2004-09-22 Ralf Corsepius <corsepiu@faw.uni-ulm.de>
[official-gcc.git] / gcc / regclass.c
blob1d33a0977b2fb164b6606b376b4fc2f58d3d2a93
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 /* This file contains two passes of the compiler: reg_scan and reg_class.
25 It also defines some tables of information about the hardware registers
26 and a function init_reg_sets to initialize the tables. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "hard-reg-set.h"
33 #include "rtl.h"
34 #include "expr.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "output.h"
46 #include "ggc.h"
47 #include "timevar.h"
49 static void init_reg_sets_1 (void);
50 static void init_reg_autoinc (void);
52 /* If we have auto-increment or auto-decrement and we can have secondary
53 reloads, we are not allowed to use classes requiring secondary
54 reloads for pseudos auto-incremented since reload can't handle it. */
56 #ifdef AUTO_INC_DEC
57 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
58 #define FORBIDDEN_INC_DEC_CLASSES
59 #endif
60 #endif
62 /* Register tables used by many passes. */
64 /* Indexed by hard register number, contains 1 for registers
65 that are fixed use (stack pointer, pc, frame pointer, etc.).
66 These are the registers that cannot be used to allocate
67 a pseudo reg for general use. */
69 char fixed_regs[FIRST_PSEUDO_REGISTER];
71 /* Same info as a HARD_REG_SET. */
73 HARD_REG_SET fixed_reg_set;
75 /* Data for initializing the above. */
77 static const char initial_fixed_regs[] = FIXED_REGISTERS;
79 /* Indexed by hard register number, contains 1 for registers
80 that are fixed use or are clobbered by function calls.
81 These are the registers that cannot be used to allocate
82 a pseudo reg whose life crosses calls unless we are able
83 to save/restore them across the calls. */
85 char call_used_regs[FIRST_PSEUDO_REGISTER];
87 /* Same info as a HARD_REG_SET. */
89 HARD_REG_SET call_used_reg_set;
91 /* HARD_REG_SET of registers we want to avoid caller saving. */
92 HARD_REG_SET losing_caller_save_reg_set;
94 /* Data for initializing the above. */
96 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
98 /* This is much like call_used_regs, except it doesn't have to
99 be a superset of FIXED_REGISTERS. This vector indicates
100 what is really call clobbered, and is used when defining
101 regs_invalidated_by_call. */
103 #ifdef CALL_REALLY_USED_REGISTERS
104 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
105 #endif
107 #ifdef CALL_REALLY_USED_REGISTERS
108 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
109 #else
110 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
111 #endif
114 /* Indexed by hard register number, contains 1 for registers that are
115 fixed use or call used registers that cannot hold quantities across
116 calls even if we are willing to save and restore them. call fixed
117 registers are a subset of call used registers. */
119 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
121 /* The same info as a HARD_REG_SET. */
123 HARD_REG_SET call_fixed_reg_set;
125 /* Number of non-fixed registers. */
127 int n_non_fixed_regs;
129 /* Indexed by hard register number, contains 1 for registers
130 that are being used for global register decls.
131 These must be exempt from ordinary flow analysis
132 and are also considered fixed. */
134 char global_regs[FIRST_PSEUDO_REGISTER];
136 /* Contains 1 for registers that are set or clobbered by calls. */
137 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
138 for someone's bright idea to have call_used_regs strictly include
139 fixed_regs. Which leaves us guessing as to the set of fixed_regs
140 that are actually preserved. We know for sure that those associated
141 with the local stack frame are safe, but scant others. */
143 HARD_REG_SET regs_invalidated_by_call;
145 /* Table of register numbers in the order in which to try to use them. */
146 #ifdef REG_ALLOC_ORDER
147 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
149 /* The inverse of reg_alloc_order. */
150 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
151 #endif
153 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
155 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
157 /* The same information, but as an array of unsigned ints. We copy from
158 these unsigned ints to the table above. We do this so the tm.h files
159 do not have to be aware of the wordsize for machines with <= 64 regs.
160 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
162 #define N_REG_INTS \
163 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
165 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
166 = REG_CLASS_CONTENTS;
168 /* For each reg class, number of regs it contains. */
170 unsigned int reg_class_size[N_REG_CLASSES];
172 /* For each reg class, table listing all the containing classes. */
174 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
176 /* For each reg class, table listing all the classes contained in it. */
178 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
180 /* For each pair of reg classes,
181 a largest reg class contained in their union. */
183 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
185 /* For each pair of reg classes,
186 the smallest reg class containing their union. */
188 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
190 /* Array containing all of the register names. */
192 const char * reg_names[] = REGISTER_NAMES;
194 /* For each hard register, the widest mode object that it can contain.
195 This will be a MODE_INT mode if the register can hold integers. Otherwise
196 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
197 register. */
199 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
201 /* 1 if there is a register of given mode. */
203 bool have_regs_of_mode [MAX_MACHINE_MODE];
205 /* 1 if class does contain register of given mode. */
207 static char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
209 /* Maximum cost of moving from a register in one class to a register in
210 another class. Based on REGISTER_MOVE_COST. */
212 static int move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
214 /* Similar, but here we don't have to move if the first index is a subset
215 of the second so in that case the cost is zero. */
217 static int may_move_in_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
219 /* Similar, but here we don't have to move if the first index is a superset
220 of the second so in that case the cost is zero. */
222 static int may_move_out_cost[MAX_MACHINE_MODE][N_REG_CLASSES][N_REG_CLASSES];
224 #ifdef FORBIDDEN_INC_DEC_CLASSES
226 /* These are the classes that regs which are auto-incremented or decremented
227 cannot be put in. */
229 static int forbidden_inc_dec_class[N_REG_CLASSES];
231 /* Indexed by n, is nonzero if (REG n) is used in an auto-inc or auto-dec
232 context. */
234 static char *in_inc_dec;
236 #endif /* FORBIDDEN_INC_DEC_CLASSES */
238 #ifdef CANNOT_CHANGE_MODE_CLASS
239 /* All registers that have been subreged. Indexed by regno * MAX_MACHINE_MODE
240 + mode. */
241 bitmap_head subregs_of_mode;
242 #endif
244 /* Sample MEM values for use by memory_move_secondary_cost. */
246 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
248 /* Linked list of reg_info structures allocated for reg_n_info array.
249 Grouping all of the allocated structures together in one lump
250 means only one call to bzero to clear them, rather than n smaller
251 calls. */
252 struct reg_info_data {
253 struct reg_info_data *next; /* next set of reg_info structures */
254 size_t min_index; /* minimum index # */
255 size_t max_index; /* maximum index # */
256 char used_p; /* nonzero if this has been used previously */
257 reg_info data[1]; /* beginning of the reg_info data */
260 static struct reg_info_data *reg_info_head;
262 /* No more global register variables may be declared; true once
263 regclass has been initialized. */
265 static int no_global_reg_vars = 0;
267 /* Specify number of hard registers given machine mode occupy. */
268 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
270 /* Function called only once to initialize the above data on reg usage.
271 Once this is done, various switches may override. */
273 void
274 init_reg_sets (void)
276 int i, j;
278 /* First copy the register information from the initial int form into
279 the regsets. */
281 for (i = 0; i < N_REG_CLASSES; i++)
283 CLEAR_HARD_REG_SET (reg_class_contents[i]);
285 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
286 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
287 if (int_reg_class_contents[i][j / 32]
288 & ((unsigned) 1 << (j % 32)))
289 SET_HARD_REG_BIT (reg_class_contents[i], j);
292 /* Sanity check: make sure the target macros FIXED_REGISTERS and
293 CALL_USED_REGISTERS had the right number of initializers. */
294 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
295 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
297 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
298 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
299 memset (global_regs, 0, sizeof global_regs);
301 /* Do any additional initialization regsets may need. */
302 INIT_ONCE_REG_SET ();
304 #ifdef REG_ALLOC_ORDER
305 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
306 inv_reg_alloc_order[reg_alloc_order[i]] = i;
307 #endif
310 /* After switches have been processed, which perhaps alter
311 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
313 static void
314 init_reg_sets_1 (void)
316 unsigned int i, j;
317 unsigned int /* enum machine_mode */ m;
319 /* This macro allows the fixed or call-used registers
320 and the register classes to depend on target flags. */
322 #ifdef CONDITIONAL_REGISTER_USAGE
323 CONDITIONAL_REGISTER_USAGE;
324 #endif
326 /* Compute number of hard regs in each class. */
328 memset (reg_class_size, 0, sizeof reg_class_size);
329 for (i = 0; i < N_REG_CLASSES; i++)
330 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
331 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
332 reg_class_size[i]++;
334 /* Initialize the table of subunions.
335 reg_class_subunion[I][J] gets the largest-numbered reg-class
336 that is contained in the union of classes I and J. */
338 for (i = 0; i < N_REG_CLASSES; i++)
340 for (j = 0; j < N_REG_CLASSES; j++)
342 HARD_REG_SET c;
343 int k;
345 COPY_HARD_REG_SET (c, reg_class_contents[i]);
346 IOR_HARD_REG_SET (c, reg_class_contents[j]);
347 for (k = 0; k < N_REG_CLASSES; k++)
349 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
350 subclass1);
351 continue;
353 subclass1:
354 /* Keep the largest subclass. */ /* SPEE 900308 */
355 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
356 reg_class_contents[(int) reg_class_subunion[i][j]],
357 subclass2);
358 reg_class_subunion[i][j] = (enum reg_class) k;
359 subclass2:
365 /* Initialize the table of superunions.
366 reg_class_superunion[I][J] gets the smallest-numbered reg-class
367 containing the union of classes I and J. */
369 for (i = 0; i < N_REG_CLASSES; i++)
371 for (j = 0; j < N_REG_CLASSES; j++)
373 HARD_REG_SET c;
374 int k;
376 COPY_HARD_REG_SET (c, reg_class_contents[i]);
377 IOR_HARD_REG_SET (c, reg_class_contents[j]);
378 for (k = 0; k < N_REG_CLASSES; k++)
379 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
381 superclass:
382 reg_class_superunion[i][j] = (enum reg_class) k;
386 /* Initialize the tables of subclasses and superclasses of each reg class.
387 First clear the whole table, then add the elements as they are found. */
389 for (i = 0; i < N_REG_CLASSES; i++)
391 for (j = 0; j < N_REG_CLASSES; j++)
393 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
394 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
398 for (i = 0; i < N_REG_CLASSES; i++)
400 if (i == (int) NO_REGS)
401 continue;
403 for (j = i + 1; j < N_REG_CLASSES; j++)
405 enum reg_class *p;
407 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
408 subclass);
409 continue;
410 subclass:
411 /* Reg class I is a subclass of J.
412 Add J to the table of superclasses of I. */
413 p = &reg_class_superclasses[i][0];
414 while (*p != LIM_REG_CLASSES) p++;
415 *p = (enum reg_class) j;
416 /* Add I to the table of superclasses of J. */
417 p = &reg_class_subclasses[j][0];
418 while (*p != LIM_REG_CLASSES) p++;
419 *p = (enum reg_class) i;
423 /* Initialize "constant" tables. */
425 CLEAR_HARD_REG_SET (fixed_reg_set);
426 CLEAR_HARD_REG_SET (call_used_reg_set);
427 CLEAR_HARD_REG_SET (call_fixed_reg_set);
428 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
430 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
432 n_non_fixed_regs = 0;
434 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
436 /* call_used_regs must include fixed_regs. */
437 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
438 #ifdef CALL_REALLY_USED_REGISTERS
439 /* call_used_regs must include call_really_used_regs. */
440 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
441 #endif
443 if (fixed_regs[i])
444 SET_HARD_REG_BIT (fixed_reg_set, i);
445 else
446 n_non_fixed_regs++;
448 if (call_used_regs[i])
449 SET_HARD_REG_BIT (call_used_reg_set, i);
450 if (call_fixed_regs[i])
451 SET_HARD_REG_BIT (call_fixed_reg_set, i);
452 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
453 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
455 /* There are a couple of fixed registers that we know are safe to
456 exclude from being clobbered by calls:
458 The frame pointer is always preserved across calls. The arg pointer
459 is if it is fixed. The stack pointer usually is, unless
460 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
461 If we are generating PIC code, the PIC offset table register is
462 preserved across calls, though the target can override that. */
464 if (i == STACK_POINTER_REGNUM)
466 else if (global_regs[i])
467 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
468 else if (i == FRAME_POINTER_REGNUM)
470 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
471 else if (i == HARD_FRAME_POINTER_REGNUM)
473 #endif
474 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
475 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
477 #endif
478 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
479 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
481 #endif
482 else if (CALL_REALLY_USED_REGNO_P (i))
483 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
486 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
487 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
488 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
489 for (i = 0; i < N_REG_CLASSES; i++)
490 if ((unsigned) CLASS_MAX_NREGS (i, m) <= reg_class_size[i])
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (!fixed_regs [j] && TEST_HARD_REG_BIT (reg_class_contents[i], j)
493 && HARD_REGNO_MODE_OK (j, m))
495 contains_reg_of_mode [i][m] = 1;
496 have_regs_of_mode [m] = 1;
497 break;
500 /* Initialize the move cost table. Find every subset of each class
501 and take the maximum cost of moving any subset to any other. */
503 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
504 if (have_regs_of_mode [m])
506 for (i = 0; i < N_REG_CLASSES; i++)
507 if (contains_reg_of_mode [i][m])
508 for (j = 0; j < N_REG_CLASSES; j++)
510 int cost;
511 enum reg_class *p1, *p2;
513 if (!contains_reg_of_mode [j][m])
515 move_cost[m][i][j] = 65536;
516 may_move_in_cost[m][i][j] = 65536;
517 may_move_out_cost[m][i][j] = 65536;
519 else
521 cost = REGISTER_MOVE_COST (m, i, j);
523 for (p2 = &reg_class_subclasses[j][0];
524 *p2 != LIM_REG_CLASSES;
525 p2++)
526 if (*p2 != i && contains_reg_of_mode [*p2][m])
527 cost = MAX (cost, move_cost [m][i][*p2]);
529 for (p1 = &reg_class_subclasses[i][0];
530 *p1 != LIM_REG_CLASSES;
531 p1++)
532 if (*p1 != j && contains_reg_of_mode [*p1][m])
533 cost = MAX (cost, move_cost [m][*p1][j]);
535 move_cost[m][i][j] = cost;
537 if (reg_class_subset_p (i, j))
538 may_move_in_cost[m][i][j] = 0;
539 else
540 may_move_in_cost[m][i][j] = cost;
542 if (reg_class_subset_p (j, i))
543 may_move_out_cost[m][i][j] = 0;
544 else
545 may_move_out_cost[m][i][j] = cost;
548 else
549 for (j = 0; j < N_REG_CLASSES; j++)
551 move_cost[m][i][j] = 65536;
552 may_move_in_cost[m][i][j] = 65536;
553 may_move_out_cost[m][i][j] = 65536;
558 /* Compute the table of register modes.
559 These values are used to record death information for individual registers
560 (as opposed to a multi-register mode). */
562 void
563 init_reg_modes_once (void)
565 int i, j;
567 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
568 for (j = 0; j < MAX_MACHINE_MODE; j++)
569 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
571 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
573 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
575 /* If we couldn't find a valid mode, just use the previous mode.
576 ??? One situation in which we need to do this is on the mips where
577 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
578 to use DF mode for the even registers and VOIDmode for the odd
579 (for the cpu models where the odd ones are inaccessible). */
580 if (reg_raw_mode[i] == VOIDmode)
581 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
585 /* Finish initializing the register sets and
586 initialize the register modes. */
588 void
589 init_regs (void)
591 /* This finishes what was started by init_reg_sets, but couldn't be done
592 until after register usage was specified. */
593 init_reg_sets_1 ();
595 init_reg_autoinc ();
598 /* Initialize some fake stack-frame MEM references for use in
599 memory_move_secondary_cost. */
601 void
602 init_fake_stack_mems (void)
604 #ifdef HAVE_SECONDARY_RELOADS
606 int i;
608 for (i = 0; i < MAX_MACHINE_MODE; i++)
609 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
611 #endif
614 #ifdef HAVE_SECONDARY_RELOADS
616 /* Compute extra cost of moving registers to/from memory due to reloads.
617 Only needed if secondary reloads are required for memory moves. */
620 memory_move_secondary_cost (enum machine_mode mode, enum reg_class class, int in)
622 enum reg_class altclass;
623 int partial_cost = 0;
624 /* We need a memory reference to feed to SECONDARY... macros. */
625 /* mem may be unused even if the SECONDARY_ macros are defined. */
626 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
629 if (in)
631 #ifdef SECONDARY_INPUT_RELOAD_CLASS
632 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
633 #else
634 altclass = NO_REGS;
635 #endif
637 else
639 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
640 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
641 #else
642 altclass = NO_REGS;
643 #endif
646 if (altclass == NO_REGS)
647 return 0;
649 if (in)
650 partial_cost = REGISTER_MOVE_COST (mode, altclass, class);
651 else
652 partial_cost = REGISTER_MOVE_COST (mode, class, altclass);
654 if (class == altclass)
655 /* This isn't simply a copy-to-temporary situation. Can't guess
656 what it is, so MEMORY_MOVE_COST really ought not to be calling
657 here in that case.
659 I'm tempted to put in an assert here, but returning this will
660 probably only give poor estimates, which is what we would've
661 had before this code anyways. */
662 return partial_cost;
664 /* Check if the secondary reload register will also need a
665 secondary reload. */
666 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
668 #endif
670 /* Return a machine mode that is legitimate for hard reg REGNO and large
671 enough to save nregs. If we can't find one, return VOIDmode.
672 If CALL_SAVED is true, only consider modes that are call saved. */
674 enum machine_mode
675 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
676 unsigned int nregs, bool call_saved)
678 unsigned int /* enum machine_mode */ m;
679 enum machine_mode found_mode = VOIDmode, mode;
681 /* We first look for the largest integer mode that can be validly
682 held in REGNO. If none, we look for the largest floating-point mode.
683 If we still didn't find a valid mode, try CCmode. */
685 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
686 mode != VOIDmode;
687 mode = GET_MODE_WIDER_MODE (mode))
688 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
689 && HARD_REGNO_MODE_OK (regno, mode)
690 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
691 found_mode = mode;
693 if (found_mode != VOIDmode)
694 return found_mode;
696 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
697 mode != VOIDmode;
698 mode = GET_MODE_WIDER_MODE (mode))
699 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
700 && HARD_REGNO_MODE_OK (regno, mode)
701 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
702 found_mode = mode;
704 if (found_mode != VOIDmode)
705 return found_mode;
707 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
708 mode != VOIDmode;
709 mode = GET_MODE_WIDER_MODE (mode))
710 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
711 && HARD_REGNO_MODE_OK (regno, mode)
712 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
713 found_mode = mode;
715 if (found_mode != VOIDmode)
716 return found_mode;
718 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
719 mode != VOIDmode;
720 mode = GET_MODE_WIDER_MODE (mode))
721 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
722 && HARD_REGNO_MODE_OK (regno, mode)
723 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
724 found_mode = mode;
726 if (found_mode != VOIDmode)
727 return found_mode;
729 /* Iterate over all of the CCmodes. */
730 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
732 mode = (enum machine_mode) m;
733 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
734 && HARD_REGNO_MODE_OK (regno, mode)
735 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
736 return mode;
739 /* We can't find a mode valid for this register. */
740 return VOIDmode;
743 /* Specify the usage characteristics of the register named NAME.
744 It should be a fixed register if FIXED and a
745 call-used register if CALL_USED. */
747 void
748 fix_register (const char *name, int fixed, int call_used)
750 int i;
752 /* Decode the name and update the primary form of
753 the register info. */
755 if ((i = decode_reg_name (name)) >= 0)
757 if ((i == STACK_POINTER_REGNUM
758 #ifdef HARD_FRAME_POINTER_REGNUM
759 || i == HARD_FRAME_POINTER_REGNUM
760 #else
761 || i == FRAME_POINTER_REGNUM
762 #endif
764 && (fixed == 0 || call_used == 0))
766 static const char * const what_option[2][2] = {
767 { "call-saved", "call-used" },
768 { "no-such-option", "fixed" }};
770 error ("can't use '%s' as a %s register", name,
771 what_option[fixed][call_used]);
773 else
775 fixed_regs[i] = fixed;
776 call_used_regs[i] = call_used;
777 #ifdef CALL_REALLY_USED_REGISTERS
778 if (fixed == 0)
779 call_really_used_regs[i] = call_used;
780 #endif
783 else
785 warning ("unknown register name: %s", name);
789 /* Mark register number I as global. */
791 void
792 globalize_reg (int i)
794 if (fixed_regs[i] == 0 && no_global_reg_vars)
795 error ("global register variable follows a function definition");
797 if (global_regs[i])
799 warning ("register used for two global register variables");
800 return;
803 if (call_used_regs[i] && ! fixed_regs[i])
804 warning ("call-clobbered register used for global register variable");
806 global_regs[i] = 1;
808 /* If we're globalizing the frame pointer, we need to set the
809 appropriate regs_invalidated_by_call bit, even if it's already
810 set in fixed_regs. */
811 if (i != STACK_POINTER_REGNUM)
812 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
814 /* If already fixed, nothing else to do. */
815 if (fixed_regs[i])
816 return;
818 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
819 #ifdef CALL_REALLY_USED_REGISTERS
820 call_really_used_regs[i] = 1;
821 #endif
822 n_non_fixed_regs--;
824 SET_HARD_REG_BIT (fixed_reg_set, i);
825 SET_HARD_REG_BIT (call_used_reg_set, i);
826 SET_HARD_REG_BIT (call_fixed_reg_set, i);
829 /* Now the data and code for the `regclass' pass, which happens
830 just before local-alloc. */
832 /* The `costs' struct records the cost of using a hard register of each class
833 and of using memory for each pseudo. We use this data to set up
834 register class preferences. */
836 struct costs
838 int cost[N_REG_CLASSES];
839 int mem_cost;
842 /* Structure used to record preferences of given pseudo. */
843 struct reg_pref
845 /* (enum reg_class) prefclass is the preferred class. */
846 char prefclass;
848 /* altclass is a register class that we should use for allocating
849 pseudo if no register in the preferred class is available.
850 If no register in this class is available, memory is preferred.
852 It might appear to be more general to have a bitmask of classes here,
853 but since it is recommended that there be a class corresponding to the
854 union of most major pair of classes, that generality is not required. */
855 char altclass;
858 /* Record the cost of each class for each pseudo. */
860 static struct costs *costs;
862 /* Initialized once, and used to initialize cost values for each insn. */
864 static struct costs init_cost;
866 /* Record preferences of each pseudo.
867 This is available after `regclass' is run. */
869 static struct reg_pref *reg_pref;
871 /* Allocated buffers for reg_pref. */
873 static struct reg_pref *reg_pref_buffer;
875 /* Frequency of executions of current insn. */
877 static int frequency;
879 static rtx scan_one_insn (rtx, int);
880 static void record_operand_costs (rtx, struct costs *, struct reg_pref *);
881 static void dump_regclass (FILE *);
882 static void record_reg_classes (int, int, rtx *, enum machine_mode *,
883 const char **, rtx, struct costs *,
884 struct reg_pref *);
885 static int copy_cost (rtx, enum machine_mode, enum reg_class, int);
886 static void record_address_regs (rtx, enum reg_class, int);
887 #ifdef FORBIDDEN_INC_DEC_CLASSES
888 static int auto_inc_dec_reg_p (rtx, enum machine_mode);
889 #endif
890 static void reg_scan_mark_refs (rtx, rtx, int, unsigned int);
892 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
893 This function is sometimes called before the info has been computed.
894 When that happens, just return GENERAL_REGS, which is innocuous. */
896 enum reg_class
897 reg_preferred_class (int regno)
899 if (reg_pref == 0)
900 return GENERAL_REGS;
901 return (enum reg_class) reg_pref[regno].prefclass;
904 enum reg_class
905 reg_alternate_class (int regno)
907 if (reg_pref == 0)
908 return ALL_REGS;
910 return (enum reg_class) reg_pref[regno].altclass;
913 /* Initialize some global data for this pass. */
915 void
916 regclass_init (void)
918 int i;
920 init_cost.mem_cost = 10000;
921 for (i = 0; i < N_REG_CLASSES; i++)
922 init_cost.cost[i] = 10000;
924 /* This prevents dump_flow_info from losing if called
925 before regclass is run. */
926 reg_pref = NULL;
928 /* No more global register variables may be declared. */
929 no_global_reg_vars = 1;
932 /* Dump register costs. */
933 static void
934 dump_regclass (FILE *dump)
936 static const char *const reg_class_names[] = REG_CLASS_NAMES;
937 int i;
938 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
940 int /* enum reg_class */ class;
941 if (REG_N_REFS (i))
943 fprintf (dump, " Register %i costs:", i);
944 for (class = 0; class < (int) N_REG_CLASSES; class++)
945 if (contains_reg_of_mode [(enum reg_class) class][PSEUDO_REGNO_MODE (i)]
946 #ifdef FORBIDDEN_INC_DEC_CLASSES
947 && (!in_inc_dec[i]
948 || !forbidden_inc_dec_class[(enum reg_class) class])
949 #endif
950 #ifdef CANNOT_CHANGE_MODE_CLASS
951 && ! invalid_mode_change_p (i, (enum reg_class) class,
952 PSEUDO_REGNO_MODE (i))
953 #endif
955 fprintf (dump, " %s:%i", reg_class_names[class],
956 costs[i].cost[(enum reg_class) class]);
957 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
963 /* Calculate the costs of insn operands. */
965 static void
966 record_operand_costs (rtx insn, struct costs *op_costs,
967 struct reg_pref *reg_pref)
969 const char *constraints[MAX_RECOG_OPERANDS];
970 enum machine_mode modes[MAX_RECOG_OPERANDS];
971 int i;
973 for (i = 0; i < recog_data.n_operands; i++)
975 constraints[i] = recog_data.constraints[i];
976 modes[i] = recog_data.operand_mode[i];
979 /* If we get here, we are set up to record the costs of all the
980 operands for this insn. Start by initializing the costs.
981 Then handle any address registers. Finally record the desired
982 classes for any pseudos, doing it twice if some pair of
983 operands are commutative. */
985 for (i = 0; i < recog_data.n_operands; i++)
987 op_costs[i] = init_cost;
989 if (GET_CODE (recog_data.operand[i]) == SUBREG)
990 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
992 if (MEM_P (recog_data.operand[i]))
993 record_address_regs (XEXP (recog_data.operand[i], 0),
994 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
995 else if (constraints[i][0] == 'p'
996 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
997 record_address_regs (recog_data.operand[i],
998 MODE_BASE_REG_CLASS (modes[i]), frequency * 2);
1001 /* Check for commutative in a separate loop so everything will
1002 have been initialized. We must do this even if one operand
1003 is a constant--see addsi3 in m68k.md. */
1005 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1006 if (constraints[i][0] == '%')
1008 const char *xconstraints[MAX_RECOG_OPERANDS];
1009 int j;
1011 /* Handle commutative operands by swapping the constraints.
1012 We assume the modes are the same. */
1014 for (j = 0; j < recog_data.n_operands; j++)
1015 xconstraints[j] = constraints[j];
1017 xconstraints[i] = constraints[i+1];
1018 xconstraints[i+1] = constraints[i];
1019 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1020 recog_data.operand, modes,
1021 xconstraints, insn, op_costs, reg_pref);
1024 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1025 recog_data.operand, modes,
1026 constraints, insn, op_costs, reg_pref);
1029 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
1030 time it would save code to put a certain register in a certain class.
1031 PASS, when nonzero, inhibits some optimizations which need only be done
1032 once.
1033 Return the last insn processed, so that the scan can be continued from
1034 there. */
1036 static rtx
1037 scan_one_insn (rtx insn, int pass)
1039 enum rtx_code pat_code;
1040 rtx set, note;
1041 int i, j;
1042 struct costs op_costs[MAX_RECOG_OPERANDS];
1044 if (!INSN_P (insn))
1045 return insn;
1047 pat_code = GET_CODE (PATTERN (insn));
1048 if (pat_code == USE
1049 || pat_code == CLOBBER
1050 || pat_code == ASM_INPUT
1051 || pat_code == ADDR_VEC
1052 || pat_code == ADDR_DIFF_VEC)
1053 return insn;
1055 set = single_set (insn);
1056 extract_insn (insn);
1058 /* If this insn loads a parameter from its stack slot, then
1059 it represents a savings, rather than a cost, if the
1060 parameter is stored in memory. Record this fact. */
1062 if (set != 0 && REG_P (SET_DEST (set))
1063 && MEM_P (SET_SRC (set))
1064 && (note = find_reg_note (insn, REG_EQUIV,
1065 NULL_RTX)) != 0
1066 && MEM_P (XEXP (note, 0)))
1068 costs[REGNO (SET_DEST (set))].mem_cost
1069 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
1070 GENERAL_REGS, 1)
1071 * frequency);
1072 record_address_regs (XEXP (SET_SRC (set), 0),
1073 MODE_BASE_REG_CLASS (VOIDmode), frequency * 2);
1074 return insn;
1077 /* Improve handling of two-address insns such as
1078 (set X (ashift CONST Y)) where CONST must be made to
1079 match X. Change it into two insns: (set X CONST)
1080 (set X (ashift X Y)). If we left this for reloading, it
1081 would probably get three insns because X and Y might go
1082 in the same place. This prevents X and Y from receiving
1083 the same hard reg.
1085 We can only do this if the modes of operands 0 and 1
1086 (which might not be the same) are tieable and we only need
1087 do this during our first pass. */
1089 if (pass == 0 && optimize
1090 && recog_data.n_operands >= 3
1091 && recog_data.constraints[1][0] == '0'
1092 && recog_data.constraints[1][1] == 0
1093 && CONSTANT_P (recog_data.operand[1])
1094 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
1095 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
1096 && REG_P (recog_data.operand[0])
1097 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
1098 recog_data.operand_mode[1]))
1100 rtx previnsn = prev_real_insn (insn);
1101 rtx dest
1102 = gen_lowpart (recog_data.operand_mode[1],
1103 recog_data.operand[0]);
1104 rtx newinsn
1105 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
1107 /* If this insn was the start of a basic block,
1108 include the new insn in that block.
1109 We need not check for code_label here;
1110 while a basic block can start with a code_label,
1111 INSN could not be at the beginning of that block. */
1112 if (previnsn == 0 || JUMP_P (previnsn))
1114 basic_block b;
1115 FOR_EACH_BB (b)
1116 if (insn == BB_HEAD (b))
1117 BB_HEAD (b) = newinsn;
1120 /* This makes one more setting of new insns's dest. */
1121 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1122 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1123 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1125 *recog_data.operand_loc[1] = recog_data.operand[0];
1126 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1127 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1128 for (i = recog_data.n_dups - 1; i >= 0; i--)
1129 if (recog_data.dup_num[i] == 1)
1131 *recog_data.dup_loc[i] = recog_data.operand[0];
1132 REG_N_REFS (REGNO (recog_data.operand[0]))++;
1133 REG_FREQ (REGNO (recog_data.operand[0])) += frequency;
1136 return PREV_INSN (newinsn);
1139 record_operand_costs (insn, op_costs, reg_pref);
1141 /* Now add the cost for each operand to the total costs for
1142 its register. */
1144 for (i = 0; i < recog_data.n_operands; i++)
1145 if (REG_P (recog_data.operand[i])
1146 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1148 int regno = REGNO (recog_data.operand[i]);
1149 struct costs *p = &costs[regno], *q = &op_costs[i];
1151 p->mem_cost += q->mem_cost * frequency;
1152 for (j = 0; j < N_REG_CLASSES; j++)
1153 p->cost[j] += q->cost[j] * frequency;
1156 return insn;
1159 /* Initialize information about which register classes can be used for
1160 pseudos that are auto-incremented or auto-decremented. */
1162 static void
1163 init_reg_autoinc (void)
1165 #ifdef FORBIDDEN_INC_DEC_CLASSES
1166 int i;
1168 for (i = 0; i < N_REG_CLASSES; i++)
1170 rtx r = gen_rtx_raw_REG (VOIDmode, 0);
1171 enum machine_mode m;
1172 int j;
1174 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1175 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1177 REGNO (r) = j;
1179 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1180 m = (enum machine_mode) ((int) m + 1))
1181 if (HARD_REGNO_MODE_OK (j, m))
1183 PUT_MODE (r, m);
1185 /* If a register is not directly suitable for an
1186 auto-increment or decrement addressing mode and
1187 requires secondary reloads, disallow its class from
1188 being used in such addresses. */
1190 if ((0
1191 #ifdef SECONDARY_RELOAD_CLASS
1192 || (SECONDARY_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1193 != NO_REGS)
1194 #else
1195 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1196 || (SECONDARY_INPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1197 != NO_REGS)
1198 #endif
1199 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1200 || (SECONDARY_OUTPUT_RELOAD_CLASS (MODE_BASE_REG_CLASS (VOIDmode), m, r)
1201 != NO_REGS)
1202 #endif
1203 #endif
1205 && ! auto_inc_dec_reg_p (r, m))
1206 forbidden_inc_dec_class[i] = 1;
1210 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1213 /* This is a pass of the compiler that scans all instructions
1214 and calculates the preferred class for each pseudo-register.
1215 This information can be accessed later by calling `reg_preferred_class'.
1216 This pass comes just before local register allocation. */
1218 void
1219 regclass (rtx f, int nregs, FILE *dump)
1221 rtx insn;
1222 int i;
1223 int pass;
1225 init_recog ();
1227 costs = xmalloc (nregs * sizeof (struct costs));
1229 #ifdef FORBIDDEN_INC_DEC_CLASSES
1231 in_inc_dec = xmalloc (nregs);
1233 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1235 /* Normally we scan the insns once and determine the best class to use for
1236 each register. However, if -fexpensive_optimizations are on, we do so
1237 twice, the second time using the tentative best classes to guide the
1238 selection. */
1240 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1242 basic_block bb;
1244 if (dump)
1245 fprintf (dump, "\n\nPass %i\n\n",pass);
1246 /* Zero out our accumulation of the cost of each class for each reg. */
1248 memset (costs, 0, nregs * sizeof (struct costs));
1250 #ifdef FORBIDDEN_INC_DEC_CLASSES
1251 memset (in_inc_dec, 0, nregs);
1252 #endif
1254 /* Scan the instructions and record each time it would
1255 save code to put a certain register in a certain class. */
1257 if (!optimize)
1259 frequency = REG_FREQ_MAX;
1260 for (insn = f; insn; insn = NEXT_INSN (insn))
1261 insn = scan_one_insn (insn, pass);
1263 else
1264 FOR_EACH_BB (bb)
1266 /* Show that an insn inside a loop is likely to be executed three
1267 times more than insns outside a loop. This is much more
1268 aggressive than the assumptions made elsewhere and is being
1269 tried as an experiment. */
1270 frequency = REG_FREQ_FROM_BB (bb);
1271 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1273 insn = scan_one_insn (insn, pass);
1274 if (insn == BB_END (bb))
1275 break;
1279 /* Now for each register look at how desirable each class is
1280 and find which class is preferred. Store that in
1281 `prefclass'. Record in `altclass' the largest register
1282 class any of whose registers is better than memory. */
1284 if (pass == 0)
1285 reg_pref = reg_pref_buffer;
1287 if (dump)
1289 dump_regclass (dump);
1290 fprintf (dump,"\n");
1292 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1294 int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1295 enum reg_class best = ALL_REGS, alt = NO_REGS;
1296 /* This is an enum reg_class, but we call it an int
1297 to save lots of casts. */
1298 int class;
1299 struct costs *p = &costs[i];
1301 /* In non-optimizing compilation REG_N_REFS is not initialized
1302 yet. */
1303 if (optimize && !REG_N_REFS (i) && !REG_N_SETS (i))
1304 continue;
1306 for (class = (int) ALL_REGS - 1; class > 0; class--)
1308 /* Ignore classes that are too small for this operand or
1309 invalid for an operand that was auto-incremented. */
1310 if (!contains_reg_of_mode [class][PSEUDO_REGNO_MODE (i)]
1311 #ifdef FORBIDDEN_INC_DEC_CLASSES
1312 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1313 #endif
1314 #ifdef CANNOT_CHANGE_MODE_CLASS
1315 || invalid_mode_change_p (i, (enum reg_class) class,
1316 PSEUDO_REGNO_MODE (i))
1317 #endif
1320 else if (p->cost[class] < best_cost)
1322 best_cost = p->cost[class];
1323 best = (enum reg_class) class;
1325 else if (p->cost[class] == best_cost)
1326 best = reg_class_subunion[(int) best][class];
1329 /* Record the alternate register class; i.e., a class for which
1330 every register in it is better than using memory. If adding a
1331 class would make a smaller class (i.e., no union of just those
1332 classes exists), skip that class. The major unions of classes
1333 should be provided as a register class. Don't do this if we
1334 will be doing it again later. */
1336 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1337 for (class = 0; class < N_REG_CLASSES; class++)
1338 if (p->cost[class] < p->mem_cost
1339 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1340 > reg_class_size[(int) alt])
1341 #ifdef FORBIDDEN_INC_DEC_CLASSES
1342 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1343 #endif
1344 #ifdef CANNOT_CHANGE_MODE_CLASS
1345 && ! invalid_mode_change_p (i, (enum reg_class) class,
1346 PSEUDO_REGNO_MODE (i))
1347 #endif
1349 alt = reg_class_subunion[(int) alt][class];
1351 /* If we don't add any classes, nothing to try. */
1352 if (alt == best)
1353 alt = NO_REGS;
1355 if (dump
1356 && (reg_pref[i].prefclass != (int) best
1357 || reg_pref[i].altclass != (int) alt))
1359 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1360 fprintf (dump, " Register %i", i);
1361 if (alt == ALL_REGS || best == ALL_REGS)
1362 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1363 else if (alt == NO_REGS)
1364 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1365 else
1366 fprintf (dump, " pref %s, else %s\n",
1367 reg_class_names[(int) best],
1368 reg_class_names[(int) alt]);
1371 /* We cast to (int) because (char) hits bugs in some compilers. */
1372 reg_pref[i].prefclass = (int) best;
1373 reg_pref[i].altclass = (int) alt;
1377 #ifdef FORBIDDEN_INC_DEC_CLASSES
1378 free (in_inc_dec);
1379 #endif
1380 free (costs);
1383 /* Record the cost of using memory or registers of various classes for
1384 the operands in INSN.
1386 N_ALTS is the number of alternatives.
1388 N_OPS is the number of operands.
1390 OPS is an array of the operands.
1392 MODES are the modes of the operands, in case any are VOIDmode.
1394 CONSTRAINTS are the constraints to use for the operands. This array
1395 is modified by this procedure.
1397 This procedure works alternative by alternative. For each alternative
1398 we assume that we will be able to allocate all pseudos to their ideal
1399 register class and calculate the cost of using that alternative. Then
1400 we compute for each operand that is a pseudo-register, the cost of
1401 having the pseudo allocated to each register class and using it in that
1402 alternative. To this cost is added the cost of the alternative.
1404 The cost of each class for this insn is its lowest cost among all the
1405 alternatives. */
1407 static void
1408 record_reg_classes (int n_alts, int n_ops, rtx *ops,
1409 enum machine_mode *modes, const char **constraints,
1410 rtx insn, struct costs *op_costs,
1411 struct reg_pref *reg_pref)
1413 int alt;
1414 int i, j;
1415 rtx set;
1417 /* Process each alternative, each time minimizing an operand's cost with
1418 the cost for each operand in that alternative. */
1420 for (alt = 0; alt < n_alts; alt++)
1422 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1423 int alt_fail = 0;
1424 int alt_cost = 0;
1425 enum reg_class classes[MAX_RECOG_OPERANDS];
1426 int allows_mem[MAX_RECOG_OPERANDS];
1427 int class;
1429 for (i = 0; i < n_ops; i++)
1431 const char *p = constraints[i];
1432 rtx op = ops[i];
1433 enum machine_mode mode = modes[i];
1434 int allows_addr = 0;
1435 int win = 0;
1436 unsigned char c;
1438 /* Initially show we know nothing about the register class. */
1439 classes[i] = NO_REGS;
1440 allows_mem[i] = 0;
1442 /* If this operand has no constraints at all, we can conclude
1443 nothing about it since anything is valid. */
1445 if (*p == 0)
1447 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1448 memset (&this_op_costs[i], 0, sizeof this_op_costs[i]);
1450 continue;
1453 /* If this alternative is only relevant when this operand
1454 matches a previous operand, we do different things depending
1455 on whether this operand is a pseudo-reg or not. We must process
1456 any modifiers for the operand before we can make this test. */
1458 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1459 p++;
1461 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1463 /* Copy class and whether memory is allowed from the matching
1464 alternative. Then perform any needed cost computations
1465 and/or adjustments. */
1466 j = p[0] - '0';
1467 classes[i] = classes[j];
1468 allows_mem[i] = allows_mem[j];
1470 if (!REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1472 /* If this matches the other operand, we have no added
1473 cost and we win. */
1474 if (rtx_equal_p (ops[j], op))
1475 win = 1;
1477 /* If we can put the other operand into a register, add to
1478 the cost of this alternative the cost to copy this
1479 operand to the register used for the other operand. */
1481 else if (classes[j] != NO_REGS)
1482 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1484 else if (!REG_P (ops[j])
1485 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1487 /* This op is a pseudo but the one it matches is not. */
1489 /* If we can't put the other operand into a register, this
1490 alternative can't be used. */
1492 if (classes[j] == NO_REGS)
1493 alt_fail = 1;
1495 /* Otherwise, add to the cost of this alternative the cost
1496 to copy the other operand to the register used for this
1497 operand. */
1499 else
1500 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1502 else
1504 /* The costs of this operand are not the same as the other
1505 operand since move costs are not symmetric. Moreover,
1506 if we cannot tie them, this alternative needs to do a
1507 copy, which is one instruction. */
1509 struct costs *pp = &this_op_costs[i];
1511 for (class = 0; class < N_REG_CLASSES; class++)
1512 pp->cost[class]
1513 = ((recog_data.operand_type[i] != OP_OUT
1514 ? may_move_in_cost[mode][class][(int) classes[i]]
1515 : 0)
1516 + (recog_data.operand_type[i] != OP_IN
1517 ? may_move_out_cost[mode][(int) classes[i]][class]
1518 : 0));
1520 /* If the alternative actually allows memory, make things
1521 a bit cheaper since we won't need an extra insn to
1522 load it. */
1524 pp->mem_cost
1525 = ((recog_data.operand_type[i] != OP_IN
1526 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1527 : 0)
1528 + (recog_data.operand_type[i] != OP_OUT
1529 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1530 : 0) - allows_mem[i]);
1532 /* If we have assigned a class to this register in our
1533 first pass, add a cost to this alternative corresponding
1534 to what we would add if this register were not in the
1535 appropriate class. */
1537 if (reg_pref)
1538 alt_cost
1539 += (may_move_in_cost[mode]
1540 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1541 [(int) classes[i]]);
1543 if (REGNO (ops[i]) != REGNO (ops[j])
1544 && ! find_reg_note (insn, REG_DEAD, op))
1545 alt_cost += 2;
1547 /* This is in place of ordinary cost computation
1548 for this operand, so skip to the end of the
1549 alternative (should be just one character). */
1550 while (*p && *p++ != ',')
1553 constraints[i] = p;
1554 continue;
1558 /* Scan all the constraint letters. See if the operand matches
1559 any of the constraints. Collect the valid register classes
1560 and see if this operand accepts memory. */
1562 while ((c = *p))
1564 switch (c)
1566 case ',':
1567 break;
1568 case '*':
1569 /* Ignore the next letter for this pass. */
1570 c = *++p;
1571 break;
1573 case '?':
1574 alt_cost += 2;
1575 case '!': case '#': case '&':
1576 case '0': case '1': case '2': case '3': case '4':
1577 case '5': case '6': case '7': case '8': case '9':
1578 break;
1580 case 'p':
1581 allows_addr = 1;
1582 win = address_operand (op, GET_MODE (op));
1583 /* We know this operand is an address, so we want it to be
1584 allocated to a register that can be the base of an
1585 address, i.e. BASE_REG_CLASS. */
1586 classes[i]
1587 = reg_class_subunion[(int) classes[i]]
1588 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1589 break;
1591 case 'm': case 'o': case 'V':
1592 /* It doesn't seem worth distinguishing between offsettable
1593 and non-offsettable addresses here. */
1594 allows_mem[i] = 1;
1595 if (MEM_P (op))
1596 win = 1;
1597 break;
1599 case '<':
1600 if (MEM_P (op)
1601 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1602 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1603 win = 1;
1604 break;
1606 case '>':
1607 if (MEM_P (op)
1608 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1609 || GET_CODE (XEXP (op, 0)) == POST_INC))
1610 win = 1;
1611 break;
1613 case 'E':
1614 case 'F':
1615 if (GET_CODE (op) == CONST_DOUBLE
1616 || (GET_CODE (op) == CONST_VECTOR
1617 && (GET_MODE_CLASS (GET_MODE (op))
1618 == MODE_VECTOR_FLOAT)))
1619 win = 1;
1620 break;
1622 case 'G':
1623 case 'H':
1624 if (GET_CODE (op) == CONST_DOUBLE
1625 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1626 win = 1;
1627 break;
1629 case 's':
1630 if (GET_CODE (op) == CONST_INT
1631 || (GET_CODE (op) == CONST_DOUBLE
1632 && GET_MODE (op) == VOIDmode))
1633 break;
1634 case 'i':
1635 if (CONSTANT_P (op)
1636 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1637 win = 1;
1638 break;
1640 case 'n':
1641 if (GET_CODE (op) == CONST_INT
1642 || (GET_CODE (op) == CONST_DOUBLE
1643 && GET_MODE (op) == VOIDmode))
1644 win = 1;
1645 break;
1647 case 'I':
1648 case 'J':
1649 case 'K':
1650 case 'L':
1651 case 'M':
1652 case 'N':
1653 case 'O':
1654 case 'P':
1655 if (GET_CODE (op) == CONST_INT
1656 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1657 win = 1;
1658 break;
1660 case 'X':
1661 win = 1;
1662 break;
1664 case 'g':
1665 if (MEM_P (op)
1666 || (CONSTANT_P (op)
1667 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
1668 win = 1;
1669 allows_mem[i] = 1;
1670 case 'r':
1671 classes[i]
1672 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1673 break;
1675 default:
1676 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
1677 classes[i]
1678 = reg_class_subunion[(int) classes[i]]
1679 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1680 #ifdef EXTRA_CONSTRAINT_STR
1681 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1682 win = 1;
1684 if (EXTRA_MEMORY_CONSTRAINT (c, p))
1686 /* Every MEM can be reloaded to fit. */
1687 allows_mem[i] = 1;
1688 if (MEM_P (op))
1689 win = 1;
1691 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1693 /* Every address can be reloaded to fit. */
1694 allows_addr = 1;
1695 if (address_operand (op, GET_MODE (op)))
1696 win = 1;
1697 /* We know this operand is an address, so we want it to
1698 be allocated to a register that can be the base of an
1699 address, i.e. BASE_REG_CLASS. */
1700 classes[i]
1701 = reg_class_subunion[(int) classes[i]]
1702 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1704 #endif
1705 break;
1707 p += CONSTRAINT_LEN (c, p);
1708 if (c == ',')
1709 break;
1712 constraints[i] = p;
1714 /* How we account for this operand now depends on whether it is a
1715 pseudo register or not. If it is, we first check if any
1716 register classes are valid. If not, we ignore this alternative,
1717 since we want to assume that all pseudos get allocated for
1718 register preferencing. If some register class is valid, compute
1719 the costs of moving the pseudo into that class. */
1721 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1723 if (classes[i] == NO_REGS)
1725 /* We must always fail if the operand is a REG, but
1726 we did not find a suitable class.
1728 Otherwise we may perform an uninitialized read
1729 from this_op_costs after the `continue' statement
1730 below. */
1731 alt_fail = 1;
1733 else
1735 struct costs *pp = &this_op_costs[i];
1737 for (class = 0; class < N_REG_CLASSES; class++)
1738 pp->cost[class]
1739 = ((recog_data.operand_type[i] != OP_OUT
1740 ? may_move_in_cost[mode][class][(int) classes[i]]
1741 : 0)
1742 + (recog_data.operand_type[i] != OP_IN
1743 ? may_move_out_cost[mode][(int) classes[i]][class]
1744 : 0));
1746 /* If the alternative actually allows memory, make things
1747 a bit cheaper since we won't need an extra insn to
1748 load it. */
1750 pp->mem_cost
1751 = ((recog_data.operand_type[i] != OP_IN
1752 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1753 : 0)
1754 + (recog_data.operand_type[i] != OP_OUT
1755 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1756 : 0) - allows_mem[i]);
1758 /* If we have assigned a class to this register in our
1759 first pass, add a cost to this alternative corresponding
1760 to what we would add if this register were not in the
1761 appropriate class. */
1763 if (reg_pref)
1764 alt_cost
1765 += (may_move_in_cost[mode]
1766 [(unsigned char) reg_pref[REGNO (op)].prefclass]
1767 [(int) classes[i]]);
1771 /* Otherwise, if this alternative wins, either because we
1772 have already determined that or if we have a hard register of
1773 the proper class, there is no cost for this alternative. */
1775 else if (win
1776 || (REG_P (op)
1777 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1780 /* If registers are valid, the cost of this alternative includes
1781 copying the object to and/or from a register. */
1783 else if (classes[i] != NO_REGS)
1785 if (recog_data.operand_type[i] != OP_OUT)
1786 alt_cost += copy_cost (op, mode, classes[i], 1);
1788 if (recog_data.operand_type[i] != OP_IN)
1789 alt_cost += copy_cost (op, mode, classes[i], 0);
1792 /* The only other way this alternative can be used is if this is a
1793 constant that could be placed into memory. */
1795 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1796 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1797 else
1798 alt_fail = 1;
1801 if (alt_fail)
1802 continue;
1804 /* Finally, update the costs with the information we've calculated
1805 about this alternative. */
1807 for (i = 0; i < n_ops; i++)
1808 if (REG_P (ops[i])
1809 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1811 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1812 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1814 pp->mem_cost = MIN (pp->mem_cost,
1815 (qq->mem_cost + alt_cost) * scale);
1817 for (class = 0; class < N_REG_CLASSES; class++)
1818 pp->cost[class] = MIN (pp->cost[class],
1819 (qq->cost[class] + alt_cost) * scale);
1823 /* If this insn is a single set copying operand 1 to operand 0
1824 and one operand is a pseudo with the other a hard reg or a pseudo
1825 that prefers a register that is in its own register class then
1826 we may want to adjust the cost of that register class to -1.
1828 Avoid the adjustment if the source does not die to avoid stressing of
1829 register allocator by preferrencing two colliding registers into single
1830 class.
1832 Also avoid the adjustment if a copy between registers of the class
1833 is expensive (ten times the cost of a default copy is considered
1834 arbitrarily expensive). This avoids losing when the preferred class
1835 is very expensive as the source of a copy instruction. */
1837 if ((set = single_set (insn)) != 0
1838 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1839 && REG_P (ops[0]) && REG_P (ops[1])
1840 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1841 for (i = 0; i <= 1; i++)
1842 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1844 unsigned int regno = REGNO (ops[!i]);
1845 enum machine_mode mode = GET_MODE (ops[!i]);
1846 int class;
1847 unsigned int nr;
1849 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1851 enum reg_class pref = reg_pref[regno].prefclass;
1853 if ((reg_class_size[(unsigned char) pref]
1854 == (unsigned) CLASS_MAX_NREGS (pref, mode))
1855 && REGISTER_MOVE_COST (mode, pref, pref) < 10 * 2)
1856 op_costs[i].cost[(unsigned char) pref] = -1;
1858 else if (regno < FIRST_PSEUDO_REGISTER)
1859 for (class = 0; class < N_REG_CLASSES; class++)
1860 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1861 && reg_class_size[class] == (unsigned) CLASS_MAX_NREGS (class, mode))
1863 if (reg_class_size[class] == 1)
1864 op_costs[i].cost[class] = -1;
1865 else
1867 for (nr = 0; nr < (unsigned) hard_regno_nregs[regno][mode]; nr++)
1869 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1870 regno + nr))
1871 break;
1874 if (nr == (unsigned) hard_regno_nregs[regno][mode])
1875 op_costs[i].cost[class] = -1;
1881 /* Compute the cost of loading X into (if TO_P is nonzero) or from (if
1882 TO_P is zero) a register of class CLASS in mode MODE.
1884 X must not be a pseudo. */
1886 static int
1887 copy_cost (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1888 enum reg_class class, int to_p ATTRIBUTE_UNUSED)
1890 #ifdef HAVE_SECONDARY_RELOADS
1891 enum reg_class secondary_class = NO_REGS;
1892 #endif
1894 /* If X is a SCRATCH, there is actually nothing to move since we are
1895 assuming optimal allocation. */
1897 if (GET_CODE (x) == SCRATCH)
1898 return 0;
1900 /* Get the class we will actually use for a reload. */
1901 class = PREFERRED_RELOAD_CLASS (x, class);
1903 #ifdef HAVE_SECONDARY_RELOADS
1904 /* If we need a secondary reload (we assume here that we are using
1905 the secondary reload as an intermediate, not a scratch register), the
1906 cost is that to load the input into the intermediate register, then
1907 to copy them. We use a special value of TO_P to avoid recursion. */
1909 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1910 if (to_p == 1)
1911 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1912 #endif
1914 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1915 if (! to_p)
1916 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1917 #endif
1919 if (secondary_class != NO_REGS)
1920 return (move_cost[mode][(int) secondary_class][(int) class]
1921 + copy_cost (x, mode, secondary_class, 2));
1922 #endif /* HAVE_SECONDARY_RELOADS */
1924 /* For memory, use the memory move cost, for (hard) registers, use the
1925 cost to move between the register classes, and use 2 for everything
1926 else (constants). */
1928 if (MEM_P (x) || class == NO_REGS)
1929 return MEMORY_MOVE_COST (mode, class, to_p);
1931 else if (REG_P (x))
1932 return move_cost[mode][(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1934 else
1935 /* If this is a constant, we may eventually want to call rtx_cost here. */
1936 return COSTS_N_INSNS (1);
1939 /* Record the pseudo registers we must reload into hard registers
1940 in a subexpression of a memory address, X.
1942 CLASS is the class that the register needs to be in and is either
1943 BASE_REG_CLASS or INDEX_REG_CLASS.
1945 SCALE is twice the amount to multiply the cost by (it is twice so we
1946 can represent half-cost adjustments). */
1948 static void
1949 record_address_regs (rtx x, enum reg_class class, int scale)
1951 enum rtx_code code = GET_CODE (x);
1953 switch (code)
1955 case CONST_INT:
1956 case CONST:
1957 case CC0:
1958 case PC:
1959 case SYMBOL_REF:
1960 case LABEL_REF:
1961 return;
1963 case PLUS:
1964 /* When we have an address that is a sum,
1965 we must determine whether registers are "base" or "index" regs.
1966 If there is a sum of two registers, we must choose one to be
1967 the "base". Luckily, we can use the REG_POINTER to make a good
1968 choice most of the time. We only need to do this on machines
1969 that can have two registers in an address and where the base
1970 and index register classes are different.
1972 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1973 that seems bogus since it should only be set when we are sure
1974 the register is being used as a pointer. */
1977 rtx arg0 = XEXP (x, 0);
1978 rtx arg1 = XEXP (x, 1);
1979 enum rtx_code code0 = GET_CODE (arg0);
1980 enum rtx_code code1 = GET_CODE (arg1);
1982 /* Look inside subregs. */
1983 if (code0 == SUBREG)
1984 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1985 if (code1 == SUBREG)
1986 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1988 /* If this machine only allows one register per address, it must
1989 be in the first operand. */
1991 if (MAX_REGS_PER_ADDRESS == 1)
1992 record_address_regs (arg0, class, scale);
1994 /* If index and base registers are the same on this machine, just
1995 record registers in any non-constant operands. We assume here,
1996 as well as in the tests below, that all addresses are in
1997 canonical form. */
1999 else if (INDEX_REG_CLASS == MODE_BASE_REG_CLASS (VOIDmode))
2001 record_address_regs (arg0, class, scale);
2002 if (! CONSTANT_P (arg1))
2003 record_address_regs (arg1, class, scale);
2006 /* If the second operand is a constant integer, it doesn't change
2007 what class the first operand must be. */
2009 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
2010 record_address_regs (arg0, class, scale);
2012 /* If the second operand is a symbolic constant, the first operand
2013 must be an index register. */
2015 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
2016 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2018 /* If both operands are registers but one is already a hard register
2019 of index or base class, give the other the class that the hard
2020 register is not. */
2022 #ifdef REG_OK_FOR_BASE_P
2023 else if (code0 == REG && code1 == REG
2024 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
2025 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
2026 record_address_regs (arg1,
2027 REG_OK_FOR_BASE_P (arg0)
2028 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2029 scale);
2030 else if (code0 == REG && code1 == REG
2031 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
2032 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
2033 record_address_regs (arg0,
2034 REG_OK_FOR_BASE_P (arg1)
2035 ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (VOIDmode),
2036 scale);
2037 #endif
2039 /* If one operand is known to be a pointer, it must be the base
2040 with the other operand the index. Likewise if the other operand
2041 is a MULT. */
2043 else if ((code0 == REG && REG_POINTER (arg0))
2044 || code1 == MULT)
2046 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode), scale);
2047 record_address_regs (arg1, INDEX_REG_CLASS, scale);
2049 else if ((code1 == REG && REG_POINTER (arg1))
2050 || code0 == MULT)
2052 record_address_regs (arg0, INDEX_REG_CLASS, scale);
2053 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode), scale);
2056 /* Otherwise, count equal chances that each might be a base
2057 or index register. This case should be rare. */
2059 else
2061 record_address_regs (arg0, MODE_BASE_REG_CLASS (VOIDmode),
2062 scale / 2);
2063 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
2064 record_address_regs (arg1, MODE_BASE_REG_CLASS (VOIDmode),
2065 scale / 2);
2066 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
2069 break;
2071 /* Double the importance of a pseudo register that is incremented
2072 or decremented, since it would take two extra insns
2073 if it ends up in the wrong place. */
2074 case POST_MODIFY:
2075 case PRE_MODIFY:
2076 record_address_regs (XEXP (x, 0), MODE_BASE_REG_CLASS (VOIDmode),
2077 2 * scale);
2078 if (REG_P (XEXP (XEXP (x, 1), 1)))
2079 record_address_regs (XEXP (XEXP (x, 1), 1),
2080 INDEX_REG_CLASS, 2 * scale);
2081 break;
2083 case POST_INC:
2084 case PRE_INC:
2085 case POST_DEC:
2086 case PRE_DEC:
2087 /* Double the importance of a pseudo register that is incremented
2088 or decremented, since it would take two extra insns
2089 if it ends up in the wrong place. If the operand is a pseudo,
2090 show it is being used in an INC_DEC context. */
2092 #ifdef FORBIDDEN_INC_DEC_CLASSES
2093 if (REG_P (XEXP (x, 0))
2094 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
2095 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
2096 #endif
2098 record_address_regs (XEXP (x, 0), class, 2 * scale);
2099 break;
2101 case REG:
2103 struct costs *pp = &costs[REGNO (x)];
2104 int i;
2106 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
2108 for (i = 0; i < N_REG_CLASSES; i++)
2109 pp->cost[i] += (may_move_in_cost[Pmode][i][(int) class] * scale) / 2;
2111 break;
2113 default:
2115 const char *fmt = GET_RTX_FORMAT (code);
2116 int i;
2117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2118 if (fmt[i] == 'e')
2119 record_address_regs (XEXP (x, i), class, scale);
2124 #ifdef FORBIDDEN_INC_DEC_CLASSES
2126 /* Return 1 if REG is valid as an auto-increment memory reference
2127 to an object of MODE. */
2129 static int
2130 auto_inc_dec_reg_p (rtx reg, enum machine_mode mode)
2132 if (HAVE_POST_INCREMENT
2133 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2134 return 1;
2136 if (HAVE_POST_DECREMENT
2137 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2138 return 1;
2140 if (HAVE_PRE_INCREMENT
2141 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2142 return 1;
2144 if (HAVE_PRE_DECREMENT
2145 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2146 return 1;
2148 return 0;
2150 #endif
2152 static short *renumber;
2153 static size_t regno_allocated;
2154 static unsigned int reg_n_max;
2156 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2157 reg_scan and flow_analysis that are indexed by the register number. If
2158 NEW_P is nonzero, initialize all of the registers, otherwise only
2159 initialize the new registers allocated. The same table is kept from
2160 function to function, only reallocating it when we need more room. If
2161 RENUMBER_P is nonzero, allocate the reg_renumber array also. */
2163 void
2164 allocate_reg_info (size_t num_regs, int new_p, int renumber_p)
2166 size_t size_info;
2167 size_t size_renumber;
2168 size_t min = (new_p) ? 0 : reg_n_max;
2169 struct reg_info_data *reg_data;
2171 if (num_regs > regno_allocated)
2173 size_t old_allocated = regno_allocated;
2175 regno_allocated = num_regs + (num_regs / 20); /* Add some slop space. */
2176 size_renumber = regno_allocated * sizeof (short);
2178 if (!reg_n_info)
2180 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2181 renumber = xmalloc (size_renumber);
2182 reg_pref_buffer = xmalloc (regno_allocated
2183 * sizeof (struct reg_pref));
2186 else
2188 VARRAY_GROW (reg_n_info, regno_allocated);
2190 if (new_p) /* If we're zapping everything, no need to realloc. */
2192 free ((char *) renumber);
2193 free ((char *) reg_pref);
2194 renumber = xmalloc (size_renumber);
2195 reg_pref_buffer = xmalloc (regno_allocated
2196 * sizeof (struct reg_pref));
2199 else
2201 renumber = xrealloc (renumber, size_renumber);
2202 reg_pref_buffer = xrealloc (reg_pref_buffer,
2203 regno_allocated
2204 * sizeof (struct reg_pref));
2208 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2209 + sizeof (struct reg_info_data) - sizeof (reg_info);
2210 reg_data = xcalloc (size_info, 1);
2211 reg_data->min_index = old_allocated;
2212 reg_data->max_index = regno_allocated - 1;
2213 reg_data->next = reg_info_head;
2214 reg_info_head = reg_data;
2217 reg_n_max = num_regs;
2218 if (min < num_regs)
2220 /* Loop through each of the segments allocated for the actual
2221 reg_info pages, and set up the pointers, zero the pages, etc. */
2222 for (reg_data = reg_info_head;
2223 reg_data && reg_data->max_index >= min;
2224 reg_data = reg_data->next)
2226 size_t min_index = reg_data->min_index;
2227 size_t max_index = reg_data->max_index;
2228 size_t max = MIN (max_index, num_regs);
2229 size_t local_min = min - min_index;
2230 size_t i;
2232 if (reg_data->min_index > num_regs)
2233 continue;
2235 if (min < min_index)
2236 local_min = 0;
2237 if (!reg_data->used_p) /* page just allocated with calloc */
2238 reg_data->used_p = 1; /* no need to zero */
2239 else
2240 memset (&reg_data->data[local_min], 0,
2241 sizeof (reg_info) * (max - min_index - local_min + 1));
2243 for (i = min_index+local_min; i <= max; i++)
2245 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2246 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2247 renumber[i] = -1;
2248 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2249 reg_pref_buffer[i].altclass = (char) NO_REGS;
2254 /* If {pref,alt}class have already been allocated, update the pointers to
2255 the newly realloced ones. */
2256 if (reg_pref)
2257 reg_pref = reg_pref_buffer;
2259 if (renumber_p)
2260 reg_renumber = renumber;
2262 /* Tell the regset code about the new number of registers. */
2263 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2266 /* Free up the space allocated by allocate_reg_info. */
2267 void
2268 free_reg_info (void)
2270 if (reg_n_info)
2272 struct reg_info_data *reg_data;
2273 struct reg_info_data *reg_next;
2275 VARRAY_FREE (reg_n_info);
2276 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2278 reg_next = reg_data->next;
2279 free ((char *) reg_data);
2282 free (reg_pref_buffer);
2283 reg_pref_buffer = (struct reg_pref *) 0;
2284 reg_info_head = (struct reg_info_data *) 0;
2285 renumber = (short *) 0;
2287 regno_allocated = 0;
2288 reg_n_max = 0;
2291 /* This is the `regscan' pass of the compiler, run just before cse
2292 and again just before loop.
2294 It finds the first and last use of each pseudo-register
2295 and records them in the vectors regno_first_uid, regno_last_uid
2296 and counts the number of sets in the vector reg_n_sets.
2298 REPEAT is nonzero the second time this is called. */
2300 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2301 Always at least 3, since the combiner could put that many together
2302 and we want this to remain correct for all the remaining passes.
2303 This corresponds to the maximum number of times note_stores will call
2304 a function for any insn. */
2306 int max_parallel;
2308 /* Used as a temporary to record the largest number of registers in
2309 PARALLEL in a SET_DEST. This is added to max_parallel. */
2311 static int max_set_parallel;
2313 void
2314 reg_scan (rtx f, unsigned int nregs, int repeat ATTRIBUTE_UNUSED)
2316 rtx insn;
2318 timevar_push (TV_REG_SCAN);
2320 allocate_reg_info (nregs, TRUE, FALSE);
2321 max_parallel = 3;
2322 max_set_parallel = 0;
2324 for (insn = f; insn; insn = NEXT_INSN (insn))
2325 if (INSN_P (insn))
2327 rtx pat = PATTERN (insn);
2328 if (GET_CODE (pat) == PARALLEL
2329 && XVECLEN (pat, 0) > max_parallel)
2330 max_parallel = XVECLEN (pat, 0);
2331 reg_scan_mark_refs (pat, insn, 0, 0);
2333 if (REG_NOTES (insn))
2334 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2337 max_parallel += max_set_parallel;
2339 timevar_pop (TV_REG_SCAN);
2342 /* Update 'regscan' information by looking at the insns
2343 from FIRST to LAST. Some new REGs have been created,
2344 and any REG with number greater than OLD_MAX_REGNO is
2345 such a REG. We only update information for those. */
2347 void
2348 reg_scan_update (rtx first, rtx last, unsigned int old_max_regno)
2350 rtx insn;
2352 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2354 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2355 if (INSN_P (insn))
2357 rtx pat = PATTERN (insn);
2358 if (GET_CODE (pat) == PARALLEL
2359 && XVECLEN (pat, 0) > max_parallel)
2360 max_parallel = XVECLEN (pat, 0);
2361 reg_scan_mark_refs (pat, insn, 0, old_max_regno);
2363 if (REG_NOTES (insn))
2364 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2368 /* X is the expression to scan. INSN is the insn it appears in.
2369 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2370 We should only record information for REGs with numbers
2371 greater than or equal to MIN_REGNO. */
2373 static void
2374 reg_scan_mark_refs (rtx x, rtx insn, int note_flag, unsigned int min_regno)
2376 enum rtx_code code;
2377 rtx dest;
2378 rtx note;
2380 if (!x)
2381 return;
2382 code = GET_CODE (x);
2383 switch (code)
2385 case CONST:
2386 case CONST_INT:
2387 case CONST_DOUBLE:
2388 case CONST_VECTOR:
2389 case CC0:
2390 case PC:
2391 case SYMBOL_REF:
2392 case LABEL_REF:
2393 case ADDR_VEC:
2394 case ADDR_DIFF_VEC:
2395 return;
2397 case REG:
2399 unsigned int regno = REGNO (x);
2401 if (regno >= min_regno)
2403 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2404 if (!note_flag)
2405 REGNO_LAST_UID (regno) = INSN_UID (insn);
2406 if (REGNO_FIRST_UID (regno) == 0)
2407 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2408 /* If we are called by reg_scan_update() (indicated by min_regno
2409 being set), we also need to update the reference count. */
2410 if (min_regno)
2411 REG_N_REFS (regno)++;
2414 break;
2416 case EXPR_LIST:
2417 if (XEXP (x, 0))
2418 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2419 if (XEXP (x, 1))
2420 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2421 break;
2423 case INSN_LIST:
2424 if (XEXP (x, 1))
2425 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2426 break;
2428 case CLOBBER:
2430 rtx reg = XEXP (x, 0);
2431 if (REG_P (reg)
2432 && REGNO (reg) >= min_regno)
2434 REG_N_SETS (REGNO (reg))++;
2435 REG_N_REFS (REGNO (reg))++;
2437 else if (MEM_P (reg))
2438 reg_scan_mark_refs (XEXP (reg, 0), insn, note_flag, min_regno);
2440 break;
2442 case SET:
2443 /* Count a set of the destination if it is a register. */
2444 for (dest = SET_DEST (x);
2445 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2446 || GET_CODE (dest) == ZERO_EXTEND;
2447 dest = XEXP (dest, 0))
2450 /* For a PARALLEL, record the number of things (less the usual one for a
2451 SET) that are set. */
2452 if (GET_CODE (dest) == PARALLEL)
2453 max_set_parallel = MAX (max_set_parallel, XVECLEN (dest, 0) - 1);
2455 if (REG_P (dest)
2456 && REGNO (dest) >= min_regno)
2458 REG_N_SETS (REGNO (dest))++;
2459 REG_N_REFS (REGNO (dest))++;
2462 /* If this is setting a pseudo from another pseudo or the sum of a
2463 pseudo and a constant integer and the other pseudo is known to be
2464 a pointer, set the destination to be a pointer as well.
2466 Likewise if it is setting the destination from an address or from a
2467 value equivalent to an address or to the sum of an address and
2468 something else.
2470 But don't do any of this if the pseudo corresponds to a user
2471 variable since it should have already been set as a pointer based
2472 on the type. */
2474 if (REG_P (SET_DEST (x))
2475 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2476 && REGNO (SET_DEST (x)) >= min_regno
2477 /* If the destination pseudo is set more than once, then other
2478 sets might not be to a pointer value (consider access to a
2479 union in two threads of control in the presence of global
2480 optimizations). So only set REG_POINTER on the destination
2481 pseudo if this is the only set of that pseudo. */
2482 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2483 && ! REG_USERVAR_P (SET_DEST (x))
2484 && ! REG_POINTER (SET_DEST (x))
2485 && ((REG_P (SET_SRC (x))
2486 && REG_POINTER (SET_SRC (x)))
2487 || ((GET_CODE (SET_SRC (x)) == PLUS
2488 || GET_CODE (SET_SRC (x)) == LO_SUM)
2489 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2490 && REG_P (XEXP (SET_SRC (x), 0))
2491 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2492 || GET_CODE (SET_SRC (x)) == CONST
2493 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2494 || GET_CODE (SET_SRC (x)) == LABEL_REF
2495 || (GET_CODE (SET_SRC (x)) == HIGH
2496 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2497 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2498 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2499 || ((GET_CODE (SET_SRC (x)) == PLUS
2500 || GET_CODE (SET_SRC (x)) == LO_SUM)
2501 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2502 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2503 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2504 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2505 && (GET_CODE (XEXP (note, 0)) == CONST
2506 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2507 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2508 REG_POINTER (SET_DEST (x)) = 1;
2510 /* If this is setting a register from a register or from a simple
2511 conversion of a register, propagate REG_EXPR. */
2512 if (REG_P (dest))
2514 rtx src = SET_SRC (x);
2516 while (GET_CODE (src) == SIGN_EXTEND
2517 || GET_CODE (src) == ZERO_EXTEND
2518 || GET_CODE (src) == TRUNCATE
2519 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
2520 src = XEXP (src, 0);
2522 if (!REG_ATTRS (dest) && REG_P (src))
2523 REG_ATTRS (dest) = REG_ATTRS (src);
2524 if (!REG_ATTRS (dest) && MEM_P (src))
2525 set_reg_attrs_from_mem (dest, src);
2528 /* ... fall through ... */
2530 default:
2532 const char *fmt = GET_RTX_FORMAT (code);
2533 int i;
2534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2536 if (fmt[i] == 'e')
2537 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2538 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2540 int j;
2541 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2542 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2549 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2550 is also in C2. */
2553 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
2555 if (c1 == c2) return 1;
2557 if (c2 == ALL_REGS)
2558 win:
2559 return 1;
2560 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) c1],
2561 reg_class_contents[(int) c2],
2562 win);
2563 return 0;
2566 /* Return nonzero if there is a register that is in both C1 and C2. */
2569 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
2571 HARD_REG_SET c;
2573 if (c1 == c2) return 1;
2575 if (c1 == ALL_REGS || c2 == ALL_REGS)
2576 return 1;
2578 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2579 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2581 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2582 return 1;
2584 lose:
2585 return 0;
2588 /* Release any memory allocated by register sets. */
2590 void
2591 regset_release_memory (void)
2593 bitmap_release_memory ();
2596 #ifdef CANNOT_CHANGE_MODE_CLASS
2597 /* Set bits in *USED which correspond to registers which can't change
2598 their mode from FROM to any mode in which REGNO was encountered. */
2600 void
2601 cannot_change_mode_set_regs (HARD_REG_SET *used, enum machine_mode from,
2602 unsigned int regno)
2604 enum machine_mode to;
2605 int n, i;
2606 int start = regno * MAX_MACHINE_MODE;
2608 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2609 if (n >= MAX_MACHINE_MODE + start)
2610 return;
2611 to = n - start;
2612 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2613 if (! TEST_HARD_REG_BIT (*used, i)
2614 && REG_CANNOT_CHANGE_MODE_P (i, from, to))
2615 SET_HARD_REG_BIT (*used, i);
2619 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
2620 mode. */
2622 bool
2623 invalid_mode_change_p (unsigned int regno, enum reg_class class,
2624 enum machine_mode from_mode)
2626 enum machine_mode to_mode;
2627 int n;
2628 int start = regno * MAX_MACHINE_MODE;
2630 EXECUTE_IF_SET_IN_BITMAP (&subregs_of_mode, start, n,
2631 if (n >= MAX_MACHINE_MODE + start)
2632 return 0;
2633 to_mode = n - start;
2634 if (CANNOT_CHANGE_MODE_CLASS (from_mode, to_mode, class))
2635 return 1;
2637 return 0;
2639 #endif /* CANNOT_CHANGE_MODE_CLASS */
2641 #include "gt-regclass.h"