1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
43 Here's an example of using the dataflow routines.
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
179 #include "coretypes.h"
183 #include "insn-config.h"
185 #include "function.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
201 (BB) = BASIC_BLOCK (node_); \
207 static alloc_pool df_ref_pool
;
208 static alloc_pool df_link_pool
;
209 static struct df
*ddf
;
211 static void df_reg_table_realloc (struct df
*, int);
212 static void df_insn_table_realloc (struct df
*, unsigned int);
213 static void df_bb_table_realloc (struct df
*, unsigned int);
214 static void df_bitmaps_alloc (struct df
*, bitmap
, int);
215 static void df_bitmaps_free (struct df
*, int);
216 static void df_free (struct df
*);
217 static void df_alloc (struct df
*, int);
219 static rtx
df_reg_use_gen (unsigned int);
221 static inline struct df_link
*df_link_create (struct ref
*, struct df_link
*);
222 static struct df_link
*df_ref_unlink (struct df_link
**, struct ref
*);
223 static void df_def_unlink (struct df
*, struct ref
*);
224 static void df_use_unlink (struct df
*, struct ref
*);
225 static void df_insn_refs_unlink (struct df
*, basic_block
, rtx
);
227 static void df_bb_refs_unlink (struct df
*, basic_block
);
228 static void df_refs_unlink (struct df
*, bitmap
);
231 static struct ref
*df_ref_create (struct df
*, rtx
, rtx
*, rtx
,
232 enum df_ref_type
, enum df_ref_flags
);
233 static void df_ref_record_1 (struct df
*, rtx
, rtx
*, rtx
, enum df_ref_type
,
235 static void df_ref_record (struct df
*, rtx
, rtx
*, rtx
, enum df_ref_type
,
237 static void df_def_record_1 (struct df
*, rtx
, basic_block
, rtx
);
238 static void df_defs_record (struct df
*, rtx
, basic_block
, rtx
);
239 static void df_uses_record (struct df
*, rtx
*, enum df_ref_type
,
240 basic_block
, rtx
, enum df_ref_flags
);
241 static void df_insn_refs_record (struct df
*, basic_block
, rtx
);
242 static void df_bb_refs_record (struct df
*, basic_block
);
243 static void df_refs_record (struct df
*, bitmap
);
245 static void df_bb_reg_def_chain_create (struct df
*, basic_block
);
246 static void df_reg_def_chain_create (struct df
*, bitmap
, bool);
247 static void df_bb_reg_use_chain_create (struct df
*, basic_block
);
248 static void df_reg_use_chain_create (struct df
*, bitmap
, bool);
249 static void df_bb_du_chain_create (struct df
*, basic_block
, bitmap
);
250 static void df_du_chain_create (struct df
*, bitmap
);
251 static void df_bb_ud_chain_create (struct df
*, basic_block
);
252 static void df_ud_chain_create (struct df
*, bitmap
);
253 static void df_bb_rd_local_compute (struct df
*, basic_block
, bitmap
);
254 static void df_rd_local_compute (struct df
*, bitmap
);
255 static void df_bb_ru_local_compute (struct df
*, basic_block
);
256 static void df_ru_local_compute (struct df
*, bitmap
);
257 static void df_bb_lr_local_compute (struct df
*, basic_block
);
258 static void df_lr_local_compute (struct df
*, bitmap
);
259 static void df_bb_reg_info_compute (struct df
*, basic_block
, bitmap
);
260 static void df_reg_info_compute (struct df
*, bitmap
);
262 static int df_bb_luids_set (struct df
*df
, basic_block
);
263 static int df_luids_set (struct df
*df
, bitmap
);
265 static int df_modified_p (struct df
*, bitmap
);
266 static int df_refs_queue (struct df
*);
267 static int df_refs_process (struct df
*);
268 static int df_bb_refs_update (struct df
*, basic_block
);
269 static int df_refs_update (struct df
*, bitmap
);
270 static void df_analyze_1 (struct df
*, bitmap
, int, int);
272 static void df_insns_modify (struct df
*, basic_block
, rtx
, rtx
);
273 static int df_rtx_mem_replace (rtx
*, void *);
274 static int df_rtx_reg_replace (rtx
*, void *);
275 void df_refs_reg_replace (struct df
*, bitmap
, struct df_link
*, rtx
, rtx
);
277 static int df_def_dominates_all_uses_p (struct df
*, struct ref
*def
);
278 static int df_def_dominates_uses_p (struct df
*, struct ref
*def
, bitmap
);
279 static struct ref
*df_bb_insn_regno_last_use_find (struct df
*, basic_block
,
281 static struct ref
*df_bb_insn_regno_first_def_find (struct df
*, basic_block
,
284 static void df_chain_dump (struct df_link
*, FILE *file
);
285 static void df_chain_dump_regno (struct df_link
*, FILE *file
);
286 static void df_regno_debug (struct df
*, unsigned int, FILE *);
287 static void df_ref_debug (struct df
*, struct ref
*, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
294 static void hybrid_search (basic_block
, struct dataflow
*,
295 sbitmap
, sbitmap
, sbitmap
);
298 /* Local memory allocation/deallocation routines. */
301 /* Increase the insn info table to have space for at least SIZE + 1
304 df_insn_table_realloc (struct df
*df
, unsigned int size
)
307 if (size
<= df
->insn_size
)
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size
+= df
->insn_size
/ 4;
314 df
->insns
= xrealloc (df
->insns
, size
* sizeof (struct insn_info
));
316 memset (df
->insns
+ df
->insn_size
, 0,
317 (size
- df
->insn_size
) * sizeof (struct insn_info
));
319 df
->insn_size
= size
;
321 if (! df
->insns_modified
)
323 df
->insns_modified
= BITMAP_XMALLOC ();
324 bitmap_zero (df
->insns_modified
);
328 /* Increase the bb info table to have space for at least SIZE + 1
332 df_bb_table_realloc (struct df
*df
, unsigned int size
)
335 if (size
<= df
->n_bbs
)
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size
+= df
->n_bbs
/ 4;
342 df
->bbs
= xrealloc (df
->bbs
, size
* sizeof (struct bb_info
));
344 memset (df
->bbs
+ df
->n_bbs
, 0, (size
- df
->n_bbs
) * sizeof (struct bb_info
));
349 /* Increase the reg info table by SIZE more elements. */
351 df_reg_table_realloc (struct df
*df
, int size
)
353 /* Make table 25 percent larger by default. */
355 size
= df
->reg_size
/ 4;
357 size
+= df
->reg_size
;
358 if (size
< max_reg_num ())
359 size
= max_reg_num ();
361 df
->regs
= xrealloc (df
->regs
, size
* sizeof (struct reg_info
));
362 df
->reg_def_last
= xrealloc (df
->reg_def_last
,
363 size
* sizeof (struct ref
*));
365 /* Zero the new entries. */
366 memset (df
->regs
+ df
->reg_size
, 0,
367 (size
- df
->reg_size
) * sizeof (struct reg_info
));
373 /* Allocate bitmaps for each basic block. */
376 df_bitmaps_alloc (struct df
*df
, bitmap blocks
, int flags
)
380 df
->n_defs
= df
->def_id
;
381 df
->n_uses
= df
->use_id
;
384 blocks
= df
->all_blocks
;
386 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
388 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info
->rd_kill
= BITMAP_XMALLOC ();
396 bb_info
->rd_gen
= BITMAP_XMALLOC ();
397 bb_info
->rd_in
= BITMAP_XMALLOC ();
398 bb_info
->rd_out
= BITMAP_XMALLOC ();
402 bitmap_clear (bb_info
->rd_kill
);
403 bitmap_clear (bb_info
->rd_gen
);
404 bitmap_clear (bb_info
->rd_in
);
405 bitmap_clear (bb_info
->rd_out
);
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info
->ru_kill
= BITMAP_XMALLOC ();
415 bb_info
->ru_gen
= BITMAP_XMALLOC ();
416 bb_info
->ru_in
= BITMAP_XMALLOC ();
417 bb_info
->ru_out
= BITMAP_XMALLOC ();
421 bitmap_clear (bb_info
->ru_kill
);
422 bitmap_clear (bb_info
->ru_gen
);
423 bitmap_clear (bb_info
->ru_in
);
424 bitmap_clear (bb_info
->ru_out
);
432 /* Allocate bitmaps for live variables. */
433 bb_info
->lr_def
= BITMAP_XMALLOC ();
434 bb_info
->lr_use
= BITMAP_XMALLOC ();
435 bb_info
->lr_in
= BITMAP_XMALLOC ();
436 bb_info
->lr_out
= BITMAP_XMALLOC ();
440 bitmap_clear (bb_info
->lr_def
);
441 bitmap_clear (bb_info
->lr_use
);
442 bitmap_clear (bb_info
->lr_in
);
443 bitmap_clear (bb_info
->lr_out
);
450 /* Free bitmaps for each basic block. */
452 df_bitmaps_free (struct df
*df
, int flags
)
458 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
463 if ((flags
& DF_RD
) && bb_info
->rd_in
)
465 /* Free bitmaps for reaching definitions. */
466 BITMAP_XFREE (bb_info
->rd_kill
);
467 bb_info
->rd_kill
= NULL
;
468 BITMAP_XFREE (bb_info
->rd_gen
);
469 bb_info
->rd_gen
= NULL
;
470 BITMAP_XFREE (bb_info
->rd_in
);
471 bb_info
->rd_in
= NULL
;
472 BITMAP_XFREE (bb_info
->rd_out
);
473 bb_info
->rd_out
= NULL
;
476 if ((flags
& DF_RU
) && bb_info
->ru_in
)
478 /* Free bitmaps for upward exposed uses. */
479 BITMAP_XFREE (bb_info
->ru_kill
);
480 bb_info
->ru_kill
= NULL
;
481 BITMAP_XFREE (bb_info
->ru_gen
);
482 bb_info
->ru_gen
= NULL
;
483 BITMAP_XFREE (bb_info
->ru_in
);
484 bb_info
->ru_in
= NULL
;
485 BITMAP_XFREE (bb_info
->ru_out
);
486 bb_info
->ru_out
= NULL
;
489 if ((flags
& DF_LR
) && bb_info
->lr_in
)
491 /* Free bitmaps for live variables. */
492 BITMAP_XFREE (bb_info
->lr_def
);
493 bb_info
->lr_def
= NULL
;
494 BITMAP_XFREE (bb_info
->lr_use
);
495 bb_info
->lr_use
= NULL
;
496 BITMAP_XFREE (bb_info
->lr_in
);
497 bb_info
->lr_in
= NULL
;
498 BITMAP_XFREE (bb_info
->lr_out
);
499 bb_info
->lr_out
= NULL
;
502 df
->flags
&= ~(flags
& (DF_RD
| DF_RU
| DF_LR
));
506 /* Allocate and initialize dataflow memory. */
508 df_alloc (struct df
*df
, int n_regs
)
513 df_link_pool
= create_alloc_pool ("df_link pool", sizeof (struct df_link
),
515 df_ref_pool
= create_alloc_pool ("df_ref pool", sizeof (struct ref
), 100);
517 /* Perhaps we should use LUIDs to save memory for the insn_refs
518 table. This is only a small saving; a few pointers. */
519 n_insns
= get_max_uid () + 1;
523 /* Approximate number of defs by number of insns. */
524 df
->def_size
= n_insns
;
525 df
->defs
= xmalloc (df
->def_size
* sizeof (*df
->defs
));
529 /* Approximate number of uses by twice number of insns. */
530 df
->use_size
= n_insns
* 2;
531 df
->uses
= xmalloc (df
->use_size
* sizeof (*df
->uses
));
534 df
->n_bbs
= last_basic_block
;
536 /* Allocate temporary working array used during local dataflow analysis. */
537 df_insn_table_realloc (df
, n_insns
);
539 df_reg_table_realloc (df
, df
->n_regs
);
541 df
->bbs_modified
= BITMAP_XMALLOC ();
542 bitmap_zero (df
->bbs_modified
);
546 df
->bbs
= xcalloc (last_basic_block
, sizeof (struct bb_info
));
548 df
->all_blocks
= BITMAP_XMALLOC ();
550 bitmap_set_bit (df
->all_blocks
, bb
->index
);
554 /* Free all the dataflow info. */
556 df_free (struct df
*df
)
558 df_bitmaps_free (df
, DF_ALL
);
586 BITMAP_XFREE (df
->bbs_modified
);
587 df
->bbs_modified
= 0;
589 BITMAP_XFREE (df
->insns_modified
);
590 df
->insns_modified
= 0;
592 BITMAP_XFREE (df
->all_blocks
);
595 free_alloc_pool (df_ref_pool
);
596 free_alloc_pool (df_link_pool
);
599 /* Local miscellaneous routines. */
601 /* Return a USE for register REGNO. */
602 static rtx
df_reg_use_gen (unsigned int regno
)
607 reg
= regno_reg_rtx
[regno
];
609 use
= gen_rtx_USE (GET_MODE (reg
), reg
);
613 /* Local chain manipulation routines. */
615 /* Create a link in a def-use or use-def chain. */
616 static inline struct df_link
*
617 df_link_create (struct ref
*ref
, struct df_link
*next
)
619 struct df_link
*link
;
621 link
= pool_alloc (df_link_pool
);
627 /* Releases members of the CHAIN. */
630 free_reg_ref_chain (struct df_link
**chain
)
632 struct df_link
*act
, *next
;
634 for (act
= *chain
; act
; act
= next
)
637 pool_free (df_link_pool
, act
);
643 /* Add REF to chain head pointed to by PHEAD. */
644 static struct df_link
*
645 df_ref_unlink (struct df_link
**phead
, struct ref
*ref
)
647 struct df_link
*link
= *phead
;
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
656 gcc_assert (link
->ref
== ref
);
658 /* Now have an empty chain. */
663 /* Multiple refs. One of them must be us. */
664 if (link
->ref
== ref
)
669 for (; link
->next
; link
= link
->next
)
671 if (link
->next
->ref
== ref
)
673 /* Unlink from list. */
674 link
->next
= link
->next
->next
;
685 /* Unlink REF from all def-use/use-def chains, etc. */
687 df_ref_remove (struct df
*df
, struct ref
*ref
)
689 if (DF_REF_REG_DEF_P (ref
))
691 df_def_unlink (df
, ref
);
692 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].defs
, ref
);
696 df_use_unlink (df
, ref
);
697 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].uses
, ref
);
703 /* Unlink DEF from use-def and reg-def chains. */
705 df_def_unlink (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
)
707 struct df_link
*du_link
;
708 unsigned int dregno
= DF_REF_REGNO (def
);
710 /* Follow def-use chain to find all the uses of this def. */
711 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
713 struct ref
*use
= du_link
->ref
;
715 /* Unlink this def from the use-def chain. */
716 df_ref_unlink (&DF_REF_CHAIN (use
), def
);
718 DF_REF_CHAIN (def
) = 0;
720 /* Unlink def from reg-def chain. */
721 df_ref_unlink (&df
->regs
[dregno
].defs
, def
);
723 df
->defs
[DF_REF_ID (def
)] = 0;
727 /* Unlink use from def-use and reg-use chains. */
729 df_use_unlink (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*use
)
731 struct df_link
*ud_link
;
732 unsigned int uregno
= DF_REF_REGNO (use
);
734 /* Follow use-def chain to find all the defs of this use. */
735 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
737 struct ref
*def
= ud_link
->ref
;
739 /* Unlink this use from the def-use chain. */
740 df_ref_unlink (&DF_REF_CHAIN (def
), use
);
742 DF_REF_CHAIN (use
) = 0;
744 /* Unlink use from reg-use chain. */
745 df_ref_unlink (&df
->regs
[uregno
].uses
, use
);
747 df
->uses
[DF_REF_ID (use
)] = 0;
750 /* Local routines for recording refs. */
753 /* Create a new ref of type DF_REF_TYPE for register REG at address
754 LOC within INSN of BB. */
756 df_ref_create (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
757 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
759 struct ref
*this_ref
;
761 this_ref
= pool_alloc (df_ref_pool
);
762 DF_REF_REG (this_ref
) = reg
;
763 DF_REF_LOC (this_ref
) = loc
;
764 DF_REF_INSN (this_ref
) = insn
;
765 DF_REF_CHAIN (this_ref
) = 0;
766 DF_REF_TYPE (this_ref
) = ref_type
;
767 DF_REF_FLAGS (this_ref
) = ref_flags
;
768 DF_REF_DATA (this_ref
) = NULL
;
770 if (ref_type
== DF_REF_REG_DEF
)
772 if (df
->def_id
>= df
->def_size
)
774 /* Make table 25 percent larger. */
775 df
->def_size
+= (df
->def_size
/ 4);
776 df
->defs
= xrealloc (df
->defs
,
777 df
->def_size
* sizeof (*df
->defs
));
779 DF_REF_ID (this_ref
) = df
->def_id
;
780 df
->defs
[df
->def_id
++] = this_ref
;
784 if (df
->use_id
>= df
->use_size
)
786 /* Make table 25 percent larger. */
787 df
->use_size
+= (df
->use_size
/ 4);
788 df
->uses
= xrealloc (df
->uses
,
789 df
->use_size
* sizeof (*df
->uses
));
791 DF_REF_ID (this_ref
) = df
->use_id
;
792 df
->uses
[df
->use_id
++] = this_ref
;
798 /* Create a new reference of type DF_REF_TYPE for a single register REG,
799 used inside the LOC rtx of INSN. */
801 df_ref_record_1 (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
802 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
804 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
808 /* Create new references of type DF_REF_TYPE for each part of register REG
809 at address LOC within INSN of BB. */
811 df_ref_record (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
812 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
816 gcc_assert (REG_P (reg
) || GET_CODE (reg
) == SUBREG
);
818 /* For the reg allocator we are interested in some SUBREG rtx's, but not
819 all. Notably only those representing a word extraction from a multi-word
820 reg. As written in the docu those should have the form
821 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
822 XXX Is that true? We could also use the global word_mode variable. */
823 if (GET_CODE (reg
) == SUBREG
824 && (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (word_mode
)
825 || GET_MODE_SIZE (GET_MODE (reg
))
826 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg
)))))
828 loc
= &SUBREG_REG (reg
);
830 ref_flags
|= DF_REF_STRIPPED
;
833 regno
= REGNO (GET_CODE (reg
) == SUBREG
? SUBREG_REG (reg
) : reg
);
834 if (regno
< FIRST_PSEUDO_REGISTER
)
839 if (! (df
->flags
& DF_HARD_REGS
))
842 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
843 for the mode, because we only want to add references to regs, which
844 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
845 reference the whole reg 0 in DI mode (which would also include
846 reg 1, at least, if 0 and 1 are SImode registers). */
847 endregno
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
848 if (GET_CODE (reg
) == SUBREG
)
849 regno
+= subreg_regno_offset (regno
, GET_MODE (SUBREG_REG (reg
)),
850 SUBREG_BYTE (reg
), GET_MODE (reg
));
853 for (i
= regno
; i
< endregno
; i
++)
854 df_ref_record_1 (df
, regno_reg_rtx
[i
],
855 loc
, insn
, ref_type
, ref_flags
);
859 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
864 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
865 covered by the outer mode is smaller than that covered by the inner mode,
866 is a read-modify-write operation.
867 This function returns true iff the SUBREG X is such a SUBREG. */
869 read_modify_subreg_p (rtx x
)
871 unsigned int isize
, osize
;
872 if (GET_CODE (x
) != SUBREG
)
874 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
875 osize
= GET_MODE_SIZE (GET_MODE (x
));
876 return (isize
> osize
&& isize
> UNITS_PER_WORD
);
880 /* Process all the registers defined in the rtx, X. */
882 df_def_record_1 (struct df
*df
, rtx x
, basic_block bb
, rtx insn
)
886 enum df_ref_flags flags
= 0;
888 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
890 if (GET_CODE (x
) == EXPR_LIST
|| GET_CODE (x
) == CLOBBER
)
896 /* Some targets place small structures in registers for
897 return values of functions. */
898 if (GET_CODE (dst
) == PARALLEL
&& GET_MODE (dst
) == BLKmode
)
902 for (i
= XVECLEN (dst
, 0) - 1; i
>= 0; i
--)
904 rtx temp
= XVECEXP (dst
, 0, i
);
905 if (GET_CODE (temp
) == EXPR_LIST
|| GET_CODE (temp
) == CLOBBER
906 || GET_CODE (temp
) == SET
)
907 df_def_record_1 (df
, temp
, bb
, insn
);
912 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
913 be handy for the reg allocator. */
914 while (GET_CODE (dst
) == STRICT_LOW_PART
915 || GET_CODE (dst
) == ZERO_EXTRACT
916 || ((df
->flags
& DF_FOR_REGALLOC
) == 0
917 && read_modify_subreg_p (dst
)))
919 /* Strict low part always contains SUBREG, but we do not want to make
920 it appear outside, as whole register is always considered. */
921 if (GET_CODE (dst
) == STRICT_LOW_PART
)
923 loc
= &XEXP (dst
, 0);
926 loc
= &XEXP (dst
, 0);
928 flags
|= DF_REF_READ_WRITE
;
932 || (GET_CODE (dst
) == SUBREG
&& REG_P (SUBREG_REG (dst
))))
933 df_ref_record (df
, dst
, loc
, insn
, DF_REF_REG_DEF
, flags
);
937 /* Process all the registers defined in the pattern rtx, X. */
939 df_defs_record (struct df
*df
, rtx x
, basic_block bb
, rtx insn
)
941 RTX_CODE code
= GET_CODE (x
);
943 if (code
== SET
|| code
== CLOBBER
)
945 /* Mark the single def within the pattern. */
946 df_def_record_1 (df
, x
, bb
, insn
);
948 else if (code
== PARALLEL
)
952 /* Mark the multiple defs within the pattern. */
953 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
955 code
= GET_CODE (XVECEXP (x
, 0, i
));
956 if (code
== SET
|| code
== CLOBBER
)
957 df_def_record_1 (df
, XVECEXP (x
, 0, i
), bb
, insn
);
963 /* Process all the registers used in the rtx at address LOC. */
965 df_uses_record (struct df
*df
, rtx
*loc
, enum df_ref_type ref_type
,
966 basic_block bb
, rtx insn
, enum df_ref_flags flags
)
990 /* If we are clobbering a MEM, mark any registers inside the address
992 if (MEM_P (XEXP (x
, 0)))
993 df_uses_record (df
, &XEXP (XEXP (x
, 0), 0),
994 DF_REF_REG_MEM_STORE
, bb
, insn
, flags
);
996 /* If we're clobbering a REG then we have a def so ignore. */
1000 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_MEM_LOAD
, bb
, insn
, 0);
1004 /* While we're here, optimize this case. */
1006 /* In case the SUBREG is not of a REG, do not optimize. */
1007 if (!REG_P (SUBREG_REG (x
)))
1009 loc
= &SUBREG_REG (x
);
1010 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
);
1013 /* ... Fall through ... */
1016 df_ref_record (df
, x
, loc
, insn
, ref_type
, flags
);
1021 rtx dst
= SET_DEST (x
);
1023 df_uses_record (df
, &SET_SRC (x
), DF_REF_REG_USE
, bb
, insn
, 0);
1025 switch (GET_CODE (dst
))
1028 if ((df
->flags
& DF_FOR_REGALLOC
) == 0
1029 && read_modify_subreg_p (dst
))
1031 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1032 insn
, DF_REF_READ_WRITE
);
1042 df_uses_record (df
, &XEXP (dst
, 0),
1043 DF_REF_REG_MEM_STORE
,
1046 case STRICT_LOW_PART
:
1047 /* A strict_low_part uses the whole REG and not just the
1049 dst
= XEXP (dst
, 0);
1050 gcc_assert (GET_CODE (dst
) == SUBREG
);
1051 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1052 insn
, DF_REF_READ_WRITE
);
1056 df_uses_record (df
, &XEXP (dst
, 0), DF_REF_REG_USE
, bb
, insn
,
1058 df_uses_record (df
, &XEXP (dst
, 1), DF_REF_REG_USE
, bb
, insn
, 0);
1059 df_uses_record (df
, &XEXP (dst
, 2), DF_REF_REG_USE
, bb
, insn
, 0);
1060 dst
= XEXP (dst
, 0);
1072 case UNSPEC_VOLATILE
:
1076 /* Traditional and volatile asm instructions must be considered to use
1077 and clobber all hard registers, all pseudo-registers and all of
1078 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1080 Consider for instance a volatile asm that changes the fpu rounding
1081 mode. An insn should not be moved across this even if it only uses
1082 pseudo-regs because it might give an incorrectly rounded result.
1084 For now, just mark any regs we can find in ASM_OPERANDS as
1087 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1088 We can not just fall through here since then we would be confused
1089 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1090 traditional asms unlike their normal usage. */
1091 if (code
== ASM_OPERANDS
)
1095 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
1096 df_uses_record (df
, &ASM_OPERANDS_INPUT (x
, j
),
1097 DF_REF_REG_USE
, bb
, insn
, 0);
1109 /* Catch the def of the register being modified. */
1110 df_ref_record (df
, XEXP (x
, 0), &XEXP (x
, 0), insn
, DF_REF_REG_DEF
, DF_REF_READ_WRITE
);
1112 /* ... Fall through to handle uses ... */
1118 /* Recursively scan the operands of this expression. */
1120 const char *fmt
= GET_RTX_FORMAT (code
);
1123 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1127 /* Tail recursive case: save a function call level. */
1133 df_uses_record (df
, &XEXP (x
, i
), ref_type
, bb
, insn
, flags
);
1135 else if (fmt
[i
] == 'E')
1138 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1139 df_uses_record (df
, &XVECEXP (x
, i
, j
), ref_type
,
1147 /* Record all the df within INSN of basic block BB. */
1149 df_insn_refs_record (struct df
*df
, basic_block bb
, rtx insn
)
1157 /* Record register defs. */
1158 df_defs_record (df
, PATTERN (insn
), bb
, insn
);
1160 if (df
->flags
& DF_EQUIV_NOTES
)
1161 for (note
= REG_NOTES (insn
); note
;
1162 note
= XEXP (note
, 1))
1164 switch (REG_NOTE_KIND (note
))
1168 df_uses_record (df
, &XEXP (note
, 0), DF_REF_REG_USE
,
1180 /* Record the registers used to pass arguments. */
1181 for (note
= CALL_INSN_FUNCTION_USAGE (insn
); note
;
1182 note
= XEXP (note
, 1))
1184 if (GET_CODE (XEXP (note
, 0)) == USE
)
1185 df_uses_record (df
, &XEXP (XEXP (note
, 0), 0), DF_REF_REG_USE
,
1189 /* The stack ptr is used (honorarily) by a CALL insn. */
1190 x
= df_reg_use_gen (STACK_POINTER_REGNUM
);
1191 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_USE
, bb
, insn
, 0);
1193 if (df
->flags
& DF_HARD_REGS
)
1195 /* Calls may also reference any of the global registers,
1196 so they are recorded as used. */
1197 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1200 x
= df_reg_use_gen (i
);
1201 df_uses_record (df
, &SET_DEST (x
),
1202 DF_REF_REG_USE
, bb
, insn
, 0);
1207 /* Record the register uses. */
1208 df_uses_record (df
, &PATTERN (insn
),
1209 DF_REF_REG_USE
, bb
, insn
, 0);
1215 /* We do not record hard registers clobbered by the call,
1216 since there are awfully many of them and "defs" created
1217 through them are not interesting (since no use can be legally
1218 reached by them). So we must just make sure we include them when
1219 computing kill bitmaps. */
1221 /* There may be extra registers to be clobbered. */
1222 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1224 note
= XEXP (note
, 1))
1225 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1226 df_defs_record (df
, XEXP (note
, 0), bb
, insn
);
1232 /* Record all the refs within the basic block BB. */
1234 df_bb_refs_record (struct df
*df
, basic_block bb
)
1238 /* Scan the block an insn at a time from beginning to end. */
1239 FOR_BB_INSNS (bb
, insn
)
1243 /* Record defs within INSN. */
1244 df_insn_refs_record (df
, bb
, insn
);
1250 /* Record all the refs in the basic blocks specified by BLOCKS. */
1252 df_refs_record (struct df
*df
, bitmap blocks
)
1256 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1258 df_bb_refs_record (df
, bb
);
1262 /* Dataflow analysis routines. */
1264 /* Create reg-def chains for basic block BB. These are a list of
1265 definitions for each register. */
1268 df_bb_reg_def_chain_create (struct df
*df
, basic_block bb
)
1272 /* Perhaps the defs should be sorted using a depth first search
1273 of the CFG (or possibly a breadth first search). */
1275 FOR_BB_INSNS_REVERSE (bb
, insn
)
1277 struct df_link
*link
;
1278 unsigned int uid
= INSN_UID (insn
);
1280 if (! INSN_P (insn
))
1283 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1285 struct ref
*def
= link
->ref
;
1286 unsigned int dregno
= DF_REF_REGNO (def
);
1288 /* Do not add ref's to the chain twice, i.e., only add new
1289 refs. XXX the same could be done by testing if the
1290 current insn is a modified (or a new) one. This would be
1292 if (DF_REF_ID (def
) < df
->def_id_save
)
1295 df
->regs
[dregno
].defs
= df_link_create (def
, df
->regs
[dregno
].defs
);
1301 /* Create reg-def chains for each basic block within BLOCKS. These
1302 are a list of definitions for each register. If REDO is true, add
1303 all defs, otherwise just add the new defs. */
1306 df_reg_def_chain_create (struct df
*df
, bitmap blocks
, bool redo
)
1309 #ifdef ENABLE_CHECKING
1312 unsigned old_def_id_save
= df
->def_id_save
;
1316 #ifdef ENABLE_CHECKING
1317 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1318 gcc_assert (!df
->regs
[regno
].defs
);
1321 /* Pretend that all defs are new. */
1322 df
->def_id_save
= 0;
1325 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1327 df_bb_reg_def_chain_create (df
, bb
);
1330 df
->def_id_save
= old_def_id_save
;
1333 /* Remove all reg-def chains stored in the dataflow object DF. */
1336 df_reg_def_chain_clean (struct df
*df
)
1340 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1341 free_reg_ref_chain (&df
->regs
[regno
].defs
);
1344 /* Create reg-use chains for basic block BB. These are a list of uses
1345 for each register. */
1348 df_bb_reg_use_chain_create (struct df
*df
, basic_block bb
)
1352 /* Scan in forward order so that the last uses appear at the start
1355 FOR_BB_INSNS (bb
, insn
)
1357 struct df_link
*link
;
1358 unsigned int uid
= INSN_UID (insn
);
1360 if (! INSN_P (insn
))
1363 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1365 struct ref
*use
= link
->ref
;
1366 unsigned int uregno
= DF_REF_REGNO (use
);
1368 /* Do not add ref's to the chain twice, i.e., only add new
1369 refs. XXX the same could be done by testing if the
1370 current insn is a modified (or a new) one. This would be
1372 if (DF_REF_ID (use
) < df
->use_id_save
)
1375 df
->regs
[uregno
].uses
1376 = df_link_create (use
, df
->regs
[uregno
].uses
);
1382 /* Create reg-use chains for each basic block within BLOCKS. These
1383 are a list of uses for each register. If REDO is true, remove the
1384 old reg-use chains first, otherwise just add new uses to them. */
1387 df_reg_use_chain_create (struct df
*df
, bitmap blocks
, bool redo
)
1390 #ifdef ENABLE_CHECKING
1393 unsigned old_use_id_save
= df
->use_id_save
;
1397 #ifdef ENABLE_CHECKING
1398 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1399 gcc_assert (!df
->regs
[regno
].uses
);
1402 /* Pretend that all uses are new. */
1403 df
->use_id_save
= 0;
1406 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1408 df_bb_reg_use_chain_create (df
, bb
);
1411 df
->use_id_save
= old_use_id_save
;
1414 /* Remove all reg-use chains stored in the dataflow object DF. */
1417 df_reg_use_chain_clean (struct df
*df
)
1421 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1422 free_reg_ref_chain (&df
->regs
[regno
].uses
);
1425 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1427 df_bb_du_chain_create (struct df
*df
, basic_block bb
, bitmap ru
)
1429 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1432 bitmap_copy (ru
, bb_info
->ru_out
);
1434 /* For each def in BB create a linked list (chain) of uses
1435 reached from the def. */
1436 FOR_BB_INSNS_REVERSE (bb
, insn
)
1438 struct df_link
*def_link
;
1439 struct df_link
*use_link
;
1440 unsigned int uid
= INSN_UID (insn
);
1442 if (! INSN_P (insn
))
1445 /* For each def in insn... */
1446 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1448 struct ref
*def
= def_link
->ref
;
1449 unsigned int dregno
= DF_REF_REGNO (def
);
1451 DF_REF_CHAIN (def
) = 0;
1453 /* While the reg-use chains are not essential, it
1454 is _much_ faster to search these short lists rather
1455 than all the reaching uses, especially for large functions. */
1456 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1457 use_link
= use_link
->next
)
1459 struct ref
*use
= use_link
->ref
;
1461 if (bitmap_bit_p (ru
, DF_REF_ID (use
)))
1464 = df_link_create (use
, DF_REF_CHAIN (def
));
1466 bitmap_clear_bit (ru
, DF_REF_ID (use
));
1471 /* For each use in insn... */
1472 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1474 struct ref
*use
= use_link
->ref
;
1475 bitmap_set_bit (ru
, DF_REF_ID (use
));
1481 /* Create def-use chains from reaching use bitmaps for basic blocks
1484 df_du_chain_create (struct df
*df
, bitmap blocks
)
1489 ru
= BITMAP_XMALLOC ();
1491 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1493 df_bb_du_chain_create (df
, bb
, ru
);
1500 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1502 df_bb_ud_chain_create (struct df
*df
, basic_block bb
)
1504 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1505 struct ref
**reg_def_last
= df
->reg_def_last
;
1508 memset (reg_def_last
, 0, df
->n_regs
* sizeof (struct ref
*));
1510 /* For each use in BB create a linked list (chain) of defs
1511 that reach the use. */
1512 FOR_BB_INSNS (bb
, insn
)
1514 unsigned int uid
= INSN_UID (insn
);
1515 struct df_link
*use_link
;
1516 struct df_link
*def_link
;
1518 if (! INSN_P (insn
))
1521 /* For each use in insn... */
1522 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1524 struct ref
*use
= use_link
->ref
;
1525 unsigned int regno
= DF_REF_REGNO (use
);
1527 DF_REF_CHAIN (use
) = 0;
1529 /* Has regno been defined in this BB yet? If so, use
1530 the last def as the single entry for the use-def
1531 chain for this use. Otherwise, we need to add all
1532 the defs using this regno that reach the start of
1534 if (reg_def_last
[regno
])
1537 = df_link_create (reg_def_last
[regno
], 0);
1541 /* While the reg-def chains are not essential, it is
1542 _much_ faster to search these short lists rather than
1543 all the reaching defs, especially for large
1545 for (def_link
= df
->regs
[regno
].defs
; def_link
;
1546 def_link
= def_link
->next
)
1548 struct ref
*def
= def_link
->ref
;
1550 if (bitmap_bit_p (bb_info
->rd_in
, DF_REF_ID (def
)))
1553 = df_link_create (def
, DF_REF_CHAIN (use
));
1560 /* For each def in insn... record the last def of each reg. */
1561 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1563 struct ref
*def
= def_link
->ref
;
1564 int dregno
= DF_REF_REGNO (def
);
1566 reg_def_last
[dregno
] = def
;
1572 /* Create use-def chains from reaching def bitmaps for basic blocks
1575 df_ud_chain_create (struct df
*df
, bitmap blocks
)
1579 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1581 df_bb_ud_chain_create (df
, bb
);
1588 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1589 void *out
, void *gen
, void *kill
,
1590 void *data ATTRIBUTE_UNUSED
)
1592 *changed
= bitmap_ior_and_compl (out
, gen
, in
, kill
);
1597 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1598 void *out
, void *gen
, void *kill
,
1599 void *data ATTRIBUTE_UNUSED
)
1601 *changed
= bitmap_ior_and_compl (in
, gen
, out
, kill
);
1606 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1607 void *out
, void *use
, void *def
,
1608 void *data ATTRIBUTE_UNUSED
)
1610 *changed
= bitmap_ior_and_compl (in
, use
, out
, def
);
1614 /* Compute local reaching def info for basic block BB. */
1616 df_bb_rd_local_compute (struct df
*df
, basic_block bb
, bitmap call_killed_defs
)
1618 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1620 bitmap seen
= BITMAP_XMALLOC ();
1621 bool call_seen
= false;
1623 FOR_BB_INSNS_REVERSE (bb
, insn
)
1625 unsigned int uid
= INSN_UID (insn
);
1626 struct df_link
*def_link
;
1628 if (! INSN_P (insn
))
1631 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1633 struct ref
*def
= def_link
->ref
;
1634 unsigned int regno
= DF_REF_REGNO (def
);
1635 struct df_link
*def2_link
;
1637 if (bitmap_bit_p (seen
, regno
)
1639 && regno
< FIRST_PSEUDO_REGISTER
1640 && TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)))
1643 for (def2_link
= df
->regs
[regno
].defs
; def2_link
;
1644 def2_link
= def2_link
->next
)
1646 struct ref
*def2
= def2_link
->ref
;
1648 /* Add all defs of this reg to the set of kills. This
1649 is greedy since many of these defs will not actually
1650 be killed by this BB but it keeps things a lot
1652 bitmap_set_bit (bb_info
->rd_kill
, DF_REF_ID (def2
));
1655 bitmap_set_bit (bb_info
->rd_gen
, DF_REF_ID (def
));
1656 bitmap_set_bit (seen
, regno
);
1659 if (CALL_P (insn
) && (df
->flags
& DF_HARD_REGS
))
1661 bitmap_ior_into (bb_info
->rd_kill
, call_killed_defs
);
1666 BITMAP_XFREE (seen
);
1670 /* Compute local reaching def info for each basic block within BLOCKS. */
1672 df_rd_local_compute (struct df
*df
, bitmap blocks
)
1675 bitmap killed_by_call
= NULL
;
1677 struct df_link
*def_link
;
1679 if (df
->flags
& DF_HARD_REGS
)
1681 killed_by_call
= BITMAP_XMALLOC ();
1682 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1684 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1687 for (def_link
= df
->regs
[regno
].defs
;
1689 def_link
= def_link
->next
)
1690 bitmap_set_bit (killed_by_call
, DF_REF_ID (def_link
->ref
));
1694 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1696 df_bb_rd_local_compute (df
, bb
, killed_by_call
);
1699 if (df
->flags
& DF_HARD_REGS
)
1700 BITMAP_XFREE (killed_by_call
);
1704 /* Compute local reaching use (upward exposed use) info for basic
1707 df_bb_ru_local_compute (struct df
*df
, basic_block bb
)
1709 /* This is much more tricky than computing reaching defs. With
1710 reaching defs, defs get killed by other defs. With upwards
1711 exposed uses, these get killed by defs with the same regno. */
1713 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1717 FOR_BB_INSNS_REVERSE (bb
, insn
)
1719 unsigned int uid
= INSN_UID (insn
);
1720 struct df_link
*def_link
;
1721 struct df_link
*use_link
;
1723 if (! INSN_P (insn
))
1726 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1728 struct ref
*def
= def_link
->ref
;
1729 unsigned int dregno
= DF_REF_REGNO (def
);
1731 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1732 use_link
= use_link
->next
)
1734 struct ref
*use
= use_link
->ref
;
1736 /* Add all uses of this reg to the set of kills. This
1737 is greedy since many of these uses will not actually
1738 be killed by this BB but it keeps things a lot
1740 bitmap_set_bit (bb_info
->ru_kill
, DF_REF_ID (use
));
1742 /* Zap from the set of gens for this BB. */
1743 bitmap_clear_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1747 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1749 struct ref
*use
= use_link
->ref
;
1750 /* Add use to set of gens in this BB. */
1751 bitmap_set_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1757 /* Compute local reaching use (upward exposed use) info for each basic
1758 block within BLOCKS. */
1760 df_ru_local_compute (struct df
*df
, bitmap blocks
)
1764 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1766 df_bb_ru_local_compute (df
, bb
);
1771 /* Compute local live variable info for basic block BB. */
1773 df_bb_lr_local_compute (struct df
*df
, basic_block bb
)
1775 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1778 FOR_BB_INSNS_REVERSE (bb
, insn
)
1780 unsigned int uid
= INSN_UID (insn
);
1781 struct df_link
*link
;
1783 if (! INSN_P (insn
))
1786 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1788 struct ref
*def
= link
->ref
;
1789 unsigned int dregno
= DF_REF_REGNO (def
);
1791 /* Add def to set of defs in this BB. */
1792 bitmap_set_bit (bb_info
->lr_def
, dregno
);
1794 bitmap_clear_bit (bb_info
->lr_use
, dregno
);
1797 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1799 struct ref
*use
= link
->ref
;
1800 /* Add use to set of uses in this BB. */
1801 bitmap_set_bit (bb_info
->lr_use
, DF_REF_REGNO (use
));
1807 /* Compute local live variable info for each basic block within BLOCKS. */
1809 df_lr_local_compute (struct df
*df
, bitmap blocks
)
1813 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1815 df_bb_lr_local_compute (df
, bb
);
1820 /* Compute register info: lifetime, bb, and number of defs and uses
1821 for basic block BB. */
1823 df_bb_reg_info_compute (struct df
*df
, basic_block bb
, bitmap live
)
1825 struct reg_info
*reg_info
= df
->regs
;
1826 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1829 bitmap_copy (live
, bb_info
->lr_out
);
1831 FOR_BB_INSNS_REVERSE (bb
, insn
)
1833 unsigned int uid
= INSN_UID (insn
);
1835 struct df_link
*link
;
1838 if (! INSN_P (insn
))
1841 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1843 struct ref
*def
= link
->ref
;
1844 unsigned int dregno
= DF_REF_REGNO (def
);
1846 /* Kill this register. */
1847 bitmap_clear_bit (live
, dregno
);
1848 reg_info
[dregno
].n_defs
++;
1851 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1853 struct ref
*use
= link
->ref
;
1854 unsigned int uregno
= DF_REF_REGNO (use
);
1856 /* This register is now live. */
1857 bitmap_set_bit (live
, uregno
);
1858 reg_info
[uregno
].n_uses
++;
1861 /* Increment lifetimes of all live registers. */
1862 EXECUTE_IF_SET_IN_BITMAP (live
, 0, regno
, bi
)
1864 reg_info
[regno
].lifetime
++;
1870 /* Compute register info: lifetime, bb, and number of defs and uses. */
1872 df_reg_info_compute (struct df
*df
, bitmap blocks
)
1877 live
= BITMAP_XMALLOC ();
1879 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1881 df_bb_reg_info_compute (df
, bb
, live
);
1884 BITMAP_XFREE (live
);
1888 /* Assign LUIDs for BB. */
1890 df_bb_luids_set (struct df
*df
, basic_block bb
)
1895 /* The LUIDs are monotonically increasing for each basic block. */
1897 FOR_BB_INSNS (bb
, insn
)
1900 DF_INSN_LUID (df
, insn
) = luid
++;
1901 DF_INSN_LUID (df
, insn
) = luid
;
1907 /* Assign LUIDs for each basic block within BLOCKS. */
1909 df_luids_set (struct df
*df
, bitmap blocks
)
1914 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1916 total
+= df_bb_luids_set (df
, bb
);
1922 /* Perform dataflow analysis using existing DF structure for blocks
1923 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1925 df_analyze_1 (struct df
*df
, bitmap blocks
, int flags
, int update
)
1931 struct dataflow dflow
;
1935 if (flags
& DF_UD_CHAIN
)
1936 aflags
|= DF_RD
| DF_RD_CHAIN
;
1938 if (flags
& DF_DU_CHAIN
)
1942 aflags
|= DF_RU_CHAIN
;
1944 if (flags
& DF_REG_INFO
)
1948 blocks
= df
->all_blocks
;
1953 df_refs_update (df
, NULL
);
1954 /* More fine grained incremental dataflow analysis would be
1955 nice. For now recompute the whole shebang for the
1958 df_refs_unlink (df
, blocks
);
1960 /* All the def-use, use-def chains can be potentially
1961 modified by changes in one block. The size of the
1962 bitmaps can also change. */
1966 /* Scan the function for all register defs and uses. */
1968 df_refs_record (df
, blocks
);
1970 /* Link all the new defs and uses to the insns. */
1971 df_refs_process (df
);
1974 /* Allocate the bitmaps now the total number of defs and uses are
1975 known. If the number of defs or uses have changed, then
1976 these bitmaps need to be reallocated. */
1977 df_bitmaps_alloc (df
, NULL
, aflags
);
1979 /* Set the LUIDs for each specified basic block. */
1980 df_luids_set (df
, blocks
);
1982 /* Recreate reg-def and reg-use chains from scratch so that first
1983 def is at the head of the reg-def chain and the last use is at
1984 the head of the reg-use chain. This is only important for
1985 regs local to a basic block as it speeds up searching. */
1986 if (aflags
& DF_RD_CHAIN
)
1988 df_reg_def_chain_create (df
, blocks
, false);
1991 if (aflags
& DF_RU_CHAIN
)
1993 df_reg_use_chain_create (df
, blocks
, false);
1996 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
);
1997 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
);
1998 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
);
1999 df
->inverse_dfs_map
= xmalloc (sizeof (int) * last_basic_block
);
2000 df
->inverse_rc_map
= xmalloc (sizeof (int) * last_basic_block
);
2001 df
->inverse_rts_map
= xmalloc (sizeof (int) * last_basic_block
);
2003 flow_depth_first_order_compute (df
->dfs_order
, df
->rc_order
);
2004 flow_reverse_top_sort_order_compute (df
->rts_order
);
2005 for (i
= 0; i
< n_basic_blocks
; i
++)
2007 df
->inverse_dfs_map
[df
->dfs_order
[i
]] = i
;
2008 df
->inverse_rc_map
[df
->rc_order
[i
]] = i
;
2009 df
->inverse_rts_map
[df
->rts_order
[i
]] = i
;
2013 /* Compute the sets of gens and kills for the defs of each bb. */
2014 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2015 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2016 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2017 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2019 df_rd_local_compute (df
, df
->flags
& DF_RD
? blocks
: df
->all_blocks
);
2022 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2023 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2024 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2025 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2028 dflow
.repr
= SR_BITMAP
;
2029 dflow
.dir
= DF_FORWARD
;
2030 dflow
.conf_op
= DF_UNION
;
2031 dflow
.transfun
= df_rd_transfer_function
;
2032 dflow
.n_blocks
= n_basic_blocks
;
2033 dflow
.order
= df
->rc_order
;
2036 iterative_dataflow (&dflow
);
2043 if (aflags
& DF_UD_CHAIN
)
2045 /* Create use-def chains. */
2046 df_ud_chain_create (df
, df
->all_blocks
);
2048 if (! (flags
& DF_RD
))
2054 /* Compute the sets of gens and kills for the upwards exposed
2056 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2057 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2058 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2059 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2061 df_ru_local_compute (df
, df
->flags
& DF_RU
? blocks
: df
->all_blocks
);
2065 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2066 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2067 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2068 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2071 dflow
.repr
= SR_BITMAP
;
2072 dflow
.dir
= DF_BACKWARD
;
2073 dflow
.conf_op
= DF_UNION
;
2074 dflow
.transfun
= df_ru_transfer_function
;
2075 dflow
.n_blocks
= n_basic_blocks
;
2076 dflow
.order
= df
->rts_order
;
2079 iterative_dataflow (&dflow
);
2086 if (aflags
& DF_DU_CHAIN
)
2088 /* Create def-use chains. */
2089 df_du_chain_create (df
, df
->all_blocks
);
2091 if (! (flags
& DF_RU
))
2095 /* Free up bitmaps that are no longer required. */
2097 df_bitmaps_free (df
, dflags
);
2101 /* Compute the sets of defs and uses of live variables. */
2102 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2103 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2104 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2105 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2107 df_lr_local_compute (df
, df
->flags
& DF_LR
? blocks
: df
->all_blocks
);
2111 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2112 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2113 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2114 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2117 dflow
.repr
= SR_BITMAP
;
2118 dflow
.dir
= DF_BACKWARD
;
2119 dflow
.conf_op
= DF_UNION
;
2120 dflow
.transfun
= df_lr_transfer_function
;
2121 dflow
.n_blocks
= n_basic_blocks
;
2122 dflow
.order
= df
->rts_order
;
2125 iterative_dataflow (&dflow
);
2132 if (aflags
& DF_REG_INFO
)
2134 df_reg_info_compute (df
, df
->all_blocks
);
2137 free (df
->dfs_order
);
2138 free (df
->rc_order
);
2139 free (df
->rts_order
);
2140 free (df
->inverse_rc_map
);
2141 free (df
->inverse_dfs_map
);
2142 free (df
->inverse_rts_map
);
2146 /* Initialize dataflow analysis. */
2152 df
= xcalloc (1, sizeof (struct df
));
2154 /* Squirrel away a global for debugging. */
2161 /* Start queuing refs. */
2163 df_refs_queue (struct df
*df
)
2165 df
->def_id_save
= df
->def_id
;
2166 df
->use_id_save
= df
->use_id
;
2167 /* ???? Perhaps we should save current obstack state so that we can
2173 /* Process queued refs. */
2175 df_refs_process (struct df
*df
)
2179 /* Build new insn-def chains. */
2180 for (i
= df
->def_id_save
; i
!= df
->def_id
; i
++)
2182 struct ref
*def
= df
->defs
[i
];
2183 unsigned int uid
= DF_REF_INSN_UID (def
);
2185 /* Add def to head of def list for INSN. */
2187 = df_link_create (def
, df
->insns
[uid
].defs
);
2190 /* Build new insn-use chains. */
2191 for (i
= df
->use_id_save
; i
!= df
->use_id
; i
++)
2193 struct ref
*use
= df
->uses
[i
];
2194 unsigned int uid
= DF_REF_INSN_UID (use
);
2196 /* Add use to head of use list for INSN. */
2198 = df_link_create (use
, df
->insns
[uid
].uses
);
2204 /* Update refs for basic block BB. */
2206 df_bb_refs_update (struct df
*df
, basic_block bb
)
2211 /* While we have to scan the chain of insns for this BB, we do not
2212 need to allocate and queue a long chain of BB/INSN pairs. Using
2213 a bitmap for insns_modified saves memory and avoids queuing
2216 FOR_BB_INSNS (bb
, insn
)
2220 uid
= INSN_UID (insn
);
2222 if (bitmap_bit_p (df
->insns_modified
, uid
))
2224 /* Delete any allocated refs of this insn. MPH, FIXME. */
2225 df_insn_refs_unlink (df
, bb
, insn
);
2227 /* Scan the insn for refs. */
2228 df_insn_refs_record (df
, bb
, insn
);
2237 /* Process all the modified/deleted insns that were queued. */
2239 df_refs_update (struct df
*df
, bitmap blocks
)
2242 unsigned count
= 0, bbno
;
2244 df
->n_regs
= max_reg_num ();
2245 if (df
->n_regs
>= df
->reg_size
)
2246 df_reg_table_realloc (df
, 0);
2252 FOR_EACH_BB_IN_BITMAP (df
->bbs_modified
, 0, bb
,
2254 count
+= df_bb_refs_update (df
, bb
);
2261 EXECUTE_IF_AND_IN_BITMAP (df
->bbs_modified
, blocks
, 0, bbno
, bi
)
2263 count
+= df_bb_refs_update (df
, BASIC_BLOCK (bbno
));
2267 df_refs_process (df
);
2272 /* Return nonzero if any of the requested blocks in the bitmap
2273 BLOCKS have been modified. */
2275 df_modified_p (struct df
*df
, bitmap blocks
)
2284 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
)
2285 && (! blocks
|| (blocks
== (bitmap
) -1) || bitmap_bit_p (blocks
, bb
->index
)))
2294 /* Analyze dataflow info for the basic blocks specified by the bitmap
2295 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2296 modified blocks if BLOCKS is -1. */
2299 df_analyze (struct df
*df
, bitmap blocks
, int flags
)
2303 /* We could deal with additional basic blocks being created by
2304 rescanning everything again. */
2305 gcc_assert (!df
->n_bbs
|| df
->n_bbs
== (unsigned int) last_basic_block
);
2307 update
= df_modified_p (df
, blocks
);
2308 if (update
|| (flags
!= df
->flags
))
2314 /* Recompute everything from scratch. */
2317 /* Allocate and initialize data structures. */
2318 df_alloc (df
, max_reg_num ());
2319 df_analyze_1 (df
, 0, flags
, 0);
2324 if (blocks
== (bitmap
) -1)
2325 blocks
= df
->bbs_modified
;
2327 gcc_assert (df
->n_bbs
);
2329 df_analyze_1 (df
, blocks
, flags
, 1);
2330 bitmap_zero (df
->bbs_modified
);
2331 bitmap_zero (df
->insns_modified
);
2337 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2338 the order of the remaining entries. Returns the length of the resulting
2342 prune_to_subcfg (int list
[], unsigned len
, bitmap blocks
)
2346 for (act
= 0, last
= 0; act
< len
; act
++)
2347 if (bitmap_bit_p (blocks
, list
[act
]))
2348 list
[last
++] = list
[act
];
2353 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2354 graph induced by BLOCKS.
2356 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2357 here, and simultaneously not make even greater chaos in it. We behave
2358 slightly differently in some details, especially in handling modified
2362 df_analyze_subcfg (struct df
*df
, bitmap blocks
, int flags
)
2366 struct dataflow dflow
;
2369 if (flags
& DF_UD_CHAIN
)
2370 flags
|= DF_RD
| DF_RD_CHAIN
;
2371 if (flags
& DF_DU_CHAIN
)
2374 flags
|= DF_RU_CHAIN
;
2375 if (flags
& DF_REG_INFO
)
2380 df_alloc (df
, max_reg_num ());
2382 /* Mark all insns as modified. */
2386 FOR_BB_INSNS (bb
, insn
)
2388 df_insn_modify (df
, bb
, insn
);
2395 df_reg_def_chain_clean (df
);
2396 df_reg_use_chain_clean (df
);
2398 df_refs_update (df
, blocks
);
2400 /* Clear the updated stuff from ``modified'' bitmaps. */
2401 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2403 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
))
2405 FOR_BB_INSNS (bb
, insn
)
2407 bitmap_clear_bit (df
->insns_modified
, INSN_UID (insn
));
2410 bitmap_clear_bit (df
->bbs_modified
, bb
->index
);
2414 /* Allocate the bitmaps now the total number of defs and uses are
2415 known. If the number of defs or uses have changed, then
2416 these bitmaps need to be reallocated. */
2417 df_bitmaps_alloc (df
, blocks
, flags
);
2419 /* Set the LUIDs for each specified basic block. */
2420 df_luids_set (df
, blocks
);
2422 /* Recreate reg-def and reg-use chains from scratch so that first
2423 def is at the head of the reg-def chain and the last use is at
2424 the head of the reg-use chain. This is only important for
2425 regs local to a basic block as it speeds up searching. */
2426 if (flags
& DF_RD_CHAIN
)
2428 df_reg_def_chain_create (df
, blocks
, true);
2431 if (flags
& DF_RU_CHAIN
)
2433 df_reg_use_chain_create (df
, blocks
, true);
2436 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2437 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2438 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
);
2440 flow_depth_first_order_compute (df
->dfs_order
, df
->rc_order
);
2441 flow_reverse_top_sort_order_compute (df
->rts_order
);
2443 n_blocks
= prune_to_subcfg (df
->dfs_order
, n_basic_blocks
, blocks
);
2444 prune_to_subcfg (df
->rc_order
, n_basic_blocks
, blocks
);
2445 prune_to_subcfg (df
->rts_order
, n_basic_blocks
, blocks
);
2447 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2448 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2449 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2450 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2454 /* Compute the sets of gens and kills for the defs of each bb. */
2455 df_rd_local_compute (df
, blocks
);
2457 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2459 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2460 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2461 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2462 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2465 dflow
.repr
= SR_BITMAP
;
2466 dflow
.dir
= DF_FORWARD
;
2467 dflow
.conf_op
= DF_UNION
;
2468 dflow
.transfun
= df_rd_transfer_function
;
2469 dflow
.n_blocks
= n_blocks
;
2470 dflow
.order
= df
->rc_order
;
2473 iterative_dataflow (&dflow
);
2476 if (flags
& DF_UD_CHAIN
)
2478 /* Create use-def chains. */
2479 df_ud_chain_create (df
, blocks
);
2484 /* Compute the sets of gens and kills for the upwards exposed
2486 df_ru_local_compute (df
, blocks
);
2488 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2490 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2491 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2492 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2493 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2496 dflow
.repr
= SR_BITMAP
;
2497 dflow
.dir
= DF_BACKWARD
;
2498 dflow
.conf_op
= DF_UNION
;
2499 dflow
.transfun
= df_ru_transfer_function
;
2500 dflow
.n_blocks
= n_blocks
;
2501 dflow
.order
= df
->rts_order
;
2504 iterative_dataflow (&dflow
);
2507 if (flags
& DF_DU_CHAIN
)
2509 /* Create def-use chains. */
2510 df_du_chain_create (df
, blocks
);
2515 /* Compute the sets of defs and uses of live variables. */
2516 df_lr_local_compute (df
, blocks
);
2520 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2521 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2522 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2523 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2526 dflow
.repr
= SR_BITMAP
;
2527 dflow
.dir
= DF_BACKWARD
;
2528 dflow
.conf_op
= DF_UNION
;
2529 dflow
.transfun
= df_lr_transfer_function
;
2530 dflow
.n_blocks
= n_blocks
;
2531 dflow
.order
= df
->rts_order
;
2534 iterative_dataflow (&dflow
);
2537 if (flags
& DF_REG_INFO
)
2539 df_reg_info_compute (df
, blocks
);
2547 free (df
->dfs_order
);
2548 free (df
->rc_order
);
2549 free (df
->rts_order
);
2552 /* Free all the dataflow info and the DF structure. */
2554 df_finish (struct df
*df
)
2560 /* Unlink INSN from its reference information. */
2562 df_insn_refs_unlink (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
, rtx insn
)
2564 struct df_link
*link
;
2567 uid
= INSN_UID (insn
);
2569 /* Unlink all refs defined by this insn. */
2570 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2571 df_def_unlink (df
, link
->ref
);
2573 /* Unlink all refs used by this insn. */
2574 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2575 df_use_unlink (df
, link
->ref
);
2577 df
->insns
[uid
].defs
= 0;
2578 df
->insns
[uid
].uses
= 0;
2583 /* Unlink all the insns within BB from their reference information. */
2585 df_bb_refs_unlink (struct df
*df
, basic_block bb
)
2589 /* Scan the block an insn at a time from beginning to end. */
2590 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
2594 /* Unlink refs for INSN. */
2595 df_insn_refs_unlink (df
, bb
, insn
);
2597 if (insn
== BB_END (bb
))
2603 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2604 Not currently used. */
2606 df_refs_unlink (struct df
*df
, bitmap blocks
)
2612 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2614 df_bb_refs_unlink (df
, bb
);
2620 df_bb_refs_unlink (df
, bb
);
2625 /* Functions to modify insns. */
2628 /* Delete INSN and all its reference information. */
2630 df_insn_delete (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
, rtx insn
)
2632 /* If the insn is a jump, we should perhaps call delete_insn to
2633 handle the JUMP_LABEL? */
2635 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2636 gcc_assert (insn
!= BB_HEAD (bb
));
2638 /* Delete the insn. */
2641 df_insn_modify (df
, bb
, insn
);
2643 return NEXT_INSN (insn
);
2646 /* Mark that basic block BB was modified. */
2649 df_bb_modify (struct df
*df
, basic_block bb
)
2651 if ((unsigned) bb
->index
>= df
->n_bbs
)
2652 df_bb_table_realloc (df
, df
->n_bbs
);
2654 bitmap_set_bit (df
->bbs_modified
, bb
->index
);
2657 /* Mark that INSN within BB may have changed (created/modified/deleted).
2658 This may be called multiple times for the same insn. There is no
2659 harm calling this function if the insn wasn't changed; it will just
2660 slow down the rescanning of refs. */
2662 df_insn_modify (struct df
*df
, basic_block bb
, rtx insn
)
2666 uid
= INSN_UID (insn
);
2667 if (uid
>= df
->insn_size
)
2668 df_insn_table_realloc (df
, uid
);
2670 df_bb_modify (df
, bb
);
2671 bitmap_set_bit (df
->insns_modified
, uid
);
2673 /* For incremental updating on the fly, perhaps we could make a copy
2674 of all the refs of the original insn and turn them into
2675 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2676 the original refs. If validate_change fails then these anti-refs
2677 will just get ignored. */
2680 typedef struct replace_args
2689 /* Replace mem pointed to by PX with its associated pseudo register.
2690 DATA is actually a pointer to a structure describing the
2691 instruction currently being scanned and the MEM we are currently
2694 df_rtx_mem_replace (rtx
*px
, void *data
)
2696 replace_args
*args
= (replace_args
*) data
;
2699 if (mem
== NULL_RTX
)
2702 switch (GET_CODE (mem
))
2708 /* We're not interested in the MEM associated with a
2709 CONST_DOUBLE, so there's no need to traverse into one. */
2713 /* This is not a MEM. */
2717 if (!rtx_equal_p (args
->match
, mem
))
2718 /* This is not the MEM we are currently replacing. */
2721 /* Actually replace the MEM. */
2722 validate_change (args
->insn
, px
, args
->replacement
, 1);
2730 df_insn_mem_replace (struct df
*df
, basic_block bb
, rtx insn
, rtx mem
, rtx reg
)
2736 args
.replacement
= reg
;
2739 /* Search and replace all matching mems within insn. */
2740 for_each_rtx (&insn
, df_rtx_mem_replace
, &args
);
2743 df_insn_modify (df
, bb
, insn
);
2745 /* ???? FIXME. We may have a new def or one or more new uses of REG
2746 in INSN. REG should be a new pseudo so it won't affect the
2747 dataflow information that we currently have. We should add
2748 the new uses and defs to INSN and then recreate the chains
2749 when df_analyze is called. */
2750 return args
.modified
;
2754 /* Replace one register with another. Called through for_each_rtx; PX
2755 points to the rtx being scanned. DATA is actually a pointer to a
2756 structure of arguments. */
2758 df_rtx_reg_replace (rtx
*px
, void *data
)
2761 replace_args
*args
= (replace_args
*) data
;
2766 if (x
== args
->match
)
2768 validate_change (args
->insn
, px
, args
->replacement
, 1);
2776 /* Replace the reg within every ref on CHAIN that is within the set
2777 BLOCKS of basic blocks with NEWREG. Also update the regs within
2780 df_refs_reg_replace (struct df
*df
, bitmap blocks
, struct df_link
*chain
, rtx oldreg
, rtx newreg
)
2782 struct df_link
*link
;
2786 blocks
= df
->all_blocks
;
2788 args
.match
= oldreg
;
2789 args
.replacement
= newreg
;
2792 for (link
= chain
; link
; link
= link
->next
)
2794 struct ref
*ref
= link
->ref
;
2795 rtx insn
= DF_REF_INSN (ref
);
2797 if (! INSN_P (insn
))
2800 gcc_assert (bitmap_bit_p (blocks
, DF_REF_BBNO (ref
)));
2802 df_ref_reg_replace (df
, ref
, oldreg
, newreg
);
2804 /* Replace occurrences of the reg within the REG_NOTES. */
2805 if ((! link
->next
|| DF_REF_INSN (ref
)
2806 != DF_REF_INSN (link
->next
->ref
))
2807 && REG_NOTES (insn
))
2810 for_each_rtx (®_NOTES (insn
), df_rtx_reg_replace
, &args
);
2816 /* Replace all occurrences of register OLDREG with register NEWREG in
2817 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2818 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2819 routine expects the reg-use and reg-def chains to be valid. */
2821 df_reg_replace (struct df
*df
, bitmap blocks
, rtx oldreg
, rtx newreg
)
2823 unsigned int oldregno
= REGNO (oldreg
);
2825 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].defs
, oldreg
, newreg
);
2826 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].uses
, oldreg
, newreg
);
2831 /* Try replacing the reg within REF with NEWREG. Do not modify
2832 def-use/use-def chains. */
2834 df_ref_reg_replace (struct df
*df
, struct ref
*ref
, rtx oldreg
, rtx newreg
)
2836 /* Check that insn was deleted by being converted into a NOTE. If
2837 so ignore this insn. */
2838 if (! INSN_P (DF_REF_INSN (ref
)))
2841 gcc_assert (!oldreg
|| oldreg
== DF_REF_REG (ref
));
2843 if (! validate_change (DF_REF_INSN (ref
), DF_REF_LOC (ref
), newreg
, 1))
2846 df_insn_modify (df
, DF_REF_BB (ref
), DF_REF_INSN (ref
));
2852 df_bb_def_use_swap (struct df
*df
, basic_block bb
, rtx def_insn
, rtx use_insn
, unsigned int regno
)
2858 struct df_link
*link
;
2860 def
= df_bb_insn_regno_first_def_find (df
, bb
, def_insn
, regno
);
2864 use
= df_bb_insn_regno_last_use_find (df
, bb
, use_insn
, regno
);
2868 /* The USE no longer exists. */
2869 use_uid
= INSN_UID (use_insn
);
2870 df_use_unlink (df
, use
);
2871 df_ref_unlink (&df
->insns
[use_uid
].uses
, use
);
2873 /* The DEF requires shifting so remove it from DEF_INSN
2874 and add it to USE_INSN by reusing LINK. */
2875 def_uid
= INSN_UID (def_insn
);
2876 link
= df_ref_unlink (&df
->insns
[def_uid
].defs
, def
);
2878 link
->next
= df
->insns
[use_uid
].defs
;
2879 df
->insns
[use_uid
].defs
= link
;
2882 link
= df_ref_unlink (&df
->regs
[regno
].defs
, def
);
2884 link
->next
= df
->regs
[regno
].defs
;
2885 df
->insns
[regno
].defs
= link
;
2888 DF_REF_INSN (def
) = use_insn
;
2893 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2894 insns must be processed by this routine. */
2896 df_insns_modify (struct df
*df
, basic_block bb
, rtx first_insn
, rtx last_insn
)
2900 for (insn
= first_insn
; ; insn
= NEXT_INSN (insn
))
2904 /* A non-const call should not have slipped through the net. If
2905 it does, we need to create a new basic block. Ouch. The
2906 same applies for a label. */
2907 gcc_assert ((!CALL_P (insn
) || CONST_OR_PURE_CALL_P (insn
))
2908 && !LABEL_P (insn
));
2910 uid
= INSN_UID (insn
);
2912 if (uid
>= df
->insn_size
)
2913 df_insn_table_realloc (df
, uid
);
2915 df_insn_modify (df
, bb
, insn
);
2917 if (insn
== last_insn
)
2923 /* Emit PATTERN before INSN within BB. */
2925 df_pattern_emit_before (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2928 rtx prev_insn
= PREV_INSN (insn
);
2930 /* We should not be inserting before the start of the block. */
2931 gcc_assert (insn
!= BB_HEAD (bb
));
2932 ret_insn
= emit_insn_before (pattern
, insn
);
2933 if (ret_insn
== insn
)
2936 df_insns_modify (df
, bb
, NEXT_INSN (prev_insn
), ret_insn
);
2941 /* Emit PATTERN after INSN within BB. */
2943 df_pattern_emit_after (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2947 ret_insn
= emit_insn_after (pattern
, insn
);
2948 if (ret_insn
== insn
)
2951 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2956 /* Emit jump PATTERN after INSN within BB. */
2958 df_jump_pattern_emit_after (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2962 ret_insn
= emit_jump_insn_after (pattern
, insn
);
2963 if (ret_insn
== insn
)
2966 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2971 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2973 This function should only be used to move loop invariant insns
2974 out of a loop where it has been proven that the def-use info
2975 will still be valid. */
2977 df_insn_move_before (struct df
*df
, basic_block bb
, rtx insn
, basic_block before_bb
, rtx before_insn
)
2979 struct df_link
*link
;
2983 return df_pattern_emit_before (df
, insn
, before_bb
, before_insn
);
2985 uid
= INSN_UID (insn
);
2987 /* Change bb for all df defined and used by this insn. */
2988 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2989 DF_REF_BB (link
->ref
) = before_bb
;
2990 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2991 DF_REF_BB (link
->ref
) = before_bb
;
2993 /* The lifetimes of the registers used in this insn will be reduced
2994 while the lifetimes of the registers defined in this insn
2995 are likely to be increased. */
2997 /* ???? Perhaps all the insns moved should be stored on a list
2998 which df_analyze removes when it recalculates data flow. */
3000 return emit_insn_before (insn
, before_insn
);
3003 /* Functions to query dataflow information. */
3007 df_insn_regno_def_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3008 rtx insn
, unsigned int regno
)
3011 struct df_link
*link
;
3013 uid
= INSN_UID (insn
);
3015 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3017 struct ref
*def
= link
->ref
;
3019 if (DF_REF_REGNO (def
) == regno
)
3026 /* Finds the reference corresponding to the definition of REG in INSN.
3027 DF is the dataflow object. */
3030 df_find_def (struct df
*df
, rtx insn
, rtx reg
)
3032 struct df_link
*defs
;
3034 for (defs
= DF_INSN_DEFS (df
, insn
); defs
; defs
= defs
->next
)
3035 if (rtx_equal_p (DF_REF_REG (defs
->ref
), reg
))
3041 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3044 df_reg_used (struct df
*df
, rtx insn
, rtx reg
)
3046 struct df_link
*uses
;
3048 for (uses
= DF_INSN_USES (df
, insn
); uses
; uses
= uses
->next
)
3049 if (rtx_equal_p (DF_REF_REG (uses
->ref
), reg
))
3056 df_def_dominates_all_uses_p (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
)
3058 struct df_link
*du_link
;
3060 /* Follow def-use chain to find all the uses of this def. */
3061 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
3063 struct ref
*use
= du_link
->ref
;
3064 struct df_link
*ud_link
;
3066 /* Follow use-def chain to check all the defs for this use. */
3067 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
3068 if (ud_link
->ref
!= def
)
3076 df_insn_dominates_all_uses_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3080 struct df_link
*link
;
3082 uid
= INSN_UID (insn
);
3084 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3086 struct ref
*def
= link
->ref
;
3088 if (! df_def_dominates_all_uses_p (df
, def
))
3096 /* Return nonzero if all DF dominates all the uses within the bitmap
3099 df_def_dominates_uses_p (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
,
3102 struct df_link
*du_link
;
3104 /* Follow def-use chain to find all the uses of this def. */
3105 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
3107 struct ref
*use
= du_link
->ref
;
3108 struct df_link
*ud_link
;
3110 /* Only worry about the uses within BLOCKS. For example,
3111 consider a register defined within a loop that is live at the
3113 if (bitmap_bit_p (blocks
, DF_REF_BBNO (use
)))
3115 /* Follow use-def chain to check all the defs for this use. */
3116 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
3117 if (ud_link
->ref
!= def
)
3125 /* Return nonzero if all the defs of INSN within BB dominates
3126 all the corresponding uses. */
3128 df_insn_dominates_uses_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3129 rtx insn
, bitmap blocks
)
3132 struct df_link
*link
;
3134 uid
= INSN_UID (insn
);
3136 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3138 struct ref
*def
= link
->ref
;
3140 /* Only consider the defs within BLOCKS. */
3141 if (bitmap_bit_p (blocks
, DF_REF_BBNO (def
))
3142 && ! df_def_dominates_uses_p (df
, def
, blocks
))
3149 /* Return the basic block that REG referenced in or NULL if referenced
3150 in multiple basic blocks. */
3152 df_regno_bb (struct df
*df
, unsigned int regno
)
3154 struct df_link
*defs
= df
->regs
[regno
].defs
;
3155 struct df_link
*uses
= df
->regs
[regno
].uses
;
3156 struct ref
*def
= defs
? defs
->ref
: 0;
3157 struct ref
*use
= uses
? uses
->ref
: 0;
3158 basic_block bb_def
= def
? DF_REF_BB (def
) : 0;
3159 basic_block bb_use
= use
? DF_REF_BB (use
) : 0;
3161 /* Compare blocks of first def and last use. ???? FIXME. What if
3162 the reg-def and reg-use lists are not correctly ordered. */
3163 return bb_def
== bb_use
? bb_def
: 0;
3167 /* Return nonzero if REG used in multiple basic blocks. */
3169 df_reg_global_p (struct df
*df
, rtx reg
)
3171 return df_regno_bb (df
, REGNO (reg
)) != 0;
3175 /* Return total lifetime (in insns) of REG. */
3177 df_reg_lifetime (struct df
*df
, rtx reg
)
3179 return df
->regs
[REGNO (reg
)].lifetime
;
3183 /* Return nonzero if REG live at start of BB. */
3185 df_bb_reg_live_start_p (struct df
*df
, basic_block bb
, rtx reg
)
3187 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3189 gcc_assert (bb_info
->lr_in
);
3191 return bitmap_bit_p (bb_info
->lr_in
, REGNO (reg
));
3195 /* Return nonzero if REG live at end of BB. */
3197 df_bb_reg_live_end_p (struct df
*df
, basic_block bb
, rtx reg
)
3199 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3201 gcc_assert (bb_info
->lr_in
);
3203 return bitmap_bit_p (bb_info
->lr_out
, REGNO (reg
));
3207 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3208 after life of REG2, or 0, if the lives overlap. */
3210 df_bb_regs_lives_compare (struct df
*df
, basic_block bb
, rtx reg1
, rtx reg2
)
3212 unsigned int regno1
= REGNO (reg1
);
3213 unsigned int regno2
= REGNO (reg2
);
3220 /* The regs must be local to BB. */
3221 gcc_assert (df_regno_bb (df
, regno1
) == bb
3222 && df_regno_bb (df
, regno2
) == bb
);
3224 def2
= df_bb_regno_first_def_find (df
, bb
, regno2
);
3225 use1
= df_bb_regno_last_use_find (df
, bb
, regno1
);
3227 if (DF_INSN_LUID (df
, DF_REF_INSN (def2
))
3228 > DF_INSN_LUID (df
, DF_REF_INSN (use1
)))
3231 def1
= df_bb_regno_first_def_find (df
, bb
, regno1
);
3232 use2
= df_bb_regno_last_use_find (df
, bb
, regno2
);
3234 if (DF_INSN_LUID (df
, DF_REF_INSN (def1
))
3235 > DF_INSN_LUID (df
, DF_REF_INSN (use2
)))
3242 /* Return last use of REGNO within BB. */
3244 df_bb_regno_last_use_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3246 struct df_link
*link
;
3248 /* This assumes that the reg-use list is ordered such that for any
3249 BB, the last use is found first. However, since the BBs are not
3250 ordered, the first use in the chain is not necessarily the last
3251 use in the function. */
3252 for (link
= df
->regs
[regno
].uses
; link
; link
= link
->next
)
3254 struct ref
*use
= link
->ref
;
3256 if (DF_REF_BB (use
) == bb
)
3263 /* Return first def of REGNO within BB. */
3265 df_bb_regno_first_def_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3267 struct df_link
*link
;
3269 /* This assumes that the reg-def list is ordered such that for any
3270 BB, the first def is found first. However, since the BBs are not
3271 ordered, the first def in the chain is not necessarily the first
3272 def in the function. */
3273 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3275 struct ref
*def
= link
->ref
;
3277 if (DF_REF_BB (def
) == bb
)
3283 /* Return last def of REGNO within BB. */
3285 df_bb_regno_last_def_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3287 struct df_link
*link
;
3288 struct ref
*last_def
= NULL
;
3291 /* This assumes that the reg-def list is ordered such that for any
3292 BB, the first def is found first. However, since the BBs are not
3293 ordered, the first def in the chain is not necessarily the first
3294 def in the function. */
3295 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3297 struct ref
*def
= link
->ref
;
3298 /* The first time in the desired block. */
3299 if (DF_REF_BB (def
) == bb
)
3301 /* The last def in the desired block. */
3309 /* Return first use of REGNO inside INSN within BB. */
3311 df_bb_insn_regno_last_use_find (struct df
*df
,
3312 basic_block bb ATTRIBUTE_UNUSED
, rtx insn
,
3316 struct df_link
*link
;
3318 uid
= INSN_UID (insn
);
3320 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
3322 struct ref
*use
= link
->ref
;
3324 if (DF_REF_REGNO (use
) == regno
)
3332 /* Return first def of REGNO inside INSN within BB. */
3334 df_bb_insn_regno_first_def_find (struct df
*df
,
3335 basic_block bb ATTRIBUTE_UNUSED
, rtx insn
,
3339 struct df_link
*link
;
3341 uid
= INSN_UID (insn
);
3343 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3345 struct ref
*def
= link
->ref
;
3347 if (DF_REF_REGNO (def
) == regno
)
3355 /* Return insn using REG if the BB contains only a single
3356 use and def of REG. */
3358 df_bb_single_def_use_insn_find (struct df
*df
, basic_block bb
, rtx insn
, rtx reg
)
3362 struct df_link
*du_link
;
3364 def
= df_bb_insn_regno_first_def_find (df
, bb
, insn
, REGNO (reg
));
3368 du_link
= DF_REF_CHAIN (def
);
3375 /* Check if def is dead. */
3379 /* Check for multiple uses. */
3383 return DF_REF_INSN (use
);
3386 /* Functions for debugging/dumping dataflow information. */
3389 /* Dump a def-use or use-def chain for REF to FILE. */
3391 df_chain_dump (struct df_link
*link
, FILE *file
)
3393 fprintf (file
, "{ ");
3394 for (; link
; link
= link
->next
)
3396 fprintf (file
, "%c%d ",
3397 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3398 DF_REF_ID (link
->ref
));
3400 fprintf (file
, "}");
3404 /* Dump a chain of refs with the associated regno. */
3406 df_chain_dump_regno (struct df_link
*link
, FILE *file
)
3408 fprintf (file
, "{ ");
3409 for (; link
; link
= link
->next
)
3411 fprintf (file
, "%c%d(%d) ",
3412 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3413 DF_REF_ID (link
->ref
),
3414 DF_REF_REGNO (link
->ref
));
3416 fprintf (file
, "}");
3420 /* Dump dataflow info. */
3422 df_dump (struct df
*df
, int flags
, FILE *file
)
3430 fprintf (file
, "\nDataflow summary:\n");
3431 fprintf (file
, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3432 df
->n_regs
, df
->n_defs
, df
->n_uses
, df
->n_bbs
);
3438 fprintf (file
, "Reaching defs:\n");
3441 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3443 if (! bb_info
->rd_in
)
3446 fprintf (file
, "bb %d in \t", bb
->index
);
3447 dump_bitmap (file
, bb_info
->rd_in
);
3448 fprintf (file
, "bb %d gen \t", bb
->index
);
3449 dump_bitmap (file
, bb_info
->rd_gen
);
3450 fprintf (file
, "bb %d kill\t", bb
->index
);
3451 dump_bitmap (file
, bb_info
->rd_kill
);
3452 fprintf (file
, "bb %d out \t", bb
->index
);
3453 dump_bitmap (file
, bb_info
->rd_out
);
3457 if (flags
& DF_UD_CHAIN
)
3459 fprintf (file
, "Use-def chains:\n");
3460 for (j
= 0; j
< df
->n_defs
; j
++)
3464 fprintf (file
, "d%d bb %d luid %d insn %d reg %d ",
3465 j
, DF_REF_BBNO (df
->defs
[j
]),
3466 DF_INSN_LUID (df
, DF_REF_INSN (df
->defs
[j
])),
3467 DF_REF_INSN_UID (df
->defs
[j
]),
3468 DF_REF_REGNO (df
->defs
[j
]));
3469 if (df
->defs
[j
]->flags
& DF_REF_READ_WRITE
)
3470 fprintf (file
, "read/write ");
3471 df_chain_dump (DF_REF_CHAIN (df
->defs
[j
]), file
);
3472 fprintf (file
, "\n");
3479 fprintf (file
, "Reaching uses:\n");
3482 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3484 if (! bb_info
->ru_in
)
3487 fprintf (file
, "bb %d in \t", bb
->index
);
3488 dump_bitmap (file
, bb_info
->ru_in
);
3489 fprintf (file
, "bb %d gen \t", bb
->index
);
3490 dump_bitmap (file
, bb_info
->ru_gen
);
3491 fprintf (file
, "bb %d kill\t", bb
->index
);
3492 dump_bitmap (file
, bb_info
->ru_kill
);
3493 fprintf (file
, "bb %d out \t", bb
->index
);
3494 dump_bitmap (file
, bb_info
->ru_out
);
3498 if (flags
& DF_DU_CHAIN
)
3500 fprintf (file
, "Def-use chains:\n");
3501 for (j
= 0; j
< df
->n_uses
; j
++)
3505 fprintf (file
, "u%d bb %d luid %d insn %d reg %d ",
3506 j
, DF_REF_BBNO (df
->uses
[j
]),
3507 DF_INSN_LUID (df
, DF_REF_INSN (df
->uses
[j
])),
3508 DF_REF_INSN_UID (df
->uses
[j
]),
3509 DF_REF_REGNO (df
->uses
[j
]));
3510 if (df
->uses
[j
]->flags
& DF_REF_READ_WRITE
)
3511 fprintf (file
, "read/write ");
3512 df_chain_dump (DF_REF_CHAIN (df
->uses
[j
]), file
);
3513 fprintf (file
, "\n");
3520 fprintf (file
, "Live regs:\n");
3523 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3525 if (! bb_info
->lr_in
)
3528 fprintf (file
, "bb %d in \t", bb
->index
);
3529 dump_bitmap (file
, bb_info
->lr_in
);
3530 fprintf (file
, "bb %d use \t", bb
->index
);
3531 dump_bitmap (file
, bb_info
->lr_use
);
3532 fprintf (file
, "bb %d def \t", bb
->index
);
3533 dump_bitmap (file
, bb_info
->lr_def
);
3534 fprintf (file
, "bb %d out \t", bb
->index
);
3535 dump_bitmap (file
, bb_info
->lr_out
);
3539 if (flags
& (DF_REG_INFO
| DF_RD_CHAIN
| DF_RU_CHAIN
))
3541 struct reg_info
*reg_info
= df
->regs
;
3543 fprintf (file
, "Register info:\n");
3544 for (j
= 0; j
< df
->n_regs
; j
++)
3546 if (((flags
& DF_REG_INFO
)
3547 && (reg_info
[j
].n_uses
|| reg_info
[j
].n_defs
))
3548 || ((flags
& DF_RD_CHAIN
) && reg_info
[j
].defs
)
3549 || ((flags
& DF_RU_CHAIN
) && reg_info
[j
].uses
))
3551 fprintf (file
, "reg %d", j
);
3552 if ((flags
& DF_RD_CHAIN
) && (flags
& DF_RU_CHAIN
))
3554 basic_block bb
= df_regno_bb (df
, j
);
3557 fprintf (file
, " bb %d", bb
->index
);
3559 fprintf (file
, " bb ?");
3561 if (flags
& DF_REG_INFO
)
3563 fprintf (file
, " life %d", reg_info
[j
].lifetime
);
3566 if ((flags
& DF_REG_INFO
) || (flags
& DF_RD_CHAIN
))
3568 fprintf (file
, " defs ");
3569 if (flags
& DF_REG_INFO
)
3570 fprintf (file
, "%d ", reg_info
[j
].n_defs
);
3571 if (flags
& DF_RD_CHAIN
)
3572 df_chain_dump (reg_info
[j
].defs
, file
);
3575 if ((flags
& DF_REG_INFO
) || (flags
& DF_RU_CHAIN
))
3577 fprintf (file
, " uses ");
3578 if (flags
& DF_REG_INFO
)
3579 fprintf (file
, "%d ", reg_info
[j
].n_uses
);
3580 if (flags
& DF_RU_CHAIN
)
3581 df_chain_dump (reg_info
[j
].uses
, file
);
3584 fprintf (file
, "\n");
3588 fprintf (file
, "\n");
3593 df_insn_debug (struct df
*df
, rtx insn
, FILE *file
)
3598 uid
= INSN_UID (insn
);
3599 if (uid
>= df
->insn_size
)
3602 if (df
->insns
[uid
].defs
)
3603 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3604 else if (df
->insns
[uid
].uses
)
3605 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3609 fprintf (file
, "insn %d bb %d luid %d defs ",
3610 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3611 df_chain_dump (df
->insns
[uid
].defs
, file
);
3612 fprintf (file
, " uses ");
3613 df_chain_dump (df
->insns
[uid
].uses
, file
);
3614 fprintf (file
, "\n");
3619 df_insn_debug_regno (struct df
*df
, rtx insn
, FILE *file
)
3624 uid
= INSN_UID (insn
);
3625 if (uid
>= df
->insn_size
)
3628 if (df
->insns
[uid
].defs
)
3629 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3630 else if (df
->insns
[uid
].uses
)
3631 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3635 fprintf (file
, "insn %d bb %d luid %d defs ",
3636 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3637 df_chain_dump_regno (df
->insns
[uid
].defs
, file
);
3638 fprintf (file
, " uses ");
3639 df_chain_dump_regno (df
->insns
[uid
].uses
, file
);
3640 fprintf (file
, "\n");
3645 df_regno_debug (struct df
*df
, unsigned int regno
, FILE *file
)
3647 if (regno
>= df
->reg_size
)
3650 fprintf (file
, "reg %d life %d defs ",
3651 regno
, df
->regs
[regno
].lifetime
);
3652 df_chain_dump (df
->regs
[regno
].defs
, file
);
3653 fprintf (file
, " uses ");
3654 df_chain_dump (df
->regs
[regno
].uses
, file
);
3655 fprintf (file
, "\n");
3660 df_ref_debug (struct df
*df
, struct ref
*ref
, FILE *file
)
3662 fprintf (file
, "%c%d ",
3663 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
3665 fprintf (file
, "reg %d bb %d luid %d insn %d chain ",
3668 DF_INSN_LUID (df
, DF_REF_INSN (ref
)),
3669 INSN_UID (DF_REF_INSN (ref
)));
3670 df_chain_dump (DF_REF_CHAIN (ref
), file
);
3671 fprintf (file
, "\n");
3674 /* Functions for debugging from GDB. */
3677 debug_df_insn (rtx insn
)
3679 df_insn_debug (ddf
, insn
, stderr
);
3685 debug_df_reg (rtx reg
)
3687 df_regno_debug (ddf
, REGNO (reg
), stderr
);
3692 debug_df_regno (unsigned int regno
)
3694 df_regno_debug (ddf
, regno
, stderr
);
3699 debug_df_ref (struct ref
*ref
)
3701 df_ref_debug (ddf
, ref
, stderr
);
3706 debug_df_defno (unsigned int defno
)
3708 df_ref_debug (ddf
, ddf
->defs
[defno
], stderr
);
3713 debug_df_useno (unsigned int defno
)
3715 df_ref_debug (ddf
, ddf
->uses
[defno
], stderr
);
3720 debug_df_chain (struct df_link
*link
)
3722 df_chain_dump (link
, stderr
);
3723 fputc ('\n', stderr
);
3727 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3728 storing the result in OP1. */
3731 dataflow_set_a_op_b (enum set_representation repr
,
3732 enum df_confluence_op op
,
3733 void *op1
, void *op2
)
3741 sbitmap_a_or_b (op1
, op1
, op2
);
3744 case DF_INTERSECTION
:
3745 sbitmap_a_and_b (op1
, op1
, op2
);
3757 bitmap_ior_into (op1
, op2
);
3760 case DF_INTERSECTION
:
3761 bitmap_and_into (op1
, op2
);
3775 dataflow_set_copy (enum set_representation repr
, void *dest
, void *src
)
3780 sbitmap_copy (dest
, src
);
3784 bitmap_copy (dest
, src
);
3792 /* Hybrid search algorithm from "Implementation Techniques for
3793 Efficient Data-Flow Analysis of Large Programs". */
3796 hybrid_search (basic_block bb
, struct dataflow
*dataflow
,
3797 sbitmap visited
, sbitmap pending
, sbitmap considered
)
3804 SET_BIT (visited
, bb
->index
);
3805 gcc_assert (TEST_BIT (pending
, bb
->index
));
3806 RESET_BIT (pending
, i
);
3808 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3809 E, E_BB, E_START_BB, OUT_SET) \
3812 /* Calculate <conf_op> of predecessor_outs. */ \
3813 bitmap_zero (IN_SET[i]); \
3814 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3816 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3818 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3821 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3823 OUT_SET[e->E_ANTI_BB->index]); \
3826 (*dataflow->transfun)(i, &changed, \
3827 dataflow->in[i], dataflow->out[i], \
3828 dataflow->gen[i], dataflow->kill[i], \
3834 FOR_EACH_EDGE (e, ei, bb->E) \
3836 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3839 if (!TEST_BIT (considered, e->E_BB->index)) \
3842 SET_BIT (pending, e->E_BB->index); \
3845 FOR_EACH_EDGE (e, ei, bb->E) \
3847 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3850 if (!TEST_BIT (considered, e->E_BB->index)) \
3853 if (!TEST_BIT (visited, e->E_BB->index)) \
3854 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3858 if (dataflow
->dir
== DF_FORWARD
)
3859 HS (preds
, src
, ENTRY_BLOCK_PTR
, dataflow
->in
,
3860 succs
, dest
, EXIT_BLOCK_PTR
, dataflow
->out
);
3862 HS (succs
, dest
, EXIT_BLOCK_PTR
, dataflow
->out
,
3863 preds
, src
, ENTRY_BLOCK_PTR
, dataflow
->in
);
3866 /* This function will perform iterative bitvector dataflow described by
3867 DATAFLOW, producing the in and out sets. Only the part of the cfg
3868 induced by blocks in DATAFLOW->order is taken into account.
3870 For forward problems, you probably want to pass in a mapping of
3871 block number to rc_order (like df->inverse_rc_map). */
3874 iterative_dataflow (struct dataflow
*dataflow
)
3877 sbitmap visited
, pending
, considered
;
3879 pending
= sbitmap_alloc (last_basic_block
);
3880 visited
= sbitmap_alloc (last_basic_block
);
3881 considered
= sbitmap_alloc (last_basic_block
);
3882 sbitmap_zero (pending
);
3883 sbitmap_zero (visited
);
3884 sbitmap_zero (considered
);
3886 for (i
= 0; i
< dataflow
->n_blocks
; i
++)
3888 idx
= dataflow
->order
[i
];
3889 SET_BIT (pending
, idx
);
3890 SET_BIT (considered
, idx
);
3891 if (dataflow
->dir
== DF_FORWARD
)
3892 dataflow_set_copy (dataflow
->repr
,
3893 dataflow
->out
[idx
], dataflow
->gen
[idx
]);
3895 dataflow_set_copy (dataflow
->repr
,
3896 dataflow
->in
[idx
], dataflow
->gen
[idx
]);
3901 for (i
= 0; i
< dataflow
->n_blocks
; i
++)
3903 idx
= dataflow
->order
[i
];
3905 if (TEST_BIT (pending
, idx
) && !TEST_BIT (visited
, idx
))
3906 hybrid_search (BASIC_BLOCK (idx
), dataflow
,
3907 visited
, pending
, considered
);
3910 if (sbitmap_first_set_bit (pending
) == -1)
3913 sbitmap_zero (visited
);
3916 sbitmap_free (pending
);
3917 sbitmap_free (visited
);
3918 sbitmap_free (considered
);