2016-09-26 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / jump.c
blob2164c3b8626e54cab80ede4fa9ac732cb9b5d2dc
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "tm_p.h"
46 #include "insn-config.h"
47 #include "regs.h"
48 #include "emit-rtl.h"
49 #include "recog.h"
50 #include "cfgrtl.h"
51 #include "rtl-iter.h"
53 /* Optimize jump y; x: ... y: jumpif... x?
54 Don't know if it is worth bothering with. */
55 /* Optimize two cases of conditional jump to conditional jump?
56 This can never delete any instruction or make anything dead,
57 or even change what is live at any point.
58 So perhaps let combiner do it. */
60 static void init_label_info (rtx_insn *);
61 static void mark_all_labels (rtx_insn *);
62 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
63 static void mark_jump_label_asm (rtx, rtx_insn *);
64 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
65 static int invert_exp_1 (rtx, rtx_insn *);
67 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
68 static void
69 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
71 timevar_push (TV_REBUILD_JUMP);
72 init_label_info (f);
73 mark_all_labels (f);
75 /* Keep track of labels used from static data; we don't track them
76 closely enough to delete them here, so make sure their reference
77 count doesn't drop to zero. */
79 if (count_forced)
81 rtx_insn *insn;
82 unsigned int i;
83 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
84 if (LABEL_P (insn))
85 LABEL_NUSES (insn)++;
87 timevar_pop (TV_REBUILD_JUMP);
90 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
91 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
92 instructions and jumping insns that have labels as operands
93 (e.g. cbranchsi4). */
94 void
95 rebuild_jump_labels (rtx_insn *f)
97 rebuild_jump_labels_1 (f, true);
100 /* This function is like rebuild_jump_labels, but doesn't run over
101 forced_labels. It can be used on insn chains that aren't the
102 main function chain. */
103 void
104 rebuild_jump_labels_chain (rtx_insn *chain)
106 rebuild_jump_labels_1 (chain, false);
109 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
110 non-fallthru insn. This is not generally true, as multiple barriers
111 may have crept in, or the BARRIER may be separated from the last
112 real insn by one or more NOTEs.
114 This simple pass moves barriers and removes duplicates so that the
115 old code is happy.
117 static unsigned int
118 cleanup_barriers (void)
120 rtx_insn *insn;
121 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
123 if (BARRIER_P (insn))
125 rtx_insn *prev = prev_nonnote_insn (insn);
126 if (!prev)
127 continue;
129 if (CALL_P (prev))
131 /* Make sure we do not split a call and its corresponding
132 CALL_ARG_LOCATION note. */
133 rtx_insn *next = NEXT_INSN (prev);
135 if (NOTE_P (next)
136 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
137 prev = next;
140 if (BARRIER_P (prev))
141 delete_insn (insn);
142 else if (prev != PREV_INSN (insn))
144 basic_block bb = BLOCK_FOR_INSN (prev);
145 rtx_insn *end = PREV_INSN (insn);
146 reorder_insns_nobb (insn, insn, prev);
147 if (bb)
149 /* If the backend called in machine reorg compute_bb_for_insn
150 and didn't free_bb_for_insn again, preserve basic block
151 boundaries. Move the end of basic block to PREV since
152 it is followed by a barrier now, and clear BLOCK_FOR_INSN
153 on the following notes.
154 ??? Maybe the proper solution for the targets that have
155 cfg around after machine reorg is not to run cleanup_barriers
156 pass at all. */
157 BB_END (bb) = prev;
160 prev = NEXT_INSN (prev);
161 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
162 BLOCK_FOR_INSN (prev) = NULL;
164 while (prev != end);
169 return 0;
172 namespace {
174 const pass_data pass_data_cleanup_barriers =
176 RTL_PASS, /* type */
177 "barriers", /* name */
178 OPTGROUP_NONE, /* optinfo_flags */
179 TV_NONE, /* tv_id */
180 0, /* properties_required */
181 0, /* properties_provided */
182 0, /* properties_destroyed */
183 0, /* todo_flags_start */
184 0, /* todo_flags_finish */
187 class pass_cleanup_barriers : public rtl_opt_pass
189 public:
190 pass_cleanup_barriers (gcc::context *ctxt)
191 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
194 /* opt_pass methods: */
195 virtual unsigned int execute (function *) { return cleanup_barriers (); }
197 }; // class pass_cleanup_barriers
199 } // anon namespace
201 rtl_opt_pass *
202 make_pass_cleanup_barriers (gcc::context *ctxt)
204 return new pass_cleanup_barriers (ctxt);
208 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
209 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
210 notes whose labels don't occur in the insn any more. */
212 static void
213 init_label_info (rtx_insn *f)
215 rtx_insn *insn;
217 for (insn = f; insn; insn = NEXT_INSN (insn))
219 if (LABEL_P (insn))
220 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
222 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
223 sticky and not reset here; that way we won't lose association
224 with a label when e.g. the source for a target register
225 disappears out of reach for targets that may use jump-target
226 registers. Jump transformations are supposed to transform
227 any REG_LABEL_TARGET notes. The target label reference in a
228 branch may disappear from the branch (and from the
229 instruction before it) for other reasons, like register
230 allocation. */
232 if (INSN_P (insn))
234 rtx note, next;
236 for (note = REG_NOTES (insn); note; note = next)
238 next = XEXP (note, 1);
239 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
240 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
241 remove_note (insn, note);
247 /* A subroutine of mark_all_labels. Trivially propagate a simple label
248 load into a jump_insn that uses it. */
250 static void
251 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
253 rtx label_note, pc, pc_src;
255 pc = pc_set (jump_insn);
256 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
257 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
259 /* If the previous non-jump insn sets something to a label,
260 something that this jump insn uses, make that label the primary
261 target of this insn if we don't yet have any. That previous
262 insn must be a single_set and not refer to more than one label.
263 The jump insn must not refer to other labels as jump targets
264 and must be a plain (set (pc) ...), maybe in a parallel, and
265 may refer to the item being set only directly or as one of the
266 arms in an IF_THEN_ELSE. */
268 if (label_note != NULL && pc_src != NULL)
270 rtx label_set = single_set (prev_nonjump_insn);
271 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
273 if (label_set != NULL
274 /* The source must be the direct LABEL_REF, not a
275 PLUS, UNSPEC, IF_THEN_ELSE etc. */
276 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
277 && (rtx_equal_p (label_dest, pc_src)
278 || (GET_CODE (pc_src) == IF_THEN_ELSE
279 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
280 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
282 /* The CODE_LABEL referred to in the note must be the
283 CODE_LABEL in the LABEL_REF of the "set". We can
284 conveniently use it for the marker function, which
285 requires a LABEL_REF wrapping. */
286 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
288 mark_jump_label_1 (label_set, jump_insn, false, true);
290 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
295 /* Mark the label each jump jumps to.
296 Combine consecutive labels, and count uses of labels. */
298 static void
299 mark_all_labels (rtx_insn *f)
301 rtx_insn *insn;
303 if (current_ir_type () == IR_RTL_CFGLAYOUT)
305 basic_block bb;
306 FOR_EACH_BB_FN (bb, cfun)
308 /* In cfglayout mode, we don't bother with trivial next-insn
309 propagation of LABEL_REFs into JUMP_LABEL. This will be
310 handled by other optimizers using better algorithms. */
311 FOR_BB_INSNS (bb, insn)
313 gcc_assert (! insn->deleted ());
314 if (NONDEBUG_INSN_P (insn))
315 mark_jump_label (PATTERN (insn), insn, 0);
318 /* In cfglayout mode, there may be non-insns between the
319 basic blocks. If those non-insns represent tablejump data,
320 they contain label references that we must record. */
321 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
322 if (JUMP_TABLE_DATA_P (insn))
323 mark_jump_label (PATTERN (insn), insn, 0);
324 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
325 if (JUMP_TABLE_DATA_P (insn))
326 mark_jump_label (PATTERN (insn), insn, 0);
329 else
331 rtx_insn *prev_nonjump_insn = NULL;
332 for (insn = f; insn; insn = NEXT_INSN (insn))
334 if (insn->deleted ())
336 else if (LABEL_P (insn))
337 prev_nonjump_insn = NULL;
338 else if (JUMP_TABLE_DATA_P (insn))
339 mark_jump_label (PATTERN (insn), insn, 0);
340 else if (NONDEBUG_INSN_P (insn))
342 mark_jump_label (PATTERN (insn), insn, 0);
343 if (JUMP_P (insn))
345 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
346 maybe_propagate_label_ref (insn, prev_nonjump_insn);
348 else
349 prev_nonjump_insn = insn;
355 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
356 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
357 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
358 know whether it's source is floating point or integer comparison. Machine
359 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
360 to help this function avoid overhead in these cases. */
361 enum rtx_code
362 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
363 const_rtx arg1, const rtx_insn *insn)
365 machine_mode mode;
367 /* If this is not actually a comparison, we can't reverse it. */
368 if (GET_RTX_CLASS (code) != RTX_COMPARE
369 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
370 return UNKNOWN;
372 mode = GET_MODE (arg0);
373 if (mode == VOIDmode)
374 mode = GET_MODE (arg1);
376 /* First see if machine description supplies us way to reverse the
377 comparison. Give it priority over everything else to allow
378 machine description to do tricks. */
379 if (GET_MODE_CLASS (mode) == MODE_CC
380 && REVERSIBLE_CC_MODE (mode))
381 return REVERSE_CONDITION (code, mode);
383 /* Try a few special cases based on the comparison code. */
384 switch (code)
386 case GEU:
387 case GTU:
388 case LEU:
389 case LTU:
390 case NE:
391 case EQ:
392 /* It is always safe to reverse EQ and NE, even for the floating
393 point. Similarly the unsigned comparisons are never used for
394 floating point so we can reverse them in the default way. */
395 return reverse_condition (code);
396 case ORDERED:
397 case UNORDERED:
398 case LTGT:
399 case UNEQ:
400 /* In case we already see unordered comparison, we can be sure to
401 be dealing with floating point so we don't need any more tests. */
402 return reverse_condition_maybe_unordered (code);
403 case UNLT:
404 case UNLE:
405 case UNGT:
406 case UNGE:
407 /* We don't have safe way to reverse these yet. */
408 return UNKNOWN;
409 default:
410 break;
413 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
415 /* Try to search for the comparison to determine the real mode.
416 This code is expensive, but with sane machine description it
417 will be never used, since REVERSIBLE_CC_MODE will return true
418 in all cases. */
419 if (! insn)
420 return UNKNOWN;
422 /* These CONST_CAST's are okay because prev_nonnote_insn just
423 returns its argument and we assign it to a const_rtx
424 variable. */
425 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
426 prev != 0 && !LABEL_P (prev);
427 prev = prev_nonnote_insn (prev))
429 const_rtx set = set_of (arg0, prev);
430 if (set && GET_CODE (set) == SET
431 && rtx_equal_p (SET_DEST (set), arg0))
433 rtx src = SET_SRC (set);
435 if (GET_CODE (src) == COMPARE)
437 rtx comparison = src;
438 arg0 = XEXP (src, 0);
439 mode = GET_MODE (arg0);
440 if (mode == VOIDmode)
441 mode = GET_MODE (XEXP (comparison, 1));
442 break;
444 /* We can get past reg-reg moves. This may be useful for model
445 of i387 comparisons that first move flag registers around. */
446 if (REG_P (src))
448 arg0 = src;
449 continue;
452 /* If register is clobbered in some ununderstandable way,
453 give up. */
454 if (set)
455 return UNKNOWN;
459 /* Test for an integer condition, or a floating-point comparison
460 in which NaNs can be ignored. */
461 if (CONST_INT_P (arg0)
462 || (GET_MODE (arg0) != VOIDmode
463 && GET_MODE_CLASS (mode) != MODE_CC
464 && !HONOR_NANS (mode)))
465 return reverse_condition (code);
467 return UNKNOWN;
470 /* A wrapper around the previous function to take COMPARISON as rtx
471 expression. This simplifies many callers. */
472 enum rtx_code
473 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
475 if (!COMPARISON_P (comparison))
476 return UNKNOWN;
477 return reversed_comparison_code_parts (GET_CODE (comparison),
478 XEXP (comparison, 0),
479 XEXP (comparison, 1), insn);
482 /* Return comparison with reversed code of EXP.
483 Return NULL_RTX in case we fail to do the reversal. */
485 reversed_comparison (const_rtx exp, machine_mode mode)
487 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
488 if (reversed_code == UNKNOWN)
489 return NULL_RTX;
490 else
491 return simplify_gen_relational (reversed_code, mode, VOIDmode,
492 XEXP (exp, 0), XEXP (exp, 1));
496 /* Given an rtx-code for a comparison, return the code for the negated
497 comparison. If no such code exists, return UNKNOWN.
499 WATCH OUT! reverse_condition is not safe to use on a jump that might
500 be acting on the results of an IEEE floating point comparison, because
501 of the special treatment of non-signaling nans in comparisons.
502 Use reversed_comparison_code instead. */
504 enum rtx_code
505 reverse_condition (enum rtx_code code)
507 switch (code)
509 case EQ:
510 return NE;
511 case NE:
512 return EQ;
513 case GT:
514 return LE;
515 case GE:
516 return LT;
517 case LT:
518 return GE;
519 case LE:
520 return GT;
521 case GTU:
522 return LEU;
523 case GEU:
524 return LTU;
525 case LTU:
526 return GEU;
527 case LEU:
528 return GTU;
529 case UNORDERED:
530 return ORDERED;
531 case ORDERED:
532 return UNORDERED;
534 case UNLT:
535 case UNLE:
536 case UNGT:
537 case UNGE:
538 case UNEQ:
539 case LTGT:
540 return UNKNOWN;
542 default:
543 gcc_unreachable ();
547 /* Similar, but we're allowed to generate unordered comparisons, which
548 makes it safe for IEEE floating-point. Of course, we have to recognize
549 that the target will support them too... */
551 enum rtx_code
552 reverse_condition_maybe_unordered (enum rtx_code code)
554 switch (code)
556 case EQ:
557 return NE;
558 case NE:
559 return EQ;
560 case GT:
561 return UNLE;
562 case GE:
563 return UNLT;
564 case LT:
565 return UNGE;
566 case LE:
567 return UNGT;
568 case LTGT:
569 return UNEQ;
570 case UNORDERED:
571 return ORDERED;
572 case ORDERED:
573 return UNORDERED;
574 case UNLT:
575 return GE;
576 case UNLE:
577 return GT;
578 case UNGT:
579 return LE;
580 case UNGE:
581 return LT;
582 case UNEQ:
583 return LTGT;
585 default:
586 gcc_unreachable ();
590 /* Similar, but return the code when two operands of a comparison are swapped.
591 This IS safe for IEEE floating-point. */
593 enum rtx_code
594 swap_condition (enum rtx_code code)
596 switch (code)
598 case EQ:
599 case NE:
600 case UNORDERED:
601 case ORDERED:
602 case UNEQ:
603 case LTGT:
604 return code;
606 case GT:
607 return LT;
608 case GE:
609 return LE;
610 case LT:
611 return GT;
612 case LE:
613 return GE;
614 case GTU:
615 return LTU;
616 case GEU:
617 return LEU;
618 case LTU:
619 return GTU;
620 case LEU:
621 return GEU;
622 case UNLT:
623 return UNGT;
624 case UNLE:
625 return UNGE;
626 case UNGT:
627 return UNLT;
628 case UNGE:
629 return UNLE;
631 default:
632 gcc_unreachable ();
636 /* Given a comparison CODE, return the corresponding unsigned comparison.
637 If CODE is an equality comparison or already an unsigned comparison,
638 CODE is returned. */
640 enum rtx_code
641 unsigned_condition (enum rtx_code code)
643 switch (code)
645 case EQ:
646 case NE:
647 case GTU:
648 case GEU:
649 case LTU:
650 case LEU:
651 return code;
653 case GT:
654 return GTU;
655 case GE:
656 return GEU;
657 case LT:
658 return LTU;
659 case LE:
660 return LEU;
662 default:
663 gcc_unreachable ();
667 /* Similarly, return the signed version of a comparison. */
669 enum rtx_code
670 signed_condition (enum rtx_code code)
672 switch (code)
674 case EQ:
675 case NE:
676 case GT:
677 case GE:
678 case LT:
679 case LE:
680 return code;
682 case GTU:
683 return GT;
684 case GEU:
685 return GE;
686 case LTU:
687 return LT;
688 case LEU:
689 return LE;
691 default:
692 gcc_unreachable ();
696 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
697 truth of CODE1 implies the truth of CODE2. */
700 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
702 /* UNKNOWN comparison codes can happen as a result of trying to revert
703 comparison codes.
704 They can't match anything, so we have to reject them here. */
705 if (code1 == UNKNOWN || code2 == UNKNOWN)
706 return 0;
708 if (code1 == code2)
709 return 1;
711 switch (code1)
713 case UNEQ:
714 if (code2 == UNLE || code2 == UNGE)
715 return 1;
716 break;
718 case EQ:
719 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
720 || code2 == ORDERED)
721 return 1;
722 break;
724 case UNLT:
725 if (code2 == UNLE || code2 == NE)
726 return 1;
727 break;
729 case LT:
730 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
731 return 1;
732 break;
734 case UNGT:
735 if (code2 == UNGE || code2 == NE)
736 return 1;
737 break;
739 case GT:
740 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
741 return 1;
742 break;
744 case GE:
745 case LE:
746 if (code2 == ORDERED)
747 return 1;
748 break;
750 case LTGT:
751 if (code2 == NE || code2 == ORDERED)
752 return 1;
753 break;
755 case LTU:
756 if (code2 == LEU || code2 == NE)
757 return 1;
758 break;
760 case GTU:
761 if (code2 == GEU || code2 == NE)
762 return 1;
763 break;
765 case UNORDERED:
766 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
767 || code2 == UNGE || code2 == UNGT)
768 return 1;
769 break;
771 default:
772 break;
775 return 0;
778 /* Return 1 if INSN is an unconditional jump and nothing else. */
781 simplejump_p (const rtx_insn *insn)
783 return (JUMP_P (insn)
784 && GET_CODE (PATTERN (insn)) == SET
785 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
786 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
789 /* Return nonzero if INSN is a (possibly) conditional jump
790 and nothing more.
792 Use of this function is deprecated, since we need to support combined
793 branch and compare insns. Use any_condjump_p instead whenever possible. */
796 condjump_p (const rtx_insn *insn)
798 const_rtx x = PATTERN (insn);
800 if (GET_CODE (x) != SET
801 || GET_CODE (SET_DEST (x)) != PC)
802 return 0;
804 x = SET_SRC (x);
805 if (GET_CODE (x) == LABEL_REF)
806 return 1;
807 else
808 return (GET_CODE (x) == IF_THEN_ELSE
809 && ((GET_CODE (XEXP (x, 2)) == PC
810 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
811 || ANY_RETURN_P (XEXP (x, 1))))
812 || (GET_CODE (XEXP (x, 1)) == PC
813 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
814 || ANY_RETURN_P (XEXP (x, 2))))));
817 /* Return nonzero if INSN is a (possibly) conditional jump inside a
818 PARALLEL.
820 Use this function is deprecated, since we need to support combined
821 branch and compare insns. Use any_condjump_p instead whenever possible. */
824 condjump_in_parallel_p (const rtx_insn *insn)
826 const_rtx x = PATTERN (insn);
828 if (GET_CODE (x) != PARALLEL)
829 return 0;
830 else
831 x = XVECEXP (x, 0, 0);
833 if (GET_CODE (x) != SET)
834 return 0;
835 if (GET_CODE (SET_DEST (x)) != PC)
836 return 0;
837 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
838 return 1;
839 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
840 return 0;
841 if (XEXP (SET_SRC (x), 2) == pc_rtx
842 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
843 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
844 return 1;
845 if (XEXP (SET_SRC (x), 1) == pc_rtx
846 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
847 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
848 return 1;
849 return 0;
852 /* Return set of PC, otherwise NULL. */
855 pc_set (const rtx_insn *insn)
857 rtx pat;
858 if (!JUMP_P (insn))
859 return NULL_RTX;
860 pat = PATTERN (insn);
862 /* The set is allowed to appear either as the insn pattern or
863 the first set in a PARALLEL. */
864 if (GET_CODE (pat) == PARALLEL)
865 pat = XVECEXP (pat, 0, 0);
866 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
867 return pat;
869 return NULL_RTX;
872 /* Return true when insn is an unconditional direct jump,
873 possibly bundled inside a PARALLEL. */
876 any_uncondjump_p (const rtx_insn *insn)
878 const_rtx x = pc_set (insn);
879 if (!x)
880 return 0;
881 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
882 return 0;
883 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
884 return 0;
885 return 1;
888 /* Return true when insn is a conditional jump. This function works for
889 instructions containing PC sets in PARALLELs. The instruction may have
890 various other effects so before removing the jump you must verify
891 onlyjump_p.
893 Note that unlike condjump_p it returns false for unconditional jumps. */
896 any_condjump_p (const rtx_insn *insn)
898 const_rtx x = pc_set (insn);
899 enum rtx_code a, b;
901 if (!x)
902 return 0;
903 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
904 return 0;
906 a = GET_CODE (XEXP (SET_SRC (x), 1));
907 b = GET_CODE (XEXP (SET_SRC (x), 2));
909 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
910 || (a == PC
911 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
914 /* Return the label of a conditional jump. */
917 condjump_label (const rtx_insn *insn)
919 rtx x = pc_set (insn);
921 if (!x)
922 return NULL_RTX;
923 x = SET_SRC (x);
924 if (GET_CODE (x) == LABEL_REF)
925 return x;
926 if (GET_CODE (x) != IF_THEN_ELSE)
927 return NULL_RTX;
928 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
929 return XEXP (x, 1);
930 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
931 return XEXP (x, 2);
932 return NULL_RTX;
935 /* Return TRUE if INSN is a return jump. */
938 returnjump_p (const rtx_insn *insn)
940 if (JUMP_P (insn))
942 subrtx_iterator::array_type array;
943 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
945 const_rtx x = *iter;
946 switch (GET_CODE (x))
948 case RETURN:
949 case SIMPLE_RETURN:
950 case EH_RETURN:
951 return true;
953 case SET:
954 if (SET_IS_RETURN_P (x))
955 return true;
956 break;
958 default:
959 break;
963 return false;
966 /* Return true if INSN is a (possibly conditional) return insn. */
969 eh_returnjump_p (rtx_insn *insn)
971 if (JUMP_P (insn))
973 subrtx_iterator::array_type array;
974 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
975 if (GET_CODE (*iter) == EH_RETURN)
976 return true;
978 return false;
981 /* Return true if INSN is a jump that only transfers control and
982 nothing more. */
985 onlyjump_p (const rtx_insn *insn)
987 rtx set;
989 if (!JUMP_P (insn))
990 return 0;
992 set = single_set (insn);
993 if (set == NULL)
994 return 0;
995 if (GET_CODE (SET_DEST (set)) != PC)
996 return 0;
997 if (side_effects_p (SET_SRC (set)))
998 return 0;
1000 return 1;
1003 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1004 NULL or a return. */
1005 bool
1006 jump_to_label_p (const rtx_insn *insn)
1008 return (JUMP_P (insn)
1009 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1012 /* Return nonzero if X is an RTX that only sets the condition codes
1013 and has no side effects. */
1016 only_sets_cc0_p (const_rtx x)
1018 if (! x)
1019 return 0;
1021 if (INSN_P (x))
1022 x = PATTERN (x);
1024 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1027 /* Return 1 if X is an RTX that does nothing but set the condition codes
1028 and CLOBBER or USE registers.
1029 Return -1 if X does explicitly set the condition codes,
1030 but also does other things. */
1033 sets_cc0_p (const_rtx x)
1035 if (! x)
1036 return 0;
1038 if (INSN_P (x))
1039 x = PATTERN (x);
1041 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1042 return 1;
1043 if (GET_CODE (x) == PARALLEL)
1045 int i;
1046 int sets_cc0 = 0;
1047 int other_things = 0;
1048 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1050 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1051 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1052 sets_cc0 = 1;
1053 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1054 other_things = 1;
1056 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1058 return 0;
1061 /* Find all CODE_LABELs referred to in X, and increment their use
1062 counts. If INSN is a JUMP_INSN and there is at least one
1063 CODE_LABEL referenced in INSN as a jump target, then store the last
1064 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1065 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1066 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1067 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1068 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1069 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1071 Note that two labels separated by a loop-beginning note
1072 must be kept distinct if we have not yet done loop-optimization,
1073 because the gap between them is where loop-optimize
1074 will want to move invariant code to. CROSS_JUMP tells us
1075 that loop-optimization is done with. */
1077 void
1078 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1080 rtx asmop = extract_asm_operands (x);
1081 if (asmop)
1082 mark_jump_label_asm (asmop, insn);
1083 else
1084 mark_jump_label_1 (x, insn, in_mem != 0,
1085 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1088 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1089 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1090 jump-target; when the JUMP_LABEL field of INSN should be set or a
1091 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1092 note. */
1094 static void
1095 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1097 RTX_CODE code = GET_CODE (x);
1098 int i;
1099 const char *fmt;
1101 switch (code)
1103 case PC:
1104 case CC0:
1105 case REG:
1106 case CLOBBER:
1107 case CALL:
1108 return;
1110 case RETURN:
1111 case SIMPLE_RETURN:
1112 if (is_target)
1114 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1115 JUMP_LABEL (insn) = x;
1117 return;
1119 case MEM:
1120 in_mem = true;
1121 break;
1123 case SEQUENCE:
1125 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1126 for (i = 0; i < seq->len (); i++)
1127 mark_jump_label (PATTERN (seq->insn (i)),
1128 seq->insn (i), 0);
1130 return;
1132 case SYMBOL_REF:
1133 if (!in_mem)
1134 return;
1136 /* If this is a constant-pool reference, see if it is a label. */
1137 if (CONSTANT_POOL_ADDRESS_P (x))
1138 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1139 break;
1141 /* Handle operands in the condition of an if-then-else as for a
1142 non-jump insn. */
1143 case IF_THEN_ELSE:
1144 if (!is_target)
1145 break;
1146 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1147 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1148 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1149 return;
1151 case LABEL_REF:
1153 rtx label = LABEL_REF_LABEL (x);
1155 /* Ignore remaining references to unreachable labels that
1156 have been deleted. */
1157 if (NOTE_P (label)
1158 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1159 break;
1161 gcc_assert (LABEL_P (label));
1163 /* Ignore references to labels of containing functions. */
1164 if (LABEL_REF_NONLOCAL_P (x))
1165 break;
1167 LABEL_REF_LABEL (x) = label;
1168 if (! insn || ! insn->deleted ())
1169 ++LABEL_NUSES (label);
1171 if (insn)
1173 if (is_target
1174 /* Do not change a previous setting of JUMP_LABEL. If the
1175 JUMP_LABEL slot is occupied by a different label,
1176 create a note for this label. */
1177 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1178 JUMP_LABEL (insn) = label;
1179 else
1181 enum reg_note kind
1182 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1184 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1185 for LABEL unless there already is one. All uses of
1186 a label, except for the primary target of a jump,
1187 must have such a note. */
1188 if (! find_reg_note (insn, kind, label))
1189 add_reg_note (insn, kind, label);
1192 return;
1195 /* Do walk the labels in a vector, but not the first operand of an
1196 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1197 case ADDR_VEC:
1198 case ADDR_DIFF_VEC:
1199 if (! insn->deleted ())
1201 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1203 for (i = 0; i < XVECLEN (x, eltnum); i++)
1204 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1205 is_target);
1207 return;
1209 default:
1210 break;
1213 fmt = GET_RTX_FORMAT (code);
1215 /* The primary target of a tablejump is the label of the ADDR_VEC,
1216 which is canonically mentioned *last* in the insn. To get it
1217 marked as JUMP_LABEL, we iterate over items in reverse order. */
1218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1220 if (fmt[i] == 'e')
1221 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1222 else if (fmt[i] == 'E')
1224 int j;
1226 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1227 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1228 is_target);
1233 /* Worker function for mark_jump_label. Handle asm insns specially.
1234 In particular, output operands need not be considered so we can
1235 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1236 need to be considered targets. */
1238 static void
1239 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1241 int i;
1243 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1244 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1246 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1247 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1250 /* Delete insn INSN from the chain of insns and update label ref counts
1251 and delete insns now unreachable.
1253 Returns the first insn after INSN that was not deleted.
1255 Usage of this instruction is deprecated. Use delete_insn instead and
1256 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1258 rtx_insn *
1259 delete_related_insns (rtx uncast_insn)
1261 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1262 int was_code_label = (LABEL_P (insn));
1263 rtx note;
1264 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1266 while (next && next->deleted ())
1267 next = NEXT_INSN (next);
1269 /* This insn is already deleted => return first following nondeleted. */
1270 if (insn->deleted ())
1271 return next;
1273 delete_insn (insn);
1275 /* If instruction is followed by a barrier,
1276 delete the barrier too. */
1278 if (next != 0 && BARRIER_P (next))
1279 delete_insn (next);
1281 /* If this is a call, then we have to remove the var tracking note
1282 for the call arguments. */
1284 if (CALL_P (insn)
1285 || (NONJUMP_INSN_P (insn)
1286 && GET_CODE (PATTERN (insn)) == SEQUENCE
1287 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1289 rtx_insn *p;
1291 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1292 p && NOTE_P (p);
1293 p = NEXT_INSN (p))
1294 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1296 remove_insn (p);
1297 break;
1301 /* If deleting a jump, decrement the count of the label,
1302 and delete the label if it is now unused. */
1304 if (jump_to_label_p (insn))
1306 rtx lab = JUMP_LABEL (insn);
1307 rtx_jump_table_data *lab_next;
1309 if (LABEL_NUSES (lab) == 0)
1310 /* This can delete NEXT or PREV,
1311 either directly if NEXT is JUMP_LABEL (INSN),
1312 or indirectly through more levels of jumps. */
1313 delete_related_insns (lab);
1314 else if (tablejump_p (insn, NULL, &lab_next))
1316 /* If we're deleting the tablejump, delete the dispatch table.
1317 We may not be able to kill the label immediately preceding
1318 just yet, as it might be referenced in code leading up to
1319 the tablejump. */
1320 delete_related_insns (lab_next);
1324 /* Likewise if we're deleting a dispatch table. */
1326 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1328 rtvec labels = table->get_labels ();
1329 int i;
1330 int len = GET_NUM_ELEM (labels);
1332 for (i = 0; i < len; i++)
1333 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1334 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1335 while (next && next->deleted ())
1336 next = NEXT_INSN (next);
1337 return next;
1340 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1341 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1342 if (INSN_P (insn))
1343 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1344 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1345 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1346 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1347 && LABEL_P (XEXP (note, 0)))
1348 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1349 delete_related_insns (XEXP (note, 0));
1351 while (prev && (prev->deleted () || NOTE_P (prev)))
1352 prev = PREV_INSN (prev);
1354 /* If INSN was a label and a dispatch table follows it,
1355 delete the dispatch table. The tablejump must have gone already.
1356 It isn't useful to fall through into a table. */
1358 if (was_code_label
1359 && NEXT_INSN (insn) != 0
1360 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1361 next = delete_related_insns (NEXT_INSN (insn));
1363 /* If INSN was a label, delete insns following it if now unreachable. */
1365 if (was_code_label && prev && BARRIER_P (prev))
1367 enum rtx_code code;
1368 while (next)
1370 code = GET_CODE (next);
1371 if (code == NOTE)
1372 next = NEXT_INSN (next);
1373 /* Keep going past other deleted labels to delete what follows. */
1374 else if (code == CODE_LABEL && next->deleted ())
1375 next = NEXT_INSN (next);
1376 /* Keep the (use (insn))s created by dbr_schedule, which needs
1377 them in order to track liveness relative to a previous
1378 barrier. */
1379 else if (INSN_P (next)
1380 && GET_CODE (PATTERN (next)) == USE
1381 && INSN_P (XEXP (PATTERN (next), 0)))
1382 next = NEXT_INSN (next);
1383 else if (code == BARRIER || INSN_P (next))
1384 /* Note: if this deletes a jump, it can cause more
1385 deletion of unreachable code, after a different label.
1386 As long as the value from this recursive call is correct,
1387 this invocation functions correctly. */
1388 next = delete_related_insns (next);
1389 else
1390 break;
1394 /* I feel a little doubtful about this loop,
1395 but I see no clean and sure alternative way
1396 to find the first insn after INSN that is not now deleted.
1397 I hope this works. */
1398 while (next && next->deleted ())
1399 next = NEXT_INSN (next);
1400 return next;
1403 /* Delete a range of insns from FROM to TO, inclusive.
1404 This is for the sake of peephole optimization, so assume
1405 that whatever these insns do will still be done by a new
1406 peephole insn that will replace them. */
1408 void
1409 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1411 rtx_insn *insn = from;
1413 while (1)
1415 rtx_insn *next = NEXT_INSN (insn);
1416 rtx_insn *prev = PREV_INSN (insn);
1418 if (!NOTE_P (insn))
1420 insn->set_deleted();
1422 /* Patch this insn out of the chain. */
1423 /* We don't do this all at once, because we
1424 must preserve all NOTEs. */
1425 if (prev)
1426 SET_NEXT_INSN (prev) = next;
1428 if (next)
1429 SET_PREV_INSN (next) = prev;
1432 if (insn == to)
1433 break;
1434 insn = next;
1437 /* Note that if TO is an unconditional jump
1438 we *do not* delete the BARRIER that follows,
1439 since the peephole that replaces this sequence
1440 is also an unconditional jump in that case. */
1443 /* A helper function for redirect_exp_1; examines its input X and returns
1444 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1445 static rtx
1446 redirect_target (rtx x)
1448 if (x == NULL_RTX)
1449 return ret_rtx;
1450 if (!ANY_RETURN_P (x))
1451 return gen_rtx_LABEL_REF (Pmode, x);
1452 return x;
1455 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1456 NLABEL as a return. Accrue modifications into the change group. */
1458 static void
1459 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1461 rtx x = *loc;
1462 RTX_CODE code = GET_CODE (x);
1463 int i;
1464 const char *fmt;
1466 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1467 || x == olabel)
1469 x = redirect_target (nlabel);
1470 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1471 x = gen_rtx_SET (pc_rtx, x);
1472 validate_change (insn, loc, x, 1);
1473 return;
1476 if (code == SET && SET_DEST (x) == pc_rtx
1477 && ANY_RETURN_P (nlabel)
1478 && GET_CODE (SET_SRC (x)) == LABEL_REF
1479 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1481 validate_change (insn, loc, nlabel, 1);
1482 return;
1485 if (code == IF_THEN_ELSE)
1487 /* Skip the condition of an IF_THEN_ELSE. We only want to
1488 change jump destinations, not eventual label comparisons. */
1489 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1490 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1491 return;
1494 fmt = GET_RTX_FORMAT (code);
1495 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1497 if (fmt[i] == 'e')
1498 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1499 else if (fmt[i] == 'E')
1501 int j;
1502 for (j = 0; j < XVECLEN (x, i); j++)
1503 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1508 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1509 the modifications into the change group. Return false if we did
1510 not see how to do that. */
1513 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1515 int ochanges = num_validated_changes ();
1516 rtx *loc, asmop;
1518 gcc_assert (nlabel != NULL_RTX);
1519 asmop = extract_asm_operands (PATTERN (jump));
1520 if (asmop)
1522 if (nlabel == NULL)
1523 return 0;
1524 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1525 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1527 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1528 loc = &XVECEXP (PATTERN (jump), 0, 0);
1529 else
1530 loc = &PATTERN (jump);
1532 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1533 return num_validated_changes () > ochanges;
1536 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1537 jump target label is unused as a result, it and the code following
1538 it may be deleted.
1540 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1541 in that case we are to turn the jump into a (possibly conditional)
1542 return insn.
1544 The return value will be 1 if the change was made, 0 if it wasn't
1545 (this can only occur when trying to produce return insns). */
1548 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1550 rtx olabel = jump->jump_label ();
1552 if (!nlabel)
1554 /* If there is no label, we are asked to redirect to the EXIT block.
1555 When before the epilogue is emitted, return/simple_return cannot be
1556 created so we return 0 immediately. After the epilogue is emitted,
1557 we always expect a label, either a non-null label, or a
1558 return/simple_return RTX. */
1560 if (!epilogue_completed)
1561 return 0;
1562 gcc_unreachable ();
1565 if (nlabel == olabel)
1566 return 1;
1568 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1569 return 0;
1571 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1572 return 1;
1575 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1576 NLABEL in JUMP.
1577 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1578 count has dropped to zero. */
1579 void
1580 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1581 int invert)
1583 rtx note;
1585 gcc_assert (JUMP_LABEL (jump) == olabel);
1587 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1588 moving FUNCTION_END note. Just sanity check that no user still worry
1589 about this. */
1590 gcc_assert (delete_unused >= 0);
1591 JUMP_LABEL (jump) = nlabel;
1592 if (!ANY_RETURN_P (nlabel))
1593 ++LABEL_NUSES (nlabel);
1595 /* Update labels in any REG_EQUAL note. */
1596 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1598 if (ANY_RETURN_P (nlabel)
1599 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1600 remove_note (jump, note);
1601 else
1603 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1604 confirm_change_group ();
1608 /* Handle the case where we had a conditional crossing jump to a return
1609 label and are now changing it into a direct conditional return.
1610 The jump is no longer crossing in that case. */
1611 if (ANY_RETURN_P (nlabel))
1612 CROSSING_JUMP_P (jump) = 0;
1614 if (!ANY_RETURN_P (olabel)
1615 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1616 /* Undefined labels will remain outside the insn stream. */
1617 && INSN_UID (olabel))
1618 delete_related_insns (olabel);
1619 if (invert)
1620 invert_br_probabilities (jump);
1623 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1624 modifications into the change group. Return nonzero for success. */
1625 static int
1626 invert_exp_1 (rtx x, rtx_insn *insn)
1628 RTX_CODE code = GET_CODE (x);
1630 if (code == IF_THEN_ELSE)
1632 rtx comp = XEXP (x, 0);
1633 rtx tem;
1634 enum rtx_code reversed_code;
1636 /* We can do this in two ways: The preferable way, which can only
1637 be done if this is not an integer comparison, is to reverse
1638 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1639 of the IF_THEN_ELSE. If we can't do either, fail. */
1641 reversed_code = reversed_comparison_code (comp, insn);
1643 if (reversed_code != UNKNOWN)
1645 validate_change (insn, &XEXP (x, 0),
1646 gen_rtx_fmt_ee (reversed_code,
1647 GET_MODE (comp), XEXP (comp, 0),
1648 XEXP (comp, 1)),
1650 return 1;
1653 tem = XEXP (x, 1);
1654 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1655 validate_change (insn, &XEXP (x, 2), tem, 1);
1656 return 1;
1658 else
1659 return 0;
1662 /* Invert the condition of the jump JUMP, and make it jump to label
1663 NLABEL instead of where it jumps now. Accrue changes into the
1664 change group. Return false if we didn't see how to perform the
1665 inversion and redirection. */
1668 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1670 rtx x = pc_set (jump);
1671 int ochanges;
1672 int ok;
1674 ochanges = num_validated_changes ();
1675 if (x == NULL)
1676 return 0;
1677 ok = invert_exp_1 (SET_SRC (x), jump);
1678 gcc_assert (ok);
1680 if (num_validated_changes () == ochanges)
1681 return 0;
1683 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1684 in Pmode, so checking this is not merely an optimization. */
1685 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1688 /* Invert the condition of the jump JUMP, and make it jump to label
1689 NLABEL instead of where it jumps now. Return true if successful. */
1692 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1694 rtx olabel = JUMP_LABEL (jump);
1696 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1698 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1699 return 1;
1701 cancel_changes (0);
1702 return 0;
1706 /* Like rtx_equal_p except that it considers two REGs as equal
1707 if they renumber to the same value and considers two commutative
1708 operations to be the same if the order of the operands has been
1709 reversed. */
1712 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1714 int i;
1715 const enum rtx_code code = GET_CODE (x);
1716 const char *fmt;
1718 if (x == y)
1719 return 1;
1721 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1722 && (REG_P (y) || (GET_CODE (y) == SUBREG
1723 && REG_P (SUBREG_REG (y)))))
1725 int reg_x = -1, reg_y = -1;
1726 int byte_x = 0, byte_y = 0;
1727 struct subreg_info info;
1729 if (GET_MODE (x) != GET_MODE (y))
1730 return 0;
1732 /* If we haven't done any renumbering, don't
1733 make any assumptions. */
1734 if (reg_renumber == 0)
1735 return rtx_equal_p (x, y);
1737 if (code == SUBREG)
1739 reg_x = REGNO (SUBREG_REG (x));
1740 byte_x = SUBREG_BYTE (x);
1742 if (reg_renumber[reg_x] >= 0)
1744 subreg_get_info (reg_renumber[reg_x],
1745 GET_MODE (SUBREG_REG (x)), byte_x,
1746 GET_MODE (x), &info);
1747 if (!info.representable_p)
1748 return 0;
1749 reg_x = info.offset;
1750 byte_x = 0;
1753 else
1755 reg_x = REGNO (x);
1756 if (reg_renumber[reg_x] >= 0)
1757 reg_x = reg_renumber[reg_x];
1760 if (GET_CODE (y) == SUBREG)
1762 reg_y = REGNO (SUBREG_REG (y));
1763 byte_y = SUBREG_BYTE (y);
1765 if (reg_renumber[reg_y] >= 0)
1767 subreg_get_info (reg_renumber[reg_y],
1768 GET_MODE (SUBREG_REG (y)), byte_y,
1769 GET_MODE (y), &info);
1770 if (!info.representable_p)
1771 return 0;
1772 reg_y = info.offset;
1773 byte_y = 0;
1776 else
1778 reg_y = REGNO (y);
1779 if (reg_renumber[reg_y] >= 0)
1780 reg_y = reg_renumber[reg_y];
1783 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1786 /* Now we have disposed of all the cases
1787 in which different rtx codes can match. */
1788 if (code != GET_CODE (y))
1789 return 0;
1791 switch (code)
1793 case PC:
1794 case CC0:
1795 case ADDR_VEC:
1796 case ADDR_DIFF_VEC:
1797 CASE_CONST_UNIQUE:
1798 return 0;
1800 case LABEL_REF:
1801 /* We can't assume nonlocal labels have their following insns yet. */
1802 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1803 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1805 /* Two label-refs are equivalent if they point at labels
1806 in the same position in the instruction stream. */
1807 else
1809 rtx_insn *xi = next_nonnote_nondebug_insn
1810 (as_a<rtx_insn *> (LABEL_REF_LABEL (x)));
1811 rtx_insn *yi = next_nonnote_nondebug_insn
1812 (as_a<rtx_insn *> (LABEL_REF_LABEL (y)));
1813 while (xi && LABEL_P (xi))
1814 xi = next_nonnote_nondebug_insn (xi);
1815 while (yi && LABEL_P (yi))
1816 yi = next_nonnote_nondebug_insn (yi);
1817 return xi == yi;
1820 case SYMBOL_REF:
1821 return XSTR (x, 0) == XSTR (y, 0);
1823 case CODE_LABEL:
1824 /* If we didn't match EQ equality above, they aren't the same. */
1825 return 0;
1827 default:
1828 break;
1831 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1833 if (GET_MODE (x) != GET_MODE (y))
1834 return 0;
1836 /* MEMs referring to different address space are not equivalent. */
1837 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1838 return 0;
1840 /* For commutative operations, the RTX match if the operand match in any
1841 order. Also handle the simple binary and unary cases without a loop. */
1842 if (targetm.commutative_p (x, UNKNOWN))
1843 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1844 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1845 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1846 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1847 else if (NON_COMMUTATIVE_P (x))
1848 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1849 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1850 else if (UNARY_P (x))
1851 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1853 /* Compare the elements. If any pair of corresponding elements
1854 fail to match, return 0 for the whole things. */
1856 fmt = GET_RTX_FORMAT (code);
1857 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1859 int j;
1860 switch (fmt[i])
1862 case 'w':
1863 if (XWINT (x, i) != XWINT (y, i))
1864 return 0;
1865 break;
1867 case 'i':
1868 if (XINT (x, i) != XINT (y, i))
1870 if (((code == ASM_OPERANDS && i == 6)
1871 || (code == ASM_INPUT && i == 1)))
1872 break;
1873 return 0;
1875 break;
1877 case 't':
1878 if (XTREE (x, i) != XTREE (y, i))
1879 return 0;
1880 break;
1882 case 's':
1883 if (strcmp (XSTR (x, i), XSTR (y, i)))
1884 return 0;
1885 break;
1887 case 'e':
1888 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1889 return 0;
1890 break;
1892 case 'u':
1893 if (XEXP (x, i) != XEXP (y, i))
1894 return 0;
1895 /* Fall through. */
1896 case '0':
1897 break;
1899 case 'E':
1900 if (XVECLEN (x, i) != XVECLEN (y, i))
1901 return 0;
1902 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1903 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1904 return 0;
1905 break;
1907 default:
1908 gcc_unreachable ();
1911 return 1;
1914 /* If X is a hard register or equivalent to one or a subregister of one,
1915 return the hard register number. If X is a pseudo register that was not
1916 assigned a hard register, return the pseudo register number. Otherwise,
1917 return -1. Any rtx is valid for X. */
1920 true_regnum (const_rtx x)
1922 if (REG_P (x))
1924 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1925 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1926 return reg_renumber[REGNO (x)];
1927 return REGNO (x);
1929 if (GET_CODE (x) == SUBREG)
1931 int base = true_regnum (SUBREG_REG (x));
1932 if (base >= 0
1933 && base < FIRST_PSEUDO_REGISTER)
1935 struct subreg_info info;
1937 subreg_get_info (lra_in_progress
1938 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1939 GET_MODE (SUBREG_REG (x)),
1940 SUBREG_BYTE (x), GET_MODE (x), &info);
1942 if (info.representable_p)
1943 return base + info.offset;
1946 return -1;
1949 /* Return regno of the register REG and handle subregs too. */
1950 unsigned int
1951 reg_or_subregno (const_rtx reg)
1953 if (GET_CODE (reg) == SUBREG)
1954 reg = SUBREG_REG (reg);
1955 gcc_assert (REG_P (reg));
1956 return REGNO (reg);