2006-10-22 H.J. Lu <hongjiu.lu@intel.com>
[official-gcc.git] / gcc / reload.c
blob1f1bc23020b4f7bbf58f3aef96306cd980babbc1
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains subroutines used only from the file reload1.c.
24 It knows how to scan one insn for operands and values
25 that need to be copied into registers to make valid code.
26 It also finds other operands and values which are valid
27 but for which equivalent values in registers exist and
28 ought to be used instead.
30 Before processing the first insn of the function, call `init_reload'.
31 init_reload actually has to be called earlier anyway.
33 To scan an insn, call `find_reloads'. This does two things:
34 1. sets up tables describing which values must be reloaded
35 for this insn, and what kind of hard regs they must be reloaded into;
36 2. optionally record the locations where those values appear in
37 the data, so they can be replaced properly later.
38 This is done only if the second arg to `find_reloads' is nonzero.
40 The third arg to `find_reloads' specifies the number of levels
41 of indirect addressing supported by the machine. If it is zero,
42 indirect addressing is not valid. If it is one, (MEM (REG n))
43 is valid even if (REG n) did not get a hard register; if it is two,
44 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
45 hard register, and similarly for higher values.
47 Then you must choose the hard regs to reload those pseudo regs into,
48 and generate appropriate load insns before this insn and perhaps
49 also store insns after this insn. Set up the array `reload_reg_rtx'
50 to contain the REG rtx's for the registers you used. In some
51 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
52 for certain reloads. Then that tells you which register to use,
53 so you do not need to allocate one. But you still do need to add extra
54 instructions to copy the value into and out of that register.
56 Finally you must call `subst_reloads' to substitute the reload reg rtx's
57 into the locations already recorded.
59 NOTE SIDE EFFECTS:
61 find_reloads can alter the operands of the instruction it is called on.
63 1. Two operands of any sort may be interchanged, if they are in a
64 commutative instruction.
65 This happens only if find_reloads thinks the instruction will compile
66 better that way.
68 2. Pseudo-registers that are equivalent to constants are replaced
69 with those constants if they are not in hard registers.
71 1 happens every time find_reloads is called.
72 2 happens only when REPLACE is 1, which is only when
73 actually doing the reloads, not when just counting them.
75 Using a reload register for several reloads in one insn:
77 When an insn has reloads, it is considered as having three parts:
78 the input reloads, the insn itself after reloading, and the output reloads.
79 Reloads of values used in memory addresses are often needed for only one part.
81 When this is so, reload_when_needed records which part needs the reload.
82 Two reloads for different parts of the insn can share the same reload
83 register.
85 When a reload is used for addresses in multiple parts, or when it is
86 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
87 a register with any other reload. */
89 #define REG_OK_STRICT
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "reload.h"
102 #include "regs.h"
103 #include "addresses.h"
104 #include "hard-reg-set.h"
105 #include "flags.h"
106 #include "real.h"
107 #include "output.h"
108 #include "function.h"
109 #include "toplev.h"
110 #include "params.h"
111 #include "target.h"
113 /* True if X is a constant that can be forced into the constant pool. */
114 #define CONST_POOL_OK_P(X) \
115 (CONSTANT_P (X) \
116 && GET_CODE (X) != HIGH \
117 && !targetm.cannot_force_const_mem (X))
119 /* True if C is a non-empty register class that has too few registers
120 to be safely used as a reload target class. */
121 #define SMALL_REGISTER_CLASS_P(C) \
122 (reg_class_size [(C)] == 1 \
123 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
126 /* All reloads of the current insn are recorded here. See reload.h for
127 comments. */
128 int n_reloads;
129 struct reload rld[MAX_RELOADS];
131 /* All the "earlyclobber" operands of the current insn
132 are recorded here. */
133 int n_earlyclobbers;
134 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
136 int reload_n_operands;
138 /* Replacing reloads.
140 If `replace_reloads' is nonzero, then as each reload is recorded
141 an entry is made for it in the table `replacements'.
142 Then later `subst_reloads' can look through that table and
143 perform all the replacements needed. */
145 /* Nonzero means record the places to replace. */
146 static int replace_reloads;
148 /* Each replacement is recorded with a structure like this. */
149 struct replacement
151 rtx *where; /* Location to store in */
152 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
153 a SUBREG; 0 otherwise. */
154 int what; /* which reload this is for */
155 enum machine_mode mode; /* mode it must have */
158 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
160 /* Number of replacements currently recorded. */
161 static int n_replacements;
163 /* Used to track what is modified by an operand. */
164 struct decomposition
166 int reg_flag; /* Nonzero if referencing a register. */
167 int safe; /* Nonzero if this can't conflict with anything. */
168 rtx base; /* Base address for MEM. */
169 HOST_WIDE_INT start; /* Starting offset or register number. */
170 HOST_WIDE_INT end; /* Ending offset or register number. */
173 #ifdef SECONDARY_MEMORY_NEEDED
175 /* Save MEMs needed to copy from one class of registers to another. One MEM
176 is used per mode, but normally only one or two modes are ever used.
178 We keep two versions, before and after register elimination. The one
179 after register elimination is record separately for each operand. This
180 is done in case the address is not valid to be sure that we separately
181 reload each. */
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186 #endif
188 /* The instruction we are doing reloads for;
189 so we can test whether a register dies in it. */
190 static rtx this_insn;
192 /* Nonzero if this instruction is a user-specified asm with operands. */
193 static int this_insn_is_asm;
195 /* If hard_regs_live_known is nonzero,
196 we can tell which hard regs are currently live,
197 at least enough to succeed in choosing dummy reloads. */
198 static int hard_regs_live_known;
200 /* Indexed by hard reg number,
201 element is nonnegative if hard reg has been spilled.
202 This vector is passed to `find_reloads' as an argument
203 and is not changed here. */
204 static short *static_reload_reg_p;
206 /* Set to 1 in subst_reg_equivs if it changes anything. */
207 static int subst_reg_equivs_changed;
209 /* On return from push_reload, holds the reload-number for the OUT
210 operand, which can be different for that from the input operand. */
211 static int output_reloadnum;
213 /* Compare two RTX's. */
214 #define MATCHES(x, y) \
215 (x == y || (x != 0 && (REG_P (x) \
216 ? REG_P (y) && REGNO (x) == REGNO (y) \
217 : rtx_equal_p (x, y) && ! side_effects_p (x))))
219 /* Indicates if two reloads purposes are for similar enough things that we
220 can merge their reloads. */
221 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
222 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
223 || ((when1) == (when2) && (op1) == (op2)) \
224 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
225 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
226 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
227 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
228 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
230 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
231 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
232 ((when1) != (when2) \
233 || ! ((op1) == (op2) \
234 || (when1) == RELOAD_FOR_INPUT \
235 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
236 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
238 /* If we are going to reload an address, compute the reload type to
239 use. */
240 #define ADDR_TYPE(type) \
241 ((type) == RELOAD_FOR_INPUT_ADDRESS \
242 ? RELOAD_FOR_INPADDR_ADDRESS \
243 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
244 ? RELOAD_FOR_OUTADDR_ADDRESS \
245 : (type)))
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *, secondary_reload_info *);
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int,
274 enum rtx_code, enum rtx_code, rtx *,
275 int, enum reload_type,int, rtx);
276 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
277 enum machine_mode, int,
278 enum reload_type, int);
279 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
280 int, rtx);
281 static void copy_replacements_1 (rtx *, rtx *, int);
282 static int find_inc_amount (rtx, rtx);
283 static int refers_to_mem_for_reload_p (rtx);
284 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
285 rtx, rtx *);
287 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
288 list yet. */
290 static void
291 push_reg_equiv_alt_mem (int regno, rtx mem)
293 rtx it;
295 for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
296 if (rtx_equal_p (XEXP (it, 0), mem))
297 return;
299 reg_equiv_alt_mem_list [regno]
300 = alloc_EXPR_LIST (REG_EQUIV, mem,
301 reg_equiv_alt_mem_list [regno]);
304 /* Determine if any secondary reloads are needed for loading (if IN_P is
305 nonzero) or storing (if IN_P is zero) X to or from a reload register of
306 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
307 are needed, push them.
309 Return the reload number of the secondary reload we made, or -1 if
310 we didn't need one. *PICODE is set to the insn_code to use if we do
311 need a secondary reload. */
313 static int
314 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
315 enum reg_class reload_class,
316 enum machine_mode reload_mode, enum reload_type type,
317 enum insn_code *picode, secondary_reload_info *prev_sri)
319 enum reg_class class = NO_REGS;
320 enum reg_class scratch_class;
321 enum machine_mode mode = reload_mode;
322 enum insn_code icode = CODE_FOR_nothing;
323 enum insn_code t_icode = CODE_FOR_nothing;
324 enum reload_type secondary_type;
325 int s_reload, t_reload = -1;
326 const char *scratch_constraint;
327 char letter;
328 secondary_reload_info sri;
330 if (type == RELOAD_FOR_INPUT_ADDRESS
331 || type == RELOAD_FOR_OUTPUT_ADDRESS
332 || type == RELOAD_FOR_INPADDR_ADDRESS
333 || type == RELOAD_FOR_OUTADDR_ADDRESS)
334 secondary_type = type;
335 else
336 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
338 *picode = CODE_FOR_nothing;
340 /* If X is a paradoxical SUBREG, use the inner value to determine both the
341 mode and object being reloaded. */
342 if (GET_CODE (x) == SUBREG
343 && (GET_MODE_SIZE (GET_MODE (x))
344 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
346 x = SUBREG_REG (x);
347 reload_mode = GET_MODE (x);
350 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
351 is still a pseudo-register by now, it *must* have an equivalent MEM
352 but we don't want to assume that), use that equivalent when seeing if
353 a secondary reload is needed since whether or not a reload is needed
354 might be sensitive to the form of the MEM. */
356 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
357 && reg_equiv_mem[REGNO (x)] != 0)
358 x = reg_equiv_mem[REGNO (x)];
360 sri.icode = CODE_FOR_nothing;
361 sri.prev_sri = prev_sri;
362 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
363 icode = sri.icode;
365 /* If we don't need any secondary registers, done. */
366 if (class == NO_REGS && icode == CODE_FOR_nothing)
367 return -1;
369 if (class != NO_REGS)
370 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
371 reload_mode, type, &t_icode, &sri);
373 /* If we will be using an insn, the secondary reload is for a
374 scratch register. */
376 if (icode != CODE_FOR_nothing)
378 /* If IN_P is nonzero, the reload register will be the output in
379 operand 0. If IN_P is zero, the reload register will be the input
380 in operand 1. Outputs should have an initial "=", which we must
381 skip. */
383 /* ??? It would be useful to be able to handle only two, or more than
384 three, operands, but for now we can only handle the case of having
385 exactly three: output, input and one temp/scratch. */
386 gcc_assert (insn_data[(int) icode].n_operands == 3);
388 /* ??? We currently have no way to represent a reload that needs
389 an icode to reload from an intermediate tertiary reload register.
390 We should probably have a new field in struct reload to tag a
391 chain of scratch operand reloads onto. */
392 gcc_assert (class == NO_REGS);
394 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
395 gcc_assert (*scratch_constraint == '=');
396 scratch_constraint++;
397 if (*scratch_constraint == '&')
398 scratch_constraint++;
399 letter = *scratch_constraint;
400 scratch_class = (letter == 'r' ? GENERAL_REGS
401 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
402 scratch_constraint));
404 class = scratch_class;
405 mode = insn_data[(int) icode].operand[2].mode;
408 /* This case isn't valid, so fail. Reload is allowed to use the same
409 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
410 in the case of a secondary register, we actually need two different
411 registers for correct code. We fail here to prevent the possibility of
412 silently generating incorrect code later.
414 The convention is that secondary input reloads are valid only if the
415 secondary_class is different from class. If you have such a case, you
416 can not use secondary reloads, you must work around the problem some
417 other way.
419 Allow this when a reload_in/out pattern is being used. I.e. assume
420 that the generated code handles this case. */
422 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
423 || t_icode != CODE_FOR_nothing);
425 /* See if we can reuse an existing secondary reload. */
426 for (s_reload = 0; s_reload < n_reloads; s_reload++)
427 if (rld[s_reload].secondary_p
428 && (reg_class_subset_p (class, rld[s_reload].class)
429 || reg_class_subset_p (rld[s_reload].class, class))
430 && ((in_p && rld[s_reload].inmode == mode)
431 || (! in_p && rld[s_reload].outmode == mode))
432 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
433 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
434 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
435 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
436 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
437 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
438 opnum, rld[s_reload].opnum))
440 if (in_p)
441 rld[s_reload].inmode = mode;
442 if (! in_p)
443 rld[s_reload].outmode = mode;
445 if (reg_class_subset_p (class, rld[s_reload].class))
446 rld[s_reload].class = class;
448 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
449 rld[s_reload].optional &= optional;
450 rld[s_reload].secondary_p = 1;
451 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
452 opnum, rld[s_reload].opnum))
453 rld[s_reload].when_needed = RELOAD_OTHER;
456 if (s_reload == n_reloads)
458 #ifdef SECONDARY_MEMORY_NEEDED
459 /* If we need a memory location to copy between the two reload regs,
460 set it up now. Note that we do the input case before making
461 the reload and the output case after. This is due to the
462 way reloads are output. */
464 if (in_p && icode == CODE_FOR_nothing
465 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
467 get_secondary_mem (x, reload_mode, opnum, type);
469 /* We may have just added new reloads. Make sure we add
470 the new reload at the end. */
471 s_reload = n_reloads;
473 #endif
475 /* We need to make a new secondary reload for this register class. */
476 rld[s_reload].in = rld[s_reload].out = 0;
477 rld[s_reload].class = class;
479 rld[s_reload].inmode = in_p ? mode : VOIDmode;
480 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
481 rld[s_reload].reg_rtx = 0;
482 rld[s_reload].optional = optional;
483 rld[s_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[s_reload].nocombine = 1;
486 rld[s_reload].in_reg = 0;
487 rld[s_reload].out_reg = 0;
488 rld[s_reload].opnum = opnum;
489 rld[s_reload].when_needed = secondary_type;
490 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
491 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
492 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
493 rld[s_reload].secondary_out_icode
494 = ! in_p ? t_icode : CODE_FOR_nothing;
495 rld[s_reload].secondary_p = 1;
497 n_reloads++;
499 #ifdef SECONDARY_MEMORY_NEEDED
500 if (! in_p && icode == CODE_FOR_nothing
501 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
502 get_secondary_mem (x, mode, opnum, type);
503 #endif
506 *picode = icode;
507 return s_reload;
510 /* If a secondary reload is needed, return its class. If both an intermediate
511 register and a scratch register is needed, we return the class of the
512 intermediate register. */
513 enum reg_class
514 secondary_reload_class (bool in_p, enum reg_class class,
515 enum machine_mode mode, rtx x)
517 enum insn_code icode;
518 secondary_reload_info sri;
520 sri.icode = CODE_FOR_nothing;
521 sri.prev_sri = NULL;
522 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
523 icode = sri.icode;
525 /* If there are no secondary reloads at all, we return NO_REGS.
526 If an intermediate register is needed, we return its class. */
527 if (icode == CODE_FOR_nothing || class != NO_REGS)
528 return class;
530 /* No intermediate register is needed, but we have a special reload
531 pattern, which we assume for now needs a scratch register. */
532 return scratch_reload_class (icode);
535 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
536 three operands, verify that operand 2 is an output operand, and return
537 its register class.
538 ??? We'd like to be able to handle any pattern with at least 2 operands,
539 for zero or more scratch registers, but that needs more infrastructure. */
540 enum reg_class
541 scratch_reload_class (enum insn_code icode)
543 const char *scratch_constraint;
544 char scratch_letter;
545 enum reg_class class;
547 gcc_assert (insn_data[(int) icode].n_operands == 3);
548 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
549 gcc_assert (*scratch_constraint == '=');
550 scratch_constraint++;
551 if (*scratch_constraint == '&')
552 scratch_constraint++;
553 scratch_letter = *scratch_constraint;
554 if (scratch_letter == 'r')
555 return GENERAL_REGS;
556 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
557 scratch_constraint);
558 gcc_assert (class != NO_REGS);
559 return class;
562 #ifdef SECONDARY_MEMORY_NEEDED
564 /* Return a memory location that will be used to copy X in mode MODE.
565 If we haven't already made a location for this mode in this insn,
566 call find_reloads_address on the location being returned. */
569 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
570 int opnum, enum reload_type type)
572 rtx loc;
573 int mem_valid;
575 /* By default, if MODE is narrower than a word, widen it to a word.
576 This is required because most machines that require these memory
577 locations do not support short load and stores from all registers
578 (e.g., FP registers). */
580 #ifdef SECONDARY_MEMORY_NEEDED_MODE
581 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
582 #else
583 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
584 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
585 #endif
587 /* If we already have made a MEM for this operand in MODE, return it. */
588 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
589 return secondary_memlocs_elim[(int) mode][opnum];
591 /* If this is the first time we've tried to get a MEM for this mode,
592 allocate a new one. `something_changed' in reload will get set
593 by noticing that the frame size has changed. */
595 if (secondary_memlocs[(int) mode] == 0)
597 #ifdef SECONDARY_MEMORY_NEEDED_RTX
598 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
599 #else
600 secondary_memlocs[(int) mode]
601 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
602 #endif
605 /* Get a version of the address doing any eliminations needed. If that
606 didn't give us a new MEM, make a new one if it isn't valid. */
608 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
609 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
611 if (! mem_valid && loc == secondary_memlocs[(int) mode])
612 loc = copy_rtx (loc);
614 /* The only time the call below will do anything is if the stack
615 offset is too large. In that case IND_LEVELS doesn't matter, so we
616 can just pass a zero. Adjust the type to be the address of the
617 corresponding object. If the address was valid, save the eliminated
618 address. If it wasn't valid, we need to make a reload each time, so
619 don't save it. */
621 if (! mem_valid)
623 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
624 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
625 : RELOAD_OTHER);
627 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
628 opnum, type, 0, 0);
631 secondary_memlocs_elim[(int) mode][opnum] = loc;
632 if (secondary_memlocs_elim_used <= (int)mode)
633 secondary_memlocs_elim_used = (int)mode + 1;
634 return loc;
637 /* Clear any secondary memory locations we've made. */
639 void
640 clear_secondary_mem (void)
642 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
644 #endif /* SECONDARY_MEMORY_NEEDED */
647 /* Find the largest class which has at least one register valid in
648 mode INNER, and which for every such register, that register number
649 plus N is also valid in OUTER (if in range) and is cheap to move
650 into REGNO. Such a class must exist. */
652 static enum reg_class
653 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
654 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
655 unsigned int dest_regno ATTRIBUTE_UNUSED)
657 int best_cost = -1;
658 int class;
659 int regno;
660 enum reg_class best_class = NO_REGS;
661 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
662 unsigned int best_size = 0;
663 int cost;
665 for (class = 1; class < N_REG_CLASSES; class++)
667 int bad = 0;
668 int good = 0;
669 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
670 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
672 if (HARD_REGNO_MODE_OK (regno, inner))
674 good = 1;
675 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
676 || ! HARD_REGNO_MODE_OK (regno + n, outer))
677 bad = 1;
681 if (bad || !good)
682 continue;
683 cost = REGISTER_MOVE_COST (outer, class, dest_class);
685 if ((reg_class_size[class] > best_size
686 && (best_cost < 0 || best_cost >= cost))
687 || best_cost > cost)
689 best_class = class;
690 best_size = reg_class_size[class];
691 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
695 gcc_assert (best_size != 0);
697 return best_class;
700 /* Return the number of a previously made reload that can be combined with
701 a new one, or n_reloads if none of the existing reloads can be used.
702 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
703 push_reload, they determine the kind of the new reload that we try to
704 combine. P_IN points to the corresponding value of IN, which can be
705 modified by this function.
706 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
708 static int
709 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
710 enum reload_type type, int opnum, int dont_share)
712 rtx in = *p_in;
713 int i;
714 /* We can't merge two reloads if the output of either one is
715 earlyclobbered. */
717 if (earlyclobber_operand_p (out))
718 return n_reloads;
720 /* We can use an existing reload if the class is right
721 and at least one of IN and OUT is a match
722 and the other is at worst neutral.
723 (A zero compared against anything is neutral.)
725 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
726 for the same thing since that can cause us to need more reload registers
727 than we otherwise would. */
729 for (i = 0; i < n_reloads; i++)
730 if ((reg_class_subset_p (class, rld[i].class)
731 || reg_class_subset_p (rld[i].class, class))
732 /* If the existing reload has a register, it must fit our class. */
733 && (rld[i].reg_rtx == 0
734 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
735 true_regnum (rld[i].reg_rtx)))
736 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
737 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
738 || (out != 0 && MATCHES (rld[i].out, out)
739 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
740 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
741 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
742 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
743 return i;
745 /* Reloading a plain reg for input can match a reload to postincrement
746 that reg, since the postincrement's value is the right value.
747 Likewise, it can match a preincrement reload, since we regard
748 the preincrementation as happening before any ref in this insn
749 to that register. */
750 for (i = 0; i < n_reloads; i++)
751 if ((reg_class_subset_p (class, rld[i].class)
752 || reg_class_subset_p (rld[i].class, class))
753 /* If the existing reload has a register, it must fit our
754 class. */
755 && (rld[i].reg_rtx == 0
756 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
757 true_regnum (rld[i].reg_rtx)))
758 && out == 0 && rld[i].out == 0 && rld[i].in != 0
759 && ((REG_P (in)
760 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
761 && MATCHES (XEXP (rld[i].in, 0), in))
762 || (REG_P (rld[i].in)
763 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
764 && MATCHES (XEXP (in, 0), rld[i].in)))
765 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
766 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
767 && MERGABLE_RELOADS (type, rld[i].when_needed,
768 opnum, rld[i].opnum))
770 /* Make sure reload_in ultimately has the increment,
771 not the plain register. */
772 if (REG_P (in))
773 *p_in = rld[i].in;
774 return i;
776 return n_reloads;
779 /* Return nonzero if X is a SUBREG which will require reloading of its
780 SUBREG_REG expression. */
782 static int
783 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
785 rtx inner;
787 /* Only SUBREGs are problematical. */
788 if (GET_CODE (x) != SUBREG)
789 return 0;
791 inner = SUBREG_REG (x);
793 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
794 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
795 return 1;
797 /* If INNER is not a hard register, then INNER will not need to
798 be reloaded. */
799 if (!REG_P (inner)
800 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
801 return 0;
803 /* If INNER is not ok for MODE, then INNER will need reloading. */
804 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
805 return 1;
807 /* If the outer part is a word or smaller, INNER larger than a
808 word and the number of regs for INNER is not the same as the
809 number of words in INNER, then INNER will need reloading. */
810 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
811 && output
812 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
813 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
814 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
817 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
818 requiring an extra reload register. The caller has already found that
819 IN contains some reference to REGNO, so check that we can produce the
820 new value in a single step. E.g. if we have
821 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
822 instruction that adds one to a register, this should succeed.
823 However, if we have something like
824 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
825 needs to be loaded into a register first, we need a separate reload
826 register.
827 Such PLUS reloads are generated by find_reload_address_part.
828 The out-of-range PLUS expressions are usually introduced in the instruction
829 patterns by register elimination and substituting pseudos without a home
830 by their function-invariant equivalences. */
831 static int
832 can_reload_into (rtx in, int regno, enum machine_mode mode)
834 rtx dst, test_insn;
835 int r = 0;
836 struct recog_data save_recog_data;
838 /* For matching constraints, we often get notional input reloads where
839 we want to use the original register as the reload register. I.e.
840 technically this is a non-optional input-output reload, but IN is
841 already a valid register, and has been chosen as the reload register.
842 Speed this up, since it trivially works. */
843 if (REG_P (in))
844 return 1;
846 /* To test MEMs properly, we'd have to take into account all the reloads
847 that are already scheduled, which can become quite complicated.
848 And since we've already handled address reloads for this MEM, it
849 should always succeed anyway. */
850 if (MEM_P (in))
851 return 1;
853 /* If we can make a simple SET insn that does the job, everything should
854 be fine. */
855 dst = gen_rtx_REG (mode, regno);
856 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
857 save_recog_data = recog_data;
858 if (recog_memoized (test_insn) >= 0)
860 extract_insn (test_insn);
861 r = constrain_operands (1);
863 recog_data = save_recog_data;
864 return r;
867 /* Record one reload that needs to be performed.
868 IN is an rtx saying where the data are to be found before this instruction.
869 OUT says where they must be stored after the instruction.
870 (IN is zero for data not read, and OUT is zero for data not written.)
871 INLOC and OUTLOC point to the places in the instructions where
872 IN and OUT were found.
873 If IN and OUT are both nonzero, it means the same register must be used
874 to reload both IN and OUT.
876 CLASS is a register class required for the reloaded data.
877 INMODE is the machine mode that the instruction requires
878 for the reg that replaces IN and OUTMODE is likewise for OUT.
880 If IN is zero, then OUT's location and mode should be passed as
881 INLOC and INMODE.
883 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
885 OPTIONAL nonzero means this reload does not need to be performed:
886 it can be discarded if that is more convenient.
888 OPNUM and TYPE say what the purpose of this reload is.
890 The return value is the reload-number for this reload.
892 If both IN and OUT are nonzero, in some rare cases we might
893 want to make two separate reloads. (Actually we never do this now.)
894 Therefore, the reload-number for OUT is stored in
895 output_reloadnum when we return; the return value applies to IN.
896 Usually (presently always), when IN and OUT are nonzero,
897 the two reload-numbers are equal, but the caller should be careful to
898 distinguish them. */
901 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
902 enum reg_class class, enum machine_mode inmode,
903 enum machine_mode outmode, int strict_low, int optional,
904 int opnum, enum reload_type type)
906 int i;
907 int dont_share = 0;
908 int dont_remove_subreg = 0;
909 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
910 int secondary_in_reload = -1, secondary_out_reload = -1;
911 enum insn_code secondary_in_icode = CODE_FOR_nothing;
912 enum insn_code secondary_out_icode = CODE_FOR_nothing;
914 /* INMODE and/or OUTMODE could be VOIDmode if no mode
915 has been specified for the operand. In that case,
916 use the operand's mode as the mode to reload. */
917 if (inmode == VOIDmode && in != 0)
918 inmode = GET_MODE (in);
919 if (outmode == VOIDmode && out != 0)
920 outmode = GET_MODE (out);
922 /* If IN is a pseudo register everywhere-equivalent to a constant, and
923 it is not in a hard register, reload straight from the constant,
924 since we want to get rid of such pseudo registers.
925 Often this is done earlier, but not always in find_reloads_address. */
926 if (in != 0 && REG_P (in))
928 int regno = REGNO (in);
930 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
931 && reg_equiv_constant[regno] != 0)
932 in = reg_equiv_constant[regno];
935 /* Likewise for OUT. Of course, OUT will never be equivalent to
936 an actual constant, but it might be equivalent to a memory location
937 (in the case of a parameter). */
938 if (out != 0 && REG_P (out))
940 int regno = REGNO (out);
942 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
943 && reg_equiv_constant[regno] != 0)
944 out = reg_equiv_constant[regno];
947 /* If we have a read-write operand with an address side-effect,
948 change either IN or OUT so the side-effect happens only once. */
949 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
950 switch (GET_CODE (XEXP (in, 0)))
952 case POST_INC: case POST_DEC: case POST_MODIFY:
953 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
954 break;
956 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
957 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
958 break;
960 default:
961 break;
964 /* If we are reloading a (SUBREG constant ...), really reload just the
965 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
966 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
967 a pseudo and hence will become a MEM) with M1 wider than M2 and the
968 register is a pseudo, also reload the inside expression.
969 For machines that extend byte loads, do this for any SUBREG of a pseudo
970 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
971 M2 is an integral mode that gets extended when loaded.
972 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
973 either M1 is not valid for R or M2 is wider than a word but we only
974 need one word to store an M2-sized quantity in R.
975 (However, if OUT is nonzero, we need to reload the reg *and*
976 the subreg, so do nothing here, and let following statement handle it.)
978 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
979 we can't handle it here because CONST_INT does not indicate a mode.
981 Similarly, we must reload the inside expression if we have a
982 STRICT_LOW_PART (presumably, in == out in the cas).
984 Also reload the inner expression if it does not require a secondary
985 reload but the SUBREG does.
987 Finally, reload the inner expression if it is a register that is in
988 the class whose registers cannot be referenced in a different size
989 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
990 cannot reload just the inside since we might end up with the wrong
991 register class. But if it is inside a STRICT_LOW_PART, we have
992 no choice, so we hope we do get the right register class there. */
994 if (in != 0 && GET_CODE (in) == SUBREG
995 && (subreg_lowpart_p (in) || strict_low)
996 #ifdef CANNOT_CHANGE_MODE_CLASS
997 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
998 #endif
999 && (CONSTANT_P (SUBREG_REG (in))
1000 || GET_CODE (SUBREG_REG (in)) == PLUS
1001 || strict_low
1002 || (((REG_P (SUBREG_REG (in))
1003 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1004 || MEM_P (SUBREG_REG (in)))
1005 && ((GET_MODE_SIZE (inmode)
1006 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1007 #ifdef LOAD_EXTEND_OP
1008 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1009 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1010 <= UNITS_PER_WORD)
1011 && (GET_MODE_SIZE (inmode)
1012 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1013 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1014 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1015 #endif
1016 #ifdef WORD_REGISTER_OPERATIONS
1017 || ((GET_MODE_SIZE (inmode)
1018 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1019 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1020 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1021 / UNITS_PER_WORD)))
1022 #endif
1024 || (REG_P (SUBREG_REG (in))
1025 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1026 /* The case where out is nonzero
1027 is handled differently in the following statement. */
1028 && (out == 0 || subreg_lowpart_p (in))
1029 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1031 > UNITS_PER_WORD)
1032 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1033 / UNITS_PER_WORD)
1034 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1035 [GET_MODE (SUBREG_REG (in))]))
1036 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1037 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1038 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1039 SUBREG_REG (in))
1040 == NO_REGS))
1041 #ifdef CANNOT_CHANGE_MODE_CLASS
1042 || (REG_P (SUBREG_REG (in))
1043 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1044 && REG_CANNOT_CHANGE_MODE_P
1045 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1046 #endif
1049 in_subreg_loc = inloc;
1050 inloc = &SUBREG_REG (in);
1051 in = *inloc;
1052 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1053 if (MEM_P (in))
1054 /* This is supposed to happen only for paradoxical subregs made by
1055 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1056 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1057 #endif
1058 inmode = GET_MODE (in);
1061 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1062 either M1 is not valid for R or M2 is wider than a word but we only
1063 need one word to store an M2-sized quantity in R.
1065 However, we must reload the inner reg *as well as* the subreg in
1066 that case. */
1068 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1069 code above. This can happen if SUBREG_BYTE != 0. */
1071 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1073 enum reg_class in_class = class;
1075 if (REG_P (SUBREG_REG (in)))
1076 in_class
1077 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1078 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1079 GET_MODE (SUBREG_REG (in)),
1080 SUBREG_BYTE (in),
1081 GET_MODE (in)),
1082 REGNO (SUBREG_REG (in)));
1084 /* This relies on the fact that emit_reload_insns outputs the
1085 instructions for input reloads of type RELOAD_OTHER in the same
1086 order as the reloads. Thus if the outer reload is also of type
1087 RELOAD_OTHER, we are guaranteed that this inner reload will be
1088 output before the outer reload. */
1089 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1090 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1091 dont_remove_subreg = 1;
1094 /* Similarly for paradoxical and problematical SUBREGs on the output.
1095 Note that there is no reason we need worry about the previous value
1096 of SUBREG_REG (out); even if wider than out,
1097 storing in a subreg is entitled to clobber it all
1098 (except in the case of STRICT_LOW_PART,
1099 and in that case the constraint should label it input-output.) */
1100 if (out != 0 && GET_CODE (out) == SUBREG
1101 && (subreg_lowpart_p (out) || strict_low)
1102 #ifdef CANNOT_CHANGE_MODE_CLASS
1103 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1104 #endif
1105 && (CONSTANT_P (SUBREG_REG (out))
1106 || strict_low
1107 || (((REG_P (SUBREG_REG (out))
1108 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1109 || MEM_P (SUBREG_REG (out)))
1110 && ((GET_MODE_SIZE (outmode)
1111 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1112 #ifdef WORD_REGISTER_OPERATIONS
1113 || ((GET_MODE_SIZE (outmode)
1114 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1115 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1116 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1117 / UNITS_PER_WORD)))
1118 #endif
1120 || (REG_P (SUBREG_REG (out))
1121 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1122 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1123 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1124 > UNITS_PER_WORD)
1125 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1126 / UNITS_PER_WORD)
1127 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1128 [GET_MODE (SUBREG_REG (out))]))
1129 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1130 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1131 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1132 SUBREG_REG (out))
1133 == NO_REGS))
1134 #ifdef CANNOT_CHANGE_MODE_CLASS
1135 || (REG_P (SUBREG_REG (out))
1136 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1137 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1138 GET_MODE (SUBREG_REG (out)),
1139 outmode))
1140 #endif
1143 out_subreg_loc = outloc;
1144 outloc = &SUBREG_REG (out);
1145 out = *outloc;
1146 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1147 gcc_assert (!MEM_P (out)
1148 || GET_MODE_SIZE (GET_MODE (out))
1149 <= GET_MODE_SIZE (outmode));
1150 #endif
1151 outmode = GET_MODE (out);
1154 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1155 either M1 is not valid for R or M2 is wider than a word but we only
1156 need one word to store an M2-sized quantity in R.
1158 However, we must reload the inner reg *as well as* the subreg in
1159 that case. In this case, the inner reg is an in-out reload. */
1161 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1163 /* This relies on the fact that emit_reload_insns outputs the
1164 instructions for output reloads of type RELOAD_OTHER in reverse
1165 order of the reloads. Thus if the outer reload is also of type
1166 RELOAD_OTHER, we are guaranteed that this inner reload will be
1167 output after the outer reload. */
1168 dont_remove_subreg = 1;
1169 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1170 &SUBREG_REG (out),
1171 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1172 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1173 GET_MODE (SUBREG_REG (out)),
1174 SUBREG_BYTE (out),
1175 GET_MODE (out)),
1176 REGNO (SUBREG_REG (out))),
1177 VOIDmode, VOIDmode, 0, 0,
1178 opnum, RELOAD_OTHER);
1181 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1182 if (in != 0 && out != 0 && MEM_P (out)
1183 && (REG_P (in) || MEM_P (in))
1184 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1185 dont_share = 1;
1187 /* If IN is a SUBREG of a hard register, make a new REG. This
1188 simplifies some of the cases below. */
1190 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1191 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1192 && ! dont_remove_subreg)
1193 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1195 /* Similarly for OUT. */
1196 if (out != 0 && GET_CODE (out) == SUBREG
1197 && REG_P (SUBREG_REG (out))
1198 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1199 && ! dont_remove_subreg)
1200 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1202 /* Narrow down the class of register wanted if that is
1203 desirable on this machine for efficiency. */
1205 enum reg_class preferred_class = class;
1207 if (in != 0)
1208 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1210 /* Output reloads may need analogous treatment, different in detail. */
1211 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1212 if (out != 0)
1213 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1214 #endif
1216 /* Discard what the target said if we cannot do it. */
1217 if (preferred_class != NO_REGS
1218 || (optional && type == RELOAD_FOR_OUTPUT))
1219 class = preferred_class;
1222 /* Make sure we use a class that can handle the actual pseudo
1223 inside any subreg. For example, on the 386, QImode regs
1224 can appear within SImode subregs. Although GENERAL_REGS
1225 can handle SImode, QImode needs a smaller class. */
1226 #ifdef LIMIT_RELOAD_CLASS
1227 if (in_subreg_loc)
1228 class = LIMIT_RELOAD_CLASS (inmode, class);
1229 else if (in != 0 && GET_CODE (in) == SUBREG)
1230 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1232 if (out_subreg_loc)
1233 class = LIMIT_RELOAD_CLASS (outmode, class);
1234 if (out != 0 && GET_CODE (out) == SUBREG)
1235 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1236 #endif
1238 /* Verify that this class is at least possible for the mode that
1239 is specified. */
1240 if (this_insn_is_asm)
1242 enum machine_mode mode;
1243 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1244 mode = inmode;
1245 else
1246 mode = outmode;
1247 if (mode == VOIDmode)
1249 error_for_asm (this_insn, "cannot reload integer constant "
1250 "operand in %<asm%>");
1251 mode = word_mode;
1252 if (in != 0)
1253 inmode = word_mode;
1254 if (out != 0)
1255 outmode = word_mode;
1257 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1258 if (HARD_REGNO_MODE_OK (i, mode)
1259 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1261 int nregs = hard_regno_nregs[i][mode];
1263 int j;
1264 for (j = 1; j < nregs; j++)
1265 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1266 break;
1267 if (j == nregs)
1268 break;
1270 if (i == FIRST_PSEUDO_REGISTER)
1272 error_for_asm (this_insn, "impossible register constraint "
1273 "in %<asm%>");
1274 /* Avoid further trouble with this insn. */
1275 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1276 /* We used to continue here setting class to ALL_REGS, but it triggers
1277 sanity check on i386 for:
1278 void foo(long double d)
1280 asm("" :: "a" (d));
1282 Returning zero here ought to be safe as we take care in
1283 find_reloads to not process the reloads when instruction was
1284 replaced by USE. */
1286 return 0;
1290 /* Optional output reloads are always OK even if we have no register class,
1291 since the function of these reloads is only to have spill_reg_store etc.
1292 set, so that the storing insn can be deleted later. */
1293 gcc_assert (class != NO_REGS
1294 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1296 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1298 if (i == n_reloads)
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1304 if (in != 0)
1305 secondary_in_reload
1306 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1307 &secondary_in_icode, NULL);
1308 if (out != 0 && GET_CODE (out) != SCRATCH)
1309 secondary_out_reload
1310 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1311 type, &secondary_out_icode, NULL);
1313 /* We found no existing reload suitable for re-use.
1314 So add an additional reload. */
1316 #ifdef SECONDARY_MEMORY_NEEDED
1317 /* If a memory location is needed for the copy, make one. */
1318 if (in != 0
1319 && (REG_P (in)
1320 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1321 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1322 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1323 class, inmode))
1324 get_secondary_mem (in, inmode, opnum, type);
1325 #endif
1327 i = n_reloads;
1328 rld[i].in = in;
1329 rld[i].out = out;
1330 rld[i].class = class;
1331 rld[i].inmode = inmode;
1332 rld[i].outmode = outmode;
1333 rld[i].reg_rtx = 0;
1334 rld[i].optional = optional;
1335 rld[i].inc = 0;
1336 rld[i].nocombine = 0;
1337 rld[i].in_reg = inloc ? *inloc : 0;
1338 rld[i].out_reg = outloc ? *outloc : 0;
1339 rld[i].opnum = opnum;
1340 rld[i].when_needed = type;
1341 rld[i].secondary_in_reload = secondary_in_reload;
1342 rld[i].secondary_out_reload = secondary_out_reload;
1343 rld[i].secondary_in_icode = secondary_in_icode;
1344 rld[i].secondary_out_icode = secondary_out_icode;
1345 rld[i].secondary_p = 0;
1347 n_reloads++;
1349 #ifdef SECONDARY_MEMORY_NEEDED
1350 if (out != 0
1351 && (REG_P (out)
1352 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1353 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1354 && SECONDARY_MEMORY_NEEDED (class,
1355 REGNO_REG_CLASS (reg_or_subregno (out)),
1356 outmode))
1357 get_secondary_mem (out, outmode, opnum, type);
1358 #endif
1360 else
1362 /* We are reusing an existing reload,
1363 but we may have additional information for it.
1364 For example, we may now have both IN and OUT
1365 while the old one may have just one of them. */
1367 /* The modes can be different. If they are, we want to reload in
1368 the larger mode, so that the value is valid for both modes. */
1369 if (inmode != VOIDmode
1370 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1371 rld[i].inmode = inmode;
1372 if (outmode != VOIDmode
1373 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1374 rld[i].outmode = outmode;
1375 if (in != 0)
1377 rtx in_reg = inloc ? *inloc : 0;
1378 /* If we merge reloads for two distinct rtl expressions that
1379 are identical in content, there might be duplicate address
1380 reloads. Remove the extra set now, so that if we later find
1381 that we can inherit this reload, we can get rid of the
1382 address reloads altogether.
1384 Do not do this if both reloads are optional since the result
1385 would be an optional reload which could potentially leave
1386 unresolved address replacements.
1388 It is not sufficient to call transfer_replacements since
1389 choose_reload_regs will remove the replacements for address
1390 reloads of inherited reloads which results in the same
1391 problem. */
1392 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1393 && ! (rld[i].optional && optional))
1395 /* We must keep the address reload with the lower operand
1396 number alive. */
1397 if (opnum > rld[i].opnum)
1399 remove_address_replacements (in);
1400 in = rld[i].in;
1401 in_reg = rld[i].in_reg;
1403 else
1404 remove_address_replacements (rld[i].in);
1406 rld[i].in = in;
1407 rld[i].in_reg = in_reg;
1409 if (out != 0)
1411 rld[i].out = out;
1412 rld[i].out_reg = outloc ? *outloc : 0;
1414 if (reg_class_subset_p (class, rld[i].class))
1415 rld[i].class = class;
1416 rld[i].optional &= optional;
1417 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1418 opnum, rld[i].opnum))
1419 rld[i].when_needed = RELOAD_OTHER;
1420 rld[i].opnum = MIN (rld[i].opnum, opnum);
1423 /* If the ostensible rtx being reloaded differs from the rtx found
1424 in the location to substitute, this reload is not safe to combine
1425 because we cannot reliably tell whether it appears in the insn. */
1427 if (in != 0 && in != *inloc)
1428 rld[i].nocombine = 1;
1430 #if 0
1431 /* This was replaced by changes in find_reloads_address_1 and the new
1432 function inc_for_reload, which go with a new meaning of reload_inc. */
1434 /* If this is an IN/OUT reload in an insn that sets the CC,
1435 it must be for an autoincrement. It doesn't work to store
1436 the incremented value after the insn because that would clobber the CC.
1437 So we must do the increment of the value reloaded from,
1438 increment it, store it back, then decrement again. */
1439 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1441 out = 0;
1442 rld[i].out = 0;
1443 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1444 /* If we did not find a nonzero amount-to-increment-by,
1445 that contradicts the belief that IN is being incremented
1446 in an address in this insn. */
1447 gcc_assert (rld[i].inc != 0);
1449 #endif
1451 /* If we will replace IN and OUT with the reload-reg,
1452 record where they are located so that substitution need
1453 not do a tree walk. */
1455 if (replace_reloads)
1457 if (inloc != 0)
1459 struct replacement *r = &replacements[n_replacements++];
1460 r->what = i;
1461 r->subreg_loc = in_subreg_loc;
1462 r->where = inloc;
1463 r->mode = inmode;
1465 if (outloc != 0 && outloc != inloc)
1467 struct replacement *r = &replacements[n_replacements++];
1468 r->what = i;
1469 r->where = outloc;
1470 r->subreg_loc = out_subreg_loc;
1471 r->mode = outmode;
1475 /* If this reload is just being introduced and it has both
1476 an incoming quantity and an outgoing quantity that are
1477 supposed to be made to match, see if either one of the two
1478 can serve as the place to reload into.
1480 If one of them is acceptable, set rld[i].reg_rtx
1481 to that one. */
1483 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1485 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1486 inmode, outmode,
1487 rld[i].class, i,
1488 earlyclobber_operand_p (out));
1490 /* If the outgoing register already contains the same value
1491 as the incoming one, we can dispense with loading it.
1492 The easiest way to tell the caller that is to give a phony
1493 value for the incoming operand (same as outgoing one). */
1494 if (rld[i].reg_rtx == out
1495 && (REG_P (in) || CONSTANT_P (in))
1496 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1497 static_reload_reg_p, i, inmode))
1498 rld[i].in = out;
1501 /* If this is an input reload and the operand contains a register that
1502 dies in this insn and is used nowhere else, see if it is the right class
1503 to be used for this reload. Use it if so. (This occurs most commonly
1504 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1505 this if it is also an output reload that mentions the register unless
1506 the output is a SUBREG that clobbers an entire register.
1508 Note that the operand might be one of the spill regs, if it is a
1509 pseudo reg and we are in a block where spilling has not taken place.
1510 But if there is no spilling in this block, that is OK.
1511 An explicitly used hard reg cannot be a spill reg. */
1513 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1515 rtx note;
1516 int regno;
1517 enum machine_mode rel_mode = inmode;
1519 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1520 rel_mode = outmode;
1522 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1523 if (REG_NOTE_KIND (note) == REG_DEAD
1524 && REG_P (XEXP (note, 0))
1525 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1526 && reg_mentioned_p (XEXP (note, 0), in)
1527 /* Check that we don't use a hardreg for an uninitialized
1528 pseudo. See also find_dummy_reload(). */
1529 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1530 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1531 ORIGINAL_REGNO (XEXP (note, 0))))
1532 && ! refers_to_regno_for_reload_p (regno,
1533 (regno
1534 + hard_regno_nregs[regno]
1535 [rel_mode]),
1536 PATTERN (this_insn), inloc)
1537 /* If this is also an output reload, IN cannot be used as
1538 the reload register if it is set in this insn unless IN
1539 is also OUT. */
1540 && (out == 0 || in == out
1541 || ! hard_reg_set_here_p (regno,
1542 (regno
1543 + hard_regno_nregs[regno]
1544 [rel_mode]),
1545 PATTERN (this_insn)))
1546 /* ??? Why is this code so different from the previous?
1547 Is there any simple coherent way to describe the two together?
1548 What's going on here. */
1549 && (in != out
1550 || (GET_CODE (in) == SUBREG
1551 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1552 / UNITS_PER_WORD)
1553 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1554 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1555 /* Make sure the operand fits in the reg that dies. */
1556 && (GET_MODE_SIZE (rel_mode)
1557 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1558 && HARD_REGNO_MODE_OK (regno, inmode)
1559 && HARD_REGNO_MODE_OK (regno, outmode))
1561 unsigned int offs;
1562 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1563 hard_regno_nregs[regno][outmode]);
1565 for (offs = 0; offs < nregs; offs++)
1566 if (fixed_regs[regno + offs]
1567 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1568 regno + offs))
1569 break;
1571 if (offs == nregs
1572 && (! (refers_to_regno_for_reload_p
1573 (regno, (regno + hard_regno_nregs[regno][inmode]),
1574 in, (rtx *)0))
1575 || can_reload_into (in, regno, inmode)))
1577 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1578 break;
1583 if (out)
1584 output_reloadnum = i;
1586 return i;
1589 /* Record an additional place we must replace a value
1590 for which we have already recorded a reload.
1591 RELOADNUM is the value returned by push_reload
1592 when the reload was recorded.
1593 This is used in insn patterns that use match_dup. */
1595 static void
1596 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1598 if (replace_reloads)
1600 struct replacement *r = &replacements[n_replacements++];
1601 r->what = reloadnum;
1602 r->where = loc;
1603 r->subreg_loc = 0;
1604 r->mode = mode;
1608 /* Duplicate any replacement we have recorded to apply at
1609 location ORIG_LOC to also be performed at DUP_LOC.
1610 This is used in insn patterns that use match_dup. */
1612 static void
1613 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1615 int i, n = n_replacements;
1617 for (i = 0; i < n; i++)
1619 struct replacement *r = &replacements[i];
1620 if (r->where == orig_loc)
1621 push_replacement (dup_loc, r->what, r->mode);
1625 /* Transfer all replacements that used to be in reload FROM to be in
1626 reload TO. */
1628 void
1629 transfer_replacements (int to, int from)
1631 int i;
1633 for (i = 0; i < n_replacements; i++)
1634 if (replacements[i].what == from)
1635 replacements[i].what = to;
1638 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1639 or a subpart of it. If we have any replacements registered for IN_RTX,
1640 cancel the reloads that were supposed to load them.
1641 Return nonzero if we canceled any reloads. */
1643 remove_address_replacements (rtx in_rtx)
1645 int i, j;
1646 char reload_flags[MAX_RELOADS];
1647 int something_changed = 0;
1649 memset (reload_flags, 0, sizeof reload_flags);
1650 for (i = 0, j = 0; i < n_replacements; i++)
1652 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1653 reload_flags[replacements[i].what] |= 1;
1654 else
1656 replacements[j++] = replacements[i];
1657 reload_flags[replacements[i].what] |= 2;
1660 /* Note that the following store must be done before the recursive calls. */
1661 n_replacements = j;
1663 for (i = n_reloads - 1; i >= 0; i--)
1665 if (reload_flags[i] == 1)
1667 deallocate_reload_reg (i);
1668 remove_address_replacements (rld[i].in);
1669 rld[i].in = 0;
1670 something_changed = 1;
1673 return something_changed;
1676 /* If there is only one output reload, and it is not for an earlyclobber
1677 operand, try to combine it with a (logically unrelated) input reload
1678 to reduce the number of reload registers needed.
1680 This is safe if the input reload does not appear in
1681 the value being output-reloaded, because this implies
1682 it is not needed any more once the original insn completes.
1684 If that doesn't work, see we can use any of the registers that
1685 die in this insn as a reload register. We can if it is of the right
1686 class and does not appear in the value being output-reloaded. */
1688 static void
1689 combine_reloads (void)
1691 int i;
1692 int output_reload = -1;
1693 int secondary_out = -1;
1694 rtx note;
1696 /* Find the output reload; return unless there is exactly one
1697 and that one is mandatory. */
1699 for (i = 0; i < n_reloads; i++)
1700 if (rld[i].out != 0)
1702 if (output_reload >= 0)
1703 return;
1704 output_reload = i;
1707 if (output_reload < 0 || rld[output_reload].optional)
1708 return;
1710 /* An input-output reload isn't combinable. */
1712 if (rld[output_reload].in != 0)
1713 return;
1715 /* If this reload is for an earlyclobber operand, we can't do anything. */
1716 if (earlyclobber_operand_p (rld[output_reload].out))
1717 return;
1719 /* If there is a reload for part of the address of this operand, we would
1720 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1721 its life to the point where doing this combine would not lower the
1722 number of spill registers needed. */
1723 for (i = 0; i < n_reloads; i++)
1724 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1725 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1726 && rld[i].opnum == rld[output_reload].opnum)
1727 return;
1729 /* Check each input reload; can we combine it? */
1731 for (i = 0; i < n_reloads; i++)
1732 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1733 /* Life span of this reload must not extend past main insn. */
1734 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1735 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1736 && rld[i].when_needed != RELOAD_OTHER
1737 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1738 == CLASS_MAX_NREGS (rld[output_reload].class,
1739 rld[output_reload].outmode))
1740 && rld[i].inc == 0
1741 && rld[i].reg_rtx == 0
1742 #ifdef SECONDARY_MEMORY_NEEDED
1743 /* Don't combine two reloads with different secondary
1744 memory locations. */
1745 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1746 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1747 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1748 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1749 #endif
1750 && (SMALL_REGISTER_CLASSES
1751 ? (rld[i].class == rld[output_reload].class)
1752 : (reg_class_subset_p (rld[i].class,
1753 rld[output_reload].class)
1754 || reg_class_subset_p (rld[output_reload].class,
1755 rld[i].class)))
1756 && (MATCHES (rld[i].in, rld[output_reload].out)
1757 /* Args reversed because the first arg seems to be
1758 the one that we imagine being modified
1759 while the second is the one that might be affected. */
1760 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1761 rld[i].in)
1762 /* However, if the input is a register that appears inside
1763 the output, then we also can't share.
1764 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1765 If the same reload reg is used for both reg 69 and the
1766 result to be stored in memory, then that result
1767 will clobber the address of the memory ref. */
1768 && ! (REG_P (rld[i].in)
1769 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1770 rld[output_reload].out))))
1771 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1772 rld[i].when_needed != RELOAD_FOR_INPUT)
1773 && (reg_class_size[(int) rld[i].class]
1774 || SMALL_REGISTER_CLASSES)
1775 /* We will allow making things slightly worse by combining an
1776 input and an output, but no worse than that. */
1777 && (rld[i].when_needed == RELOAD_FOR_INPUT
1778 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1780 int j;
1782 /* We have found a reload to combine with! */
1783 rld[i].out = rld[output_reload].out;
1784 rld[i].out_reg = rld[output_reload].out_reg;
1785 rld[i].outmode = rld[output_reload].outmode;
1786 /* Mark the old output reload as inoperative. */
1787 rld[output_reload].out = 0;
1788 /* The combined reload is needed for the entire insn. */
1789 rld[i].when_needed = RELOAD_OTHER;
1790 /* If the output reload had a secondary reload, copy it. */
1791 if (rld[output_reload].secondary_out_reload != -1)
1793 rld[i].secondary_out_reload
1794 = rld[output_reload].secondary_out_reload;
1795 rld[i].secondary_out_icode
1796 = rld[output_reload].secondary_out_icode;
1799 #ifdef SECONDARY_MEMORY_NEEDED
1800 /* Copy any secondary MEM. */
1801 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1802 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1803 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1804 #endif
1805 /* If required, minimize the register class. */
1806 if (reg_class_subset_p (rld[output_reload].class,
1807 rld[i].class))
1808 rld[i].class = rld[output_reload].class;
1810 /* Transfer all replacements from the old reload to the combined. */
1811 for (j = 0; j < n_replacements; j++)
1812 if (replacements[j].what == output_reload)
1813 replacements[j].what = i;
1815 return;
1818 /* If this insn has only one operand that is modified or written (assumed
1819 to be the first), it must be the one corresponding to this reload. It
1820 is safe to use anything that dies in this insn for that output provided
1821 that it does not occur in the output (we already know it isn't an
1822 earlyclobber. If this is an asm insn, give up. */
1824 if (INSN_CODE (this_insn) == -1)
1825 return;
1827 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1828 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1829 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1830 return;
1832 /* See if some hard register that dies in this insn and is not used in
1833 the output is the right class. Only works if the register we pick
1834 up can fully hold our output reload. */
1835 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1836 if (REG_NOTE_KIND (note) == REG_DEAD
1837 && REG_P (XEXP (note, 0))
1838 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1839 rld[output_reload].out)
1840 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1841 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1842 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1843 REGNO (XEXP (note, 0)))
1844 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1845 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1846 /* Ensure that a secondary or tertiary reload for this output
1847 won't want this register. */
1848 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1849 || (! (TEST_HARD_REG_BIT
1850 (reg_class_contents[(int) rld[secondary_out].class],
1851 REGNO (XEXP (note, 0))))
1852 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1853 || ! (TEST_HARD_REG_BIT
1854 (reg_class_contents[(int) rld[secondary_out].class],
1855 REGNO (XEXP (note, 0)))))))
1856 && ! fixed_regs[REGNO (XEXP (note, 0))])
1858 rld[output_reload].reg_rtx
1859 = gen_rtx_REG (rld[output_reload].outmode,
1860 REGNO (XEXP (note, 0)));
1861 return;
1865 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1866 See if one of IN and OUT is a register that may be used;
1867 this is desirable since a spill-register won't be needed.
1868 If so, return the register rtx that proves acceptable.
1870 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1871 CLASS is the register class required for the reload.
1873 If FOR_REAL is >= 0, it is the number of the reload,
1874 and in some cases when it can be discovered that OUT doesn't need
1875 to be computed, clear out rld[FOR_REAL].out.
1877 If FOR_REAL is -1, this should not be done, because this call
1878 is just to see if a register can be found, not to find and install it.
1880 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1881 puts an additional constraint on being able to use IN for OUT since
1882 IN must not appear elsewhere in the insn (it is assumed that IN itself
1883 is safe from the earlyclobber). */
1885 static rtx
1886 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1887 enum machine_mode inmode, enum machine_mode outmode,
1888 enum reg_class class, int for_real, int earlyclobber)
1890 rtx in = real_in;
1891 rtx out = real_out;
1892 int in_offset = 0;
1893 int out_offset = 0;
1894 rtx value = 0;
1896 /* If operands exceed a word, we can't use either of them
1897 unless they have the same size. */
1898 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1899 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1900 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1901 return 0;
1903 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1904 respectively refers to a hard register. */
1906 /* Find the inside of any subregs. */
1907 while (GET_CODE (out) == SUBREG)
1909 if (REG_P (SUBREG_REG (out))
1910 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1911 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1912 GET_MODE (SUBREG_REG (out)),
1913 SUBREG_BYTE (out),
1914 GET_MODE (out));
1915 out = SUBREG_REG (out);
1917 while (GET_CODE (in) == SUBREG)
1919 if (REG_P (SUBREG_REG (in))
1920 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1921 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1922 GET_MODE (SUBREG_REG (in)),
1923 SUBREG_BYTE (in),
1924 GET_MODE (in));
1925 in = SUBREG_REG (in);
1928 /* Narrow down the reg class, the same way push_reload will;
1929 otherwise we might find a dummy now, but push_reload won't. */
1931 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1932 if (preferred_class != NO_REGS)
1933 class = preferred_class;
1936 /* See if OUT will do. */
1937 if (REG_P (out)
1938 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1940 unsigned int regno = REGNO (out) + out_offset;
1941 unsigned int nwords = hard_regno_nregs[regno][outmode];
1942 rtx saved_rtx;
1944 /* When we consider whether the insn uses OUT,
1945 ignore references within IN. They don't prevent us
1946 from copying IN into OUT, because those refs would
1947 move into the insn that reloads IN.
1949 However, we only ignore IN in its role as this reload.
1950 If the insn uses IN elsewhere and it contains OUT,
1951 that counts. We can't be sure it's the "same" operand
1952 so it might not go through this reload. */
1953 saved_rtx = *inloc;
1954 *inloc = const0_rtx;
1956 if (regno < FIRST_PSEUDO_REGISTER
1957 && HARD_REGNO_MODE_OK (regno, outmode)
1958 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1959 PATTERN (this_insn), outloc))
1961 unsigned int i;
1963 for (i = 0; i < nwords; i++)
1964 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1965 regno + i))
1966 break;
1968 if (i == nwords)
1970 if (REG_P (real_out))
1971 value = real_out;
1972 else
1973 value = gen_rtx_REG (outmode, regno);
1977 *inloc = saved_rtx;
1980 /* Consider using IN if OUT was not acceptable
1981 or if OUT dies in this insn (like the quotient in a divmod insn).
1982 We can't use IN unless it is dies in this insn,
1983 which means we must know accurately which hard regs are live.
1984 Also, the result can't go in IN if IN is used within OUT,
1985 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1986 if (hard_regs_live_known
1987 && REG_P (in)
1988 && REGNO (in) < FIRST_PSEUDO_REGISTER
1989 && (value == 0
1990 || find_reg_note (this_insn, REG_UNUSED, real_out))
1991 && find_reg_note (this_insn, REG_DEAD, real_in)
1992 && !fixed_regs[REGNO (in)]
1993 && HARD_REGNO_MODE_OK (REGNO (in),
1994 /* The only case where out and real_out might
1995 have different modes is where real_out
1996 is a subreg, and in that case, out
1997 has a real mode. */
1998 (GET_MODE (out) != VOIDmode
1999 ? GET_MODE (out) : outmode))
2000 /* But only do all this if we can be sure, that this input
2001 operand doesn't correspond with an uninitialized pseudoreg.
2002 global can assign some hardreg to it, which is the same as
2003 a different pseudo also currently live (as it can ignore the
2004 conflict). So we never must introduce writes to such hardregs,
2005 as they would clobber the other live pseudo using the same.
2006 See also PR20973. */
2007 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2008 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2009 ORIGINAL_REGNO (in))))
2011 unsigned int regno = REGNO (in) + in_offset;
2012 unsigned int nwords = hard_regno_nregs[regno][inmode];
2014 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2015 && ! hard_reg_set_here_p (regno, regno + nwords,
2016 PATTERN (this_insn))
2017 && (! earlyclobber
2018 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2019 PATTERN (this_insn), inloc)))
2021 unsigned int i;
2023 for (i = 0; i < nwords; i++)
2024 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2025 regno + i))
2026 break;
2028 if (i == nwords)
2030 /* If we were going to use OUT as the reload reg
2031 and changed our mind, it means OUT is a dummy that
2032 dies here. So don't bother copying value to it. */
2033 if (for_real >= 0 && value == real_out)
2034 rld[for_real].out = 0;
2035 if (REG_P (real_in))
2036 value = real_in;
2037 else
2038 value = gen_rtx_REG (inmode, regno);
2043 return value;
2046 /* This page contains subroutines used mainly for determining
2047 whether the IN or an OUT of a reload can serve as the
2048 reload register. */
2050 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2053 earlyclobber_operand_p (rtx x)
2055 int i;
2057 for (i = 0; i < n_earlyclobbers; i++)
2058 if (reload_earlyclobbers[i] == x)
2059 return 1;
2061 return 0;
2064 /* Return 1 if expression X alters a hard reg in the range
2065 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2066 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2067 X should be the body of an instruction. */
2069 static int
2070 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2072 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2074 rtx op0 = SET_DEST (x);
2076 while (GET_CODE (op0) == SUBREG)
2077 op0 = SUBREG_REG (op0);
2078 if (REG_P (op0))
2080 unsigned int r = REGNO (op0);
2082 /* See if this reg overlaps range under consideration. */
2083 if (r < end_regno
2084 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2085 return 1;
2088 else if (GET_CODE (x) == PARALLEL)
2090 int i = XVECLEN (x, 0) - 1;
2092 for (; i >= 0; i--)
2093 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2094 return 1;
2097 return 0;
2100 /* Return 1 if ADDR is a valid memory address for mode MODE,
2101 and check that each pseudo reg has the proper kind of
2102 hard reg. */
2105 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2107 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2108 return 0;
2110 win:
2111 return 1;
2114 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2115 if they are the same hard reg, and has special hacks for
2116 autoincrement and autodecrement.
2117 This is specifically intended for find_reloads to use
2118 in determining whether two operands match.
2119 X is the operand whose number is the lower of the two.
2121 The value is 2 if Y contains a pre-increment that matches
2122 a non-incrementing address in X. */
2124 /* ??? To be completely correct, we should arrange to pass
2125 for X the output operand and for Y the input operand.
2126 For now, we assume that the output operand has the lower number
2127 because that is natural in (SET output (... input ...)). */
2130 operands_match_p (rtx x, rtx y)
2132 int i;
2133 RTX_CODE code = GET_CODE (x);
2134 const char *fmt;
2135 int success_2;
2137 if (x == y)
2138 return 1;
2139 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2140 && (REG_P (y) || (GET_CODE (y) == SUBREG
2141 && REG_P (SUBREG_REG (y)))))
2143 int j;
2145 if (code == SUBREG)
2147 i = REGNO (SUBREG_REG (x));
2148 if (i >= FIRST_PSEUDO_REGISTER)
2149 goto slow;
2150 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2151 GET_MODE (SUBREG_REG (x)),
2152 SUBREG_BYTE (x),
2153 GET_MODE (x));
2155 else
2156 i = REGNO (x);
2158 if (GET_CODE (y) == SUBREG)
2160 j = REGNO (SUBREG_REG (y));
2161 if (j >= FIRST_PSEUDO_REGISTER)
2162 goto slow;
2163 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2164 GET_MODE (SUBREG_REG (y)),
2165 SUBREG_BYTE (y),
2166 GET_MODE (y));
2168 else
2169 j = REGNO (y);
2171 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2172 multiple hard register group of scalar integer registers, so that
2173 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2174 register. */
2175 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2176 && SCALAR_INT_MODE_P (GET_MODE (x))
2177 && i < FIRST_PSEUDO_REGISTER)
2178 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2179 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2180 && SCALAR_INT_MODE_P (GET_MODE (y))
2181 && j < FIRST_PSEUDO_REGISTER)
2182 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2184 return i == j;
2186 /* If two operands must match, because they are really a single
2187 operand of an assembler insn, then two postincrements are invalid
2188 because the assembler insn would increment only once.
2189 On the other hand, a postincrement matches ordinary indexing
2190 if the postincrement is the output operand. */
2191 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2192 return operands_match_p (XEXP (x, 0), y);
2193 /* Two preincrements are invalid
2194 because the assembler insn would increment only once.
2195 On the other hand, a preincrement matches ordinary indexing
2196 if the preincrement is the input operand.
2197 In this case, return 2, since some callers need to do special
2198 things when this happens. */
2199 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2200 || GET_CODE (y) == PRE_MODIFY)
2201 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2203 slow:
2205 /* Now we have disposed of all the cases in which different rtx codes
2206 can match. */
2207 if (code != GET_CODE (y))
2208 return 0;
2210 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2211 if (GET_MODE (x) != GET_MODE (y))
2212 return 0;
2214 switch (code)
2216 case CONST_INT:
2217 case CONST_DOUBLE:
2218 return 0;
2220 case LABEL_REF:
2221 return XEXP (x, 0) == XEXP (y, 0);
2222 case SYMBOL_REF:
2223 return XSTR (x, 0) == XSTR (y, 0);
2225 default:
2226 break;
2229 /* Compare the elements. If any pair of corresponding elements
2230 fail to match, return 0 for the whole things. */
2232 success_2 = 0;
2233 fmt = GET_RTX_FORMAT (code);
2234 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2236 int val, j;
2237 switch (fmt[i])
2239 case 'w':
2240 if (XWINT (x, i) != XWINT (y, i))
2241 return 0;
2242 break;
2244 case 'i':
2245 if (XINT (x, i) != XINT (y, i))
2246 return 0;
2247 break;
2249 case 'e':
2250 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2251 if (val == 0)
2252 return 0;
2253 /* If any subexpression returns 2,
2254 we should return 2 if we are successful. */
2255 if (val == 2)
2256 success_2 = 1;
2257 break;
2259 case '0':
2260 break;
2262 case 'E':
2263 if (XVECLEN (x, i) != XVECLEN (y, i))
2264 return 0;
2265 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2267 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2268 if (val == 0)
2269 return 0;
2270 if (val == 2)
2271 success_2 = 1;
2273 break;
2275 /* It is believed that rtx's at this level will never
2276 contain anything but integers and other rtx's,
2277 except for within LABEL_REFs and SYMBOL_REFs. */
2278 default:
2279 gcc_unreachable ();
2282 return 1 + success_2;
2285 /* Describe the range of registers or memory referenced by X.
2286 If X is a register, set REG_FLAG and put the first register
2287 number into START and the last plus one into END.
2288 If X is a memory reference, put a base address into BASE
2289 and a range of integer offsets into START and END.
2290 If X is pushing on the stack, we can assume it causes no trouble,
2291 so we set the SAFE field. */
2293 static struct decomposition
2294 decompose (rtx x)
2296 struct decomposition val;
2297 int all_const = 0;
2299 memset (&val, 0, sizeof (val));
2301 switch (GET_CODE (x))
2303 case MEM:
2305 rtx base = NULL_RTX, offset = 0;
2306 rtx addr = XEXP (x, 0);
2308 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2309 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2311 val.base = XEXP (addr, 0);
2312 val.start = -GET_MODE_SIZE (GET_MODE (x));
2313 val.end = GET_MODE_SIZE (GET_MODE (x));
2314 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2315 return val;
2318 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2320 if (GET_CODE (XEXP (addr, 1)) == PLUS
2321 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2322 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2324 val.base = XEXP (addr, 0);
2325 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2326 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2327 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2328 return val;
2332 if (GET_CODE (addr) == CONST)
2334 addr = XEXP (addr, 0);
2335 all_const = 1;
2337 if (GET_CODE (addr) == PLUS)
2339 if (CONSTANT_P (XEXP (addr, 0)))
2341 base = XEXP (addr, 1);
2342 offset = XEXP (addr, 0);
2344 else if (CONSTANT_P (XEXP (addr, 1)))
2346 base = XEXP (addr, 0);
2347 offset = XEXP (addr, 1);
2351 if (offset == 0)
2353 base = addr;
2354 offset = const0_rtx;
2356 if (GET_CODE (offset) == CONST)
2357 offset = XEXP (offset, 0);
2358 if (GET_CODE (offset) == PLUS)
2360 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2362 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2363 offset = XEXP (offset, 0);
2365 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2367 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2368 offset = XEXP (offset, 1);
2370 else
2372 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2373 offset = const0_rtx;
2376 else if (GET_CODE (offset) != CONST_INT)
2378 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2379 offset = const0_rtx;
2382 if (all_const && GET_CODE (base) == PLUS)
2383 base = gen_rtx_CONST (GET_MODE (base), base);
2385 gcc_assert (GET_CODE (offset) == CONST_INT);
2387 val.start = INTVAL (offset);
2388 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2389 val.base = base;
2391 break;
2393 case REG:
2394 val.reg_flag = 1;
2395 val.start = true_regnum (x);
2396 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2398 /* A pseudo with no hard reg. */
2399 val.start = REGNO (x);
2400 val.end = val.start + 1;
2402 else
2403 /* A hard reg. */
2404 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2405 break;
2407 case SUBREG:
2408 if (!REG_P (SUBREG_REG (x)))
2409 /* This could be more precise, but it's good enough. */
2410 return decompose (SUBREG_REG (x));
2411 val.reg_flag = 1;
2412 val.start = true_regnum (x);
2413 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2414 return decompose (SUBREG_REG (x));
2415 else
2416 /* A hard reg. */
2417 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2418 break;
2420 case SCRATCH:
2421 /* This hasn't been assigned yet, so it can't conflict yet. */
2422 val.safe = 1;
2423 break;
2425 default:
2426 gcc_assert (CONSTANT_P (x));
2427 val.safe = 1;
2428 break;
2430 return val;
2433 /* Return 1 if altering Y will not modify the value of X.
2434 Y is also described by YDATA, which should be decompose (Y). */
2436 static int
2437 immune_p (rtx x, rtx y, struct decomposition ydata)
2439 struct decomposition xdata;
2441 if (ydata.reg_flag)
2442 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2443 if (ydata.safe)
2444 return 1;
2446 gcc_assert (MEM_P (y));
2447 /* If Y is memory and X is not, Y can't affect X. */
2448 if (!MEM_P (x))
2449 return 1;
2451 xdata = decompose (x);
2453 if (! rtx_equal_p (xdata.base, ydata.base))
2455 /* If bases are distinct symbolic constants, there is no overlap. */
2456 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2457 return 1;
2458 /* Constants and stack slots never overlap. */
2459 if (CONSTANT_P (xdata.base)
2460 && (ydata.base == frame_pointer_rtx
2461 || ydata.base == hard_frame_pointer_rtx
2462 || ydata.base == stack_pointer_rtx))
2463 return 1;
2464 if (CONSTANT_P (ydata.base)
2465 && (xdata.base == frame_pointer_rtx
2466 || xdata.base == hard_frame_pointer_rtx
2467 || xdata.base == stack_pointer_rtx))
2468 return 1;
2469 /* If either base is variable, we don't know anything. */
2470 return 0;
2473 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2476 /* Similar, but calls decompose. */
2479 safe_from_earlyclobber (rtx op, rtx clobber)
2481 struct decomposition early_data;
2483 early_data = decompose (clobber);
2484 return immune_p (op, clobber, early_data);
2487 /* Main entry point of this file: search the body of INSN
2488 for values that need reloading and record them with push_reload.
2489 REPLACE nonzero means record also where the values occur
2490 so that subst_reloads can be used.
2492 IND_LEVELS says how many levels of indirection are supported by this
2493 machine; a value of zero means that a memory reference is not a valid
2494 memory address.
2496 LIVE_KNOWN says we have valid information about which hard
2497 regs are live at each point in the program; this is true when
2498 we are called from global_alloc but false when stupid register
2499 allocation has been done.
2501 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2502 which is nonnegative if the reg has been commandeered for reloading into.
2503 It is copied into STATIC_RELOAD_REG_P and referenced from there
2504 by various subroutines.
2506 Return TRUE if some operands need to be changed, because of swapping
2507 commutative operands, reg_equiv_address substitution, or whatever. */
2510 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2511 short *reload_reg_p)
2513 int insn_code_number;
2514 int i, j;
2515 int noperands;
2516 /* These start out as the constraints for the insn
2517 and they are chewed up as we consider alternatives. */
2518 char *constraints[MAX_RECOG_OPERANDS];
2519 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2520 a register. */
2521 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2522 char pref_or_nothing[MAX_RECOG_OPERANDS];
2523 /* Nonzero for a MEM operand whose entire address needs a reload.
2524 May be -1 to indicate the entire address may or may not need a reload. */
2525 int address_reloaded[MAX_RECOG_OPERANDS];
2526 /* Nonzero for an address operand that needs to be completely reloaded.
2527 May be -1 to indicate the entire operand may or may not need a reload. */
2528 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2529 /* Value of enum reload_type to use for operand. */
2530 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2531 /* Value of enum reload_type to use within address of operand. */
2532 enum reload_type address_type[MAX_RECOG_OPERANDS];
2533 /* Save the usage of each operand. */
2534 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2535 int no_input_reloads = 0, no_output_reloads = 0;
2536 int n_alternatives;
2537 int this_alternative[MAX_RECOG_OPERANDS];
2538 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2539 char this_alternative_win[MAX_RECOG_OPERANDS];
2540 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2541 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2542 int this_alternative_matches[MAX_RECOG_OPERANDS];
2543 int swapped;
2544 int goal_alternative[MAX_RECOG_OPERANDS];
2545 int this_alternative_number;
2546 int goal_alternative_number = 0;
2547 int operand_reloadnum[MAX_RECOG_OPERANDS];
2548 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2549 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2550 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2551 char goal_alternative_win[MAX_RECOG_OPERANDS];
2552 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2553 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2554 int goal_alternative_swapped;
2555 int best;
2556 int commutative;
2557 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2558 rtx substed_operand[MAX_RECOG_OPERANDS];
2559 rtx body = PATTERN (insn);
2560 rtx set = single_set (insn);
2561 int goal_earlyclobber = 0, this_earlyclobber;
2562 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2563 int retval = 0;
2565 this_insn = insn;
2566 n_reloads = 0;
2567 n_replacements = 0;
2568 n_earlyclobbers = 0;
2569 replace_reloads = replace;
2570 hard_regs_live_known = live_known;
2571 static_reload_reg_p = reload_reg_p;
2573 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2574 neither are insns that SET cc0. Insns that use CC0 are not allowed
2575 to have any input reloads. */
2576 if (JUMP_P (insn) || CALL_P (insn))
2577 no_output_reloads = 1;
2579 #ifdef HAVE_cc0
2580 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2581 no_input_reloads = 1;
2582 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2583 no_output_reloads = 1;
2584 #endif
2586 #ifdef SECONDARY_MEMORY_NEEDED
2587 /* The eliminated forms of any secondary memory locations are per-insn, so
2588 clear them out here. */
2590 if (secondary_memlocs_elim_used)
2592 memset (secondary_memlocs_elim, 0,
2593 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2594 secondary_memlocs_elim_used = 0;
2596 #endif
2598 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2599 is cheap to move between them. If it is not, there may not be an insn
2600 to do the copy, so we may need a reload. */
2601 if (GET_CODE (body) == SET
2602 && REG_P (SET_DEST (body))
2603 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2604 && REG_P (SET_SRC (body))
2605 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2606 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2607 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2608 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2609 return 0;
2611 extract_insn (insn);
2613 noperands = reload_n_operands = recog_data.n_operands;
2614 n_alternatives = recog_data.n_alternatives;
2616 /* Just return "no reloads" if insn has no operands with constraints. */
2617 if (noperands == 0 || n_alternatives == 0)
2618 return 0;
2620 insn_code_number = INSN_CODE (insn);
2621 this_insn_is_asm = insn_code_number < 0;
2623 memcpy (operand_mode, recog_data.operand_mode,
2624 noperands * sizeof (enum machine_mode));
2625 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2627 commutative = -1;
2629 /* If we will need to know, later, whether some pair of operands
2630 are the same, we must compare them now and save the result.
2631 Reloading the base and index registers will clobber them
2632 and afterward they will fail to match. */
2634 for (i = 0; i < noperands; i++)
2636 char *p;
2637 int c;
2639 substed_operand[i] = recog_data.operand[i];
2640 p = constraints[i];
2642 modified[i] = RELOAD_READ;
2644 /* Scan this operand's constraint to see if it is an output operand,
2645 an in-out operand, is commutative, or should match another. */
2647 while ((c = *p))
2649 p += CONSTRAINT_LEN (c, p);
2650 switch (c)
2652 case '=':
2653 modified[i] = RELOAD_WRITE;
2654 break;
2655 case '+':
2656 modified[i] = RELOAD_READ_WRITE;
2657 break;
2658 case '%':
2660 /* The last operand should not be marked commutative. */
2661 gcc_assert (i != noperands - 1);
2663 /* We currently only support one commutative pair of
2664 operands. Some existing asm code currently uses more
2665 than one pair. Previously, that would usually work,
2666 but sometimes it would crash the compiler. We
2667 continue supporting that case as well as we can by
2668 silently ignoring all but the first pair. In the
2669 future we may handle it correctly. */
2670 if (commutative < 0)
2671 commutative = i;
2672 else
2673 gcc_assert (this_insn_is_asm);
2675 break;
2676 /* Use of ISDIGIT is tempting here, but it may get expensive because
2677 of locale support we don't want. */
2678 case '0': case '1': case '2': case '3': case '4':
2679 case '5': case '6': case '7': case '8': case '9':
2681 c = strtoul (p - 1, &p, 10);
2683 operands_match[c][i]
2684 = operands_match_p (recog_data.operand[c],
2685 recog_data.operand[i]);
2687 /* An operand may not match itself. */
2688 gcc_assert (c != i);
2690 /* If C can be commuted with C+1, and C might need to match I,
2691 then C+1 might also need to match I. */
2692 if (commutative >= 0)
2694 if (c == commutative || c == commutative + 1)
2696 int other = c + (c == commutative ? 1 : -1);
2697 operands_match[other][i]
2698 = operands_match_p (recog_data.operand[other],
2699 recog_data.operand[i]);
2701 if (i == commutative || i == commutative + 1)
2703 int other = i + (i == commutative ? 1 : -1);
2704 operands_match[c][other]
2705 = operands_match_p (recog_data.operand[c],
2706 recog_data.operand[other]);
2708 /* Note that C is supposed to be less than I.
2709 No need to consider altering both C and I because in
2710 that case we would alter one into the other. */
2717 /* Examine each operand that is a memory reference or memory address
2718 and reload parts of the addresses into index registers.
2719 Also here any references to pseudo regs that didn't get hard regs
2720 but are equivalent to constants get replaced in the insn itself
2721 with those constants. Nobody will ever see them again.
2723 Finally, set up the preferred classes of each operand. */
2725 for (i = 0; i < noperands; i++)
2727 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2729 address_reloaded[i] = 0;
2730 address_operand_reloaded[i] = 0;
2731 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2732 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2733 : RELOAD_OTHER);
2734 address_type[i]
2735 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2736 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2737 : RELOAD_OTHER);
2739 if (*constraints[i] == 0)
2740 /* Ignore things like match_operator operands. */
2742 else if (constraints[i][0] == 'p'
2743 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2745 address_operand_reloaded[i]
2746 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2747 recog_data.operand[i],
2748 recog_data.operand_loc[i],
2749 i, operand_type[i], ind_levels, insn);
2751 /* If we now have a simple operand where we used to have a
2752 PLUS or MULT, re-recognize and try again. */
2753 if ((OBJECT_P (*recog_data.operand_loc[i])
2754 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2755 && (GET_CODE (recog_data.operand[i]) == MULT
2756 || GET_CODE (recog_data.operand[i]) == PLUS))
2758 INSN_CODE (insn) = -1;
2759 retval = find_reloads (insn, replace, ind_levels, live_known,
2760 reload_reg_p);
2761 return retval;
2764 recog_data.operand[i] = *recog_data.operand_loc[i];
2765 substed_operand[i] = recog_data.operand[i];
2767 /* Address operands are reloaded in their existing mode,
2768 no matter what is specified in the machine description. */
2769 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2771 else if (code == MEM)
2773 address_reloaded[i]
2774 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2775 recog_data.operand_loc[i],
2776 XEXP (recog_data.operand[i], 0),
2777 &XEXP (recog_data.operand[i], 0),
2778 i, address_type[i], ind_levels, insn);
2779 recog_data.operand[i] = *recog_data.operand_loc[i];
2780 substed_operand[i] = recog_data.operand[i];
2782 else if (code == SUBREG)
2784 rtx reg = SUBREG_REG (recog_data.operand[i]);
2785 rtx op
2786 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2787 ind_levels,
2788 set != 0
2789 && &SET_DEST (set) == recog_data.operand_loc[i],
2790 insn,
2791 &address_reloaded[i]);
2793 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2794 that didn't get a hard register, emit a USE with a REG_EQUAL
2795 note in front so that we might inherit a previous, possibly
2796 wider reload. */
2798 if (replace
2799 && MEM_P (op)
2800 && REG_P (reg)
2801 && (GET_MODE_SIZE (GET_MODE (reg))
2802 >= GET_MODE_SIZE (GET_MODE (op))))
2803 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2804 insn),
2805 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2807 substed_operand[i] = recog_data.operand[i] = op;
2809 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2810 /* We can get a PLUS as an "operand" as a result of register
2811 elimination. See eliminate_regs and gen_reload. We handle
2812 a unary operator by reloading the operand. */
2813 substed_operand[i] = recog_data.operand[i]
2814 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2815 ind_levels, 0, insn,
2816 &address_reloaded[i]);
2817 else if (code == REG)
2819 /* This is equivalent to calling find_reloads_toplev.
2820 The code is duplicated for speed.
2821 When we find a pseudo always equivalent to a constant,
2822 we replace it by the constant. We must be sure, however,
2823 that we don't try to replace it in the insn in which it
2824 is being set. */
2825 int regno = REGNO (recog_data.operand[i]);
2826 if (reg_equiv_constant[regno] != 0
2827 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2829 /* Record the existing mode so that the check if constants are
2830 allowed will work when operand_mode isn't specified. */
2832 if (operand_mode[i] == VOIDmode)
2833 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2835 substed_operand[i] = recog_data.operand[i]
2836 = reg_equiv_constant[regno];
2838 if (reg_equiv_memory_loc[regno] != 0
2839 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2840 /* We need not give a valid is_set_dest argument since the case
2841 of a constant equivalence was checked above. */
2842 substed_operand[i] = recog_data.operand[i]
2843 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2844 ind_levels, 0, insn,
2845 &address_reloaded[i]);
2847 /* If the operand is still a register (we didn't replace it with an
2848 equivalent), get the preferred class to reload it into. */
2849 code = GET_CODE (recog_data.operand[i]);
2850 preferred_class[i]
2851 = ((code == REG && REGNO (recog_data.operand[i])
2852 >= FIRST_PSEUDO_REGISTER)
2853 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2854 : NO_REGS);
2855 pref_or_nothing[i]
2856 = (code == REG
2857 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2858 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2861 /* If this is simply a copy from operand 1 to operand 0, merge the
2862 preferred classes for the operands. */
2863 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2864 && recog_data.operand[1] == SET_SRC (set))
2866 preferred_class[0] = preferred_class[1]
2867 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2868 pref_or_nothing[0] |= pref_or_nothing[1];
2869 pref_or_nothing[1] |= pref_or_nothing[0];
2872 /* Now see what we need for pseudo-regs that didn't get hard regs
2873 or got the wrong kind of hard reg. For this, we must consider
2874 all the operands together against the register constraints. */
2876 best = MAX_RECOG_OPERANDS * 2 + 600;
2878 swapped = 0;
2879 goal_alternative_swapped = 0;
2880 try_swapped:
2882 /* The constraints are made of several alternatives.
2883 Each operand's constraint looks like foo,bar,... with commas
2884 separating the alternatives. The first alternatives for all
2885 operands go together, the second alternatives go together, etc.
2887 First loop over alternatives. */
2889 for (this_alternative_number = 0;
2890 this_alternative_number < n_alternatives;
2891 this_alternative_number++)
2893 /* Loop over operands for one constraint alternative. */
2894 /* LOSERS counts those that don't fit this alternative
2895 and would require loading. */
2896 int losers = 0;
2897 /* BAD is set to 1 if it some operand can't fit this alternative
2898 even after reloading. */
2899 int bad = 0;
2900 /* REJECT is a count of how undesirable this alternative says it is
2901 if any reloading is required. If the alternative matches exactly
2902 then REJECT is ignored, but otherwise it gets this much
2903 counted against it in addition to the reloading needed. Each
2904 ? counts three times here since we want the disparaging caused by
2905 a bad register class to only count 1/3 as much. */
2906 int reject = 0;
2908 this_earlyclobber = 0;
2910 for (i = 0; i < noperands; i++)
2912 char *p = constraints[i];
2913 char *end;
2914 int len;
2915 int win = 0;
2916 int did_match = 0;
2917 /* 0 => this operand can be reloaded somehow for this alternative. */
2918 int badop = 1;
2919 /* 0 => this operand can be reloaded if the alternative allows regs. */
2920 int winreg = 0;
2921 int c;
2922 int m;
2923 rtx operand = recog_data.operand[i];
2924 int offset = 0;
2925 /* Nonzero means this is a MEM that must be reloaded into a reg
2926 regardless of what the constraint says. */
2927 int force_reload = 0;
2928 int offmemok = 0;
2929 /* Nonzero if a constant forced into memory would be OK for this
2930 operand. */
2931 int constmemok = 0;
2932 int earlyclobber = 0;
2934 /* If the predicate accepts a unary operator, it means that
2935 we need to reload the operand, but do not do this for
2936 match_operator and friends. */
2937 if (UNARY_P (operand) && *p != 0)
2938 operand = XEXP (operand, 0);
2940 /* If the operand is a SUBREG, extract
2941 the REG or MEM (or maybe even a constant) within.
2942 (Constants can occur as a result of reg_equiv_constant.) */
2944 while (GET_CODE (operand) == SUBREG)
2946 /* Offset only matters when operand is a REG and
2947 it is a hard reg. This is because it is passed
2948 to reg_fits_class_p if it is a REG and all pseudos
2949 return 0 from that function. */
2950 if (REG_P (SUBREG_REG (operand))
2951 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2953 if (!subreg_offset_representable_p
2954 (REGNO (SUBREG_REG (operand)),
2955 GET_MODE (SUBREG_REG (operand)),
2956 SUBREG_BYTE (operand),
2957 GET_MODE (operand)))
2958 force_reload = 1;
2959 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2960 GET_MODE (SUBREG_REG (operand)),
2961 SUBREG_BYTE (operand),
2962 GET_MODE (operand));
2964 operand = SUBREG_REG (operand);
2965 /* Force reload if this is a constant or PLUS or if there may
2966 be a problem accessing OPERAND in the outer mode. */
2967 if (CONSTANT_P (operand)
2968 || GET_CODE (operand) == PLUS
2969 /* We must force a reload of paradoxical SUBREGs
2970 of a MEM because the alignment of the inner value
2971 may not be enough to do the outer reference. On
2972 big-endian machines, it may also reference outside
2973 the object.
2975 On machines that extend byte operations and we have a
2976 SUBREG where both the inner and outer modes are no wider
2977 than a word and the inner mode is narrower, is integral,
2978 and gets extended when loaded from memory, combine.c has
2979 made assumptions about the behavior of the machine in such
2980 register access. If the data is, in fact, in memory we
2981 must always load using the size assumed to be in the
2982 register and let the insn do the different-sized
2983 accesses.
2985 This is doubly true if WORD_REGISTER_OPERATIONS. In
2986 this case eliminate_regs has left non-paradoxical
2987 subregs for push_reload to see. Make sure it does
2988 by forcing the reload.
2990 ??? When is it right at this stage to have a subreg
2991 of a mem that is _not_ to be handled specially? IMO
2992 those should have been reduced to just a mem. */
2993 || ((MEM_P (operand)
2994 || (REG_P (operand)
2995 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2996 #ifndef WORD_REGISTER_OPERATIONS
2997 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2998 < BIGGEST_ALIGNMENT)
2999 && (GET_MODE_SIZE (operand_mode[i])
3000 > GET_MODE_SIZE (GET_MODE (operand))))
3001 || BYTES_BIG_ENDIAN
3002 #ifdef LOAD_EXTEND_OP
3003 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3004 && (GET_MODE_SIZE (GET_MODE (operand))
3005 <= UNITS_PER_WORD)
3006 && (GET_MODE_SIZE (operand_mode[i])
3007 > GET_MODE_SIZE (GET_MODE (operand)))
3008 && INTEGRAL_MODE_P (GET_MODE (operand))
3009 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3010 #endif
3012 #endif
3015 force_reload = 1;
3018 this_alternative[i] = (int) NO_REGS;
3019 this_alternative_win[i] = 0;
3020 this_alternative_match_win[i] = 0;
3021 this_alternative_offmemok[i] = 0;
3022 this_alternative_earlyclobber[i] = 0;
3023 this_alternative_matches[i] = -1;
3025 /* An empty constraint or empty alternative
3026 allows anything which matched the pattern. */
3027 if (*p == 0 || *p == ',')
3028 win = 1, badop = 0;
3030 /* Scan this alternative's specs for this operand;
3031 set WIN if the operand fits any letter in this alternative.
3032 Otherwise, clear BADOP if this operand could
3033 fit some letter after reloads,
3034 or set WINREG if this operand could fit after reloads
3035 provided the constraint allows some registers. */
3038 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3040 case '\0':
3041 len = 0;
3042 break;
3043 case ',':
3044 c = '\0';
3045 break;
3047 case '=': case '+': case '*':
3048 break;
3050 case '%':
3051 /* We only support one commutative marker, the first
3052 one. We already set commutative above. */
3053 break;
3055 case '?':
3056 reject += 6;
3057 break;
3059 case '!':
3060 reject = 600;
3061 break;
3063 case '#':
3064 /* Ignore rest of this alternative as far as
3065 reloading is concerned. */
3067 p++;
3068 while (*p && *p != ',');
3069 len = 0;
3070 break;
3072 case '0': case '1': case '2': case '3': case '4':
3073 case '5': case '6': case '7': case '8': case '9':
3074 m = strtoul (p, &end, 10);
3075 p = end;
3076 len = 0;
3078 this_alternative_matches[i] = m;
3079 /* We are supposed to match a previous operand.
3080 If we do, we win if that one did.
3081 If we do not, count both of the operands as losers.
3082 (This is too conservative, since most of the time
3083 only a single reload insn will be needed to make
3084 the two operands win. As a result, this alternative
3085 may be rejected when it is actually desirable.) */
3086 if ((swapped && (m != commutative || i != commutative + 1))
3087 /* If we are matching as if two operands were swapped,
3088 also pretend that operands_match had been computed
3089 with swapped.
3090 But if I is the second of those and C is the first,
3091 don't exchange them, because operands_match is valid
3092 only on one side of its diagonal. */
3093 ? (operands_match
3094 [(m == commutative || m == commutative + 1)
3095 ? 2 * commutative + 1 - m : m]
3096 [(i == commutative || i == commutative + 1)
3097 ? 2 * commutative + 1 - i : i])
3098 : operands_match[m][i])
3100 /* If we are matching a non-offsettable address where an
3101 offsettable address was expected, then we must reject
3102 this combination, because we can't reload it. */
3103 if (this_alternative_offmemok[m]
3104 && MEM_P (recog_data.operand[m])
3105 && this_alternative[m] == (int) NO_REGS
3106 && ! this_alternative_win[m])
3107 bad = 1;
3109 did_match = this_alternative_win[m];
3111 else
3113 /* Operands don't match. */
3114 rtx value;
3115 int loc1, loc2;
3116 /* Retroactively mark the operand we had to match
3117 as a loser, if it wasn't already. */
3118 if (this_alternative_win[m])
3119 losers++;
3120 this_alternative_win[m] = 0;
3121 if (this_alternative[m] == (int) NO_REGS)
3122 bad = 1;
3123 /* But count the pair only once in the total badness of
3124 this alternative, if the pair can be a dummy reload.
3125 The pointers in operand_loc are not swapped; swap
3126 them by hand if necessary. */
3127 if (swapped && i == commutative)
3128 loc1 = commutative + 1;
3129 else if (swapped && i == commutative + 1)
3130 loc1 = commutative;
3131 else
3132 loc1 = i;
3133 if (swapped && m == commutative)
3134 loc2 = commutative + 1;
3135 else if (swapped && m == commutative + 1)
3136 loc2 = commutative;
3137 else
3138 loc2 = m;
3139 value
3140 = find_dummy_reload (recog_data.operand[i],
3141 recog_data.operand[m],
3142 recog_data.operand_loc[loc1],
3143 recog_data.operand_loc[loc2],
3144 operand_mode[i], operand_mode[m],
3145 this_alternative[m], -1,
3146 this_alternative_earlyclobber[m]);
3148 if (value != 0)
3149 losers--;
3151 /* This can be fixed with reloads if the operand
3152 we are supposed to match can be fixed with reloads. */
3153 badop = 0;
3154 this_alternative[i] = this_alternative[m];
3156 /* If we have to reload this operand and some previous
3157 operand also had to match the same thing as this
3158 operand, we don't know how to do that. So reject this
3159 alternative. */
3160 if (! did_match || force_reload)
3161 for (j = 0; j < i; j++)
3162 if (this_alternative_matches[j]
3163 == this_alternative_matches[i])
3164 badop = 1;
3165 break;
3167 case 'p':
3168 /* All necessary reloads for an address_operand
3169 were handled in find_reloads_address. */
3170 this_alternative[i]
3171 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3172 win = 1;
3173 badop = 0;
3174 break;
3176 case 'm':
3177 if (force_reload)
3178 break;
3179 if (MEM_P (operand)
3180 || (REG_P (operand)
3181 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3182 && reg_renumber[REGNO (operand)] < 0))
3183 win = 1;
3184 if (CONST_POOL_OK_P (operand))
3185 badop = 0;
3186 constmemok = 1;
3187 break;
3189 case '<':
3190 if (MEM_P (operand)
3191 && ! address_reloaded[i]
3192 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3193 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3194 win = 1;
3195 break;
3197 case '>':
3198 if (MEM_P (operand)
3199 && ! address_reloaded[i]
3200 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3201 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3202 win = 1;
3203 break;
3205 /* Memory operand whose address is not offsettable. */
3206 case 'V':
3207 if (force_reload)
3208 break;
3209 if (MEM_P (operand)
3210 && ! (ind_levels ? offsettable_memref_p (operand)
3211 : offsettable_nonstrict_memref_p (operand))
3212 /* Certain mem addresses will become offsettable
3213 after they themselves are reloaded. This is important;
3214 we don't want our own handling of unoffsettables
3215 to override the handling of reg_equiv_address. */
3216 && !(REG_P (XEXP (operand, 0))
3217 && (ind_levels == 0
3218 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3219 win = 1;
3220 break;
3222 /* Memory operand whose address is offsettable. */
3223 case 'o':
3224 if (force_reload)
3225 break;
3226 if ((MEM_P (operand)
3227 /* If IND_LEVELS, find_reloads_address won't reload a
3228 pseudo that didn't get a hard reg, so we have to
3229 reject that case. */
3230 && ((ind_levels ? offsettable_memref_p (operand)
3231 : offsettable_nonstrict_memref_p (operand))
3232 /* A reloaded address is offsettable because it is now
3233 just a simple register indirect. */
3234 || address_reloaded[i] == 1))
3235 || (REG_P (operand)
3236 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3237 && reg_renumber[REGNO (operand)] < 0
3238 /* If reg_equiv_address is nonzero, we will be
3239 loading it into a register; hence it will be
3240 offsettable, but we cannot say that reg_equiv_mem
3241 is offsettable without checking. */
3242 && ((reg_equiv_mem[REGNO (operand)] != 0
3243 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3244 || (reg_equiv_address[REGNO (operand)] != 0))))
3245 win = 1;
3246 if (CONST_POOL_OK_P (operand)
3247 || MEM_P (operand))
3248 badop = 0;
3249 constmemok = 1;
3250 offmemok = 1;
3251 break;
3253 case '&':
3254 /* Output operand that is stored before the need for the
3255 input operands (and their index registers) is over. */
3256 earlyclobber = 1, this_earlyclobber = 1;
3257 break;
3259 case 'E':
3260 case 'F':
3261 if (GET_CODE (operand) == CONST_DOUBLE
3262 || (GET_CODE (operand) == CONST_VECTOR
3263 && (GET_MODE_CLASS (GET_MODE (operand))
3264 == MODE_VECTOR_FLOAT)))
3265 win = 1;
3266 break;
3268 case 'G':
3269 case 'H':
3270 if (GET_CODE (operand) == CONST_DOUBLE
3271 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3272 win = 1;
3273 break;
3275 case 's':
3276 if (GET_CODE (operand) == CONST_INT
3277 || (GET_CODE (operand) == CONST_DOUBLE
3278 && GET_MODE (operand) == VOIDmode))
3279 break;
3280 case 'i':
3281 if (CONSTANT_P (operand)
3282 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3283 win = 1;
3284 break;
3286 case 'n':
3287 if (GET_CODE (operand) == CONST_INT
3288 || (GET_CODE (operand) == CONST_DOUBLE
3289 && GET_MODE (operand) == VOIDmode))
3290 win = 1;
3291 break;
3293 case 'I':
3294 case 'J':
3295 case 'K':
3296 case 'L':
3297 case 'M':
3298 case 'N':
3299 case 'O':
3300 case 'P':
3301 if (GET_CODE (operand) == CONST_INT
3302 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3303 win = 1;
3304 break;
3306 case 'X':
3307 force_reload = 0;
3308 win = 1;
3309 break;
3311 case 'g':
3312 if (! force_reload
3313 /* A PLUS is never a valid operand, but reload can make
3314 it from a register when eliminating registers. */
3315 && GET_CODE (operand) != PLUS
3316 /* A SCRATCH is not a valid operand. */
3317 && GET_CODE (operand) != SCRATCH
3318 && (! CONSTANT_P (operand)
3319 || ! flag_pic
3320 || LEGITIMATE_PIC_OPERAND_P (operand))
3321 && (GENERAL_REGS == ALL_REGS
3322 || !REG_P (operand)
3323 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3324 && reg_renumber[REGNO (operand)] < 0)))
3325 win = 1;
3326 /* Drop through into 'r' case. */
3328 case 'r':
3329 this_alternative[i]
3330 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3331 goto reg;
3333 default:
3334 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3336 #ifdef EXTRA_CONSTRAINT_STR
3337 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3339 if (force_reload)
3340 break;
3341 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3342 win = 1;
3343 /* If the address was already reloaded,
3344 we win as well. */
3345 else if (MEM_P (operand)
3346 && address_reloaded[i] == 1)
3347 win = 1;
3348 /* Likewise if the address will be reloaded because
3349 reg_equiv_address is nonzero. For reg_equiv_mem
3350 we have to check. */
3351 else if (REG_P (operand)
3352 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3353 && reg_renumber[REGNO (operand)] < 0
3354 && ((reg_equiv_mem[REGNO (operand)] != 0
3355 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3356 || (reg_equiv_address[REGNO (operand)] != 0)))
3357 win = 1;
3359 /* If we didn't already win, we can reload
3360 constants via force_const_mem, and other
3361 MEMs by reloading the address like for 'o'. */
3362 if (CONST_POOL_OK_P (operand)
3363 || MEM_P (operand))
3364 badop = 0;
3365 constmemok = 1;
3366 offmemok = 1;
3367 break;
3369 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3371 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3372 win = 1;
3374 /* If we didn't already win, we can reload
3375 the address into a base register. */
3376 this_alternative[i]
3377 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3378 badop = 0;
3379 break;
3382 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3383 win = 1;
3384 #endif
3385 break;
3388 this_alternative[i]
3389 = (int) (reg_class_subunion
3390 [this_alternative[i]]
3391 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3392 reg:
3393 if (GET_MODE (operand) == BLKmode)
3394 break;
3395 winreg = 1;
3396 if (REG_P (operand)
3397 && reg_fits_class_p (operand, this_alternative[i],
3398 offset, GET_MODE (recog_data.operand[i])))
3399 win = 1;
3400 break;
3402 while ((p += len), c);
3404 constraints[i] = p;
3406 /* If this operand could be handled with a reg,
3407 and some reg is allowed, then this operand can be handled. */
3408 if (winreg && this_alternative[i] != (int) NO_REGS)
3409 badop = 0;
3411 /* Record which operands fit this alternative. */
3412 this_alternative_earlyclobber[i] = earlyclobber;
3413 if (win && ! force_reload)
3414 this_alternative_win[i] = 1;
3415 else if (did_match && ! force_reload)
3416 this_alternative_match_win[i] = 1;
3417 else
3419 int const_to_mem = 0;
3421 this_alternative_offmemok[i] = offmemok;
3422 losers++;
3423 if (badop)
3424 bad = 1;
3425 /* Alternative loses if it has no regs for a reg operand. */
3426 if (REG_P (operand)
3427 && this_alternative[i] == (int) NO_REGS
3428 && this_alternative_matches[i] < 0)
3429 bad = 1;
3431 /* If this is a constant that is reloaded into the desired
3432 class by copying it to memory first, count that as another
3433 reload. This is consistent with other code and is
3434 required to avoid choosing another alternative when
3435 the constant is moved into memory by this function on
3436 an early reload pass. Note that the test here is
3437 precisely the same as in the code below that calls
3438 force_const_mem. */
3439 if (CONST_POOL_OK_P (operand)
3440 && ((PREFERRED_RELOAD_CLASS (operand,
3441 (enum reg_class) this_alternative[i])
3442 == NO_REGS)
3443 || no_input_reloads)
3444 && operand_mode[i] != VOIDmode)
3446 const_to_mem = 1;
3447 if (this_alternative[i] != (int) NO_REGS)
3448 losers++;
3451 /* Alternative loses if it requires a type of reload not
3452 permitted for this insn. We can always reload SCRATCH
3453 and objects with a REG_UNUSED note. */
3454 if (GET_CODE (operand) != SCRATCH
3455 && modified[i] != RELOAD_READ && no_output_reloads
3456 && ! find_reg_note (insn, REG_UNUSED, operand))
3457 bad = 1;
3458 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3459 && ! const_to_mem)
3460 bad = 1;
3462 /* If we can't reload this value at all, reject this
3463 alternative. Note that we could also lose due to
3464 LIMIT_RELOAD_CLASS, but we don't check that
3465 here. */
3467 if (! CONSTANT_P (operand)
3468 && (enum reg_class) this_alternative[i] != NO_REGS)
3470 if (PREFERRED_RELOAD_CLASS
3471 (operand, (enum reg_class) this_alternative[i])
3472 == NO_REGS)
3473 reject = 600;
3475 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3476 if (operand_type[i] == RELOAD_FOR_OUTPUT
3477 && PREFERRED_OUTPUT_RELOAD_CLASS
3478 (operand, (enum reg_class) this_alternative[i])
3479 == NO_REGS)
3480 reject = 600;
3481 #endif
3484 /* We prefer to reload pseudos over reloading other things,
3485 since such reloads may be able to be eliminated later.
3486 If we are reloading a SCRATCH, we won't be generating any
3487 insns, just using a register, so it is also preferred.
3488 So bump REJECT in other cases. Don't do this in the
3489 case where we are forcing a constant into memory and
3490 it will then win since we don't want to have a different
3491 alternative match then. */
3492 if (! (REG_P (operand)
3493 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3494 && GET_CODE (operand) != SCRATCH
3495 && ! (const_to_mem && constmemok))
3496 reject += 2;
3498 /* Input reloads can be inherited more often than output
3499 reloads can be removed, so penalize output reloads. */
3500 if (operand_type[i] != RELOAD_FOR_INPUT
3501 && GET_CODE (operand) != SCRATCH)
3502 reject++;
3505 /* If this operand is a pseudo register that didn't get a hard
3506 reg and this alternative accepts some register, see if the
3507 class that we want is a subset of the preferred class for this
3508 register. If not, but it intersects that class, use the
3509 preferred class instead. If it does not intersect the preferred
3510 class, show that usage of this alternative should be discouraged;
3511 it will be discouraged more still if the register is `preferred
3512 or nothing'. We do this because it increases the chance of
3513 reusing our spill register in a later insn and avoiding a pair
3514 of memory stores and loads.
3516 Don't bother with this if this alternative will accept this
3517 operand.
3519 Don't do this for a multiword operand, since it is only a
3520 small win and has the risk of requiring more spill registers,
3521 which could cause a large loss.
3523 Don't do this if the preferred class has only one register
3524 because we might otherwise exhaust the class. */
3526 if (! win && ! did_match
3527 && this_alternative[i] != (int) NO_REGS
3528 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3529 && reg_class_size [(int) preferred_class[i]] > 0
3530 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3532 if (! reg_class_subset_p (this_alternative[i],
3533 preferred_class[i]))
3535 /* Since we don't have a way of forming the intersection,
3536 we just do something special if the preferred class
3537 is a subset of the class we have; that's the most
3538 common case anyway. */
3539 if (reg_class_subset_p (preferred_class[i],
3540 this_alternative[i]))
3541 this_alternative[i] = (int) preferred_class[i];
3542 else
3543 reject += (2 + 2 * pref_or_nothing[i]);
3548 /* Now see if any output operands that are marked "earlyclobber"
3549 in this alternative conflict with any input operands
3550 or any memory addresses. */
3552 for (i = 0; i < noperands; i++)
3553 if (this_alternative_earlyclobber[i]
3554 && (this_alternative_win[i] || this_alternative_match_win[i]))
3556 struct decomposition early_data;
3558 early_data = decompose (recog_data.operand[i]);
3560 gcc_assert (modified[i] != RELOAD_READ);
3562 if (this_alternative[i] == NO_REGS)
3564 this_alternative_earlyclobber[i] = 0;
3565 gcc_assert (this_insn_is_asm);
3566 error_for_asm (this_insn,
3567 "%<&%> constraint used with no register class");
3570 for (j = 0; j < noperands; j++)
3571 /* Is this an input operand or a memory ref? */
3572 if ((MEM_P (recog_data.operand[j])
3573 || modified[j] != RELOAD_WRITE)
3574 && j != i
3575 /* Ignore things like match_operator operands. */
3576 && *recog_data.constraints[j] != 0
3577 /* Don't count an input operand that is constrained to match
3578 the early clobber operand. */
3579 && ! (this_alternative_matches[j] == i
3580 && rtx_equal_p (recog_data.operand[i],
3581 recog_data.operand[j]))
3582 /* Is it altered by storing the earlyclobber operand? */
3583 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3584 early_data))
3586 /* If the output is in a non-empty few-regs class,
3587 it's costly to reload it, so reload the input instead. */
3588 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3589 && (REG_P (recog_data.operand[j])
3590 || GET_CODE (recog_data.operand[j]) == SUBREG))
3592 losers++;
3593 this_alternative_win[j] = 0;
3594 this_alternative_match_win[j] = 0;
3596 else
3597 break;
3599 /* If an earlyclobber operand conflicts with something,
3600 it must be reloaded, so request this and count the cost. */
3601 if (j != noperands)
3603 losers++;
3604 this_alternative_win[i] = 0;
3605 this_alternative_match_win[j] = 0;
3606 for (j = 0; j < noperands; j++)
3607 if (this_alternative_matches[j] == i
3608 && this_alternative_match_win[j])
3610 this_alternative_win[j] = 0;
3611 this_alternative_match_win[j] = 0;
3612 losers++;
3617 /* If one alternative accepts all the operands, no reload required,
3618 choose that alternative; don't consider the remaining ones. */
3619 if (losers == 0)
3621 /* Unswap these so that they are never swapped at `finish'. */
3622 if (commutative >= 0)
3624 recog_data.operand[commutative] = substed_operand[commutative];
3625 recog_data.operand[commutative + 1]
3626 = substed_operand[commutative + 1];
3628 for (i = 0; i < noperands; i++)
3630 goal_alternative_win[i] = this_alternative_win[i];
3631 goal_alternative_match_win[i] = this_alternative_match_win[i];
3632 goal_alternative[i] = this_alternative[i];
3633 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3634 goal_alternative_matches[i] = this_alternative_matches[i];
3635 goal_alternative_earlyclobber[i]
3636 = this_alternative_earlyclobber[i];
3638 goal_alternative_number = this_alternative_number;
3639 goal_alternative_swapped = swapped;
3640 goal_earlyclobber = this_earlyclobber;
3641 goto finish;
3644 /* REJECT, set by the ! and ? constraint characters and when a register
3645 would be reloaded into a non-preferred class, discourages the use of
3646 this alternative for a reload goal. REJECT is incremented by six
3647 for each ? and two for each non-preferred class. */
3648 losers = losers * 6 + reject;
3650 /* If this alternative can be made to work by reloading,
3651 and it needs less reloading than the others checked so far,
3652 record it as the chosen goal for reloading. */
3653 if (! bad && best > losers)
3655 for (i = 0; i < noperands; i++)
3657 goal_alternative[i] = this_alternative[i];
3658 goal_alternative_win[i] = this_alternative_win[i];
3659 goal_alternative_match_win[i] = this_alternative_match_win[i];
3660 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3661 goal_alternative_matches[i] = this_alternative_matches[i];
3662 goal_alternative_earlyclobber[i]
3663 = this_alternative_earlyclobber[i];
3665 goal_alternative_swapped = swapped;
3666 best = losers;
3667 goal_alternative_number = this_alternative_number;
3668 goal_earlyclobber = this_earlyclobber;
3672 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3673 then we need to try each alternative twice,
3674 the second time matching those two operands
3675 as if we had exchanged them.
3676 To do this, really exchange them in operands.
3678 If we have just tried the alternatives the second time,
3679 return operands to normal and drop through. */
3681 if (commutative >= 0)
3683 swapped = !swapped;
3684 if (swapped)
3686 enum reg_class tclass;
3687 int t;
3689 recog_data.operand[commutative] = substed_operand[commutative + 1];
3690 recog_data.operand[commutative + 1] = substed_operand[commutative];
3691 /* Swap the duplicates too. */
3692 for (i = 0; i < recog_data.n_dups; i++)
3693 if (recog_data.dup_num[i] == commutative
3694 || recog_data.dup_num[i] == commutative + 1)
3695 *recog_data.dup_loc[i]
3696 = recog_data.operand[(int) recog_data.dup_num[i]];
3698 tclass = preferred_class[commutative];
3699 preferred_class[commutative] = preferred_class[commutative + 1];
3700 preferred_class[commutative + 1] = tclass;
3702 t = pref_or_nothing[commutative];
3703 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3704 pref_or_nothing[commutative + 1] = t;
3706 t = address_reloaded[commutative];
3707 address_reloaded[commutative] = address_reloaded[commutative + 1];
3708 address_reloaded[commutative + 1] = t;
3710 memcpy (constraints, recog_data.constraints,
3711 noperands * sizeof (char *));
3712 goto try_swapped;
3714 else
3716 recog_data.operand[commutative] = substed_operand[commutative];
3717 recog_data.operand[commutative + 1]
3718 = substed_operand[commutative + 1];
3719 /* Unswap the duplicates too. */
3720 for (i = 0; i < recog_data.n_dups; i++)
3721 if (recog_data.dup_num[i] == commutative
3722 || recog_data.dup_num[i] == commutative + 1)
3723 *recog_data.dup_loc[i]
3724 = recog_data.operand[(int) recog_data.dup_num[i]];
3728 /* The operands don't meet the constraints.
3729 goal_alternative describes the alternative
3730 that we could reach by reloading the fewest operands.
3731 Reload so as to fit it. */
3733 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3735 /* No alternative works with reloads?? */
3736 if (insn_code_number >= 0)
3737 fatal_insn ("unable to generate reloads for:", insn);
3738 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3739 /* Avoid further trouble with this insn. */
3740 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3741 n_reloads = 0;
3742 return 0;
3745 /* Jump to `finish' from above if all operands are valid already.
3746 In that case, goal_alternative_win is all 1. */
3747 finish:
3749 /* Right now, for any pair of operands I and J that are required to match,
3750 with I < J,
3751 goal_alternative_matches[J] is I.
3752 Set up goal_alternative_matched as the inverse function:
3753 goal_alternative_matched[I] = J. */
3755 for (i = 0; i < noperands; i++)
3756 goal_alternative_matched[i] = -1;
3758 for (i = 0; i < noperands; i++)
3759 if (! goal_alternative_win[i]
3760 && goal_alternative_matches[i] >= 0)
3761 goal_alternative_matched[goal_alternative_matches[i]] = i;
3763 for (i = 0; i < noperands; i++)
3764 goal_alternative_win[i] |= goal_alternative_match_win[i];
3766 /* If the best alternative is with operands 1 and 2 swapped,
3767 consider them swapped before reporting the reloads. Update the
3768 operand numbers of any reloads already pushed. */
3770 if (goal_alternative_swapped)
3772 rtx tem;
3774 tem = substed_operand[commutative];
3775 substed_operand[commutative] = substed_operand[commutative + 1];
3776 substed_operand[commutative + 1] = tem;
3777 tem = recog_data.operand[commutative];
3778 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3779 recog_data.operand[commutative + 1] = tem;
3780 tem = *recog_data.operand_loc[commutative];
3781 *recog_data.operand_loc[commutative]
3782 = *recog_data.operand_loc[commutative + 1];
3783 *recog_data.operand_loc[commutative + 1] = tem;
3785 for (i = 0; i < n_reloads; i++)
3787 if (rld[i].opnum == commutative)
3788 rld[i].opnum = commutative + 1;
3789 else if (rld[i].opnum == commutative + 1)
3790 rld[i].opnum = commutative;
3794 for (i = 0; i < noperands; i++)
3796 operand_reloadnum[i] = -1;
3798 /* If this is an earlyclobber operand, we need to widen the scope.
3799 The reload must remain valid from the start of the insn being
3800 reloaded until after the operand is stored into its destination.
3801 We approximate this with RELOAD_OTHER even though we know that we
3802 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3804 One special case that is worth checking is when we have an
3805 output that is earlyclobber but isn't used past the insn (typically
3806 a SCRATCH). In this case, we only need have the reload live
3807 through the insn itself, but not for any of our input or output
3808 reloads.
3809 But we must not accidentally narrow the scope of an existing
3810 RELOAD_OTHER reload - leave these alone.
3812 In any case, anything needed to address this operand can remain
3813 however they were previously categorized. */
3815 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3816 operand_type[i]
3817 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3818 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3821 /* Any constants that aren't allowed and can't be reloaded
3822 into registers are here changed into memory references. */
3823 for (i = 0; i < noperands; i++)
3824 if (! goal_alternative_win[i]
3825 && CONST_POOL_OK_P (recog_data.operand[i])
3826 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3827 (enum reg_class) goal_alternative[i])
3828 == NO_REGS)
3829 || no_input_reloads)
3830 && operand_mode[i] != VOIDmode)
3832 substed_operand[i] = recog_data.operand[i]
3833 = find_reloads_toplev (force_const_mem (operand_mode[i],
3834 recog_data.operand[i]),
3835 i, address_type[i], ind_levels, 0, insn,
3836 NULL);
3837 if (alternative_allows_memconst (recog_data.constraints[i],
3838 goal_alternative_number))
3839 goal_alternative_win[i] = 1;
3842 /* Likewise any invalid constants appearing as operand of a PLUS
3843 that is to be reloaded. */
3844 for (i = 0; i < noperands; i++)
3845 if (! goal_alternative_win[i]
3846 && GET_CODE (recog_data.operand[i]) == PLUS
3847 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3848 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3849 (enum reg_class) goal_alternative[i])
3850 == NO_REGS)
3851 && operand_mode[i] != VOIDmode)
3853 rtx tem = force_const_mem (operand_mode[i],
3854 XEXP (recog_data.operand[i], 1));
3855 tem = gen_rtx_PLUS (operand_mode[i],
3856 XEXP (recog_data.operand[i], 0), tem);
3858 substed_operand[i] = recog_data.operand[i]
3859 = find_reloads_toplev (tem, i, address_type[i],
3860 ind_levels, 0, insn, NULL);
3863 /* Record the values of the earlyclobber operands for the caller. */
3864 if (goal_earlyclobber)
3865 for (i = 0; i < noperands; i++)
3866 if (goal_alternative_earlyclobber[i])
3867 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3869 /* Now record reloads for all the operands that need them. */
3870 for (i = 0; i < noperands; i++)
3871 if (! goal_alternative_win[i])
3873 /* Operands that match previous ones have already been handled. */
3874 if (goal_alternative_matches[i] >= 0)
3876 /* Handle an operand with a nonoffsettable address
3877 appearing where an offsettable address will do
3878 by reloading the address into a base register.
3880 ??? We can also do this when the operand is a register and
3881 reg_equiv_mem is not offsettable, but this is a bit tricky,
3882 so we don't bother with it. It may not be worth doing. */
3883 else if (goal_alternative_matched[i] == -1
3884 && goal_alternative_offmemok[i]
3885 && MEM_P (recog_data.operand[i]))
3887 /* If the address to be reloaded is a VOIDmode constant,
3888 use Pmode as mode of the reload register, as would have
3889 been done by find_reloads_address. */
3890 enum machine_mode address_mode;
3891 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3892 if (address_mode == VOIDmode)
3893 address_mode = Pmode;
3895 operand_reloadnum[i]
3896 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3897 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3898 base_reg_class (VOIDmode, MEM, SCRATCH),
3899 address_mode,
3900 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3901 rld[operand_reloadnum[i]].inc
3902 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3904 /* If this operand is an output, we will have made any
3905 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3906 now we are treating part of the operand as an input, so
3907 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3909 if (modified[i] == RELOAD_WRITE)
3911 for (j = 0; j < n_reloads; j++)
3913 if (rld[j].opnum == i)
3915 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3916 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3917 else if (rld[j].when_needed
3918 == RELOAD_FOR_OUTADDR_ADDRESS)
3919 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3924 else if (goal_alternative_matched[i] == -1)
3926 operand_reloadnum[i]
3927 = push_reload ((modified[i] != RELOAD_WRITE
3928 ? recog_data.operand[i] : 0),
3929 (modified[i] != RELOAD_READ
3930 ? recog_data.operand[i] : 0),
3931 (modified[i] != RELOAD_WRITE
3932 ? recog_data.operand_loc[i] : 0),
3933 (modified[i] != RELOAD_READ
3934 ? recog_data.operand_loc[i] : 0),
3935 (enum reg_class) goal_alternative[i],
3936 (modified[i] == RELOAD_WRITE
3937 ? VOIDmode : operand_mode[i]),
3938 (modified[i] == RELOAD_READ
3939 ? VOIDmode : operand_mode[i]),
3940 (insn_code_number < 0 ? 0
3941 : insn_data[insn_code_number].operand[i].strict_low),
3942 0, i, operand_type[i]);
3944 /* In a matching pair of operands, one must be input only
3945 and the other must be output only.
3946 Pass the input operand as IN and the other as OUT. */
3947 else if (modified[i] == RELOAD_READ
3948 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3950 operand_reloadnum[i]
3951 = push_reload (recog_data.operand[i],
3952 recog_data.operand[goal_alternative_matched[i]],
3953 recog_data.operand_loc[i],
3954 recog_data.operand_loc[goal_alternative_matched[i]],
3955 (enum reg_class) goal_alternative[i],
3956 operand_mode[i],
3957 operand_mode[goal_alternative_matched[i]],
3958 0, 0, i, RELOAD_OTHER);
3959 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3961 else if (modified[i] == RELOAD_WRITE
3962 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3964 operand_reloadnum[goal_alternative_matched[i]]
3965 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3966 recog_data.operand[i],
3967 recog_data.operand_loc[goal_alternative_matched[i]],
3968 recog_data.operand_loc[i],
3969 (enum reg_class) goal_alternative[i],
3970 operand_mode[goal_alternative_matched[i]],
3971 operand_mode[i],
3972 0, 0, i, RELOAD_OTHER);
3973 operand_reloadnum[i] = output_reloadnum;
3975 else
3977 gcc_assert (insn_code_number < 0);
3978 error_for_asm (insn, "inconsistent operand constraints "
3979 "in an %<asm%>");
3980 /* Avoid further trouble with this insn. */
3981 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3982 n_reloads = 0;
3983 return 0;
3986 else if (goal_alternative_matched[i] < 0
3987 && goal_alternative_matches[i] < 0
3988 && address_operand_reloaded[i] != 1
3989 && optimize)
3991 /* For each non-matching operand that's a MEM or a pseudo-register
3992 that didn't get a hard register, make an optional reload.
3993 This may get done even if the insn needs no reloads otherwise. */
3995 rtx operand = recog_data.operand[i];
3997 while (GET_CODE (operand) == SUBREG)
3998 operand = SUBREG_REG (operand);
3999 if ((MEM_P (operand)
4000 || (REG_P (operand)
4001 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4002 /* If this is only for an output, the optional reload would not
4003 actually cause us to use a register now, just note that
4004 something is stored here. */
4005 && ((enum reg_class) goal_alternative[i] != NO_REGS
4006 || modified[i] == RELOAD_WRITE)
4007 && ! no_input_reloads
4008 /* An optional output reload might allow to delete INSN later.
4009 We mustn't make in-out reloads on insns that are not permitted
4010 output reloads.
4011 If this is an asm, we can't delete it; we must not even call
4012 push_reload for an optional output reload in this case,
4013 because we can't be sure that the constraint allows a register,
4014 and push_reload verifies the constraints for asms. */
4015 && (modified[i] == RELOAD_READ
4016 || (! no_output_reloads && ! this_insn_is_asm)))
4017 operand_reloadnum[i]
4018 = push_reload ((modified[i] != RELOAD_WRITE
4019 ? recog_data.operand[i] : 0),
4020 (modified[i] != RELOAD_READ
4021 ? recog_data.operand[i] : 0),
4022 (modified[i] != RELOAD_WRITE
4023 ? recog_data.operand_loc[i] : 0),
4024 (modified[i] != RELOAD_READ
4025 ? recog_data.operand_loc[i] : 0),
4026 (enum reg_class) goal_alternative[i],
4027 (modified[i] == RELOAD_WRITE
4028 ? VOIDmode : operand_mode[i]),
4029 (modified[i] == RELOAD_READ
4030 ? VOIDmode : operand_mode[i]),
4031 (insn_code_number < 0 ? 0
4032 : insn_data[insn_code_number].operand[i].strict_low),
4033 1, i, operand_type[i]);
4034 /* If a memory reference remains (either as a MEM or a pseudo that
4035 did not get a hard register), yet we can't make an optional
4036 reload, check if this is actually a pseudo register reference;
4037 we then need to emit a USE and/or a CLOBBER so that reload
4038 inheritance will do the right thing. */
4039 else if (replace
4040 && (MEM_P (operand)
4041 || (REG_P (operand)
4042 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4043 && reg_renumber [REGNO (operand)] < 0)))
4045 operand = *recog_data.operand_loc[i];
4047 while (GET_CODE (operand) == SUBREG)
4048 operand = SUBREG_REG (operand);
4049 if (REG_P (operand))
4051 if (modified[i] != RELOAD_WRITE)
4052 /* We mark the USE with QImode so that we recognize
4053 it as one that can be safely deleted at the end
4054 of reload. */
4055 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4056 insn), QImode);
4057 if (modified[i] != RELOAD_READ)
4058 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4062 else if (goal_alternative_matches[i] >= 0
4063 && goal_alternative_win[goal_alternative_matches[i]]
4064 && modified[i] == RELOAD_READ
4065 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4066 && ! no_input_reloads && ! no_output_reloads
4067 && optimize)
4069 /* Similarly, make an optional reload for a pair of matching
4070 objects that are in MEM or a pseudo that didn't get a hard reg. */
4072 rtx operand = recog_data.operand[i];
4074 while (GET_CODE (operand) == SUBREG)
4075 operand = SUBREG_REG (operand);
4076 if ((MEM_P (operand)
4077 || (REG_P (operand)
4078 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4079 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4080 != NO_REGS))
4081 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4082 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4083 recog_data.operand[i],
4084 recog_data.operand_loc[goal_alternative_matches[i]],
4085 recog_data.operand_loc[i],
4086 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4087 operand_mode[goal_alternative_matches[i]],
4088 operand_mode[i],
4089 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4092 /* Perform whatever substitutions on the operands we are supposed
4093 to make due to commutativity or replacement of registers
4094 with equivalent constants or memory slots. */
4096 for (i = 0; i < noperands; i++)
4098 /* We only do this on the last pass through reload, because it is
4099 possible for some data (like reg_equiv_address) to be changed during
4100 later passes. Moreover, we lose the opportunity to get a useful
4101 reload_{in,out}_reg when we do these replacements. */
4103 if (replace)
4105 rtx substitution = substed_operand[i];
4107 *recog_data.operand_loc[i] = substitution;
4109 /* If we're replacing an operand with a LABEL_REF, we need
4110 to make sure that there's a REG_LABEL note attached to
4111 this instruction. */
4112 if (!JUMP_P (insn)
4113 && GET_CODE (substitution) == LABEL_REF
4114 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4115 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4116 XEXP (substitution, 0),
4117 REG_NOTES (insn));
4119 else
4120 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4123 /* If this insn pattern contains any MATCH_DUP's, make sure that
4124 they will be substituted if the operands they match are substituted.
4125 Also do now any substitutions we already did on the operands.
4127 Don't do this if we aren't making replacements because we might be
4128 propagating things allocated by frame pointer elimination into places
4129 it doesn't expect. */
4131 if (insn_code_number >= 0 && replace)
4132 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4134 int opno = recog_data.dup_num[i];
4135 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4136 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4139 #if 0
4140 /* This loses because reloading of prior insns can invalidate the equivalence
4141 (or at least find_equiv_reg isn't smart enough to find it any more),
4142 causing this insn to need more reload regs than it needed before.
4143 It may be too late to make the reload regs available.
4144 Now this optimization is done safely in choose_reload_regs. */
4146 /* For each reload of a reg into some other class of reg,
4147 search for an existing equivalent reg (same value now) in the right class.
4148 We can use it as long as we don't need to change its contents. */
4149 for (i = 0; i < n_reloads; i++)
4150 if (rld[i].reg_rtx == 0
4151 && rld[i].in != 0
4152 && REG_P (rld[i].in)
4153 && rld[i].out == 0)
4155 rld[i].reg_rtx
4156 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4157 static_reload_reg_p, 0, rld[i].inmode);
4158 /* Prevent generation of insn to load the value
4159 because the one we found already has the value. */
4160 if (rld[i].reg_rtx)
4161 rld[i].in = rld[i].reg_rtx;
4163 #endif
4165 /* If we detected error and replaced asm instruction by USE, forget about the
4166 reloads. */
4167 if (GET_CODE (PATTERN (insn)) == USE
4168 && GET_CODE (XEXP (PATTERN (insn), 0)) == CONST_INT)
4169 n_reloads = 0;
4171 /* Perhaps an output reload can be combined with another
4172 to reduce needs by one. */
4173 if (!goal_earlyclobber)
4174 combine_reloads ();
4176 /* If we have a pair of reloads for parts of an address, they are reloading
4177 the same object, the operands themselves were not reloaded, and they
4178 are for two operands that are supposed to match, merge the reloads and
4179 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4181 for (i = 0; i < n_reloads; i++)
4183 int k;
4185 for (j = i + 1; j < n_reloads; j++)
4186 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4187 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4188 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4189 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4190 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4191 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4192 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4193 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4194 && rtx_equal_p (rld[i].in, rld[j].in)
4195 && (operand_reloadnum[rld[i].opnum] < 0
4196 || rld[operand_reloadnum[rld[i].opnum]].optional)
4197 && (operand_reloadnum[rld[j].opnum] < 0
4198 || rld[operand_reloadnum[rld[j].opnum]].optional)
4199 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4200 || (goal_alternative_matches[rld[j].opnum]
4201 == rld[i].opnum)))
4203 for (k = 0; k < n_replacements; k++)
4204 if (replacements[k].what == j)
4205 replacements[k].what = i;
4207 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4208 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4209 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4210 else
4211 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4212 rld[j].in = 0;
4216 /* Scan all the reloads and update their type.
4217 If a reload is for the address of an operand and we didn't reload
4218 that operand, change the type. Similarly, change the operand number
4219 of a reload when two operands match. If a reload is optional, treat it
4220 as though the operand isn't reloaded.
4222 ??? This latter case is somewhat odd because if we do the optional
4223 reload, it means the object is hanging around. Thus we need only
4224 do the address reload if the optional reload was NOT done.
4226 Change secondary reloads to be the address type of their operand, not
4227 the normal type.
4229 If an operand's reload is now RELOAD_OTHER, change any
4230 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4231 RELOAD_FOR_OTHER_ADDRESS. */
4233 for (i = 0; i < n_reloads; i++)
4235 if (rld[i].secondary_p
4236 && rld[i].when_needed == operand_type[rld[i].opnum])
4237 rld[i].when_needed = address_type[rld[i].opnum];
4239 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4240 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4241 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4242 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4243 && (operand_reloadnum[rld[i].opnum] < 0
4244 || rld[operand_reloadnum[rld[i].opnum]].optional))
4246 /* If we have a secondary reload to go along with this reload,
4247 change its type to RELOAD_FOR_OPADDR_ADDR. */
4249 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4250 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4251 && rld[i].secondary_in_reload != -1)
4253 int secondary_in_reload = rld[i].secondary_in_reload;
4255 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4257 /* If there's a tertiary reload we have to change it also. */
4258 if (secondary_in_reload > 0
4259 && rld[secondary_in_reload].secondary_in_reload != -1)
4260 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4261 = RELOAD_FOR_OPADDR_ADDR;
4264 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4265 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4266 && rld[i].secondary_out_reload != -1)
4268 int secondary_out_reload = rld[i].secondary_out_reload;
4270 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4272 /* If there's a tertiary reload we have to change it also. */
4273 if (secondary_out_reload
4274 && rld[secondary_out_reload].secondary_out_reload != -1)
4275 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4276 = RELOAD_FOR_OPADDR_ADDR;
4279 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4280 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4281 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4282 else
4283 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4286 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4287 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4288 && operand_reloadnum[rld[i].opnum] >= 0
4289 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4290 == RELOAD_OTHER))
4291 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4293 if (goal_alternative_matches[rld[i].opnum] >= 0)
4294 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4297 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4298 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4299 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4301 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4302 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4303 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4304 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4305 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4306 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4307 This is complicated by the fact that a single operand can have more
4308 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4309 choose_reload_regs without affecting code quality, and cases that
4310 actually fail are extremely rare, so it turns out to be better to fix
4311 the problem here by not generating cases that choose_reload_regs will
4312 fail for. */
4313 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4314 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4315 a single operand.
4316 We can reduce the register pressure by exploiting that a
4317 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4318 does not conflict with any of them, if it is only used for the first of
4319 the RELOAD_FOR_X_ADDRESS reloads. */
4321 int first_op_addr_num = -2;
4322 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4323 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4324 int need_change = 0;
4325 /* We use last_op_addr_reload and the contents of the above arrays
4326 first as flags - -2 means no instance encountered, -1 means exactly
4327 one instance encountered.
4328 If more than one instance has been encountered, we store the reload
4329 number of the first reload of the kind in question; reload numbers
4330 are known to be non-negative. */
4331 for (i = 0; i < noperands; i++)
4332 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4333 for (i = n_reloads - 1; i >= 0; i--)
4335 switch (rld[i].when_needed)
4337 case RELOAD_FOR_OPERAND_ADDRESS:
4338 if (++first_op_addr_num >= 0)
4340 first_op_addr_num = i;
4341 need_change = 1;
4343 break;
4344 case RELOAD_FOR_INPUT_ADDRESS:
4345 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4347 first_inpaddr_num[rld[i].opnum] = i;
4348 need_change = 1;
4350 break;
4351 case RELOAD_FOR_OUTPUT_ADDRESS:
4352 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4354 first_outpaddr_num[rld[i].opnum] = i;
4355 need_change = 1;
4357 break;
4358 default:
4359 break;
4363 if (need_change)
4365 for (i = 0; i < n_reloads; i++)
4367 int first_num;
4368 enum reload_type type;
4370 switch (rld[i].when_needed)
4372 case RELOAD_FOR_OPADDR_ADDR:
4373 first_num = first_op_addr_num;
4374 type = RELOAD_FOR_OPERAND_ADDRESS;
4375 break;
4376 case RELOAD_FOR_INPADDR_ADDRESS:
4377 first_num = first_inpaddr_num[rld[i].opnum];
4378 type = RELOAD_FOR_INPUT_ADDRESS;
4379 break;
4380 case RELOAD_FOR_OUTADDR_ADDRESS:
4381 first_num = first_outpaddr_num[rld[i].opnum];
4382 type = RELOAD_FOR_OUTPUT_ADDRESS;
4383 break;
4384 default:
4385 continue;
4387 if (first_num < 0)
4388 continue;
4389 else if (i > first_num)
4390 rld[i].when_needed = type;
4391 else
4393 /* Check if the only TYPE reload that uses reload I is
4394 reload FIRST_NUM. */
4395 for (j = n_reloads - 1; j > first_num; j--)
4397 if (rld[j].when_needed == type
4398 && (rld[i].secondary_p
4399 ? rld[j].secondary_in_reload == i
4400 : reg_mentioned_p (rld[i].in, rld[j].in)))
4402 rld[i].when_needed = type;
4403 break;
4411 /* See if we have any reloads that are now allowed to be merged
4412 because we've changed when the reload is needed to
4413 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4414 check for the most common cases. */
4416 for (i = 0; i < n_reloads; i++)
4417 if (rld[i].in != 0 && rld[i].out == 0
4418 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4419 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4420 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4421 for (j = 0; j < n_reloads; j++)
4422 if (i != j && rld[j].in != 0 && rld[j].out == 0
4423 && rld[j].when_needed == rld[i].when_needed
4424 && MATCHES (rld[i].in, rld[j].in)
4425 && rld[i].class == rld[j].class
4426 && !rld[i].nocombine && !rld[j].nocombine
4427 && rld[i].reg_rtx == rld[j].reg_rtx)
4429 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4430 transfer_replacements (i, j);
4431 rld[j].in = 0;
4434 #ifdef HAVE_cc0
4435 /* If we made any reloads for addresses, see if they violate a
4436 "no input reloads" requirement for this insn. But loads that we
4437 do after the insn (such as for output addresses) are fine. */
4438 if (no_input_reloads)
4439 for (i = 0; i < n_reloads; i++)
4440 gcc_assert (rld[i].in == 0
4441 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4442 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4443 #endif
4445 /* Compute reload_mode and reload_nregs. */
4446 for (i = 0; i < n_reloads; i++)
4448 rld[i].mode
4449 = (rld[i].inmode == VOIDmode
4450 || (GET_MODE_SIZE (rld[i].outmode)
4451 > GET_MODE_SIZE (rld[i].inmode)))
4452 ? rld[i].outmode : rld[i].inmode;
4454 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4457 /* Special case a simple move with an input reload and a
4458 destination of a hard reg, if the hard reg is ok, use it. */
4459 for (i = 0; i < n_reloads; i++)
4460 if (rld[i].when_needed == RELOAD_FOR_INPUT
4461 && GET_CODE (PATTERN (insn)) == SET
4462 && REG_P (SET_DEST (PATTERN (insn)))
4463 && SET_SRC (PATTERN (insn)) == rld[i].in)
4465 rtx dest = SET_DEST (PATTERN (insn));
4466 unsigned int regno = REGNO (dest);
4468 if (regno < FIRST_PSEUDO_REGISTER
4469 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4470 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4472 int nr = hard_regno_nregs[regno][rld[i].mode];
4473 int ok = 1, nri;
4475 for (nri = 1; nri < nr; nri ++)
4476 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4477 ok = 0;
4479 if (ok)
4480 rld[i].reg_rtx = dest;
4484 return retval;
4487 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4488 accepts a memory operand with constant address. */
4490 static int
4491 alternative_allows_memconst (const char *constraint, int altnum)
4493 int c;
4494 /* Skip alternatives before the one requested. */
4495 while (altnum > 0)
4497 while (*constraint++ != ',');
4498 altnum--;
4500 /* Scan the requested alternative for 'm' or 'o'.
4501 If one of them is present, this alternative accepts memory constants. */
4502 for (; (c = *constraint) && c != ',' && c != '#';
4503 constraint += CONSTRAINT_LEN (c, constraint))
4504 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4505 return 1;
4506 return 0;
4509 /* Scan X for memory references and scan the addresses for reloading.
4510 Also checks for references to "constant" regs that we want to eliminate
4511 and replaces them with the values they stand for.
4512 We may alter X destructively if it contains a reference to such.
4513 If X is just a constant reg, we return the equivalent value
4514 instead of X.
4516 IND_LEVELS says how many levels of indirect addressing this machine
4517 supports.
4519 OPNUM and TYPE identify the purpose of the reload.
4521 IS_SET_DEST is true if X is the destination of a SET, which is not
4522 appropriate to be replaced by a constant.
4524 INSN, if nonzero, is the insn in which we do the reload. It is used
4525 to determine if we may generate output reloads, and where to put USEs
4526 for pseudos that we have to replace with stack slots.
4528 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4529 result of find_reloads_address. */
4531 static rtx
4532 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4533 int ind_levels, int is_set_dest, rtx insn,
4534 int *address_reloaded)
4536 RTX_CODE code = GET_CODE (x);
4538 const char *fmt = GET_RTX_FORMAT (code);
4539 int i;
4540 int copied;
4542 if (code == REG)
4544 /* This code is duplicated for speed in find_reloads. */
4545 int regno = REGNO (x);
4546 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4547 x = reg_equiv_constant[regno];
4548 #if 0
4549 /* This creates (subreg (mem...)) which would cause an unnecessary
4550 reload of the mem. */
4551 else if (reg_equiv_mem[regno] != 0)
4552 x = reg_equiv_mem[regno];
4553 #endif
4554 else if (reg_equiv_memory_loc[regno]
4555 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4557 rtx mem = make_memloc (x, regno);
4558 if (reg_equiv_address[regno]
4559 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4561 /* If this is not a toplevel operand, find_reloads doesn't see
4562 this substitution. We have to emit a USE of the pseudo so
4563 that delete_output_reload can see it. */
4564 if (replace_reloads && recog_data.operand[opnum] != x)
4565 /* We mark the USE with QImode so that we recognize it
4566 as one that can be safely deleted at the end of
4567 reload. */
4568 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4569 QImode);
4570 x = mem;
4571 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4572 opnum, type, ind_levels, insn);
4573 if (x != mem)
4574 push_reg_equiv_alt_mem (regno, x);
4575 if (address_reloaded)
4576 *address_reloaded = i;
4579 return x;
4581 if (code == MEM)
4583 rtx tem = x;
4585 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4586 opnum, type, ind_levels, insn);
4587 if (address_reloaded)
4588 *address_reloaded = i;
4590 return tem;
4593 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4595 /* Check for SUBREG containing a REG that's equivalent to a
4596 constant. If the constant has a known value, truncate it
4597 right now. Similarly if we are extracting a single-word of a
4598 multi-word constant. If the constant is symbolic, allow it
4599 to be substituted normally. push_reload will strip the
4600 subreg later. The constant must not be VOIDmode, because we
4601 will lose the mode of the register (this should never happen
4602 because one of the cases above should handle it). */
4604 int regno = REGNO (SUBREG_REG (x));
4605 rtx tem;
4607 if (subreg_lowpart_p (x)
4608 && regno >= FIRST_PSEUDO_REGISTER
4609 && reg_renumber[regno] < 0
4610 && reg_equiv_constant[regno] != 0
4611 && (tem = gen_lowpart_common (GET_MODE (x),
4612 reg_equiv_constant[regno])) != 0)
4613 return tem;
4615 if (regno >= FIRST_PSEUDO_REGISTER
4616 && reg_renumber[regno] < 0
4617 && reg_equiv_constant[regno] != 0)
4619 tem =
4620 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4621 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4622 gcc_assert (tem);
4623 return tem;
4626 /* If the subreg contains a reg that will be converted to a mem,
4627 convert the subreg to a narrower memref now.
4628 Otherwise, we would get (subreg (mem ...) ...),
4629 which would force reload of the mem.
4631 We also need to do this if there is an equivalent MEM that is
4632 not offsettable. In that case, alter_subreg would produce an
4633 invalid address on big-endian machines.
4635 For machines that extend byte loads, we must not reload using
4636 a wider mode if we have a paradoxical SUBREG. find_reloads will
4637 force a reload in that case. So we should not do anything here. */
4639 if (regno >= FIRST_PSEUDO_REGISTER
4640 #ifdef LOAD_EXTEND_OP
4641 && (GET_MODE_SIZE (GET_MODE (x))
4642 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4643 #endif
4644 && (reg_equiv_address[regno] != 0
4645 || (reg_equiv_mem[regno] != 0
4646 && (! strict_memory_address_p (GET_MODE (x),
4647 XEXP (reg_equiv_mem[regno], 0))
4648 || ! offsettable_memref_p (reg_equiv_mem[regno])
4649 || num_not_at_initial_offset))))
4650 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4651 insn);
4654 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4656 if (fmt[i] == 'e')
4658 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4659 ind_levels, is_set_dest, insn,
4660 address_reloaded);
4661 /* If we have replaced a reg with it's equivalent memory loc -
4662 that can still be handled here e.g. if it's in a paradoxical
4663 subreg - we must make the change in a copy, rather than using
4664 a destructive change. This way, find_reloads can still elect
4665 not to do the change. */
4666 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4668 x = shallow_copy_rtx (x);
4669 copied = 1;
4671 XEXP (x, i) = new_part;
4674 return x;
4677 /* Return a mem ref for the memory equivalent of reg REGNO.
4678 This mem ref is not shared with anything. */
4680 static rtx
4681 make_memloc (rtx ad, int regno)
4683 /* We must rerun eliminate_regs, in case the elimination
4684 offsets have changed. */
4685 rtx tem
4686 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4688 /* If TEM might contain a pseudo, we must copy it to avoid
4689 modifying it when we do the substitution for the reload. */
4690 if (rtx_varies_p (tem, 0))
4691 tem = copy_rtx (tem);
4693 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4694 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4696 /* Copy the result if it's still the same as the equivalence, to avoid
4697 modifying it when we do the substitution for the reload. */
4698 if (tem == reg_equiv_memory_loc[regno])
4699 tem = copy_rtx (tem);
4700 return tem;
4703 /* Returns true if AD could be turned into a valid memory reference
4704 to mode MODE by reloading the part pointed to by PART into a
4705 register. */
4707 static int
4708 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4710 int retv;
4711 rtx tem = *part;
4712 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4714 *part = reg;
4715 retv = memory_address_p (mode, ad);
4716 *part = tem;
4718 return retv;
4721 /* Record all reloads needed for handling memory address AD
4722 which appears in *LOC in a memory reference to mode MODE
4723 which itself is found in location *MEMREFLOC.
4724 Note that we take shortcuts assuming that no multi-reg machine mode
4725 occurs as part of an address.
4727 OPNUM and TYPE specify the purpose of this reload.
4729 IND_LEVELS says how many levels of indirect addressing this machine
4730 supports.
4732 INSN, if nonzero, is the insn in which we do the reload. It is used
4733 to determine if we may generate output reloads, and where to put USEs
4734 for pseudos that we have to replace with stack slots.
4736 Value is one if this address is reloaded or replaced as a whole; it is
4737 zero if the top level of this address was not reloaded or replaced, and
4738 it is -1 if it may or may not have been reloaded or replaced.
4740 Note that there is no verification that the address will be valid after
4741 this routine does its work. Instead, we rely on the fact that the address
4742 was valid when reload started. So we need only undo things that reload
4743 could have broken. These are wrong register types, pseudos not allocated
4744 to a hard register, and frame pointer elimination. */
4746 static int
4747 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4748 rtx *loc, int opnum, enum reload_type type,
4749 int ind_levels, rtx insn)
4751 int regno;
4752 int removed_and = 0;
4753 int op_index;
4754 rtx tem;
4756 /* If the address is a register, see if it is a legitimate address and
4757 reload if not. We first handle the cases where we need not reload
4758 or where we must reload in a non-standard way. */
4760 if (REG_P (ad))
4762 regno = REGNO (ad);
4764 /* If the register is equivalent to an invariant expression, substitute
4765 the invariant, and eliminate any eliminable register references. */
4766 tem = reg_equiv_constant[regno];
4767 if (tem != 0
4768 && (tem = eliminate_regs (tem, mode, insn))
4769 && strict_memory_address_p (mode, tem))
4771 *loc = ad = tem;
4772 return 0;
4775 tem = reg_equiv_memory_loc[regno];
4776 if (tem != 0)
4778 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4780 tem = make_memloc (ad, regno);
4781 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4783 rtx orig = tem;
4785 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4786 &XEXP (tem, 0), opnum,
4787 ADDR_TYPE (type), ind_levels, insn);
4788 if (tem != orig)
4789 push_reg_equiv_alt_mem (regno, tem);
4791 /* We can avoid a reload if the register's equivalent memory
4792 expression is valid as an indirect memory address.
4793 But not all addresses are valid in a mem used as an indirect
4794 address: only reg or reg+constant. */
4796 if (ind_levels > 0
4797 && strict_memory_address_p (mode, tem)
4798 && (REG_P (XEXP (tem, 0))
4799 || (GET_CODE (XEXP (tem, 0)) == PLUS
4800 && REG_P (XEXP (XEXP (tem, 0), 0))
4801 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4803 /* TEM is not the same as what we'll be replacing the
4804 pseudo with after reload, put a USE in front of INSN
4805 in the final reload pass. */
4806 if (replace_reloads
4807 && num_not_at_initial_offset
4808 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4810 *loc = tem;
4811 /* We mark the USE with QImode so that we
4812 recognize it as one that can be safely
4813 deleted at the end of reload. */
4814 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4815 insn), QImode);
4817 /* This doesn't really count as replacing the address
4818 as a whole, since it is still a memory access. */
4820 return 0;
4822 ad = tem;
4826 /* The only remaining case where we can avoid a reload is if this is a
4827 hard register that is valid as a base register and which is not the
4828 subject of a CLOBBER in this insn. */
4830 else if (regno < FIRST_PSEUDO_REGISTER
4831 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4832 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4833 return 0;
4835 /* If we do not have one of the cases above, we must do the reload. */
4836 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4837 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4838 return 1;
4841 if (strict_memory_address_p (mode, ad))
4843 /* The address appears valid, so reloads are not needed.
4844 But the address may contain an eliminable register.
4845 This can happen because a machine with indirect addressing
4846 may consider a pseudo register by itself a valid address even when
4847 it has failed to get a hard reg.
4848 So do a tree-walk to find and eliminate all such regs. */
4850 /* But first quickly dispose of a common case. */
4851 if (GET_CODE (ad) == PLUS
4852 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4853 && REG_P (XEXP (ad, 0))
4854 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4855 return 0;
4857 subst_reg_equivs_changed = 0;
4858 *loc = subst_reg_equivs (ad, insn);
4860 if (! subst_reg_equivs_changed)
4861 return 0;
4863 /* Check result for validity after substitution. */
4864 if (strict_memory_address_p (mode, ad))
4865 return 0;
4868 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4871 if (memrefloc)
4873 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4874 ind_levels, win);
4876 break;
4877 win:
4878 *memrefloc = copy_rtx (*memrefloc);
4879 XEXP (*memrefloc, 0) = ad;
4880 move_replacements (&ad, &XEXP (*memrefloc, 0));
4881 return -1;
4883 while (0);
4884 #endif
4886 /* The address is not valid. We have to figure out why. First see if
4887 we have an outer AND and remove it if so. Then analyze what's inside. */
4889 if (GET_CODE (ad) == AND)
4891 removed_and = 1;
4892 loc = &XEXP (ad, 0);
4893 ad = *loc;
4896 /* One possibility for why the address is invalid is that it is itself
4897 a MEM. This can happen when the frame pointer is being eliminated, a
4898 pseudo is not allocated to a hard register, and the offset between the
4899 frame and stack pointers is not its initial value. In that case the
4900 pseudo will have been replaced by a MEM referring to the
4901 stack pointer. */
4902 if (MEM_P (ad))
4904 /* First ensure that the address in this MEM is valid. Then, unless
4905 indirect addresses are valid, reload the MEM into a register. */
4906 tem = ad;
4907 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4908 opnum, ADDR_TYPE (type),
4909 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4911 /* If tem was changed, then we must create a new memory reference to
4912 hold it and store it back into memrefloc. */
4913 if (tem != ad && memrefloc)
4915 *memrefloc = copy_rtx (*memrefloc);
4916 copy_replacements (tem, XEXP (*memrefloc, 0));
4917 loc = &XEXP (*memrefloc, 0);
4918 if (removed_and)
4919 loc = &XEXP (*loc, 0);
4922 /* Check similar cases as for indirect addresses as above except
4923 that we can allow pseudos and a MEM since they should have been
4924 taken care of above. */
4926 if (ind_levels == 0
4927 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4928 || MEM_P (XEXP (tem, 0))
4929 || ! (REG_P (XEXP (tem, 0))
4930 || (GET_CODE (XEXP (tem, 0)) == PLUS
4931 && REG_P (XEXP (XEXP (tem, 0), 0))
4932 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4934 /* Must use TEM here, not AD, since it is the one that will
4935 have any subexpressions reloaded, if needed. */
4936 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4937 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4938 VOIDmode, 0,
4939 0, opnum, type);
4940 return ! removed_and;
4942 else
4943 return 0;
4946 /* If we have address of a stack slot but it's not valid because the
4947 displacement is too large, compute the sum in a register.
4948 Handle all base registers here, not just fp/ap/sp, because on some
4949 targets (namely SH) we can also get too large displacements from
4950 big-endian corrections. */
4951 else if (GET_CODE (ad) == PLUS
4952 && REG_P (XEXP (ad, 0))
4953 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4954 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4955 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4956 CONST_INT))
4959 /* Unshare the MEM rtx so we can safely alter it. */
4960 if (memrefloc)
4962 *memrefloc = copy_rtx (*memrefloc);
4963 loc = &XEXP (*memrefloc, 0);
4964 if (removed_and)
4965 loc = &XEXP (*loc, 0);
4968 if (double_reg_address_ok)
4970 /* Unshare the sum as well. */
4971 *loc = ad = copy_rtx (ad);
4973 /* Reload the displacement into an index reg.
4974 We assume the frame pointer or arg pointer is a base reg. */
4975 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4976 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4977 type, ind_levels);
4978 return 0;
4980 else
4982 /* If the sum of two regs is not necessarily valid,
4983 reload the sum into a base reg.
4984 That will at least work. */
4985 find_reloads_address_part (ad, loc,
4986 base_reg_class (mode, MEM, SCRATCH),
4987 Pmode, opnum, type, ind_levels);
4989 return ! removed_and;
4992 /* If we have an indexed stack slot, there are three possible reasons why
4993 it might be invalid: The index might need to be reloaded, the address
4994 might have been made by frame pointer elimination and hence have a
4995 constant out of range, or both reasons might apply.
4997 We can easily check for an index needing reload, but even if that is the
4998 case, we might also have an invalid constant. To avoid making the
4999 conservative assumption and requiring two reloads, we see if this address
5000 is valid when not interpreted strictly. If it is, the only problem is
5001 that the index needs a reload and find_reloads_address_1 will take care
5002 of it.
5004 Handle all base registers here, not just fp/ap/sp, because on some
5005 targets (namely SPARC) we can also get invalid addresses from preventive
5006 subreg big-endian corrections made by find_reloads_toplev. We
5007 can also get expressions involving LO_SUM (rather than PLUS) from
5008 find_reloads_subreg_address.
5010 If we decide to do something, it must be that `double_reg_address_ok'
5011 is true. We generate a reload of the base register + constant and
5012 rework the sum so that the reload register will be added to the index.
5013 This is safe because we know the address isn't shared.
5015 We check for the base register as both the first and second operand of
5016 the innermost PLUS and/or LO_SUM. */
5018 for (op_index = 0; op_index < 2; ++op_index)
5020 rtx operand, addend;
5021 enum rtx_code inner_code;
5023 if (GET_CODE (ad) != PLUS)
5024 continue;
5026 inner_code = GET_CODE (XEXP (ad, 0));
5027 if (!(GET_CODE (ad) == PLUS
5028 && GET_CODE (XEXP (ad, 1)) == CONST_INT
5029 && (inner_code == PLUS || inner_code == LO_SUM)))
5030 continue;
5032 operand = XEXP (XEXP (ad, 0), op_index);
5033 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5034 continue;
5036 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5038 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5039 GET_CODE (addend))
5040 || operand == frame_pointer_rtx
5041 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5042 || operand == hard_frame_pointer_rtx
5043 #endif
5044 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5045 || operand == arg_pointer_rtx
5046 #endif
5047 || operand == stack_pointer_rtx)
5048 && ! maybe_memory_address_p (mode, ad,
5049 &XEXP (XEXP (ad, 0), 1 - op_index)))
5051 rtx offset_reg;
5052 enum reg_class cls;
5054 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5056 /* Form the adjusted address. */
5057 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5058 ad = gen_rtx_PLUS (GET_MODE (ad),
5059 op_index == 0 ? offset_reg : addend,
5060 op_index == 0 ? addend : offset_reg);
5061 else
5062 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5063 op_index == 0 ? offset_reg : addend,
5064 op_index == 0 ? addend : offset_reg);
5065 *loc = ad;
5067 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5068 find_reloads_address_part (XEXP (ad, op_index),
5069 &XEXP (ad, op_index), cls,
5070 GET_MODE (ad), opnum, type, ind_levels);
5071 find_reloads_address_1 (mode,
5072 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5073 GET_CODE (XEXP (ad, op_index)),
5074 &XEXP (ad, 1 - op_index), opnum,
5075 type, 0, insn);
5077 return 0;
5081 /* See if address becomes valid when an eliminable register
5082 in a sum is replaced. */
5084 tem = ad;
5085 if (GET_CODE (ad) == PLUS)
5086 tem = subst_indexed_address (ad);
5087 if (tem != ad && strict_memory_address_p (mode, tem))
5089 /* Ok, we win that way. Replace any additional eliminable
5090 registers. */
5092 subst_reg_equivs_changed = 0;
5093 tem = subst_reg_equivs (tem, insn);
5095 /* Make sure that didn't make the address invalid again. */
5097 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5099 *loc = tem;
5100 return 0;
5104 /* If constants aren't valid addresses, reload the constant address
5105 into a register. */
5106 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5108 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5109 Unshare it so we can safely alter it. */
5110 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5111 && CONSTANT_POOL_ADDRESS_P (ad))
5113 *memrefloc = copy_rtx (*memrefloc);
5114 loc = &XEXP (*memrefloc, 0);
5115 if (removed_and)
5116 loc = &XEXP (*loc, 0);
5119 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5120 Pmode, opnum, type, ind_levels);
5121 return ! removed_and;
5124 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5125 ind_levels, insn);
5128 /* Find all pseudo regs appearing in AD
5129 that are eliminable in favor of equivalent values
5130 and do not have hard regs; replace them by their equivalents.
5131 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5132 front of it for pseudos that we have to replace with stack slots. */
5134 static rtx
5135 subst_reg_equivs (rtx ad, rtx insn)
5137 RTX_CODE code = GET_CODE (ad);
5138 int i;
5139 const char *fmt;
5141 switch (code)
5143 case HIGH:
5144 case CONST_INT:
5145 case CONST:
5146 case CONST_DOUBLE:
5147 case CONST_VECTOR:
5148 case SYMBOL_REF:
5149 case LABEL_REF:
5150 case PC:
5151 case CC0:
5152 return ad;
5154 case REG:
5156 int regno = REGNO (ad);
5158 if (reg_equiv_constant[regno] != 0)
5160 subst_reg_equivs_changed = 1;
5161 return reg_equiv_constant[regno];
5163 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5165 rtx mem = make_memloc (ad, regno);
5166 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5168 subst_reg_equivs_changed = 1;
5169 /* We mark the USE with QImode so that we recognize it
5170 as one that can be safely deleted at the end of
5171 reload. */
5172 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5173 QImode);
5174 return mem;
5178 return ad;
5180 case PLUS:
5181 /* Quickly dispose of a common case. */
5182 if (XEXP (ad, 0) == frame_pointer_rtx
5183 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5184 return ad;
5185 break;
5187 default:
5188 break;
5191 fmt = GET_RTX_FORMAT (code);
5192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5193 if (fmt[i] == 'e')
5194 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5195 return ad;
5198 /* Compute the sum of X and Y, making canonicalizations assumed in an
5199 address, namely: sum constant integers, surround the sum of two
5200 constants with a CONST, put the constant as the second operand, and
5201 group the constant on the outermost sum.
5203 This routine assumes both inputs are already in canonical form. */
5206 form_sum (rtx x, rtx y)
5208 rtx tem;
5209 enum machine_mode mode = GET_MODE (x);
5211 if (mode == VOIDmode)
5212 mode = GET_MODE (y);
5214 if (mode == VOIDmode)
5215 mode = Pmode;
5217 if (GET_CODE (x) == CONST_INT)
5218 return plus_constant (y, INTVAL (x));
5219 else if (GET_CODE (y) == CONST_INT)
5220 return plus_constant (x, INTVAL (y));
5221 else if (CONSTANT_P (x))
5222 tem = x, x = y, y = tem;
5224 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5225 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5227 /* Note that if the operands of Y are specified in the opposite
5228 order in the recursive calls below, infinite recursion will occur. */
5229 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5230 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5232 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5233 constant will have been placed second. */
5234 if (CONSTANT_P (x) && CONSTANT_P (y))
5236 if (GET_CODE (x) == CONST)
5237 x = XEXP (x, 0);
5238 if (GET_CODE (y) == CONST)
5239 y = XEXP (y, 0);
5241 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5244 return gen_rtx_PLUS (mode, x, y);
5247 /* If ADDR is a sum containing a pseudo register that should be
5248 replaced with a constant (from reg_equiv_constant),
5249 return the result of doing so, and also apply the associative
5250 law so that the result is more likely to be a valid address.
5251 (But it is not guaranteed to be one.)
5253 Note that at most one register is replaced, even if more are
5254 replaceable. Also, we try to put the result into a canonical form
5255 so it is more likely to be a valid address.
5257 In all other cases, return ADDR. */
5259 static rtx
5260 subst_indexed_address (rtx addr)
5262 rtx op0 = 0, op1 = 0, op2 = 0;
5263 rtx tem;
5264 int regno;
5266 if (GET_CODE (addr) == PLUS)
5268 /* Try to find a register to replace. */
5269 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5270 if (REG_P (op0)
5271 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5272 && reg_renumber[regno] < 0
5273 && reg_equiv_constant[regno] != 0)
5274 op0 = reg_equiv_constant[regno];
5275 else if (REG_P (op1)
5276 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5277 && reg_renumber[regno] < 0
5278 && reg_equiv_constant[regno] != 0)
5279 op1 = reg_equiv_constant[regno];
5280 else if (GET_CODE (op0) == PLUS
5281 && (tem = subst_indexed_address (op0)) != op0)
5282 op0 = tem;
5283 else if (GET_CODE (op1) == PLUS
5284 && (tem = subst_indexed_address (op1)) != op1)
5285 op1 = tem;
5286 else
5287 return addr;
5289 /* Pick out up to three things to add. */
5290 if (GET_CODE (op1) == PLUS)
5291 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5292 else if (GET_CODE (op0) == PLUS)
5293 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5295 /* Compute the sum. */
5296 if (op2 != 0)
5297 op1 = form_sum (op1, op2);
5298 if (op1 != 0)
5299 op0 = form_sum (op0, op1);
5301 return op0;
5303 return addr;
5306 /* Update the REG_INC notes for an insn. It updates all REG_INC
5307 notes for the instruction which refer to REGNO the to refer
5308 to the reload number.
5310 INSN is the insn for which any REG_INC notes need updating.
5312 REGNO is the register number which has been reloaded.
5314 RELOADNUM is the reload number. */
5316 static void
5317 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5318 int reloadnum ATTRIBUTE_UNUSED)
5320 #ifdef AUTO_INC_DEC
5321 rtx link;
5323 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5324 if (REG_NOTE_KIND (link) == REG_INC
5325 && (int) REGNO (XEXP (link, 0)) == regno)
5326 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5327 #endif
5330 /* Record the pseudo registers we must reload into hard registers in a
5331 subexpression of a would-be memory address, X referring to a value
5332 in mode MODE. (This function is not called if the address we find
5333 is strictly valid.)
5335 CONTEXT = 1 means we are considering regs as index regs,
5336 = 0 means we are considering them as base regs.
5337 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5338 or an autoinc code.
5339 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5340 is the code of the index part of the address. Otherwise, pass SCRATCH
5341 for this argument.
5342 OPNUM and TYPE specify the purpose of any reloads made.
5344 IND_LEVELS says how many levels of indirect addressing are
5345 supported at this point in the address.
5347 INSN, if nonzero, is the insn in which we do the reload. It is used
5348 to determine if we may generate output reloads.
5350 We return nonzero if X, as a whole, is reloaded or replaced. */
5352 /* Note that we take shortcuts assuming that no multi-reg machine mode
5353 occurs as part of an address.
5354 Also, this is not fully machine-customizable; it works for machines
5355 such as VAXen and 68000's and 32000's, but other possible machines
5356 could have addressing modes that this does not handle right.
5357 If you add push_reload calls here, you need to make sure gen_reload
5358 handles those cases gracefully. */
5360 static int
5361 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5362 enum rtx_code outer_code, enum rtx_code index_code,
5363 rtx *loc, int opnum, enum reload_type type,
5364 int ind_levels, rtx insn)
5366 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5367 ((CONTEXT) == 0 \
5368 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5369 : REGNO_OK_FOR_INDEX_P (REGNO))
5371 enum reg_class context_reg_class;
5372 RTX_CODE code = GET_CODE (x);
5374 if (context == 1)
5375 context_reg_class = INDEX_REG_CLASS;
5376 else
5377 context_reg_class = base_reg_class (mode, outer_code, index_code);
5379 switch (code)
5381 case PLUS:
5383 rtx orig_op0 = XEXP (x, 0);
5384 rtx orig_op1 = XEXP (x, 1);
5385 RTX_CODE code0 = GET_CODE (orig_op0);
5386 RTX_CODE code1 = GET_CODE (orig_op1);
5387 rtx op0 = orig_op0;
5388 rtx op1 = orig_op1;
5390 if (GET_CODE (op0) == SUBREG)
5392 op0 = SUBREG_REG (op0);
5393 code0 = GET_CODE (op0);
5394 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5395 op0 = gen_rtx_REG (word_mode,
5396 (REGNO (op0) +
5397 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5398 GET_MODE (SUBREG_REG (orig_op0)),
5399 SUBREG_BYTE (orig_op0),
5400 GET_MODE (orig_op0))));
5403 if (GET_CODE (op1) == SUBREG)
5405 op1 = SUBREG_REG (op1);
5406 code1 = GET_CODE (op1);
5407 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5408 /* ??? Why is this given op1's mode and above for
5409 ??? op0 SUBREGs we use word_mode? */
5410 op1 = gen_rtx_REG (GET_MODE (op1),
5411 (REGNO (op1) +
5412 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5413 GET_MODE (SUBREG_REG (orig_op1)),
5414 SUBREG_BYTE (orig_op1),
5415 GET_MODE (orig_op1))));
5417 /* Plus in the index register may be created only as a result of
5418 register rematerialization for expression like &localvar*4. Reload it.
5419 It may be possible to combine the displacement on the outer level,
5420 but it is probably not worthwhile to do so. */
5421 if (context == 1)
5423 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5424 opnum, ADDR_TYPE (type), ind_levels, insn);
5425 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5426 context_reg_class,
5427 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5428 return 1;
5431 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5432 || code0 == ZERO_EXTEND || code1 == MEM)
5434 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5435 &XEXP (x, 0), opnum, type, ind_levels,
5436 insn);
5437 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5438 &XEXP (x, 1), opnum, type, ind_levels,
5439 insn);
5442 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5443 || code1 == ZERO_EXTEND || code0 == MEM)
5445 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5446 &XEXP (x, 0), opnum, type, ind_levels,
5447 insn);
5448 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5449 &XEXP (x, 1), opnum, type, ind_levels,
5450 insn);
5453 else if (code0 == CONST_INT || code0 == CONST
5454 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5455 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5456 &XEXP (x, 1), opnum, type, ind_levels,
5457 insn);
5459 else if (code1 == CONST_INT || code1 == CONST
5460 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5461 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5462 &XEXP (x, 0), opnum, type, ind_levels,
5463 insn);
5465 else if (code0 == REG && code1 == REG)
5467 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5468 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5469 return 0;
5470 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5471 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5472 return 0;
5473 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5474 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5475 &XEXP (x, 0), opnum, type, ind_levels,
5476 insn);
5477 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5478 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5479 &XEXP (x, 1), opnum, type, ind_levels,
5480 insn);
5481 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5482 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5483 &XEXP (x, 0), opnum, type, ind_levels,
5484 insn);
5485 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5486 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5487 &XEXP (x, 1), opnum, type, ind_levels,
5488 insn);
5489 else
5491 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5492 &XEXP (x, 0), opnum, type, ind_levels,
5493 insn);
5494 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5495 &XEXP (x, 1), opnum, type, ind_levels,
5496 insn);
5500 else if (code0 == REG)
5502 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5503 &XEXP (x, 0), opnum, type, ind_levels,
5504 insn);
5505 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5506 &XEXP (x, 1), opnum, type, ind_levels,
5507 insn);
5510 else if (code1 == REG)
5512 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5513 &XEXP (x, 1), opnum, type, ind_levels,
5514 insn);
5515 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5516 &XEXP (x, 0), opnum, type, ind_levels,
5517 insn);
5521 return 0;
5523 case POST_MODIFY:
5524 case PRE_MODIFY:
5526 rtx op0 = XEXP (x, 0);
5527 rtx op1 = XEXP (x, 1);
5528 enum rtx_code index_code;
5529 int regno;
5530 int reloadnum;
5532 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5533 return 0;
5535 /* Currently, we only support {PRE,POST}_MODIFY constructs
5536 where a base register is {inc,dec}remented by the contents
5537 of another register or by a constant value. Thus, these
5538 operands must match. */
5539 gcc_assert (op0 == XEXP (op1, 0));
5541 /* Require index register (or constant). Let's just handle the
5542 register case in the meantime... If the target allows
5543 auto-modify by a constant then we could try replacing a pseudo
5544 register with its equivalent constant where applicable.
5546 If we later decide to reload the whole PRE_MODIFY or
5547 POST_MODIFY, inc_for_reload might clobber the reload register
5548 before reading the index. The index register might therefore
5549 need to live longer than a TYPE reload normally would, so be
5550 conservative and class it as RELOAD_OTHER. */
5551 if (REG_P (XEXP (op1, 1)))
5552 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5553 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5554 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5555 ind_levels, insn);
5557 gcc_assert (REG_P (XEXP (op1, 0)));
5559 regno = REGNO (XEXP (op1, 0));
5560 index_code = GET_CODE (XEXP (op1, 1));
5562 /* A register that is incremented cannot be constant! */
5563 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5564 || reg_equiv_constant[regno] == 0);
5566 /* Handle a register that is equivalent to a memory location
5567 which cannot be addressed directly. */
5568 if (reg_equiv_memory_loc[regno] != 0
5569 && (reg_equiv_address[regno] != 0
5570 || num_not_at_initial_offset))
5572 rtx tem = make_memloc (XEXP (x, 0), regno);
5574 if (reg_equiv_address[regno]
5575 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5577 rtx orig = tem;
5579 /* First reload the memory location's address.
5580 We can't use ADDR_TYPE (type) here, because we need to
5581 write back the value after reading it, hence we actually
5582 need two registers. */
5583 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5584 &XEXP (tem, 0), opnum,
5585 RELOAD_OTHER,
5586 ind_levels, insn);
5588 if (tem != orig)
5589 push_reg_equiv_alt_mem (regno, tem);
5591 /* Then reload the memory location into a base
5592 register. */
5593 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5594 &XEXP (op1, 0),
5595 base_reg_class (mode, code,
5596 index_code),
5597 GET_MODE (x), GET_MODE (x), 0,
5598 0, opnum, RELOAD_OTHER);
5600 update_auto_inc_notes (this_insn, regno, reloadnum);
5601 return 0;
5605 if (reg_renumber[regno] >= 0)
5606 regno = reg_renumber[regno];
5608 /* We require a base register here... */
5609 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5611 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5612 &XEXP (op1, 0), &XEXP (x, 0),
5613 base_reg_class (mode, code, index_code),
5614 GET_MODE (x), GET_MODE (x), 0, 0,
5615 opnum, RELOAD_OTHER);
5617 update_auto_inc_notes (this_insn, regno, reloadnum);
5618 return 0;
5621 return 0;
5623 case POST_INC:
5624 case POST_DEC:
5625 case PRE_INC:
5626 case PRE_DEC:
5627 if (REG_P (XEXP (x, 0)))
5629 int regno = REGNO (XEXP (x, 0));
5630 int value = 0;
5631 rtx x_orig = x;
5633 /* A register that is incremented cannot be constant! */
5634 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5635 || reg_equiv_constant[regno] == 0);
5637 /* Handle a register that is equivalent to a memory location
5638 which cannot be addressed directly. */
5639 if (reg_equiv_memory_loc[regno] != 0
5640 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5642 rtx tem = make_memloc (XEXP (x, 0), regno);
5643 if (reg_equiv_address[regno]
5644 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5646 rtx orig = tem;
5648 /* First reload the memory location's address.
5649 We can't use ADDR_TYPE (type) here, because we need to
5650 write back the value after reading it, hence we actually
5651 need two registers. */
5652 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5653 &XEXP (tem, 0), opnum, type,
5654 ind_levels, insn);
5655 if (tem != orig)
5656 push_reg_equiv_alt_mem (regno, tem);
5657 /* Put this inside a new increment-expression. */
5658 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5659 /* Proceed to reload that, as if it contained a register. */
5663 /* If we have a hard register that is ok as an index,
5664 don't make a reload. If an autoincrement of a nice register
5665 isn't "valid", it must be that no autoincrement is "valid".
5666 If that is true and something made an autoincrement anyway,
5667 this must be a special context where one is allowed.
5668 (For example, a "push" instruction.)
5669 We can't improve this address, so leave it alone. */
5671 /* Otherwise, reload the autoincrement into a suitable hard reg
5672 and record how much to increment by. */
5674 if (reg_renumber[regno] >= 0)
5675 regno = reg_renumber[regno];
5676 if (regno >= FIRST_PSEUDO_REGISTER
5677 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5678 index_code))
5680 int reloadnum;
5682 /* If we can output the register afterwards, do so, this
5683 saves the extra update.
5684 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5685 CALL_INSN - and it does not set CC0.
5686 But don't do this if we cannot directly address the
5687 memory location, since this will make it harder to
5688 reuse address reloads, and increases register pressure.
5689 Also don't do this if we can probably update x directly. */
5690 rtx equiv = (MEM_P (XEXP (x, 0))
5691 ? XEXP (x, 0)
5692 : reg_equiv_mem[regno]);
5693 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5694 if (insn && NONJUMP_INSN_P (insn) && equiv
5695 && memory_operand (equiv, GET_MODE (equiv))
5696 #ifdef HAVE_cc0
5697 && ! sets_cc0_p (PATTERN (insn))
5698 #endif
5699 && ! (icode != CODE_FOR_nothing
5700 && ((*insn_data[icode].operand[0].predicate)
5701 (equiv, Pmode))
5702 && ((*insn_data[icode].operand[1].predicate)
5703 (equiv, Pmode))))
5705 /* We use the original pseudo for loc, so that
5706 emit_reload_insns() knows which pseudo this
5707 reload refers to and updates the pseudo rtx, not
5708 its equivalent memory location, as well as the
5709 corresponding entry in reg_last_reload_reg. */
5710 loc = &XEXP (x_orig, 0);
5711 x = XEXP (x, 0);
5712 reloadnum
5713 = push_reload (x, x, loc, loc,
5714 context_reg_class,
5715 GET_MODE (x), GET_MODE (x), 0, 0,
5716 opnum, RELOAD_OTHER);
5718 else
5720 reloadnum
5721 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5722 context_reg_class,
5723 GET_MODE (x), GET_MODE (x), 0, 0,
5724 opnum, type);
5725 rld[reloadnum].inc
5726 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5728 value = 1;
5731 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5732 reloadnum);
5734 return value;
5737 else if (MEM_P (XEXP (x, 0)))
5739 /* This is probably the result of a substitution, by eliminate_regs,
5740 of an equivalent address for a pseudo that was not allocated to a
5741 hard register. Verify that the specified address is valid and
5742 reload it into a register. */
5743 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5744 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5745 rtx link;
5746 int reloadnum;
5748 /* Since we know we are going to reload this item, don't decrement
5749 for the indirection level.
5751 Note that this is actually conservative: it would be slightly
5752 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5753 reload1.c here. */
5754 /* We can't use ADDR_TYPE (type) here, because we need to
5755 write back the value after reading it, hence we actually
5756 need two registers. */
5757 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5758 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5759 opnum, type, ind_levels, insn);
5761 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5762 context_reg_class,
5763 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5764 rld[reloadnum].inc
5765 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5767 link = FIND_REG_INC_NOTE (this_insn, tem);
5768 if (link != 0)
5769 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5771 return 1;
5773 return 0;
5775 case TRUNCATE:
5776 case SIGN_EXTEND:
5777 case ZERO_EXTEND:
5778 /* Look for parts to reload in the inner expression and reload them
5779 too, in addition to this operation. Reloading all inner parts in
5780 addition to this one shouldn't be necessary, but at this point,
5781 we don't know if we can possibly omit any part that *can* be
5782 reloaded. Targets that are better off reloading just either part
5783 (or perhaps even a different part of an outer expression), should
5784 define LEGITIMIZE_RELOAD_ADDRESS. */
5785 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5786 context, code, SCRATCH, &XEXP (x, 0), opnum,
5787 type, ind_levels, insn);
5788 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5789 context_reg_class,
5790 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5791 return 1;
5793 case MEM:
5794 /* This is probably the result of a substitution, by eliminate_regs, of
5795 an equivalent address for a pseudo that was not allocated to a hard
5796 register. Verify that the specified address is valid and reload it
5797 into a register.
5799 Since we know we are going to reload this item, don't decrement for
5800 the indirection level.
5802 Note that this is actually conservative: it would be slightly more
5803 efficient to use the value of SPILL_INDIRECT_LEVELS from
5804 reload1.c here. */
5806 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5807 opnum, ADDR_TYPE (type), ind_levels, insn);
5808 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5809 context_reg_class,
5810 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5811 return 1;
5813 case REG:
5815 int regno = REGNO (x);
5817 if (reg_equiv_constant[regno] != 0)
5819 find_reloads_address_part (reg_equiv_constant[regno], loc,
5820 context_reg_class,
5821 GET_MODE (x), opnum, type, ind_levels);
5822 return 1;
5825 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5826 that feeds this insn. */
5827 if (reg_equiv_mem[regno] != 0)
5829 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5830 context_reg_class,
5831 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5832 return 1;
5834 #endif
5836 if (reg_equiv_memory_loc[regno]
5837 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5839 rtx tem = make_memloc (x, regno);
5840 if (reg_equiv_address[regno] != 0
5841 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5843 x = tem;
5844 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5845 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5846 ind_levels, insn);
5847 if (x != tem)
5848 push_reg_equiv_alt_mem (regno, x);
5852 if (reg_renumber[regno] >= 0)
5853 regno = reg_renumber[regno];
5855 if (regno >= FIRST_PSEUDO_REGISTER
5856 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5857 index_code))
5859 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5860 context_reg_class,
5861 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5862 return 1;
5865 /* If a register appearing in an address is the subject of a CLOBBER
5866 in this insn, reload it into some other register to be safe.
5867 The CLOBBER is supposed to make the register unavailable
5868 from before this insn to after it. */
5869 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5871 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5872 context_reg_class,
5873 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5874 return 1;
5877 return 0;
5879 case SUBREG:
5880 if (REG_P (SUBREG_REG (x)))
5882 /* If this is a SUBREG of a hard register and the resulting register
5883 is of the wrong class, reload the whole SUBREG. This avoids
5884 needless copies if SUBREG_REG is multi-word. */
5885 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5887 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5889 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5890 index_code))
5892 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5893 context_reg_class,
5894 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5895 return 1;
5898 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5899 is larger than the class size, then reload the whole SUBREG. */
5900 else
5902 enum reg_class class = context_reg_class;
5903 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5904 > reg_class_size[class])
5906 x = find_reloads_subreg_address (x, 0, opnum,
5907 ADDR_TYPE (type),
5908 ind_levels, insn);
5909 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5910 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5911 return 1;
5915 break;
5917 default:
5918 break;
5922 const char *fmt = GET_RTX_FORMAT (code);
5923 int i;
5925 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5927 if (fmt[i] == 'e')
5928 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5929 we get here. */
5930 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5931 &XEXP (x, i), opnum, type, ind_levels, insn);
5935 #undef REG_OK_FOR_CONTEXT
5936 return 0;
5939 /* X, which is found at *LOC, is a part of an address that needs to be
5940 reloaded into a register of class CLASS. If X is a constant, or if
5941 X is a PLUS that contains a constant, check that the constant is a
5942 legitimate operand and that we are supposed to be able to load
5943 it into the register.
5945 If not, force the constant into memory and reload the MEM instead.
5947 MODE is the mode to use, in case X is an integer constant.
5949 OPNUM and TYPE describe the purpose of any reloads made.
5951 IND_LEVELS says how many levels of indirect addressing this machine
5952 supports. */
5954 static void
5955 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5956 enum machine_mode mode, int opnum,
5957 enum reload_type type, int ind_levels)
5959 if (CONSTANT_P (x)
5960 && (! LEGITIMATE_CONSTANT_P (x)
5961 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5963 rtx tem;
5965 tem = x = force_const_mem (mode, x);
5966 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5967 opnum, type, ind_levels, 0);
5970 else if (GET_CODE (x) == PLUS
5971 && CONSTANT_P (XEXP (x, 1))
5972 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5973 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5975 rtx tem;
5977 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5978 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5979 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5980 opnum, type, ind_levels, 0);
5983 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5984 mode, VOIDmode, 0, 0, opnum, type);
5987 /* X, a subreg of a pseudo, is a part of an address that needs to be
5988 reloaded.
5990 If the pseudo is equivalent to a memory location that cannot be directly
5991 addressed, make the necessary address reloads.
5993 If address reloads have been necessary, or if the address is changed
5994 by register elimination, return the rtx of the memory location;
5995 otherwise, return X.
5997 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5998 memory location.
6000 OPNUM and TYPE identify the purpose of the reload.
6002 IND_LEVELS says how many levels of indirect addressing are
6003 supported at this point in the address.
6005 INSN, if nonzero, is the insn in which we do the reload. It is used
6006 to determine where to put USEs for pseudos that we have to replace with
6007 stack slots. */
6009 static rtx
6010 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6011 enum reload_type type, int ind_levels, rtx insn)
6013 int regno = REGNO (SUBREG_REG (x));
6015 if (reg_equiv_memory_loc[regno])
6017 /* If the address is not directly addressable, or if the address is not
6018 offsettable, then it must be replaced. */
6019 if (! force_replace
6020 && (reg_equiv_address[regno]
6021 || ! offsettable_memref_p (reg_equiv_mem[regno])))
6022 force_replace = 1;
6024 if (force_replace || num_not_at_initial_offset)
6026 rtx tem = make_memloc (SUBREG_REG (x), regno);
6028 /* If the address changes because of register elimination, then
6029 it must be replaced. */
6030 if (force_replace
6031 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6033 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6034 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6035 int offset;
6036 rtx orig = tem;
6038 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6039 hold the correct (negative) byte offset. */
6040 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6041 offset = inner_size - outer_size;
6042 else
6043 offset = SUBREG_BYTE (x);
6045 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6046 PUT_MODE (tem, GET_MODE (x));
6048 /* If this was a paradoxical subreg that we replaced, the
6049 resulting memory must be sufficiently aligned to allow
6050 us to widen the mode of the memory. */
6051 if (outer_size > inner_size)
6053 rtx base;
6055 base = XEXP (tem, 0);
6056 if (GET_CODE (base) == PLUS)
6058 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6059 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6060 return x;
6061 base = XEXP (base, 0);
6063 if (!REG_P (base)
6064 || (REGNO_POINTER_ALIGN (REGNO (base))
6065 < outer_size * BITS_PER_UNIT))
6066 return x;
6069 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
6070 &XEXP (tem, 0), opnum, type,
6071 ind_levels, insn);
6072 /* ??? Do we need to handle nonzero offsets somehow? */
6073 if (!offset && tem != orig)
6074 push_reg_equiv_alt_mem (regno, tem);
6076 /* If this is not a toplevel operand, find_reloads doesn't see
6077 this substitution. We have to emit a USE of the pseudo so
6078 that delete_output_reload can see it. */
6079 if (replace_reloads && recog_data.operand[opnum] != x)
6080 /* We mark the USE with QImode so that we recognize it
6081 as one that can be safely deleted at the end of
6082 reload. */
6083 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6084 SUBREG_REG (x)),
6085 insn), QImode);
6086 x = tem;
6090 return x;
6093 /* Substitute into the current INSN the registers into which we have reloaded
6094 the things that need reloading. The array `replacements'
6095 contains the locations of all pointers that must be changed
6096 and says what to replace them with.
6098 Return the rtx that X translates into; usually X, but modified. */
6100 void
6101 subst_reloads (rtx insn)
6103 int i;
6105 for (i = 0; i < n_replacements; i++)
6107 struct replacement *r = &replacements[i];
6108 rtx reloadreg = rld[r->what].reg_rtx;
6109 if (reloadreg)
6111 #ifdef ENABLE_CHECKING
6112 /* Internal consistency test. Check that we don't modify
6113 anything in the equivalence arrays. Whenever something from
6114 those arrays needs to be reloaded, it must be unshared before
6115 being substituted into; the equivalence must not be modified.
6116 Otherwise, if the equivalence is used after that, it will
6117 have been modified, and the thing substituted (probably a
6118 register) is likely overwritten and not a usable equivalence. */
6119 int check_regno;
6121 for (check_regno = 0; check_regno < max_regno; check_regno++)
6123 #define CHECK_MODF(ARRAY) \
6124 gcc_assert (!ARRAY[check_regno] \
6125 || !loc_mentioned_in_p (r->where, \
6126 ARRAY[check_regno]))
6128 CHECK_MODF (reg_equiv_constant);
6129 CHECK_MODF (reg_equiv_memory_loc);
6130 CHECK_MODF (reg_equiv_address);
6131 CHECK_MODF (reg_equiv_mem);
6132 #undef CHECK_MODF
6134 #endif /* ENABLE_CHECKING */
6136 /* If we're replacing a LABEL_REF with a register, add a
6137 REG_LABEL note to indicate to flow which label this
6138 register refers to. */
6139 if (GET_CODE (*r->where) == LABEL_REF
6140 && JUMP_P (insn))
6142 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6143 XEXP (*r->where, 0),
6144 REG_NOTES (insn));
6145 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6148 /* Encapsulate RELOADREG so its machine mode matches what
6149 used to be there. Note that gen_lowpart_common will
6150 do the wrong thing if RELOADREG is multi-word. RELOADREG
6151 will always be a REG here. */
6152 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6153 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6155 /* If we are putting this into a SUBREG and RELOADREG is a
6156 SUBREG, we would be making nested SUBREGs, so we have to fix
6157 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6159 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6161 if (GET_MODE (*r->subreg_loc)
6162 == GET_MODE (SUBREG_REG (reloadreg)))
6163 *r->subreg_loc = SUBREG_REG (reloadreg);
6164 else
6166 int final_offset =
6167 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6169 /* When working with SUBREGs the rule is that the byte
6170 offset must be a multiple of the SUBREG's mode. */
6171 final_offset = (final_offset /
6172 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6173 final_offset = (final_offset *
6174 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6176 *r->where = SUBREG_REG (reloadreg);
6177 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6180 else
6181 *r->where = reloadreg;
6183 /* If reload got no reg and isn't optional, something's wrong. */
6184 else
6185 gcc_assert (rld[r->what].optional);
6189 /* Make a copy of any replacements being done into X and move those
6190 copies to locations in Y, a copy of X. */
6192 void
6193 copy_replacements (rtx x, rtx y)
6195 /* We can't support X being a SUBREG because we might then need to know its
6196 location if something inside it was replaced. */
6197 gcc_assert (GET_CODE (x) != SUBREG);
6199 copy_replacements_1 (&x, &y, n_replacements);
6202 static void
6203 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6205 int i, j;
6206 rtx x, y;
6207 struct replacement *r;
6208 enum rtx_code code;
6209 const char *fmt;
6211 for (j = 0; j < orig_replacements; j++)
6213 if (replacements[j].subreg_loc == px)
6215 r = &replacements[n_replacements++];
6216 r->where = replacements[j].where;
6217 r->subreg_loc = py;
6218 r->what = replacements[j].what;
6219 r->mode = replacements[j].mode;
6221 else if (replacements[j].where == px)
6223 r = &replacements[n_replacements++];
6224 r->where = py;
6225 r->subreg_loc = 0;
6226 r->what = replacements[j].what;
6227 r->mode = replacements[j].mode;
6231 x = *px;
6232 y = *py;
6233 code = GET_CODE (x);
6234 fmt = GET_RTX_FORMAT (code);
6236 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6238 if (fmt[i] == 'e')
6239 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6240 else if (fmt[i] == 'E')
6241 for (j = XVECLEN (x, i); --j >= 0; )
6242 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6243 orig_replacements);
6247 /* Change any replacements being done to *X to be done to *Y. */
6249 void
6250 move_replacements (rtx *x, rtx *y)
6252 int i;
6254 for (i = 0; i < n_replacements; i++)
6255 if (replacements[i].subreg_loc == x)
6256 replacements[i].subreg_loc = y;
6257 else if (replacements[i].where == x)
6259 replacements[i].where = y;
6260 replacements[i].subreg_loc = 0;
6264 /* If LOC was scheduled to be replaced by something, return the replacement.
6265 Otherwise, return *LOC. */
6268 find_replacement (rtx *loc)
6270 struct replacement *r;
6272 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6274 rtx reloadreg = rld[r->what].reg_rtx;
6276 if (reloadreg && r->where == loc)
6278 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6279 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6281 return reloadreg;
6283 else if (reloadreg && r->subreg_loc == loc)
6285 /* RELOADREG must be either a REG or a SUBREG.
6287 ??? Is it actually still ever a SUBREG? If so, why? */
6289 if (REG_P (reloadreg))
6290 return gen_rtx_REG (GET_MODE (*loc),
6291 (REGNO (reloadreg) +
6292 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6293 GET_MODE (SUBREG_REG (*loc)),
6294 SUBREG_BYTE (*loc),
6295 GET_MODE (*loc))));
6296 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6297 return reloadreg;
6298 else
6300 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6302 /* When working with SUBREGs the rule is that the byte
6303 offset must be a multiple of the SUBREG's mode. */
6304 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6305 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6306 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6307 final_offset);
6312 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6313 what's inside and make a new rtl if so. */
6314 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6315 || GET_CODE (*loc) == MULT)
6317 rtx x = find_replacement (&XEXP (*loc, 0));
6318 rtx y = find_replacement (&XEXP (*loc, 1));
6320 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6321 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6324 return *loc;
6327 /* Return nonzero if register in range [REGNO, ENDREGNO)
6328 appears either explicitly or implicitly in X
6329 other than being stored into (except for earlyclobber operands).
6331 References contained within the substructure at LOC do not count.
6332 LOC may be zero, meaning don't ignore anything.
6334 This is similar to refers_to_regno_p in rtlanal.c except that we
6335 look at equivalences for pseudos that didn't get hard registers. */
6337 static int
6338 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6339 rtx x, rtx *loc)
6341 int i;
6342 unsigned int r;
6343 RTX_CODE code;
6344 const char *fmt;
6346 if (x == 0)
6347 return 0;
6349 repeat:
6350 code = GET_CODE (x);
6352 switch (code)
6354 case REG:
6355 r = REGNO (x);
6357 /* If this is a pseudo, a hard register must not have been allocated.
6358 X must therefore either be a constant or be in memory. */
6359 if (r >= FIRST_PSEUDO_REGISTER)
6361 if (reg_equiv_memory_loc[r])
6362 return refers_to_regno_for_reload_p (regno, endregno,
6363 reg_equiv_memory_loc[r],
6364 (rtx*) 0);
6366 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6367 return 0;
6370 return (endregno > r
6371 && regno < r + (r < FIRST_PSEUDO_REGISTER
6372 ? hard_regno_nregs[r][GET_MODE (x)]
6373 : 1));
6375 case SUBREG:
6376 /* If this is a SUBREG of a hard reg, we can see exactly which
6377 registers are being modified. Otherwise, handle normally. */
6378 if (REG_P (SUBREG_REG (x))
6379 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6381 unsigned int inner_regno = subreg_regno (x);
6382 unsigned int inner_endregno
6383 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6384 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6386 return endregno > inner_regno && regno < inner_endregno;
6388 break;
6390 case CLOBBER:
6391 case SET:
6392 if (&SET_DEST (x) != loc
6393 /* Note setting a SUBREG counts as referring to the REG it is in for
6394 a pseudo but not for hard registers since we can
6395 treat each word individually. */
6396 && ((GET_CODE (SET_DEST (x)) == SUBREG
6397 && loc != &SUBREG_REG (SET_DEST (x))
6398 && REG_P (SUBREG_REG (SET_DEST (x)))
6399 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6400 && refers_to_regno_for_reload_p (regno, endregno,
6401 SUBREG_REG (SET_DEST (x)),
6402 loc))
6403 /* If the output is an earlyclobber operand, this is
6404 a conflict. */
6405 || ((!REG_P (SET_DEST (x))
6406 || earlyclobber_operand_p (SET_DEST (x)))
6407 && refers_to_regno_for_reload_p (regno, endregno,
6408 SET_DEST (x), loc))))
6409 return 1;
6411 if (code == CLOBBER || loc == &SET_SRC (x))
6412 return 0;
6413 x = SET_SRC (x);
6414 goto repeat;
6416 default:
6417 break;
6420 /* X does not match, so try its subexpressions. */
6422 fmt = GET_RTX_FORMAT (code);
6423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6425 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6427 if (i == 0)
6429 x = XEXP (x, 0);
6430 goto repeat;
6432 else
6433 if (refers_to_regno_for_reload_p (regno, endregno,
6434 XEXP (x, i), loc))
6435 return 1;
6437 else if (fmt[i] == 'E')
6439 int j;
6440 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6441 if (loc != &XVECEXP (x, i, j)
6442 && refers_to_regno_for_reload_p (regno, endregno,
6443 XVECEXP (x, i, j), loc))
6444 return 1;
6447 return 0;
6450 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6451 we check if any register number in X conflicts with the relevant register
6452 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6453 contains a MEM (we don't bother checking for memory addresses that can't
6454 conflict because we expect this to be a rare case.
6456 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6457 that we look at equivalences for pseudos that didn't get hard registers. */
6460 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6462 int regno, endregno;
6464 /* Overly conservative. */
6465 if (GET_CODE (x) == STRICT_LOW_PART
6466 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6467 x = XEXP (x, 0);
6469 /* If either argument is a constant, then modifying X can not affect IN. */
6470 if (CONSTANT_P (x) || CONSTANT_P (in))
6471 return 0;
6472 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6473 return refers_to_mem_for_reload_p (in);
6474 else if (GET_CODE (x) == SUBREG)
6476 regno = REGNO (SUBREG_REG (x));
6477 if (regno < FIRST_PSEUDO_REGISTER)
6478 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6479 GET_MODE (SUBREG_REG (x)),
6480 SUBREG_BYTE (x),
6481 GET_MODE (x));
6483 else if (REG_P (x))
6485 regno = REGNO (x);
6487 /* If this is a pseudo, it must not have been assigned a hard register.
6488 Therefore, it must either be in memory or be a constant. */
6490 if (regno >= FIRST_PSEUDO_REGISTER)
6492 if (reg_equiv_memory_loc[regno])
6493 return refers_to_mem_for_reload_p (in);
6494 gcc_assert (reg_equiv_constant[regno]);
6495 return 0;
6498 else if (MEM_P (x))
6499 return refers_to_mem_for_reload_p (in);
6500 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6501 || GET_CODE (x) == CC0)
6502 return reg_mentioned_p (x, in);
6503 else
6505 gcc_assert (GET_CODE (x) == PLUS);
6507 /* We actually want to know if X is mentioned somewhere inside IN.
6508 We must not say that (plus (sp) (const_int 124)) is in
6509 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6510 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6511 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6512 while (MEM_P (in))
6513 in = XEXP (in, 0);
6514 if (REG_P (in))
6515 return 0;
6516 else if (GET_CODE (in) == PLUS)
6517 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6518 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6519 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6520 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6523 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6524 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6526 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6529 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6530 registers. */
6532 static int
6533 refers_to_mem_for_reload_p (rtx x)
6535 const char *fmt;
6536 int i;
6538 if (MEM_P (x))
6539 return 1;
6541 if (REG_P (x))
6542 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6543 && reg_equiv_memory_loc[REGNO (x)]);
6545 fmt = GET_RTX_FORMAT (GET_CODE (x));
6546 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6547 if (fmt[i] == 'e'
6548 && (MEM_P (XEXP (x, i))
6549 || refers_to_mem_for_reload_p (XEXP (x, i))))
6550 return 1;
6552 return 0;
6555 /* Check the insns before INSN to see if there is a suitable register
6556 containing the same value as GOAL.
6557 If OTHER is -1, look for a register in class CLASS.
6558 Otherwise, just see if register number OTHER shares GOAL's value.
6560 Return an rtx for the register found, or zero if none is found.
6562 If RELOAD_REG_P is (short *)1,
6563 we reject any hard reg that appears in reload_reg_rtx
6564 because such a hard reg is also needed coming into this insn.
6566 If RELOAD_REG_P is any other nonzero value,
6567 it is a vector indexed by hard reg number
6568 and we reject any hard reg whose element in the vector is nonnegative
6569 as well as any that appears in reload_reg_rtx.
6571 If GOAL is zero, then GOALREG is a register number; we look
6572 for an equivalent for that register.
6574 MODE is the machine mode of the value we want an equivalence for.
6575 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6577 This function is used by jump.c as well as in the reload pass.
6579 If GOAL is the sum of the stack pointer and a constant, we treat it
6580 as if it were a constant except that sp is required to be unchanging. */
6583 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6584 short *reload_reg_p, int goalreg, enum machine_mode mode)
6586 rtx p = insn;
6587 rtx goaltry, valtry, value, where;
6588 rtx pat;
6589 int regno = -1;
6590 int valueno;
6591 int goal_mem = 0;
6592 int goal_const = 0;
6593 int goal_mem_addr_varies = 0;
6594 int need_stable_sp = 0;
6595 int nregs;
6596 int valuenregs;
6597 int num = 0;
6599 if (goal == 0)
6600 regno = goalreg;
6601 else if (REG_P (goal))
6602 regno = REGNO (goal);
6603 else if (MEM_P (goal))
6605 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6606 if (MEM_VOLATILE_P (goal))
6607 return 0;
6608 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6609 return 0;
6610 /* An address with side effects must be reexecuted. */
6611 switch (code)
6613 case POST_INC:
6614 case PRE_INC:
6615 case POST_DEC:
6616 case PRE_DEC:
6617 case POST_MODIFY:
6618 case PRE_MODIFY:
6619 return 0;
6620 default:
6621 break;
6623 goal_mem = 1;
6625 else if (CONSTANT_P (goal))
6626 goal_const = 1;
6627 else if (GET_CODE (goal) == PLUS
6628 && XEXP (goal, 0) == stack_pointer_rtx
6629 && CONSTANT_P (XEXP (goal, 1)))
6630 goal_const = need_stable_sp = 1;
6631 else if (GET_CODE (goal) == PLUS
6632 && XEXP (goal, 0) == frame_pointer_rtx
6633 && CONSTANT_P (XEXP (goal, 1)))
6634 goal_const = 1;
6635 else
6636 return 0;
6638 num = 0;
6639 /* Scan insns back from INSN, looking for one that copies
6640 a value into or out of GOAL.
6641 Stop and give up if we reach a label. */
6643 while (1)
6645 p = PREV_INSN (p);
6646 num++;
6647 if (p == 0 || LABEL_P (p)
6648 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6649 return 0;
6651 if (NONJUMP_INSN_P (p)
6652 /* If we don't want spill regs ... */
6653 && (! (reload_reg_p != 0
6654 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6655 /* ... then ignore insns introduced by reload; they aren't
6656 useful and can cause results in reload_as_needed to be
6657 different from what they were when calculating the need for
6658 spills. If we notice an input-reload insn here, we will
6659 reject it below, but it might hide a usable equivalent.
6660 That makes bad code. It may even fail: perhaps no reg was
6661 spilled for this insn because it was assumed we would find
6662 that equivalent. */
6663 || INSN_UID (p) < reload_first_uid))
6665 rtx tem;
6666 pat = single_set (p);
6668 /* First check for something that sets some reg equal to GOAL. */
6669 if (pat != 0
6670 && ((regno >= 0
6671 && true_regnum (SET_SRC (pat)) == regno
6672 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6674 (regno >= 0
6675 && true_regnum (SET_DEST (pat)) == regno
6676 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6678 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6679 /* When looking for stack pointer + const,
6680 make sure we don't use a stack adjust. */
6681 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6682 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6683 || (goal_mem
6684 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6685 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6686 || (goal_mem
6687 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6688 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6689 /* If we are looking for a constant,
6690 and something equivalent to that constant was copied
6691 into a reg, we can use that reg. */
6692 || (goal_const && REG_NOTES (p) != 0
6693 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6694 && ((rtx_equal_p (XEXP (tem, 0), goal)
6695 && (valueno
6696 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6697 || (REG_P (SET_DEST (pat))
6698 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6699 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6700 && GET_CODE (goal) == CONST_INT
6701 && 0 != (goaltry
6702 = operand_subword (XEXP (tem, 0), 0, 0,
6703 VOIDmode))
6704 && rtx_equal_p (goal, goaltry)
6705 && (valtry
6706 = operand_subword (SET_DEST (pat), 0, 0,
6707 VOIDmode))
6708 && (valueno = true_regnum (valtry)) >= 0)))
6709 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6710 NULL_RTX))
6711 && REG_P (SET_DEST (pat))
6712 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6713 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6714 && GET_CODE (goal) == CONST_INT
6715 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6716 VOIDmode))
6717 && rtx_equal_p (goal, goaltry)
6718 && (valtry
6719 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6720 && (valueno = true_regnum (valtry)) >= 0)))
6722 if (other >= 0)
6724 if (valueno != other)
6725 continue;
6727 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6728 continue;
6729 else
6731 int i;
6733 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6734 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6735 valueno + i))
6736 break;
6737 if (i >= 0)
6738 continue;
6740 value = valtry;
6741 where = p;
6742 break;
6747 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6748 (or copying VALUE into GOAL, if GOAL is also a register).
6749 Now verify that VALUE is really valid. */
6751 /* VALUENO is the register number of VALUE; a hard register. */
6753 /* Don't try to re-use something that is killed in this insn. We want
6754 to be able to trust REG_UNUSED notes. */
6755 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6756 return 0;
6758 /* If we propose to get the value from the stack pointer or if GOAL is
6759 a MEM based on the stack pointer, we need a stable SP. */
6760 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6761 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6762 goal)))
6763 need_stable_sp = 1;
6765 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6766 if (GET_MODE (value) != mode)
6767 return 0;
6769 /* Reject VALUE if it was loaded from GOAL
6770 and is also a register that appears in the address of GOAL. */
6772 if (goal_mem && value == SET_DEST (single_set (where))
6773 && refers_to_regno_for_reload_p (valueno,
6774 (valueno
6775 + hard_regno_nregs[valueno][mode]),
6776 goal, (rtx*) 0))
6777 return 0;
6779 /* Reject registers that overlap GOAL. */
6781 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6782 nregs = hard_regno_nregs[regno][mode];
6783 else
6784 nregs = 1;
6785 valuenregs = hard_regno_nregs[valueno][mode];
6787 if (!goal_mem && !goal_const
6788 && regno + nregs > valueno && regno < valueno + valuenregs)
6789 return 0;
6791 /* Reject VALUE if it is one of the regs reserved for reloads.
6792 Reload1 knows how to reuse them anyway, and it would get
6793 confused if we allocated one without its knowledge.
6794 (Now that insns introduced by reload are ignored above,
6795 this case shouldn't happen, but I'm not positive.) */
6797 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6799 int i;
6800 for (i = 0; i < valuenregs; ++i)
6801 if (reload_reg_p[valueno + i] >= 0)
6802 return 0;
6805 /* Reject VALUE if it is a register being used for an input reload
6806 even if it is not one of those reserved. */
6808 if (reload_reg_p != 0)
6810 int i;
6811 for (i = 0; i < n_reloads; i++)
6812 if (rld[i].reg_rtx != 0 && rld[i].in)
6814 int regno1 = REGNO (rld[i].reg_rtx);
6815 int nregs1 = hard_regno_nregs[regno1]
6816 [GET_MODE (rld[i].reg_rtx)];
6817 if (regno1 < valueno + valuenregs
6818 && regno1 + nregs1 > valueno)
6819 return 0;
6823 if (goal_mem)
6824 /* We must treat frame pointer as varying here,
6825 since it can vary--in a nonlocal goto as generated by expand_goto. */
6826 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6828 /* Now verify that the values of GOAL and VALUE remain unaltered
6829 until INSN is reached. */
6831 p = insn;
6832 while (1)
6834 p = PREV_INSN (p);
6835 if (p == where)
6836 return value;
6838 /* Don't trust the conversion past a function call
6839 if either of the two is in a call-clobbered register, or memory. */
6840 if (CALL_P (p))
6842 int i;
6844 if (goal_mem || need_stable_sp)
6845 return 0;
6847 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6848 for (i = 0; i < nregs; ++i)
6849 if (call_used_regs[regno + i]
6850 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6851 return 0;
6853 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6854 for (i = 0; i < valuenregs; ++i)
6855 if (call_used_regs[valueno + i]
6856 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6857 return 0;
6860 if (INSN_P (p))
6862 pat = PATTERN (p);
6864 /* Watch out for unspec_volatile, and volatile asms. */
6865 if (volatile_insn_p (pat))
6866 return 0;
6868 /* If this insn P stores in either GOAL or VALUE, return 0.
6869 If GOAL is a memory ref and this insn writes memory, return 0.
6870 If GOAL is a memory ref and its address is not constant,
6871 and this insn P changes a register used in GOAL, return 0. */
6873 if (GET_CODE (pat) == COND_EXEC)
6874 pat = COND_EXEC_CODE (pat);
6875 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6877 rtx dest = SET_DEST (pat);
6878 while (GET_CODE (dest) == SUBREG
6879 || GET_CODE (dest) == ZERO_EXTRACT
6880 || GET_CODE (dest) == STRICT_LOW_PART)
6881 dest = XEXP (dest, 0);
6882 if (REG_P (dest))
6884 int xregno = REGNO (dest);
6885 int xnregs;
6886 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6887 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6888 else
6889 xnregs = 1;
6890 if (xregno < regno + nregs && xregno + xnregs > regno)
6891 return 0;
6892 if (xregno < valueno + valuenregs
6893 && xregno + xnregs > valueno)
6894 return 0;
6895 if (goal_mem_addr_varies
6896 && reg_overlap_mentioned_for_reload_p (dest, goal))
6897 return 0;
6898 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6899 return 0;
6901 else if (goal_mem && MEM_P (dest)
6902 && ! push_operand (dest, GET_MODE (dest)))
6903 return 0;
6904 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6905 && reg_equiv_memory_loc[regno] != 0)
6906 return 0;
6907 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6908 return 0;
6910 else if (GET_CODE (pat) == PARALLEL)
6912 int i;
6913 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6915 rtx v1 = XVECEXP (pat, 0, i);
6916 if (GET_CODE (v1) == COND_EXEC)
6917 v1 = COND_EXEC_CODE (v1);
6918 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6920 rtx dest = SET_DEST (v1);
6921 while (GET_CODE (dest) == SUBREG
6922 || GET_CODE (dest) == ZERO_EXTRACT
6923 || GET_CODE (dest) == STRICT_LOW_PART)
6924 dest = XEXP (dest, 0);
6925 if (REG_P (dest))
6927 int xregno = REGNO (dest);
6928 int xnregs;
6929 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6930 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6931 else
6932 xnregs = 1;
6933 if (xregno < regno + nregs
6934 && xregno + xnregs > regno)
6935 return 0;
6936 if (xregno < valueno + valuenregs
6937 && xregno + xnregs > valueno)
6938 return 0;
6939 if (goal_mem_addr_varies
6940 && reg_overlap_mentioned_for_reload_p (dest,
6941 goal))
6942 return 0;
6943 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6944 return 0;
6946 else if (goal_mem && MEM_P (dest)
6947 && ! push_operand (dest, GET_MODE (dest)))
6948 return 0;
6949 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6950 && reg_equiv_memory_loc[regno] != 0)
6951 return 0;
6952 else if (need_stable_sp
6953 && push_operand (dest, GET_MODE (dest)))
6954 return 0;
6959 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6961 rtx link;
6963 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6964 link = XEXP (link, 1))
6966 pat = XEXP (link, 0);
6967 if (GET_CODE (pat) == CLOBBER)
6969 rtx dest = SET_DEST (pat);
6971 if (REG_P (dest))
6973 int xregno = REGNO (dest);
6974 int xnregs
6975 = hard_regno_nregs[xregno][GET_MODE (dest)];
6977 if (xregno < regno + nregs
6978 && xregno + xnregs > regno)
6979 return 0;
6980 else if (xregno < valueno + valuenregs
6981 && xregno + xnregs > valueno)
6982 return 0;
6983 else if (goal_mem_addr_varies
6984 && reg_overlap_mentioned_for_reload_p (dest,
6985 goal))
6986 return 0;
6989 else if (goal_mem && MEM_P (dest)
6990 && ! push_operand (dest, GET_MODE (dest)))
6991 return 0;
6992 else if (need_stable_sp
6993 && push_operand (dest, GET_MODE (dest)))
6994 return 0;
6999 #ifdef AUTO_INC_DEC
7000 /* If this insn auto-increments or auto-decrements
7001 either regno or valueno, return 0 now.
7002 If GOAL is a memory ref and its address is not constant,
7003 and this insn P increments a register used in GOAL, return 0. */
7005 rtx link;
7007 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7008 if (REG_NOTE_KIND (link) == REG_INC
7009 && REG_P (XEXP (link, 0)))
7011 int incno = REGNO (XEXP (link, 0));
7012 if (incno < regno + nregs && incno >= regno)
7013 return 0;
7014 if (incno < valueno + valuenregs && incno >= valueno)
7015 return 0;
7016 if (goal_mem_addr_varies
7017 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7018 goal))
7019 return 0;
7022 #endif
7027 /* Find a place where INCED appears in an increment or decrement operator
7028 within X, and return the amount INCED is incremented or decremented by.
7029 The value is always positive. */
7031 static int
7032 find_inc_amount (rtx x, rtx inced)
7034 enum rtx_code code = GET_CODE (x);
7035 const char *fmt;
7036 int i;
7038 if (code == MEM)
7040 rtx addr = XEXP (x, 0);
7041 if ((GET_CODE (addr) == PRE_DEC
7042 || GET_CODE (addr) == POST_DEC
7043 || GET_CODE (addr) == PRE_INC
7044 || GET_CODE (addr) == POST_INC)
7045 && XEXP (addr, 0) == inced)
7046 return GET_MODE_SIZE (GET_MODE (x));
7047 else if ((GET_CODE (addr) == PRE_MODIFY
7048 || GET_CODE (addr) == POST_MODIFY)
7049 && GET_CODE (XEXP (addr, 1)) == PLUS
7050 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7051 && XEXP (addr, 0) == inced
7052 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
7054 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7055 return i < 0 ? -i : i;
7059 fmt = GET_RTX_FORMAT (code);
7060 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7062 if (fmt[i] == 'e')
7064 int tem = find_inc_amount (XEXP (x, i), inced);
7065 if (tem != 0)
7066 return tem;
7068 if (fmt[i] == 'E')
7070 int j;
7071 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7073 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7074 if (tem != 0)
7075 return tem;
7080 return 0;
7083 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7084 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7086 #ifdef AUTO_INC_DEC
7087 static int
7088 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7089 rtx insn)
7091 rtx link;
7093 gcc_assert (insn);
7095 if (! INSN_P (insn))
7096 return 0;
7098 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7099 if (REG_NOTE_KIND (link) == REG_INC)
7101 unsigned int test = (int) REGNO (XEXP (link, 0));
7102 if (test >= regno && test < endregno)
7103 return 1;
7105 return 0;
7107 #else
7109 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7111 #endif
7113 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7114 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7115 REG_INC. REGNO must refer to a hard register. */
7118 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7119 int sets)
7121 unsigned int nregs, endregno;
7123 /* regno must be a hard register. */
7124 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7126 nregs = hard_regno_nregs[regno][mode];
7127 endregno = regno + nregs;
7129 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7130 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7131 && REG_P (XEXP (PATTERN (insn), 0)))
7133 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7135 return test >= regno && test < endregno;
7138 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7139 return 1;
7141 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7143 int i = XVECLEN (PATTERN (insn), 0) - 1;
7145 for (; i >= 0; i--)
7147 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7148 if ((GET_CODE (elt) == CLOBBER
7149 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7150 && REG_P (XEXP (elt, 0)))
7152 unsigned int test = REGNO (XEXP (elt, 0));
7154 if (test >= regno && test < endregno)
7155 return 1;
7157 if (sets == 2
7158 && reg_inc_found_and_valid_p (regno, endregno, elt))
7159 return 1;
7163 return 0;
7166 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7168 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7170 int regno;
7172 if (GET_MODE (reloadreg) == mode)
7173 return reloadreg;
7175 regno = REGNO (reloadreg);
7177 if (WORDS_BIG_ENDIAN)
7178 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7179 - (int) hard_regno_nregs[regno][mode];
7181 return gen_rtx_REG (mode, regno);
7184 static const char *const reload_when_needed_name[] =
7186 "RELOAD_FOR_INPUT",
7187 "RELOAD_FOR_OUTPUT",
7188 "RELOAD_FOR_INSN",
7189 "RELOAD_FOR_INPUT_ADDRESS",
7190 "RELOAD_FOR_INPADDR_ADDRESS",
7191 "RELOAD_FOR_OUTPUT_ADDRESS",
7192 "RELOAD_FOR_OUTADDR_ADDRESS",
7193 "RELOAD_FOR_OPERAND_ADDRESS",
7194 "RELOAD_FOR_OPADDR_ADDR",
7195 "RELOAD_OTHER",
7196 "RELOAD_FOR_OTHER_ADDRESS"
7199 /* These functions are used to print the variables set by 'find_reloads' */
7201 void
7202 debug_reload_to_stream (FILE *f)
7204 int r;
7205 const char *prefix;
7207 if (! f)
7208 f = stderr;
7209 for (r = 0; r < n_reloads; r++)
7211 fprintf (f, "Reload %d: ", r);
7213 if (rld[r].in != 0)
7215 fprintf (f, "reload_in (%s) = ",
7216 GET_MODE_NAME (rld[r].inmode));
7217 print_inline_rtx (f, rld[r].in, 24);
7218 fprintf (f, "\n\t");
7221 if (rld[r].out != 0)
7223 fprintf (f, "reload_out (%s) = ",
7224 GET_MODE_NAME (rld[r].outmode));
7225 print_inline_rtx (f, rld[r].out, 24);
7226 fprintf (f, "\n\t");
7229 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7231 fprintf (f, "%s (opnum = %d)",
7232 reload_when_needed_name[(int) rld[r].when_needed],
7233 rld[r].opnum);
7235 if (rld[r].optional)
7236 fprintf (f, ", optional");
7238 if (rld[r].nongroup)
7239 fprintf (f, ", nongroup");
7241 if (rld[r].inc != 0)
7242 fprintf (f, ", inc by %d", rld[r].inc);
7244 if (rld[r].nocombine)
7245 fprintf (f, ", can't combine");
7247 if (rld[r].secondary_p)
7248 fprintf (f, ", secondary_reload_p");
7250 if (rld[r].in_reg != 0)
7252 fprintf (f, "\n\treload_in_reg: ");
7253 print_inline_rtx (f, rld[r].in_reg, 24);
7256 if (rld[r].out_reg != 0)
7258 fprintf (f, "\n\treload_out_reg: ");
7259 print_inline_rtx (f, rld[r].out_reg, 24);
7262 if (rld[r].reg_rtx != 0)
7264 fprintf (f, "\n\treload_reg_rtx: ");
7265 print_inline_rtx (f, rld[r].reg_rtx, 24);
7268 prefix = "\n\t";
7269 if (rld[r].secondary_in_reload != -1)
7271 fprintf (f, "%ssecondary_in_reload = %d",
7272 prefix, rld[r].secondary_in_reload);
7273 prefix = ", ";
7276 if (rld[r].secondary_out_reload != -1)
7277 fprintf (f, "%ssecondary_out_reload = %d\n",
7278 prefix, rld[r].secondary_out_reload);
7280 prefix = "\n\t";
7281 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7283 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7284 insn_data[rld[r].secondary_in_icode].name);
7285 prefix = ", ";
7288 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7289 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7290 insn_data[rld[r].secondary_out_icode].name);
7292 fprintf (f, "\n");
7296 void
7297 debug_reload (void)
7299 debug_reload_to_stream (stderr);