2016-09-26 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ira.c
blobc2e04c2b7a87d86de7e3268d39a4d8a017b132ea
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "tm_p.h"
375 #include "insn-config.h"
376 #include "regs.h"
377 #include "ira.h"
378 #include "ira-int.h"
379 #include "diagnostic-core.h"
380 #include "cfgrtl.h"
381 #include "cfgbuild.h"
382 #include "cfgcleanup.h"
383 #include "expr.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "reload.h"
387 #include "cfgloop.h"
388 #include "lra.h"
389 #include "dce.h"
390 #include "dbgcnt.h"
391 #include "rtl-iter.h"
392 #include "shrink-wrap.h"
393 #include "print-rtl.h"
395 struct target_ira default_target_ira;
396 struct target_ira_int default_target_ira_int;
397 #if SWITCHABLE_TARGET
398 struct target_ira *this_target_ira = &default_target_ira;
399 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
400 #endif
402 /* A modified value of flag `-fira-verbose' used internally. */
403 int internal_flag_ira_verbose;
405 /* Dump file of the allocator if it is not NULL. */
406 FILE *ira_dump_file;
408 /* The number of elements in the following array. */
409 int ira_spilled_reg_stack_slots_num;
411 /* The following array contains info about spilled pseudo-registers
412 stack slots used in current function so far. */
413 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 /* Correspondingly overall cost of the allocation, overall cost before
416 reload, cost of the allocnos assigned to hard-registers, cost of
417 the allocnos assigned to memory, cost of loads, stores and register
418 move insns generated for pseudo-register live range splitting (see
419 ira-emit.c). */
420 int64_t ira_overall_cost, overall_cost_before;
421 int64_t ira_reg_cost, ira_mem_cost;
422 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
423 int ira_move_loops_num, ira_additional_jumps_num;
425 /* All registers that can be eliminated. */
427 HARD_REG_SET eliminable_regset;
429 /* Value of max_reg_num () before IRA work start. This value helps
430 us to recognize a situation when new pseudos were created during
431 IRA work. */
432 static int max_regno_before_ira;
434 /* Temporary hard reg set used for a different calculation. */
435 static HARD_REG_SET temp_hard_regset;
437 #define last_mode_for_init_move_cost \
438 (this_target_ira_int->x_last_mode_for_init_move_cost)
441 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
442 static void
443 setup_reg_mode_hard_regset (void)
445 int i, m, hard_regno;
447 for (m = 0; m < NUM_MACHINE_MODES; m++)
448 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
451 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
452 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
453 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
454 hard_regno + i);
459 #define no_unit_alloc_regs \
460 (this_target_ira_int->x_no_unit_alloc_regs)
462 /* The function sets up the three arrays declared above. */
463 static void
464 setup_class_hard_regs (void)
466 int cl, i, hard_regno, n;
467 HARD_REG_SET processed_hard_reg_set;
469 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
470 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
473 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
474 CLEAR_HARD_REG_SET (processed_hard_reg_set);
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 ira_non_ordered_class_hard_regs[cl][i] = -1;
478 ira_class_hard_reg_index[cl][i] = -1;
480 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 #ifdef REG_ALLOC_ORDER
483 hard_regno = reg_alloc_order[i];
484 #else
485 hard_regno = i;
486 #endif
487 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
488 continue;
489 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
490 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
491 ira_class_hard_reg_index[cl][hard_regno] = -1;
492 else
494 ira_class_hard_reg_index[cl][hard_regno] = n;
495 ira_class_hard_regs[cl][n++] = hard_regno;
498 ira_class_hard_regs_num[cl] = n;
499 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
501 ira_non_ordered_class_hard_regs[cl][n++] = i;
502 ira_assert (ira_class_hard_regs_num[cl] == n);
506 /* Set up global variables defining info about hard registers for the
507 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
508 that we can use the hard frame pointer for the allocation. */
509 static void
510 setup_alloc_regs (bool use_hard_frame_p)
512 #ifdef ADJUST_REG_ALLOC_ORDER
513 ADJUST_REG_ALLOC_ORDER;
514 #endif
515 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
516 if (! use_hard_frame_p)
517 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
518 setup_class_hard_regs ();
523 #define alloc_reg_class_subclasses \
524 (this_target_ira_int->x_alloc_reg_class_subclasses)
526 /* Initialize the table of subclasses of each reg class. */
527 static void
528 setup_reg_subclasses (void)
530 int i, j;
531 HARD_REG_SET temp_hard_regset2;
533 for (i = 0; i < N_REG_CLASSES; i++)
534 for (j = 0; j < N_REG_CLASSES; j++)
535 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 for (i = 0; i < N_REG_CLASSES; i++)
539 if (i == (int) NO_REGS)
540 continue;
542 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
543 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
544 if (hard_reg_set_empty_p (temp_hard_regset))
545 continue;
546 for (j = 0; j < N_REG_CLASSES; j++)
547 if (i != j)
549 enum reg_class *p;
551 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
552 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
607 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
608 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
609 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
610 ira_class_subset_p[cl][cl2]
611 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
612 if (! hard_reg_set_empty_p (temp_hard_regset2)
613 && hard_reg_set_subset_p (reg_class_contents[cl2],
614 reg_class_contents[cl]))
615 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 cost = ira_memory_move_cost[mode][cl2][0];
618 if (cost > ira_max_memory_move_cost[mode][cl][0])
619 ira_max_memory_move_cost[mode][cl][0] = cost;
620 cost = ira_memory_move_cost[mode][cl2][1];
621 if (cost > ira_max_memory_move_cost[mode][cl][1])
622 ira_max_memory_move_cost[mode][cl][1] = cost;
625 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
626 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628 ira_memory_move_cost[mode][cl][0]
629 = ira_max_memory_move_cost[mode][cl][0];
630 ira_memory_move_cost[mode][cl][1]
631 = ira_max_memory_move_cost[mode][cl][1];
633 setup_reg_subclasses ();
638 /* Define the following macro if allocation through malloc if
639 preferable. */
640 #define IRA_NO_OBSTACK
642 #ifndef IRA_NO_OBSTACK
643 /* Obstack used for storing all dynamic data (except bitmaps) of the
644 IRA. */
645 static struct obstack ira_obstack;
646 #endif
648 /* Obstack used for storing all bitmaps of the IRA. */
649 static struct bitmap_obstack ira_bitmap_obstack;
651 /* Allocate memory of size LEN for IRA data. */
652 void *
653 ira_allocate (size_t len)
655 void *res;
657 #ifndef IRA_NO_OBSTACK
658 res = obstack_alloc (&ira_obstack, len);
659 #else
660 res = xmalloc (len);
661 #endif
662 return res;
665 /* Free memory ADDR allocated for IRA data. */
666 void
667 ira_free (void *addr ATTRIBUTE_UNUSED)
669 #ifndef IRA_NO_OBSTACK
670 /* do nothing */
671 #else
672 free (addr);
673 #endif
677 /* Allocate and returns bitmap for IRA. */
678 bitmap
679 ira_allocate_bitmap (void)
681 return BITMAP_ALLOC (&ira_bitmap_obstack);
684 /* Free bitmap B allocated for IRA. */
685 void
686 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 /* do nothing */
693 /* Output information about allocation of all allocnos (except for
694 caps) into file F. */
695 void
696 ira_print_disposition (FILE *f)
698 int i, n, max_regno;
699 ira_allocno_t a;
700 basic_block bb;
702 fprintf (f, "Disposition:");
703 max_regno = max_reg_num ();
704 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
705 for (a = ira_regno_allocno_map[i];
706 a != NULL;
707 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709 if (n % 4 == 0)
710 fprintf (f, "\n");
711 n++;
712 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
713 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
714 fprintf (f, "b%-3d", bb->index);
715 else
716 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
717 if (ALLOCNO_HARD_REGNO (a) >= 0)
718 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
719 else
720 fprintf (f, " mem");
722 fprintf (f, "\n");
725 /* Outputs information about allocation of all allocnos into
726 stderr. */
727 void
728 ira_debug_disposition (void)
730 ira_print_disposition (stderr);
735 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
736 register class containing stack registers or NO_REGS if there are
737 no stack registers. To find this class, we iterate through all
738 register pressure classes and choose the first register pressure
739 class containing all the stack registers and having the biggest
740 size. */
741 static void
742 setup_stack_reg_pressure_class (void)
744 ira_stack_reg_pressure_class = NO_REGS;
745 #ifdef STACK_REGS
747 int i, best, size;
748 enum reg_class cl;
749 HARD_REG_SET temp_hard_regset2;
751 CLEAR_HARD_REG_SET (temp_hard_regset);
752 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
753 SET_HARD_REG_BIT (temp_hard_regset, i);
754 best = 0;
755 for (i = 0; i < ira_pressure_classes_num; i++)
757 cl = ira_pressure_classes[i];
758 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
759 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
760 size = hard_reg_set_size (temp_hard_regset2);
761 if (best < size)
763 best = size;
764 ira_stack_reg_pressure_class = cl;
768 #endif
771 /* Find pressure classes which are register classes for which we
772 calculate register pressure in IRA, register pressure sensitive
773 insn scheduling, and register pressure sensitive loop invariant
774 motion.
776 To make register pressure calculation easy, we always use
777 non-intersected register pressure classes. A move of hard
778 registers from one register pressure class is not more expensive
779 than load and store of the hard registers. Most likely an allocno
780 class will be a subset of a register pressure class and in many
781 cases a register pressure class. That makes usage of register
782 pressure classes a good approximation to find a high register
783 pressure. */
784 static void
785 setup_pressure_classes (void)
787 int cost, i, n, curr;
788 int cl, cl2;
789 enum reg_class pressure_classes[N_REG_CLASSES];
790 int m;
791 HARD_REG_SET temp_hard_regset2;
792 bool insert_p;
794 n = 0;
795 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 if (ira_class_hard_regs_num[cl] == 0)
798 continue;
799 if (ira_class_hard_regs_num[cl] != 1
800 /* A register class without subclasses may contain a few
801 hard registers and movement between them is costly
802 (e.g. SPARC FPCC registers). We still should consider it
803 as a candidate for a pressure class. */
804 && alloc_reg_class_subclasses[cl][0] < cl)
806 /* Check that the moves between any hard registers of the
807 current class are not more expensive for a legal mode
808 than load/store of the hard registers of the current
809 class. Such class is a potential candidate to be a
810 register pressure class. */
811 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
814 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset,
816 ira_prohibited_class_mode_regs[cl][m]);
817 if (hard_reg_set_empty_p (temp_hard_regset))
818 continue;
819 ira_init_register_move_cost_if_necessary ((machine_mode) m);
820 cost = ira_register_move_cost[m][cl][cl];
821 if (cost <= ira_max_memory_move_cost[m][cl][1]
822 || cost <= ira_max_memory_move_cost[m][cl][0])
823 break;
825 if (m >= NUM_MACHINE_MODES)
826 continue;
828 curr = 0;
829 insert_p = true;
830 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
831 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
841 cl2 = pressure_classes[i];
842 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
843 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
846 || cl2 == (int) GENERAL_REGS))
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
867 #ifdef ENABLE_IRA_CHECKING
869 HARD_REG_SET ignore_hard_regs;
871 /* Check pressure classes correctness: here we check that hard
872 registers from all register pressure classes contains all hard
873 registers available for the allocation. */
874 CLEAR_HARD_REG_SET (temp_hard_regset);
875 CLEAR_HARD_REG_SET (temp_hard_regset2);
876 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
877 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 /* For some targets (like MIPS with MD_REGS), there are some
880 classes with hard registers available for allocation but
881 not able to hold value of any mode. */
882 for (m = 0; m < NUM_MACHINE_MODES; m++)
883 if (contains_reg_of_mode[cl][m])
884 break;
885 if (m >= NUM_MACHINE_MODES)
887 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
888 continue;
890 for (i = 0; i < n; i++)
891 if ((int) pressure_classes[i] == cl)
892 break;
893 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
894 if (i < n)
895 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
897 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
898 /* Some targets (like SPARC with ICC reg) have allocatable regs
899 for which no reg class is defined. */
900 if (REGNO_REG_CLASS (i) == NO_REGS)
901 SET_HARD_REG_BIT (ignore_hard_regs, i);
902 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
904 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 #endif
907 ira_pressure_classes_num = 0;
908 for (i = 0; i < n; i++)
910 cl = (int) pressure_classes[i];
911 ira_reg_pressure_class_p[cl] = true;
912 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 setup_stack_reg_pressure_class ();
917 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
918 whose register move cost between any registers of the class is the
919 same as for all its subclasses. We use the data to speed up the
920 2nd pass of calculations of allocno costs. */
921 static void
922 setup_uniform_class_p (void)
924 int i, cl, cl2, m;
926 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 ira_uniform_class_p[cl] = false;
929 if (ira_class_hard_regs_num[cl] == 0)
930 continue;
931 /* We can not use alloc_reg_class_subclasses here because move
932 cost hooks does not take into account that some registers are
933 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
934 is element of alloc_reg_class_subclasses for GENERAL_REGS
935 because SSE regs are unavailable. */
936 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 if (ira_class_hard_regs_num[cl2] == 0)
939 continue;
940 for (m = 0; m < NUM_MACHINE_MODES; m++)
941 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 ira_init_register_move_cost_if_necessary ((machine_mode) m);
944 if (ira_register_move_cost[m][cl][cl]
945 != ira_register_move_cost[m][cl2][cl2])
946 break;
948 if (m < NUM_MACHINE_MODES)
949 break;
951 if (cl2 == LIM_REG_CLASSES)
952 ira_uniform_class_p[cl] = true;
956 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
957 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959 Target may have many subtargets and not all target hard registers can
960 be used for allocation, e.g. x86 port in 32-bit mode can not use
961 hard registers introduced in x86-64 like r8-r15). Some classes
962 might have the same allocatable hard registers, e.g. INDEX_REGS
963 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
964 calculations efforts we introduce allocno classes which contain
965 unique non-empty sets of allocatable hard-registers.
967 Pseudo class cost calculation in ira-costs.c is very expensive.
968 Therefore we are trying to decrease number of classes involved in
969 such calculation. Register classes used in the cost calculation
970 are called important classes. They are allocno classes and other
971 non-empty classes whose allocatable hard register sets are inside
972 of an allocno class hard register set. From the first sight, it
973 looks like that they are just allocno classes. It is not true. In
974 example of x86-port in 32-bit mode, allocno classes will contain
975 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
976 registers are the same for the both classes). The important
977 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
978 because a machine description insn constraint may refers for
979 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
980 of the insn constraints. */
981 static void
982 setup_allocno_and_important_classes (void)
984 int i, j, n, cl;
985 bool set_p;
986 HARD_REG_SET temp_hard_regset2;
987 static enum reg_class classes[LIM_REG_CLASSES + 1];
989 n = 0;
990 /* Collect classes which contain unique sets of allocatable hard
991 registers. Prefer GENERAL_REGS to other classes containing the
992 same set of hard registers. */
993 for (i = 0; i < LIM_REG_CLASSES; i++)
995 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
996 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
997 for (j = 0; j < n; j++)
999 cl = classes[j];
1000 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1001 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1002 no_unit_alloc_regs);
1003 if (hard_reg_set_equal_p (temp_hard_regset,
1004 temp_hard_regset2))
1005 break;
1007 if (j >= n)
1008 classes[n++] = (enum reg_class) i;
1009 else if (i == GENERAL_REGS)
1010 /* Prefer general regs. For i386 example, it means that
1011 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1012 (all of them consists of the same available hard
1013 registers). */
1014 classes[j] = (enum reg_class) i;
1016 classes[n] = LIM_REG_CLASSES;
1018 /* Set up classes which can be used for allocnos as classes
1019 containing non-empty unique sets of allocatable hard
1020 registers. */
1021 ira_allocno_classes_num = 0;
1022 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1023 if (ira_class_hard_regs_num[cl] > 0)
1024 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1025 ira_important_classes_num = 0;
1026 /* Add non-allocno classes containing to non-empty set of
1027 allocatable hard regs. */
1028 for (cl = 0; cl < N_REG_CLASSES; cl++)
1029 if (ira_class_hard_regs_num[cl] > 0)
1031 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1032 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1033 set_p = false;
1034 for (j = 0; j < ira_allocno_classes_num; j++)
1036 COPY_HARD_REG_SET (temp_hard_regset2,
1037 reg_class_contents[ira_allocno_classes[j]]);
1038 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1039 if ((enum reg_class) cl == ira_allocno_classes[j])
1040 break;
1041 else if (hard_reg_set_subset_p (temp_hard_regset,
1042 temp_hard_regset2))
1043 set_p = true;
1045 if (set_p && j >= ira_allocno_classes_num)
1046 ira_important_classes[ira_important_classes_num++]
1047 = (enum reg_class) cl;
1049 /* Now add allocno classes to the important classes. */
1050 for (j = 0; j < ira_allocno_classes_num; j++)
1051 ira_important_classes[ira_important_classes_num++]
1052 = ira_allocno_classes[j];
1053 for (cl = 0; cl < N_REG_CLASSES; cl++)
1055 ira_reg_allocno_class_p[cl] = false;
1056 ira_reg_pressure_class_p[cl] = false;
1058 for (j = 0; j < ira_allocno_classes_num; j++)
1059 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1060 setup_pressure_classes ();
1061 setup_uniform_class_p ();
1064 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1065 given by array CLASSES of length CLASSES_NUM. The function is used
1066 make translation any reg class to an allocno class or to an
1067 pressure class. This translation is necessary for some
1068 calculations when we can use only allocno or pressure classes and
1069 such translation represents an approximate representation of all
1070 classes.
1072 The translation in case when allocatable hard register set of a
1073 given class is subset of allocatable hard register set of a class
1074 in CLASSES is pretty simple. We use smallest classes from CLASSES
1075 containing a given class. If allocatable hard register set of a
1076 given class is not a subset of any corresponding set of a class
1077 from CLASSES, we use the cheapest (with load/store point of view)
1078 class from CLASSES whose set intersects with given class set. */
1079 static void
1080 setup_class_translate_array (enum reg_class *class_translate,
1081 int classes_num, enum reg_class *classes)
1083 int cl, mode;
1084 enum reg_class aclass, best_class, *cl_ptr;
1085 int i, cost, min_cost, best_cost;
1087 for (cl = 0; cl < N_REG_CLASSES; cl++)
1088 class_translate[cl] = NO_REGS;
1090 for (i = 0; i < classes_num; i++)
1092 aclass = classes[i];
1093 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1094 (cl = *cl_ptr) != LIM_REG_CLASSES;
1095 cl_ptr++)
1096 if (class_translate[cl] == NO_REGS)
1097 class_translate[cl] = aclass;
1098 class_translate[aclass] = aclass;
1100 /* For classes which are not fully covered by one of given classes
1101 (in other words covered by more one given class), use the
1102 cheapest class. */
1103 for (cl = 0; cl < N_REG_CLASSES; cl++)
1105 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1106 continue;
1107 best_class = NO_REGS;
1108 best_cost = INT_MAX;
1109 for (i = 0; i < classes_num; i++)
1111 aclass = classes[i];
1112 COPY_HARD_REG_SET (temp_hard_regset,
1113 reg_class_contents[aclass]);
1114 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1115 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1116 if (! hard_reg_set_empty_p (temp_hard_regset))
1118 min_cost = INT_MAX;
1119 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1121 cost = (ira_memory_move_cost[mode][aclass][0]
1122 + ira_memory_move_cost[mode][aclass][1]);
1123 if (min_cost > cost)
1124 min_cost = cost;
1126 if (best_class == NO_REGS || best_cost > min_cost)
1128 best_class = aclass;
1129 best_cost = min_cost;
1133 class_translate[cl] = best_class;
1137 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1138 IRA_PRESSURE_CLASS_TRANSLATE. */
1139 static void
1140 setup_class_translate (void)
1142 setup_class_translate_array (ira_allocno_class_translate,
1143 ira_allocno_classes_num, ira_allocno_classes);
1144 setup_class_translate_array (ira_pressure_class_translate,
1145 ira_pressure_classes_num, ira_pressure_classes);
1148 /* Order numbers of allocno classes in original target allocno class
1149 array, -1 for non-allocno classes. */
1150 static int allocno_class_order[N_REG_CLASSES];
1152 /* The function used to sort the important classes. */
1153 static int
1154 comp_reg_classes_func (const void *v1p, const void *v2p)
1156 enum reg_class cl1 = *(const enum reg_class *) v1p;
1157 enum reg_class cl2 = *(const enum reg_class *) v2p;
1158 enum reg_class tcl1, tcl2;
1159 int diff;
1161 tcl1 = ira_allocno_class_translate[cl1];
1162 tcl2 = ira_allocno_class_translate[cl2];
1163 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1164 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1165 return diff;
1166 return (int) cl1 - (int) cl2;
1169 /* For correct work of function setup_reg_class_relation we need to
1170 reorder important classes according to the order of their allocno
1171 classes. It places important classes containing the same
1172 allocatable hard register set adjacent to each other and allocno
1173 class with the allocatable hard register set right after the other
1174 important classes with the same set.
1176 In example from comments of function
1177 setup_allocno_and_important_classes, it places LEGACY_REGS and
1178 GENERAL_REGS close to each other and GENERAL_REGS is after
1179 LEGACY_REGS. */
1180 static void
1181 reorder_important_classes (void)
1183 int i;
1185 for (i = 0; i < N_REG_CLASSES; i++)
1186 allocno_class_order[i] = -1;
1187 for (i = 0; i < ira_allocno_classes_num; i++)
1188 allocno_class_order[ira_allocno_classes[i]] = i;
1189 qsort (ira_important_classes, ira_important_classes_num,
1190 sizeof (enum reg_class), comp_reg_classes_func);
1191 for (i = 0; i < ira_important_classes_num; i++)
1192 ira_important_class_nums[ira_important_classes[i]] = i;
1195 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1196 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1197 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1198 please see corresponding comments in ira-int.h. */
1199 static void
1200 setup_reg_class_relations (void)
1202 int i, cl1, cl2, cl3;
1203 HARD_REG_SET intersection_set, union_set, temp_set2;
1204 bool important_class_p[N_REG_CLASSES];
1206 memset (important_class_p, 0, sizeof (important_class_p));
1207 for (i = 0; i < ira_important_classes_num; i++)
1208 important_class_p[ira_important_classes[i]] = true;
1209 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1211 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1212 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1214 ira_reg_classes_intersect_p[cl1][cl2] = false;
1215 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1216 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1217 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1218 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1219 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1220 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1221 if (hard_reg_set_empty_p (temp_hard_regset)
1222 && hard_reg_set_empty_p (temp_set2))
1224 /* The both classes have no allocatable hard registers
1225 -- take all class hard registers into account and use
1226 reg_class_subunion and reg_class_superunion. */
1227 for (i = 0;; i++)
1229 cl3 = reg_class_subclasses[cl1][i];
1230 if (cl3 == LIM_REG_CLASSES)
1231 break;
1232 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1233 (enum reg_class) cl3))
1234 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1236 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1237 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1238 continue;
1240 ira_reg_classes_intersect_p[cl1][cl2]
1241 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1242 if (important_class_p[cl1] && important_class_p[cl2]
1243 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1245 /* CL1 and CL2 are important classes and CL1 allocatable
1246 hard register set is inside of CL2 allocatable hard
1247 registers -- make CL1 a superset of CL2. */
1248 enum reg_class *p;
1250 p = &ira_reg_class_super_classes[cl1][0];
1251 while (*p != LIM_REG_CLASSES)
1252 p++;
1253 *p++ = (enum reg_class) cl2;
1254 *p = LIM_REG_CLASSES;
1256 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1257 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1258 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1259 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1260 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1261 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1262 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1263 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1264 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1266 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1267 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1268 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1270 /* CL3 allocatable hard register set is inside of
1271 intersection of allocatable hard register sets
1272 of CL1 and CL2. */
1273 if (important_class_p[cl3])
1275 COPY_HARD_REG_SET
1276 (temp_set2,
1277 reg_class_contents
1278 [(int) ira_reg_class_intersect[cl1][cl2]]);
1279 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1280 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1281 /* If the allocatable hard register sets are
1282 the same, prefer GENERAL_REGS or the
1283 smallest class for debugging
1284 purposes. */
1285 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1286 && (cl3 == GENERAL_REGS
1287 || ((ira_reg_class_intersect[cl1][cl2]
1288 != GENERAL_REGS)
1289 && hard_reg_set_subset_p
1290 (reg_class_contents[cl3],
1291 reg_class_contents
1292 [(int)
1293 ira_reg_class_intersect[cl1][cl2]])))))
1294 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1296 COPY_HARD_REG_SET
1297 (temp_set2,
1298 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1299 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1300 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1301 /* Ignore unavailable hard registers and prefer
1302 smallest class for debugging purposes. */
1303 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1304 && hard_reg_set_subset_p
1305 (reg_class_contents[cl3],
1306 reg_class_contents
1307 [(int) ira_reg_class_subset[cl1][cl2]])))
1308 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1310 if (important_class_p[cl3]
1311 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1313 /* CL3 allocatable hard register set is inside of
1314 union of allocatable hard register sets of CL1
1315 and CL2. */
1316 COPY_HARD_REG_SET
1317 (temp_set2,
1318 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1319 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1320 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1321 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1323 && (! hard_reg_set_equal_p (temp_set2,
1324 temp_hard_regset)
1325 || cl3 == GENERAL_REGS
1326 /* If the allocatable hard register sets are the
1327 same, prefer GENERAL_REGS or the smallest
1328 class for debugging purposes. */
1329 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1330 && hard_reg_set_subset_p
1331 (reg_class_contents[cl3],
1332 reg_class_contents
1333 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1334 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1336 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1338 /* CL3 allocatable hard register set contains union
1339 of allocatable hard register sets of CL1 and
1340 CL2. */
1341 COPY_HARD_REG_SET
1342 (temp_set2,
1343 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1344 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1345 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1346 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1348 && (! hard_reg_set_equal_p (temp_set2,
1349 temp_hard_regset)
1350 || cl3 == GENERAL_REGS
1351 /* If the allocatable hard register sets are the
1352 same, prefer GENERAL_REGS or the smallest
1353 class for debugging purposes. */
1354 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1355 && hard_reg_set_subset_p
1356 (reg_class_contents[cl3],
1357 reg_class_contents
1358 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1359 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1366 /* Output all uniform and important classes into file F. */
1367 static void
1368 print_uniform_and_important_classes (FILE *f)
1370 int i, cl;
1372 fprintf (f, "Uniform classes:\n");
1373 for (cl = 0; cl < N_REG_CLASSES; cl++)
1374 if (ira_uniform_class_p[cl])
1375 fprintf (f, " %s", reg_class_names[cl]);
1376 fprintf (f, "\nImportant classes:\n");
1377 for (i = 0; i < ira_important_classes_num; i++)
1378 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1379 fprintf (f, "\n");
1382 /* Output all possible allocno or pressure classes and their
1383 translation map into file F. */
1384 static void
1385 print_translated_classes (FILE *f, bool pressure_p)
1387 int classes_num = (pressure_p
1388 ? ira_pressure_classes_num : ira_allocno_classes_num);
1389 enum reg_class *classes = (pressure_p
1390 ? ira_pressure_classes : ira_allocno_classes);
1391 enum reg_class *class_translate = (pressure_p
1392 ? ira_pressure_class_translate
1393 : ira_allocno_class_translate);
1394 int i;
1396 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1397 for (i = 0; i < classes_num; i++)
1398 fprintf (f, " %s", reg_class_names[classes[i]]);
1399 fprintf (f, "\nClass translation:\n");
1400 for (i = 0; i < N_REG_CLASSES; i++)
1401 fprintf (f, " %s -> %s\n", reg_class_names[i],
1402 reg_class_names[class_translate[i]]);
1405 /* Output all possible allocno and translation classes and the
1406 translation maps into stderr. */
1407 void
1408 ira_debug_allocno_classes (void)
1410 print_uniform_and_important_classes (stderr);
1411 print_translated_classes (stderr, false);
1412 print_translated_classes (stderr, true);
1415 /* Set up different arrays concerning class subsets, allocno and
1416 important classes. */
1417 static void
1418 find_reg_classes (void)
1420 setup_allocno_and_important_classes ();
1421 setup_class_translate ();
1422 reorder_important_classes ();
1423 setup_reg_class_relations ();
1428 /* Set up the array above. */
1429 static void
1430 setup_hard_regno_aclass (void)
1432 int i;
1434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1436 #if 1
1437 ira_hard_regno_allocno_class[i]
1438 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1439 ? NO_REGS
1440 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1441 #else
1442 int j;
1443 enum reg_class cl;
1444 ira_hard_regno_allocno_class[i] = NO_REGS;
1445 for (j = 0; j < ira_allocno_classes_num; j++)
1447 cl = ira_allocno_classes[j];
1448 if (ira_class_hard_reg_index[cl][i] >= 0)
1450 ira_hard_regno_allocno_class[i] = cl;
1451 break;
1454 #endif
1460 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1461 static void
1462 setup_reg_class_nregs (void)
1464 int i, cl, cl2, m;
1466 for (m = 0; m < MAX_MACHINE_MODE; m++)
1468 for (cl = 0; cl < N_REG_CLASSES; cl++)
1469 ira_reg_class_max_nregs[cl][m]
1470 = ira_reg_class_min_nregs[cl][m]
1471 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1472 for (cl = 0; cl < N_REG_CLASSES; cl++)
1473 for (i = 0;
1474 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1475 i++)
1476 if (ira_reg_class_min_nregs[cl2][m]
1477 < ira_reg_class_min_nregs[cl][m])
1478 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1484 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1485 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1486 static void
1487 setup_prohibited_class_mode_regs (void)
1489 int j, k, hard_regno, cl, last_hard_regno, count;
1491 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1493 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1494 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1495 for (j = 0; j < NUM_MACHINE_MODES; j++)
1497 count = 0;
1498 last_hard_regno = -1;
1499 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1500 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1502 hard_regno = ira_class_hard_regs[cl][k];
1503 if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1504 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1505 hard_regno);
1506 else if (in_hard_reg_set_p (temp_hard_regset,
1507 (machine_mode) j, hard_regno))
1509 last_hard_regno = hard_regno;
1510 count++;
1513 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1518 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1519 spanning from one register pressure class to another one. It is
1520 called after defining the pressure classes. */
1521 static void
1522 clarify_prohibited_class_mode_regs (void)
1524 int j, k, hard_regno, cl, pclass, nregs;
1526 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1527 for (j = 0; j < NUM_MACHINE_MODES; j++)
1529 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1530 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1532 hard_regno = ira_class_hard_regs[cl][k];
1533 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1534 continue;
1535 nregs = hard_regno_nregs[hard_regno][j];
1536 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1538 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1539 hard_regno);
1540 continue;
1542 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1543 for (nregs-- ;nregs >= 0; nregs--)
1544 if (((enum reg_class) pclass
1545 != ira_pressure_class_translate[REGNO_REG_CLASS
1546 (hard_regno + nregs)]))
1548 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1549 hard_regno);
1550 break;
1552 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1553 hard_regno))
1554 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1555 (machine_mode) j, hard_regno);
1560 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1561 and IRA_MAY_MOVE_OUT_COST for MODE. */
1562 void
1563 ira_init_register_move_cost (machine_mode mode)
1565 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1566 bool all_match = true;
1567 unsigned int cl1, cl2;
1569 ira_assert (ira_register_move_cost[mode] == NULL
1570 && ira_may_move_in_cost[mode] == NULL
1571 && ira_may_move_out_cost[mode] == NULL);
1572 ira_assert (have_regs_of_mode[mode]);
1573 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1574 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1576 int cost;
1577 if (!contains_reg_of_mode[cl1][mode]
1578 || !contains_reg_of_mode[cl2][mode])
1580 if ((ira_reg_class_max_nregs[cl1][mode]
1581 > ira_class_hard_regs_num[cl1])
1582 || (ira_reg_class_max_nregs[cl2][mode]
1583 > ira_class_hard_regs_num[cl2]))
1584 cost = 65535;
1585 else
1586 cost = (ira_memory_move_cost[mode][cl1][0]
1587 + ira_memory_move_cost[mode][cl2][1]) * 2;
1589 else
1591 cost = register_move_cost (mode, (enum reg_class) cl1,
1592 (enum reg_class) cl2);
1593 ira_assert (cost < 65535);
1595 all_match &= (last_move_cost[cl1][cl2] == cost);
1596 last_move_cost[cl1][cl2] = cost;
1598 if (all_match && last_mode_for_init_move_cost != -1)
1600 ira_register_move_cost[mode]
1601 = ira_register_move_cost[last_mode_for_init_move_cost];
1602 ira_may_move_in_cost[mode]
1603 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1604 ira_may_move_out_cost[mode]
1605 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1606 return;
1608 last_mode_for_init_move_cost = mode;
1609 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1610 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1611 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1612 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1613 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1615 int cost;
1616 enum reg_class *p1, *p2;
1618 if (last_move_cost[cl1][cl2] == 65535)
1620 ira_register_move_cost[mode][cl1][cl2] = 65535;
1621 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1622 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1624 else
1626 cost = last_move_cost[cl1][cl2];
1628 for (p2 = &reg_class_subclasses[cl2][0];
1629 *p2 != LIM_REG_CLASSES; p2++)
1630 if (ira_class_hard_regs_num[*p2] > 0
1631 && (ira_reg_class_max_nregs[*p2][mode]
1632 <= ira_class_hard_regs_num[*p2]))
1633 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1635 for (p1 = &reg_class_subclasses[cl1][0];
1636 *p1 != LIM_REG_CLASSES; p1++)
1637 if (ira_class_hard_regs_num[*p1] > 0
1638 && (ira_reg_class_max_nregs[*p1][mode]
1639 <= ira_class_hard_regs_num[*p1]))
1640 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1642 ira_assert (cost <= 65535);
1643 ira_register_move_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl1][cl2])
1646 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1650 if (ira_class_subset_p[cl2][cl1])
1651 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1652 else
1653 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1660 /* This is called once during compiler work. It sets up
1661 different arrays whose values don't depend on the compiled
1662 function. */
1663 void
1664 ira_init_once (void)
1666 ira_init_costs_once ();
1667 lra_init_once ();
1669 ira_use_lra_p = targetm.lra_p ();
1672 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1673 ira_may_move_out_cost for each mode. */
1674 void
1675 target_ira_int::free_register_move_costs (void)
1677 int mode, i;
1679 /* Reset move_cost and friends, making sure we only free shared
1680 table entries once. */
1681 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1682 if (x_ira_register_move_cost[mode])
1684 for (i = 0;
1685 i < mode && (x_ira_register_move_cost[i]
1686 != x_ira_register_move_cost[mode]);
1687 i++)
1689 if (i == mode)
1691 free (x_ira_register_move_cost[mode]);
1692 free (x_ira_may_move_in_cost[mode]);
1693 free (x_ira_may_move_out_cost[mode]);
1696 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1697 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1698 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1699 last_mode_for_init_move_cost = -1;
1702 target_ira_int::~target_ira_int ()
1704 free_ira_costs ();
1705 free_register_move_costs ();
1708 /* This is called every time when register related information is
1709 changed. */
1710 void
1711 ira_init (void)
1713 this_target_ira_int->free_register_move_costs ();
1714 setup_reg_mode_hard_regset ();
1715 setup_alloc_regs (flag_omit_frame_pointer != 0);
1716 setup_class_subset_and_memory_move_costs ();
1717 setup_reg_class_nregs ();
1718 setup_prohibited_class_mode_regs ();
1719 find_reg_classes ();
1720 clarify_prohibited_class_mode_regs ();
1721 setup_hard_regno_aclass ();
1722 ira_init_costs ();
1726 #define ira_prohibited_mode_move_regs_initialized_p \
1727 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1729 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1730 static void
1731 setup_prohibited_mode_move_regs (void)
1733 int i, j;
1734 rtx test_reg1, test_reg2, move_pat;
1735 rtx_insn *move_insn;
1737 if (ira_prohibited_mode_move_regs_initialized_p)
1738 return;
1739 ira_prohibited_mode_move_regs_initialized_p = true;
1740 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1741 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1742 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1743 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1744 for (i = 0; i < NUM_MACHINE_MODES; i++)
1746 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1747 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1749 if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1750 continue;
1751 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1752 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1753 INSN_CODE (move_insn) = -1;
1754 recog_memoized (move_insn);
1755 if (INSN_CODE (move_insn) < 0)
1756 continue;
1757 extract_insn (move_insn);
1758 /* We don't know whether the move will be in code that is optimized
1759 for size or speed, so consider all enabled alternatives. */
1760 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1761 continue;
1762 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1769 /* Setup possible alternatives in ALTS for INSN. */
1770 void
1771 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1773 /* MAP nalt * nop -> start of constraints for given operand and
1774 alternative. */
1775 static vec<const char *> insn_constraints;
1776 int nop, nalt;
1777 bool curr_swapped;
1778 const char *p;
1779 int commutative = -1;
1781 extract_insn (insn);
1782 alternative_mask preferred = get_preferred_alternatives (insn);
1783 CLEAR_HARD_REG_SET (alts);
1784 insn_constraints.release ();
1785 insn_constraints.safe_grow_cleared (recog_data.n_operands
1786 * recog_data.n_alternatives + 1);
1787 /* Check that the hard reg set is enough for holding all
1788 alternatives. It is hard to imagine the situation when the
1789 assertion is wrong. */
1790 ira_assert (recog_data.n_alternatives
1791 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1792 FIRST_PSEUDO_REGISTER));
1793 for (curr_swapped = false;; curr_swapped = true)
1795 /* Calculate some data common for all alternatives to speed up the
1796 function. */
1797 for (nop = 0; nop < recog_data.n_operands; nop++)
1799 for (nalt = 0, p = recog_data.constraints[nop];
1800 nalt < recog_data.n_alternatives;
1801 nalt++)
1803 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1804 while (*p && *p != ',')
1806 /* We only support one commutative marker, the first
1807 one. We already set commutative above. */
1808 if (*p == '%' && commutative < 0)
1809 commutative = nop;
1810 p++;
1812 if (*p)
1813 p++;
1816 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1818 if (!TEST_BIT (preferred, nalt)
1819 || TEST_HARD_REG_BIT (alts, nalt))
1820 continue;
1822 for (nop = 0; nop < recog_data.n_operands; nop++)
1824 int c, len;
1826 rtx op = recog_data.operand[nop];
1827 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1828 if (*p == 0 || *p == ',')
1829 continue;
1832 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1834 case '#':
1835 case ',':
1836 c = '\0';
1837 /* FALLTHRU */
1838 case '\0':
1839 len = 0;
1840 break;
1842 case '%':
1843 /* The commutative modifier is handled above. */
1844 break;
1846 case '0': case '1': case '2': case '3': case '4':
1847 case '5': case '6': case '7': case '8': case '9':
1848 goto op_success;
1849 break;
1851 case 'g':
1852 goto op_success;
1853 break;
1855 default:
1857 enum constraint_num cn = lookup_constraint (p);
1858 switch (get_constraint_type (cn))
1860 case CT_REGISTER:
1861 if (reg_class_for_constraint (cn) != NO_REGS)
1862 goto op_success;
1863 break;
1865 case CT_CONST_INT:
1866 if (CONST_INT_P (op)
1867 && (insn_const_int_ok_for_constraint
1868 (INTVAL (op), cn)))
1869 goto op_success;
1870 break;
1872 case CT_ADDRESS:
1873 case CT_MEMORY:
1874 case CT_SPECIAL_MEMORY:
1875 goto op_success;
1877 case CT_FIXED_FORM:
1878 if (constraint_satisfied_p (op, cn))
1879 goto op_success;
1880 break;
1882 break;
1885 while (p += len, c);
1886 break;
1887 op_success:
1890 if (nop >= recog_data.n_operands)
1891 SET_HARD_REG_BIT (alts, nalt);
1893 if (commutative < 0)
1894 break;
1895 /* Swap forth and back to avoid changing recog_data. */
1896 std::swap (recog_data.operand[commutative],
1897 recog_data.operand[commutative + 1]);
1898 if (curr_swapped)
1899 break;
1903 /* Return the number of the output non-early clobber operand which
1904 should be the same in any case as operand with number OP_NUM (or
1905 negative value if there is no such operand). The function takes
1906 only really possible alternatives into consideration. */
1908 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1910 int curr_alt, c, original, dup;
1911 bool ignore_p, use_commut_op_p;
1912 const char *str;
1914 if (op_num < 0 || recog_data.n_alternatives == 0)
1915 return -1;
1916 /* We should find duplications only for input operands. */
1917 if (recog_data.operand_type[op_num] != OP_IN)
1918 return -1;
1919 str = recog_data.constraints[op_num];
1920 use_commut_op_p = false;
1921 for (;;)
1923 rtx op = recog_data.operand[op_num];
1925 for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1926 original = -1;;)
1928 c = *str;
1929 if (c == '\0')
1930 break;
1931 if (c == '#')
1932 ignore_p = true;
1933 else if (c == ',')
1935 curr_alt++;
1936 ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1938 else if (! ignore_p)
1939 switch (c)
1941 case 'g':
1942 goto fail;
1943 default:
1945 enum constraint_num cn = lookup_constraint (str);
1946 enum reg_class cl = reg_class_for_constraint (cn);
1947 if (cl != NO_REGS
1948 && !targetm.class_likely_spilled_p (cl))
1949 goto fail;
1950 if (constraint_satisfied_p (op, cn))
1951 goto fail;
1952 break;
1955 case '0': case '1': case '2': case '3': case '4':
1956 case '5': case '6': case '7': case '8': case '9':
1957 if (original != -1 && original != c)
1958 goto fail;
1959 original = c;
1960 break;
1962 str += CONSTRAINT_LEN (c, str);
1964 if (original == -1)
1965 goto fail;
1966 dup = -1;
1967 for (ignore_p = false, str = recog_data.constraints[original - '0'];
1968 *str != 0;
1969 str++)
1970 if (ignore_p)
1972 if (*str == ',')
1973 ignore_p = false;
1975 else if (*str == '#')
1976 ignore_p = true;
1977 else if (! ignore_p)
1979 if (*str == '=')
1980 dup = original - '0';
1981 /* It is better ignore an alternative with early clobber. */
1982 else if (*str == '&')
1983 goto fail;
1985 if (dup >= 0)
1986 return dup;
1987 fail:
1988 if (use_commut_op_p)
1989 break;
1990 use_commut_op_p = true;
1991 if (recog_data.constraints[op_num][0] == '%')
1992 str = recog_data.constraints[op_num + 1];
1993 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1994 str = recog_data.constraints[op_num - 1];
1995 else
1996 break;
1998 return -1;
2003 /* Search forward to see if the source register of a copy insn dies
2004 before either it or the destination register is modified, but don't
2005 scan past the end of the basic block. If so, we can replace the
2006 source with the destination and let the source die in the copy
2007 insn.
2009 This will reduce the number of registers live in that range and may
2010 enable the destination and the source coalescing, thus often saving
2011 one register in addition to a register-register copy. */
2013 static void
2014 decrease_live_ranges_number (void)
2016 basic_block bb;
2017 rtx_insn *insn;
2018 rtx set, src, dest, dest_death, note;
2019 rtx_insn *p, *q;
2020 int sregno, dregno;
2022 if (! flag_expensive_optimizations)
2023 return;
2025 if (ira_dump_file)
2026 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2028 FOR_EACH_BB_FN (bb, cfun)
2029 FOR_BB_INSNS (bb, insn)
2031 set = single_set (insn);
2032 if (! set)
2033 continue;
2034 src = SET_SRC (set);
2035 dest = SET_DEST (set);
2036 if (! REG_P (src) || ! REG_P (dest)
2037 || find_reg_note (insn, REG_DEAD, src))
2038 continue;
2039 sregno = REGNO (src);
2040 dregno = REGNO (dest);
2042 /* We don't want to mess with hard regs if register classes
2043 are small. */
2044 if (sregno == dregno
2045 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2046 && (sregno < FIRST_PSEUDO_REGISTER
2047 || dregno < FIRST_PSEUDO_REGISTER))
2048 /* We don't see all updates to SP if they are in an
2049 auto-inc memory reference, so we must disallow this
2050 optimization on them. */
2051 || sregno == STACK_POINTER_REGNUM
2052 || dregno == STACK_POINTER_REGNUM)
2053 continue;
2055 dest_death = NULL_RTX;
2057 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2059 if (! INSN_P (p))
2060 continue;
2061 if (BLOCK_FOR_INSN (p) != bb)
2062 break;
2064 if (reg_set_p (src, p) || reg_set_p (dest, p)
2065 /* If SRC is an asm-declared register, it must not be
2066 replaced in any asm. Unfortunately, the REG_EXPR
2067 tree for the asm variable may be absent in the SRC
2068 rtx, so we can't check the actual register
2069 declaration easily (the asm operand will have it,
2070 though). To avoid complicating the test for a rare
2071 case, we just don't perform register replacement
2072 for a hard reg mentioned in an asm. */
2073 || (sregno < FIRST_PSEUDO_REGISTER
2074 && asm_noperands (PATTERN (p)) >= 0
2075 && reg_overlap_mentioned_p (src, PATTERN (p)))
2076 /* Don't change hard registers used by a call. */
2077 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2078 && find_reg_fusage (p, USE, src))
2079 /* Don't change a USE of a register. */
2080 || (GET_CODE (PATTERN (p)) == USE
2081 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2082 break;
2084 /* See if all of SRC dies in P. This test is slightly
2085 more conservative than it needs to be. */
2086 if ((note = find_regno_note (p, REG_DEAD, sregno))
2087 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2089 int failed = 0;
2091 /* We can do the optimization. Scan forward from INSN
2092 again, replacing regs as we go. Set FAILED if a
2093 replacement can't be done. In that case, we can't
2094 move the death note for SRC. This should be
2095 rare. */
2097 /* Set to stop at next insn. */
2098 for (q = next_real_insn (insn);
2099 q != next_real_insn (p);
2100 q = next_real_insn (q))
2102 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2104 /* If SRC is a hard register, we might miss
2105 some overlapping registers with
2106 validate_replace_rtx, so we would have to
2107 undo it. We can't if DEST is present in
2108 the insn, so fail in that combination of
2109 cases. */
2110 if (sregno < FIRST_PSEUDO_REGISTER
2111 && reg_mentioned_p (dest, PATTERN (q)))
2112 failed = 1;
2114 /* Attempt to replace all uses. */
2115 else if (!validate_replace_rtx (src, dest, q))
2116 failed = 1;
2118 /* If this succeeded, but some part of the
2119 register is still present, undo the
2120 replacement. */
2121 else if (sregno < FIRST_PSEUDO_REGISTER
2122 && reg_overlap_mentioned_p (src, PATTERN (q)))
2124 validate_replace_rtx (dest, src, q);
2125 failed = 1;
2129 /* If DEST dies here, remove the death note and
2130 save it for later. Make sure ALL of DEST dies
2131 here; again, this is overly conservative. */
2132 if (! dest_death
2133 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2135 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2136 remove_note (q, dest_death);
2137 else
2139 failed = 1;
2140 dest_death = 0;
2145 if (! failed)
2147 /* Move death note of SRC from P to INSN. */
2148 remove_note (p, note);
2149 XEXP (note, 1) = REG_NOTES (insn);
2150 REG_NOTES (insn) = note;
2153 /* DEST is also dead if INSN has a REG_UNUSED note for
2154 DEST. */
2155 if (! dest_death
2156 && (dest_death
2157 = find_regno_note (insn, REG_UNUSED, dregno)))
2159 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2160 remove_note (insn, dest_death);
2163 /* Put death note of DEST on P if we saw it die. */
2164 if (dest_death)
2166 XEXP (dest_death, 1) = REG_NOTES (p);
2167 REG_NOTES (p) = dest_death;
2169 break;
2172 /* If SRC is a hard register which is set or killed in
2173 some other way, we can't do this optimization. */
2174 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2175 break;
2182 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2183 static bool
2184 ira_bad_reload_regno_1 (int regno, rtx x)
2186 int x_regno, n, i;
2187 ira_allocno_t a;
2188 enum reg_class pref;
2190 /* We only deal with pseudo regs. */
2191 if (! x || GET_CODE (x) != REG)
2192 return false;
2194 x_regno = REGNO (x);
2195 if (x_regno < FIRST_PSEUDO_REGISTER)
2196 return false;
2198 /* If the pseudo prefers REGNO explicitly, then do not consider
2199 REGNO a bad spill choice. */
2200 pref = reg_preferred_class (x_regno);
2201 if (reg_class_size[pref] == 1)
2202 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2204 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2205 poor choice for a reload regno. */
2206 a = ira_regno_allocno_map[x_regno];
2207 n = ALLOCNO_NUM_OBJECTS (a);
2208 for (i = 0; i < n; i++)
2210 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2211 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2212 return true;
2214 return false;
2217 /* Return nonzero if REGNO is a particularly bad choice for reloading
2218 IN or OUT. */
2219 bool
2220 ira_bad_reload_regno (int regno, rtx in, rtx out)
2222 return (ira_bad_reload_regno_1 (regno, in)
2223 || ira_bad_reload_regno_1 (regno, out));
2226 /* Add register clobbers from asm statements. */
2227 static void
2228 compute_regs_asm_clobbered (void)
2230 basic_block bb;
2232 FOR_EACH_BB_FN (bb, cfun)
2234 rtx_insn *insn;
2235 FOR_BB_INSNS_REVERSE (bb, insn)
2237 df_ref def;
2239 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2240 FOR_EACH_INSN_DEF (def, insn)
2242 unsigned int dregno = DF_REF_REGNO (def);
2243 if (HARD_REGISTER_NUM_P (dregno))
2244 add_to_hard_reg_set (&crtl->asm_clobbers,
2245 GET_MODE (DF_REF_REAL_REG (def)),
2246 dregno);
2253 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2254 REGS_EVER_LIVE. */
2255 void
2256 ira_setup_eliminable_regset (void)
2258 int i;
2259 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2261 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2262 sp for alloca. So we can't eliminate the frame pointer in that
2263 case. At some point, we should improve this by emitting the
2264 sp-adjusting insns for this case. */
2265 frame_pointer_needed
2266 = (! flag_omit_frame_pointer
2267 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2268 /* We need the frame pointer to catch stack overflow exceptions if
2269 the stack pointer is moving (as for the alloca case just above). */
2270 || (STACK_CHECK_MOVING_SP
2271 && flag_stack_check
2272 && flag_exceptions
2273 && cfun->can_throw_non_call_exceptions)
2274 || crtl->accesses_prior_frames
2275 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2276 /* We need a frame pointer for all Cilk Plus functions that use
2277 Cilk keywords. */
2278 || (flag_cilkplus && cfun->is_cilk_function)
2279 || targetm.frame_pointer_required ());
2281 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2282 RTL is very small. So if we use frame pointer for RA and RTL
2283 actually prevents this, we will spill pseudos assigned to the
2284 frame pointer in LRA. */
2286 if (frame_pointer_needed)
2287 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2289 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2290 CLEAR_HARD_REG_SET (eliminable_regset);
2292 compute_regs_asm_clobbered ();
2294 /* Build the regset of all eliminable registers and show we can't
2295 use those that we already know won't be eliminated. */
2296 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2298 bool cannot_elim
2299 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2300 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2302 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2304 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2306 if (cannot_elim)
2307 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2309 else if (cannot_elim)
2310 error ("%s cannot be used in asm here",
2311 reg_names[eliminables[i].from]);
2312 else
2313 df_set_regs_ever_live (eliminables[i].from, true);
2315 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2317 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2319 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2320 if (frame_pointer_needed)
2321 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2323 else if (frame_pointer_needed)
2324 error ("%s cannot be used in asm here",
2325 reg_names[HARD_FRAME_POINTER_REGNUM]);
2326 else
2327 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2333 /* Vector of substitutions of register numbers,
2334 used to map pseudo regs into hardware regs.
2335 This is set up as a result of register allocation.
2336 Element N is the hard reg assigned to pseudo reg N,
2337 or is -1 if no hard reg was assigned.
2338 If N is a hard reg number, element N is N. */
2339 short *reg_renumber;
2341 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2342 the allocation found by IRA. */
2343 static void
2344 setup_reg_renumber (void)
2346 int regno, hard_regno;
2347 ira_allocno_t a;
2348 ira_allocno_iterator ai;
2350 caller_save_needed = 0;
2351 FOR_EACH_ALLOCNO (a, ai)
2353 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2354 continue;
2355 /* There are no caps at this point. */
2356 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2357 if (! ALLOCNO_ASSIGNED_P (a))
2358 /* It can happen if A is not referenced but partially anticipated
2359 somewhere in a region. */
2360 ALLOCNO_ASSIGNED_P (a) = true;
2361 ira_free_allocno_updated_costs (a);
2362 hard_regno = ALLOCNO_HARD_REGNO (a);
2363 regno = ALLOCNO_REGNO (a);
2364 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2365 if (hard_regno >= 0)
2367 int i, nwords;
2368 enum reg_class pclass;
2369 ira_object_t obj;
2371 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2372 nwords = ALLOCNO_NUM_OBJECTS (a);
2373 for (i = 0; i < nwords; i++)
2375 obj = ALLOCNO_OBJECT (a, i);
2376 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2377 reg_class_contents[pclass]);
2379 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2380 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2381 call_used_reg_set))
2383 ira_assert (!optimize || flag_caller_saves
2384 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2385 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2386 || regno >= ira_reg_equiv_len
2387 || ira_equiv_no_lvalue_p (regno));
2388 caller_save_needed = 1;
2394 /* Set up allocno assignment flags for further allocation
2395 improvements. */
2396 static void
2397 setup_allocno_assignment_flags (void)
2399 int hard_regno;
2400 ira_allocno_t a;
2401 ira_allocno_iterator ai;
2403 FOR_EACH_ALLOCNO (a, ai)
2405 if (! ALLOCNO_ASSIGNED_P (a))
2406 /* It can happen if A is not referenced but partially anticipated
2407 somewhere in a region. */
2408 ira_free_allocno_updated_costs (a);
2409 hard_regno = ALLOCNO_HARD_REGNO (a);
2410 /* Don't assign hard registers to allocnos which are destination
2411 of removed store at the end of loop. It has no sense to keep
2412 the same value in different hard registers. It is also
2413 impossible to assign hard registers correctly to such
2414 allocnos because the cost info and info about intersected
2415 calls are incorrect for them. */
2416 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2417 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2418 || (ALLOCNO_MEMORY_COST (a)
2419 - ALLOCNO_CLASS_COST (a)) < 0);
2420 ira_assert
2421 (hard_regno < 0
2422 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2423 reg_class_contents[ALLOCNO_CLASS (a)]));
2427 /* Evaluate overall allocation cost and the costs for using hard
2428 registers and memory for allocnos. */
2429 static void
2430 calculate_allocation_cost (void)
2432 int hard_regno, cost;
2433 ira_allocno_t a;
2434 ira_allocno_iterator ai;
2436 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2437 FOR_EACH_ALLOCNO (a, ai)
2439 hard_regno = ALLOCNO_HARD_REGNO (a);
2440 ira_assert (hard_regno < 0
2441 || (ira_hard_reg_in_set_p
2442 (hard_regno, ALLOCNO_MODE (a),
2443 reg_class_contents[ALLOCNO_CLASS (a)])));
2444 if (hard_regno < 0)
2446 cost = ALLOCNO_MEMORY_COST (a);
2447 ira_mem_cost += cost;
2449 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2451 cost = (ALLOCNO_HARD_REG_COSTS (a)
2452 [ira_class_hard_reg_index
2453 [ALLOCNO_CLASS (a)][hard_regno]]);
2454 ira_reg_cost += cost;
2456 else
2458 cost = ALLOCNO_CLASS_COST (a);
2459 ira_reg_cost += cost;
2461 ira_overall_cost += cost;
2464 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2466 fprintf (ira_dump_file,
2467 "+++Costs: overall %" PRId64
2468 ", reg %" PRId64
2469 ", mem %" PRId64
2470 ", ld %" PRId64
2471 ", st %" PRId64
2472 ", move %" PRId64,
2473 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2474 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2475 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2476 ira_move_loops_num, ira_additional_jumps_num);
2481 #ifdef ENABLE_IRA_CHECKING
2482 /* Check the correctness of the allocation. We do need this because
2483 of complicated code to transform more one region internal
2484 representation into one region representation. */
2485 static void
2486 check_allocation (void)
2488 ira_allocno_t a;
2489 int hard_regno, nregs, conflict_nregs;
2490 ira_allocno_iterator ai;
2492 FOR_EACH_ALLOCNO (a, ai)
2494 int n = ALLOCNO_NUM_OBJECTS (a);
2495 int i;
2497 if (ALLOCNO_CAP_MEMBER (a) != NULL
2498 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2499 continue;
2500 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2501 if (nregs == 1)
2502 /* We allocated a single hard register. */
2503 n = 1;
2504 else if (n > 1)
2505 /* We allocated multiple hard registers, and we will test
2506 conflicts in a granularity of single hard regs. */
2507 nregs = 1;
2509 for (i = 0; i < n; i++)
2511 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2512 ira_object_t conflict_obj;
2513 ira_object_conflict_iterator oci;
2514 int this_regno = hard_regno;
2515 if (n > 1)
2517 if (REG_WORDS_BIG_ENDIAN)
2518 this_regno += n - i - 1;
2519 else
2520 this_regno += i;
2522 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2524 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2525 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2526 if (conflict_hard_regno < 0)
2527 continue;
2529 conflict_nregs
2530 = (hard_regno_nregs
2531 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2533 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2534 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2536 if (REG_WORDS_BIG_ENDIAN)
2537 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2538 - OBJECT_SUBWORD (conflict_obj) - 1);
2539 else
2540 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2541 conflict_nregs = 1;
2544 if ((conflict_hard_regno <= this_regno
2545 && this_regno < conflict_hard_regno + conflict_nregs)
2546 || (this_regno <= conflict_hard_regno
2547 && conflict_hard_regno < this_regno + nregs))
2549 fprintf (stderr, "bad allocation for %d and %d\n",
2550 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2551 gcc_unreachable ();
2557 #endif
2559 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2560 be already calculated. */
2561 static void
2562 setup_reg_equiv_init (void)
2564 int i;
2565 int max_regno = max_reg_num ();
2567 for (i = 0; i < max_regno; i++)
2568 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2571 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2572 are insns which were generated for such movement. It is assumed
2573 that FROM_REGNO and TO_REGNO always have the same value at the
2574 point of any move containing such registers. This function is used
2575 to update equiv info for register shuffles on the region borders
2576 and for caller save/restore insns. */
2577 void
2578 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2580 rtx_insn *insn;
2581 rtx x, note;
2583 if (! ira_reg_equiv[from_regno].defined_p
2584 && (! ira_reg_equiv[to_regno].defined_p
2585 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2586 && ! MEM_READONLY_P (x))))
2587 return;
2588 insn = insns;
2589 if (NEXT_INSN (insn) != NULL_RTX)
2591 if (! ira_reg_equiv[to_regno].defined_p)
2593 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2594 return;
2596 ira_reg_equiv[to_regno].defined_p = false;
2597 ira_reg_equiv[to_regno].memory
2598 = ira_reg_equiv[to_regno].constant
2599 = ira_reg_equiv[to_regno].invariant
2600 = ira_reg_equiv[to_regno].init_insns = NULL;
2601 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2602 fprintf (ira_dump_file,
2603 " Invalidating equiv info for reg %d\n", to_regno);
2604 return;
2606 /* It is possible that FROM_REGNO still has no equivalence because
2607 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2608 insn was not processed yet. */
2609 if (ira_reg_equiv[from_regno].defined_p)
2611 ira_reg_equiv[to_regno].defined_p = true;
2612 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2614 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2615 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2616 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2617 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2618 ira_reg_equiv[to_regno].memory = x;
2619 if (! MEM_READONLY_P (x))
2620 /* We don't add the insn to insn init list because memory
2621 equivalence is just to say what memory is better to use
2622 when the pseudo is spilled. */
2623 return;
2625 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2627 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2628 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2629 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2630 ira_reg_equiv[to_regno].constant = x;
2632 else
2634 x = ira_reg_equiv[from_regno].invariant;
2635 ira_assert (x != NULL_RTX);
2636 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2637 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2638 ira_reg_equiv[to_regno].invariant = x;
2640 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2642 note = set_unique_reg_note (insn, REG_EQUIV, x);
2643 gcc_assert (note != NULL_RTX);
2644 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2646 fprintf (ira_dump_file,
2647 " Adding equiv note to insn %u for reg %d ",
2648 INSN_UID (insn), to_regno);
2649 dump_value_slim (ira_dump_file, x, 1);
2650 fprintf (ira_dump_file, "\n");
2654 ira_reg_equiv[to_regno].init_insns
2655 = gen_rtx_INSN_LIST (VOIDmode, insn,
2656 ira_reg_equiv[to_regno].init_insns);
2657 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2658 fprintf (ira_dump_file,
2659 " Adding equiv init move insn %u to reg %d\n",
2660 INSN_UID (insn), to_regno);
2663 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2664 by IRA. */
2665 static void
2666 fix_reg_equiv_init (void)
2668 int max_regno = max_reg_num ();
2669 int i, new_regno, max;
2670 rtx set;
2671 rtx_insn_list *x, *next, *prev;
2672 rtx_insn *insn;
2674 if (max_regno_before_ira < max_regno)
2676 max = vec_safe_length (reg_equivs);
2677 grow_reg_equivs ();
2678 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2679 for (prev = NULL, x = reg_equiv_init (i);
2680 x != NULL_RTX;
2681 x = next)
2683 next = x->next ();
2684 insn = x->insn ();
2685 set = single_set (insn);
2686 ira_assert (set != NULL_RTX
2687 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2688 if (REG_P (SET_DEST (set))
2689 && ((int) REGNO (SET_DEST (set)) == i
2690 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2691 new_regno = REGNO (SET_DEST (set));
2692 else if (REG_P (SET_SRC (set))
2693 && ((int) REGNO (SET_SRC (set)) == i
2694 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2695 new_regno = REGNO (SET_SRC (set));
2696 else
2697 gcc_unreachable ();
2698 if (new_regno == i)
2699 prev = x;
2700 else
2702 /* Remove the wrong list element. */
2703 if (prev == NULL_RTX)
2704 reg_equiv_init (i) = next;
2705 else
2706 XEXP (prev, 1) = next;
2707 XEXP (x, 1) = reg_equiv_init (new_regno);
2708 reg_equiv_init (new_regno) = x;
2714 #ifdef ENABLE_IRA_CHECKING
2715 /* Print redundant memory-memory copies. */
2716 static void
2717 print_redundant_copies (void)
2719 int hard_regno;
2720 ira_allocno_t a;
2721 ira_copy_t cp, next_cp;
2722 ira_allocno_iterator ai;
2724 FOR_EACH_ALLOCNO (a, ai)
2726 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2727 /* It is a cap. */
2728 continue;
2729 hard_regno = ALLOCNO_HARD_REGNO (a);
2730 if (hard_regno >= 0)
2731 continue;
2732 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2733 if (cp->first == a)
2734 next_cp = cp->next_first_allocno_copy;
2735 else
2737 next_cp = cp->next_second_allocno_copy;
2738 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2739 && cp->insn != NULL_RTX
2740 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2741 fprintf (ira_dump_file,
2742 " Redundant move from %d(freq %d):%d\n",
2743 INSN_UID (cp->insn), cp->freq, hard_regno);
2747 #endif
2749 /* Setup preferred and alternative classes for new pseudo-registers
2750 created by IRA starting with START. */
2751 static void
2752 setup_preferred_alternate_classes_for_new_pseudos (int start)
2754 int i, old_regno;
2755 int max_regno = max_reg_num ();
2757 for (i = start; i < max_regno; i++)
2759 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2760 ira_assert (i != old_regno);
2761 setup_reg_classes (i, reg_preferred_class (old_regno),
2762 reg_alternate_class (old_regno),
2763 reg_allocno_class (old_regno));
2764 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2765 fprintf (ira_dump_file,
2766 " New r%d: setting preferred %s, alternative %s\n",
2767 i, reg_class_names[reg_preferred_class (old_regno)],
2768 reg_class_names[reg_alternate_class (old_regno)]);
2773 /* The number of entries allocated in reg_info. */
2774 static int allocated_reg_info_size;
2776 /* Regional allocation can create new pseudo-registers. This function
2777 expands some arrays for pseudo-registers. */
2778 static void
2779 expand_reg_info (void)
2781 int i;
2782 int size = max_reg_num ();
2784 resize_reg_info ();
2785 for (i = allocated_reg_info_size; i < size; i++)
2786 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2787 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2788 allocated_reg_info_size = size;
2791 /* Return TRUE if there is too high register pressure in the function.
2792 It is used to decide when stack slot sharing is worth to do. */
2793 static bool
2794 too_high_register_pressure_p (void)
2796 int i;
2797 enum reg_class pclass;
2799 for (i = 0; i < ira_pressure_classes_num; i++)
2801 pclass = ira_pressure_classes[i];
2802 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2803 return true;
2805 return false;
2810 /* Indicate that hard register number FROM was eliminated and replaced with
2811 an offset from hard register number TO. The status of hard registers live
2812 at the start of a basic block is updated by replacing a use of FROM with
2813 a use of TO. */
2815 void
2816 mark_elimination (int from, int to)
2818 basic_block bb;
2819 bitmap r;
2821 FOR_EACH_BB_FN (bb, cfun)
2823 r = DF_LR_IN (bb);
2824 if (bitmap_bit_p (r, from))
2826 bitmap_clear_bit (r, from);
2827 bitmap_set_bit (r, to);
2829 if (! df_live)
2830 continue;
2831 r = DF_LIVE_IN (bb);
2832 if (bitmap_bit_p (r, from))
2834 bitmap_clear_bit (r, from);
2835 bitmap_set_bit (r, to);
2842 /* The length of the following array. */
2843 int ira_reg_equiv_len;
2845 /* Info about equiv. info for each register. */
2846 struct ira_reg_equiv_s *ira_reg_equiv;
2848 /* Expand ira_reg_equiv if necessary. */
2849 void
2850 ira_expand_reg_equiv (void)
2852 int old = ira_reg_equiv_len;
2854 if (ira_reg_equiv_len > max_reg_num ())
2855 return;
2856 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2857 ira_reg_equiv
2858 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2859 ira_reg_equiv_len
2860 * sizeof (struct ira_reg_equiv_s));
2861 gcc_assert (old < ira_reg_equiv_len);
2862 memset (ira_reg_equiv + old, 0,
2863 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2866 static void
2867 init_reg_equiv (void)
2869 ira_reg_equiv_len = 0;
2870 ira_reg_equiv = NULL;
2871 ira_expand_reg_equiv ();
2874 static void
2875 finish_reg_equiv (void)
2877 free (ira_reg_equiv);
2882 struct equivalence
2884 /* Set when a REG_EQUIV note is found or created. Use to
2885 keep track of what memory accesses might be created later,
2886 e.g. by reload. */
2887 rtx replacement;
2888 rtx *src_p;
2890 /* The list of each instruction which initializes this register.
2892 NULL indicates we know nothing about this register's equivalence
2893 properties.
2895 An INSN_LIST with a NULL insn indicates this pseudo is already
2896 known to not have a valid equivalence. */
2897 rtx_insn_list *init_insns;
2899 /* Loop depth is used to recognize equivalences which appear
2900 to be present within the same loop (or in an inner loop). */
2901 short loop_depth;
2902 /* Nonzero if this had a preexisting REG_EQUIV note. */
2903 unsigned char is_arg_equivalence : 1;
2904 /* Set when an attempt should be made to replace a register
2905 with the associated src_p entry. */
2906 unsigned char replace : 1;
2907 /* Set if this register has no known equivalence. */
2908 unsigned char no_equiv : 1;
2909 /* Set if this register is mentioned in a paradoxical subreg. */
2910 unsigned char pdx_subregs : 1;
2913 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2914 structure for that register. */
2915 static struct equivalence *reg_equiv;
2917 /* Used for communication between the following two functions. */
2918 struct equiv_mem_data
2920 /* A MEM that we wish to ensure remains unchanged. */
2921 rtx equiv_mem;
2923 /* Set true if EQUIV_MEM is modified. */
2924 bool equiv_mem_modified;
2927 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2928 Called via note_stores. */
2929 static void
2930 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2931 void *data)
2933 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2935 if ((REG_P (dest)
2936 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2937 || (MEM_P (dest)
2938 && anti_dependence (info->equiv_mem, dest)))
2939 info->equiv_mem_modified = true;
2942 enum valid_equiv { valid_none, valid_combine, valid_reload };
2944 /* Verify that no store between START and the death of REG invalidates
2945 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2946 by storing into an overlapping memory location, or with a non-const
2947 CALL_INSN.
2949 Return VALID_RELOAD if MEMREF remains valid for both reload and
2950 combine_and_move insns, VALID_COMBINE if only valid for
2951 combine_and_move_insns, and VALID_NONE otherwise. */
2952 static enum valid_equiv
2953 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2955 rtx_insn *insn;
2956 rtx note;
2957 struct equiv_mem_data info = { memref, false };
2958 enum valid_equiv ret = valid_reload;
2960 /* If the memory reference has side effects or is volatile, it isn't a
2961 valid equivalence. */
2962 if (side_effects_p (memref))
2963 return valid_none;
2965 for (insn = start; insn; insn = NEXT_INSN (insn))
2967 if (!INSN_P (insn))
2968 continue;
2970 if (find_reg_note (insn, REG_DEAD, reg))
2971 return ret;
2973 if (CALL_P (insn))
2975 /* We can combine a reg def from one insn into a reg use in
2976 another over a call if the memory is readonly or the call
2977 const/pure. However, we can't set reg_equiv notes up for
2978 reload over any call. The problem is the equivalent form
2979 may reference a pseudo which gets assigned a call
2980 clobbered hard reg. When we later replace REG with its
2981 equivalent form, the value in the call-clobbered reg has
2982 been changed and all hell breaks loose. */
2983 ret = valid_combine;
2984 if (!MEM_READONLY_P (memref)
2985 && !RTL_CONST_OR_PURE_CALL_P (insn))
2986 return valid_none;
2989 note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
2990 if (info.equiv_mem_modified)
2991 return valid_none;
2993 /* If a register mentioned in MEMREF is modified via an
2994 auto-increment, we lose the equivalence. Do the same if one
2995 dies; although we could extend the life, it doesn't seem worth
2996 the trouble. */
2998 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2999 if ((REG_NOTE_KIND (note) == REG_INC
3000 || REG_NOTE_KIND (note) == REG_DEAD)
3001 && REG_P (XEXP (note, 0))
3002 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3003 return valid_none;
3006 return valid_none;
3009 /* Returns zero if X is known to be invariant. */
3010 static int
3011 equiv_init_varies_p (rtx x)
3013 RTX_CODE code = GET_CODE (x);
3014 int i;
3015 const char *fmt;
3017 switch (code)
3019 case MEM:
3020 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3022 case CONST:
3023 CASE_CONST_ANY:
3024 case SYMBOL_REF:
3025 case LABEL_REF:
3026 return 0;
3028 case REG:
3029 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3031 case ASM_OPERANDS:
3032 if (MEM_VOLATILE_P (x))
3033 return 1;
3035 /* Fall through. */
3037 default:
3038 break;
3041 fmt = GET_RTX_FORMAT (code);
3042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3043 if (fmt[i] == 'e')
3045 if (equiv_init_varies_p (XEXP (x, i)))
3046 return 1;
3048 else if (fmt[i] == 'E')
3050 int j;
3051 for (j = 0; j < XVECLEN (x, i); j++)
3052 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3053 return 1;
3056 return 0;
3059 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3060 X is only movable if the registers it uses have equivalent initializations
3061 which appear to be within the same loop (or in an inner loop) and movable
3062 or if they are not candidates for local_alloc and don't vary. */
3063 static int
3064 equiv_init_movable_p (rtx x, int regno)
3066 int i, j;
3067 const char *fmt;
3068 enum rtx_code code = GET_CODE (x);
3070 switch (code)
3072 case SET:
3073 return equiv_init_movable_p (SET_SRC (x), regno);
3075 case CC0:
3076 case CLOBBER:
3077 return 0;
3079 case PRE_INC:
3080 case PRE_DEC:
3081 case POST_INC:
3082 case POST_DEC:
3083 case PRE_MODIFY:
3084 case POST_MODIFY:
3085 return 0;
3087 case REG:
3088 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3089 && reg_equiv[REGNO (x)].replace)
3090 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3091 && ! rtx_varies_p (x, 0)));
3093 case UNSPEC_VOLATILE:
3094 return 0;
3096 case ASM_OPERANDS:
3097 if (MEM_VOLATILE_P (x))
3098 return 0;
3100 /* Fall through. */
3102 default:
3103 break;
3106 fmt = GET_RTX_FORMAT (code);
3107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3108 switch (fmt[i])
3110 case 'e':
3111 if (! equiv_init_movable_p (XEXP (x, i), regno))
3112 return 0;
3113 break;
3114 case 'E':
3115 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3116 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3117 return 0;
3118 break;
3121 return 1;
3124 /* TRUE if X references a memory location that would be affected by a store
3125 to MEMREF. */
3126 static int
3127 memref_referenced_p (rtx memref, rtx x)
3129 int i, j;
3130 const char *fmt;
3131 enum rtx_code code = GET_CODE (x);
3133 switch (code)
3135 case CONST:
3136 case LABEL_REF:
3137 case SYMBOL_REF:
3138 CASE_CONST_ANY:
3139 case PC:
3140 case CC0:
3141 case HIGH:
3142 case LO_SUM:
3143 return 0;
3145 case REG:
3146 return (reg_equiv[REGNO (x)].replacement
3147 && memref_referenced_p (memref,
3148 reg_equiv[REGNO (x)].replacement));
3150 case MEM:
3151 if (true_dependence (memref, VOIDmode, x))
3152 return 1;
3153 break;
3155 case SET:
3156 /* If we are setting a MEM, it doesn't count (its address does), but any
3157 other SET_DEST that has a MEM in it is referencing the MEM. */
3158 if (MEM_P (SET_DEST (x)))
3160 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3161 return 1;
3163 else if (memref_referenced_p (memref, SET_DEST (x)))
3164 return 1;
3166 return memref_referenced_p (memref, SET_SRC (x));
3168 default:
3169 break;
3172 fmt = GET_RTX_FORMAT (code);
3173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3174 switch (fmt[i])
3176 case 'e':
3177 if (memref_referenced_p (memref, XEXP (x, i)))
3178 return 1;
3179 break;
3180 case 'E':
3181 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3182 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3183 return 1;
3184 break;
3187 return 0;
3190 /* TRUE if some insn in the range (START, END] references a memory location
3191 that would be affected by a store to MEMREF.
3193 Callers should not call this routine if START is after END in the
3194 RTL chain. */
3196 static int
3197 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3199 rtx_insn *insn;
3201 for (insn = NEXT_INSN (start);
3202 insn && insn != NEXT_INSN (end);
3203 insn = NEXT_INSN (insn))
3205 if (!NONDEBUG_INSN_P (insn))
3206 continue;
3208 if (memref_referenced_p (memref, PATTERN (insn)))
3209 return 1;
3211 /* Nonconst functions may access memory. */
3212 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3213 return 1;
3216 gcc_assert (insn == NEXT_INSN (end));
3217 return 0;
3220 /* Mark REG as having no known equivalence.
3221 Some instructions might have been processed before and furnished
3222 with REG_EQUIV notes for this register; these notes will have to be
3223 removed.
3224 STORE is the piece of RTL that does the non-constant / conflicting
3225 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3226 but needs to be there because this function is called from note_stores. */
3227 static void
3228 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3229 void *data ATTRIBUTE_UNUSED)
3231 int regno;
3232 rtx_insn_list *list;
3234 if (!REG_P (reg))
3235 return;
3236 regno = REGNO (reg);
3237 reg_equiv[regno].no_equiv = 1;
3238 list = reg_equiv[regno].init_insns;
3239 if (list && list->insn () == NULL)
3240 return;
3241 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3242 reg_equiv[regno].replacement = NULL_RTX;
3243 /* This doesn't matter for equivalences made for argument registers, we
3244 should keep their initialization insns. */
3245 if (reg_equiv[regno].is_arg_equivalence)
3246 return;
3247 ira_reg_equiv[regno].defined_p = false;
3248 ira_reg_equiv[regno].init_insns = NULL;
3249 for (; list; list = list->next ())
3251 rtx_insn *insn = list->insn ();
3252 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3256 /* Check whether the SUBREG is a paradoxical subreg and set the result
3257 in PDX_SUBREGS. */
3259 static void
3260 set_paradoxical_subreg (rtx_insn *insn)
3262 subrtx_iterator::array_type array;
3263 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3265 const_rtx subreg = *iter;
3266 if (GET_CODE (subreg) == SUBREG)
3268 const_rtx reg = SUBREG_REG (subreg);
3269 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3270 reg_equiv[REGNO (reg)].pdx_subregs = true;
3275 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3276 equivalent replacement. */
3278 static rtx
3279 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3281 if (REG_P (loc))
3283 bitmap cleared_regs = (bitmap) data;
3284 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3285 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3286 NULL_RTX, adjust_cleared_regs, data);
3288 return NULL_RTX;
3291 /* Find registers that are equivalent to a single value throughout the
3292 compilation (either because they can be referenced in memory or are
3293 set once from a single constant). Lower their priority for a
3294 register.
3296 If such a register is only referenced once, try substituting its
3297 value into the using insn. If it succeeds, we can eliminate the
3298 register completely.
3300 Initialize init_insns in ira_reg_equiv array. */
3301 static void
3302 update_equiv_regs (void)
3304 rtx_insn *insn;
3305 basic_block bb;
3307 /* Scan insns and set pdx_subregs if the reg is used in a
3308 paradoxical subreg. Don't set such reg equivalent to a mem,
3309 because lra will not substitute such equiv memory in order to
3310 prevent access beyond allocated memory for paradoxical memory subreg. */
3311 FOR_EACH_BB_FN (bb, cfun)
3312 FOR_BB_INSNS (bb, insn)
3313 if (NONDEBUG_INSN_P (insn))
3314 set_paradoxical_subreg (insn);
3316 /* Scan the insns and find which registers have equivalences. Do this
3317 in a separate scan of the insns because (due to -fcse-follow-jumps)
3318 a register can be set below its use. */
3319 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3320 FOR_EACH_BB_FN (bb, cfun)
3322 int loop_depth = bb_loop_depth (bb);
3324 for (insn = BB_HEAD (bb);
3325 insn != NEXT_INSN (BB_END (bb));
3326 insn = NEXT_INSN (insn))
3328 rtx note;
3329 rtx set;
3330 rtx dest, src;
3331 int regno;
3333 if (! INSN_P (insn))
3334 continue;
3336 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3337 if (REG_NOTE_KIND (note) == REG_INC)
3338 no_equiv (XEXP (note, 0), note, NULL);
3340 set = single_set (insn);
3342 /* If this insn contains more (or less) than a single SET,
3343 only mark all destinations as having no known equivalence. */
3344 if (set == NULL_RTX
3345 || side_effects_p (SET_SRC (set)))
3347 note_stores (PATTERN (insn), no_equiv, NULL);
3348 continue;
3350 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3352 int i;
3354 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3356 rtx part = XVECEXP (PATTERN (insn), 0, i);
3357 if (part != set)
3358 note_stores (part, no_equiv, NULL);
3362 dest = SET_DEST (set);
3363 src = SET_SRC (set);
3365 /* See if this is setting up the equivalence between an argument
3366 register and its stack slot. */
3367 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3368 if (note)
3370 gcc_assert (REG_P (dest));
3371 regno = REGNO (dest);
3373 /* Note that we don't want to clear init_insns in
3374 ira_reg_equiv even if there are multiple sets of this
3375 register. */
3376 reg_equiv[regno].is_arg_equivalence = 1;
3378 /* The insn result can have equivalence memory although
3379 the equivalence is not set up by the insn. We add
3380 this insn to init insns as it is a flag for now that
3381 regno has an equivalence. We will remove the insn
3382 from init insn list later. */
3383 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3384 ira_reg_equiv[regno].init_insns
3385 = gen_rtx_INSN_LIST (VOIDmode, insn,
3386 ira_reg_equiv[regno].init_insns);
3388 /* Continue normally in case this is a candidate for
3389 replacements. */
3392 if (!optimize)
3393 continue;
3395 /* We only handle the case of a pseudo register being set
3396 once, or always to the same value. */
3397 /* ??? The mn10200 port breaks if we add equivalences for
3398 values that need an ADDRESS_REGS register and set them equivalent
3399 to a MEM of a pseudo. The actual problem is in the over-conservative
3400 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3401 calculate_needs, but we traditionally work around this problem
3402 here by rejecting equivalences when the destination is in a register
3403 that's likely spilled. This is fragile, of course, since the
3404 preferred class of a pseudo depends on all instructions that set
3405 or use it. */
3407 if (!REG_P (dest)
3408 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3409 || (reg_equiv[regno].init_insns
3410 && reg_equiv[regno].init_insns->insn () == NULL)
3411 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3412 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3414 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3415 also set somewhere else to a constant. */
3416 note_stores (set, no_equiv, NULL);
3417 continue;
3420 /* Don't set reg mentioned in a paradoxical subreg
3421 equivalent to a mem. */
3422 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3424 note_stores (set, no_equiv, NULL);
3425 continue;
3428 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3430 /* cse sometimes generates function invariants, but doesn't put a
3431 REG_EQUAL note on the insn. Since this note would be redundant,
3432 there's no point creating it earlier than here. */
3433 if (! note && ! rtx_varies_p (src, 0))
3434 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3436 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3437 since it represents a function call. */
3438 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3439 note = NULL_RTX;
3441 if (DF_REG_DEF_COUNT (regno) != 1)
3443 bool equal_p = true;
3444 rtx_insn_list *list;
3446 /* If we have already processed this pseudo and determined it
3447 can not have an equivalence, then honor that decision. */
3448 if (reg_equiv[regno].no_equiv)
3449 continue;
3451 if (! note
3452 || rtx_varies_p (XEXP (note, 0), 0)
3453 || (reg_equiv[regno].replacement
3454 && ! rtx_equal_p (XEXP (note, 0),
3455 reg_equiv[regno].replacement)))
3457 no_equiv (dest, set, NULL);
3458 continue;
3461 list = reg_equiv[regno].init_insns;
3462 for (; list; list = list->next ())
3464 rtx note_tmp;
3465 rtx_insn *insn_tmp;
3467 insn_tmp = list->insn ();
3468 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3469 gcc_assert (note_tmp);
3470 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3472 equal_p = false;
3473 break;
3477 if (! equal_p)
3479 no_equiv (dest, set, NULL);
3480 continue;
3484 /* Record this insn as initializing this register. */
3485 reg_equiv[regno].init_insns
3486 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3488 /* If this register is known to be equal to a constant, record that
3489 it is always equivalent to the constant. */
3490 if (DF_REG_DEF_COUNT (regno) == 1
3491 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3493 rtx note_value = XEXP (note, 0);
3494 remove_note (insn, note);
3495 set_unique_reg_note (insn, REG_EQUIV, note_value);
3498 /* If this insn introduces a "constant" register, decrease the priority
3499 of that register. Record this insn if the register is only used once
3500 more and the equivalence value is the same as our source.
3502 The latter condition is checked for two reasons: First, it is an
3503 indication that it may be more efficient to actually emit the insn
3504 as written (if no registers are available, reload will substitute
3505 the equivalence). Secondly, it avoids problems with any registers
3506 dying in this insn whose death notes would be missed.
3508 If we don't have a REG_EQUIV note, see if this insn is loading
3509 a register used only in one basic block from a MEM. If so, and the
3510 MEM remains unchanged for the life of the register, add a REG_EQUIV
3511 note. */
3512 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3514 rtx replacement = NULL_RTX;
3515 if (note)
3516 replacement = XEXP (note, 0);
3517 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3518 && MEM_P (SET_SRC (set)))
3520 enum valid_equiv validity;
3521 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3522 if (validity != valid_none)
3524 replacement = copy_rtx (SET_SRC (set));
3525 if (validity == valid_reload)
3526 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3530 /* If we haven't done so, record for reload that this is an
3531 equivalencing insn. */
3532 if (note && !reg_equiv[regno].is_arg_equivalence)
3533 ira_reg_equiv[regno].init_insns
3534 = gen_rtx_INSN_LIST (VOIDmode, insn,
3535 ira_reg_equiv[regno].init_insns);
3537 if (replacement)
3539 reg_equiv[regno].replacement = replacement;
3540 reg_equiv[regno].src_p = &SET_SRC (set);
3541 reg_equiv[regno].loop_depth = (short) loop_depth;
3543 /* Don't mess with things live during setjmp. */
3544 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3546 /* If the register is referenced exactly twice, meaning it is
3547 set once and used once, indicate that the reference may be
3548 replaced by the equivalence we computed above. Do this
3549 even if the register is only used in one block so that
3550 dependencies can be handled where the last register is
3551 used in a different block (i.e. HIGH / LO_SUM sequences)
3552 and to reduce the number of registers alive across
3553 calls. */
3555 if (REG_N_REFS (regno) == 2
3556 && (rtx_equal_p (replacement, src)
3557 || ! equiv_init_varies_p (src))
3558 && NONJUMP_INSN_P (insn)
3559 && equiv_init_movable_p (PATTERN (insn), regno))
3560 reg_equiv[regno].replace = 1;
3567 /* For insns that set a MEM to the contents of a REG that is only used
3568 in a single basic block, see if the register is always equivalent
3569 to that memory location and if moving the store from INSN to the
3570 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3571 initializing insn. */
3572 static void
3573 add_store_equivs (void)
3575 bitmap_head seen_insns;
3577 bitmap_initialize (&seen_insns, NULL);
3578 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3580 rtx set, src, dest;
3581 unsigned regno;
3582 rtx_insn *init_insn;
3584 bitmap_set_bit (&seen_insns, INSN_UID (insn));
3586 if (! INSN_P (insn))
3587 continue;
3589 set = single_set (insn);
3590 if (! set)
3591 continue;
3593 dest = SET_DEST (set);
3594 src = SET_SRC (set);
3596 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3597 REG_EQUIV is likely more useful than the one we are adding. */
3598 if (MEM_P (dest) && REG_P (src)
3599 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3600 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3601 && DF_REG_DEF_COUNT (regno) == 1
3602 && ! reg_equiv[regno].pdx_subregs
3603 && reg_equiv[regno].init_insns != NULL
3604 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3605 && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3606 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3607 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3608 && ! memref_used_between_p (dest, init_insn, insn)
3609 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3610 multiple sets. */
3611 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3613 /* This insn makes the equivalence, not the one initializing
3614 the register. */
3615 ira_reg_equiv[regno].init_insns
3616 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3617 df_notes_rescan (init_insn);
3618 if (dump_file)
3619 fprintf (dump_file,
3620 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3621 INSN_UID (init_insn),
3622 INSN_UID (insn));
3625 bitmap_clear (&seen_insns);
3628 /* Scan all regs killed in an insn to see if any of them are registers
3629 only used that once. If so, see if we can replace the reference
3630 with the equivalent form. If we can, delete the initializing
3631 reference and this register will go away. If we can't replace the
3632 reference, and the initializing reference is within the same loop
3633 (or in an inner loop), then move the register initialization just
3634 before the use, so that they are in the same basic block. */
3635 static void
3636 combine_and_move_insns (void)
3638 bitmap cleared_regs = BITMAP_ALLOC (NULL);
3639 int max = max_reg_num ();
3641 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3643 if (!reg_equiv[regno].replace)
3644 continue;
3646 rtx_insn *use_insn = 0;
3647 for (df_ref use = DF_REG_USE_CHAIN (regno);
3648 use;
3649 use = DF_REF_NEXT_REG (use))
3650 if (DF_REF_INSN_INFO (use))
3652 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3653 continue;
3654 gcc_assert (!use_insn);
3655 use_insn = DF_REF_INSN (use);
3657 gcc_assert (use_insn);
3659 /* Don't substitute into jumps. indirect_jump_optimize does
3660 this for anything we are prepared to handle. */
3661 if (JUMP_P (use_insn))
3662 continue;
3664 df_ref def = DF_REG_DEF_CHAIN (regno);
3665 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3666 rtx_insn *def_insn = DF_REF_INSN (def);
3668 /* We may not move instructions that can throw, since that
3669 changes basic block boundaries and we are not prepared to
3670 adjust the CFG to match. */
3671 if (can_throw_internal (def_insn))
3672 continue;
3674 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3675 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3676 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3677 continue;
3679 if (asm_noperands (PATTERN (def_insn)) < 0
3680 && validate_replace_rtx (regno_reg_rtx[regno],
3681 *reg_equiv[regno].src_p, use_insn))
3683 rtx link;
3684 /* Append the REG_DEAD notes from def_insn. */
3685 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3687 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3689 *p = XEXP (link, 1);
3690 XEXP (link, 1) = REG_NOTES (use_insn);
3691 REG_NOTES (use_insn) = link;
3693 else
3694 p = &XEXP (link, 1);
3697 remove_death (regno, use_insn);
3698 SET_REG_N_REFS (regno, 0);
3699 REG_FREQ (regno) = 0;
3700 delete_insn (def_insn);
3702 reg_equiv[regno].init_insns = NULL;
3703 ira_reg_equiv[regno].init_insns = NULL;
3704 bitmap_set_bit (cleared_regs, regno);
3707 /* Move the initialization of the register to just before
3708 USE_INSN. Update the flow information. */
3709 else if (prev_nondebug_insn (use_insn) != def_insn)
3711 rtx_insn *new_insn;
3713 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3714 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3715 REG_NOTES (def_insn) = 0;
3716 /* Rescan it to process the notes. */
3717 df_insn_rescan (new_insn);
3719 /* Make sure this insn is recognized before reload begins,
3720 otherwise eliminate_regs_in_insn will die. */
3721 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3723 delete_insn (def_insn);
3725 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3727 REG_BASIC_BLOCK (regno) = use_bb->index;
3728 REG_N_CALLS_CROSSED (regno) = 0;
3730 if (use_insn == BB_HEAD (use_bb))
3731 BB_HEAD (use_bb) = new_insn;
3733 /* We know regno dies in use_insn, but inside a loop
3734 REG_DEAD notes might be missing when def_insn was in
3735 another basic block. However, when we move def_insn into
3736 this bb we'll definitely get a REG_DEAD note and reload
3737 will see the death. It's possible that update_equiv_regs
3738 set up an equivalence referencing regno for a reg set by
3739 use_insn, when regno was seen as non-local. Now that
3740 regno is local to this block, and dies, such an
3741 equivalence is invalid. */
3742 if (find_reg_note (use_insn, REG_EQUIV, NULL_RTX))
3744 rtx set = single_set (use_insn);
3745 if (set && REG_P (SET_DEST (set)))
3746 no_equiv (SET_DEST (set), set, NULL);
3749 ira_reg_equiv[regno].init_insns
3750 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3751 bitmap_set_bit (cleared_regs, regno);
3755 if (!bitmap_empty_p (cleared_regs))
3757 basic_block bb;
3759 FOR_EACH_BB_FN (bb, cfun)
3761 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3762 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3763 if (!df_live)
3764 continue;
3765 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3766 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3769 /* Last pass - adjust debug insns referencing cleared regs. */
3770 if (MAY_HAVE_DEBUG_INSNS)
3771 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3772 if (DEBUG_INSN_P (insn))
3774 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3775 INSN_VAR_LOCATION_LOC (insn)
3776 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3777 adjust_cleared_regs,
3778 (void *) cleared_regs);
3779 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3780 df_insn_rescan (insn);
3784 BITMAP_FREE (cleared_regs);
3787 /* A pass over indirect jumps, converting simple cases to direct jumps.
3788 Combine does this optimization too, but only within a basic block. */
3789 static void
3790 indirect_jump_optimize (void)
3792 basic_block bb;
3793 bool rebuild_p = false;
3795 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3797 rtx_insn *insn = BB_END (bb);
3798 if (!JUMP_P (insn)
3799 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3800 continue;
3802 rtx x = pc_set (insn);
3803 if (!x || !REG_P (SET_SRC (x)))
3804 continue;
3806 int regno = REGNO (SET_SRC (x));
3807 if (DF_REG_DEF_COUNT (regno) == 1)
3809 df_ref def = DF_REG_DEF_CHAIN (regno);
3810 if (!DF_REF_IS_ARTIFICIAL (def))
3812 rtx_insn *def_insn = DF_REF_INSN (def);
3813 rtx lab = NULL_RTX;
3814 rtx set = single_set (def_insn);
3815 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3816 lab = SET_SRC (set);
3817 else
3819 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3820 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3821 lab = XEXP (eqnote, 0);
3823 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3824 rebuild_p = true;
3829 if (rebuild_p)
3831 timevar_push (TV_JUMP);
3832 rebuild_jump_labels (get_insns ());
3833 if (purge_all_dead_edges ())
3834 delete_unreachable_blocks ();
3835 timevar_pop (TV_JUMP);
3839 /* Set up fields memory, constant, and invariant from init_insns in
3840 the structures of array ira_reg_equiv. */
3841 static void
3842 setup_reg_equiv (void)
3844 int i;
3845 rtx_insn_list *elem, *prev_elem, *next_elem;
3846 rtx_insn *insn;
3847 rtx set, x;
3849 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3850 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3851 elem;
3852 prev_elem = elem, elem = next_elem)
3854 next_elem = elem->next ();
3855 insn = elem->insn ();
3856 set = single_set (insn);
3858 /* Init insns can set up equivalence when the reg is a destination or
3859 a source (in this case the destination is memory). */
3860 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3862 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3864 x = XEXP (x, 0);
3865 if (REG_P (SET_DEST (set))
3866 && REGNO (SET_DEST (set)) == (unsigned int) i
3867 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3869 /* This insn reporting the equivalence but
3870 actually not setting it. Remove it from the
3871 list. */
3872 if (prev_elem == NULL)
3873 ira_reg_equiv[i].init_insns = next_elem;
3874 else
3875 XEXP (prev_elem, 1) = next_elem;
3876 elem = prev_elem;
3879 else if (REG_P (SET_DEST (set))
3880 && REGNO (SET_DEST (set)) == (unsigned int) i)
3881 x = SET_SRC (set);
3882 else
3884 gcc_assert (REG_P (SET_SRC (set))
3885 && REGNO (SET_SRC (set)) == (unsigned int) i);
3886 x = SET_DEST (set);
3888 if (! function_invariant_p (x)
3889 || ! flag_pic
3890 /* A function invariant is often CONSTANT_P but may
3891 include a register. We promise to only pass
3892 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3893 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3895 /* It can happen that a REG_EQUIV note contains a MEM
3896 that is not a legitimate memory operand. As later
3897 stages of reload assume that all addresses found in
3898 the lra_regno_equiv_* arrays were originally
3899 legitimate, we ignore such REG_EQUIV notes. */
3900 if (memory_operand (x, VOIDmode))
3902 ira_reg_equiv[i].defined_p = true;
3903 ira_reg_equiv[i].memory = x;
3904 continue;
3906 else if (function_invariant_p (x))
3908 machine_mode mode;
3910 mode = GET_MODE (SET_DEST (set));
3911 if (GET_CODE (x) == PLUS
3912 || x == frame_pointer_rtx || x == arg_pointer_rtx)
3913 /* This is PLUS of frame pointer and a constant,
3914 or fp, or argp. */
3915 ira_reg_equiv[i].invariant = x;
3916 else if (targetm.legitimate_constant_p (mode, x))
3917 ira_reg_equiv[i].constant = x;
3918 else
3920 ira_reg_equiv[i].memory = force_const_mem (mode, x);
3921 if (ira_reg_equiv[i].memory == NULL_RTX)
3923 ira_reg_equiv[i].defined_p = false;
3924 ira_reg_equiv[i].init_insns = NULL;
3925 break;
3928 ira_reg_equiv[i].defined_p = true;
3929 continue;
3933 ira_reg_equiv[i].defined_p = false;
3934 ira_reg_equiv[i].init_insns = NULL;
3935 break;
3941 /* Print chain C to FILE. */
3942 static void
3943 print_insn_chain (FILE *file, struct insn_chain *c)
3945 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
3946 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3947 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3951 /* Print all reload_insn_chains to FILE. */
3952 static void
3953 print_insn_chains (FILE *file)
3955 struct insn_chain *c;
3956 for (c = reload_insn_chain; c ; c = c->next)
3957 print_insn_chain (file, c);
3960 /* Return true if pseudo REGNO should be added to set live_throughout
3961 or dead_or_set of the insn chains for reload consideration. */
3962 static bool
3963 pseudo_for_reload_consideration_p (int regno)
3965 /* Consider spilled pseudos too for IRA because they still have a
3966 chance to get hard-registers in the reload when IRA is used. */
3967 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3970 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3971 REG to the number of nregs, and INIT_VALUE to get the
3972 initialization. ALLOCNUM need not be the regno of REG. */
3973 static void
3974 init_live_subregs (bool init_value, sbitmap *live_subregs,
3975 bitmap live_subregs_used, int allocnum, rtx reg)
3977 unsigned int regno = REGNO (SUBREG_REG (reg));
3978 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3980 gcc_assert (size > 0);
3982 /* Been there, done that. */
3983 if (bitmap_bit_p (live_subregs_used, allocnum))
3984 return;
3986 /* Create a new one. */
3987 if (live_subregs[allocnum] == NULL)
3988 live_subregs[allocnum] = sbitmap_alloc (size);
3990 /* If the entire reg was live before blasting into subregs, we need
3991 to init all of the subregs to ones else init to 0. */
3992 if (init_value)
3993 bitmap_ones (live_subregs[allocnum]);
3994 else
3995 bitmap_clear (live_subregs[allocnum]);
3997 bitmap_set_bit (live_subregs_used, allocnum);
4000 /* Walk the insns of the current function and build reload_insn_chain,
4001 and record register life information. */
4002 static void
4003 build_insn_chain (void)
4005 unsigned int i;
4006 struct insn_chain **p = &reload_insn_chain;
4007 basic_block bb;
4008 struct insn_chain *c = NULL;
4009 struct insn_chain *next = NULL;
4010 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4011 bitmap elim_regset = BITMAP_ALLOC (NULL);
4012 /* live_subregs is a vector used to keep accurate information about
4013 which hardregs are live in multiword pseudos. live_subregs and
4014 live_subregs_used are indexed by pseudo number. The live_subreg
4015 entry for a particular pseudo is only used if the corresponding
4016 element is non zero in live_subregs_used. The sbitmap size of
4017 live_subreg[allocno] is number of bytes that the pseudo can
4018 occupy. */
4019 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4020 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4023 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4024 bitmap_set_bit (elim_regset, i);
4025 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4027 bitmap_iterator bi;
4028 rtx_insn *insn;
4030 CLEAR_REG_SET (live_relevant_regs);
4031 bitmap_clear (live_subregs_used);
4033 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4035 if (i >= FIRST_PSEUDO_REGISTER)
4036 break;
4037 bitmap_set_bit (live_relevant_regs, i);
4040 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4041 FIRST_PSEUDO_REGISTER, i, bi)
4043 if (pseudo_for_reload_consideration_p (i))
4044 bitmap_set_bit (live_relevant_regs, i);
4047 FOR_BB_INSNS_REVERSE (bb, insn)
4049 if (!NOTE_P (insn) && !BARRIER_P (insn))
4051 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4052 df_ref def, use;
4054 c = new_insn_chain ();
4055 c->next = next;
4056 next = c;
4057 *p = c;
4058 p = &c->prev;
4060 c->insn = insn;
4061 c->block = bb->index;
4063 if (NONDEBUG_INSN_P (insn))
4064 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4066 unsigned int regno = DF_REF_REGNO (def);
4068 /* Ignore may clobbers because these are generated
4069 from calls. However, every other kind of def is
4070 added to dead_or_set. */
4071 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4073 if (regno < FIRST_PSEUDO_REGISTER)
4075 if (!fixed_regs[regno])
4076 bitmap_set_bit (&c->dead_or_set, regno);
4078 else if (pseudo_for_reload_consideration_p (regno))
4079 bitmap_set_bit (&c->dead_or_set, regno);
4082 if ((regno < FIRST_PSEUDO_REGISTER
4083 || reg_renumber[regno] >= 0
4084 || ira_conflicts_p)
4085 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4087 rtx reg = DF_REF_REG (def);
4089 /* We can model subregs, but not if they are
4090 wrapped in ZERO_EXTRACTS. */
4091 if (GET_CODE (reg) == SUBREG
4092 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4094 unsigned int start = SUBREG_BYTE (reg);
4095 unsigned int last = start
4096 + GET_MODE_SIZE (GET_MODE (reg));
4098 init_live_subregs
4099 (bitmap_bit_p (live_relevant_regs, regno),
4100 live_subregs, live_subregs_used, regno, reg);
4102 if (!DF_REF_FLAGS_IS_SET
4103 (def, DF_REF_STRICT_LOW_PART))
4105 /* Expand the range to cover entire words.
4106 Bytes added here are "don't care". */
4107 start
4108 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4109 last = ((last + UNITS_PER_WORD - 1)
4110 / UNITS_PER_WORD * UNITS_PER_WORD);
4113 /* Ignore the paradoxical bits. */
4114 if (last > SBITMAP_SIZE (live_subregs[regno]))
4115 last = SBITMAP_SIZE (live_subregs[regno]);
4117 while (start < last)
4119 bitmap_clear_bit (live_subregs[regno], start);
4120 start++;
4123 if (bitmap_empty_p (live_subregs[regno]))
4125 bitmap_clear_bit (live_subregs_used, regno);
4126 bitmap_clear_bit (live_relevant_regs, regno);
4128 else
4129 /* Set live_relevant_regs here because
4130 that bit has to be true to get us to
4131 look at the live_subregs fields. */
4132 bitmap_set_bit (live_relevant_regs, regno);
4134 else
4136 /* DF_REF_PARTIAL is generated for
4137 subregs, STRICT_LOW_PART, and
4138 ZERO_EXTRACT. We handle the subreg
4139 case above so here we have to keep from
4140 modeling the def as a killing def. */
4141 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4143 bitmap_clear_bit (live_subregs_used, regno);
4144 bitmap_clear_bit (live_relevant_regs, regno);
4150 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4151 bitmap_copy (&c->live_throughout, live_relevant_regs);
4153 if (NONDEBUG_INSN_P (insn))
4154 FOR_EACH_INSN_INFO_USE (use, insn_info)
4156 unsigned int regno = DF_REF_REGNO (use);
4157 rtx reg = DF_REF_REG (use);
4159 /* DF_REF_READ_WRITE on a use means that this use
4160 is fabricated from a def that is a partial set
4161 to a multiword reg. Here, we only model the
4162 subreg case that is not wrapped in ZERO_EXTRACT
4163 precisely so we do not need to look at the
4164 fabricated use. */
4165 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4166 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4167 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4168 continue;
4170 /* Add the last use of each var to dead_or_set. */
4171 if (!bitmap_bit_p (live_relevant_regs, regno))
4173 if (regno < FIRST_PSEUDO_REGISTER)
4175 if (!fixed_regs[regno])
4176 bitmap_set_bit (&c->dead_or_set, regno);
4178 else if (pseudo_for_reload_consideration_p (regno))
4179 bitmap_set_bit (&c->dead_or_set, regno);
4182 if (regno < FIRST_PSEUDO_REGISTER
4183 || pseudo_for_reload_consideration_p (regno))
4185 if (GET_CODE (reg) == SUBREG
4186 && !DF_REF_FLAGS_IS_SET (use,
4187 DF_REF_SIGN_EXTRACT
4188 | DF_REF_ZERO_EXTRACT))
4190 unsigned int start = SUBREG_BYTE (reg);
4191 unsigned int last = start
4192 + GET_MODE_SIZE (GET_MODE (reg));
4194 init_live_subregs
4195 (bitmap_bit_p (live_relevant_regs, regno),
4196 live_subregs, live_subregs_used, regno, reg);
4198 /* Ignore the paradoxical bits. */
4199 if (last > SBITMAP_SIZE (live_subregs[regno]))
4200 last = SBITMAP_SIZE (live_subregs[regno]);
4202 while (start < last)
4204 bitmap_set_bit (live_subregs[regno], start);
4205 start++;
4208 else
4209 /* Resetting the live_subregs_used is
4210 effectively saying do not use the subregs
4211 because we are reading the whole
4212 pseudo. */
4213 bitmap_clear_bit (live_subregs_used, regno);
4214 bitmap_set_bit (live_relevant_regs, regno);
4220 /* FIXME!! The following code is a disaster. Reload needs to see the
4221 labels and jump tables that are just hanging out in between
4222 the basic blocks. See pr33676. */
4223 insn = BB_HEAD (bb);
4225 /* Skip over the barriers and cruft. */
4226 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4227 || BLOCK_FOR_INSN (insn) == bb))
4228 insn = PREV_INSN (insn);
4230 /* While we add anything except barriers and notes, the focus is
4231 to get the labels and jump tables into the
4232 reload_insn_chain. */
4233 while (insn)
4235 if (!NOTE_P (insn) && !BARRIER_P (insn))
4237 if (BLOCK_FOR_INSN (insn))
4238 break;
4240 c = new_insn_chain ();
4241 c->next = next;
4242 next = c;
4243 *p = c;
4244 p = &c->prev;
4246 /* The block makes no sense here, but it is what the old
4247 code did. */
4248 c->block = bb->index;
4249 c->insn = insn;
4250 bitmap_copy (&c->live_throughout, live_relevant_regs);
4252 insn = PREV_INSN (insn);
4256 reload_insn_chain = c;
4257 *p = NULL;
4259 for (i = 0; i < (unsigned int) max_regno; i++)
4260 if (live_subregs[i] != NULL)
4261 sbitmap_free (live_subregs[i]);
4262 free (live_subregs);
4263 BITMAP_FREE (live_subregs_used);
4264 BITMAP_FREE (live_relevant_regs);
4265 BITMAP_FREE (elim_regset);
4267 if (dump_file)
4268 print_insn_chains (dump_file);
4271 /* Examine the rtx found in *LOC, which is read or written to as determined
4272 by TYPE. Return false if we find a reason why an insn containing this
4273 rtx should not be moved (such as accesses to non-constant memory), true
4274 otherwise. */
4275 static bool
4276 rtx_moveable_p (rtx *loc, enum op_type type)
4278 const char *fmt;
4279 rtx x = *loc;
4280 enum rtx_code code = GET_CODE (x);
4281 int i, j;
4283 code = GET_CODE (x);
4284 switch (code)
4286 case CONST:
4287 CASE_CONST_ANY:
4288 case SYMBOL_REF:
4289 case LABEL_REF:
4290 return true;
4292 case PC:
4293 return type == OP_IN;
4295 case CC0:
4296 return false;
4298 case REG:
4299 if (x == frame_pointer_rtx)
4300 return true;
4301 if (HARD_REGISTER_P (x))
4302 return false;
4304 return true;
4306 case MEM:
4307 if (type == OP_IN && MEM_READONLY_P (x))
4308 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4309 return false;
4311 case SET:
4312 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4313 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4315 case STRICT_LOW_PART:
4316 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4318 case ZERO_EXTRACT:
4319 case SIGN_EXTRACT:
4320 return (rtx_moveable_p (&XEXP (x, 0), type)
4321 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4322 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4324 case CLOBBER:
4325 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4327 case UNSPEC_VOLATILE:
4328 /* It is a bad idea to consider insns with such rtl
4329 as moveable ones. The insn scheduler also considers them as barrier
4330 for a reason. */
4331 return false;
4333 default:
4334 break;
4337 fmt = GET_RTX_FORMAT (code);
4338 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4340 if (fmt[i] == 'e')
4342 if (!rtx_moveable_p (&XEXP (x, i), type))
4343 return false;
4345 else if (fmt[i] == 'E')
4346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4348 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4349 return false;
4352 return true;
4355 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4356 to give dominance relationships between two insns I1 and I2. */
4357 static bool
4358 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4360 basic_block bb1 = BLOCK_FOR_INSN (i1);
4361 basic_block bb2 = BLOCK_FOR_INSN (i2);
4363 if (bb1 == bb2)
4364 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4365 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4368 /* Record the range of register numbers added by find_moveable_pseudos. */
4369 int first_moveable_pseudo, last_moveable_pseudo;
4371 /* These two vectors hold data for every register added by
4372 find_movable_pseudos, with index 0 holding data for the
4373 first_moveable_pseudo. */
4374 /* The original home register. */
4375 static vec<rtx> pseudo_replaced_reg;
4377 /* Look for instances where we have an instruction that is known to increase
4378 register pressure, and whose result is not used immediately. If it is
4379 possible to move the instruction downwards to just before its first use,
4380 split its lifetime into two ranges. We create a new pseudo to compute the
4381 value, and emit a move instruction just before the first use. If, after
4382 register allocation, the new pseudo remains unallocated, the function
4383 move_unallocated_pseudos then deletes the move instruction and places
4384 the computation just before the first use.
4386 Such a move is safe and profitable if all the input registers remain live
4387 and unchanged between the original computation and its first use. In such
4388 a situation, the computation is known to increase register pressure, and
4389 moving it is known to at least not worsen it.
4391 We restrict moves to only those cases where a register remains unallocated,
4392 in order to avoid interfering too much with the instruction schedule. As
4393 an exception, we may move insns which only modify their input register
4394 (typically induction variables), as this increases the freedom for our
4395 intended transformation, and does not limit the second instruction
4396 scheduler pass. */
4398 static void
4399 find_moveable_pseudos (void)
4401 unsigned i;
4402 int max_regs = max_reg_num ();
4403 int max_uid = get_max_uid ();
4404 basic_block bb;
4405 int *uid_luid = XNEWVEC (int, max_uid);
4406 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4407 /* A set of registers which are live but not modified throughout a block. */
4408 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4409 last_basic_block_for_fn (cfun));
4410 /* A set of registers which only exist in a given basic block. */
4411 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4412 last_basic_block_for_fn (cfun));
4413 /* A set of registers which are set once, in an instruction that can be
4414 moved freely downwards, but are otherwise transparent to a block. */
4415 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4416 last_basic_block_for_fn (cfun));
4417 bitmap_head live, used, set, interesting, unusable_as_input;
4418 bitmap_iterator bi;
4419 bitmap_initialize (&interesting, 0);
4421 first_moveable_pseudo = max_regs;
4422 pseudo_replaced_reg.release ();
4423 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4425 df_analyze ();
4426 calculate_dominance_info (CDI_DOMINATORS);
4428 i = 0;
4429 bitmap_initialize (&live, 0);
4430 bitmap_initialize (&used, 0);
4431 bitmap_initialize (&set, 0);
4432 bitmap_initialize (&unusable_as_input, 0);
4433 FOR_EACH_BB_FN (bb, cfun)
4435 rtx_insn *insn;
4436 bitmap transp = bb_transp_live + bb->index;
4437 bitmap moveable = bb_moveable_reg_sets + bb->index;
4438 bitmap local = bb_local + bb->index;
4440 bitmap_initialize (local, 0);
4441 bitmap_initialize (transp, 0);
4442 bitmap_initialize (moveable, 0);
4443 bitmap_copy (&live, df_get_live_out (bb));
4444 bitmap_and_into (&live, df_get_live_in (bb));
4445 bitmap_copy (transp, &live);
4446 bitmap_clear (moveable);
4447 bitmap_clear (&live);
4448 bitmap_clear (&used);
4449 bitmap_clear (&set);
4450 FOR_BB_INSNS (bb, insn)
4451 if (NONDEBUG_INSN_P (insn))
4453 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4454 df_ref def, use;
4456 uid_luid[INSN_UID (insn)] = i++;
4458 def = df_single_def (insn_info);
4459 use = df_single_use (insn_info);
4460 if (use
4461 && def
4462 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4463 && !bitmap_bit_p (&set, DF_REF_REGNO (use))
4464 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4466 unsigned regno = DF_REF_REGNO (use);
4467 bitmap_set_bit (moveable, regno);
4468 bitmap_set_bit (&set, regno);
4469 bitmap_set_bit (&used, regno);
4470 bitmap_clear_bit (transp, regno);
4471 continue;
4473 FOR_EACH_INSN_INFO_USE (use, insn_info)
4475 unsigned regno = DF_REF_REGNO (use);
4476 bitmap_set_bit (&used, regno);
4477 if (bitmap_clear_bit (moveable, regno))
4478 bitmap_clear_bit (transp, regno);
4481 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4483 unsigned regno = DF_REF_REGNO (def);
4484 bitmap_set_bit (&set, regno);
4485 bitmap_clear_bit (transp, regno);
4486 bitmap_clear_bit (moveable, regno);
4491 bitmap_clear (&live);
4492 bitmap_clear (&used);
4493 bitmap_clear (&set);
4495 FOR_EACH_BB_FN (bb, cfun)
4497 bitmap local = bb_local + bb->index;
4498 rtx_insn *insn;
4500 FOR_BB_INSNS (bb, insn)
4501 if (NONDEBUG_INSN_P (insn))
4503 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4504 rtx_insn *def_insn;
4505 rtx closest_use, note;
4506 df_ref def, use;
4507 unsigned regno;
4508 bool all_dominated, all_local;
4509 machine_mode mode;
4511 def = df_single_def (insn_info);
4512 /* There must be exactly one def in this insn. */
4513 if (!def || !single_set (insn))
4514 continue;
4515 /* This must be the only definition of the reg. We also limit
4516 which modes we deal with so that we can assume we can generate
4517 move instructions. */
4518 regno = DF_REF_REGNO (def);
4519 mode = GET_MODE (DF_REF_REG (def));
4520 if (DF_REG_DEF_COUNT (regno) != 1
4521 || !DF_REF_INSN_INFO (def)
4522 || HARD_REGISTER_NUM_P (regno)
4523 || DF_REG_EQ_USE_COUNT (regno) > 0
4524 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4525 continue;
4526 def_insn = DF_REF_INSN (def);
4528 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4529 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4530 break;
4532 if (note)
4534 if (dump_file)
4535 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4536 regno);
4537 bitmap_set_bit (&unusable_as_input, regno);
4538 continue;
4541 use = DF_REG_USE_CHAIN (regno);
4542 all_dominated = true;
4543 all_local = true;
4544 closest_use = NULL_RTX;
4545 for (; use; use = DF_REF_NEXT_REG (use))
4547 rtx_insn *insn;
4548 if (!DF_REF_INSN_INFO (use))
4550 all_dominated = false;
4551 all_local = false;
4552 break;
4554 insn = DF_REF_INSN (use);
4555 if (DEBUG_INSN_P (insn))
4556 continue;
4557 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4558 all_local = false;
4559 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4560 all_dominated = false;
4561 if (closest_use != insn && closest_use != const0_rtx)
4563 if (closest_use == NULL_RTX)
4564 closest_use = insn;
4565 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4566 closest_use = insn;
4567 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4568 closest_use = const0_rtx;
4571 if (!all_dominated)
4573 if (dump_file)
4574 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4575 regno);
4576 continue;
4578 if (all_local)
4579 bitmap_set_bit (local, regno);
4580 if (closest_use == const0_rtx || closest_use == NULL
4581 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4583 if (dump_file)
4584 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4585 closest_use == const0_rtx || closest_use == NULL
4586 ? " (no unique first use)" : "");
4587 continue;
4589 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4591 if (dump_file)
4592 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4593 regno);
4594 continue;
4597 bitmap_set_bit (&interesting, regno);
4598 /* If we get here, we know closest_use is a non-NULL insn
4599 (as opposed to const_0_rtx). */
4600 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4602 if (dump_file && (all_local || all_dominated))
4604 fprintf (dump_file, "Reg %u:", regno);
4605 if (all_local)
4606 fprintf (dump_file, " local to bb %d", bb->index);
4607 if (all_dominated)
4608 fprintf (dump_file, " def dominates all uses");
4609 if (closest_use != const0_rtx)
4610 fprintf (dump_file, " has unique first use");
4611 fputs ("\n", dump_file);
4616 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4618 df_ref def = DF_REG_DEF_CHAIN (i);
4619 rtx_insn *def_insn = DF_REF_INSN (def);
4620 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4621 bitmap def_bb_local = bb_local + def_block->index;
4622 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4623 bitmap def_bb_transp = bb_transp_live + def_block->index;
4624 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4625 rtx_insn *use_insn = closest_uses[i];
4626 df_ref use;
4627 bool all_ok = true;
4628 bool all_transp = true;
4630 if (!REG_P (DF_REF_REG (def)))
4631 continue;
4633 if (!local_to_bb_p)
4635 if (dump_file)
4636 fprintf (dump_file, "Reg %u not local to one basic block\n",
4638 continue;
4640 if (reg_equiv_init (i) != NULL_RTX)
4642 if (dump_file)
4643 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4645 continue;
4647 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4649 if (dump_file)
4650 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4651 INSN_UID (def_insn), i);
4652 continue;
4654 if (dump_file)
4655 fprintf (dump_file, "Examining insn %d, def for %d\n",
4656 INSN_UID (def_insn), i);
4657 FOR_EACH_INSN_USE (use, def_insn)
4659 unsigned regno = DF_REF_REGNO (use);
4660 if (bitmap_bit_p (&unusable_as_input, regno))
4662 all_ok = false;
4663 if (dump_file)
4664 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4665 break;
4667 if (!bitmap_bit_p (def_bb_transp, regno))
4669 if (bitmap_bit_p (def_bb_moveable, regno)
4670 && !control_flow_insn_p (use_insn)
4671 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4673 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4675 rtx_insn *x = NEXT_INSN (def_insn);
4676 while (!modified_in_p (DF_REF_REG (use), x))
4678 gcc_assert (x != use_insn);
4679 x = NEXT_INSN (x);
4681 if (dump_file)
4682 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4683 regno, INSN_UID (x));
4684 emit_insn_after (PATTERN (x), use_insn);
4685 set_insn_deleted (x);
4687 else
4689 if (dump_file)
4690 fprintf (dump_file, " input reg %u modified between def and use\n",
4691 regno);
4692 all_transp = false;
4695 else
4696 all_transp = false;
4699 if (!all_ok)
4700 continue;
4701 if (!dbg_cnt (ira_move))
4702 break;
4703 if (dump_file)
4704 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4706 if (all_transp)
4708 rtx def_reg = DF_REF_REG (def);
4709 rtx newreg = ira_create_new_reg (def_reg);
4710 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4712 unsigned nregno = REGNO (newreg);
4713 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4714 nregno -= max_regs;
4715 pseudo_replaced_reg[nregno] = def_reg;
4720 FOR_EACH_BB_FN (bb, cfun)
4722 bitmap_clear (bb_local + bb->index);
4723 bitmap_clear (bb_transp_live + bb->index);
4724 bitmap_clear (bb_moveable_reg_sets + bb->index);
4726 bitmap_clear (&interesting);
4727 bitmap_clear (&unusable_as_input);
4728 free (uid_luid);
4729 free (closest_uses);
4730 free (bb_local);
4731 free (bb_transp_live);
4732 free (bb_moveable_reg_sets);
4734 last_moveable_pseudo = max_reg_num ();
4736 fix_reg_equiv_init ();
4737 expand_reg_info ();
4738 regstat_free_n_sets_and_refs ();
4739 regstat_free_ri ();
4740 regstat_init_n_sets_and_refs ();
4741 regstat_compute_ri ();
4742 free_dominance_info (CDI_DOMINATORS);
4745 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4746 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4747 the destination. Otherwise return NULL. */
4749 static rtx
4750 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4752 rtx src = SET_SRC (set);
4753 rtx dest = SET_DEST (set);
4754 if (!REG_P (src) || !HARD_REGISTER_P (src)
4755 || !REG_P (dest) || HARD_REGISTER_P (dest)
4756 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4757 return NULL;
4758 return dest;
4761 /* If insn is interesting for parameter range-splitting shrink-wrapping
4762 preparation, i.e. it is a single set from a hard register to a pseudo, which
4763 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4764 parallel statement with only one such statement, return the destination.
4765 Otherwise return NULL. */
4767 static rtx
4768 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4770 if (!INSN_P (insn))
4771 return NULL;
4772 rtx pat = PATTERN (insn);
4773 if (GET_CODE (pat) == SET)
4774 return interesting_dest_for_shprep_1 (pat, call_dom);
4776 if (GET_CODE (pat) != PARALLEL)
4777 return NULL;
4778 rtx ret = NULL;
4779 for (int i = 0; i < XVECLEN (pat, 0); i++)
4781 rtx sub = XVECEXP (pat, 0, i);
4782 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4783 continue;
4784 if (GET_CODE (sub) != SET
4785 || side_effects_p (sub))
4786 return NULL;
4787 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4788 if (dest && ret)
4789 return NULL;
4790 if (dest)
4791 ret = dest;
4793 return ret;
4796 /* Split live ranges of pseudos that are loaded from hard registers in the
4797 first BB in a BB that dominates all non-sibling call if such a BB can be
4798 found and is not in a loop. Return true if the function has made any
4799 changes. */
4801 static bool
4802 split_live_ranges_for_shrink_wrap (void)
4804 basic_block bb, call_dom = NULL;
4805 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4806 rtx_insn *insn, *last_interesting_insn = NULL;
4807 bitmap_head need_new, reachable;
4808 vec<basic_block> queue;
4810 if (!SHRINK_WRAPPING_ENABLED)
4811 return false;
4813 bitmap_initialize (&need_new, 0);
4814 bitmap_initialize (&reachable, 0);
4815 queue.create (n_basic_blocks_for_fn (cfun));
4817 FOR_EACH_BB_FN (bb, cfun)
4818 FOR_BB_INSNS (bb, insn)
4819 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4821 if (bb == first)
4823 bitmap_clear (&need_new);
4824 bitmap_clear (&reachable);
4825 queue.release ();
4826 return false;
4829 bitmap_set_bit (&need_new, bb->index);
4830 bitmap_set_bit (&reachable, bb->index);
4831 queue.quick_push (bb);
4832 break;
4835 if (queue.is_empty ())
4837 bitmap_clear (&need_new);
4838 bitmap_clear (&reachable);
4839 queue.release ();
4840 return false;
4843 while (!queue.is_empty ())
4845 edge e;
4846 edge_iterator ei;
4848 bb = queue.pop ();
4849 FOR_EACH_EDGE (e, ei, bb->succs)
4850 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4851 && bitmap_set_bit (&reachable, e->dest->index))
4852 queue.quick_push (e->dest);
4854 queue.release ();
4856 FOR_BB_INSNS (first, insn)
4858 rtx dest = interesting_dest_for_shprep (insn, NULL);
4859 if (!dest)
4860 continue;
4862 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4864 bitmap_clear (&need_new);
4865 bitmap_clear (&reachable);
4866 return false;
4869 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4870 use;
4871 use = DF_REF_NEXT_REG (use))
4873 int ubbi = DF_REF_BB (use)->index;
4874 if (bitmap_bit_p (&reachable, ubbi))
4875 bitmap_set_bit (&need_new, ubbi);
4877 last_interesting_insn = insn;
4880 bitmap_clear (&reachable);
4881 if (!last_interesting_insn)
4883 bitmap_clear (&need_new);
4884 return false;
4887 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4888 bitmap_clear (&need_new);
4889 if (call_dom == first)
4890 return false;
4892 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4893 while (bb_loop_depth (call_dom) > 0)
4894 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4895 loop_optimizer_finalize ();
4897 if (call_dom == first)
4898 return false;
4900 calculate_dominance_info (CDI_POST_DOMINATORS);
4901 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4903 free_dominance_info (CDI_POST_DOMINATORS);
4904 return false;
4906 free_dominance_info (CDI_POST_DOMINATORS);
4908 if (dump_file)
4909 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4910 call_dom->index);
4912 bool ret = false;
4913 FOR_BB_INSNS (first, insn)
4915 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4916 if (!dest || dest == pic_offset_table_rtx)
4917 continue;
4919 rtx newreg = NULL_RTX;
4920 df_ref use, next;
4921 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
4923 rtx_insn *uin = DF_REF_INSN (use);
4924 next = DF_REF_NEXT_REG (use);
4926 basic_block ubb = BLOCK_FOR_INSN (uin);
4927 if (ubb == call_dom
4928 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
4930 if (!newreg)
4931 newreg = ira_create_new_reg (dest);
4932 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
4936 if (newreg)
4938 rtx_insn *new_move = gen_move_insn (newreg, dest);
4939 emit_insn_after (new_move, bb_note (call_dom));
4940 if (dump_file)
4942 fprintf (dump_file, "Split live-range of register ");
4943 print_rtl_single (dump_file, dest);
4945 ret = true;
4948 if (insn == last_interesting_insn)
4949 break;
4951 apply_change_group ();
4952 return ret;
4955 /* Perform the second half of the transformation started in
4956 find_moveable_pseudos. We look for instances where the newly introduced
4957 pseudo remains unallocated, and remove it by moving the definition to
4958 just before its use, replacing the move instruction generated by
4959 find_moveable_pseudos. */
4960 static void
4961 move_unallocated_pseudos (void)
4963 int i;
4964 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
4965 if (reg_renumber[i] < 0)
4967 int idx = i - first_moveable_pseudo;
4968 rtx other_reg = pseudo_replaced_reg[idx];
4969 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
4970 /* The use must follow all definitions of OTHER_REG, so we can
4971 insert the new definition immediately after any of them. */
4972 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
4973 rtx_insn *move_insn = DF_REF_INSN (other_def);
4974 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
4975 rtx set;
4976 int success;
4978 if (dump_file)
4979 fprintf (dump_file, "moving def of %d (insn %d now) ",
4980 REGNO (other_reg), INSN_UID (def_insn));
4982 delete_insn (move_insn);
4983 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
4984 delete_insn (DF_REF_INSN (other_def));
4985 delete_insn (def_insn);
4987 set = single_set (newinsn);
4988 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
4989 gcc_assert (success);
4990 if (dump_file)
4991 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
4992 INSN_UID (newinsn), i);
4993 SET_REG_N_REFS (i, 0);
4997 /* If the backend knows where to allocate pseudos for hard
4998 register initial values, register these allocations now. */
4999 static void
5000 allocate_initial_values (void)
5002 if (targetm.allocate_initial_value)
5004 rtx hreg, preg, x;
5005 int i, regno;
5007 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5009 if (! initial_value_entry (i, &hreg, &preg))
5010 break;
5012 x = targetm.allocate_initial_value (hreg);
5013 regno = REGNO (preg);
5014 if (x && REG_N_SETS (regno) <= 1)
5016 if (MEM_P (x))
5017 reg_equiv_memory_loc (regno) = x;
5018 else
5020 basic_block bb;
5021 int new_regno;
5023 gcc_assert (REG_P (x));
5024 new_regno = REGNO (x);
5025 reg_renumber[regno] = new_regno;
5026 /* Poke the regno right into regno_reg_rtx so that even
5027 fixed regs are accepted. */
5028 SET_REGNO (preg, new_regno);
5029 /* Update global register liveness information. */
5030 FOR_EACH_BB_FN (bb, cfun)
5032 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5033 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5034 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5035 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5041 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5042 &hreg, &preg));
5047 /* True when we use LRA instead of reload pass for the current
5048 function. */
5049 bool ira_use_lra_p;
5051 /* True if we have allocno conflicts. It is false for non-optimized
5052 mode or when the conflict table is too big. */
5053 bool ira_conflicts_p;
5055 /* Saved between IRA and reload. */
5056 static int saved_flag_ira_share_spill_slots;
5058 /* This is the main entry of IRA. */
5059 static void
5060 ira (FILE *f)
5062 bool loops_p;
5063 int ira_max_point_before_emit;
5064 bool saved_flag_caller_saves = flag_caller_saves;
5065 enum ira_region saved_flag_ira_region = flag_ira_region;
5067 /* Perform target specific PIC register initialization. */
5068 targetm.init_pic_reg ();
5070 ira_conflicts_p = optimize > 0;
5072 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5073 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5074 use simplified and faster algorithms in LRA. */
5075 lra_simple_p
5076 = (ira_use_lra_p
5077 && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5078 if (lra_simple_p)
5080 /* It permits to skip live range splitting in LRA. */
5081 flag_caller_saves = false;
5082 /* There is no sense to do regional allocation when we use
5083 simplified LRA. */
5084 flag_ira_region = IRA_REGION_ONE;
5085 ira_conflicts_p = false;
5088 #ifndef IRA_NO_OBSTACK
5089 gcc_obstack_init (&ira_obstack);
5090 #endif
5091 bitmap_obstack_initialize (&ira_bitmap_obstack);
5093 /* LRA uses its own infrastructure to handle caller save registers. */
5094 if (flag_caller_saves && !ira_use_lra_p)
5095 init_caller_save ();
5097 if (flag_ira_verbose < 10)
5099 internal_flag_ira_verbose = flag_ira_verbose;
5100 ira_dump_file = f;
5102 else
5104 internal_flag_ira_verbose = flag_ira_verbose - 10;
5105 ira_dump_file = stderr;
5108 setup_prohibited_mode_move_regs ();
5109 decrease_live_ranges_number ();
5110 df_note_add_problem ();
5112 /* DF_LIVE can't be used in the register allocator, too many other
5113 parts of the compiler depend on using the "classic" liveness
5114 interpretation of the DF_LR problem. See PR38711.
5115 Remove the problem, so that we don't spend time updating it in
5116 any of the df_analyze() calls during IRA/LRA. */
5117 if (optimize > 1)
5118 df_remove_problem (df_live);
5119 gcc_checking_assert (df_live == NULL);
5121 if (flag_checking)
5122 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5124 df_analyze ();
5126 init_reg_equiv ();
5127 if (ira_conflicts_p)
5129 calculate_dominance_info (CDI_DOMINATORS);
5131 if (split_live_ranges_for_shrink_wrap ())
5132 df_analyze ();
5134 free_dominance_info (CDI_DOMINATORS);
5137 df_clear_flags (DF_NO_INSN_RESCAN);
5139 indirect_jump_optimize ();
5140 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5141 df_analyze ();
5143 regstat_init_n_sets_and_refs ();
5144 regstat_compute_ri ();
5146 /* If we are not optimizing, then this is the only place before
5147 register allocation where dataflow is done. And that is needed
5148 to generate these warnings. */
5149 if (warn_clobbered)
5150 generate_setjmp_warnings ();
5152 /* Determine if the current function is a leaf before running IRA
5153 since this can impact optimizations done by the prologue and
5154 epilogue thus changing register elimination offsets. */
5155 crtl->is_leaf = leaf_function_p ();
5157 if (resize_reg_info () && flag_ira_loop_pressure)
5158 ira_set_pseudo_classes (true, ira_dump_file);
5160 init_alias_analysis ();
5161 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5162 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5163 update_equiv_regs ();
5165 /* Don't move insns if live range shrinkage or register
5166 pressure-sensitive scheduling were done because it will not
5167 improve allocation but likely worsen insn scheduling. */
5168 if (optimize
5169 && !flag_live_range_shrinkage
5170 && !(flag_sched_pressure && flag_schedule_insns))
5171 combine_and_move_insns ();
5173 /* Gather additional equivalences with memory. */
5174 if (optimize)
5175 add_store_equivs ();
5177 loop_optimizer_finalize ();
5178 free_dominance_info (CDI_DOMINATORS);
5179 end_alias_analysis ();
5180 free (reg_equiv);
5182 setup_reg_equiv ();
5183 grow_reg_equivs ();
5184 setup_reg_equiv_init ();
5186 allocated_reg_info_size = max_reg_num ();
5188 /* It is not worth to do such improvement when we use a simple
5189 allocation because of -O0 usage or because the function is too
5190 big. */
5191 if (ira_conflicts_p)
5192 find_moveable_pseudos ();
5194 max_regno_before_ira = max_reg_num ();
5195 ira_setup_eliminable_regset ();
5197 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5198 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5199 ira_move_loops_num = ira_additional_jumps_num = 0;
5201 ira_assert (current_loops == NULL);
5202 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5203 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5205 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5206 fprintf (ira_dump_file, "Building IRA IR\n");
5207 loops_p = ira_build ();
5209 ira_assert (ira_conflicts_p || !loops_p);
5211 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5212 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5213 /* It is just wasting compiler's time to pack spilled pseudos into
5214 stack slots in this case -- prohibit it. We also do this if
5215 there is setjmp call because a variable not modified between
5216 setjmp and longjmp the compiler is required to preserve its
5217 value and sharing slots does not guarantee it. */
5218 flag_ira_share_spill_slots = FALSE;
5220 ira_color ();
5222 ira_max_point_before_emit = ira_max_point;
5224 ira_initiate_emit_data ();
5226 ira_emit (loops_p);
5228 max_regno = max_reg_num ();
5229 if (ira_conflicts_p)
5231 if (! loops_p)
5233 if (! ira_use_lra_p)
5234 ira_initiate_assign ();
5236 else
5238 expand_reg_info ();
5240 if (ira_use_lra_p)
5242 ira_allocno_t a;
5243 ira_allocno_iterator ai;
5245 FOR_EACH_ALLOCNO (a, ai)
5247 int old_regno = ALLOCNO_REGNO (a);
5248 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5250 ALLOCNO_REGNO (a) = new_regno;
5252 if (old_regno != new_regno)
5253 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5254 reg_alternate_class (old_regno),
5255 reg_allocno_class (old_regno));
5259 else
5261 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5262 fprintf (ira_dump_file, "Flattening IR\n");
5263 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5265 /* New insns were generated: add notes and recalculate live
5266 info. */
5267 df_analyze ();
5269 /* ??? Rebuild the loop tree, but why? Does the loop tree
5270 change if new insns were generated? Can that be handled
5271 by updating the loop tree incrementally? */
5272 loop_optimizer_finalize ();
5273 free_dominance_info (CDI_DOMINATORS);
5274 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5275 | LOOPS_HAVE_RECORDED_EXITS);
5277 if (! ira_use_lra_p)
5279 setup_allocno_assignment_flags ();
5280 ira_initiate_assign ();
5281 ira_reassign_conflict_allocnos (max_regno);
5286 ira_finish_emit_data ();
5288 setup_reg_renumber ();
5290 calculate_allocation_cost ();
5292 #ifdef ENABLE_IRA_CHECKING
5293 if (ira_conflicts_p)
5294 check_allocation ();
5295 #endif
5297 if (max_regno != max_regno_before_ira)
5299 regstat_free_n_sets_and_refs ();
5300 regstat_free_ri ();
5301 regstat_init_n_sets_and_refs ();
5302 regstat_compute_ri ();
5305 overall_cost_before = ira_overall_cost;
5306 if (! ira_conflicts_p)
5307 grow_reg_equivs ();
5308 else
5310 fix_reg_equiv_init ();
5312 #ifdef ENABLE_IRA_CHECKING
5313 print_redundant_copies ();
5314 #endif
5315 if (! ira_use_lra_p)
5317 ira_spilled_reg_stack_slots_num = 0;
5318 ira_spilled_reg_stack_slots
5319 = ((struct ira_spilled_reg_stack_slot *)
5320 ira_allocate (max_regno
5321 * sizeof (struct ira_spilled_reg_stack_slot)));
5322 memset (ira_spilled_reg_stack_slots, 0,
5323 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5326 allocate_initial_values ();
5328 /* See comment for find_moveable_pseudos call. */
5329 if (ira_conflicts_p)
5330 move_unallocated_pseudos ();
5332 /* Restore original values. */
5333 if (lra_simple_p)
5335 flag_caller_saves = saved_flag_caller_saves;
5336 flag_ira_region = saved_flag_ira_region;
5340 static void
5341 do_reload (void)
5343 basic_block bb;
5344 bool need_dce;
5345 unsigned pic_offset_table_regno = INVALID_REGNUM;
5347 if (flag_ira_verbose < 10)
5348 ira_dump_file = dump_file;
5350 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5351 after reload to avoid possible wrong usages of hard reg assigned
5352 to it. */
5353 if (pic_offset_table_rtx
5354 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5355 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5357 timevar_push (TV_RELOAD);
5358 if (ira_use_lra_p)
5360 if (current_loops != NULL)
5362 loop_optimizer_finalize ();
5363 free_dominance_info (CDI_DOMINATORS);
5365 FOR_ALL_BB_FN (bb, cfun)
5366 bb->loop_father = NULL;
5367 current_loops = NULL;
5369 ira_destroy ();
5371 lra (ira_dump_file);
5372 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5373 LRA. */
5374 vec_free (reg_equivs);
5375 reg_equivs = NULL;
5376 need_dce = false;
5378 else
5380 df_set_flags (DF_NO_INSN_RESCAN);
5381 build_insn_chain ();
5383 need_dce = reload (get_insns (), ira_conflicts_p);
5386 timevar_pop (TV_RELOAD);
5388 timevar_push (TV_IRA);
5390 if (ira_conflicts_p && ! ira_use_lra_p)
5392 ira_free (ira_spilled_reg_stack_slots);
5393 ira_finish_assign ();
5396 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5397 && overall_cost_before != ira_overall_cost)
5398 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5399 ira_overall_cost);
5401 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5403 if (! ira_use_lra_p)
5405 ira_destroy ();
5406 if (current_loops != NULL)
5408 loop_optimizer_finalize ();
5409 free_dominance_info (CDI_DOMINATORS);
5411 FOR_ALL_BB_FN (bb, cfun)
5412 bb->loop_father = NULL;
5413 current_loops = NULL;
5415 regstat_free_ri ();
5416 regstat_free_n_sets_and_refs ();
5419 if (optimize)
5420 cleanup_cfg (CLEANUP_EXPENSIVE);
5422 finish_reg_equiv ();
5424 bitmap_obstack_release (&ira_bitmap_obstack);
5425 #ifndef IRA_NO_OBSTACK
5426 obstack_free (&ira_obstack, NULL);
5427 #endif
5429 /* The code after the reload has changed so much that at this point
5430 we might as well just rescan everything. Note that
5431 df_rescan_all_insns is not going to help here because it does not
5432 touch the artificial uses and defs. */
5433 df_finish_pass (true);
5434 df_scan_alloc (NULL);
5435 df_scan_blocks ();
5437 if (optimize > 1)
5439 df_live_add_problem ();
5440 df_live_set_all_dirty ();
5443 if (optimize)
5444 df_analyze ();
5446 if (need_dce && optimize)
5447 run_fast_dce ();
5449 /* Diagnose uses of the hard frame pointer when it is used as a global
5450 register. Often we can get away with letting the user appropriate
5451 the frame pointer, but we should let them know when code generation
5452 makes that impossible. */
5453 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5455 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5456 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5457 "frame pointer required, but reserved");
5458 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5461 /* If we are doing generic stack checking, give a warning if this
5462 function's frame size is larger than we expect. */
5463 if (flag_stack_check == GENERIC_STACK_CHECK)
5465 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5467 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5468 if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5469 size += UNITS_PER_WORD;
5471 if (size > STACK_CHECK_MAX_FRAME_SIZE)
5472 warning (0, "frame size too large for reliable stack checking");
5475 if (pic_offset_table_regno != INVALID_REGNUM)
5476 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5478 timevar_pop (TV_IRA);
5481 /* Run the integrated register allocator. */
5483 namespace {
5485 const pass_data pass_data_ira =
5487 RTL_PASS, /* type */
5488 "ira", /* name */
5489 OPTGROUP_NONE, /* optinfo_flags */
5490 TV_IRA, /* tv_id */
5491 0, /* properties_required */
5492 0, /* properties_provided */
5493 0, /* properties_destroyed */
5494 0, /* todo_flags_start */
5495 TODO_do_not_ggc_collect, /* todo_flags_finish */
5498 class pass_ira : public rtl_opt_pass
5500 public:
5501 pass_ira (gcc::context *ctxt)
5502 : rtl_opt_pass (pass_data_ira, ctxt)
5505 /* opt_pass methods: */
5506 virtual bool gate (function *)
5508 return !targetm.no_register_allocation;
5510 virtual unsigned int execute (function *)
5512 ira (dump_file);
5513 return 0;
5516 }; // class pass_ira
5518 } // anon namespace
5520 rtl_opt_pass *
5521 make_pass_ira (gcc::context *ctxt)
5523 return new pass_ira (ctxt);
5526 namespace {
5528 const pass_data pass_data_reload =
5530 RTL_PASS, /* type */
5531 "reload", /* name */
5532 OPTGROUP_NONE, /* optinfo_flags */
5533 TV_RELOAD, /* tv_id */
5534 0, /* properties_required */
5535 0, /* properties_provided */
5536 0, /* properties_destroyed */
5537 0, /* todo_flags_start */
5538 0, /* todo_flags_finish */
5541 class pass_reload : public rtl_opt_pass
5543 public:
5544 pass_reload (gcc::context *ctxt)
5545 : rtl_opt_pass (pass_data_reload, ctxt)
5548 /* opt_pass methods: */
5549 virtual bool gate (function *)
5551 return !targetm.no_register_allocation;
5553 virtual unsigned int execute (function *)
5555 do_reload ();
5556 return 0;
5559 }; // class pass_reload
5561 } // anon namespace
5563 rtl_opt_pass *
5564 make_pass_reload (gcc::context *ctxt)
5566 return new pass_reload (ctxt);