (value, xtarget, cleared,
6329 bitsize / BITS_PER_UNIT);
6330 else
6331 store_expr (value, xtarget, 0, false);
6333 /* Generate a conditional jump to exit the loop. */
6334 exit_cond = build2 (LT_EXPR, integer_type_node,
6335 index, hi_index);
6336 jumpif (exit_cond, loop_end, -1);
6338 /* Update the loop counter, and jump to the head of
6339 the loop. */
6340 expand_assignment (index,
6341 build2 (PLUS_EXPR, TREE_TYPE (index),
6342 index, integer_one_node),
6343 false);
6345 emit_jump (loop_start);
6347 /* Build the end of the loop. */
6348 emit_label (loop_end);
6351 else if ((index != 0 && ! tree_fits_shwi_p (index))
6352 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6354 tree position;
6356 if (index == 0)
6357 index = ssize_int (1);
6359 if (minelt)
6360 index = fold_convert (ssizetype,
6361 fold_build2 (MINUS_EXPR,
6362 TREE_TYPE (index),
6363 index,
6364 TYPE_MIN_VALUE (domain)));
6366 position =
6367 size_binop (MULT_EXPR, index,
6368 fold_convert (ssizetype,
6369 TYPE_SIZE_UNIT (elttype)));
6370 xtarget = offset_address (target,
6371 expand_normal (position),
6372 highest_pow2_factor (position));
6373 xtarget = adjust_address (xtarget, mode, 0);
6374 store_expr (value, xtarget, 0, false);
6376 else
6378 if (index != 0)
6379 bitpos = ((tree_to_shwi (index) - minelt)
6380 * tree_to_uhwi (TYPE_SIZE (elttype)));
6381 else
6382 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6384 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6385 && TREE_CODE (type) == ARRAY_TYPE
6386 && TYPE_NONALIASED_COMPONENT (type))
6388 target = copy_rtx (target);
6389 MEM_KEEP_ALIAS_SET_P (target) = 1;
6391 store_constructor_field (target, bitsize, bitpos, mode, value,
6392 cleared, get_alias_set (elttype));
6395 break;
6398 case VECTOR_TYPE:
6400 unsigned HOST_WIDE_INT idx;
6401 constructor_elt *ce;
6402 int i;
6403 int need_to_clear;
6404 int icode = CODE_FOR_nothing;
6405 tree elttype = TREE_TYPE (type);
6406 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6407 machine_mode eltmode = TYPE_MODE (elttype);
6408 HOST_WIDE_INT bitsize;
6409 HOST_WIDE_INT bitpos;
6410 rtvec vector = NULL;
6411 unsigned n_elts;
6412 alias_set_type alias;
6414 gcc_assert (eltmode != BLKmode);
6416 n_elts = TYPE_VECTOR_SUBPARTS (type);
6417 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6419 machine_mode mode = GET_MODE (target);
6421 icode = (int) optab_handler (vec_init_optab, mode);
6422 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6423 if (icode != CODE_FOR_nothing)
6425 tree value;
6427 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6428 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6430 icode = CODE_FOR_nothing;
6431 break;
6434 if (icode != CODE_FOR_nothing)
6436 unsigned int i;
6438 vector = rtvec_alloc (n_elts);
6439 for (i = 0; i < n_elts; i++)
6440 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6444 /* If the constructor has fewer elements than the vector,
6445 clear the whole array first. Similarly if this is static
6446 constructor of a non-BLKmode object. */
6447 if (cleared)
6448 need_to_clear = 0;
6449 else if (REG_P (target) && TREE_STATIC (exp))
6450 need_to_clear = 1;
6451 else
6453 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6454 tree value;
6456 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6458 int n_elts_here = tree_to_uhwi
6459 (int_const_binop (TRUNC_DIV_EXPR,
6460 TYPE_SIZE (TREE_TYPE (value)),
6461 TYPE_SIZE (elttype)));
6463 count += n_elts_here;
6464 if (mostly_zeros_p (value))
6465 zero_count += n_elts_here;
6468 /* Clear the entire vector first if there are any missing elements,
6469 or if the incidence of zero elements is >= 75%. */
6470 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6473 if (need_to_clear && size > 0 && !vector)
6475 if (REG_P (target))
6476 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6477 else
6478 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6479 cleared = 1;
6482 /* Inform later passes that the old value is dead. */
6483 if (!cleared && !vector && REG_P (target))
6484 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6486 if (MEM_P (target))
6487 alias = MEM_ALIAS_SET (target);
6488 else
6489 alias = get_alias_set (elttype);
6491 /* Store each element of the constructor into the corresponding
6492 element of TARGET, determined by counting the elements. */
6493 for (idx = 0, i = 0;
6494 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6495 idx++, i += bitsize / elt_size)
6497 HOST_WIDE_INT eltpos;
6498 tree value = ce->value;
6500 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6501 if (cleared && initializer_zerop (value))
6502 continue;
6504 if (ce->index)
6505 eltpos = tree_to_uhwi (ce->index);
6506 else
6507 eltpos = i;
6509 if (vector)
6511 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6512 elements. */
6513 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6514 RTVEC_ELT (vector, eltpos)
6515 = expand_normal (value);
6517 else
6519 machine_mode value_mode =
6520 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6521 ? TYPE_MODE (TREE_TYPE (value))
6522 : eltmode;
6523 bitpos = eltpos * elt_size;
6524 store_constructor_field (target, bitsize, bitpos, value_mode,
6525 value, cleared, alias);
6529 if (vector)
6530 emit_insn (GEN_FCN (icode)
6531 (target,
6532 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6533 break;
6536 default:
6537 gcc_unreachable ();
6541 /* Store the value of EXP (an expression tree)
6542 into a subfield of TARGET which has mode MODE and occupies
6543 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6544 If MODE is VOIDmode, it means that we are storing into a bit-field.
6546 BITREGION_START is bitpos of the first bitfield in this region.
6547 BITREGION_END is the bitpos of the ending bitfield in this region.
6548 These two fields are 0, if the C++ memory model does not apply,
6549 or we are not interested in keeping track of bitfield regions.
6551 Always return const0_rtx unless we have something particular to
6552 return.
6554 ALIAS_SET is the alias set for the destination. This value will
6555 (in general) be different from that for TARGET, since TARGET is a
6556 reference to the containing structure.
6558 If NONTEMPORAL is true, try generating a nontemporal store. */
6560 static rtx
6561 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6562 unsigned HOST_WIDE_INT bitregion_start,
6563 unsigned HOST_WIDE_INT bitregion_end,
6564 machine_mode mode, tree exp,
6565 alias_set_type alias_set, bool nontemporal)
6567 if (TREE_CODE (exp) == ERROR_MARK)
6568 return const0_rtx;
6570 /* If we have nothing to store, do nothing unless the expression has
6571 side-effects. */
6572 if (bitsize == 0)
6573 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6575 if (GET_CODE (target) == CONCAT)
6577 /* We're storing into a struct containing a single __complex. */
6579 gcc_assert (!bitpos);
6580 return store_expr (exp, target, 0, nontemporal);
6583 /* If the structure is in a register or if the component
6584 is a bit field, we cannot use addressing to access it.
6585 Use bit-field techniques or SUBREG to store in it. */
6587 if (mode == VOIDmode
6588 || (mode != BLKmode && ! direct_store[(int) mode]
6589 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6590 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6591 || REG_P (target)
6592 || GET_CODE (target) == SUBREG
6593 /* If the field isn't aligned enough to store as an ordinary memref,
6594 store it as a bit field. */
6595 || (mode != BLKmode
6596 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6597 || bitpos % GET_MODE_ALIGNMENT (mode))
6598 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6599 || (bitpos % BITS_PER_UNIT != 0)))
6600 || (bitsize >= 0 && mode != BLKmode
6601 && GET_MODE_BITSIZE (mode) > bitsize)
6602 /* If the RHS and field are a constant size and the size of the
6603 RHS isn't the same size as the bitfield, we must use bitfield
6604 operations. */
6605 || (bitsize >= 0
6606 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6607 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6608 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6609 decl we must use bitfield operations. */
6610 || (bitsize >= 0
6611 && TREE_CODE (exp) == MEM_REF
6612 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6613 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6614 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6615 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6617 rtx temp;
6618 gimple nop_def;
6620 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6621 implies a mask operation. If the precision is the same size as
6622 the field we're storing into, that mask is redundant. This is
6623 particularly common with bit field assignments generated by the
6624 C front end. */
6625 nop_def = get_def_for_expr (exp, NOP_EXPR);
6626 if (nop_def)
6628 tree type = TREE_TYPE (exp);
6629 if (INTEGRAL_TYPE_P (type)
6630 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6631 && bitsize == TYPE_PRECISION (type))
6633 tree op = gimple_assign_rhs1 (nop_def);
6634 type = TREE_TYPE (op);
6635 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6636 exp = op;
6640 temp = expand_normal (exp);
6642 /* If BITSIZE is narrower than the size of the type of EXP
6643 we will be narrowing TEMP. Normally, what's wanted are the
6644 low-order bits. However, if EXP's type is a record and this is
6645 big-endian machine, we want the upper BITSIZE bits. */
6646 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6647 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6648 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6649 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6650 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6651 NULL_RTX, 1);
6653 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6654 if (mode != VOIDmode && mode != BLKmode
6655 && mode != TYPE_MODE (TREE_TYPE (exp)))
6656 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6658 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6659 are both BLKmode, both must be in memory and BITPOS must be aligned
6660 on a byte boundary. If so, we simply do a block copy. Likewise for
6661 a BLKmode-like TARGET. */
6662 if (GET_CODE (temp) != PARALLEL
6663 && GET_MODE (temp) == BLKmode
6664 && (GET_MODE (target) == BLKmode
6665 || (MEM_P (target)
6666 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6667 && (bitpos % BITS_PER_UNIT) == 0
6668 && (bitsize % BITS_PER_UNIT) == 0)))
6670 gcc_assert (MEM_P (target) && MEM_P (temp)
6671 && (bitpos % BITS_PER_UNIT) == 0);
6673 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6674 emit_block_move (target, temp,
6675 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6676 / BITS_PER_UNIT),
6677 BLOCK_OP_NORMAL);
6679 return const0_rtx;
6682 /* Handle calls that return values in multiple non-contiguous locations.
6683 The Irix 6 ABI has examples of this. */
6684 if (GET_CODE (temp) == PARALLEL)
6686 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6687 rtx temp_target;
6688 if (mode == BLKmode || mode == VOIDmode)
6689 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6690 temp_target = gen_reg_rtx (mode);
6691 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6692 temp = temp_target;
6694 else if (mode == BLKmode)
6696 /* Handle calls that return BLKmode values in registers. */
6697 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6699 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6700 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6701 temp = temp_target;
6703 else
6705 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6706 rtx temp_target;
6707 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6708 temp_target = gen_reg_rtx (mode);
6709 temp_target
6710 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6711 temp_target, mode, mode);
6712 temp = temp_target;
6716 /* Store the value in the bitfield. */
6717 store_bit_field (target, bitsize, bitpos,
6718 bitregion_start, bitregion_end,
6719 mode, temp);
6721 return const0_rtx;
6723 else
6725 /* Now build a reference to just the desired component. */
6726 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6728 if (to_rtx == target)
6729 to_rtx = copy_rtx (to_rtx);
6731 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6732 set_mem_alias_set (to_rtx, alias_set);
6734 return store_expr (exp, to_rtx, 0, nontemporal);
6738 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6739 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6740 codes and find the ultimate containing object, which we return.
6742 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6743 bit position, and *PUNSIGNEDP to the signedness of the field.
6744 If the position of the field is variable, we store a tree
6745 giving the variable offset (in units) in *POFFSET.
6746 This offset is in addition to the bit position.
6747 If the position is not variable, we store 0 in *POFFSET.
6749 If any of the extraction expressions is volatile,
6750 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6752 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6753 Otherwise, it is a mode that can be used to access the field.
6755 If the field describes a variable-sized object, *PMODE is set to
6756 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6757 this case, but the address of the object can be found.
6759 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6760 look through nodes that serve as markers of a greater alignment than
6761 the one that can be deduced from the expression. These nodes make it
6762 possible for front-ends to prevent temporaries from being created by
6763 the middle-end on alignment considerations. For that purpose, the
6764 normal operating mode at high-level is to always pass FALSE so that
6765 the ultimate containing object is really returned; moreover, the
6766 associated predicate handled_component_p will always return TRUE
6767 on these nodes, thus indicating that they are essentially handled
6768 by get_inner_reference. TRUE should only be passed when the caller
6769 is scanning the expression in order to build another representation
6770 and specifically knows how to handle these nodes; as such, this is
6771 the normal operating mode in the RTL expanders. */
6773 tree
6774 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6775 HOST_WIDE_INT *pbitpos, tree *poffset,
6776 machine_mode *pmode, int *punsignedp,
6777 int *pvolatilep, bool keep_aligning)
6779 tree size_tree = 0;
6780 machine_mode mode = VOIDmode;
6781 bool blkmode_bitfield = false;
6782 tree offset = size_zero_node;
6783 offset_int bit_offset = 0;
6785 /* First get the mode, signedness, and size. We do this from just the
6786 outermost expression. */
6787 *pbitsize = -1;
6788 if (TREE_CODE (exp) == COMPONENT_REF)
6790 tree field = TREE_OPERAND (exp, 1);
6791 size_tree = DECL_SIZE (field);
6792 if (flag_strict_volatile_bitfields > 0
6793 && TREE_THIS_VOLATILE (exp)
6794 && DECL_BIT_FIELD_TYPE (field)
6795 && DECL_MODE (field) != BLKmode)
6796 /* Volatile bitfields should be accessed in the mode of the
6797 field's type, not the mode computed based on the bit
6798 size. */
6799 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6800 else if (!DECL_BIT_FIELD (field))
6801 mode = DECL_MODE (field);
6802 else if (DECL_MODE (field) == BLKmode)
6803 blkmode_bitfield = true;
6805 *punsignedp = DECL_UNSIGNED (field);
6807 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6809 size_tree = TREE_OPERAND (exp, 1);
6810 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6811 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6813 /* For vector types, with the correct size of access, use the mode of
6814 inner type. */
6815 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6816 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6817 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6818 mode = TYPE_MODE (TREE_TYPE (exp));
6820 else
6822 mode = TYPE_MODE (TREE_TYPE (exp));
6823 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6825 if (mode == BLKmode)
6826 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6827 else
6828 *pbitsize = GET_MODE_BITSIZE (mode);
6831 if (size_tree != 0)
6833 if (! tree_fits_uhwi_p (size_tree))
6834 mode = BLKmode, *pbitsize = -1;
6835 else
6836 *pbitsize = tree_to_uhwi (size_tree);
6839 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6840 and find the ultimate containing object. */
6841 while (1)
6843 switch (TREE_CODE (exp))
6845 case BIT_FIELD_REF:
6846 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
6847 break;
6849 case COMPONENT_REF:
6851 tree field = TREE_OPERAND (exp, 1);
6852 tree this_offset = component_ref_field_offset (exp);
6854 /* If this field hasn't been filled in yet, don't go past it.
6855 This should only happen when folding expressions made during
6856 type construction. */
6857 if (this_offset == 0)
6858 break;
6860 offset = size_binop (PLUS_EXPR, offset, this_offset);
6861 bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
6863 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6865 break;
6867 case ARRAY_REF:
6868 case ARRAY_RANGE_REF:
6870 tree index = TREE_OPERAND (exp, 1);
6871 tree low_bound = array_ref_low_bound (exp);
6872 tree unit_size = array_ref_element_size (exp);
6874 /* We assume all arrays have sizes that are a multiple of a byte.
6875 First subtract the lower bound, if any, in the type of the
6876 index, then convert to sizetype and multiply by the size of
6877 the array element. */
6878 if (! integer_zerop (low_bound))
6879 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6880 index, low_bound);
6882 offset = size_binop (PLUS_EXPR, offset,
6883 size_binop (MULT_EXPR,
6884 fold_convert (sizetype, index),
6885 unit_size));
6887 break;
6889 case REALPART_EXPR:
6890 break;
6892 case IMAGPART_EXPR:
6893 bit_offset += *pbitsize;
6894 break;
6896 case VIEW_CONVERT_EXPR:
6897 if (keep_aligning && STRICT_ALIGNMENT
6898 && (TYPE_ALIGN (TREE_TYPE (exp))
6899 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6900 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6901 < BIGGEST_ALIGNMENT)
6902 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6903 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6904 goto done;
6905 break;
6907 case MEM_REF:
6908 /* Hand back the decl for MEM[&decl, off]. */
6909 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6911 tree off = TREE_OPERAND (exp, 1);
6912 if (!integer_zerop (off))
6914 offset_int boff, coff = mem_ref_offset (exp);
6915 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
6916 bit_offset += boff;
6918 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6920 goto done;
6922 default:
6923 goto done;
6926 /* If any reference in the chain is volatile, the effect is volatile. */
6927 if (TREE_THIS_VOLATILE (exp))
6928 *pvolatilep = 1;
6930 exp = TREE_OPERAND (exp, 0);
6932 done:
6934 /* If OFFSET is constant, see if we can return the whole thing as a
6935 constant bit position. Make sure to handle overflow during
6936 this conversion. */
6937 if (TREE_CODE (offset) == INTEGER_CST)
6939 offset_int tem = wi::sext (wi::to_offset (offset),
6940 TYPE_PRECISION (sizetype));
6941 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
6942 tem += bit_offset;
6943 if (wi::fits_shwi_p (tem))
6945 *pbitpos = tem.to_shwi ();
6946 *poffset = offset = NULL_TREE;
6950 /* Otherwise, split it up. */
6951 if (offset)
6953 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6954 if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
6956 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
6957 offset_int tem = bit_offset.and_not (mask);
6958 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6959 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6960 bit_offset -= tem;
6961 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
6962 offset = size_binop (PLUS_EXPR, offset,
6963 wide_int_to_tree (sizetype, tem));
6966 *pbitpos = bit_offset.to_shwi ();
6967 *poffset = offset;
6970 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6971 if (mode == VOIDmode
6972 && blkmode_bitfield
6973 && (*pbitpos % BITS_PER_UNIT) == 0
6974 && (*pbitsize % BITS_PER_UNIT) == 0)
6975 *pmode = BLKmode;
6976 else
6977 *pmode = mode;
6979 return exp;
6982 /* Return a tree of sizetype representing the size, in bytes, of the element
6983 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6985 tree
6986 array_ref_element_size (tree exp)
6988 tree aligned_size = TREE_OPERAND (exp, 3);
6989 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6990 location_t loc = EXPR_LOCATION (exp);
6992 /* If a size was specified in the ARRAY_REF, it's the size measured
6993 in alignment units of the element type. So multiply by that value. */
6994 if (aligned_size)
6996 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6997 sizetype from another type of the same width and signedness. */
6998 if (TREE_TYPE (aligned_size) != sizetype)
6999 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
7000 return size_binop_loc (loc, MULT_EXPR, aligned_size,
7001 size_int (TYPE_ALIGN_UNIT (elmt_type)));
7004 /* Otherwise, take the size from that of the element type. Substitute
7005 any PLACEHOLDER_EXPR that we have. */
7006 else
7007 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
7010 /* Return a tree representing the lower bound of the array mentioned in
7011 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7013 tree
7014 array_ref_low_bound (tree exp)
7016 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
7018 /* If a lower bound is specified in EXP, use it. */
7019 if (TREE_OPERAND (exp, 2))
7020 return TREE_OPERAND (exp, 2);
7022 /* Otherwise, if there is a domain type and it has a lower bound, use it,
7023 substituting for a PLACEHOLDER_EXPR as needed. */
7024 if (domain_type && TYPE_MIN_VALUE (domain_type))
7025 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
7027 /* Otherwise, return a zero of the appropriate type. */
7028 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
7031 /* Returns true if REF is an array reference to an array at the end of
7032 a structure. If this is the case, the array may be allocated larger
7033 than its upper bound implies. */
7035 bool
7036 array_at_struct_end_p (tree ref)
7038 if (TREE_CODE (ref) != ARRAY_REF
7039 && TREE_CODE (ref) != ARRAY_RANGE_REF)
7040 return false;
7042 while (handled_component_p (ref))
7044 /* If the reference chain contains a component reference to a
7045 non-union type and there follows another field the reference
7046 is not at the end of a structure. */
7047 if (TREE_CODE (ref) == COMPONENT_REF
7048 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
7050 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
7051 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
7052 nextf = DECL_CHAIN (nextf);
7053 if (nextf)
7054 return false;
7057 ref = TREE_OPERAND (ref, 0);
7060 /* If the reference is based on a declared entity, the size of the array
7061 is constrained by its given domain. */
7062 if (DECL_P (ref))
7063 return false;
7065 return true;
7068 /* Return a tree representing the upper bound of the array mentioned in
7069 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7071 tree
7072 array_ref_up_bound (tree exp)
7074 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
7076 /* If there is a domain type and it has an upper bound, use it, substituting
7077 for a PLACEHOLDER_EXPR as needed. */
7078 if (domain_type && TYPE_MAX_VALUE (domain_type))
7079 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
7081 /* Otherwise fail. */
7082 return NULL_TREE;
7085 /* Return a tree representing the offset, in bytes, of the field referenced
7086 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7088 tree
7089 component_ref_field_offset (tree exp)
7091 tree aligned_offset = TREE_OPERAND (exp, 2);
7092 tree field = TREE_OPERAND (exp, 1);
7093 location_t loc = EXPR_LOCATION (exp);
7095 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7096 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7097 value. */
7098 if (aligned_offset)
7100 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7101 sizetype from another type of the same width and signedness. */
7102 if (TREE_TYPE (aligned_offset) != sizetype)
7103 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
7104 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
7105 size_int (DECL_OFFSET_ALIGN (field)
7106 / BITS_PER_UNIT));
7109 /* Otherwise, take the offset from that of the field. Substitute
7110 any PLACEHOLDER_EXPR that we have. */
7111 else
7112 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
7115 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7117 static unsigned HOST_WIDE_INT
7118 target_align (const_tree target)
7120 /* We might have a chain of nested references with intermediate misaligning
7121 bitfields components, so need to recurse to find out. */
7123 unsigned HOST_WIDE_INT this_align, outer_align;
7125 switch (TREE_CODE (target))
7127 case BIT_FIELD_REF:
7128 return 1;
7130 case COMPONENT_REF:
7131 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7132 outer_align = target_align (TREE_OPERAND (target, 0));
7133 return MIN (this_align, outer_align);
7135 case ARRAY_REF:
7136 case ARRAY_RANGE_REF:
7137 this_align = TYPE_ALIGN (TREE_TYPE (target));
7138 outer_align = target_align (TREE_OPERAND (target, 0));
7139 return MIN (this_align, outer_align);
7141 CASE_CONVERT:
7142 case NON_LVALUE_EXPR:
7143 case VIEW_CONVERT_EXPR:
7144 this_align = TYPE_ALIGN (TREE_TYPE (target));
7145 outer_align = target_align (TREE_OPERAND (target, 0));
7146 return MAX (this_align, outer_align);
7148 default:
7149 return TYPE_ALIGN (TREE_TYPE (target));
7154 /* Given an rtx VALUE that may contain additions and multiplications, return
7155 an equivalent value that just refers to a register, memory, or constant.
7156 This is done by generating instructions to perform the arithmetic and
7157 returning a pseudo-register containing the value.
7159 The returned value may be a REG, SUBREG, MEM or constant. */
7162 force_operand (rtx value, rtx target)
7164 rtx op1, op2;
7165 /* Use subtarget as the target for operand 0 of a binary operation. */
7166 rtx subtarget = get_subtarget (target);
7167 enum rtx_code code = GET_CODE (value);
7169 /* Check for subreg applied to an expression produced by loop optimizer. */
7170 if (code == SUBREG
7171 && !REG_P (SUBREG_REG (value))
7172 && !MEM_P (SUBREG_REG (value)))
7174 value
7175 = simplify_gen_subreg (GET_MODE (value),
7176 force_reg (GET_MODE (SUBREG_REG (value)),
7177 force_operand (SUBREG_REG (value),
7178 NULL_RTX)),
7179 GET_MODE (SUBREG_REG (value)),
7180 SUBREG_BYTE (value));
7181 code = GET_CODE (value);
7184 /* Check for a PIC address load. */
7185 if ((code == PLUS || code == MINUS)
7186 && XEXP (value, 0) == pic_offset_table_rtx
7187 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7188 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7189 || GET_CODE (XEXP (value, 1)) == CONST))
7191 if (!subtarget)
7192 subtarget = gen_reg_rtx (GET_MODE (value));
7193 emit_move_insn (subtarget, value);
7194 return subtarget;
7197 if (ARITHMETIC_P (value))
7199 op2 = XEXP (value, 1);
7200 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7201 subtarget = 0;
7202 if (code == MINUS && CONST_INT_P (op2))
7204 code = PLUS;
7205 op2 = negate_rtx (GET_MODE (value), op2);
7208 /* Check for an addition with OP2 a constant integer and our first
7209 operand a PLUS of a virtual register and something else. In that
7210 case, we want to emit the sum of the virtual register and the
7211 constant first and then add the other value. This allows virtual
7212 register instantiation to simply modify the constant rather than
7213 creating another one around this addition. */
7214 if (code == PLUS && CONST_INT_P (op2)
7215 && GET_CODE (XEXP (value, 0)) == PLUS
7216 && REG_P (XEXP (XEXP (value, 0), 0))
7217 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7218 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7220 rtx temp = expand_simple_binop (GET_MODE (value), code,
7221 XEXP (XEXP (value, 0), 0), op2,
7222 subtarget, 0, OPTAB_LIB_WIDEN);
7223 return expand_simple_binop (GET_MODE (value), code, temp,
7224 force_operand (XEXP (XEXP (value,
7225 0), 1), 0),
7226 target, 0, OPTAB_LIB_WIDEN);
7229 op1 = force_operand (XEXP (value, 0), subtarget);
7230 op2 = force_operand (op2, NULL_RTX);
7231 switch (code)
7233 case MULT:
7234 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7235 case DIV:
7236 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7237 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7238 target, 1, OPTAB_LIB_WIDEN);
7239 else
7240 return expand_divmod (0,
7241 FLOAT_MODE_P (GET_MODE (value))
7242 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7243 GET_MODE (value), op1, op2, target, 0);
7244 case MOD:
7245 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7246 target, 0);
7247 case UDIV:
7248 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7249 target, 1);
7250 case UMOD:
7251 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7252 target, 1);
7253 case ASHIFTRT:
7254 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7255 target, 0, OPTAB_LIB_WIDEN);
7256 default:
7257 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7258 target, 1, OPTAB_LIB_WIDEN);
7261 if (UNARY_P (value))
7263 if (!target)
7264 target = gen_reg_rtx (GET_MODE (value));
7265 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7266 switch (code)
7268 case ZERO_EXTEND:
7269 case SIGN_EXTEND:
7270 case TRUNCATE:
7271 case FLOAT_EXTEND:
7272 case FLOAT_TRUNCATE:
7273 convert_move (target, op1, code == ZERO_EXTEND);
7274 return target;
7276 case FIX:
7277 case UNSIGNED_FIX:
7278 expand_fix (target, op1, code == UNSIGNED_FIX);
7279 return target;
7281 case FLOAT:
7282 case UNSIGNED_FLOAT:
7283 expand_float (target, op1, code == UNSIGNED_FLOAT);
7284 return target;
7286 default:
7287 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7291 #ifdef INSN_SCHEDULING
7292 /* On machines that have insn scheduling, we want all memory reference to be
7293 explicit, so we need to deal with such paradoxical SUBREGs. */
7294 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7295 value
7296 = simplify_gen_subreg (GET_MODE (value),
7297 force_reg (GET_MODE (SUBREG_REG (value)),
7298 force_operand (SUBREG_REG (value),
7299 NULL_RTX)),
7300 GET_MODE (SUBREG_REG (value)),
7301 SUBREG_BYTE (value));
7302 #endif
7304 return value;
7307 /* Subroutine of expand_expr: return nonzero iff there is no way that
7308 EXP can reference X, which is being modified. TOP_P is nonzero if this
7309 call is going to be used to determine whether we need a temporary
7310 for EXP, as opposed to a recursive call to this function.
7312 It is always safe for this routine to return zero since it merely
7313 searches for optimization opportunities. */
7316 safe_from_p (const_rtx x, tree exp, int top_p)
7318 rtx exp_rtl = 0;
7319 int i, nops;
7321 if (x == 0
7322 /* If EXP has varying size, we MUST use a target since we currently
7323 have no way of allocating temporaries of variable size
7324 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7325 So we assume here that something at a higher level has prevented a
7326 clash. This is somewhat bogus, but the best we can do. Only
7327 do this when X is BLKmode and when we are at the top level. */
7328 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7329 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7330 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7331 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7332 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7333 != INTEGER_CST)
7334 && GET_MODE (x) == BLKmode)
7335 /* If X is in the outgoing argument area, it is always safe. */
7336 || (MEM_P (x)
7337 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7338 || (GET_CODE (XEXP (x, 0)) == PLUS
7339 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7340 return 1;
7342 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7343 find the underlying pseudo. */
7344 if (GET_CODE (x) == SUBREG)
7346 x = SUBREG_REG (x);
7347 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7348 return 0;
7351 /* Now look at our tree code and possibly recurse. */
7352 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7354 case tcc_declaration:
7355 exp_rtl = DECL_RTL_IF_SET (exp);
7356 break;
7358 case tcc_constant:
7359 return 1;
7361 case tcc_exceptional:
7362 if (TREE_CODE (exp) == TREE_LIST)
7364 while (1)
7366 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7367 return 0;
7368 exp = TREE_CHAIN (exp);
7369 if (!exp)
7370 return 1;
7371 if (TREE_CODE (exp) != TREE_LIST)
7372 return safe_from_p (x, exp, 0);
7375 else if (TREE_CODE (exp) == CONSTRUCTOR)
7377 constructor_elt *ce;
7378 unsigned HOST_WIDE_INT idx;
7380 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7381 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7382 || !safe_from_p (x, ce->value, 0))
7383 return 0;
7384 return 1;
7386 else if (TREE_CODE (exp) == ERROR_MARK)
7387 return 1; /* An already-visited SAVE_EXPR? */
7388 else
7389 return 0;
7391 case tcc_statement:
7392 /* The only case we look at here is the DECL_INITIAL inside a
7393 DECL_EXPR. */
7394 return (TREE_CODE (exp) != DECL_EXPR
7395 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7396 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7397 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7399 case tcc_binary:
7400 case tcc_comparison:
7401 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7402 return 0;
7403 /* Fall through. */
7405 case tcc_unary:
7406 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7408 case tcc_expression:
7409 case tcc_reference:
7410 case tcc_vl_exp:
7411 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7412 the expression. If it is set, we conflict iff we are that rtx or
7413 both are in memory. Otherwise, we check all operands of the
7414 expression recursively. */
7416 switch (TREE_CODE (exp))
7418 case ADDR_EXPR:
7419 /* If the operand is static or we are static, we can't conflict.
7420 Likewise if we don't conflict with the operand at all. */
7421 if (staticp (TREE_OPERAND (exp, 0))
7422 || TREE_STATIC (exp)
7423 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7424 return 1;
7426 /* Otherwise, the only way this can conflict is if we are taking
7427 the address of a DECL a that address if part of X, which is
7428 very rare. */
7429 exp = TREE_OPERAND (exp, 0);
7430 if (DECL_P (exp))
7432 if (!DECL_RTL_SET_P (exp)
7433 || !MEM_P (DECL_RTL (exp)))
7434 return 0;
7435 else
7436 exp_rtl = XEXP (DECL_RTL (exp), 0);
7438 break;
7440 case MEM_REF:
7441 if (MEM_P (x)
7442 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7443 get_alias_set (exp)))
7444 return 0;
7445 break;
7447 case CALL_EXPR:
7448 /* Assume that the call will clobber all hard registers and
7449 all of memory. */
7450 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7451 || MEM_P (x))
7452 return 0;
7453 break;
7455 case WITH_CLEANUP_EXPR:
7456 case CLEANUP_POINT_EXPR:
7457 /* Lowered by gimplify.c. */
7458 gcc_unreachable ();
7460 case SAVE_EXPR:
7461 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7463 default:
7464 break;
7467 /* If we have an rtx, we do not need to scan our operands. */
7468 if (exp_rtl)
7469 break;
7471 nops = TREE_OPERAND_LENGTH (exp);
7472 for (i = 0; i < nops; i++)
7473 if (TREE_OPERAND (exp, i) != 0
7474 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7475 return 0;
7477 break;
7479 case tcc_type:
7480 /* Should never get a type here. */
7481 gcc_unreachable ();
7484 /* If we have an rtl, find any enclosed object. Then see if we conflict
7485 with it. */
7486 if (exp_rtl)
7488 if (GET_CODE (exp_rtl) == SUBREG)
7490 exp_rtl = SUBREG_REG (exp_rtl);
7491 if (REG_P (exp_rtl)
7492 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7493 return 0;
7496 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7497 are memory and they conflict. */
7498 return ! (rtx_equal_p (x, exp_rtl)
7499 || (MEM_P (x) && MEM_P (exp_rtl)
7500 && true_dependence (exp_rtl, VOIDmode, x)));
7503 /* If we reach here, it is safe. */
7504 return 1;
7508 /* Return the highest power of two that EXP is known to be a multiple of.
7509 This is used in updating alignment of MEMs in array references. */
7511 unsigned HOST_WIDE_INT
7512 highest_pow2_factor (const_tree exp)
7514 unsigned HOST_WIDE_INT ret;
7515 int trailing_zeros = tree_ctz (exp);
7516 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7517 return BIGGEST_ALIGNMENT;
7518 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7519 if (ret > BIGGEST_ALIGNMENT)
7520 return BIGGEST_ALIGNMENT;
7521 return ret;
7524 /* Similar, except that the alignment requirements of TARGET are
7525 taken into account. Assume it is at least as aligned as its
7526 type, unless it is a COMPONENT_REF in which case the layout of
7527 the structure gives the alignment. */
7529 static unsigned HOST_WIDE_INT
7530 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7532 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7533 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7535 return MAX (factor, talign);
7538 #ifdef HAVE_conditional_move
7539 /* Convert the tree comparison code TCODE to the rtl one where the
7540 signedness is UNSIGNEDP. */
7542 static enum rtx_code
7543 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7545 enum rtx_code code;
7546 switch (tcode)
7548 case EQ_EXPR:
7549 code = EQ;
7550 break;
7551 case NE_EXPR:
7552 code = NE;
7553 break;
7554 case LT_EXPR:
7555 code = unsignedp ? LTU : LT;
7556 break;
7557 case LE_EXPR:
7558 code = unsignedp ? LEU : LE;
7559 break;
7560 case GT_EXPR:
7561 code = unsignedp ? GTU : GT;
7562 break;
7563 case GE_EXPR:
7564 code = unsignedp ? GEU : GE;
7565 break;
7566 case UNORDERED_EXPR:
7567 code = UNORDERED;
7568 break;
7569 case ORDERED_EXPR:
7570 code = ORDERED;
7571 break;
7572 case UNLT_EXPR:
7573 code = UNLT;
7574 break;
7575 case UNLE_EXPR:
7576 code = UNLE;
7577 break;
7578 case UNGT_EXPR:
7579 code = UNGT;
7580 break;
7581 case UNGE_EXPR:
7582 code = UNGE;
7583 break;
7584 case UNEQ_EXPR:
7585 code = UNEQ;
7586 break;
7587 case LTGT_EXPR:
7588 code = LTGT;
7589 break;
7591 default:
7592 gcc_unreachable ();
7594 return code;
7596 #endif
7598 /* Subroutine of expand_expr. Expand the two operands of a binary
7599 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7600 The value may be stored in TARGET if TARGET is nonzero. The
7601 MODIFIER argument is as documented by expand_expr. */
7603 void
7604 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7605 enum expand_modifier modifier)
7607 if (! safe_from_p (target, exp1, 1))
7608 target = 0;
7609 if (operand_equal_p (exp0, exp1, 0))
7611 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7612 *op1 = copy_rtx (*op0);
7614 else
7616 /* If we need to preserve evaluation order, copy exp0 into its own
7617 temporary variable so that it can't be clobbered by exp1. */
7618 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7619 exp0 = save_expr (exp0);
7620 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7621 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7626 /* Return a MEM that contains constant EXP. DEFER is as for
7627 output_constant_def and MODIFIER is as for expand_expr. */
7629 static rtx
7630 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7632 rtx mem;
7634 mem = output_constant_def (exp, defer);
7635 if (modifier != EXPAND_INITIALIZER)
7636 mem = use_anchored_address (mem);
7637 return mem;
7640 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7641 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7643 static rtx
7644 expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
7645 enum expand_modifier modifier, addr_space_t as)
7647 rtx result, subtarget;
7648 tree inner, offset;
7649 HOST_WIDE_INT bitsize, bitpos;
7650 int volatilep, unsignedp;
7651 machine_mode mode1;
7653 /* If we are taking the address of a constant and are at the top level,
7654 we have to use output_constant_def since we can't call force_const_mem
7655 at top level. */
7656 /* ??? This should be considered a front-end bug. We should not be
7657 generating ADDR_EXPR of something that isn't an LVALUE. The only
7658 exception here is STRING_CST. */
7659 if (CONSTANT_CLASS_P (exp))
7661 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7662 if (modifier < EXPAND_SUM)
7663 result = force_operand (result, target);
7664 return result;
7667 /* Everything must be something allowed by is_gimple_addressable. */
7668 switch (TREE_CODE (exp))
7670 case INDIRECT_REF:
7671 /* This case will happen via recursion for &a->b. */
7672 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7674 case MEM_REF:
7676 tree tem = TREE_OPERAND (exp, 0);
7677 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7678 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7679 return expand_expr (tem, target, tmode, modifier);
7682 case CONST_DECL:
7683 /* Expand the initializer like constants above. */
7684 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7685 0, modifier), 0);
7686 if (modifier < EXPAND_SUM)
7687 result = force_operand (result, target);
7688 return result;
7690 case REALPART_EXPR:
7691 /* The real part of the complex number is always first, therefore
7692 the address is the same as the address of the parent object. */
7693 offset = 0;
7694 bitpos = 0;
7695 inner = TREE_OPERAND (exp, 0);
7696 break;
7698 case IMAGPART_EXPR:
7699 /* The imaginary part of the complex number is always second.
7700 The expression is therefore always offset by the size of the
7701 scalar type. */
7702 offset = 0;
7703 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7704 inner = TREE_OPERAND (exp, 0);
7705 break;
7707 case COMPOUND_LITERAL_EXPR:
7708 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7709 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7710 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7711 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7712 the initializers aren't gimplified. */
7713 if (COMPOUND_LITERAL_EXPR_DECL (exp)
7714 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
7715 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7716 target, tmode, modifier, as);
7717 /* FALLTHRU */
7718 default:
7719 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7720 expand_expr, as that can have various side effects; LABEL_DECLs for
7721 example, may not have their DECL_RTL set yet. Expand the rtl of
7722 CONSTRUCTORs too, which should yield a memory reference for the
7723 constructor's contents. Assume language specific tree nodes can
7724 be expanded in some interesting way. */
7725 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7726 if (DECL_P (exp)
7727 || TREE_CODE (exp) == CONSTRUCTOR
7728 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7730 result = expand_expr (exp, target, tmode,
7731 modifier == EXPAND_INITIALIZER
7732 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7734 /* If the DECL isn't in memory, then the DECL wasn't properly
7735 marked TREE_ADDRESSABLE, which will be either a front-end
7736 or a tree optimizer bug. */
7738 if (TREE_ADDRESSABLE (exp)
7739 && ! MEM_P (result)
7740 && ! targetm.calls.allocate_stack_slots_for_args ())
7742 error ("local frame unavailable (naked function?)");
7743 return result;
7745 else
7746 gcc_assert (MEM_P (result));
7747 result = XEXP (result, 0);
7749 /* ??? Is this needed anymore? */
7750 if (DECL_P (exp))
7751 TREE_USED (exp) = 1;
7753 if (modifier != EXPAND_INITIALIZER
7754 && modifier != EXPAND_CONST_ADDRESS
7755 && modifier != EXPAND_SUM)
7756 result = force_operand (result, target);
7757 return result;
7760 /* Pass FALSE as the last argument to get_inner_reference although
7761 we are expanding to RTL. The rationale is that we know how to
7762 handle "aligning nodes" here: we can just bypass them because
7763 they won't change the final object whose address will be returned
7764 (they actually exist only for that purpose). */
7765 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7766 &mode1, &unsignedp, &volatilep, false);
7767 break;
7770 /* We must have made progress. */
7771 gcc_assert (inner != exp);
7773 subtarget = offset || bitpos ? NULL_RTX : target;
7774 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7775 inner alignment, force the inner to be sufficiently aligned. */
7776 if (CONSTANT_CLASS_P (inner)
7777 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7779 inner = copy_node (inner);
7780 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7781 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7782 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7784 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7786 if (offset)
7788 rtx tmp;
7790 if (modifier != EXPAND_NORMAL)
7791 result = force_operand (result, NULL);
7792 tmp = expand_expr (offset, NULL_RTX, tmode,
7793 modifier == EXPAND_INITIALIZER
7794 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7796 /* expand_expr is allowed to return an object in a mode other
7797 than TMODE. If it did, we need to convert. */
7798 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7799 tmp = convert_modes (tmode, GET_MODE (tmp),
7800 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7801 result = convert_memory_address_addr_space (tmode, result, as);
7802 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7804 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7805 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7806 else
7808 subtarget = bitpos ? NULL_RTX : target;
7809 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7810 1, OPTAB_LIB_WIDEN);
7814 if (bitpos)
7816 /* Someone beforehand should have rejected taking the address
7817 of such an object. */
7818 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7820 result = convert_memory_address_addr_space (tmode, result, as);
7821 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7822 if (modifier < EXPAND_SUM)
7823 result = force_operand (result, target);
7826 return result;
7829 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7830 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7832 static rtx
7833 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
7834 enum expand_modifier modifier)
7836 addr_space_t as = ADDR_SPACE_GENERIC;
7837 machine_mode address_mode = Pmode;
7838 machine_mode pointer_mode = ptr_mode;
7839 machine_mode rmode;
7840 rtx result;
7842 /* Target mode of VOIDmode says "whatever's natural". */
7843 if (tmode == VOIDmode)
7844 tmode = TYPE_MODE (TREE_TYPE (exp));
7846 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7848 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7849 address_mode = targetm.addr_space.address_mode (as);
7850 pointer_mode = targetm.addr_space.pointer_mode (as);
7853 /* We can get called with some Weird Things if the user does silliness
7854 like "(short) &a". In that case, convert_memory_address won't do
7855 the right thing, so ignore the given target mode. */
7856 if (tmode != address_mode && tmode != pointer_mode)
7857 tmode = address_mode;
7859 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7860 tmode, modifier, as);
7862 /* Despite expand_expr claims concerning ignoring TMODE when not
7863 strictly convenient, stuff breaks if we don't honor it. Note
7864 that combined with the above, we only do this for pointer modes. */
7865 rmode = GET_MODE (result);
7866 if (rmode == VOIDmode)
7867 rmode = tmode;
7868 if (rmode != tmode)
7869 result = convert_memory_address_addr_space (tmode, result, as);
7871 return result;
7874 /* Generate code for computing CONSTRUCTOR EXP.
7875 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7876 is TRUE, instead of creating a temporary variable in memory
7877 NULL is returned and the caller needs to handle it differently. */
7879 static rtx
7880 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7881 bool avoid_temp_mem)
7883 tree type = TREE_TYPE (exp);
7884 machine_mode mode = TYPE_MODE (type);
7886 /* Try to avoid creating a temporary at all. This is possible
7887 if all of the initializer is zero.
7888 FIXME: try to handle all [0..255] initializers we can handle
7889 with memset. */
7890 if (TREE_STATIC (exp)
7891 && !TREE_ADDRESSABLE (exp)
7892 && target != 0 && mode == BLKmode
7893 && all_zeros_p (exp))
7895 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7896 return target;
7899 /* All elts simple constants => refer to a constant in memory. But
7900 if this is a non-BLKmode mode, let it store a field at a time
7901 since that should make a CONST_INT, CONST_WIDE_INT or
7902 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7903 use, it is best to store directly into the target unless the type
7904 is large enough that memcpy will be used. If we are making an
7905 initializer and all operands are constant, put it in memory as
7906 well.
7908 FIXME: Avoid trying to fill vector constructors piece-meal.
7909 Output them with output_constant_def below unless we're sure
7910 they're zeros. This should go away when vector initializers
7911 are treated like VECTOR_CST instead of arrays. */
7912 if ((TREE_STATIC (exp)
7913 && ((mode == BLKmode
7914 && ! (target != 0 && safe_from_p (target, exp, 1)))
7915 || TREE_ADDRESSABLE (exp)
7916 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7917 && (! can_move_by_pieces
7918 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7919 TYPE_ALIGN (type)))
7920 && ! mostly_zeros_p (exp))))
7921 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7922 && TREE_CONSTANT (exp)))
7924 rtx constructor;
7926 if (avoid_temp_mem)
7927 return NULL_RTX;
7929 constructor = expand_expr_constant (exp, 1, modifier);
7931 if (modifier != EXPAND_CONST_ADDRESS
7932 && modifier != EXPAND_INITIALIZER
7933 && modifier != EXPAND_SUM)
7934 constructor = validize_mem (constructor);
7936 return constructor;
7939 /* Handle calls that pass values in multiple non-contiguous
7940 locations. The Irix 6 ABI has examples of this. */
7941 if (target == 0 || ! safe_from_p (target, exp, 1)
7942 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7944 if (avoid_temp_mem)
7945 return NULL_RTX;
7947 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
7950 store_constructor (exp, target, 0, int_expr_size (exp));
7951 return target;
7955 /* expand_expr: generate code for computing expression EXP.
7956 An rtx for the computed value is returned. The value is never null.
7957 In the case of a void EXP, const0_rtx is returned.
7959 The value may be stored in TARGET if TARGET is nonzero.
7960 TARGET is just a suggestion; callers must assume that
7961 the rtx returned may not be the same as TARGET.
7963 If TARGET is CONST0_RTX, it means that the value will be ignored.
7965 If TMODE is not VOIDmode, it suggests generating the
7966 result in mode TMODE. But this is done only when convenient.
7967 Otherwise, TMODE is ignored and the value generated in its natural mode.
7968 TMODE is just a suggestion; callers must assume that
7969 the rtx returned may not have mode TMODE.
7971 Note that TARGET may have neither TMODE nor MODE. In that case, it
7972 probably will not be used.
7974 If MODIFIER is EXPAND_SUM then when EXP is an addition
7975 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7976 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7977 products as above, or REG or MEM, or constant.
7978 Ordinarily in such cases we would output mul or add instructions
7979 and then return a pseudo reg containing the sum.
7981 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7982 it also marks a label as absolutely required (it can't be dead).
7983 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7984 This is used for outputting expressions used in initializers.
7986 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7987 with a constant address even if that address is not normally legitimate.
7988 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7990 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7991 a call parameter. Such targets require special care as we haven't yet
7992 marked TARGET so that it's safe from being trashed by libcalls. We
7993 don't want to use TARGET for anything but the final result;
7994 Intermediate values must go elsewhere. Additionally, calls to
7995 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7997 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7998 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7999 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8000 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8001 recursively.
8003 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8004 In this case, we don't adjust a returned MEM rtx that wouldn't be
8005 sufficiently aligned for its mode; instead, it's up to the caller
8006 to deal with it afterwards. This is used to make sure that unaligned
8007 base objects for which out-of-bounds accesses are supported, for
8008 example record types with trailing arrays, aren't realigned behind
8009 the back of the caller.
8010 The normal operating mode is to pass FALSE for this parameter. */
8013 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8014 enum expand_modifier modifier, rtx *alt_rtl,
8015 bool inner_reference_p)
8017 rtx ret;
8019 /* Handle ERROR_MARK before anybody tries to access its type. */
8020 if (TREE_CODE (exp) == ERROR_MARK
8021 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8023 ret = CONST0_RTX (tmode);
8024 return ret ? ret : const0_rtx;
8027 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8028 inner_reference_p);
8029 return ret;
8032 /* Try to expand the conditional expression which is represented by
8033 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8034 return the rtl reg which repsents the result. Otherwise return
8035 NULL_RTL. */
8037 static rtx
8038 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8039 tree treeop1 ATTRIBUTE_UNUSED,
8040 tree treeop2 ATTRIBUTE_UNUSED)
8042 #ifdef HAVE_conditional_move
8043 rtx insn;
8044 rtx op00, op01, op1, op2;
8045 enum rtx_code comparison_code;
8046 machine_mode comparison_mode;
8047 gimple srcstmt;
8048 rtx temp;
8049 tree type = TREE_TYPE (treeop1);
8050 int unsignedp = TYPE_UNSIGNED (type);
8051 machine_mode mode = TYPE_MODE (type);
8052 machine_mode orig_mode = mode;
8054 /* If we cannot do a conditional move on the mode, try doing it
8055 with the promoted mode. */
8056 if (!can_conditionally_move_p (mode))
8058 mode = promote_mode (type, mode, &unsignedp);
8059 if (!can_conditionally_move_p (mode))
8060 return NULL_RTX;
8061 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8063 else
8064 temp = assign_temp (type, 0, 1);
8066 start_sequence ();
8067 expand_operands (treeop1, treeop2,
8068 temp, &op1, &op2, EXPAND_NORMAL);
8070 if (TREE_CODE (treeop0) == SSA_NAME
8071 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8073 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8074 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8075 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8076 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8077 comparison_mode = TYPE_MODE (type);
8078 unsignedp = TYPE_UNSIGNED (type);
8079 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8081 else if (COMPARISON_CLASS_P (treeop0))
8083 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8084 enum tree_code cmpcode = TREE_CODE (treeop0);
8085 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8086 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8087 unsignedp = TYPE_UNSIGNED (type);
8088 comparison_mode = TYPE_MODE (type);
8089 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8091 else
8093 op00 = expand_normal (treeop0);
8094 op01 = const0_rtx;
8095 comparison_code = NE;
8096 comparison_mode = GET_MODE (op00);
8097 if (comparison_mode == VOIDmode)
8098 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8101 if (GET_MODE (op1) != mode)
8102 op1 = gen_lowpart (mode, op1);
8104 if (GET_MODE (op2) != mode)
8105 op2 = gen_lowpart (mode, op2);
8107 /* Try to emit the conditional move. */
8108 insn = emit_conditional_move (temp, comparison_code,
8109 op00, op01, comparison_mode,
8110 op1, op2, mode,
8111 unsignedp);
8113 /* If we could do the conditional move, emit the sequence,
8114 and return. */
8115 if (insn)
8117 rtx_insn *seq = get_insns ();
8118 end_sequence ();
8119 emit_insn (seq);
8120 return convert_modes (orig_mode, mode, temp, 0);
8123 /* Otherwise discard the sequence and fall back to code with
8124 branches. */
8125 end_sequence ();
8126 #endif
8127 return NULL_RTX;
8131 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8132 enum expand_modifier modifier)
8134 rtx op0, op1, op2, temp;
8135 rtx_code_label *lab;
8136 tree type;
8137 int unsignedp;
8138 machine_mode mode;
8139 enum tree_code code = ops->code;
8140 optab this_optab;
8141 rtx subtarget, original_target;
8142 int ignore;
8143 bool reduce_bit_field;
8144 location_t loc = ops->location;
8145 tree treeop0, treeop1, treeop2;
8146 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8147 ? reduce_to_bit_field_precision ((expr), \
8148 target, \
8149 type) \
8150 : (expr))
8152 type = ops->type;
8153 mode = TYPE_MODE (type);
8154 unsignedp = TYPE_UNSIGNED (type);
8156 treeop0 = ops->op0;
8157 treeop1 = ops->op1;
8158 treeop2 = ops->op2;
8160 /* We should be called only on simple (binary or unary) expressions,
8161 exactly those that are valid in gimple expressions that aren't
8162 GIMPLE_SINGLE_RHS (or invalid). */
8163 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8164 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8165 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8167 ignore = (target == const0_rtx
8168 || ((CONVERT_EXPR_CODE_P (code)
8169 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8170 && TREE_CODE (type) == VOID_TYPE));
8172 /* We should be called only if we need the result. */
8173 gcc_assert (!ignore);
8175 /* An operation in what may be a bit-field type needs the
8176 result to be reduced to the precision of the bit-field type,
8177 which is narrower than that of the type's mode. */
8178 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8179 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8181 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8182 target = 0;
8184 /* Use subtarget as the target for operand 0 of a binary operation. */
8185 subtarget = get_subtarget (target);
8186 original_target = target;
8188 switch (code)
8190 case NON_LVALUE_EXPR:
8191 case PAREN_EXPR:
8192 CASE_CONVERT:
8193 if (treeop0 == error_mark_node)
8194 return const0_rtx;
8196 if (TREE_CODE (type) == UNION_TYPE)
8198 tree valtype = TREE_TYPE (treeop0);
8200 /* If both input and output are BLKmode, this conversion isn't doing
8201 anything except possibly changing memory attribute. */
8202 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8204 rtx result = expand_expr (treeop0, target, tmode,
8205 modifier);
8207 result = copy_rtx (result);
8208 set_mem_attributes (result, type, 0);
8209 return result;
8212 if (target == 0)
8214 if (TYPE_MODE (type) != BLKmode)
8215 target = gen_reg_rtx (TYPE_MODE (type));
8216 else
8217 target = assign_temp (type, 1, 1);
8220 if (MEM_P (target))
8221 /* Store data into beginning of memory target. */
8222 store_expr (treeop0,
8223 adjust_address (target, TYPE_MODE (valtype), 0),
8224 modifier == EXPAND_STACK_PARM,
8225 false);
8227 else
8229 gcc_assert (REG_P (target));
8231 /* Store this field into a union of the proper type. */
8232 store_field (target,
8233 MIN ((int_size_in_bytes (TREE_TYPE
8234 (treeop0))
8235 * BITS_PER_UNIT),
8236 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8237 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8240 /* Return the entire union. */
8241 return target;
8244 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8246 op0 = expand_expr (treeop0, target, VOIDmode,
8247 modifier);
8249 /* If the signedness of the conversion differs and OP0 is
8250 a promoted SUBREG, clear that indication since we now
8251 have to do the proper extension. */
8252 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8253 && GET_CODE (op0) == SUBREG)
8254 SUBREG_PROMOTED_VAR_P (op0) = 0;
8256 return REDUCE_BIT_FIELD (op0);
8259 op0 = expand_expr (treeop0, NULL_RTX, mode,
8260 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8261 if (GET_MODE (op0) == mode)
8264 /* If OP0 is a constant, just convert it into the proper mode. */
8265 else if (CONSTANT_P (op0))
8267 tree inner_type = TREE_TYPE (treeop0);
8268 machine_mode inner_mode = GET_MODE (op0);
8270 if (inner_mode == VOIDmode)
8271 inner_mode = TYPE_MODE (inner_type);
8273 if (modifier == EXPAND_INITIALIZER)
8274 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8275 subreg_lowpart_offset (mode,
8276 inner_mode));
8277 else
8278 op0= convert_modes (mode, inner_mode, op0,
8279 TYPE_UNSIGNED (inner_type));
8282 else if (modifier == EXPAND_INITIALIZER)
8283 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8285 else if (target == 0)
8286 op0 = convert_to_mode (mode, op0,
8287 TYPE_UNSIGNED (TREE_TYPE
8288 (treeop0)));
8289 else
8291 convert_move (target, op0,
8292 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8293 op0 = target;
8296 return REDUCE_BIT_FIELD (op0);
8298 case ADDR_SPACE_CONVERT_EXPR:
8300 tree treeop0_type = TREE_TYPE (treeop0);
8301 addr_space_t as_to;
8302 addr_space_t as_from;
8304 gcc_assert (POINTER_TYPE_P (type));
8305 gcc_assert (POINTER_TYPE_P (treeop0_type));
8307 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8308 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8310 /* Conversions between pointers to the same address space should
8311 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8312 gcc_assert (as_to != as_from);
8314 /* Ask target code to handle conversion between pointers
8315 to overlapping address spaces. */
8316 if (targetm.addr_space.subset_p (as_to, as_from)
8317 || targetm.addr_space.subset_p (as_from, as_to))
8319 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8320 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8321 gcc_assert (op0);
8322 return op0;
8325 /* For disjoint address spaces, converting anything but
8326 a null pointer invokes undefined behaviour. We simply
8327 always return a null pointer here. */
8328 return CONST0_RTX (mode);
8331 case POINTER_PLUS_EXPR:
8332 /* Even though the sizetype mode and the pointer's mode can be different
8333 expand is able to handle this correctly and get the correct result out
8334 of the PLUS_EXPR code. */
8335 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8336 if sizetype precision is smaller than pointer precision. */
8337 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8338 treeop1 = fold_convert_loc (loc, type,
8339 fold_convert_loc (loc, ssizetype,
8340 treeop1));
8341 /* If sizetype precision is larger than pointer precision, truncate the
8342 offset to have matching modes. */
8343 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8344 treeop1 = fold_convert_loc (loc, type, treeop1);
8346 case PLUS_EXPR:
8347 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8348 something else, make sure we add the register to the constant and
8349 then to the other thing. This case can occur during strength
8350 reduction and doing it this way will produce better code if the
8351 frame pointer or argument pointer is eliminated.
8353 fold-const.c will ensure that the constant is always in the inner
8354 PLUS_EXPR, so the only case we need to do anything about is if
8355 sp, ap, or fp is our second argument, in which case we must swap
8356 the innermost first argument and our second argument. */
8358 if (TREE_CODE (treeop0) == PLUS_EXPR
8359 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8360 && TREE_CODE (treeop1) == VAR_DECL
8361 && (DECL_RTL (treeop1) == frame_pointer_rtx
8362 || DECL_RTL (treeop1) == stack_pointer_rtx
8363 || DECL_RTL (treeop1) == arg_pointer_rtx))
8365 gcc_unreachable ();
8368 /* If the result is to be ptr_mode and we are adding an integer to
8369 something, we might be forming a constant. So try to use
8370 plus_constant. If it produces a sum and we can't accept it,
8371 use force_operand. This allows P = &ARR[const] to generate
8372 efficient code on machines where a SYMBOL_REF is not a valid
8373 address.
8375 If this is an EXPAND_SUM call, always return the sum. */
8376 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8377 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8379 if (modifier == EXPAND_STACK_PARM)
8380 target = 0;
8381 if (TREE_CODE (treeop0) == INTEGER_CST
8382 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8383 && TREE_CONSTANT (treeop1))
8385 rtx constant_part;
8386 HOST_WIDE_INT wc;
8387 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8389 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8390 EXPAND_SUM);
8391 /* Use wi::shwi to ensure that the constant is
8392 truncated according to the mode of OP1, then sign extended
8393 to a HOST_WIDE_INT. Using the constant directly can result
8394 in non-canonical RTL in a 64x32 cross compile. */
8395 wc = TREE_INT_CST_LOW (treeop0);
8396 constant_part =
8397 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8398 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8399 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8400 op1 = force_operand (op1, target);
8401 return REDUCE_BIT_FIELD (op1);
8404 else if (TREE_CODE (treeop1) == INTEGER_CST
8405 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8406 && TREE_CONSTANT (treeop0))
8408 rtx constant_part;
8409 HOST_WIDE_INT wc;
8410 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8412 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8413 (modifier == EXPAND_INITIALIZER
8414 ? EXPAND_INITIALIZER : EXPAND_SUM));
8415 if (! CONSTANT_P (op0))
8417 op1 = expand_expr (treeop1, NULL_RTX,
8418 VOIDmode, modifier);
8419 /* Return a PLUS if modifier says it's OK. */
8420 if (modifier == EXPAND_SUM
8421 || modifier == EXPAND_INITIALIZER)
8422 return simplify_gen_binary (PLUS, mode, op0, op1);
8423 goto binop2;
8425 /* Use wi::shwi to ensure that the constant is
8426 truncated according to the mode of OP1, then sign extended
8427 to a HOST_WIDE_INT. Using the constant directly can result
8428 in non-canonical RTL in a 64x32 cross compile. */
8429 wc = TREE_INT_CST_LOW (treeop1);
8430 constant_part
8431 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8432 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8433 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8434 op0 = force_operand (op0, target);
8435 return REDUCE_BIT_FIELD (op0);
8439 /* Use TER to expand pointer addition of a negated value
8440 as pointer subtraction. */
8441 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8442 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8443 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8444 && TREE_CODE (treeop1) == SSA_NAME
8445 && TYPE_MODE (TREE_TYPE (treeop0))
8446 == TYPE_MODE (TREE_TYPE (treeop1)))
8448 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8449 if (def)
8451 treeop1 = gimple_assign_rhs1 (def);
8452 code = MINUS_EXPR;
8453 goto do_minus;
8457 /* No sense saving up arithmetic to be done
8458 if it's all in the wrong mode to form part of an address.
8459 And force_operand won't know whether to sign-extend or
8460 zero-extend. */
8461 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8462 || mode != ptr_mode)
8464 expand_operands (treeop0, treeop1,
8465 subtarget, &op0, &op1, EXPAND_NORMAL);
8466 if (op0 == const0_rtx)
8467 return op1;
8468 if (op1 == const0_rtx)
8469 return op0;
8470 goto binop2;
8473 expand_operands (treeop0, treeop1,
8474 subtarget, &op0, &op1, modifier);
8475 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8477 case MINUS_EXPR:
8478 do_minus:
8479 /* For initializers, we are allowed to return a MINUS of two
8480 symbolic constants. Here we handle all cases when both operands
8481 are constant. */
8482 /* Handle difference of two symbolic constants,
8483 for the sake of an initializer. */
8484 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8485 && really_constant_p (treeop0)
8486 && really_constant_p (treeop1))
8488 expand_operands (treeop0, treeop1,
8489 NULL_RTX, &op0, &op1, modifier);
8491 /* If the last operand is a CONST_INT, use plus_constant of
8492 the negated constant. Else make the MINUS. */
8493 if (CONST_INT_P (op1))
8494 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8495 -INTVAL (op1)));
8496 else
8497 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8500 /* No sense saving up arithmetic to be done
8501 if it's all in the wrong mode to form part of an address.
8502 And force_operand won't know whether to sign-extend or
8503 zero-extend. */
8504 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8505 || mode != ptr_mode)
8506 goto binop;
8508 expand_operands (treeop0, treeop1,
8509 subtarget, &op0, &op1, modifier);
8511 /* Convert A - const to A + (-const). */
8512 if (CONST_INT_P (op1))
8514 op1 = negate_rtx (mode, op1);
8515 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8518 goto binop2;
8520 case WIDEN_MULT_PLUS_EXPR:
8521 case WIDEN_MULT_MINUS_EXPR:
8522 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8523 op2 = expand_normal (treeop2);
8524 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8525 target, unsignedp);
8526 return target;
8528 case WIDEN_MULT_EXPR:
8529 /* If first operand is constant, swap them.
8530 Thus the following special case checks need only
8531 check the second operand. */
8532 if (TREE_CODE (treeop0) == INTEGER_CST)
8534 tree t1 = treeop0;
8535 treeop0 = treeop1;
8536 treeop1 = t1;
8539 /* First, check if we have a multiplication of one signed and one
8540 unsigned operand. */
8541 if (TREE_CODE (treeop1) != INTEGER_CST
8542 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8543 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8545 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8546 this_optab = usmul_widen_optab;
8547 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8548 != CODE_FOR_nothing)
8550 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8551 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8552 EXPAND_NORMAL);
8553 else
8554 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8555 EXPAND_NORMAL);
8556 /* op0 and op1 might still be constant, despite the above
8557 != INTEGER_CST check. Handle it. */
8558 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8560 op0 = convert_modes (innermode, mode, op0, true);
8561 op1 = convert_modes (innermode, mode, op1, false);
8562 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8563 target, unsignedp));
8565 goto binop3;
8568 /* Check for a multiplication with matching signedness. */
8569 else if ((TREE_CODE (treeop1) == INTEGER_CST
8570 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8571 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8572 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8574 tree op0type = TREE_TYPE (treeop0);
8575 machine_mode innermode = TYPE_MODE (op0type);
8576 bool zextend_p = TYPE_UNSIGNED (op0type);
8577 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8578 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8580 if (TREE_CODE (treeop0) != INTEGER_CST)
8582 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8583 != CODE_FOR_nothing)
8585 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8586 EXPAND_NORMAL);
8587 /* op0 and op1 might still be constant, despite the above
8588 != INTEGER_CST check. Handle it. */
8589 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8591 widen_mult_const:
8592 op0 = convert_modes (innermode, mode, op0, zextend_p);
8594 = convert_modes (innermode, mode, op1,
8595 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8596 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8597 target,
8598 unsignedp));
8600 temp = expand_widening_mult (mode, op0, op1, target,
8601 unsignedp, this_optab);
8602 return REDUCE_BIT_FIELD (temp);
8604 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8605 != CODE_FOR_nothing
8606 && innermode == word_mode)
8608 rtx htem, hipart;
8609 op0 = expand_normal (treeop0);
8610 if (TREE_CODE (treeop1) == INTEGER_CST)
8611 op1 = convert_modes (innermode, mode,
8612 expand_normal (treeop1),
8613 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8614 else
8615 op1 = expand_normal (treeop1);
8616 /* op0 and op1 might still be constant, despite the above
8617 != INTEGER_CST check. Handle it. */
8618 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8619 goto widen_mult_const;
8620 temp = expand_binop (mode, other_optab, op0, op1, target,
8621 unsignedp, OPTAB_LIB_WIDEN);
8622 hipart = gen_highpart (innermode, temp);
8623 htem = expand_mult_highpart_adjust (innermode, hipart,
8624 op0, op1, hipart,
8625 zextend_p);
8626 if (htem != hipart)
8627 emit_move_insn (hipart, htem);
8628 return REDUCE_BIT_FIELD (temp);
8632 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8633 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8634 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8635 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8637 case FMA_EXPR:
8639 optab opt = fma_optab;
8640 gimple def0, def2;
8642 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8643 call. */
8644 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8646 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8647 tree call_expr;
8649 gcc_assert (fn != NULL_TREE);
8650 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8651 return expand_builtin (call_expr, target, subtarget, mode, false);
8654 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8655 /* The multiplication is commutative - look at its 2nd operand
8656 if the first isn't fed by a negate. */
8657 if (!def0)
8659 def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
8660 /* Swap operands if the 2nd operand is fed by a negate. */
8661 if (def0)
8663 tree tem = treeop0;
8664 treeop0 = treeop1;
8665 treeop1 = tem;
8668 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8670 op0 = op2 = NULL;
8672 if (def0 && def2
8673 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8675 opt = fnms_optab;
8676 op0 = expand_normal (gimple_assign_rhs1 (def0));
8677 op2 = expand_normal (gimple_assign_rhs1 (def2));
8679 else if (def0
8680 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8682 opt = fnma_optab;
8683 op0 = expand_normal (gimple_assign_rhs1 (def0));
8685 else if (def2
8686 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8688 opt = fms_optab;
8689 op2 = expand_normal (gimple_assign_rhs1 (def2));
8692 if (op0 == NULL)
8693 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8694 if (op2 == NULL)
8695 op2 = expand_normal (treeop2);
8696 op1 = expand_normal (treeop1);
8698 return expand_ternary_op (TYPE_MODE (type), opt,
8699 op0, op1, op2, target, 0);
8702 case MULT_EXPR:
8703 /* If this is a fixed-point operation, then we cannot use the code
8704 below because "expand_mult" doesn't support sat/no-sat fixed-point
8705 multiplications. */
8706 if (ALL_FIXED_POINT_MODE_P (mode))
8707 goto binop;
8709 /* If first operand is constant, swap them.
8710 Thus the following special case checks need only
8711 check the second operand. */
8712 if (TREE_CODE (treeop0) == INTEGER_CST)
8714 tree t1 = treeop0;
8715 treeop0 = treeop1;
8716 treeop1 = t1;
8719 /* Attempt to return something suitable for generating an
8720 indexed address, for machines that support that. */
8722 if (modifier == EXPAND_SUM && mode == ptr_mode
8723 && tree_fits_shwi_p (treeop1))
8725 tree exp1 = treeop1;
8727 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8728 EXPAND_SUM);
8730 if (!REG_P (op0))
8731 op0 = force_operand (op0, NULL_RTX);
8732 if (!REG_P (op0))
8733 op0 = copy_to_mode_reg (mode, op0);
8735 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8736 gen_int_mode (tree_to_shwi (exp1),
8737 TYPE_MODE (TREE_TYPE (exp1)))));
8740 if (modifier == EXPAND_STACK_PARM)
8741 target = 0;
8743 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8744 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8746 case TRUNC_DIV_EXPR:
8747 case FLOOR_DIV_EXPR:
8748 case CEIL_DIV_EXPR:
8749 case ROUND_DIV_EXPR:
8750 case EXACT_DIV_EXPR:
8751 /* If this is a fixed-point operation, then we cannot use the code
8752 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8753 divisions. */
8754 if (ALL_FIXED_POINT_MODE_P (mode))
8755 goto binop;
8757 if (modifier == EXPAND_STACK_PARM)
8758 target = 0;
8759 /* Possible optimization: compute the dividend with EXPAND_SUM
8760 then if the divisor is constant can optimize the case
8761 where some terms of the dividend have coeffs divisible by it. */
8762 expand_operands (treeop0, treeop1,
8763 subtarget, &op0, &op1, EXPAND_NORMAL);
8764 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8766 case RDIV_EXPR:
8767 goto binop;
8769 case MULT_HIGHPART_EXPR:
8770 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8771 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8772 gcc_assert (temp);
8773 return temp;
8775 case TRUNC_MOD_EXPR:
8776 case FLOOR_MOD_EXPR:
8777 case CEIL_MOD_EXPR:
8778 case ROUND_MOD_EXPR:
8779 if (modifier == EXPAND_STACK_PARM)
8780 target = 0;
8781 expand_operands (treeop0, treeop1,
8782 subtarget, &op0, &op1, EXPAND_NORMAL);
8783 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8785 case FIXED_CONVERT_EXPR:
8786 op0 = expand_normal (treeop0);
8787 if (target == 0 || modifier == EXPAND_STACK_PARM)
8788 target = gen_reg_rtx (mode);
8790 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8791 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8792 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8793 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8794 else
8795 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8796 return target;
8798 case FIX_TRUNC_EXPR:
8799 op0 = expand_normal (treeop0);
8800 if (target == 0 || modifier == EXPAND_STACK_PARM)
8801 target = gen_reg_rtx (mode);
8802 expand_fix (target, op0, unsignedp);
8803 return target;
8805 case FLOAT_EXPR:
8806 op0 = expand_normal (treeop0);
8807 if (target == 0 || modifier == EXPAND_STACK_PARM)
8808 target = gen_reg_rtx (mode);
8809 /* expand_float can't figure out what to do if FROM has VOIDmode.
8810 So give it the correct mode. With -O, cse will optimize this. */
8811 if (GET_MODE (op0) == VOIDmode)
8812 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8813 op0);
8814 expand_float (target, op0,
8815 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8816 return target;
8818 case NEGATE_EXPR:
8819 op0 = expand_expr (treeop0, subtarget,
8820 VOIDmode, EXPAND_NORMAL);
8821 if (modifier == EXPAND_STACK_PARM)
8822 target = 0;
8823 temp = expand_unop (mode,
8824 optab_for_tree_code (NEGATE_EXPR, type,
8825 optab_default),
8826 op0, target, 0);
8827 gcc_assert (temp);
8828 return REDUCE_BIT_FIELD (temp);
8830 case ABS_EXPR:
8831 op0 = expand_expr (treeop0, subtarget,
8832 VOIDmode, EXPAND_NORMAL);
8833 if (modifier == EXPAND_STACK_PARM)
8834 target = 0;
8836 /* ABS_EXPR is not valid for complex arguments. */
8837 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8838 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8840 /* Unsigned abs is simply the operand. Testing here means we don't
8841 risk generating incorrect code below. */
8842 if (TYPE_UNSIGNED (type))
8843 return op0;
8845 return expand_abs (mode, op0, target, unsignedp,
8846 safe_from_p (target, treeop0, 1));
8848 case MAX_EXPR:
8849 case MIN_EXPR:
8850 target = original_target;
8851 if (target == 0
8852 || modifier == EXPAND_STACK_PARM
8853 || (MEM_P (target) && MEM_VOLATILE_P (target))
8854 || GET_MODE (target) != mode
8855 || (REG_P (target)
8856 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8857 target = gen_reg_rtx (mode);
8858 expand_operands (treeop0, treeop1,
8859 target, &op0, &op1, EXPAND_NORMAL);
8861 /* First try to do it with a special MIN or MAX instruction.
8862 If that does not win, use a conditional jump to select the proper
8863 value. */
8864 this_optab = optab_for_tree_code (code, type, optab_default);
8865 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8866 OPTAB_WIDEN);
8867 if (temp != 0)
8868 return temp;
8870 /* At this point, a MEM target is no longer useful; we will get better
8871 code without it. */
8873 if (! REG_P (target))
8874 target = gen_reg_rtx (mode);
8876 /* If op1 was placed in target, swap op0 and op1. */
8877 if (target != op0 && target == op1)
8878 std::swap (op0, op1);
8880 /* We generate better code and avoid problems with op1 mentioning
8881 target by forcing op1 into a pseudo if it isn't a constant. */
8882 if (! CONSTANT_P (op1))
8883 op1 = force_reg (mode, op1);
8886 enum rtx_code comparison_code;
8887 rtx cmpop1 = op1;
8889 if (code == MAX_EXPR)
8890 comparison_code = unsignedp ? GEU : GE;
8891 else
8892 comparison_code = unsignedp ? LEU : LE;
8894 /* Canonicalize to comparisons against 0. */
8895 if (op1 == const1_rtx)
8897 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8898 or (a != 0 ? a : 1) for unsigned.
8899 For MIN we are safe converting (a <= 1 ? a : 1)
8900 into (a <= 0 ? a : 1) */
8901 cmpop1 = const0_rtx;
8902 if (code == MAX_EXPR)
8903 comparison_code = unsignedp ? NE : GT;
8905 if (op1 == constm1_rtx && !unsignedp)
8907 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8908 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8909 cmpop1 = const0_rtx;
8910 if (code == MIN_EXPR)
8911 comparison_code = LT;
8913 #ifdef HAVE_conditional_move
8914 /* Use a conditional move if possible. */
8915 if (can_conditionally_move_p (mode))
8917 rtx insn;
8919 start_sequence ();
8921 /* Try to emit the conditional move. */
8922 insn = emit_conditional_move (target, comparison_code,
8923 op0, cmpop1, mode,
8924 op0, op1, mode,
8925 unsignedp);
8927 /* If we could do the conditional move, emit the sequence,
8928 and return. */
8929 if (insn)
8931 rtx_insn *seq = get_insns ();
8932 end_sequence ();
8933 emit_insn (seq);
8934 return target;
8937 /* Otherwise discard the sequence and fall back to code with
8938 branches. */
8939 end_sequence ();
8941 #endif
8942 if (target != op0)
8943 emit_move_insn (target, op0);
8945 lab = gen_label_rtx ();
8946 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8947 unsignedp, mode, NULL_RTX, NULL, lab,
8948 -1);
8950 emit_move_insn (target, op1);
8951 emit_label (lab);
8952 return target;
8954 case BIT_NOT_EXPR:
8955 op0 = expand_expr (treeop0, subtarget,
8956 VOIDmode, EXPAND_NORMAL);
8957 if (modifier == EXPAND_STACK_PARM)
8958 target = 0;
8959 /* In case we have to reduce the result to bitfield precision
8960 for unsigned bitfield expand this as XOR with a proper constant
8961 instead. */
8962 if (reduce_bit_field && TYPE_UNSIGNED (type))
8964 wide_int mask = wi::mask (TYPE_PRECISION (type),
8965 false, GET_MODE_PRECISION (mode));
8967 temp = expand_binop (mode, xor_optab, op0,
8968 immed_wide_int_const (mask, mode),
8969 target, 1, OPTAB_LIB_WIDEN);
8971 else
8972 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8973 gcc_assert (temp);
8974 return temp;
8976 /* ??? Can optimize bitwise operations with one arg constant.
8977 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8978 and (a bitwise1 b) bitwise2 b (etc)
8979 but that is probably not worth while. */
8981 case BIT_AND_EXPR:
8982 case BIT_IOR_EXPR:
8983 case BIT_XOR_EXPR:
8984 goto binop;
8986 case LROTATE_EXPR:
8987 case RROTATE_EXPR:
8988 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8989 || (GET_MODE_PRECISION (TYPE_MODE (type))
8990 == TYPE_PRECISION (type)));
8991 /* fall through */
8993 case LSHIFT_EXPR:
8994 case RSHIFT_EXPR:
8995 /* If this is a fixed-point operation, then we cannot use the code
8996 below because "expand_shift" doesn't support sat/no-sat fixed-point
8997 shifts. */
8998 if (ALL_FIXED_POINT_MODE_P (mode))
8999 goto binop;
9001 if (! safe_from_p (subtarget, treeop1, 1))
9002 subtarget = 0;
9003 if (modifier == EXPAND_STACK_PARM)
9004 target = 0;
9005 op0 = expand_expr (treeop0, subtarget,
9006 VOIDmode, EXPAND_NORMAL);
9007 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9008 unsignedp);
9009 if (code == LSHIFT_EXPR)
9010 temp = REDUCE_BIT_FIELD (temp);
9011 return temp;
9013 /* Could determine the answer when only additive constants differ. Also,
9014 the addition of one can be handled by changing the condition. */
9015 case LT_EXPR:
9016 case LE_EXPR:
9017 case GT_EXPR:
9018 case GE_EXPR:
9019 case EQ_EXPR:
9020 case NE_EXPR:
9021 case UNORDERED_EXPR:
9022 case ORDERED_EXPR:
9023 case UNLT_EXPR:
9024 case UNLE_EXPR:
9025 case UNGT_EXPR:
9026 case UNGE_EXPR:
9027 case UNEQ_EXPR:
9028 case LTGT_EXPR:
9030 temp = do_store_flag (ops,
9031 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9032 tmode != VOIDmode ? tmode : mode);
9033 if (temp)
9034 return temp;
9036 /* Use a compare and a jump for BLKmode comparisons, or for function
9037 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9039 if ((target == 0
9040 || modifier == EXPAND_STACK_PARM
9041 || ! safe_from_p (target, treeop0, 1)
9042 || ! safe_from_p (target, treeop1, 1)
9043 /* Make sure we don't have a hard reg (such as function's return
9044 value) live across basic blocks, if not optimizing. */
9045 || (!optimize && REG_P (target)
9046 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9047 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9049 emit_move_insn (target, const0_rtx);
9051 rtx_code_label *lab1 = gen_label_rtx ();
9052 jumpifnot_1 (code, treeop0, treeop1, lab1, -1);
9054 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9055 emit_move_insn (target, constm1_rtx);
9056 else
9057 emit_move_insn (target, const1_rtx);
9059 emit_label (lab1);
9060 return target;
9062 case COMPLEX_EXPR:
9063 /* Get the rtx code of the operands. */
9064 op0 = expand_normal (treeop0);
9065 op1 = expand_normal (treeop1);
9067 if (!target)
9068 target = gen_reg_rtx (TYPE_MODE (type));
9069 else
9070 /* If target overlaps with op1, then either we need to force
9071 op1 into a pseudo (if target also overlaps with op0),
9072 or write the complex parts in reverse order. */
9073 switch (GET_CODE (target))
9075 case CONCAT:
9076 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9078 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9080 complex_expr_force_op1:
9081 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9082 emit_move_insn (temp, op1);
9083 op1 = temp;
9084 break;
9086 complex_expr_swap_order:
9087 /* Move the imaginary (op1) and real (op0) parts to their
9088 location. */
9089 write_complex_part (target, op1, true);
9090 write_complex_part (target, op0, false);
9092 return target;
9094 break;
9095 case MEM:
9096 temp = adjust_address_nv (target,
9097 GET_MODE_INNER (GET_MODE (target)), 0);
9098 if (reg_overlap_mentioned_p (temp, op1))
9100 machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9101 temp = adjust_address_nv (target, imode,
9102 GET_MODE_SIZE (imode));
9103 if (reg_overlap_mentioned_p (temp, op0))
9104 goto complex_expr_force_op1;
9105 goto complex_expr_swap_order;
9107 break;
9108 default:
9109 if (reg_overlap_mentioned_p (target, op1))
9111 if (reg_overlap_mentioned_p (target, op0))
9112 goto complex_expr_force_op1;
9113 goto complex_expr_swap_order;
9115 break;
9118 /* Move the real (op0) and imaginary (op1) parts to their location. */
9119 write_complex_part (target, op0, false);
9120 write_complex_part (target, op1, true);
9122 return target;
9124 case WIDEN_SUM_EXPR:
9126 tree oprnd0 = treeop0;
9127 tree oprnd1 = treeop1;
9129 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9130 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9131 target, unsignedp);
9132 return target;
9135 case REDUC_MAX_EXPR:
9136 case REDUC_MIN_EXPR:
9137 case REDUC_PLUS_EXPR:
9139 op0 = expand_normal (treeop0);
9140 this_optab = optab_for_tree_code (code, type, optab_default);
9141 machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));
9143 if (optab_handler (this_optab, vec_mode) != CODE_FOR_nothing)
9145 struct expand_operand ops[2];
9146 enum insn_code icode = optab_handler (this_optab, vec_mode);
9148 create_output_operand (&ops[0], target, mode);
9149 create_input_operand (&ops[1], op0, vec_mode);
9150 if (maybe_expand_insn (icode, 2, ops))
9152 target = ops[0].value;
9153 if (GET_MODE (target) != mode)
9154 return gen_lowpart (tmode, target);
9155 return target;
9158 /* Fall back to optab with vector result, and then extract scalar. */
9159 this_optab = scalar_reduc_to_vector (this_optab, type);
9160 temp = expand_unop (vec_mode, this_optab, op0, NULL_RTX, unsignedp);
9161 gcc_assert (temp);
9162 /* The tree code produces a scalar result, but (somewhat by convention)
9163 the optab produces a vector with the result in element 0 if
9164 little-endian, or element N-1 if big-endian. So pull the scalar
9165 result out of that element. */
9166 int index = BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (vec_mode) - 1 : 0;
9167 int bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode));
9168 temp = extract_bit_field (temp, bitsize, bitsize * index, unsignedp,
9169 target, mode, mode);
9170 gcc_assert (temp);
9171 return temp;
9174 case VEC_UNPACK_HI_EXPR:
9175 case VEC_UNPACK_LO_EXPR:
9177 op0 = expand_normal (treeop0);
9178 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9179 target, unsignedp);
9180 gcc_assert (temp);
9181 return temp;
9184 case VEC_UNPACK_FLOAT_HI_EXPR:
9185 case VEC_UNPACK_FLOAT_LO_EXPR:
9187 op0 = expand_normal (treeop0);
9188 /* The signedness is determined from input operand. */
9189 temp = expand_widen_pattern_expr
9190 (ops, op0, NULL_RTX, NULL_RTX,
9191 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9193 gcc_assert (temp);
9194 return temp;
9197 case VEC_WIDEN_MULT_HI_EXPR:
9198 case VEC_WIDEN_MULT_LO_EXPR:
9199 case VEC_WIDEN_MULT_EVEN_EXPR:
9200 case VEC_WIDEN_MULT_ODD_EXPR:
9201 case VEC_WIDEN_LSHIFT_HI_EXPR:
9202 case VEC_WIDEN_LSHIFT_LO_EXPR:
9203 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9204 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9205 target, unsignedp);
9206 gcc_assert (target);
9207 return target;
9209 case VEC_PACK_TRUNC_EXPR:
9210 case VEC_PACK_SAT_EXPR:
9211 case VEC_PACK_FIX_TRUNC_EXPR:
9212 mode = TYPE_MODE (TREE_TYPE (treeop0));
9213 goto binop;
9215 case VEC_PERM_EXPR:
9216 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9217 op2 = expand_normal (treeop2);
9219 /* Careful here: if the target doesn't support integral vector modes,
9220 a constant selection vector could wind up smooshed into a normal
9221 integral constant. */
9222 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9224 tree sel_type = TREE_TYPE (treeop2);
9225 machine_mode vmode
9226 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9227 TYPE_VECTOR_SUBPARTS (sel_type));
9228 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9229 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9230 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9232 else
9233 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9235 temp = expand_vec_perm (mode, op0, op1, op2, target);
9236 gcc_assert (temp);
9237 return temp;
9239 case DOT_PROD_EXPR:
9241 tree oprnd0 = treeop0;
9242 tree oprnd1 = treeop1;
9243 tree oprnd2 = treeop2;
9244 rtx op2;
9246 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9247 op2 = expand_normal (oprnd2);
9248 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9249 target, unsignedp);
9250 return target;
9253 case SAD_EXPR:
9255 tree oprnd0 = treeop0;
9256 tree oprnd1 = treeop1;
9257 tree oprnd2 = treeop2;
9258 rtx op2;
9260 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9261 op2 = expand_normal (oprnd2);
9262 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9263 target, unsignedp);
9264 return target;
9267 case REALIGN_LOAD_EXPR:
9269 tree oprnd0 = treeop0;
9270 tree oprnd1 = treeop1;
9271 tree oprnd2 = treeop2;
9272 rtx op2;
9274 this_optab = optab_for_tree_code (code, type, optab_default);
9275 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9276 op2 = expand_normal (oprnd2);
9277 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9278 target, unsignedp);
9279 gcc_assert (temp);
9280 return temp;
9283 case COND_EXPR:
9285 /* A COND_EXPR with its type being VOID_TYPE represents a
9286 conditional jump and is handled in
9287 expand_gimple_cond_expr. */
9288 gcc_assert (!VOID_TYPE_P (type));
9290 /* Note that COND_EXPRs whose type is a structure or union
9291 are required to be constructed to contain assignments of
9292 a temporary variable, so that we can evaluate them here
9293 for side effect only. If type is void, we must do likewise. */
9295 gcc_assert (!TREE_ADDRESSABLE (type)
9296 && !ignore
9297 && TREE_TYPE (treeop1) != void_type_node
9298 && TREE_TYPE (treeop2) != void_type_node);
9300 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9301 if (temp)
9302 return temp;
9304 /* If we are not to produce a result, we have no target. Otherwise,
9305 if a target was specified use it; it will not be used as an
9306 intermediate target unless it is safe. If no target, use a
9307 temporary. */
9309 if (modifier != EXPAND_STACK_PARM
9310 && original_target
9311 && safe_from_p (original_target, treeop0, 1)
9312 && GET_MODE (original_target) == mode
9313 && !MEM_P (original_target))
9314 temp = original_target;
9315 else
9316 temp = assign_temp (type, 0, 1);
9318 do_pending_stack_adjust ();
9319 NO_DEFER_POP;
9320 rtx_code_label *lab0 = gen_label_rtx ();
9321 rtx_code_label *lab1 = gen_label_rtx ();
9322 jumpifnot (treeop0, lab0, -1);
9323 store_expr (treeop1, temp,
9324 modifier == EXPAND_STACK_PARM,
9325 false);
9327 emit_jump_insn (gen_jump (lab1));
9328 emit_barrier ();
9329 emit_label (lab0);
9330 store_expr (treeop2, temp,
9331 modifier == EXPAND_STACK_PARM,
9332 false);
9334 emit_label (lab1);
9335 OK_DEFER_POP;
9336 return temp;
9339 case VEC_COND_EXPR:
9340 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9341 return target;
9343 default:
9344 gcc_unreachable ();
9347 /* Here to do an ordinary binary operator. */
9348 binop:
9349 expand_operands (treeop0, treeop1,
9350 subtarget, &op0, &op1, EXPAND_NORMAL);
9351 binop2:
9352 this_optab = optab_for_tree_code (code, type, optab_default);
9353 binop3:
9354 if (modifier == EXPAND_STACK_PARM)
9355 target = 0;
9356 temp = expand_binop (mode, this_optab, op0, op1, target,
9357 unsignedp, OPTAB_LIB_WIDEN);
9358 gcc_assert (temp);
9359 /* Bitwise operations do not need bitfield reduction as we expect their
9360 operands being properly truncated. */
9361 if (code == BIT_XOR_EXPR
9362 || code == BIT_AND_EXPR
9363 || code == BIT_IOR_EXPR)
9364 return temp;
9365 return REDUCE_BIT_FIELD (temp);
9367 #undef REDUCE_BIT_FIELD
9370 /* Return TRUE if expression STMT is suitable for replacement.
9371 Never consider memory loads as replaceable, because those don't ever lead
9372 into constant expressions. */
9374 static bool
9375 stmt_is_replaceable_p (gimple stmt)
9377 if (ssa_is_replaceable_p (stmt))
9379 /* Don't move around loads. */
9380 if (!gimple_assign_single_p (stmt)
9381 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9382 return true;
9384 return false;
9388 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
9389 enum expand_modifier modifier, rtx *alt_rtl,
9390 bool inner_reference_p)
9392 rtx op0, op1, temp, decl_rtl;
9393 tree type;
9394 int unsignedp;
9395 machine_mode mode;
9396 enum tree_code code = TREE_CODE (exp);
9397 rtx subtarget, original_target;
9398 int ignore;
9399 tree context;
9400 bool reduce_bit_field;
9401 location_t loc = EXPR_LOCATION (exp);
9402 struct separate_ops ops;
9403 tree treeop0, treeop1, treeop2;
9404 tree ssa_name = NULL_TREE;
9405 gimple g;
9407 type = TREE_TYPE (exp);
9408 mode = TYPE_MODE (type);
9409 unsignedp = TYPE_UNSIGNED (type);
9411 treeop0 = treeop1 = treeop2 = NULL_TREE;
9412 if (!VL_EXP_CLASS_P (exp))
9413 switch (TREE_CODE_LENGTH (code))
9415 default:
9416 case 3: treeop2 = TREE_OPERAND (exp, 2);
9417 case 2: treeop1 = TREE_OPERAND (exp, 1);
9418 case 1: treeop0 = TREE_OPERAND (exp, 0);
9419 case 0: break;
9421 ops.code = code;
9422 ops.type = type;
9423 ops.op0 = treeop0;
9424 ops.op1 = treeop1;
9425 ops.op2 = treeop2;
9426 ops.location = loc;
9428 ignore = (target == const0_rtx
9429 || ((CONVERT_EXPR_CODE_P (code)
9430 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9431 && TREE_CODE (type) == VOID_TYPE));
9433 /* An operation in what may be a bit-field type needs the
9434 result to be reduced to the precision of the bit-field type,
9435 which is narrower than that of the type's mode. */
9436 reduce_bit_field = (!ignore
9437 && INTEGRAL_TYPE_P (type)
9438 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9440 /* If we are going to ignore this result, we need only do something
9441 if there is a side-effect somewhere in the expression. If there
9442 is, short-circuit the most common cases here. Note that we must
9443 not call expand_expr with anything but const0_rtx in case this
9444 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9446 if (ignore)
9448 if (! TREE_SIDE_EFFECTS (exp))
9449 return const0_rtx;
9451 /* Ensure we reference a volatile object even if value is ignored, but
9452 don't do this if all we are doing is taking its address. */
9453 if (TREE_THIS_VOLATILE (exp)
9454 && TREE_CODE (exp) != FUNCTION_DECL
9455 && mode != VOIDmode && mode != BLKmode
9456 && modifier != EXPAND_CONST_ADDRESS)
9458 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9459 if (MEM_P (temp))
9460 copy_to_reg (temp);
9461 return const0_rtx;
9464 if (TREE_CODE_CLASS (code) == tcc_unary
9465 || code == BIT_FIELD_REF
9466 || code == COMPONENT_REF
9467 || code == INDIRECT_REF)
9468 return expand_expr (treeop0, const0_rtx, VOIDmode,
9469 modifier);
9471 else if (TREE_CODE_CLASS (code) == tcc_binary
9472 || TREE_CODE_CLASS (code) == tcc_comparison
9473 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9475 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9476 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9477 return const0_rtx;
9480 target = 0;
9483 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9484 target = 0;
9486 /* Use subtarget as the target for operand 0 of a binary operation. */
9487 subtarget = get_subtarget (target);
9488 original_target = target;
9490 switch (code)
9492 case LABEL_DECL:
9494 tree function = decl_function_context (exp);
9496 temp = label_rtx (exp);
9497 temp = gen_rtx_LABEL_REF (Pmode, temp);
9499 if (function != current_function_decl
9500 && function != 0)
9501 LABEL_REF_NONLOCAL_P (temp) = 1;
9503 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9504 return temp;
9507 case SSA_NAME:
9508 /* ??? ivopts calls expander, without any preparation from
9509 out-of-ssa. So fake instructions as if this was an access to the
9510 base variable. This unnecessarily allocates a pseudo, see how we can
9511 reuse it, if partition base vars have it set already. */
9512 if (!currently_expanding_to_rtl)
9514 tree var = SSA_NAME_VAR (exp);
9515 if (var && DECL_RTL_SET_P (var))
9516 return DECL_RTL (var);
9517 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9518 LAST_VIRTUAL_REGISTER + 1);
9521 g = get_gimple_for_ssa_name (exp);
9522 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9523 if (g == NULL
9524 && modifier == EXPAND_INITIALIZER
9525 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9526 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9527 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9528 g = SSA_NAME_DEF_STMT (exp);
9529 if (g)
9531 rtx r;
9532 ops.code = gimple_assign_rhs_code (g);
9533 switch (get_gimple_rhs_class (ops.code))
9535 case GIMPLE_TERNARY_RHS:
9536 ops.op2 = gimple_assign_rhs3 (g);
9537 /* Fallthru */
9538 case GIMPLE_BINARY_RHS:
9539 ops.op1 = gimple_assign_rhs2 (g);
9541 /* Try to expand conditonal compare. */
9542 if (targetm.gen_ccmp_first)
9544 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
9545 r = expand_ccmp_expr (g);
9546 if (r)
9547 break;
9549 /* Fallthru */
9550 case GIMPLE_UNARY_RHS:
9551 ops.op0 = gimple_assign_rhs1 (g);
9552 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9553 ops.location = gimple_location (g);
9554 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9555 break;
9556 case GIMPLE_SINGLE_RHS:
9558 location_t saved_loc = curr_insn_location ();
9559 set_curr_insn_location (gimple_location (g));
9560 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9561 tmode, modifier, NULL, inner_reference_p);
9562 set_curr_insn_location (saved_loc);
9563 break;
9565 default:
9566 gcc_unreachable ();
9568 if (REG_P (r) && !REG_EXPR (r))
9569 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9570 return r;
9573 ssa_name = exp;
9574 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9575 exp = SSA_NAME_VAR (ssa_name);
9576 goto expand_decl_rtl;
9578 case PARM_DECL:
9579 case VAR_DECL:
9580 /* If a static var's type was incomplete when the decl was written,
9581 but the type is complete now, lay out the decl now. */
9582 if (DECL_SIZE (exp) == 0
9583 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9584 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9585 layout_decl (exp, 0);
9587 /* ... fall through ... */
9589 case FUNCTION_DECL:
9590 case RESULT_DECL:
9591 decl_rtl = DECL_RTL (exp);
9592 expand_decl_rtl:
9593 gcc_assert (decl_rtl);
9594 decl_rtl = copy_rtx (decl_rtl);
9595 /* Record writes to register variables. */
9596 if (modifier == EXPAND_WRITE
9597 && REG_P (decl_rtl)
9598 && HARD_REGISTER_P (decl_rtl))
9599 add_to_hard_reg_set (&crtl->asm_clobbers,
9600 GET_MODE (decl_rtl), REGNO (decl_rtl));
9602 /* Ensure variable marked as used even if it doesn't go through
9603 a parser. If it hasn't be used yet, write out an external
9604 definition. */
9605 TREE_USED (exp) = 1;
9607 /* Show we haven't gotten RTL for this yet. */
9608 temp = 0;
9610 /* Variables inherited from containing functions should have
9611 been lowered by this point. */
9612 context = decl_function_context (exp);
9613 gcc_assert (SCOPE_FILE_SCOPE_P (context)
9614 || context == current_function_decl
9615 || TREE_STATIC (exp)
9616 || DECL_EXTERNAL (exp)
9617 /* ??? C++ creates functions that are not TREE_STATIC. */
9618 || TREE_CODE (exp) == FUNCTION_DECL);
9620 /* This is the case of an array whose size is to be determined
9621 from its initializer, while the initializer is still being parsed.
9622 ??? We aren't parsing while expanding anymore. */
9624 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9625 temp = validize_mem (decl_rtl);
9627 /* If DECL_RTL is memory, we are in the normal case and the
9628 address is not valid, get the address into a register. */
9630 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9632 if (alt_rtl)
9633 *alt_rtl = decl_rtl;
9634 decl_rtl = use_anchored_address (decl_rtl);
9635 if (modifier != EXPAND_CONST_ADDRESS
9636 && modifier != EXPAND_SUM
9637 && !memory_address_addr_space_p (DECL_MODE (exp),
9638 XEXP (decl_rtl, 0),
9639 MEM_ADDR_SPACE (decl_rtl)))
9640 temp = replace_equiv_address (decl_rtl,
9641 copy_rtx (XEXP (decl_rtl, 0)));
9644 /* If we got something, return it. But first, set the alignment
9645 if the address is a register. */
9646 if (temp != 0)
9648 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9649 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9651 return temp;
9654 /* If the mode of DECL_RTL does not match that of the decl,
9655 there are two cases: we are dealing with a BLKmode value
9656 that is returned in a register, or we are dealing with
9657 a promoted value. In the latter case, return a SUBREG
9658 of the wanted mode, but mark it so that we know that it
9659 was already extended. */
9660 if (REG_P (decl_rtl)
9661 && DECL_MODE (exp) != BLKmode
9662 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9664 machine_mode pmode;
9666 /* Get the signedness to be used for this variable. Ensure we get
9667 the same mode we got when the variable was declared. */
9668 if (code == SSA_NAME
9669 && (g = SSA_NAME_DEF_STMT (ssa_name))
9670 && gimple_code (g) == GIMPLE_CALL
9671 && !gimple_call_internal_p (g))
9672 pmode = promote_function_mode (type, mode, &unsignedp,
9673 gimple_call_fntype (g),
9675 else
9676 pmode = promote_decl_mode (exp, &unsignedp);
9677 gcc_assert (GET_MODE (decl_rtl) == pmode);
9679 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9680 SUBREG_PROMOTED_VAR_P (temp) = 1;
9681 SUBREG_PROMOTED_SET (temp, unsignedp);
9682 return temp;
9685 return decl_rtl;
9687 case INTEGER_CST:
9688 /* Given that TYPE_PRECISION (type) is not always equal to
9689 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9690 the former to the latter according to the signedness of the
9691 type. */
9692 temp = immed_wide_int_const (wide_int::from
9693 (exp,
9694 GET_MODE_PRECISION (TYPE_MODE (type)),
9695 TYPE_SIGN (type)),
9696 TYPE_MODE (type));
9697 return temp;
9699 case VECTOR_CST:
9701 tree tmp = NULL_TREE;
9702 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9703 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9704 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9705 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9706 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9707 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9708 return const_vector_from_tree (exp);
9709 if (GET_MODE_CLASS (mode) == MODE_INT)
9711 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9712 if (type_for_mode)
9713 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9715 if (!tmp)
9717 vec<constructor_elt, va_gc> *v;
9718 unsigned i;
9719 vec_alloc (v, VECTOR_CST_NELTS (exp));
9720 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9721 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9722 tmp = build_constructor (type, v);
9724 return expand_expr (tmp, ignore ? const0_rtx : target,
9725 tmode, modifier);
9728 case CONST_DECL:
9729 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9731 case REAL_CST:
9732 /* If optimized, generate immediate CONST_DOUBLE
9733 which will be turned into memory by reload if necessary.
9735 We used to force a register so that loop.c could see it. But
9736 this does not allow gen_* patterns to perform optimizations with
9737 the constants. It also produces two insns in cases like "x = 1.0;".
9738 On most machines, floating-point constants are not permitted in
9739 many insns, so we'd end up copying it to a register in any case.
9741 Now, we do the copying in expand_binop, if appropriate. */
9742 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9743 TYPE_MODE (TREE_TYPE (exp)));
9745 case FIXED_CST:
9746 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9747 TYPE_MODE (TREE_TYPE (exp)));
9749 case COMPLEX_CST:
9750 /* Handle evaluating a complex constant in a CONCAT target. */
9751 if (original_target && GET_CODE (original_target) == CONCAT)
9753 machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9754 rtx rtarg, itarg;
9756 rtarg = XEXP (original_target, 0);
9757 itarg = XEXP (original_target, 1);
9759 /* Move the real and imaginary parts separately. */
9760 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9761 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9763 if (op0 != rtarg)
9764 emit_move_insn (rtarg, op0);
9765 if (op1 != itarg)
9766 emit_move_insn (itarg, op1);
9768 return original_target;
9771 /* ... fall through ... */
9773 case STRING_CST:
9774 temp = expand_expr_constant (exp, 1, modifier);
9776 /* temp contains a constant address.
9777 On RISC machines where a constant address isn't valid,
9778 make some insns to get that address into a register. */
9779 if (modifier != EXPAND_CONST_ADDRESS
9780 && modifier != EXPAND_INITIALIZER
9781 && modifier != EXPAND_SUM
9782 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9783 MEM_ADDR_SPACE (temp)))
9784 return replace_equiv_address (temp,
9785 copy_rtx (XEXP (temp, 0)));
9786 return temp;
9788 case SAVE_EXPR:
9790 tree val = treeop0;
9791 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9792 inner_reference_p);
9794 if (!SAVE_EXPR_RESOLVED_P (exp))
9796 /* We can indeed still hit this case, typically via builtin
9797 expanders calling save_expr immediately before expanding
9798 something. Assume this means that we only have to deal
9799 with non-BLKmode values. */
9800 gcc_assert (GET_MODE (ret) != BLKmode);
9802 val = build_decl (curr_insn_location (),
9803 VAR_DECL, NULL, TREE_TYPE (exp));
9804 DECL_ARTIFICIAL (val) = 1;
9805 DECL_IGNORED_P (val) = 1;
9806 treeop0 = val;
9807 TREE_OPERAND (exp, 0) = treeop0;
9808 SAVE_EXPR_RESOLVED_P (exp) = 1;
9810 if (!CONSTANT_P (ret))
9811 ret = copy_to_reg (ret);
9812 SET_DECL_RTL (val, ret);
9815 return ret;
9819 case CONSTRUCTOR:
9820 /* If we don't need the result, just ensure we evaluate any
9821 subexpressions. */
9822 if (ignore)
9824 unsigned HOST_WIDE_INT idx;
9825 tree value;
9827 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9828 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9830 return const0_rtx;
9833 return expand_constructor (exp, target, modifier, false);
9835 case TARGET_MEM_REF:
9837 addr_space_t as
9838 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9839 enum insn_code icode;
9840 unsigned int align;
9842 op0 = addr_for_mem_ref (exp, as, true);
9843 op0 = memory_address_addr_space (mode, op0, as);
9844 temp = gen_rtx_MEM (mode, op0);
9845 set_mem_attributes (temp, exp, 0);
9846 set_mem_addr_space (temp, as);
9847 align = get_object_alignment (exp);
9848 if (modifier != EXPAND_WRITE
9849 && modifier != EXPAND_MEMORY
9850 && mode != BLKmode
9851 && align < GET_MODE_ALIGNMENT (mode)
9852 /* If the target does not have special handling for unaligned
9853 loads of mode then it can use regular moves for them. */
9854 && ((icode = optab_handler (movmisalign_optab, mode))
9855 != CODE_FOR_nothing))
9857 struct expand_operand ops[2];
9859 /* We've already validated the memory, and we're creating a
9860 new pseudo destination. The predicates really can't fail,
9861 nor can the generator. */
9862 create_output_operand (&ops[0], NULL_RTX, mode);
9863 create_fixed_operand (&ops[1], temp);
9864 expand_insn (icode, 2, ops);
9865 temp = ops[0].value;
9867 return temp;
9870 case MEM_REF:
9872 addr_space_t as
9873 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9874 machine_mode address_mode;
9875 tree base = TREE_OPERAND (exp, 0);
9876 gimple def_stmt;
9877 enum insn_code icode;
9878 unsigned align;
9879 /* Handle expansion of non-aliased memory with non-BLKmode. That
9880 might end up in a register. */
9881 if (mem_ref_refers_to_non_mem_p (exp))
9883 HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
9884 base = TREE_OPERAND (base, 0);
9885 if (offset == 0
9886 && tree_fits_uhwi_p (TYPE_SIZE (type))
9887 && (GET_MODE_BITSIZE (DECL_MODE (base))
9888 == tree_to_uhwi (TYPE_SIZE (type))))
9889 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9890 target, tmode, modifier);
9891 if (TYPE_MODE (type) == BLKmode)
9893 temp = assign_stack_temp (DECL_MODE (base),
9894 GET_MODE_SIZE (DECL_MODE (base)));
9895 store_expr (base, temp, 0, false);
9896 temp = adjust_address (temp, BLKmode, offset);
9897 set_mem_size (temp, int_size_in_bytes (type));
9898 return temp;
9900 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9901 bitsize_int (offset * BITS_PER_UNIT));
9902 return expand_expr (exp, target, tmode, modifier);
9904 address_mode = targetm.addr_space.address_mode (as);
9905 base = TREE_OPERAND (exp, 0);
9906 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9908 tree mask = gimple_assign_rhs2 (def_stmt);
9909 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9910 gimple_assign_rhs1 (def_stmt), mask);
9911 TREE_OPERAND (exp, 0) = base;
9913 align = get_object_alignment (exp);
9914 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9915 op0 = memory_address_addr_space (mode, op0, as);
9916 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9918 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
9919 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9920 op0 = memory_address_addr_space (mode, op0, as);
9922 temp = gen_rtx_MEM (mode, op0);
9923 set_mem_attributes (temp, exp, 0);
9924 set_mem_addr_space (temp, as);
9925 if (TREE_THIS_VOLATILE (exp))
9926 MEM_VOLATILE_P (temp) = 1;
9927 if (modifier != EXPAND_WRITE
9928 && modifier != EXPAND_MEMORY
9929 && !inner_reference_p
9930 && mode != BLKmode
9931 && align < GET_MODE_ALIGNMENT (mode))
9933 if ((icode = optab_handler (movmisalign_optab, mode))
9934 != CODE_FOR_nothing)
9936 struct expand_operand ops[2];
9938 /* We've already validated the memory, and we're creating a
9939 new pseudo destination. The predicates really can't fail,
9940 nor can the generator. */
9941 create_output_operand (&ops[0], NULL_RTX, mode);
9942 create_fixed_operand (&ops[1], temp);
9943 expand_insn (icode, 2, ops);
9944 temp = ops[0].value;
9946 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9947 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9948 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9949 (modifier == EXPAND_STACK_PARM
9950 ? NULL_RTX : target),
9951 mode, mode);
9953 return temp;
9956 case ARRAY_REF:
9959 tree array = treeop0;
9960 tree index = treeop1;
9961 tree init;
9963 /* Fold an expression like: "foo"[2].
9964 This is not done in fold so it won't happen inside &.
9965 Don't fold if this is for wide characters since it's too
9966 difficult to do correctly and this is a very rare case. */
9968 if (modifier != EXPAND_CONST_ADDRESS
9969 && modifier != EXPAND_INITIALIZER
9970 && modifier != EXPAND_MEMORY)
9972 tree t = fold_read_from_constant_string (exp);
9974 if (t)
9975 return expand_expr (t, target, tmode, modifier);
9978 /* If this is a constant index into a constant array,
9979 just get the value from the array. Handle both the cases when
9980 we have an explicit constructor and when our operand is a variable
9981 that was declared const. */
9983 if (modifier != EXPAND_CONST_ADDRESS
9984 && modifier != EXPAND_INITIALIZER
9985 && modifier != EXPAND_MEMORY
9986 && TREE_CODE (array) == CONSTRUCTOR
9987 && ! TREE_SIDE_EFFECTS (array)
9988 && TREE_CODE (index) == INTEGER_CST)
9990 unsigned HOST_WIDE_INT ix;
9991 tree field, value;
9993 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9994 field, value)
9995 if (tree_int_cst_equal (field, index))
9997 if (!TREE_SIDE_EFFECTS (value))
9998 return expand_expr (fold (value), target, tmode, modifier);
9999 break;
10003 else if (optimize >= 1
10004 && modifier != EXPAND_CONST_ADDRESS
10005 && modifier != EXPAND_INITIALIZER
10006 && modifier != EXPAND_MEMORY
10007 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10008 && TREE_CODE (index) == INTEGER_CST
10009 && (TREE_CODE (array) == VAR_DECL
10010 || TREE_CODE (array) == CONST_DECL)
10011 && (init = ctor_for_folding (array)) != error_mark_node)
10013 if (init == NULL_TREE)
10015 tree value = build_zero_cst (type);
10016 if (TREE_CODE (value) == CONSTRUCTOR)
10018 /* If VALUE is a CONSTRUCTOR, this optimization is only
10019 useful if this doesn't store the CONSTRUCTOR into
10020 memory. If it does, it is more efficient to just
10021 load the data from the array directly. */
10022 rtx ret = expand_constructor (value, target,
10023 modifier, true);
10024 if (ret == NULL_RTX)
10025 value = NULL_TREE;
10028 if (value)
10029 return expand_expr (value, target, tmode, modifier);
10031 else if (TREE_CODE (init) == CONSTRUCTOR)
10033 unsigned HOST_WIDE_INT ix;
10034 tree field, value;
10036 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10037 field, value)
10038 if (tree_int_cst_equal (field, index))
10040 if (TREE_SIDE_EFFECTS (value))
10041 break;
10043 if (TREE_CODE (value) == CONSTRUCTOR)
10045 /* If VALUE is a CONSTRUCTOR, this
10046 optimization is only useful if
10047 this doesn't store the CONSTRUCTOR
10048 into memory. If it does, it is more
10049 efficient to just load the data from
10050 the array directly. */
10051 rtx ret = expand_constructor (value, target,
10052 modifier, true);
10053 if (ret == NULL_RTX)
10054 break;
10057 return
10058 expand_expr (fold (value), target, tmode, modifier);
10061 else if (TREE_CODE (init) == STRING_CST)
10063 tree low_bound = array_ref_low_bound (exp);
10064 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10066 /* Optimize the special case of a zero lower bound.
10068 We convert the lower bound to sizetype to avoid problems
10069 with constant folding. E.g. suppose the lower bound is
10070 1 and its mode is QI. Without the conversion
10071 (ARRAY + (INDEX - (unsigned char)1))
10072 becomes
10073 (ARRAY + (-(unsigned char)1) + INDEX)
10074 which becomes
10075 (ARRAY + 255 + INDEX). Oops! */
10076 if (!integer_zerop (low_bound))
10077 index1 = size_diffop_loc (loc, index1,
10078 fold_convert_loc (loc, sizetype,
10079 low_bound));
10081 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10083 tree type = TREE_TYPE (TREE_TYPE (init));
10084 machine_mode mode = TYPE_MODE (type);
10086 if (GET_MODE_CLASS (mode) == MODE_INT
10087 && GET_MODE_SIZE (mode) == 1)
10088 return gen_int_mode (TREE_STRING_POINTER (init)
10089 [TREE_INT_CST_LOW (index1)],
10090 mode);
10095 goto normal_inner_ref;
10097 case COMPONENT_REF:
10098 /* If the operand is a CONSTRUCTOR, we can just extract the
10099 appropriate field if it is present. */
10100 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10102 unsigned HOST_WIDE_INT idx;
10103 tree field, value;
10105 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10106 idx, field, value)
10107 if (field == treeop1
10108 /* We can normally use the value of the field in the
10109 CONSTRUCTOR. However, if this is a bitfield in
10110 an integral mode that we can fit in a HOST_WIDE_INT,
10111 we must mask only the number of bits in the bitfield,
10112 since this is done implicitly by the constructor. If
10113 the bitfield does not meet either of those conditions,
10114 we can't do this optimization. */
10115 && (! DECL_BIT_FIELD (field)
10116 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
10117 && (GET_MODE_PRECISION (DECL_MODE (field))
10118 <= HOST_BITS_PER_WIDE_INT))))
10120 if (DECL_BIT_FIELD (field)
10121 && modifier == EXPAND_STACK_PARM)
10122 target = 0;
10123 op0 = expand_expr (value, target, tmode, modifier);
10124 if (DECL_BIT_FIELD (field))
10126 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10127 machine_mode imode = TYPE_MODE (TREE_TYPE (field));
10129 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10131 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
10132 imode);
10133 op0 = expand_and (imode, op0, op1, target);
10135 else
10137 int count = GET_MODE_PRECISION (imode) - bitsize;
10139 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10140 target, 0);
10141 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10142 target, 0);
10146 return op0;
10149 goto normal_inner_ref;
10151 case BIT_FIELD_REF:
10152 case ARRAY_RANGE_REF:
10153 normal_inner_ref:
10155 machine_mode mode1, mode2;
10156 HOST_WIDE_INT bitsize, bitpos;
10157 tree offset;
10158 int volatilep = 0, must_force_mem;
10159 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
10160 &mode1, &unsignedp, &volatilep, true);
10161 rtx orig_op0, memloc;
10162 bool clear_mem_expr = false;
10164 /* If we got back the original object, something is wrong. Perhaps
10165 we are evaluating an expression too early. In any event, don't
10166 infinitely recurse. */
10167 gcc_assert (tem != exp);
10169 /* If TEM's type is a union of variable size, pass TARGET to the inner
10170 computation, since it will need a temporary and TARGET is known
10171 to have to do. This occurs in unchecked conversion in Ada. */
10172 orig_op0 = op0
10173 = expand_expr_real (tem,
10174 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10175 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10176 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10177 != INTEGER_CST)
10178 && modifier != EXPAND_STACK_PARM
10179 ? target : NULL_RTX),
10180 VOIDmode,
10181 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10182 NULL, true);
10184 /* If the field has a mode, we want to access it in the
10185 field's mode, not the computed mode.
10186 If a MEM has VOIDmode (external with incomplete type),
10187 use BLKmode for it instead. */
10188 if (MEM_P (op0))
10190 if (mode1 != VOIDmode)
10191 op0 = adjust_address (op0, mode1, 0);
10192 else if (GET_MODE (op0) == VOIDmode)
10193 op0 = adjust_address (op0, BLKmode, 0);
10196 mode2
10197 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10199 /* If we have either an offset, a BLKmode result, or a reference
10200 outside the underlying object, we must force it to memory.
10201 Such a case can occur in Ada if we have unchecked conversion
10202 of an expression from a scalar type to an aggregate type or
10203 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10204 passed a partially uninitialized object or a view-conversion
10205 to a larger size. */
10206 must_force_mem = (offset
10207 || mode1 == BLKmode
10208 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10210 /* Handle CONCAT first. */
10211 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10213 if (bitpos == 0
10214 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10215 return op0;
10216 if (bitpos == 0
10217 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10218 && bitsize)
10220 op0 = XEXP (op0, 0);
10221 mode2 = GET_MODE (op0);
10223 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10224 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10225 && bitpos
10226 && bitsize)
10228 op0 = XEXP (op0, 1);
10229 bitpos = 0;
10230 mode2 = GET_MODE (op0);
10232 else
10233 /* Otherwise force into memory. */
10234 must_force_mem = 1;
10237 /* If this is a constant, put it in a register if it is a legitimate
10238 constant and we don't need a memory reference. */
10239 if (CONSTANT_P (op0)
10240 && mode2 != BLKmode
10241 && targetm.legitimate_constant_p (mode2, op0)
10242 && !must_force_mem)
10243 op0 = force_reg (mode2, op0);
10245 /* Otherwise, if this is a constant, try to force it to the constant
10246 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10247 is a legitimate constant. */
10248 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10249 op0 = validize_mem (memloc);
10251 /* Otherwise, if this is a constant or the object is not in memory
10252 and need be, put it there. */
10253 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10255 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10256 emit_move_insn (memloc, op0);
10257 op0 = memloc;
10258 clear_mem_expr = true;
10261 if (offset)
10263 machine_mode address_mode;
10264 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10265 EXPAND_SUM);
10267 gcc_assert (MEM_P (op0));
10269 address_mode = get_address_mode (op0);
10270 if (GET_MODE (offset_rtx) != address_mode)
10272 /* We cannot be sure that the RTL in offset_rtx is valid outside
10273 of a memory address context, so force it into a register
10274 before attempting to convert it to the desired mode. */
10275 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10276 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10279 /* See the comment in expand_assignment for the rationale. */
10280 if (mode1 != VOIDmode
10281 && bitpos != 0
10282 && bitsize > 0
10283 && (bitpos % bitsize) == 0
10284 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10285 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10287 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10288 bitpos = 0;
10291 op0 = offset_address (op0, offset_rtx,
10292 highest_pow2_factor (offset));
10295 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10296 record its alignment as BIGGEST_ALIGNMENT. */
10297 if (MEM_P (op0) && bitpos == 0 && offset != 0
10298 && is_aligning_offset (offset, tem))
10299 set_mem_align (op0, BIGGEST_ALIGNMENT);
10301 /* Don't forget about volatility even if this is a bitfield. */
10302 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10304 if (op0 == orig_op0)
10305 op0 = copy_rtx (op0);
10307 MEM_VOLATILE_P (op0) = 1;
10310 /* In cases where an aligned union has an unaligned object
10311 as a field, we might be extracting a BLKmode value from
10312 an integer-mode (e.g., SImode) object. Handle this case
10313 by doing the extract into an object as wide as the field
10314 (which we know to be the width of a basic mode), then
10315 storing into memory, and changing the mode to BLKmode. */
10316 if (mode1 == VOIDmode
10317 || REG_P (op0) || GET_CODE (op0) == SUBREG
10318 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10319 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10320 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10321 && modifier != EXPAND_CONST_ADDRESS
10322 && modifier != EXPAND_INITIALIZER
10323 && modifier != EXPAND_MEMORY)
10324 /* If the bitfield is volatile and the bitsize
10325 is narrower than the access size of the bitfield,
10326 we need to extract bitfields from the access. */
10327 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10328 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10329 && mode1 != BLKmode
10330 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10331 /* If the field isn't aligned enough to fetch as a memref,
10332 fetch it as a bit field. */
10333 || (mode1 != BLKmode
10334 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10335 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10336 || (MEM_P (op0)
10337 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10338 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10339 && modifier != EXPAND_MEMORY
10340 && ((modifier == EXPAND_CONST_ADDRESS
10341 || modifier == EXPAND_INITIALIZER)
10342 ? STRICT_ALIGNMENT
10343 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10344 || (bitpos % BITS_PER_UNIT != 0)))
10345 /* If the type and the field are a constant size and the
10346 size of the type isn't the same size as the bitfield,
10347 we must use bitfield operations. */
10348 || (bitsize >= 0
10349 && TYPE_SIZE (TREE_TYPE (exp))
10350 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10351 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10352 bitsize)))
10354 machine_mode ext_mode = mode;
10356 if (ext_mode == BLKmode
10357 && ! (target != 0 && MEM_P (op0)
10358 && MEM_P (target)
10359 && bitpos % BITS_PER_UNIT == 0))
10360 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10362 if (ext_mode == BLKmode)
10364 if (target == 0)
10365 target = assign_temp (type, 1, 1);
10367 /* ??? Unlike the similar test a few lines below, this one is
10368 very likely obsolete. */
10369 if (bitsize == 0)
10370 return target;
10372 /* In this case, BITPOS must start at a byte boundary and
10373 TARGET, if specified, must be a MEM. */
10374 gcc_assert (MEM_P (op0)
10375 && (!target || MEM_P (target))
10376 && !(bitpos % BITS_PER_UNIT));
10378 emit_block_move (target,
10379 adjust_address (op0, VOIDmode,
10380 bitpos / BITS_PER_UNIT),
10381 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10382 / BITS_PER_UNIT),
10383 (modifier == EXPAND_STACK_PARM
10384 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10386 return target;
10389 /* If we have nothing to extract, the result will be 0 for targets
10390 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10391 return 0 for the sake of consistency, as reading a zero-sized
10392 bitfield is valid in Ada and the value is fully specified. */
10393 if (bitsize == 0)
10394 return const0_rtx;
10396 op0 = validize_mem (op0);
10398 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10399 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10401 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10402 (modifier == EXPAND_STACK_PARM
10403 ? NULL_RTX : target),
10404 ext_mode, ext_mode);
10406 /* If the result is a record type and BITSIZE is narrower than
10407 the mode of OP0, an integral mode, and this is a big endian
10408 machine, we must put the field into the high-order bits. */
10409 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10410 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10411 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10412 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10413 GET_MODE_BITSIZE (GET_MODE (op0))
10414 - bitsize, op0, 1);
10416 /* If the result type is BLKmode, store the data into a temporary
10417 of the appropriate type, but with the mode corresponding to the
10418 mode for the data we have (op0's mode). */
10419 if (mode == BLKmode)
10421 rtx new_rtx
10422 = assign_stack_temp_for_type (ext_mode,
10423 GET_MODE_BITSIZE (ext_mode),
10424 type);
10425 emit_move_insn (new_rtx, op0);
10426 op0 = copy_rtx (new_rtx);
10427 PUT_MODE (op0, BLKmode);
10430 return op0;
10433 /* If the result is BLKmode, use that to access the object
10434 now as well. */
10435 if (mode == BLKmode)
10436 mode1 = BLKmode;
10438 /* Get a reference to just this component. */
10439 if (modifier == EXPAND_CONST_ADDRESS
10440 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10441 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10442 else
10443 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10445 if (op0 == orig_op0)
10446 op0 = copy_rtx (op0);
10448 set_mem_attributes (op0, exp, 0);
10450 if (REG_P (XEXP (op0, 0)))
10451 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10453 /* If op0 is a temporary because the original expressions was forced
10454 to memory, clear MEM_EXPR so that the original expression cannot
10455 be marked as addressable through MEM_EXPR of the temporary. */
10456 if (clear_mem_expr)
10457 set_mem_expr (op0, NULL_TREE);
10459 MEM_VOLATILE_P (op0) |= volatilep;
10460 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10461 || modifier == EXPAND_CONST_ADDRESS
10462 || modifier == EXPAND_INITIALIZER)
10463 return op0;
10465 if (target == 0)
10466 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10468 convert_move (target, op0, unsignedp);
10469 return target;
10472 case OBJ_TYPE_REF:
10473 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10475 case CALL_EXPR:
10476 /* All valid uses of __builtin_va_arg_pack () are removed during
10477 inlining. */
10478 if (CALL_EXPR_VA_ARG_PACK (exp))
10479 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10481 tree fndecl = get_callee_fndecl (exp), attr;
10483 if (fndecl
10484 && (attr = lookup_attribute ("error",
10485 DECL_ATTRIBUTES (fndecl))) != NULL)
10486 error ("%Kcall to %qs declared with attribute error: %s",
10487 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10488 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10489 if (fndecl
10490 && (attr = lookup_attribute ("warning",
10491 DECL_ATTRIBUTES (fndecl))) != NULL)
10492 warning_at (tree_nonartificial_location (exp),
10493 0, "%Kcall to %qs declared with attribute warning: %s",
10494 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10495 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10497 /* Check for a built-in function. */
10498 if (fndecl && DECL_BUILT_IN (fndecl))
10500 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10501 if (CALL_WITH_BOUNDS_P (exp))
10502 return expand_builtin_with_bounds (exp, target, subtarget,
10503 tmode, ignore);
10504 else
10505 return expand_builtin (exp, target, subtarget, tmode, ignore);
10508 return expand_call (exp, target, ignore);
10510 case VIEW_CONVERT_EXPR:
10511 op0 = NULL_RTX;
10513 /* If we are converting to BLKmode, try to avoid an intermediate
10514 temporary by fetching an inner memory reference. */
10515 if (mode == BLKmode
10516 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10517 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10518 && handled_component_p (treeop0))
10520 machine_mode mode1;
10521 HOST_WIDE_INT bitsize, bitpos;
10522 tree offset;
10523 int unsignedp;
10524 int volatilep = 0;
10525 tree tem
10526 = get_inner_reference (treeop0, &bitsize, &bitpos,
10527 &offset, &mode1, &unsignedp, &volatilep,
10528 true);
10529 rtx orig_op0;
10531 /* ??? We should work harder and deal with non-zero offsets. */
10532 if (!offset
10533 && (bitpos % BITS_PER_UNIT) == 0
10534 && bitsize >= 0
10535 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10537 /* See the normal_inner_ref case for the rationale. */
10538 orig_op0
10539 = expand_expr_real (tem,
10540 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10541 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10542 != INTEGER_CST)
10543 && modifier != EXPAND_STACK_PARM
10544 ? target : NULL_RTX),
10545 VOIDmode,
10546 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10547 NULL, true);
10549 if (MEM_P (orig_op0))
10551 op0 = orig_op0;
10553 /* Get a reference to just this component. */
10554 if (modifier == EXPAND_CONST_ADDRESS
10555 || modifier == EXPAND_SUM
10556 || modifier == EXPAND_INITIALIZER)
10557 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10558 else
10559 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10561 if (op0 == orig_op0)
10562 op0 = copy_rtx (op0);
10564 set_mem_attributes (op0, treeop0, 0);
10565 if (REG_P (XEXP (op0, 0)))
10566 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10568 MEM_VOLATILE_P (op0) |= volatilep;
10573 if (!op0)
10574 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10575 NULL, inner_reference_p);
10577 /* If the input and output modes are both the same, we are done. */
10578 if (mode == GET_MODE (op0))
10580 /* If neither mode is BLKmode, and both modes are the same size
10581 then we can use gen_lowpart. */
10582 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10583 && (GET_MODE_PRECISION (mode)
10584 == GET_MODE_PRECISION (GET_MODE (op0)))
10585 && !COMPLEX_MODE_P (GET_MODE (op0)))
10587 if (GET_CODE (op0) == SUBREG)
10588 op0 = force_reg (GET_MODE (op0), op0);
10589 temp = gen_lowpart_common (mode, op0);
10590 if (temp)
10591 op0 = temp;
10592 else
10594 if (!REG_P (op0) && !MEM_P (op0))
10595 op0 = force_reg (GET_MODE (op0), op0);
10596 op0 = gen_lowpart (mode, op0);
10599 /* If both types are integral, convert from one mode to the other. */
10600 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10601 op0 = convert_modes (mode, GET_MODE (op0), op0,
10602 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10603 /* If the output type is a bit-field type, do an extraction. */
10604 else if (reduce_bit_field)
10605 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10606 TYPE_UNSIGNED (type), NULL_RTX,
10607 mode, mode);
10608 /* As a last resort, spill op0 to memory, and reload it in a
10609 different mode. */
10610 else if (!MEM_P (op0))
10612 /* If the operand is not a MEM, force it into memory. Since we
10613 are going to be changing the mode of the MEM, don't call
10614 force_const_mem for constants because we don't allow pool
10615 constants to change mode. */
10616 tree inner_type = TREE_TYPE (treeop0);
10618 gcc_assert (!TREE_ADDRESSABLE (exp));
10620 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10621 target
10622 = assign_stack_temp_for_type
10623 (TYPE_MODE (inner_type),
10624 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10626 emit_move_insn (target, op0);
10627 op0 = target;
10630 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10631 output type is such that the operand is known to be aligned, indicate
10632 that it is. Otherwise, we need only be concerned about alignment for
10633 non-BLKmode results. */
10634 if (MEM_P (op0))
10636 enum insn_code icode;
10638 if (TYPE_ALIGN_OK (type))
10640 /* ??? Copying the MEM without substantially changing it might
10641 run afoul of the code handling volatile memory references in
10642 store_expr, which assumes that TARGET is returned unmodified
10643 if it has been used. */
10644 op0 = copy_rtx (op0);
10645 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10647 else if (modifier != EXPAND_WRITE
10648 && modifier != EXPAND_MEMORY
10649 && !inner_reference_p
10650 && mode != BLKmode
10651 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10653 /* If the target does have special handling for unaligned
10654 loads of mode then use them. */
10655 if ((icode = optab_handler (movmisalign_optab, mode))
10656 != CODE_FOR_nothing)
10658 rtx reg, insn;
10660 op0 = adjust_address (op0, mode, 0);
10661 /* We've already validated the memory, and we're creating a
10662 new pseudo destination. The predicates really can't
10663 fail. */
10664 reg = gen_reg_rtx (mode);
10666 /* Nor can the insn generator. */
10667 insn = GEN_FCN (icode) (reg, op0);
10668 emit_insn (insn);
10669 return reg;
10671 else if (STRICT_ALIGNMENT)
10673 tree inner_type = TREE_TYPE (treeop0);
10674 HOST_WIDE_INT temp_size
10675 = MAX (int_size_in_bytes (inner_type),
10676 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10677 rtx new_rtx
10678 = assign_stack_temp_for_type (mode, temp_size, type);
10679 rtx new_with_op0_mode
10680 = adjust_address (new_rtx, GET_MODE (op0), 0);
10682 gcc_assert (!TREE_ADDRESSABLE (exp));
10684 if (GET_MODE (op0) == BLKmode)
10685 emit_block_move (new_with_op0_mode, op0,
10686 GEN_INT (GET_MODE_SIZE (mode)),
10687 (modifier == EXPAND_STACK_PARM
10688 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10689 else
10690 emit_move_insn (new_with_op0_mode, op0);
10692 op0 = new_rtx;
10696 op0 = adjust_address (op0, mode, 0);
10699 return op0;
10701 case MODIFY_EXPR:
10703 tree lhs = treeop0;
10704 tree rhs = treeop1;
10705 gcc_assert (ignore);
10707 /* Check for |= or &= of a bitfield of size one into another bitfield
10708 of size 1. In this case, (unless we need the result of the
10709 assignment) we can do this more efficiently with a
10710 test followed by an assignment, if necessary.
10712 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10713 things change so we do, this code should be enhanced to
10714 support it. */
10715 if (TREE_CODE (lhs) == COMPONENT_REF
10716 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10717 || TREE_CODE (rhs) == BIT_AND_EXPR)
10718 && TREE_OPERAND (rhs, 0) == lhs
10719 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10720 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10721 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10723 rtx_code_label *label = gen_label_rtx ();
10724 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10725 do_jump (TREE_OPERAND (rhs, 1),
10726 value ? label : 0,
10727 value ? 0 : label, -1);
10728 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10729 false);
10730 do_pending_stack_adjust ();
10731 emit_label (label);
10732 return const0_rtx;
10735 expand_assignment (lhs, rhs, false);
10736 return const0_rtx;
10739 case ADDR_EXPR:
10740 return expand_expr_addr_expr (exp, target, tmode, modifier);
10742 case REALPART_EXPR:
10743 op0 = expand_normal (treeop0);
10744 return read_complex_part (op0, false);
10746 case IMAGPART_EXPR:
10747 op0 = expand_normal (treeop0);
10748 return read_complex_part (op0, true);
10750 case RETURN_EXPR:
10751 case LABEL_EXPR:
10752 case GOTO_EXPR:
10753 case SWITCH_EXPR:
10754 case ASM_EXPR:
10755 /* Expanded in cfgexpand.c. */
10756 gcc_unreachable ();
10758 case TRY_CATCH_EXPR:
10759 case CATCH_EXPR:
10760 case EH_FILTER_EXPR:
10761 case TRY_FINALLY_EXPR:
10762 /* Lowered by tree-eh.c. */
10763 gcc_unreachable ();
10765 case WITH_CLEANUP_EXPR:
10766 case CLEANUP_POINT_EXPR:
10767 case TARGET_EXPR:
10768 case CASE_LABEL_EXPR:
10769 case VA_ARG_EXPR:
10770 case BIND_EXPR:
10771 case INIT_EXPR:
10772 case CONJ_EXPR:
10773 case COMPOUND_EXPR:
10774 case PREINCREMENT_EXPR:
10775 case PREDECREMENT_EXPR:
10776 case POSTINCREMENT_EXPR:
10777 case POSTDECREMENT_EXPR:
10778 case LOOP_EXPR:
10779 case EXIT_EXPR:
10780 case COMPOUND_LITERAL_EXPR:
10781 /* Lowered by gimplify.c. */
10782 gcc_unreachable ();
10784 case FDESC_EXPR:
10785 /* Function descriptors are not valid except for as
10786 initialization constants, and should not be expanded. */
10787 gcc_unreachable ();
10789 case WITH_SIZE_EXPR:
10790 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10791 have pulled out the size to use in whatever context it needed. */
10792 return expand_expr_real (treeop0, original_target, tmode,
10793 modifier, alt_rtl, inner_reference_p);
10795 default:
10796 return expand_expr_real_2 (&ops, target, tmode, modifier);
10800 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10801 signedness of TYPE), possibly returning the result in TARGET. */
10802 static rtx
10803 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10805 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10806 if (target && GET_MODE (target) != GET_MODE (exp))
10807 target = 0;
10808 /* For constant values, reduce using build_int_cst_type. */
10809 if (CONST_INT_P (exp))
10811 HOST_WIDE_INT value = INTVAL (exp);
10812 tree t = build_int_cst_type (type, value);
10813 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10815 else if (TYPE_UNSIGNED (type))
10817 machine_mode mode = GET_MODE (exp);
10818 rtx mask = immed_wide_int_const
10819 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
10820 return expand_and (mode, exp, mask, target);
10822 else
10824 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10825 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10826 exp, count, target, 0);
10827 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10828 exp, count, target, 0);
10832 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10833 when applied to the address of EXP produces an address known to be
10834 aligned more than BIGGEST_ALIGNMENT. */
10836 static int
10837 is_aligning_offset (const_tree offset, const_tree exp)
10839 /* Strip off any conversions. */
10840 while (CONVERT_EXPR_P (offset))
10841 offset = TREE_OPERAND (offset, 0);
10843 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10844 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10845 if (TREE_CODE (offset) != BIT_AND_EXPR
10846 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10847 || compare_tree_int (TREE_OPERAND (offset, 1),
10848 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10849 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10850 return 0;
10852 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10853 It must be NEGATE_EXPR. Then strip any more conversions. */
10854 offset = TREE_OPERAND (offset, 0);
10855 while (CONVERT_EXPR_P (offset))
10856 offset = TREE_OPERAND (offset, 0);
10858 if (TREE_CODE (offset) != NEGATE_EXPR)
10859 return 0;
10861 offset = TREE_OPERAND (offset, 0);
10862 while (CONVERT_EXPR_P (offset))
10863 offset = TREE_OPERAND (offset, 0);
10865 /* This must now be the address of EXP. */
10866 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10869 /* Return the tree node if an ARG corresponds to a string constant or zero
10870 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10871 in bytes within the string that ARG is accessing. The type of the
10872 offset will be `sizetype'. */
10874 tree
10875 string_constant (tree arg, tree *ptr_offset)
10877 tree array, offset, lower_bound;
10878 STRIP_NOPS (arg);
10880 if (TREE_CODE (arg) == ADDR_EXPR)
10882 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10884 *ptr_offset = size_zero_node;
10885 return TREE_OPERAND (arg, 0);
10887 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10889 array = TREE_OPERAND (arg, 0);
10890 offset = size_zero_node;
10892 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10894 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10895 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10896 if (TREE_CODE (array) != STRING_CST
10897 && TREE_CODE (array) != VAR_DECL)
10898 return 0;
10900 /* Check if the array has a nonzero lower bound. */
10901 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10902 if (!integer_zerop (lower_bound))
10904 /* If the offset and base aren't both constants, return 0. */
10905 if (TREE_CODE (lower_bound) != INTEGER_CST)
10906 return 0;
10907 if (TREE_CODE (offset) != INTEGER_CST)
10908 return 0;
10909 /* Adjust offset by the lower bound. */
10910 offset = size_diffop (fold_convert (sizetype, offset),
10911 fold_convert (sizetype, lower_bound));
10914 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10916 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10917 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10918 if (TREE_CODE (array) != ADDR_EXPR)
10919 return 0;
10920 array = TREE_OPERAND (array, 0);
10921 if (TREE_CODE (array) != STRING_CST
10922 && TREE_CODE (array) != VAR_DECL)
10923 return 0;
10925 else
10926 return 0;
10928 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10930 tree arg0 = TREE_OPERAND (arg, 0);
10931 tree arg1 = TREE_OPERAND (arg, 1);
10933 STRIP_NOPS (arg0);
10934 STRIP_NOPS (arg1);
10936 if (TREE_CODE (arg0) == ADDR_EXPR
10937 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10938 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10940 array = TREE_OPERAND (arg0, 0);
10941 offset = arg1;
10943 else if (TREE_CODE (arg1) == ADDR_EXPR
10944 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10945 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10947 array = TREE_OPERAND (arg1, 0);
10948 offset = arg0;
10950 else
10951 return 0;
10953 else
10954 return 0;
10956 if (TREE_CODE (array) == STRING_CST)
10958 *ptr_offset = fold_convert (sizetype, offset);
10959 return array;
10961 else if (TREE_CODE (array) == VAR_DECL
10962 || TREE_CODE (array) == CONST_DECL)
10964 int length;
10965 tree init = ctor_for_folding (array);
10967 /* Variables initialized to string literals can be handled too. */
10968 if (init == error_mark_node
10969 || !init
10970 || TREE_CODE (init) != STRING_CST)
10971 return 0;
10973 /* Avoid const char foo[4] = "abcde"; */
10974 if (DECL_SIZE_UNIT (array) == NULL_TREE
10975 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10976 || (length = TREE_STRING_LENGTH (init)) <= 0
10977 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10978 return 0;
10980 /* If variable is bigger than the string literal, OFFSET must be constant
10981 and inside of the bounds of the string literal. */
10982 offset = fold_convert (sizetype, offset);
10983 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10984 && (! tree_fits_uhwi_p (offset)
10985 || compare_tree_int (offset, length) >= 0))
10986 return 0;
10988 *ptr_offset = offset;
10989 return init;
10992 return 0;
10995 /* Generate code to calculate OPS, and exploded expression
10996 using a store-flag instruction and return an rtx for the result.
10997 OPS reflects a comparison.
10999 If TARGET is nonzero, store the result there if convenient.
11001 Return zero if there is no suitable set-flag instruction
11002 available on this machine.
11004 Once expand_expr has been called on the arguments of the comparison,
11005 we are committed to doing the store flag, since it is not safe to
11006 re-evaluate the expression. We emit the store-flag insn by calling
11007 emit_store_flag, but only expand the arguments if we have a reason
11008 to believe that emit_store_flag will be successful. If we think that
11009 it will, but it isn't, we have to simulate the store-flag with a
11010 set/jump/set sequence. */
11012 static rtx
11013 do_store_flag (sepops ops, rtx target, machine_mode mode)
11015 enum rtx_code code;
11016 tree arg0, arg1, type;
11017 tree tem;
11018 machine_mode operand_mode;
11019 int unsignedp;
11020 rtx op0, op1;
11021 rtx subtarget = target;
11022 location_t loc = ops->location;
11024 arg0 = ops->op0;
11025 arg1 = ops->op1;
11027 /* Don't crash if the comparison was erroneous. */
11028 if (arg0 == error_mark_node || arg1 == error_mark_node)
11029 return const0_rtx;
11031 type = TREE_TYPE (arg0);
11032 operand_mode = TYPE_MODE (type);
11033 unsignedp = TYPE_UNSIGNED (type);
11035 /* We won't bother with BLKmode store-flag operations because it would mean
11036 passing a lot of information to emit_store_flag. */
11037 if (operand_mode == BLKmode)
11038 return 0;
11040 /* We won't bother with store-flag operations involving function pointers
11041 when function pointers must be canonicalized before comparisons. */
11042 #ifdef HAVE_canonicalize_funcptr_for_compare
11043 if (HAVE_canonicalize_funcptr_for_compare
11044 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
11045 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
11046 == FUNCTION_TYPE))
11047 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
11048 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
11049 == FUNCTION_TYPE))))
11050 return 0;
11051 #endif
11053 STRIP_NOPS (arg0);
11054 STRIP_NOPS (arg1);
11056 /* For vector typed comparisons emit code to generate the desired
11057 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11058 expander for this. */
11059 if (TREE_CODE (ops->type) == VECTOR_TYPE)
11061 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
11062 tree if_true = constant_boolean_node (true, ops->type);
11063 tree if_false = constant_boolean_node (false, ops->type);
11064 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
11067 /* Get the rtx comparison code to use. We know that EXP is a comparison
11068 operation of some type. Some comparisons against 1 and -1 can be
11069 converted to comparisons with zero. Do so here so that the tests
11070 below will be aware that we have a comparison with zero. These
11071 tests will not catch constants in the first operand, but constants
11072 are rarely passed as the first operand. */
11074 switch (ops->code)
11076 case EQ_EXPR:
11077 code = EQ;
11078 break;
11079 case NE_EXPR:
11080 code = NE;
11081 break;
11082 case LT_EXPR:
11083 if (integer_onep (arg1))
11084 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
11085 else
11086 code = unsignedp ? LTU : LT;
11087 break;
11088 case LE_EXPR:
11089 if (! unsignedp && integer_all_onesp (arg1))
11090 arg1 = integer_zero_node, code = LT;
11091 else
11092 code = unsignedp ? LEU : LE;
11093 break;
11094 case GT_EXPR:
11095 if (! unsignedp && integer_all_onesp (arg1))
11096 arg1 = integer_zero_node, code = GE;
11097 else
11098 code = unsignedp ? GTU : GT;
11099 break;
11100 case GE_EXPR:
11101 if (integer_onep (arg1))
11102 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
11103 else
11104 code = unsignedp ? GEU : GE;
11105 break;
11107 case UNORDERED_EXPR:
11108 code = UNORDERED;
11109 break;
11110 case ORDERED_EXPR:
11111 code = ORDERED;
11112 break;
11113 case UNLT_EXPR:
11114 code = UNLT;
11115 break;
11116 case UNLE_EXPR:
11117 code = UNLE;
11118 break;
11119 case UNGT_EXPR:
11120 code = UNGT;
11121 break;
11122 case UNGE_EXPR:
11123 code = UNGE;
11124 break;
11125 case UNEQ_EXPR:
11126 code = UNEQ;
11127 break;
11128 case LTGT_EXPR:
11129 code = LTGT;
11130 break;
11132 default:
11133 gcc_unreachable ();
11136 /* Put a constant second. */
11137 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
11138 || TREE_CODE (arg0) == FIXED_CST)
11140 tem = arg0; arg0 = arg1; arg1 = tem;
11141 code = swap_condition (code);
11144 /* If this is an equality or inequality test of a single bit, we can
11145 do this by shifting the bit being tested to the low-order bit and
11146 masking the result with the constant 1. If the condition was EQ,
11147 we xor it with 1. This does not require an scc insn and is faster
11148 than an scc insn even if we have it.
11150 The code to make this transformation was moved into fold_single_bit_test,
11151 so we just call into the folder and expand its result. */
11153 if ((code == NE || code == EQ)
11154 && integer_zerop (arg1)
11155 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
11157 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11158 if (srcstmt
11159 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11161 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11162 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11163 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11164 gimple_assign_rhs1 (srcstmt),
11165 gimple_assign_rhs2 (srcstmt));
11166 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11167 if (temp)
11168 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11172 if (! get_subtarget (target)
11173 || GET_MODE (subtarget) != operand_mode)
11174 subtarget = 0;
11176 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11178 if (target == 0)
11179 target = gen_reg_rtx (mode);
11181 /* Try a cstore if possible. */
11182 return emit_store_flag_force (target, code, op0, op1,
11183 operand_mode, unsignedp,
11184 (TYPE_PRECISION (ops->type) == 1
11185 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11189 /* Stubs in case we haven't got a casesi insn. */
11190 #ifndef HAVE_casesi
11191 # define HAVE_casesi 0
11192 # define gen_casesi(a, b, c, d, e) (0)
11193 # define CODE_FOR_casesi CODE_FOR_nothing
11194 #endif
11196 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11197 0 otherwise (i.e. if there is no casesi instruction).
11199 DEFAULT_PROBABILITY is the probability of jumping to the default
11200 label. */
11202 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11203 rtx table_label, rtx default_label, rtx fallback_label,
11204 int default_probability)
11206 struct expand_operand ops[5];
11207 machine_mode index_mode = SImode;
11208 rtx op1, op2, index;
11210 if (! HAVE_casesi)
11211 return 0;
11213 /* Convert the index to SImode. */
11214 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11216 machine_mode omode = TYPE_MODE (index_type);
11217 rtx rangertx = expand_normal (range);
11219 /* We must handle the endpoints in the original mode. */
11220 index_expr = build2 (MINUS_EXPR, index_type,
11221 index_expr, minval);
11222 minval = integer_zero_node;
11223 index = expand_normal (index_expr);
11224 if (default_label)
11225 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11226 omode, 1, default_label,
11227 default_probability);
11228 /* Now we can safely truncate. */
11229 index = convert_to_mode (index_mode, index, 0);
11231 else
11233 if (TYPE_MODE (index_type) != index_mode)
11235 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11236 index_expr = fold_convert (index_type, index_expr);
11239 index = expand_normal (index_expr);
11242 do_pending_stack_adjust ();
11244 op1 = expand_normal (minval);
11245 op2 = expand_normal (range);
11247 create_input_operand (&ops[0], index, index_mode);
11248 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11249 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11250 create_fixed_operand (&ops[3], table_label);
11251 create_fixed_operand (&ops[4], (default_label
11252 ? default_label
11253 : fallback_label));
11254 expand_jump_insn (CODE_FOR_casesi, 5, ops);
11255 return 1;
11258 /* Attempt to generate a tablejump instruction; same concept. */
11259 #ifndef HAVE_tablejump
11260 #define HAVE_tablejump 0
11261 #define gen_tablejump(x, y) (0)
11262 #endif
11264 /* Subroutine of the next function.
11266 INDEX is the value being switched on, with the lowest value
11267 in the table already subtracted.
11268 MODE is its expected mode (needed if INDEX is constant).
11269 RANGE is the length of the jump table.
11270 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11272 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11273 index value is out of range.
11274 DEFAULT_PROBABILITY is the probability of jumping to
11275 the default label. */
11277 static void
11278 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
11279 rtx default_label, int default_probability)
11281 rtx temp, vector;
11283 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11284 cfun->cfg->max_jumptable_ents = INTVAL (range);
11286 /* Do an unsigned comparison (in the proper mode) between the index
11287 expression and the value which represents the length of the range.
11288 Since we just finished subtracting the lower bound of the range
11289 from the index expression, this comparison allows us to simultaneously
11290 check that the original index expression value is both greater than
11291 or equal to the minimum value of the range and less than or equal to
11292 the maximum value of the range. */
11294 if (default_label)
11295 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11296 default_label, default_probability);
11299 /* If index is in range, it must fit in Pmode.
11300 Convert to Pmode so we can index with it. */
11301 if (mode != Pmode)
11302 index = convert_to_mode (Pmode, index, 1);
11304 /* Don't let a MEM slip through, because then INDEX that comes
11305 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11306 and break_out_memory_refs will go to work on it and mess it up. */
11307 #ifdef PIC_CASE_VECTOR_ADDRESS
11308 if (flag_pic && !REG_P (index))
11309 index = copy_to_mode_reg (Pmode, index);
11310 #endif
11312 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11313 GET_MODE_SIZE, because this indicates how large insns are. The other
11314 uses should all be Pmode, because they are addresses. This code
11315 could fail if addresses and insns are not the same size. */
11316 index = simplify_gen_binary (MULT, Pmode, index,
11317 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11318 Pmode));
11319 index = simplify_gen_binary (PLUS, Pmode, index,
11320 gen_rtx_LABEL_REF (Pmode, table_label));
11322 #ifdef PIC_CASE_VECTOR_ADDRESS
11323 if (flag_pic)
11324 index = PIC_CASE_VECTOR_ADDRESS (index);
11325 else
11326 #endif
11327 index = memory_address (CASE_VECTOR_MODE, index);
11328 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11329 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11330 convert_move (temp, vector, 0);
11332 emit_jump_insn (gen_tablejump (temp, table_label));
11334 /* If we are generating PIC code or if the table is PC-relative, the
11335 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11336 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11337 emit_barrier ();
11341 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11342 rtx table_label, rtx default_label, int default_probability)
11344 rtx index;
11346 if (! HAVE_tablejump)
11347 return 0;
11349 index_expr = fold_build2 (MINUS_EXPR, index_type,
11350 fold_convert (index_type, index_expr),
11351 fold_convert (index_type, minval));
11352 index = expand_normal (index_expr);
11353 do_pending_stack_adjust ();
11355 do_tablejump (index, TYPE_MODE (index_type),
11356 convert_modes (TYPE_MODE (index_type),
11357 TYPE_MODE (TREE_TYPE (range)),
11358 expand_normal (range),
11359 TYPE_UNSIGNED (TREE_TYPE (range))),
11360 table_label, default_label, default_probability);
11361 return 1;
11364 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11365 static rtx
11366 const_vector_from_tree (tree exp)
11368 rtvec v;
11369 unsigned i;
11370 int units;
11371 tree elt;
11372 machine_mode inner, mode;
11374 mode = TYPE_MODE (TREE_TYPE (exp));
11376 if (initializer_zerop (exp))
11377 return CONST0_RTX (mode);
11379 units = GET_MODE_NUNITS (mode);
11380 inner = GET_MODE_INNER (mode);
11382 v = rtvec_alloc (units);
11384 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11386 elt = VECTOR_CST_ELT (exp, i);
11388 if (TREE_CODE (elt) == REAL_CST)
11389 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11390 inner);
11391 else if (TREE_CODE (elt) == FIXED_CST)
11392 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11393 inner);
11394 else
11395 RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
11398 return gen_rtx_CONST_VECTOR (mode, v);
11401 /* Build a decl for a personality function given a language prefix. */
11403 tree
11404 build_personality_function (const char *lang)
11406 const char *unwind_and_version;
11407 tree decl, type;
11408 char *name;
11410 switch (targetm_common.except_unwind_info (&global_options))
11412 case UI_NONE:
11413 return NULL;
11414 case UI_SJLJ:
11415 unwind_and_version = "_sj0";
11416 break;
11417 case UI_DWARF2:
11418 case UI_TARGET:
11419 unwind_and_version = "_v0";
11420 break;
11421 case UI_SEH:
11422 unwind_and_version = "_seh0";
11423 break;
11424 default:
11425 gcc_unreachable ();
11428 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11430 type = build_function_type_list (integer_type_node, integer_type_node,
11431 long_long_unsigned_type_node,
11432 ptr_type_node, ptr_type_node, NULL_TREE);
11433 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11434 get_identifier (name), type);
11435 DECL_ARTIFICIAL (decl) = 1;
11436 DECL_EXTERNAL (decl) = 1;
11437 TREE_PUBLIC (decl) = 1;
11439 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11440 are the flags assigned by targetm.encode_section_info. */
11441 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11443 return decl;
11446 /* Extracts the personality function of DECL and returns the corresponding
11447 libfunc. */
11450 get_personality_function (tree decl)
11452 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11453 enum eh_personality_kind pk;
11455 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11456 if (pk == eh_personality_none)
11457 return NULL;
11459 if (!personality
11460 && pk == eh_personality_any)
11461 personality = lang_hooks.eh_personality ();
11463 if (pk == eh_personality_lang)
11464 gcc_assert (personality != NULL_TREE);
11466 return XEXP (DECL_RTL (personality), 0);
11469 /* Returns a tree for the size of EXP in bytes. */
11471 static tree
11472 tree_expr_size (const_tree exp)
11474 if (DECL_P (exp)
11475 && DECL_SIZE_UNIT (exp) != 0)
11476 return DECL_SIZE_UNIT (exp);
11477 else
11478 return size_in_bytes (TREE_TYPE (exp));
11481 /* Return an rtx for the size in bytes of the value of EXP. */
11484 expr_size (tree exp)
11486 tree size;
11488 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11489 size = TREE_OPERAND (exp, 1);
11490 else
11492 size = tree_expr_size (exp);
11493 gcc_assert (size);
11494 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
11497 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
11500 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11501 if the size can vary or is larger than an integer. */
11503 static HOST_WIDE_INT
11504 int_expr_size (tree exp)
11506 tree size;
11508 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
11509 size = TREE_OPERAND (exp, 1);
11510 else
11512 size = tree_expr_size (exp);
11513 gcc_assert (size);
11516 if (size == 0 || !tree_fits_shwi_p (size))
11517 return -1;
11519 return tree_to_shwi (size);
11522 #include "gt-expr.h"