1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #ifndef _Unwind_Find_FDE
29 #include "coretypes.h"
31 #include "libgcc_tm.h"
34 #define NO_BASE_OF_ENCODED_VALUE
35 #include "unwind-pe.h"
36 #include "unwind-dw2-fde.h"
39 #if (defined(__GTHREAD_MUTEX_INIT) || defined(__GTHREAD_MUTEX_INIT_FUNCTION)) \
40 && defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
41 #define ATOMIC_FDE_FAST_PATH 1
45 /* The unseen_objects list contains objects that have been registered
46 but not yet categorized in any way. The seen_objects list has had
47 its pc_begin and count fields initialized at minimum, and is sorted
48 by decreasing value of pc_begin. */
49 static struct object
*unseen_objects
;
50 static struct object
*seen_objects
;
51 #ifdef ATOMIC_FDE_FAST_PATH
52 static int any_objects_registered
;
55 #ifdef __GTHREAD_MUTEX_INIT
56 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
57 #define init_object_mutex_once()
59 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
60 static __gthread_mutex_t object_mutex
;
63 init_object_mutex (void)
65 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
69 init_object_mutex_once (void)
71 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
72 __gthread_once (&once
, init_object_mutex
);
75 /* ??? Several targets include this file with stubbing parts of gthr.h
76 and expect no locking to be done. */
77 #define init_object_mutex_once()
78 static __gthread_mutex_t object_mutex
;
82 /* Called from crtbegin.o to register the unwind info for an object. */
85 __register_frame_info_bases (const void *begin
, struct object
*ob
,
86 void *tbase
, void *dbase
)
88 /* If .eh_frame is empty, don't register at all. */
89 if ((const uword
*) begin
== 0 || *(const uword
*) begin
== 0)
92 ob
->pc_begin
= (void *)-1;
97 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
98 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
102 init_object_mutex_once ();
103 __gthread_mutex_lock (&object_mutex
);
105 ob
->next
= unseen_objects
;
107 #ifdef ATOMIC_FDE_FAST_PATH
108 /* Set flag that at least one library has registered FDEs.
109 Use relaxed MO here, it is up to the app to ensure that the library
110 loading/initialization happens-before using that library in other
111 threads (in particular unwinding with that library's functions
112 appearing in the backtraces). Calling that library's functions
113 without waiting for the library to initialize would be racy. */
114 if (!any_objects_registered
)
115 __atomic_store_n (&any_objects_registered
, 1, __ATOMIC_RELAXED
);
118 __gthread_mutex_unlock (&object_mutex
);
122 __register_frame_info (const void *begin
, struct object
*ob
)
124 __register_frame_info_bases (begin
, ob
, 0, 0);
128 __register_frame (void *begin
)
132 /* If .eh_frame is empty, don't register at all. */
133 if (*(uword
*) begin
== 0)
136 ob
= malloc (sizeof (struct object
));
137 __register_frame_info (begin
, ob
);
140 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
141 for different translation units. Called from the file generated by
145 __register_frame_info_table_bases (void *begin
, struct object
*ob
,
146 void *tbase
, void *dbase
)
148 ob
->pc_begin
= (void *)-1;
153 ob
->s
.b
.from_array
= 1;
154 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
156 init_object_mutex_once ();
157 __gthread_mutex_lock (&object_mutex
);
159 ob
->next
= unseen_objects
;
161 #ifdef ATOMIC_FDE_FAST_PATH
162 /* Set flag that at least one library has registered FDEs.
163 Use relaxed MO here, it is up to the app to ensure that the library
164 loading/initialization happens-before using that library in other
165 threads (in particular unwinding with that library's functions
166 appearing in the backtraces). Calling that library's functions
167 without waiting for the library to initialize would be racy. */
168 if (!any_objects_registered
)
169 __atomic_store_n (&any_objects_registered
, 1, __ATOMIC_RELAXED
);
172 __gthread_mutex_unlock (&object_mutex
);
176 __register_frame_info_table (void *begin
, struct object
*ob
)
178 __register_frame_info_table_bases (begin
, ob
, 0, 0);
182 __register_frame_table (void *begin
)
184 struct object
*ob
= malloc (sizeof (struct object
));
185 __register_frame_info_table (begin
, ob
);
188 /* Called from crtbegin.o to deregister the unwind info for an object. */
189 /* ??? Glibc has for a while now exported __register_frame_info and
190 __deregister_frame_info. If we call __register_frame_info_bases
191 from crtbegin (wherein it is declared weak), and this object does
192 not get pulled from libgcc.a for other reasons, then the
193 invocation of __deregister_frame_info will be resolved from glibc.
194 Since the registration did not happen there, we'll die.
196 Therefore, declare a new deregistration entry point that does the
197 exact same thing, but will resolve to the same library as
198 implements __register_frame_info_bases. */
201 __deregister_frame_info_bases (const void *begin
)
204 struct object
*ob
= 0;
206 /* If .eh_frame is empty, we haven't registered. */
207 if ((const uword
*) begin
== 0 || *(const uword
*) begin
== 0)
210 init_object_mutex_once ();
211 __gthread_mutex_lock (&object_mutex
);
213 for (p
= &unseen_objects
; *p
; p
= &(*p
)->next
)
214 if ((*p
)->u
.single
== begin
)
221 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
222 if ((*p
)->s
.b
.sorted
)
224 if ((*p
)->u
.sort
->orig_data
== begin
)
234 if ((*p
)->u
.single
== begin
)
243 __gthread_mutex_unlock (&object_mutex
);
249 __deregister_frame_info (const void *begin
)
251 return __deregister_frame_info_bases (begin
);
255 __deregister_frame (void *begin
)
257 /* If .eh_frame is empty, we haven't registered. */
258 if (*(uword
*) begin
!= 0)
259 free (__deregister_frame_info (begin
));
263 /* Like base_of_encoded_value, but take the base from a struct object
264 instead of an _Unwind_Context. */
267 base_from_object (unsigned char encoding
, struct object
*ob
)
269 if (encoding
== DW_EH_PE_omit
)
272 switch (encoding
& 0x70)
274 case DW_EH_PE_absptr
:
276 case DW_EH_PE_aligned
:
279 case DW_EH_PE_textrel
:
280 return (_Unwind_Ptr
) ob
->tbase
;
281 case DW_EH_PE_datarel
:
282 return (_Unwind_Ptr
) ob
->dbase
;
288 /* Return the FDE pointer encoding from the CIE. */
289 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
292 get_cie_encoding (const struct dwarf_cie
*cie
)
294 const unsigned char *aug
, *p
;
299 aug
= cie
->augmentation
;
300 p
= aug
+ strlen ((const char *)aug
) + 1; /* Skip the augmentation string. */
301 if (__builtin_expect (cie
->version
>= 4, 0))
303 if (p
[0] != sizeof (void *) || p
[1] != 0)
304 return DW_EH_PE_omit
; /* We are not prepared to handle unexpected
305 address sizes or segment selectors. */
306 p
+= 2; /* Skip address size and segment size. */
310 return DW_EH_PE_absptr
;
312 p
= read_uleb128 (p
, &utmp
); /* Skip code alignment. */
313 p
= read_sleb128 (p
, &stmp
); /* Skip data alignment. */
314 if (cie
->version
== 1) /* Skip return address column. */
317 p
= read_uleb128 (p
, &utmp
);
319 aug
++; /* Skip 'z' */
320 p
= read_uleb128 (p
, &utmp
); /* Skip augmentation length. */
323 /* This is what we're looking for. */
326 /* Personality encoding and pointer. */
327 else if (*aug
== 'P')
329 /* ??? Avoid dereferencing indirect pointers, since we're
330 faking the base address. Gotta keep DW_EH_PE_aligned
332 p
= read_encoded_value_with_base (*p
& 0x7F, 0, p
+ 1, &dummy
);
335 else if (*aug
== 'L')
337 /* aarch64 b-key pointer authentication. */
338 else if (*aug
== 'B')
340 /* Otherwise end of string, or unknown augmentation. */
342 return DW_EH_PE_absptr
;
348 get_fde_encoding (const struct dwarf_fde
*f
)
350 return get_cie_encoding (get_cie (f
));
354 /* Sorting an array of FDEs by address.
355 (Ideally we would have the linker sort the FDEs so we don't have to do
356 it at run time. But the linkers are not yet prepared for this.) */
358 /* Comparison routines. Three variants of increasing complexity. */
361 fde_unencoded_compare (struct object
*ob
__attribute__((unused
)),
362 const fde
*x
, const fde
*y
)
364 _Unwind_Ptr x_ptr
, y_ptr
;
365 memcpy (&x_ptr
, x
->pc_begin
, sizeof (_Unwind_Ptr
));
366 memcpy (&y_ptr
, y
->pc_begin
, sizeof (_Unwind_Ptr
));
376 fde_single_encoding_compare (struct object
*ob
, const fde
*x
, const fde
*y
)
378 _Unwind_Ptr base
, x_ptr
, y_ptr
;
380 base
= base_from_object (ob
->s
.b
.encoding
, ob
);
381 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, x
->pc_begin
, &x_ptr
);
382 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, y
->pc_begin
, &y_ptr
);
392 fde_mixed_encoding_compare (struct object
*ob
, const fde
*x
, const fde
*y
)
394 int x_encoding
, y_encoding
;
395 _Unwind_Ptr x_ptr
, y_ptr
;
397 x_encoding
= get_fde_encoding (x
);
398 read_encoded_value_with_base (x_encoding
, base_from_object (x_encoding
, ob
),
399 x
->pc_begin
, &x_ptr
);
401 y_encoding
= get_fde_encoding (y
);
402 read_encoded_value_with_base (y_encoding
, base_from_object (y_encoding
, ob
),
403 y
->pc_begin
, &y_ptr
);
412 typedef int (*fde_compare_t
) (struct object
*, const fde
*, const fde
*);
415 /* This is a special mix of insertion sort and heap sort, optimized for
416 the data sets that actually occur. They look like
417 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
418 I.e. a linearly increasing sequence (coming from functions in the text
419 section), with additionally a few unordered elements (coming from functions
420 in gnu_linkonce sections) whose values are higher than the values in the
421 surrounding linear sequence (but not necessarily higher than the values
422 at the end of the linear sequence!).
423 The worst-case total run time is O(N) + O(n log (n)), where N is the
424 total number of FDEs and n is the number of erratic ones. */
426 struct fde_accumulator
428 struct fde_vector
*linear
;
429 struct fde_vector
*erratic
;
433 start_fde_sort (struct fde_accumulator
*accu
, size_t count
)
439 size
= sizeof (struct fde_vector
) + sizeof (const fde
*) * count
;
440 if ((accu
->linear
= malloc (size
)))
442 accu
->linear
->count
= 0;
443 if ((accu
->erratic
= malloc (size
)))
444 accu
->erratic
->count
= 0;
452 fde_insert (struct fde_accumulator
*accu
, const fde
*this_fde
)
455 accu
->linear
->array
[accu
->linear
->count
++] = this_fde
;
458 /* Split LINEAR into a linear sequence with low values and an erratic
459 sequence with high values, put the linear one (of longest possible
460 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
462 Because the longest linear sequence we are trying to locate within the
463 incoming LINEAR array can be interspersed with (high valued) erratic
464 entries. We construct a chain indicating the sequenced entries.
465 To avoid having to allocate this chain, we overlay it onto the space of
466 the ERRATIC array during construction. A final pass iterates over the
467 chain to determine what should be placed in the ERRATIC array, and
468 what is the linear sequence. This overlay is safe from aliasing. */
471 fde_split (struct object
*ob
, fde_compare_t fde_compare
,
472 struct fde_vector
*linear
, struct fde_vector
*erratic
)
474 static const fde
*marker
;
475 size_t count
= linear
->count
;
476 const fde
*const *chain_end
= &marker
;
479 /* This should optimize out, but it is wise to make sure this assumption
480 is correct. Should these have different sizes, we cannot cast between
481 them and the overlaying onto ERRATIC will not work. */
482 gcc_assert (sizeof (const fde
*) == sizeof (const fde
**));
484 for (i
= 0; i
< count
; i
++)
486 const fde
*const *probe
;
488 for (probe
= chain_end
;
489 probe
!= &marker
&& fde_compare (ob
, linear
->array
[i
], *probe
) < 0;
492 chain_end
= (const fde
*const*) erratic
->array
[probe
- linear
->array
];
493 erratic
->array
[probe
- linear
->array
] = NULL
;
495 erratic
->array
[i
] = (const fde
*) chain_end
;
496 chain_end
= &linear
->array
[i
];
499 /* Each entry in LINEAR which is part of the linear sequence we have
500 discovered will correspond to a non-NULL entry in the chain we built in
501 the ERRATIC array. */
502 for (i
= j
= k
= 0; i
< count
; i
++)
503 if (erratic
->array
[i
])
504 linear
->array
[j
++] = linear
->array
[i
];
506 erratic
->array
[k
++] = linear
->array
[i
];
511 #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
513 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
514 for the first (root) node; push it down to its rightful place. */
517 frame_downheap (struct object
*ob
, fde_compare_t fde_compare
, const fde
**a
,
522 for (i
= lo
, j
= 2*i
+1;
526 if (j
+1 < hi
&& fde_compare (ob
, a
[j
], a
[j
+1]) < 0)
529 if (fde_compare (ob
, a
[i
], a
[j
]) < 0)
539 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
540 use a name that does not conflict. */
543 frame_heapsort (struct object
*ob
, fde_compare_t fde_compare
,
544 struct fde_vector
*erratic
)
546 /* For a description of this algorithm, see:
547 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
549 const fde
** a
= erratic
->array
;
550 /* A portion of the array is called a "heap" if for all i>=0:
551 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
552 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
553 size_t n
= erratic
->count
;
556 /* Expand our heap incrementally from the end of the array, heapifying
557 each resulting semi-heap as we go. After each step, a[m] is the top
559 for (m
= n
/2-1; m
>= 0; --m
)
560 frame_downheap (ob
, fde_compare
, a
, m
, n
);
562 /* Shrink our heap incrementally from the end of the array, first
563 swapping out the largest element a[0] and then re-heapifying the
564 resulting semi-heap. After each step, a[0..m) is a heap. */
565 for (m
= n
-1; m
>= 1; --m
)
568 frame_downheap (ob
, fde_compare
, a
, 0, m
);
573 /* Merge V1 and V2, both sorted, and put the result into V1. */
575 fde_merge (struct object
*ob
, fde_compare_t fde_compare
,
576 struct fde_vector
*v1
, struct fde_vector
*v2
)
588 fde2
= v2
->array
[i2
];
589 while (i1
> 0 && fde_compare (ob
, v1
->array
[i1
-1], fde2
) > 0)
591 v1
->array
[i1
+i2
] = v1
->array
[i1
-1];
594 v1
->array
[i1
+i2
] = fde2
;
597 v1
->count
+= v2
->count
;
602 end_fde_sort (struct object
*ob
, struct fde_accumulator
*accu
, size_t count
)
604 fde_compare_t fde_compare
;
606 gcc_assert (!accu
->linear
|| accu
->linear
->count
== count
);
608 if (ob
->s
.b
.mixed_encoding
)
609 fde_compare
= fde_mixed_encoding_compare
;
610 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
611 fde_compare
= fde_unencoded_compare
;
613 fde_compare
= fde_single_encoding_compare
;
617 fde_split (ob
, fde_compare
, accu
->linear
, accu
->erratic
);
618 gcc_assert (accu
->linear
->count
+ accu
->erratic
->count
== count
);
619 frame_heapsort (ob
, fde_compare
, accu
->erratic
);
620 fde_merge (ob
, fde_compare
, accu
->linear
, accu
->erratic
);
621 free (accu
->erratic
);
625 /* We've not managed to malloc an erratic array,
626 so heap sort in the linear one. */
627 frame_heapsort (ob
, fde_compare
, accu
->linear
);
632 /* Update encoding, mixed_encoding, and pc_begin for OB for the
633 fde array beginning at THIS_FDE. Return the number of fdes
634 encountered along the way. */
637 classify_object_over_fdes (struct object
*ob
, const fde
*this_fde
)
639 const struct dwarf_cie
*last_cie
= 0;
641 int encoding
= DW_EH_PE_absptr
;
642 _Unwind_Ptr base
= 0;
644 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
646 const struct dwarf_cie
*this_cie
;
647 _Unwind_Ptr mask
, pc_begin
;
650 if (this_fde
->CIE_delta
== 0)
653 /* Determine the encoding for this FDE. Note mixed encoded
654 objects for later. */
655 this_cie
= get_cie (this_fde
);
656 if (this_cie
!= last_cie
)
659 encoding
= get_cie_encoding (this_cie
);
660 if (encoding
== DW_EH_PE_omit
)
662 base
= base_from_object (encoding
, ob
);
663 if (ob
->s
.b
.encoding
== DW_EH_PE_omit
)
664 ob
->s
.b
.encoding
= encoding
;
665 else if (ob
->s
.b
.encoding
!= encoding
)
666 ob
->s
.b
.mixed_encoding
= 1;
669 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
672 /* Take care to ignore link-once functions that were removed.
673 In these cases, the function address will be NULL, but if
674 the encoding is smaller than a pointer a true NULL may not
675 be representable. Assume 0 in the representable bits is NULL. */
676 mask
= size_of_encoded_value (encoding
);
677 if (mask
< sizeof (void *))
678 mask
= (((_Unwind_Ptr
) 1) << (mask
<< 3)) - 1;
682 if ((pc_begin
& mask
) == 0)
686 if ((void *) pc_begin
< ob
->pc_begin
)
687 ob
->pc_begin
= (void *) pc_begin
;
694 add_fdes (struct object
*ob
, struct fde_accumulator
*accu
, const fde
*this_fde
)
696 const struct dwarf_cie
*last_cie
= 0;
697 int encoding
= ob
->s
.b
.encoding
;
698 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
700 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
702 const struct dwarf_cie
*this_cie
;
705 if (this_fde
->CIE_delta
== 0)
708 if (ob
->s
.b
.mixed_encoding
)
710 /* Determine the encoding for this FDE. Note mixed encoded
711 objects for later. */
712 this_cie
= get_cie (this_fde
);
713 if (this_cie
!= last_cie
)
716 encoding
= get_cie_encoding (this_cie
);
717 base
= base_from_object (encoding
, ob
);
721 if (encoding
== DW_EH_PE_absptr
)
724 memcpy (&ptr
, this_fde
->pc_begin
, sizeof (_Unwind_Ptr
));
730 _Unwind_Ptr pc_begin
, mask
;
732 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
735 /* Take care to ignore link-once functions that were removed.
736 In these cases, the function address will be NULL, but if
737 the encoding is smaller than a pointer a true NULL may not
738 be representable. Assume 0 in the representable bits is NULL. */
739 mask
= size_of_encoded_value (encoding
);
740 if (mask
< sizeof (void *))
741 mask
= (((_Unwind_Ptr
) 1) << (mask
<< 3)) - 1;
745 if ((pc_begin
& mask
) == 0)
749 fde_insert (accu
, this_fde
);
753 /* Set up a sorted array of pointers to FDEs for a loaded object. We
754 count up the entries before allocating the array because it's likely to
755 be faster. We can be called multiple times, should we have failed to
756 allocate a sorted fde array on a previous occasion. */
759 init_object (struct object
* ob
)
761 struct fde_accumulator accu
;
764 count
= ob
->s
.b
.count
;
767 if (ob
->s
.b
.from_array
)
769 fde
**p
= ob
->u
.array
;
770 for (count
= 0; *p
; ++p
)
772 size_t cur_count
= classify_object_over_fdes (ob
, *p
);
773 if (cur_count
== (size_t) -1)
780 count
= classify_object_over_fdes (ob
, ob
->u
.single
);
781 if (count
== (size_t) -1)
783 static const fde terminator
;
786 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
787 ob
->u
.single
= &terminator
;
792 /* The count field we have in the main struct object is somewhat
793 limited, but should suffice for virtually all cases. If the
794 counted value doesn't fit, re-write a zero. The worst that
795 happens is that we re-count next time -- admittedly non-trivial
796 in that this implies some 2M fdes, but at least we function. */
797 ob
->s
.b
.count
= count
;
798 if (ob
->s
.b
.count
!= count
)
802 if (!start_fde_sort (&accu
, count
))
805 if (ob
->s
.b
.from_array
)
808 for (p
= ob
->u
.array
; *p
; ++p
)
809 add_fdes (ob
, &accu
, *p
);
812 add_fdes (ob
, &accu
, ob
->u
.single
);
814 end_fde_sort (ob
, &accu
, count
);
816 /* Save the original fde pointer, since this is the key by which the
817 DSO will deregister the object. */
818 accu
.linear
->orig_data
= ob
->u
.single
;
819 ob
->u
.sort
= accu
.linear
;
824 /* A linear search through a set of FDEs for the given PC. This is
825 used when there was insufficient memory to allocate and sort an
829 linear_search_fdes (struct object
*ob
, const fde
*this_fde
, void *pc
)
831 const struct dwarf_cie
*last_cie
= 0;
832 int encoding
= ob
->s
.b
.encoding
;
833 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
835 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
837 const struct dwarf_cie
*this_cie
;
838 _Unwind_Ptr pc_begin
, pc_range
;
841 if (this_fde
->CIE_delta
== 0)
844 if (ob
->s
.b
.mixed_encoding
)
846 /* Determine the encoding for this FDE. Note mixed encoded
847 objects for later. */
848 this_cie
= get_cie (this_fde
);
849 if (this_cie
!= last_cie
)
852 encoding
= get_cie_encoding (this_cie
);
853 base
= base_from_object (encoding
, ob
);
857 if (encoding
== DW_EH_PE_absptr
)
859 const _Unwind_Ptr
*pc_array
= (const _Unwind_Ptr
*) this_fde
->pc_begin
;
860 pc_begin
= pc_array
[0];
861 pc_range
= pc_array
[1];
868 const unsigned char *p
;
870 p
= read_encoded_value_with_base (encoding
, base
,
871 this_fde
->pc_begin
, &pc_begin
);
872 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
874 /* Take care to ignore link-once functions that were removed.
875 In these cases, the function address will be NULL, but if
876 the encoding is smaller than a pointer a true NULL may not
877 be representable. Assume 0 in the representable bits is NULL. */
878 mask
= size_of_encoded_value (encoding
);
879 if (mask
< sizeof (void *))
880 mask
= (((_Unwind_Ptr
) 1) << (mask
<< 3)) - 1;
884 if ((pc_begin
& mask
) == 0)
888 if ((_Unwind_Ptr
) pc
- pc_begin
< pc_range
)
895 /* Binary search for an FDE containing the given PC. Here are three
896 implementations of increasing complexity. */
898 static inline const fde
*
899 binary_search_unencoded_fdes (struct object
*ob
, void *pc
)
901 struct fde_vector
*vec
= ob
->u
.sort
;
904 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
906 size_t i
= (lo
+ hi
) / 2;
907 const fde
*const f
= vec
->array
[i
];
910 memcpy (&pc_begin
, (const void * const *) f
->pc_begin
, sizeof (void *));
911 memcpy (&pc_range
, (const uaddr
*) f
->pc_begin
+ 1, sizeof (uaddr
));
915 else if (pc
>= pc_begin
+ pc_range
)
924 static inline const fde
*
925 binary_search_single_encoding_fdes (struct object
*ob
, void *pc
)
927 struct fde_vector
*vec
= ob
->u
.sort
;
928 int encoding
= ob
->s
.b
.encoding
;
929 _Unwind_Ptr base
= base_from_object (encoding
, ob
);
932 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
934 size_t i
= (lo
+ hi
) / 2;
935 const fde
*f
= vec
->array
[i
];
936 _Unwind_Ptr pc_begin
, pc_range
;
937 const unsigned char *p
;
939 p
= read_encoded_value_with_base (encoding
, base
, f
->pc_begin
,
941 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
943 if ((_Unwind_Ptr
) pc
< pc_begin
)
945 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
954 static inline const fde
*
955 binary_search_mixed_encoding_fdes (struct object
*ob
, void *pc
)
957 struct fde_vector
*vec
= ob
->u
.sort
;
960 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
962 size_t i
= (lo
+ hi
) / 2;
963 const fde
*f
= vec
->array
[i
];
964 _Unwind_Ptr pc_begin
, pc_range
;
965 const unsigned char *p
;
968 encoding
= get_fde_encoding (f
);
969 p
= read_encoded_value_with_base (encoding
,
970 base_from_object (encoding
, ob
),
971 f
->pc_begin
, &pc_begin
);
972 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
974 if ((_Unwind_Ptr
) pc
< pc_begin
)
976 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
986 search_object (struct object
* ob
, void *pc
)
988 /* If the data hasn't been sorted, try to do this now. We may have
989 more memory available than last time we tried. */
990 if (! ob
->s
.b
.sorted
)
994 /* Despite the above comment, the normal reason to get here is
995 that we've not processed this object before. A quick range
996 check is in order. */
997 if (pc
< ob
->pc_begin
)
1003 if (ob
->s
.b
.mixed_encoding
)
1004 return binary_search_mixed_encoding_fdes (ob
, pc
);
1005 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
1006 return binary_search_unencoded_fdes (ob
, pc
);
1008 return binary_search_single_encoding_fdes (ob
, pc
);
1012 /* Long slow laborious linear search, cos we've no memory. */
1013 if (ob
->s
.b
.from_array
)
1016 for (p
= ob
->u
.array
; *p
; p
++)
1018 const fde
*f
= linear_search_fdes (ob
, *p
, pc
);
1025 return linear_search_fdes (ob
, ob
->u
.single
, pc
);
1030 _Unwind_Find_FDE (void *pc
, struct dwarf_eh_bases
*bases
)
1033 const fde
*f
= NULL
;
1035 #ifdef ATOMIC_FDE_FAST_PATH
1036 /* For targets where unwind info is usually not registered through these
1037 APIs anymore, avoid taking a global lock.
1038 Use relaxed MO here, it is up to the app to ensure that the library
1039 loading/initialization happens-before using that library in other
1040 threads (in particular unwinding with that library's functions
1041 appearing in the backtraces). Calling that library's functions
1042 without waiting for the library to initialize would be racy. */
1043 if (__builtin_expect (!__atomic_load_n (&any_objects_registered
,
1044 __ATOMIC_RELAXED
), 1))
1048 init_object_mutex_once ();
1049 __gthread_mutex_lock (&object_mutex
);
1051 /* Linear search through the classified objects, to find the one
1052 containing the pc. Note that pc_begin is sorted descending, and
1053 we expect objects to be non-overlapping. */
1054 for (ob
= seen_objects
; ob
; ob
= ob
->next
)
1055 if (pc
>= ob
->pc_begin
)
1057 f
= search_object (ob
, pc
);
1063 /* Classify and search the objects we've not yet processed. */
1064 while ((ob
= unseen_objects
))
1068 unseen_objects
= ob
->next
;
1069 f
= search_object (ob
, pc
);
1071 /* Insert the object into the classified list. */
1072 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
1073 if ((*p
)->pc_begin
< ob
->pc_begin
)
1083 __gthread_mutex_unlock (&object_mutex
);
1090 bases
->tbase
= ob
->tbase
;
1091 bases
->dbase
= ob
->dbase
;
1093 encoding
= ob
->s
.b
.encoding
;
1094 if (ob
->s
.b
.mixed_encoding
)
1095 encoding
= get_fde_encoding (f
);
1096 read_encoded_value_with_base (encoding
, base_from_object (encoding
, ob
),
1097 f
->pc_begin
, &func
);
1098 bases
->func
= (void *) func
;