1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
46 /* This loop nest code generation is based on non-singular matrix
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
63 for i = 1 to 3, step 1 is a dense iteration space.
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
118 static bool perfect_nestify (struct loops
*,
119 struct loop
*, VEC(tree
,heap
) *,
120 VEC(tree
,heap
) *, VEC(int,heap
) *,
122 /* Lattice stuff that is internal to the code generation algorithm. */
126 /* Lattice base matrix. */
128 /* Lattice dimension. */
130 /* Origin vector for the coefficients. */
131 lambda_vector origin
;
132 /* Origin matrix for the invariants. */
133 lambda_matrix origin_invariants
;
134 /* Number of invariants. */
138 #define LATTICE_BASE(T) ((T)->base)
139 #define LATTICE_DIMENSION(T) ((T)->dimension)
140 #define LATTICE_ORIGIN(T) ((T)->origin)
141 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
142 #define LATTICE_INVARIANTS(T) ((T)->invariants)
144 static bool lle_equal (lambda_linear_expression
, lambda_linear_expression
,
146 static lambda_lattice
lambda_lattice_new (int, int);
147 static lambda_lattice
lambda_lattice_compute_base (lambda_loopnest
);
149 static tree
find_induction_var_from_exit_cond (struct loop
*);
150 static bool can_convert_to_perfect_nest (struct loop
*);
152 /* Create a new lambda body vector. */
155 lambda_body_vector_new (int size
)
157 lambda_body_vector ret
;
159 ret
= ggc_alloc (sizeof (*ret
));
160 LBV_COEFFICIENTS (ret
) = lambda_vector_new (size
);
161 LBV_SIZE (ret
) = size
;
162 LBV_DENOMINATOR (ret
) = 1;
166 /* Compute the new coefficients for the vector based on the
167 *inverse* of the transformation matrix. */
170 lambda_body_vector_compute_new (lambda_trans_matrix transform
,
171 lambda_body_vector vect
)
173 lambda_body_vector temp
;
176 /* Make sure the matrix is square. */
177 gcc_assert (LTM_ROWSIZE (transform
) == LTM_COLSIZE (transform
));
179 depth
= LTM_ROWSIZE (transform
);
181 temp
= lambda_body_vector_new (depth
);
182 LBV_DENOMINATOR (temp
) =
183 LBV_DENOMINATOR (vect
) * LTM_DENOMINATOR (transform
);
184 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect
), depth
,
185 LTM_MATRIX (transform
), depth
,
186 LBV_COEFFICIENTS (temp
));
187 LBV_SIZE (temp
) = LBV_SIZE (vect
);
191 /* Print out a lambda body vector. */
194 print_lambda_body_vector (FILE * outfile
, lambda_body_vector body
)
196 print_lambda_vector (outfile
, LBV_COEFFICIENTS (body
), LBV_SIZE (body
));
199 /* Return TRUE if two linear expressions are equal. */
202 lle_equal (lambda_linear_expression lle1
, lambda_linear_expression lle2
,
203 int depth
, int invariants
)
207 if (lle1
== NULL
|| lle2
== NULL
)
209 if (LLE_CONSTANT (lle1
) != LLE_CONSTANT (lle2
))
211 if (LLE_DENOMINATOR (lle1
) != LLE_DENOMINATOR (lle2
))
213 for (i
= 0; i
< depth
; i
++)
214 if (LLE_COEFFICIENTS (lle1
)[i
] != LLE_COEFFICIENTS (lle2
)[i
])
216 for (i
= 0; i
< invariants
; i
++)
217 if (LLE_INVARIANT_COEFFICIENTS (lle1
)[i
] !=
218 LLE_INVARIANT_COEFFICIENTS (lle2
)[i
])
223 /* Create a new linear expression with dimension DIM, and total number
224 of invariants INVARIANTS. */
226 lambda_linear_expression
227 lambda_linear_expression_new (int dim
, int invariants
)
229 lambda_linear_expression ret
;
231 ret
= ggc_alloc_cleared (sizeof (*ret
));
233 LLE_COEFFICIENTS (ret
) = lambda_vector_new (dim
);
234 LLE_CONSTANT (ret
) = 0;
235 LLE_INVARIANT_COEFFICIENTS (ret
) = lambda_vector_new (invariants
);
236 LLE_DENOMINATOR (ret
) = 1;
237 LLE_NEXT (ret
) = NULL
;
242 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
243 The starting letter used for variable names is START. */
246 print_linear_expression (FILE * outfile
, lambda_vector expr
, int size
,
251 for (i
= 0; i
< size
; i
++)
258 fprintf (outfile
, "-");
261 else if (expr
[i
] > 0)
262 fprintf (outfile
, " + ");
264 fprintf (outfile
, " - ");
265 if (abs (expr
[i
]) == 1)
266 fprintf (outfile
, "%c", start
+ i
);
268 fprintf (outfile
, "%d%c", abs (expr
[i
]), start
+ i
);
273 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
274 depth/number of coefficients is given by DEPTH, the number of invariants is
275 given by INVARIANTS, and the character to start variable names with is given
279 print_lambda_linear_expression (FILE * outfile
,
280 lambda_linear_expression expr
,
281 int depth
, int invariants
, char start
)
283 fprintf (outfile
, "\tLinear expression: ");
284 print_linear_expression (outfile
, LLE_COEFFICIENTS (expr
), depth
, start
);
285 fprintf (outfile
, " constant: %d ", LLE_CONSTANT (expr
));
286 fprintf (outfile
, " invariants: ");
287 print_linear_expression (outfile
, LLE_INVARIANT_COEFFICIENTS (expr
),
289 fprintf (outfile
, " denominator: %d\n", LLE_DENOMINATOR (expr
));
292 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
293 coefficients is given by DEPTH, the number of invariants is
294 given by INVARIANTS, and the character to start variable names with is given
298 print_lambda_loop (FILE * outfile
, lambda_loop loop
, int depth
,
299 int invariants
, char start
)
302 lambda_linear_expression expr
;
306 expr
= LL_LINEAR_OFFSET (loop
);
307 step
= LL_STEP (loop
);
308 fprintf (outfile
, " step size = %d \n", step
);
312 fprintf (outfile
, " linear offset: \n");
313 print_lambda_linear_expression (outfile
, expr
, depth
, invariants
,
317 fprintf (outfile
, " lower bound: \n");
318 for (expr
= LL_LOWER_BOUND (loop
); expr
!= NULL
; expr
= LLE_NEXT (expr
))
319 print_lambda_linear_expression (outfile
, expr
, depth
, invariants
, start
);
320 fprintf (outfile
, " upper bound: \n");
321 for (expr
= LL_UPPER_BOUND (loop
); expr
!= NULL
; expr
= LLE_NEXT (expr
))
322 print_lambda_linear_expression (outfile
, expr
, depth
, invariants
, start
);
325 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
326 number of invariants. */
329 lambda_loopnest_new (int depth
, int invariants
)
332 ret
= ggc_alloc (sizeof (*ret
));
334 LN_LOOPS (ret
) = ggc_alloc_cleared (depth
* sizeof (lambda_loop
));
335 LN_DEPTH (ret
) = depth
;
336 LN_INVARIANTS (ret
) = invariants
;
341 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
342 character to use for loop names is given by START. */
345 print_lambda_loopnest (FILE * outfile
, lambda_loopnest nest
, char start
)
348 for (i
= 0; i
< LN_DEPTH (nest
); i
++)
350 fprintf (outfile
, "Loop %c\n", start
+ i
);
351 print_lambda_loop (outfile
, LN_LOOPS (nest
)[i
], LN_DEPTH (nest
),
352 LN_INVARIANTS (nest
), 'i');
353 fprintf (outfile
, "\n");
357 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
360 static lambda_lattice
361 lambda_lattice_new (int depth
, int invariants
)
364 ret
= ggc_alloc (sizeof (*ret
));
365 LATTICE_BASE (ret
) = lambda_matrix_new (depth
, depth
);
366 LATTICE_ORIGIN (ret
) = lambda_vector_new (depth
);
367 LATTICE_ORIGIN_INVARIANTS (ret
) = lambda_matrix_new (depth
, invariants
);
368 LATTICE_DIMENSION (ret
) = depth
;
369 LATTICE_INVARIANTS (ret
) = invariants
;
373 /* Compute the lattice base for NEST. The lattice base is essentially a
374 non-singular transform from a dense base space to a sparse iteration space.
375 We use it so that we don't have to specially handle the case of a sparse
376 iteration space in other parts of the algorithm. As a result, this routine
377 only does something interesting (IE produce a matrix that isn't the
378 identity matrix) if NEST is a sparse space. */
380 static lambda_lattice
381 lambda_lattice_compute_base (lambda_loopnest nest
)
384 int depth
, invariants
;
389 lambda_linear_expression expression
;
391 depth
= LN_DEPTH (nest
);
392 invariants
= LN_INVARIANTS (nest
);
394 ret
= lambda_lattice_new (depth
, invariants
);
395 base
= LATTICE_BASE (ret
);
396 for (i
= 0; i
< depth
; i
++)
398 loop
= LN_LOOPS (nest
)[i
];
400 step
= LL_STEP (loop
);
401 /* If we have a step of 1, then the base is one, and the
402 origin and invariant coefficients are 0. */
405 for (j
= 0; j
< depth
; j
++)
408 LATTICE_ORIGIN (ret
)[i
] = 0;
409 for (j
= 0; j
< invariants
; j
++)
410 LATTICE_ORIGIN_INVARIANTS (ret
)[i
][j
] = 0;
414 /* Otherwise, we need the lower bound expression (which must
415 be an affine function) to determine the base. */
416 expression
= LL_LOWER_BOUND (loop
);
417 gcc_assert (expression
&& !LLE_NEXT (expression
)
418 && LLE_DENOMINATOR (expression
) == 1);
420 /* The lower triangular portion of the base is going to be the
421 coefficient times the step */
422 for (j
= 0; j
< i
; j
++)
423 base
[i
][j
] = LLE_COEFFICIENTS (expression
)[j
]
424 * LL_STEP (LN_LOOPS (nest
)[j
]);
426 for (j
= i
+ 1; j
< depth
; j
++)
429 /* Origin for this loop is the constant of the lower bound
431 LATTICE_ORIGIN (ret
)[i
] = LLE_CONSTANT (expression
);
433 /* Coefficient for the invariants are equal to the invariant
434 coefficients in the expression. */
435 for (j
= 0; j
< invariants
; j
++)
436 LATTICE_ORIGIN_INVARIANTS (ret
)[i
][j
] =
437 LLE_INVARIANT_COEFFICIENTS (expression
)[j
];
443 /* Compute the least common multiple of two numbers A and B . */
448 return (abs (a
) * abs (b
) / gcd (a
, b
));
451 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
453 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
454 it is easy to calculate the answer and bounds.
455 A sketch of how it works:
456 Given a system of linear inequalities, ai * xj >= bk, you can always
457 rewrite the constraints so they are all of the form
458 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
459 in b1 ... bk, and some a in a1...ai)
460 You can then eliminate this x from the non-constant inequalities by
461 rewriting these as a <= b, x >= constant, and delete the x variable.
462 You can then repeat this for any remaining x variables, and then we have
463 an easy to use variable <= constant (or no variables at all) form that we
464 can construct our bounds from.
466 In our case, each time we eliminate, we construct part of the bound from
467 the ith variable, then delete the ith variable.
469 Remember the constant are in our vector a, our coefficient matrix is A,
470 and our invariant coefficient matrix is B.
472 SIZE is the size of the matrices being passed.
473 DEPTH is the loop nest depth.
474 INVARIANTS is the number of loop invariants.
475 A, B, and a are the coefficient matrix, invariant coefficient, and a
476 vector of constants, respectively. */
478 static lambda_loopnest
479 compute_nest_using_fourier_motzkin (int size
,
487 int multiple
, f1
, f2
;
489 lambda_linear_expression expression
;
491 lambda_loopnest auxillary_nest
;
492 lambda_matrix swapmatrix
, A1
, B1
;
493 lambda_vector swapvector
, a1
;
496 A1
= lambda_matrix_new (128, depth
);
497 B1
= lambda_matrix_new (128, invariants
);
498 a1
= lambda_vector_new (128);
500 auxillary_nest
= lambda_loopnest_new (depth
, invariants
);
502 for (i
= depth
- 1; i
>= 0; i
--)
504 loop
= lambda_loop_new ();
505 LN_LOOPS (auxillary_nest
)[i
] = loop
;
508 for (j
= 0; j
< size
; j
++)
512 /* Any linear expression in the matrix with a coefficient less
513 than 0 becomes part of the new lower bound. */
514 expression
= lambda_linear_expression_new (depth
, invariants
);
516 for (k
= 0; k
< i
; k
++)
517 LLE_COEFFICIENTS (expression
)[k
] = A
[j
][k
];
519 for (k
= 0; k
< invariants
; k
++)
520 LLE_INVARIANT_COEFFICIENTS (expression
)[k
] = -1 * B
[j
][k
];
522 LLE_DENOMINATOR (expression
) = -1 * A
[j
][i
];
523 LLE_CONSTANT (expression
) = -1 * a
[j
];
525 /* Ignore if identical to the existing lower bound. */
526 if (!lle_equal (LL_LOWER_BOUND (loop
),
527 expression
, depth
, invariants
))
529 LLE_NEXT (expression
) = LL_LOWER_BOUND (loop
);
530 LL_LOWER_BOUND (loop
) = expression
;
534 else if (A
[j
][i
] > 0)
536 /* Any linear expression with a coefficient greater than 0
537 becomes part of the new upper bound. */
538 expression
= lambda_linear_expression_new (depth
, invariants
);
539 for (k
= 0; k
< i
; k
++)
540 LLE_COEFFICIENTS (expression
)[k
] = -1 * A
[j
][k
];
542 for (k
= 0; k
< invariants
; k
++)
543 LLE_INVARIANT_COEFFICIENTS (expression
)[k
] = B
[j
][k
];
545 LLE_DENOMINATOR (expression
) = A
[j
][i
];
546 LLE_CONSTANT (expression
) = a
[j
];
548 /* Ignore if identical to the existing upper bound. */
549 if (!lle_equal (LL_UPPER_BOUND (loop
),
550 expression
, depth
, invariants
))
552 LLE_NEXT (expression
) = LL_UPPER_BOUND (loop
);
553 LL_UPPER_BOUND (loop
) = expression
;
559 /* This portion creates a new system of linear inequalities by deleting
560 the i'th variable, reducing the system by one variable. */
562 for (j
= 0; j
< size
; j
++)
564 /* If the coefficient for the i'th variable is 0, then we can just
565 eliminate the variable straightaway. Otherwise, we have to
566 multiply through by the coefficients we are eliminating. */
569 lambda_vector_copy (A
[j
], A1
[newsize
], depth
);
570 lambda_vector_copy (B
[j
], B1
[newsize
], invariants
);
574 else if (A
[j
][i
] > 0)
576 for (k
= 0; k
< size
; k
++)
580 multiple
= lcm (A
[j
][i
], A
[k
][i
]);
581 f1
= multiple
/ A
[j
][i
];
582 f2
= -1 * multiple
/ A
[k
][i
];
584 lambda_vector_add_mc (A
[j
], f1
, A
[k
], f2
,
586 lambda_vector_add_mc (B
[j
], f1
, B
[k
], f2
,
587 B1
[newsize
], invariants
);
588 a1
[newsize
] = f1
* a
[j
] + f2
* a
[k
];
610 return auxillary_nest
;
613 /* Compute the loop bounds for the auxiliary space NEST.
614 Input system used is Ax <= b. TRANS is the unimodular transformation.
615 Given the original nest, this function will
616 1. Convert the nest into matrix form, which consists of a matrix for the
617 coefficients, a matrix for the
618 invariant coefficients, and a vector for the constants.
619 2. Use the matrix form to calculate the lattice base for the nest (which is
621 3. Compose the dense space transform with the user specified transform, to
622 get a transform we can easily calculate transformed bounds for.
623 4. Multiply the composed transformation matrix times the matrix form of the
625 5. Transform the newly created matrix (from step 4) back into a loop nest
626 using Fourier-Motzkin elimination to figure out the bounds. */
628 static lambda_loopnest
629 lambda_compute_auxillary_space (lambda_loopnest nest
,
630 lambda_trans_matrix trans
)
632 lambda_matrix A
, B
, A1
, B1
;
634 lambda_matrix invertedtrans
;
635 int depth
, invariants
, size
;
638 lambda_linear_expression expression
;
639 lambda_lattice lattice
;
641 depth
= LN_DEPTH (nest
);
642 invariants
= LN_INVARIANTS (nest
);
644 /* Unfortunately, we can't know the number of constraints we'll have
645 ahead of time, but this should be enough even in ridiculous loop nest
646 cases. We must not go over this limit. */
647 A
= lambda_matrix_new (128, depth
);
648 B
= lambda_matrix_new (128, invariants
);
649 a
= lambda_vector_new (128);
651 A1
= lambda_matrix_new (128, depth
);
652 B1
= lambda_matrix_new (128, invariants
);
653 a1
= lambda_vector_new (128);
655 /* Store the bounds in the equation matrix A, constant vector a, and
656 invariant matrix B, so that we have Ax <= a + B.
657 This requires a little equation rearranging so that everything is on the
658 correct side of the inequality. */
660 for (i
= 0; i
< depth
; i
++)
662 loop
= LN_LOOPS (nest
)[i
];
664 /* First we do the lower bound. */
665 if (LL_STEP (loop
) > 0)
666 expression
= LL_LOWER_BOUND (loop
);
668 expression
= LL_UPPER_BOUND (loop
);
670 for (; expression
!= NULL
; expression
= LLE_NEXT (expression
))
672 /* Fill in the coefficient. */
673 for (j
= 0; j
< i
; j
++)
674 A
[size
][j
] = LLE_COEFFICIENTS (expression
)[j
];
676 /* And the invariant coefficient. */
677 for (j
= 0; j
< invariants
; j
++)
678 B
[size
][j
] = LLE_INVARIANT_COEFFICIENTS (expression
)[j
];
680 /* And the constant. */
681 a
[size
] = LLE_CONSTANT (expression
);
683 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
684 constants and single variables on */
685 A
[size
][i
] = -1 * LLE_DENOMINATOR (expression
);
687 for (j
= 0; j
< invariants
; j
++)
691 /* Need to increase matrix sizes above. */
692 gcc_assert (size
<= 127);
696 /* Then do the exact same thing for the upper bounds. */
697 if (LL_STEP (loop
) > 0)
698 expression
= LL_UPPER_BOUND (loop
);
700 expression
= LL_LOWER_BOUND (loop
);
702 for (; expression
!= NULL
; expression
= LLE_NEXT (expression
))
704 /* Fill in the coefficient. */
705 for (j
= 0; j
< i
; j
++)
706 A
[size
][j
] = LLE_COEFFICIENTS (expression
)[j
];
708 /* And the invariant coefficient. */
709 for (j
= 0; j
< invariants
; j
++)
710 B
[size
][j
] = LLE_INVARIANT_COEFFICIENTS (expression
)[j
];
712 /* And the constant. */
713 a
[size
] = LLE_CONSTANT (expression
);
715 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
716 for (j
= 0; j
< i
; j
++)
718 A
[size
][i
] = LLE_DENOMINATOR (expression
);
720 /* Need to increase matrix sizes above. */
721 gcc_assert (size
<= 127);
726 /* Compute the lattice base x = base * y + origin, where y is the
728 lattice
= lambda_lattice_compute_base (nest
);
730 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
733 lambda_matrix_mult (A
, LATTICE_BASE (lattice
), A1
, size
, depth
, depth
);
735 /* a1 = a - A * origin constant. */
736 lambda_matrix_vector_mult (A
, size
, depth
, LATTICE_ORIGIN (lattice
), a1
);
737 lambda_vector_add_mc (a
, 1, a1
, -1, a1
, size
);
739 /* B1 = B - A * origin invariant. */
740 lambda_matrix_mult (A
, LATTICE_ORIGIN_INVARIANTS (lattice
), B1
, size
, depth
,
742 lambda_matrix_add_mc (B
, 1, B1
, -1, B1
, size
, invariants
);
744 /* Now compute the auxiliary space bounds by first inverting U, multiplying
745 it by A1, then performing Fourier-Motzkin. */
747 invertedtrans
= lambda_matrix_new (depth
, depth
);
749 /* Compute the inverse of U. */
750 lambda_matrix_inverse (LTM_MATRIX (trans
),
751 invertedtrans
, depth
);
754 lambda_matrix_mult (A1
, invertedtrans
, A
, size
, depth
, depth
);
756 return compute_nest_using_fourier_motzkin (size
, depth
, invariants
,
760 /* Compute the loop bounds for the target space, using the bounds of
761 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
762 The target space loop bounds are computed by multiplying the triangular
763 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
764 the loop steps (positive or negative) is then used to swap the bounds if
765 the loop counts downwards.
766 Return the target loopnest. */
768 static lambda_loopnest
769 lambda_compute_target_space (lambda_loopnest auxillary_nest
,
770 lambda_trans_matrix H
, lambda_vector stepsigns
)
772 lambda_matrix inverse
, H1
;
773 int determinant
, i
, j
;
777 lambda_loopnest target_nest
;
778 int depth
, invariants
;
779 lambda_matrix target
;
781 lambda_loop auxillary_loop
, target_loop
;
782 lambda_linear_expression expression
, auxillary_expr
, target_expr
, tmp_expr
;
784 depth
= LN_DEPTH (auxillary_nest
);
785 invariants
= LN_INVARIANTS (auxillary_nest
);
787 inverse
= lambda_matrix_new (depth
, depth
);
788 determinant
= lambda_matrix_inverse (LTM_MATRIX (H
), inverse
, depth
);
790 /* H1 is H excluding its diagonal. */
791 H1
= lambda_matrix_new (depth
, depth
);
792 lambda_matrix_copy (LTM_MATRIX (H
), H1
, depth
, depth
);
794 for (i
= 0; i
< depth
; i
++)
797 /* Computes the linear offsets of the loop bounds. */
798 target
= lambda_matrix_new (depth
, depth
);
799 lambda_matrix_mult (H1
, inverse
, target
, depth
, depth
, depth
);
801 target_nest
= lambda_loopnest_new (depth
, invariants
);
803 for (i
= 0; i
< depth
; i
++)
806 /* Get a new loop structure. */
807 target_loop
= lambda_loop_new ();
808 LN_LOOPS (target_nest
)[i
] = target_loop
;
810 /* Computes the gcd of the coefficients of the linear part. */
811 gcd1
= lambda_vector_gcd (target
[i
], i
);
813 /* Include the denominator in the GCD. */
814 gcd1
= gcd (gcd1
, determinant
);
816 /* Now divide through by the gcd. */
817 for (j
= 0; j
< i
; j
++)
818 target
[i
][j
] = target
[i
][j
] / gcd1
;
820 expression
= lambda_linear_expression_new (depth
, invariants
);
821 lambda_vector_copy (target
[i
], LLE_COEFFICIENTS (expression
), depth
);
822 LLE_DENOMINATOR (expression
) = determinant
/ gcd1
;
823 LLE_CONSTANT (expression
) = 0;
824 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression
),
826 LL_LINEAR_OFFSET (target_loop
) = expression
;
829 /* For each loop, compute the new bounds from H. */
830 for (i
= 0; i
< depth
; i
++)
832 auxillary_loop
= LN_LOOPS (auxillary_nest
)[i
];
833 target_loop
= LN_LOOPS (target_nest
)[i
];
834 LL_STEP (target_loop
) = LTM_MATRIX (H
)[i
][i
];
835 factor
= LTM_MATRIX (H
)[i
][i
];
837 /* First we do the lower bound. */
838 auxillary_expr
= LL_LOWER_BOUND (auxillary_loop
);
840 for (; auxillary_expr
!= NULL
;
841 auxillary_expr
= LLE_NEXT (auxillary_expr
))
843 target_expr
= lambda_linear_expression_new (depth
, invariants
);
844 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr
),
845 depth
, inverse
, depth
,
846 LLE_COEFFICIENTS (target_expr
));
847 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr
),
848 LLE_COEFFICIENTS (target_expr
), depth
,
851 LLE_CONSTANT (target_expr
) = LLE_CONSTANT (auxillary_expr
) * factor
;
852 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr
),
853 LLE_INVARIANT_COEFFICIENTS (target_expr
),
855 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr
),
856 LLE_INVARIANT_COEFFICIENTS (target_expr
),
858 LLE_DENOMINATOR (target_expr
) = LLE_DENOMINATOR (auxillary_expr
);
860 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr
), depth
))
862 LLE_CONSTANT (target_expr
) = LLE_CONSTANT (target_expr
)
864 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
866 LLE_INVARIANT_COEFFICIENTS
867 (target_expr
), invariants
,
869 LLE_DENOMINATOR (target_expr
) =
870 LLE_DENOMINATOR (target_expr
) * determinant
;
872 /* Find the gcd and divide by it here, rather than doing it
873 at the tree level. */
874 gcd1
= lambda_vector_gcd (LLE_COEFFICIENTS (target_expr
), depth
);
875 gcd2
= lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr
),
877 gcd1
= gcd (gcd1
, gcd2
);
878 gcd1
= gcd (gcd1
, LLE_CONSTANT (target_expr
));
879 gcd1
= gcd (gcd1
, LLE_DENOMINATOR (target_expr
));
880 for (j
= 0; j
< depth
; j
++)
881 LLE_COEFFICIENTS (target_expr
)[j
] /= gcd1
;
882 for (j
= 0; j
< invariants
; j
++)
883 LLE_INVARIANT_COEFFICIENTS (target_expr
)[j
] /= gcd1
;
884 LLE_CONSTANT (target_expr
) /= gcd1
;
885 LLE_DENOMINATOR (target_expr
) /= gcd1
;
886 /* Ignore if identical to existing bound. */
887 if (!lle_equal (LL_LOWER_BOUND (target_loop
), target_expr
, depth
,
890 LLE_NEXT (target_expr
) = LL_LOWER_BOUND (target_loop
);
891 LL_LOWER_BOUND (target_loop
) = target_expr
;
894 /* Now do the upper bound. */
895 auxillary_expr
= LL_UPPER_BOUND (auxillary_loop
);
897 for (; auxillary_expr
!= NULL
;
898 auxillary_expr
= LLE_NEXT (auxillary_expr
))
900 target_expr
= lambda_linear_expression_new (depth
, invariants
);
901 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr
),
902 depth
, inverse
, depth
,
903 LLE_COEFFICIENTS (target_expr
));
904 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr
),
905 LLE_COEFFICIENTS (target_expr
), depth
,
907 LLE_CONSTANT (target_expr
) = LLE_CONSTANT (auxillary_expr
) * factor
;
908 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr
),
909 LLE_INVARIANT_COEFFICIENTS (target_expr
),
911 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr
),
912 LLE_INVARIANT_COEFFICIENTS (target_expr
),
914 LLE_DENOMINATOR (target_expr
) = LLE_DENOMINATOR (auxillary_expr
);
916 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr
), depth
))
918 LLE_CONSTANT (target_expr
) = LLE_CONSTANT (target_expr
)
920 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
922 LLE_INVARIANT_COEFFICIENTS
923 (target_expr
), invariants
,
925 LLE_DENOMINATOR (target_expr
) =
926 LLE_DENOMINATOR (target_expr
) * determinant
;
928 /* Find the gcd and divide by it here, instead of at the
930 gcd1
= lambda_vector_gcd (LLE_COEFFICIENTS (target_expr
), depth
);
931 gcd2
= lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr
),
933 gcd1
= gcd (gcd1
, gcd2
);
934 gcd1
= gcd (gcd1
, LLE_CONSTANT (target_expr
));
935 gcd1
= gcd (gcd1
, LLE_DENOMINATOR (target_expr
));
936 for (j
= 0; j
< depth
; j
++)
937 LLE_COEFFICIENTS (target_expr
)[j
] /= gcd1
;
938 for (j
= 0; j
< invariants
; j
++)
939 LLE_INVARIANT_COEFFICIENTS (target_expr
)[j
] /= gcd1
;
940 LLE_CONSTANT (target_expr
) /= gcd1
;
941 LLE_DENOMINATOR (target_expr
) /= gcd1
;
942 /* Ignore if equal to existing bound. */
943 if (!lle_equal (LL_UPPER_BOUND (target_loop
), target_expr
, depth
,
946 LLE_NEXT (target_expr
) = LL_UPPER_BOUND (target_loop
);
947 LL_UPPER_BOUND (target_loop
) = target_expr
;
951 for (i
= 0; i
< depth
; i
++)
953 target_loop
= LN_LOOPS (target_nest
)[i
];
954 /* If necessary, exchange the upper and lower bounds and negate
956 if (stepsigns
[i
] < 0)
958 LL_STEP (target_loop
) *= -1;
959 tmp_expr
= LL_LOWER_BOUND (target_loop
);
960 LL_LOWER_BOUND (target_loop
) = LL_UPPER_BOUND (target_loop
);
961 LL_UPPER_BOUND (target_loop
) = tmp_expr
;
967 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
971 lambda_compute_step_signs (lambda_trans_matrix trans
, lambda_vector stepsigns
)
973 lambda_matrix matrix
, H
;
975 lambda_vector newsteps
;
976 int i
, j
, factor
, minimum_column
;
979 matrix
= LTM_MATRIX (trans
);
980 size
= LTM_ROWSIZE (trans
);
981 H
= lambda_matrix_new (size
, size
);
983 newsteps
= lambda_vector_new (size
);
984 lambda_vector_copy (stepsigns
, newsteps
, size
);
986 lambda_matrix_copy (matrix
, H
, size
, size
);
988 for (j
= 0; j
< size
; j
++)
992 for (i
= j
; i
< size
; i
++)
994 lambda_matrix_col_negate (H
, size
, i
);
995 while (lambda_vector_first_nz (row
, size
, j
+ 1) < size
)
997 minimum_column
= lambda_vector_min_nz (row
, size
, j
);
998 lambda_matrix_col_exchange (H
, size
, j
, minimum_column
);
1001 newsteps
[j
] = newsteps
[minimum_column
];
1002 newsteps
[minimum_column
] = temp
;
1004 for (i
= j
+ 1; i
< size
; i
++)
1006 factor
= row
[i
] / row
[j
];
1007 lambda_matrix_col_add (H
, size
, j
, i
, -1 * factor
);
1014 /* Transform NEST according to TRANS, and return the new loopnest.
1016 1. Computing a lattice base for the transformation
1017 2. Composing the dense base with the specified transformation (TRANS)
1018 3. Decomposing the combined transformation into a lower triangular portion,
1019 and a unimodular portion.
1020 4. Computing the auxiliary nest using the unimodular portion.
1021 5. Computing the target nest using the auxiliary nest and the lower
1022 triangular portion. */
1025 lambda_loopnest_transform (lambda_loopnest nest
, lambda_trans_matrix trans
)
1027 lambda_loopnest auxillary_nest
, target_nest
;
1029 int depth
, invariants
;
1031 lambda_lattice lattice
;
1032 lambda_trans_matrix trans1
, H
, U
;
1034 lambda_linear_expression expression
;
1035 lambda_vector origin
;
1036 lambda_matrix origin_invariants
;
1037 lambda_vector stepsigns
;
1040 depth
= LN_DEPTH (nest
);
1041 invariants
= LN_INVARIANTS (nest
);
1043 /* Keep track of the signs of the loop steps. */
1044 stepsigns
= lambda_vector_new (depth
);
1045 for (i
= 0; i
< depth
; i
++)
1047 if (LL_STEP (LN_LOOPS (nest
)[i
]) > 0)
1053 /* Compute the lattice base. */
1054 lattice
= lambda_lattice_compute_base (nest
);
1055 trans1
= lambda_trans_matrix_new (depth
, depth
);
1057 /* Multiply the transformation matrix by the lattice base. */
1059 lambda_matrix_mult (LTM_MATRIX (trans
), LATTICE_BASE (lattice
),
1060 LTM_MATRIX (trans1
), depth
, depth
, depth
);
1062 /* Compute the Hermite normal form for the new transformation matrix. */
1063 H
= lambda_trans_matrix_new (depth
, depth
);
1064 U
= lambda_trans_matrix_new (depth
, depth
);
1065 lambda_matrix_hermite (LTM_MATRIX (trans1
), depth
, LTM_MATRIX (H
),
1068 /* Compute the auxiliary loop nest's space from the unimodular
1070 auxillary_nest
= lambda_compute_auxillary_space (nest
, U
);
1072 /* Compute the loop step signs from the old step signs and the
1073 transformation matrix. */
1074 stepsigns
= lambda_compute_step_signs (trans1
, stepsigns
);
1076 /* Compute the target loop nest space from the auxiliary nest and
1077 the lower triangular matrix H. */
1078 target_nest
= lambda_compute_target_space (auxillary_nest
, H
, stepsigns
);
1079 origin
= lambda_vector_new (depth
);
1080 origin_invariants
= lambda_matrix_new (depth
, invariants
);
1081 lambda_matrix_vector_mult (LTM_MATRIX (trans
), depth
, depth
,
1082 LATTICE_ORIGIN (lattice
), origin
);
1083 lambda_matrix_mult (LTM_MATRIX (trans
), LATTICE_ORIGIN_INVARIANTS (lattice
),
1084 origin_invariants
, depth
, depth
, invariants
);
1086 for (i
= 0; i
< depth
; i
++)
1088 loop
= LN_LOOPS (target_nest
)[i
];
1089 expression
= LL_LINEAR_OFFSET (loop
);
1090 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression
), depth
))
1093 f
= LLE_DENOMINATOR (expression
);
1095 LLE_CONSTANT (expression
) += f
* origin
[i
];
1097 for (j
= 0; j
< invariants
; j
++)
1098 LLE_INVARIANT_COEFFICIENTS (expression
)[j
] +=
1099 f
* origin_invariants
[i
][j
];
1106 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1107 return the new expression. DEPTH is the depth of the loopnest.
1108 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1109 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1110 is the amount we have to add/subtract from the expression because of the
1111 type of comparison it is used in. */
1113 static lambda_linear_expression
1114 gcc_tree_to_linear_expression (int depth
, tree expr
,
1115 VEC(tree
,heap
) *outerinductionvars
,
1116 VEC(tree
,heap
) *invariants
, int extra
)
1118 lambda_linear_expression lle
= NULL
;
1119 switch (TREE_CODE (expr
))
1123 lle
= lambda_linear_expression_new (depth
, 2 * depth
);
1124 LLE_CONSTANT (lle
) = TREE_INT_CST_LOW (expr
);
1126 LLE_CONSTANT (lle
) += extra
;
1128 LLE_DENOMINATOR (lle
) = 1;
1135 for (i
= 0; VEC_iterate (tree
, outerinductionvars
, i
, iv
); i
++)
1138 if (SSA_NAME_VAR (iv
) == SSA_NAME_VAR (expr
))
1140 lle
= lambda_linear_expression_new (depth
, 2 * depth
);
1141 LLE_COEFFICIENTS (lle
)[i
] = 1;
1143 LLE_CONSTANT (lle
) = extra
;
1145 LLE_DENOMINATOR (lle
) = 1;
1148 for (i
= 0; VEC_iterate (tree
, invariants
, i
, invar
); i
++)
1151 if (SSA_NAME_VAR (invar
) == SSA_NAME_VAR (expr
))
1153 lle
= lambda_linear_expression_new (depth
, 2 * depth
);
1154 LLE_INVARIANT_COEFFICIENTS (lle
)[i
] = 1;
1156 LLE_CONSTANT (lle
) = extra
;
1157 LLE_DENOMINATOR (lle
) = 1;
1169 /* Return the depth of the loopnest NEST */
1172 depth_of_nest (struct loop
*nest
)
1184 /* Return true if OP is invariant in LOOP and all outer loops. */
1187 invariant_in_loop_and_outer_loops (struct loop
*loop
, tree op
)
1189 if (is_gimple_min_invariant (op
))
1191 if (loop
->depth
== 0)
1193 if (!expr_invariant_in_loop_p (loop
, op
))
1196 && !invariant_in_loop_and_outer_loops (loop
->outer
, op
))
1201 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1202 or NULL if it could not be converted.
1203 DEPTH is the depth of the loop.
1204 INVARIANTS is a pointer to the array of loop invariants.
1205 The induction variable for this loop should be stored in the parameter
1207 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1210 gcc_loop_to_lambda_loop (struct loop
*loop
, int depth
,
1211 VEC(tree
,heap
) ** invariants
,
1212 tree
* ourinductionvar
,
1213 VEC(tree
,heap
) * outerinductionvars
,
1214 VEC(tree
,heap
) ** lboundvars
,
1215 VEC(tree
,heap
) ** uboundvars
,
1216 VEC(int,heap
) ** steps
)
1220 tree access_fn
, inductionvar
;
1222 lambda_loop lloop
= NULL
;
1223 lambda_linear_expression lbound
, ubound
;
1227 tree lboundvar
, uboundvar
, uboundresult
;
1229 /* Find out induction var and exit condition. */
1230 inductionvar
= find_induction_var_from_exit_cond (loop
);
1231 exit_cond
= get_loop_exit_condition (loop
);
1233 if (inductionvar
== NULL
|| exit_cond
== NULL
)
1235 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1237 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1241 test
= TREE_OPERAND (exit_cond
, 0);
1243 if (SSA_NAME_DEF_STMT (inductionvar
) == NULL_TREE
)
1246 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1248 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1253 phi
= SSA_NAME_DEF_STMT (inductionvar
);
1254 if (TREE_CODE (phi
) != PHI_NODE
)
1256 phi
= SINGLE_SSA_TREE_OPERAND (phi
, SSA_OP_USE
);
1260 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1262 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1267 phi
= SSA_NAME_DEF_STMT (phi
);
1268 if (TREE_CODE (phi
) != PHI_NODE
)
1271 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1273 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1279 /* The induction variable name/version we want to put in the array is the
1280 result of the induction variable phi node. */
1281 *ourinductionvar
= PHI_RESULT (phi
);
1282 access_fn
= instantiate_parameters
1283 (loop
, analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
1284 if (access_fn
== chrec_dont_know
)
1286 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1288 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1293 step
= evolution_part_in_loop_num (access_fn
, loop
->num
);
1294 if (!step
|| step
== chrec_dont_know
)
1296 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1298 "Unable to convert loop: Cannot determine step of loop.\n");
1302 if (TREE_CODE (step
) != INTEGER_CST
)
1305 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1307 "Unable to convert loop: Step of loop is not integer.\n");
1311 stepint
= TREE_INT_CST_LOW (step
);
1313 /* Only want phis for induction vars, which will have two
1315 if (PHI_NUM_ARGS (phi
) != 2)
1317 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1319 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1323 /* Another induction variable check. One argument's source should be
1324 in the loop, one outside the loop. */
1325 if (flow_bb_inside_loop_p (loop
, PHI_ARG_EDGE (phi
, 0)->src
)
1326 && flow_bb_inside_loop_p (loop
, PHI_ARG_EDGE (phi
, 1)->src
))
1329 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1331 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1336 if (flow_bb_inside_loop_p (loop
, PHI_ARG_EDGE (phi
, 0)->src
))
1338 lboundvar
= PHI_ARG_DEF (phi
, 1);
1339 lbound
= gcc_tree_to_linear_expression (depth
, lboundvar
,
1340 outerinductionvars
, *invariants
,
1345 lboundvar
= PHI_ARG_DEF (phi
, 0);
1346 lbound
= gcc_tree_to_linear_expression (depth
, lboundvar
,
1347 outerinductionvars
, *invariants
,
1354 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1356 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1360 /* One part of the test may be a loop invariant tree. */
1361 VEC_reserve (tree
, heap
, *invariants
, 1);
1362 if (TREE_CODE (TREE_OPERAND (test
, 1)) == SSA_NAME
1363 && invariant_in_loop_and_outer_loops (loop
, TREE_OPERAND (test
, 1)))
1364 VEC_quick_push (tree
, *invariants
, TREE_OPERAND (test
, 1));
1365 else if (TREE_CODE (TREE_OPERAND (test
, 0)) == SSA_NAME
1366 && invariant_in_loop_and_outer_loops (loop
, TREE_OPERAND (test
, 0)))
1367 VEC_quick_push (tree
, *invariants
, TREE_OPERAND (test
, 0));
1369 /* The non-induction variable part of the test is the upper bound variable.
1371 if (TREE_OPERAND (test
, 0) == inductionvar
)
1372 uboundvar
= TREE_OPERAND (test
, 1);
1374 uboundvar
= TREE_OPERAND (test
, 0);
1377 /* We only size the vectors assuming we have, at max, 2 times as many
1378 invariants as we do loops (one for each bound).
1379 This is just an arbitrary number, but it has to be matched against the
1381 gcc_assert (VEC_length (tree
, *invariants
) <= (unsigned int) (2 * depth
));
1384 /* We might have some leftover. */
1385 if (TREE_CODE (test
) == LT_EXPR
)
1386 extra
= -1 * stepint
;
1387 else if (TREE_CODE (test
) == NE_EXPR
)
1388 extra
= -1 * stepint
;
1389 else if (TREE_CODE (test
) == GT_EXPR
)
1390 extra
= -1 * stepint
;
1391 else if (TREE_CODE (test
) == EQ_EXPR
)
1392 extra
= 1 * stepint
;
1394 ubound
= gcc_tree_to_linear_expression (depth
, uboundvar
,
1396 *invariants
, extra
);
1397 uboundresult
= build2 (PLUS_EXPR
, TREE_TYPE (uboundvar
), uboundvar
,
1398 build_int_cst (TREE_TYPE (uboundvar
), extra
));
1399 VEC_safe_push (tree
, heap
, *uboundvars
, uboundresult
);
1400 VEC_safe_push (tree
, heap
, *lboundvars
, lboundvar
);
1401 VEC_safe_push (int, heap
, *steps
, stepint
);
1404 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1406 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1410 lloop
= lambda_loop_new ();
1411 LL_STEP (lloop
) = stepint
;
1412 LL_LOWER_BOUND (lloop
) = lbound
;
1413 LL_UPPER_BOUND (lloop
) = ubound
;
1417 /* Given a LOOP, find the induction variable it is testing against in the exit
1418 condition. Return the induction variable if found, NULL otherwise. */
1421 find_induction_var_from_exit_cond (struct loop
*loop
)
1423 tree expr
= get_loop_exit_condition (loop
);
1426 if (expr
== NULL_TREE
)
1428 if (TREE_CODE (expr
) != COND_EXPR
)
1430 test
= TREE_OPERAND (expr
, 0);
1431 if (!COMPARISON_CLASS_P (test
))
1434 /* Find the side that is invariant in this loop. The ivar must be the other
1437 if (expr_invariant_in_loop_p (loop
, TREE_OPERAND (test
, 0)))
1438 ivarop
= TREE_OPERAND (test
, 1);
1439 else if (expr_invariant_in_loop_p (loop
, TREE_OPERAND (test
, 1)))
1440 ivarop
= TREE_OPERAND (test
, 0);
1444 if (TREE_CODE (ivarop
) != SSA_NAME
)
1449 DEF_VEC_P(lambda_loop
);
1450 DEF_VEC_ALLOC_P(lambda_loop
,heap
);
1452 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1453 Return the new loop nest.
1454 INDUCTIONVARS is a pointer to an array of induction variables for the
1455 loopnest that will be filled in during this process.
1456 INVARIANTS is a pointer to an array of invariants that will be filled in
1457 during this process. */
1460 gcc_loopnest_to_lambda_loopnest (struct loops
*currloops
,
1461 struct loop
*loop_nest
,
1462 VEC(tree
,heap
) **inductionvars
,
1463 VEC(tree
,heap
) **invariants
)
1465 lambda_loopnest ret
= NULL
;
1466 struct loop
*temp
= loop_nest
;
1467 int depth
= depth_of_nest (loop_nest
);
1469 VEC(lambda_loop
,heap
) *loops
= NULL
;
1470 VEC(tree
,heap
) *uboundvars
= NULL
;
1471 VEC(tree
,heap
) *lboundvars
= NULL
;
1472 VEC(int,heap
) *steps
= NULL
;
1473 lambda_loop newloop
;
1474 tree inductionvar
= NULL
;
1475 bool perfect_nest
= perfect_nest_p (loop_nest
);
1477 if (!perfect_nest
&& !can_convert_to_perfect_nest (loop_nest
))
1482 newloop
= gcc_loop_to_lambda_loop (temp
, depth
, invariants
,
1483 &inductionvar
, *inductionvars
,
1484 &lboundvars
, &uboundvars
,
1489 VEC_safe_push (tree
, heap
, *inductionvars
, inductionvar
);
1490 VEC_safe_push (lambda_loop
, heap
, loops
, newloop
);
1496 if (!perfect_nestify (currloops
, loop_nest
,
1497 lboundvars
, uboundvars
, steps
, *inductionvars
))
1501 "Not a perfect loop nest and couldn't convert to one.\n");
1506 "Successfully converted loop nest to perfect loop nest.\n");
1509 ret
= lambda_loopnest_new (depth
, 2 * depth
);
1511 for (i
= 0; VEC_iterate (lambda_loop
, loops
, i
, newloop
); i
++)
1512 LN_LOOPS (ret
)[i
] = newloop
;
1515 VEC_free (lambda_loop
, heap
, loops
);
1516 VEC_free (tree
, heap
, uboundvars
);
1517 VEC_free (tree
, heap
, lboundvars
);
1518 VEC_free (int, heap
, steps
);
1523 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1524 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1525 inserted for us are stored. INDUCTION_VARS is the array of induction
1526 variables for the loop this LBV is from. TYPE is the tree type to use for
1527 the variables and trees involved. */
1530 lbv_to_gcc_expression (lambda_body_vector lbv
,
1531 tree type
, VEC(tree
,heap
) *induction_vars
,
1532 tree
*stmts_to_insert
)
1534 tree stmts
, stmt
, resvar
, name
;
1537 tree_stmt_iterator tsi
;
1539 /* Create a statement list and a linear expression temporary. */
1540 stmts
= alloc_stmt_list ();
1541 resvar
= create_tmp_var (type
, "lbvtmp");
1542 add_referenced_var (resvar
);
1545 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
, integer_zero_node
);
1546 name
= make_ssa_name (resvar
, stmt
);
1547 TREE_OPERAND (stmt
, 0) = name
;
1548 tsi
= tsi_last (stmts
);
1549 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1551 for (i
= 0; VEC_iterate (tree
, induction_vars
, i
, iv
); i
++)
1553 if (LBV_COEFFICIENTS (lbv
)[i
] != 0)
1558 /* newname = coefficient * induction_variable */
1559 coeffmult
= build_int_cst (type
, LBV_COEFFICIENTS (lbv
)[i
]);
1560 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1561 fold_build2 (MULT_EXPR
, type
, iv
, coeffmult
));
1563 newname
= make_ssa_name (resvar
, stmt
);
1564 TREE_OPERAND (stmt
, 0) = newname
;
1566 tsi
= tsi_last (stmts
);
1567 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1569 /* name = name + newname */
1570 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1571 build2 (PLUS_EXPR
, type
, name
, newname
));
1572 name
= make_ssa_name (resvar
, stmt
);
1573 TREE_OPERAND (stmt
, 0) = name
;
1575 tsi
= tsi_last (stmts
);
1576 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1581 /* Handle any denominator that occurs. */
1582 if (LBV_DENOMINATOR (lbv
) != 1)
1584 tree denominator
= build_int_cst (type
, LBV_DENOMINATOR (lbv
));
1585 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1586 build2 (CEIL_DIV_EXPR
, type
, name
, denominator
));
1587 name
= make_ssa_name (resvar
, stmt
);
1588 TREE_OPERAND (stmt
, 0) = name
;
1590 tsi
= tsi_last (stmts
);
1591 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1593 *stmts_to_insert
= stmts
;
1597 /* Convert a linear expression from coefficient and constant form to a
1599 Return the tree that represents the final value of the expression.
1600 LLE is the linear expression to convert.
1601 OFFSET is the linear offset to apply to the expression.
1602 TYPE is the tree type to use for the variables and math.
1603 INDUCTION_VARS is a vector of induction variables for the loops.
1604 INVARIANTS is a vector of the loop nest invariants.
1605 WRAP specifies what tree code to wrap the results in, if there is more than
1606 one (it is either MAX_EXPR, or MIN_EXPR).
1607 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1608 statements that need to be inserted for the linear expression. */
1611 lle_to_gcc_expression (lambda_linear_expression lle
,
1612 lambda_linear_expression offset
,
1614 VEC(tree
,heap
) *induction_vars
,
1615 VEC(tree
,heap
) *invariants
,
1616 enum tree_code wrap
, tree
*stmts_to_insert
)
1618 tree stmts
, stmt
, resvar
, name
;
1620 tree_stmt_iterator tsi
;
1622 VEC(tree
,heap
) *results
= NULL
;
1624 gcc_assert (wrap
== MAX_EXPR
|| wrap
== MIN_EXPR
);
1626 /* Create a statement list and a linear expression temporary. */
1627 stmts
= alloc_stmt_list ();
1628 resvar
= create_tmp_var (type
, "lletmp");
1629 add_referenced_var (resvar
);
1631 /* Build up the linear expressions, and put the variable representing the
1632 result in the results array. */
1633 for (; lle
!= NULL
; lle
= LLE_NEXT (lle
))
1635 /* Start at name = 0. */
1636 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
, integer_zero_node
);
1637 name
= make_ssa_name (resvar
, stmt
);
1638 TREE_OPERAND (stmt
, 0) = name
;
1640 tsi
= tsi_last (stmts
);
1641 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1643 /* First do the induction variables.
1644 at the end, name = name + all the induction variables added
1646 for (i
= 0; VEC_iterate (tree
, induction_vars
, i
, iv
); i
++)
1648 if (LLE_COEFFICIENTS (lle
)[i
] != 0)
1654 /* mult = induction variable * coefficient. */
1655 if (LLE_COEFFICIENTS (lle
)[i
] == 1)
1657 mult
= VEC_index (tree
, induction_vars
, i
);
1661 coeff
= build_int_cst (type
,
1662 LLE_COEFFICIENTS (lle
)[i
]);
1663 mult
= fold_build2 (MULT_EXPR
, type
, iv
, coeff
);
1666 /* newname = mult */
1667 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
, mult
);
1668 newname
= make_ssa_name (resvar
, stmt
);
1669 TREE_OPERAND (stmt
, 0) = newname
;
1671 tsi
= tsi_last (stmts
);
1672 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1674 /* name = name + newname */
1675 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1676 build2 (PLUS_EXPR
, type
, name
, newname
));
1677 name
= make_ssa_name (resvar
, stmt
);
1678 TREE_OPERAND (stmt
, 0) = name
;
1680 tsi
= tsi_last (stmts
);
1681 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1685 /* Handle our invariants.
1686 At the end, we have name = name + result of adding all multiplied
1688 for (i
= 0; VEC_iterate (tree
, invariants
, i
, invar
); i
++)
1690 if (LLE_INVARIANT_COEFFICIENTS (lle
)[i
] != 0)
1695 int invcoeff
= LLE_INVARIANT_COEFFICIENTS (lle
)[i
];
1696 /* mult = invariant * coefficient */
1703 coeff
= build_int_cst (type
, invcoeff
);
1704 mult
= fold_build2 (MULT_EXPR
, type
, invar
, coeff
);
1707 /* newname = mult */
1708 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
, mult
);
1709 newname
= make_ssa_name (resvar
, stmt
);
1710 TREE_OPERAND (stmt
, 0) = newname
;
1712 tsi
= tsi_last (stmts
);
1713 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1715 /* name = name + newname */
1716 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1717 build2 (PLUS_EXPR
, type
, name
, newname
));
1718 name
= make_ssa_name (resvar
, stmt
);
1719 TREE_OPERAND (stmt
, 0) = name
;
1721 tsi
= tsi_last (stmts
);
1722 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1726 /* Now handle the constant.
1727 name = name + constant. */
1728 if (LLE_CONSTANT (lle
) != 0)
1730 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1731 build2 (PLUS_EXPR
, type
, name
,
1732 build_int_cst (type
, LLE_CONSTANT (lle
))));
1733 name
= make_ssa_name (resvar
, stmt
);
1734 TREE_OPERAND (stmt
, 0) = name
;
1736 tsi
= tsi_last (stmts
);
1737 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1740 /* Now handle the offset.
1741 name = name + linear offset. */
1742 if (LLE_CONSTANT (offset
) != 0)
1744 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1745 build2 (PLUS_EXPR
, type
, name
,
1746 build_int_cst (type
, LLE_CONSTANT (offset
))));
1747 name
= make_ssa_name (resvar
, stmt
);
1748 TREE_OPERAND (stmt
, 0) = name
;
1750 tsi
= tsi_last (stmts
);
1751 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1754 /* Handle any denominator that occurs. */
1755 if (LLE_DENOMINATOR (lle
) != 1)
1757 stmt
= build_int_cst (type
, LLE_DENOMINATOR (lle
));
1758 stmt
= build2 (wrap
== MAX_EXPR
? CEIL_DIV_EXPR
: FLOOR_DIV_EXPR
,
1760 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
, stmt
);
1762 /* name = {ceil, floor}(name/denominator) */
1763 name
= make_ssa_name (resvar
, stmt
);
1764 TREE_OPERAND (stmt
, 0) = name
;
1765 tsi
= tsi_last (stmts
);
1766 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1768 VEC_safe_push (tree
, heap
, results
, name
);
1771 /* Again, out of laziness, we don't handle this case yet. It's not
1772 hard, it just hasn't occurred. */
1773 gcc_assert (VEC_length (tree
, results
) <= 2);
1775 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1776 if (VEC_length (tree
, results
) > 1)
1778 tree op1
= VEC_index (tree
, results
, 0);
1779 tree op2
= VEC_index (tree
, results
, 1);
1780 stmt
= build2 (MODIFY_EXPR
, void_type_node
, resvar
,
1781 build2 (wrap
, type
, op1
, op2
));
1782 name
= make_ssa_name (resvar
, stmt
);
1783 TREE_OPERAND (stmt
, 0) = name
;
1784 tsi
= tsi_last (stmts
);
1785 tsi_link_after (&tsi
, stmt
, TSI_CONTINUE_LINKING
);
1788 VEC_free (tree
, heap
, results
);
1790 *stmts_to_insert
= stmts
;
1794 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1795 it, back into gcc code. This changes the
1796 loops, their induction variables, and their bodies, so that they
1797 match the transformed loopnest.
1798 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1800 OLD_IVS is a vector of induction variables from the old loopnest.
1801 INVARIANTS is a vector of loop invariants from the old loopnest.
1802 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1803 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1807 lambda_loopnest_to_gcc_loopnest (struct loop
*old_loopnest
,
1808 VEC(tree
,heap
) *old_ivs
,
1809 VEC(tree
,heap
) *invariants
,
1810 lambda_loopnest new_loopnest
,
1811 lambda_trans_matrix transform
)
1816 VEC(tree
,heap
) *new_ivs
= NULL
;
1819 block_stmt_iterator bsi
;
1823 transform
= lambda_trans_matrix_inverse (transform
);
1824 fprintf (dump_file
, "Inverse of transformation matrix:\n");
1825 print_lambda_trans_matrix (dump_file
, transform
);
1827 depth
= depth_of_nest (old_loopnest
);
1828 temp
= old_loopnest
;
1832 lambda_loop newloop
;
1835 tree ivvar
, ivvarinced
, exitcond
, stmts
;
1836 enum tree_code testtype
;
1837 tree newupperbound
, newlowerbound
;
1838 lambda_linear_expression offset
;
1843 oldiv
= VEC_index (tree
, old_ivs
, i
);
1844 type
= TREE_TYPE (oldiv
);
1846 /* First, build the new induction variable temporary */
1848 ivvar
= create_tmp_var (type
, "lnivtmp");
1849 add_referenced_var (ivvar
);
1851 VEC_safe_push (tree
, heap
, new_ivs
, ivvar
);
1853 newloop
= LN_LOOPS (new_loopnest
)[i
];
1855 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1857 offset
= LL_LINEAR_OFFSET (newloop
);
1859 gcc_assert (LLE_DENOMINATOR (offset
) == 1 &&
1860 lambda_vector_zerop (LLE_COEFFICIENTS (offset
), depth
));
1862 /* Now build the new lower bounds, and insert the statements
1863 necessary to generate it on the loop preheader. */
1864 newlowerbound
= lle_to_gcc_expression (LL_LOWER_BOUND (newloop
),
1865 LL_LINEAR_OFFSET (newloop
),
1868 invariants
, MAX_EXPR
, &stmts
);
1869 bsi_insert_on_edge (loop_preheader_edge (temp
), stmts
);
1870 bsi_commit_edge_inserts ();
1871 /* Build the new upper bound and insert its statements in the
1872 basic block of the exit condition */
1873 newupperbound
= lle_to_gcc_expression (LL_UPPER_BOUND (newloop
),
1874 LL_LINEAR_OFFSET (newloop
),
1877 invariants
, MIN_EXPR
, &stmts
);
1878 exit
= temp
->single_exit
;
1879 exitcond
= get_loop_exit_condition (temp
);
1880 bb
= bb_for_stmt (exitcond
);
1881 bsi
= bsi_start (bb
);
1882 bsi_insert_after (&bsi
, stmts
, BSI_NEW_STMT
);
1884 /* Create the new iv. */
1886 standard_iv_increment_position (temp
, &bsi
, &insert_after
);
1887 create_iv (newlowerbound
,
1888 build_int_cst (type
, LL_STEP (newloop
)),
1889 ivvar
, temp
, &bsi
, insert_after
, &ivvar
,
1892 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1893 dominate the block containing the exit condition.
1894 So we simply create our own incremented iv to use in the new exit
1895 test, and let redundancy elimination sort it out. */
1896 inc_stmt
= build2 (PLUS_EXPR
, type
,
1897 ivvar
, build_int_cst (type
, LL_STEP (newloop
)));
1898 inc_stmt
= build2 (MODIFY_EXPR
, void_type_node
, SSA_NAME_VAR (ivvar
),
1900 ivvarinced
= make_ssa_name (SSA_NAME_VAR (ivvar
), inc_stmt
);
1901 TREE_OPERAND (inc_stmt
, 0) = ivvarinced
;
1902 bsi
= bsi_for_stmt (exitcond
);
1903 bsi_insert_before (&bsi
, inc_stmt
, BSI_SAME_STMT
);
1905 /* Replace the exit condition with the new upper bound
1908 testtype
= LL_STEP (newloop
) >= 0 ? LE_EXPR
: GE_EXPR
;
1910 /* We want to build a conditional where true means exit the loop, and
1911 false means continue the loop.
1912 So swap the testtype if this isn't the way things are.*/
1914 if (exit
->flags
& EDGE_FALSE_VALUE
)
1915 testtype
= swap_tree_comparison (testtype
);
1917 COND_EXPR_COND (exitcond
) = build2 (testtype
,
1919 newupperbound
, ivvarinced
);
1920 update_stmt (exitcond
);
1921 VEC_replace (tree
, new_ivs
, i
, ivvar
);
1927 /* Rewrite uses of the old ivs so that they are now specified in terms of
1930 for (i
= 0; VEC_iterate (tree
, old_ivs
, i
, oldiv
); i
++)
1932 imm_use_iterator imm_iter
;
1933 use_operand_p use_p
;
1935 tree oldiv_stmt
= SSA_NAME_DEF_STMT (oldiv
);
1938 if (TREE_CODE (oldiv_stmt
) == PHI_NODE
)
1939 oldiv_def
= PHI_RESULT (oldiv_stmt
);
1941 oldiv_def
= SINGLE_SSA_TREE_OPERAND (oldiv_stmt
, SSA_OP_DEF
);
1942 gcc_assert (oldiv_def
!= NULL_TREE
);
1944 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, oldiv_def
)
1947 lambda_body_vector lbv
, newlbv
;
1949 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1951 /* Compute the new expression for the induction
1953 depth
= VEC_length (tree
, new_ivs
);
1954 lbv
= lambda_body_vector_new (depth
);
1955 LBV_COEFFICIENTS (lbv
)[i
] = 1;
1957 newlbv
= lambda_body_vector_compute_new (transform
, lbv
);
1959 newiv
= lbv_to_gcc_expression (newlbv
, TREE_TYPE (oldiv
),
1961 bsi
= bsi_for_stmt (stmt
);
1962 /* Insert the statements to build that
1964 bsi_insert_before (&bsi
, stmts
, BSI_SAME_STMT
);
1966 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
1967 propagate_value (use_p
, newiv
);
1971 VEC_free (tree
, heap
, new_ivs
);
1974 /* Return TRUE if this is not interesting statement from the perspective of
1975 determining if we have a perfect loop nest. */
1978 not_interesting_stmt (tree stmt
)
1980 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1981 loop, we would have already failed the number of exits tests. */
1982 if (TREE_CODE (stmt
) == LABEL_EXPR
1983 || TREE_CODE (stmt
) == GOTO_EXPR
1984 || TREE_CODE (stmt
) == COND_EXPR
)
1989 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1992 phi_loop_edge_uses_def (struct loop
*loop
, tree phi
, tree def
)
1995 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
1996 if (flow_bb_inside_loop_p (loop
, PHI_ARG_EDGE (phi
, i
)->src
))
1997 if (PHI_ARG_DEF (phi
, i
) == def
)
2002 /* Return TRUE if STMT is a use of PHI_RESULT. */
2005 stmt_uses_phi_result (tree stmt
, tree phi_result
)
2007 tree use
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
2009 /* This is conservatively true, because we only want SIMPLE bumpers
2010 of the form x +- constant for our pass. */
2011 return (use
== phi_result
);
2014 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2015 in-loop-edge in a phi node, and the operand it uses is the result of that
2018 i_3 = PHI (0, i_29); */
2021 stmt_is_bumper_for_loop (struct loop
*loop
, tree stmt
)
2025 imm_use_iterator iter
;
2026 use_operand_p use_p
;
2028 def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
);
2032 FOR_EACH_IMM_USE_FAST (use_p
, iter
, def
)
2034 use
= USE_STMT (use_p
);
2035 if (TREE_CODE (use
) == PHI_NODE
)
2037 if (phi_loop_edge_uses_def (loop
, use
, def
))
2038 if (stmt_uses_phi_result (stmt
, PHI_RESULT (use
)))
2046 /* Return true if LOOP is a perfect loop nest.
2047 Perfect loop nests are those loop nests where all code occurs in the
2048 innermost loop body.
2049 If S is a program statement, then
2058 is not a perfect loop nest because of S1.
2066 is a perfect loop nest.
2068 Since we don't have high level loops anymore, we basically have to walk our
2069 statements and ignore those that are there because the loop needs them (IE
2070 the induction variable increment, and jump back to the top of the loop). */
2073 perfect_nest_p (struct loop
*loop
)
2081 bbs
= get_loop_body (loop
);
2082 exit_cond
= get_loop_exit_condition (loop
);
2083 for (i
= 0; i
< loop
->num_nodes
; i
++)
2085 if (bbs
[i
]->loop_father
== loop
)
2087 block_stmt_iterator bsi
;
2088 for (bsi
= bsi_start (bbs
[i
]); !bsi_end_p (bsi
); bsi_next (&bsi
))
2090 tree stmt
= bsi_stmt (bsi
);
2091 if (stmt
== exit_cond
2092 || not_interesting_stmt (stmt
)
2093 || stmt_is_bumper_for_loop (loop
, stmt
))
2101 /* See if the inner loops are perfectly nested as well. */
2103 return perfect_nest_p (loop
->inner
);
2107 /* Replace the USES of X in STMT, or uses with the same step as X with Y. */
2110 replace_uses_equiv_to_x_with_y (struct loop
*loop
, tree stmt
, tree x
,
2114 use_operand_p use_p
;
2116 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_USE
)
2118 tree use
= USE_FROM_PTR (use_p
);
2119 tree step
= NULL_TREE
;
2120 tree scev
= instantiate_parameters (loop
,
2121 analyze_scalar_evolution (loop
, use
));
2123 if (scev
!= NULL_TREE
&& scev
!= chrec_dont_know
)
2124 step
= evolution_part_in_loop_num (scev
, loop
->num
);
2126 if ((step
&& step
!= chrec_dont_know
2127 && TREE_CODE (step
) == INTEGER_CST
2128 && int_cst_value (step
) == xstep
)
2129 || USE_FROM_PTR (use_p
) == x
)
2134 /* Return true if STMT is an exit PHI for LOOP */
2137 exit_phi_for_loop_p (struct loop
*loop
, tree stmt
)
2140 if (TREE_CODE (stmt
) != PHI_NODE
2141 || PHI_NUM_ARGS (stmt
) != 1
2142 || bb_for_stmt (stmt
) != loop
->single_exit
->dest
)
2148 /* Return true if STMT can be put back into the loop INNER, by
2149 copying it to the beginning of that loop and changing the uses. */
2152 can_put_in_inner_loop (struct loop
*inner
, tree stmt
)
2154 imm_use_iterator imm_iter
;
2155 use_operand_p use_p
;
2157 gcc_assert (TREE_CODE (stmt
) == MODIFY_EXPR
);
2158 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
)
2159 || !expr_invariant_in_loop_p (inner
, TREE_OPERAND (stmt
, 1)))
2162 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, TREE_OPERAND (stmt
, 0))
2164 if (!exit_phi_for_loop_p (inner
, USE_STMT (use_p
)))
2166 basic_block immbb
= bb_for_stmt (USE_STMT (use_p
));
2168 if (!flow_bb_inside_loop_p (inner
, immbb
))
2175 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2177 can_put_after_inner_loop (struct loop
*loop
, tree stmt
)
2179 imm_use_iterator imm_iter
;
2180 use_operand_p use_p
;
2182 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_ALL_VIRTUALS
))
2185 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, TREE_OPERAND (stmt
, 0))
2187 if (!exit_phi_for_loop_p (loop
, USE_STMT (use_p
)))
2189 basic_block immbb
= bb_for_stmt (USE_STMT (use_p
));
2191 if (!dominated_by_p (CDI_DOMINATORS
,
2193 loop
->inner
->header
)
2194 && !can_put_in_inner_loop (loop
->inner
, stmt
))
2203 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2204 perfect one. At the moment, we only handle imperfect nests of
2205 depth 2, where all of the statements occur after the inner loop. */
2208 can_convert_to_perfect_nest (struct loop
*loop
)
2211 tree exit_condition
, phi
;
2213 block_stmt_iterator bsi
;
2214 basic_block exitdest
;
2216 /* Can't handle triply nested+ loops yet. */
2217 if (!loop
->inner
|| loop
->inner
->inner
)
2220 bbs
= get_loop_body (loop
);
2221 exit_condition
= get_loop_exit_condition (loop
);
2222 for (i
= 0; i
< loop
->num_nodes
; i
++)
2224 if (bbs
[i
]->loop_father
== loop
)
2226 for (bsi
= bsi_start (bbs
[i
]); !bsi_end_p (bsi
); bsi_next (&bsi
))
2228 tree stmt
= bsi_stmt (bsi
);
2230 if (stmt
== exit_condition
2231 || not_interesting_stmt (stmt
)
2232 || stmt_is_bumper_for_loop (loop
, stmt
))
2235 /* If this is a scalar operation that can be put back
2236 into the inner loop, or after the inner loop, through
2237 copying, then do so. This works on the theory that
2238 any amount of scalar code we have to reduplicate
2239 into or after the loops is less expensive that the
2240 win we get from rearranging the memory walk
2241 the loop is doing so that it has better
2243 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
2245 use_operand_p use_a
, use_b
;
2246 imm_use_iterator imm_iter
;
2247 ssa_op_iter op_iter
, op_iter1
;
2248 tree op0
= TREE_OPERAND (stmt
, 0);
2249 tree scev
= instantiate_parameters
2250 (loop
, analyze_scalar_evolution (loop
, op0
));
2252 /* If the IV is simple, it can be duplicated. */
2253 if (!automatically_generated_chrec_p (scev
))
2255 tree step
= evolution_part_in_loop_num (scev
, loop
->num
);
2256 if (step
&& step
!= chrec_dont_know
2257 && TREE_CODE (step
) == INTEGER_CST
)
2261 /* The statement should not define a variable used
2262 in the inner loop. */
2263 if (TREE_CODE (op0
) == SSA_NAME
)
2264 FOR_EACH_IMM_USE_FAST (use_a
, imm_iter
, op0
)
2265 if (bb_for_stmt (USE_STMT (use_a
))->loop_father
2269 FOR_EACH_SSA_USE_OPERAND (use_a
, stmt
, op_iter
, SSA_OP_USE
)
2271 tree node
, op
= USE_FROM_PTR (use_a
);
2273 /* The variables should not be used in both loops. */
2274 FOR_EACH_IMM_USE_FAST (use_b
, imm_iter
, op
)
2275 if (bb_for_stmt (USE_STMT (use_b
))->loop_father
2279 /* The statement should not use the value of a
2280 scalar that was modified in the loop. */
2281 node
= SSA_NAME_DEF_STMT (op
);
2282 if (TREE_CODE (node
) == PHI_NODE
)
2283 FOR_EACH_PHI_ARG (use_b
, node
, op_iter1
, SSA_OP_USE
)
2285 tree arg
= USE_FROM_PTR (use_b
);
2287 if (TREE_CODE (arg
) == SSA_NAME
)
2289 tree arg_stmt
= SSA_NAME_DEF_STMT (arg
);
2291 if (bb_for_stmt (arg_stmt
)->loop_father
2298 if (can_put_in_inner_loop (loop
->inner
, stmt
)
2299 || can_put_after_inner_loop (loop
, stmt
))
2303 /* Otherwise, if the bb of a statement we care about isn't
2304 dominated by the header of the inner loop, then we can't
2305 handle this case right now. This test ensures that the
2306 statement comes completely *after* the inner loop. */
2307 if (!dominated_by_p (CDI_DOMINATORS
,
2309 loop
->inner
->header
))
2315 /* We also need to make sure the loop exit only has simple copy phis in it,
2316 otherwise we don't know how to transform it into a perfect nest right
2318 exitdest
= loop
->single_exit
->dest
;
2320 for (phi
= phi_nodes (exitdest
); phi
; phi
= PHI_CHAIN (phi
))
2321 if (PHI_NUM_ARGS (phi
) != 1)
2332 /* Transform the loop nest into a perfect nest, if possible.
2333 LOOPS is the current struct loops *
2334 LOOP is the loop nest to transform into a perfect nest
2335 LBOUNDS are the lower bounds for the loops to transform
2336 UBOUNDS are the upper bounds for the loops to transform
2337 STEPS is the STEPS for the loops to transform.
2338 LOOPIVS is the induction variables for the loops to transform.
2340 Basically, for the case of
2342 FOR (i = 0; i < 50; i++)
2344 FOR (j =0; j < 50; j++)
2351 This function will transform it into a perfect loop nest by splitting the
2352 outer loop into two loops, like so:
2354 FOR (i = 0; i < 50; i++)
2356 FOR (j = 0; j < 50; j++)
2362 FOR (i = 0; i < 50; i ++)
2367 Return FALSE if we can't make this loop into a perfect nest. */
2370 perfect_nestify (struct loops
*loops
,
2372 VEC(tree
,heap
) *lbounds
,
2373 VEC(tree
,heap
) *ubounds
,
2374 VEC(int,heap
) *steps
,
2375 VEC(tree
,heap
) *loopivs
)
2378 tree exit_condition
;
2379 tree then_label
, else_label
, cond_stmt
;
2380 basic_block preheaderbb
, headerbb
, bodybb
, latchbb
, olddest
;
2382 block_stmt_iterator bsi
;
2385 struct loop
*newloop
;
2389 tree oldivvar
, ivvar
, ivvarinced
;
2390 VEC(tree
,heap
) *phis
= NULL
;
2392 /* Create the new loop. */
2393 olddest
= loop
->single_exit
->dest
;
2394 preheaderbb
= loop_split_edge_with (loop
->single_exit
, NULL
);
2395 headerbb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
2397 /* Push the exit phi nodes that we are moving. */
2398 for (phi
= phi_nodes (olddest
); phi
; phi
= PHI_CHAIN (phi
))
2400 VEC_reserve (tree
, heap
, phis
, 2);
2401 VEC_quick_push (tree
, phis
, PHI_RESULT (phi
));
2402 VEC_quick_push (tree
, phis
, PHI_ARG_DEF (phi
, 0));
2404 e
= redirect_edge_and_branch (single_succ_edge (preheaderbb
), headerbb
);
2406 /* Remove the exit phis from the old basic block. Make sure to set
2407 PHI_RESULT to null so it doesn't get released. */
2408 while (phi_nodes (olddest
) != NULL
)
2410 SET_PHI_RESULT (phi_nodes (olddest
), NULL
);
2411 remove_phi_node (phi_nodes (olddest
), NULL
);
2414 /* and add them back to the new basic block. */
2415 while (VEC_length (tree
, phis
) != 0)
2419 def
= VEC_pop (tree
, phis
);
2420 phiname
= VEC_pop (tree
, phis
);
2421 phi
= create_phi_node (phiname
, preheaderbb
);
2422 add_phi_arg (phi
, def
, single_pred_edge (preheaderbb
));
2424 flush_pending_stmts (e
);
2425 VEC_free (tree
, heap
, phis
);
2427 bodybb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
2428 latchbb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
2429 make_edge (headerbb
, bodybb
, EDGE_FALLTHRU
);
2430 then_label
= build1 (GOTO_EXPR
, void_type_node
, tree_block_label (latchbb
));
2431 else_label
= build1 (GOTO_EXPR
, void_type_node
, tree_block_label (olddest
));
2432 cond_stmt
= build3 (COND_EXPR
, void_type_node
,
2433 build2 (NE_EXPR
, boolean_type_node
,
2436 then_label
, else_label
);
2437 bsi
= bsi_start (bodybb
);
2438 bsi_insert_after (&bsi
, cond_stmt
, BSI_NEW_STMT
);
2439 e
= make_edge (bodybb
, olddest
, EDGE_FALSE_VALUE
);
2440 make_edge (bodybb
, latchbb
, EDGE_TRUE_VALUE
);
2441 make_edge (latchbb
, headerbb
, EDGE_FALLTHRU
);
2443 /* Update the loop structures. */
2444 newloop
= duplicate_loop (loops
, loop
, olddest
->loop_father
);
2445 newloop
->header
= headerbb
;
2446 newloop
->latch
= latchbb
;
2447 newloop
->single_exit
= e
;
2448 add_bb_to_loop (latchbb
, newloop
);
2449 add_bb_to_loop (bodybb
, newloop
);
2450 add_bb_to_loop (headerbb
, newloop
);
2451 set_immediate_dominator (CDI_DOMINATORS
, bodybb
, headerbb
);
2452 set_immediate_dominator (CDI_DOMINATORS
, headerbb
, preheaderbb
);
2453 set_immediate_dominator (CDI_DOMINATORS
, preheaderbb
,
2454 loop
->single_exit
->src
);
2455 set_immediate_dominator (CDI_DOMINATORS
, latchbb
, bodybb
);
2456 set_immediate_dominator (CDI_DOMINATORS
, olddest
, bodybb
);
2457 /* Create the new iv. */
2458 oldivvar
= VEC_index (tree
, loopivs
, 0);
2459 ivvar
= create_tmp_var (TREE_TYPE (oldivvar
), "perfectiv");
2460 add_referenced_var (ivvar
);
2461 standard_iv_increment_position (newloop
, &bsi
, &insert_after
);
2462 create_iv (VEC_index (tree
, lbounds
, 0),
2463 build_int_cst (TREE_TYPE (oldivvar
), VEC_index (int, steps
, 0)),
2464 ivvar
, newloop
, &bsi
, insert_after
, &ivvar
, &ivvarinced
);
2466 /* Create the new upper bound. This may be not just a variable, so we copy
2467 it to one just in case. */
2469 exit_condition
= get_loop_exit_condition (newloop
);
2470 uboundvar
= create_tmp_var (integer_type_node
, "uboundvar");
2471 add_referenced_var (uboundvar
);
2472 stmt
= build2 (MODIFY_EXPR
, void_type_node
, uboundvar
,
2473 VEC_index (tree
, ubounds
, 0));
2474 uboundvar
= make_ssa_name (uboundvar
, stmt
);
2475 TREE_OPERAND (stmt
, 0) = uboundvar
;
2478 bsi_insert_after (&bsi
, stmt
, BSI_SAME_STMT
);
2480 bsi_insert_before (&bsi
, stmt
, BSI_SAME_STMT
);
2482 COND_EXPR_COND (exit_condition
) = build2 (GE_EXPR
,
2486 update_stmt (exit_condition
);
2487 bbs
= get_loop_body_in_dom_order (loop
);
2488 /* Now move the statements, and replace the induction variable in the moved
2489 statements with the correct loop induction variable. */
2490 oldivvar
= VEC_index (tree
, loopivs
, 0);
2491 for (i
= loop
->num_nodes
- 1; i
>= 0 ; i
--)
2493 block_stmt_iterator tobsi
= bsi_last (bodybb
);
2494 if (bbs
[i
]->loop_father
== loop
)
2496 /* If this is true, we are *before* the inner loop.
2497 If this isn't true, we are *after* it.
2499 The only time can_convert_to_perfect_nest returns true when we
2500 have statements before the inner loop is if they can be moved
2501 into the inner loop.
2503 The only time can_convert_to_perfect_nest returns true when we
2504 have statements after the inner loop is if they can be moved into
2505 the new split loop. */
2507 if (dominated_by_p (CDI_DOMINATORS
, loop
->inner
->header
, bbs
[i
]))
2509 block_stmt_iterator header_bsi
2510 = bsi_after_labels (loop
->inner
->header
);
2512 for (bsi
= bsi_start (bbs
[i
]); !bsi_end_p (bsi
);)
2514 tree stmt
= bsi_stmt (bsi
);
2516 if (stmt
== exit_condition
2517 || not_interesting_stmt (stmt
)
2518 || stmt_is_bumper_for_loop (loop
, stmt
))
2524 bsi_move_before (&bsi
, &header_bsi
);
2529 /* Note that the bsi only needs to be explicitly incremented
2530 when we don't move something, since it is automatically
2531 incremented when we do. */
2532 for (bsi
= bsi_start (bbs
[i
]); !bsi_end_p (bsi
);)
2535 tree n
, stmt
= bsi_stmt (bsi
);
2537 if (stmt
== exit_condition
2538 || not_interesting_stmt (stmt
)
2539 || stmt_is_bumper_for_loop (loop
, stmt
))
2545 replace_uses_equiv_to_x_with_y
2546 (loop
, stmt
, oldivvar
, VEC_index (int, steps
, 0), ivvar
);
2548 bsi_move_before (&bsi
, &tobsi
);
2550 /* If the statement has any virtual operands, they may
2551 need to be rewired because the original loop may
2552 still reference them. */
2553 FOR_EACH_SSA_TREE_OPERAND (n
, stmt
, i
, SSA_OP_ALL_VIRTUALS
)
2554 mark_sym_for_renaming (SSA_NAME_VAR (n
));
2562 return perfect_nest_p (loop
);
2565 /* Return true if TRANS is a legal transformation matrix that respects
2566 the dependence vectors in DISTS and DIRS. The conservative answer
2569 "Wolfe proves that a unimodular transformation represented by the
2570 matrix T is legal when applied to a loop nest with a set of
2571 lexicographically non-negative distance vectors RDG if and only if
2572 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2573 i.e.: if and only if it transforms the lexicographically positive
2574 distance vectors to lexicographically positive vectors. Note that
2575 a unimodular matrix must transform the zero vector (and only it) to
2576 the zero vector." S.Muchnick. */
2579 lambda_transform_legal_p (lambda_trans_matrix trans
,
2581 VEC (ddr_p
, heap
) *dependence_relations
)
2584 lambda_vector distres
;
2585 struct data_dependence_relation
*ddr
;
2587 gcc_assert (LTM_COLSIZE (trans
) == nb_loops
2588 && LTM_ROWSIZE (trans
) == nb_loops
);
2590 /* When there is an unknown relation in the dependence_relations, we
2591 know that it is no worth looking at this loop nest: give up. */
2592 ddr
= VEC_index (ddr_p
, dependence_relations
, 0);
2595 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
2598 distres
= lambda_vector_new (nb_loops
);
2600 /* For each distance vector in the dependence graph. */
2601 for (i
= 0; VEC_iterate (ddr_p
, dependence_relations
, i
, ddr
); i
++)
2603 /* Don't care about relations for which we know that there is no
2604 dependence, nor about read-read (aka. output-dependences):
2605 these data accesses can happen in any order. */
2606 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
2607 || (DR_IS_READ (DDR_A (ddr
)) && DR_IS_READ (DDR_B (ddr
))))
2610 /* Conservatively answer: "this transformation is not valid". */
2611 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
2614 /* If the dependence could not be captured by a distance vector,
2615 conservatively answer that the transform is not valid. */
2616 if (DDR_NUM_DIST_VECTS (ddr
) == 0)
2619 /* Compute trans.dist_vect */
2620 for (j
= 0; j
< DDR_NUM_DIST_VECTS (ddr
); j
++)
2622 lambda_matrix_vector_mult (LTM_MATRIX (trans
), nb_loops
, nb_loops
,
2623 DDR_DIST_VECT (ddr
, j
), distres
);
2625 if (!lambda_vector_lexico_pos (distres
, nb_loops
))