Daily bump.
[official-gcc.git] / gcc / emit-rtl.c
blobaa9e96584a14bf35dd57052a8676675e40ad63e4
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* Datastructures maintained for currently processed function in RTL form. */
71 struct rtl_data x_rtl;
73 /* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
78 rtx * regno_reg_rtx;
80 /* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
83 static GTY(()) int label_num = 1;
85 /* Nonzero means do not generate NOTEs for source line numbers. */
87 static int no_line_numbers;
89 /* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
94 rtx global_rtl[GR_MAX];
96 /* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
106 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108 rtx const_true_rtx;
110 REAL_VALUE_TYPE dconst0;
111 REAL_VALUE_TYPE dconst1;
112 REAL_VALUE_TYPE dconst2;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconsthalf;
116 /* Record fixed-point constant 0 and 1. */
117 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 /* A hash table storing all CONST_FIXEDs. */
172 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
175 #define first_insn (crtl->emit.x_first_insn)
176 #define last_insn (crtl->emit.x_last_insn)
177 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static tree component_ref_for_mem_expr (tree);
201 static rtx gen_const_vector (enum machine_mode, int);
202 static void copy_rtx_if_shared_1 (rtx *orig);
204 /* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206 int split_branch_probability = -1;
208 /* Returns a hash code for X (which is a really a CONST_INT). */
210 static hashval_t
211 const_int_htab_hash (const void *x)
213 return (hashval_t) INTVAL ((const_rtx) x);
216 /* Returns nonzero if the value represented by X (which is really a
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
220 static int
221 const_int_htab_eq (const void *x, const void *y)
223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
226 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
227 static hashval_t
228 const_double_htab_hash (const void *x)
230 const_rtx const value = (const_rtx) x;
231 hashval_t h;
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
241 return h;
244 /* Returns nonzero if the value represented by X (really a ...)
245 is the same as that represented by Y (really a ...) */
246 static int
247 const_double_htab_eq (const void *x, const void *y)
249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
261 /* Returns a hash code for X (which is really a CONST_FIXED). */
263 static hashval_t
264 const_fixed_htab_hash (const void *x)
266 const_rtx const value = (const_rtx) x;
267 hashval_t h;
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
275 /* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
278 static int
279 const_fixed_htab_eq (const void *x, const void *y)
281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
288 /* Returns a hash code for X (which is a really a mem_attrs *). */
290 static hashval_t
291 mem_attrs_htab_hash (const void *x)
293 const mem_attrs *const p = (const mem_attrs *) x;
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
318 /* Allocate a new mem_attrs structure and insert it into the hash table if
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
322 static mem_attrs *
323 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
324 unsigned int align, enum machine_mode mode)
326 mem_attrs attrs;
327 void **slot;
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
332 if (alias == 0 && expr == 0 && offset == 0
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
337 return 0;
339 attrs.alias = alias;
340 attrs.expr = expr;
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 return *slot;
355 /* Returns a hash code for X (which is a really a reg_attrs *). */
357 static hashval_t
358 reg_attrs_htab_hash (const void *x)
360 const reg_attrs *const p = (const reg_attrs *) x;
362 return ((p->offset * 1000) ^ (long) p->decl);
365 /* Returns nonzero if the value represented by X (which is really a
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
369 static int
370 reg_attrs_htab_eq (const void *x, const void *y)
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
375 return (p->decl == q->decl && p->offset == q->offset);
377 /* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
381 static reg_attrs *
382 get_reg_attrs (tree decl, int offset)
384 reg_attrs attrs;
385 void **slot;
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
391 attrs.decl = decl;
392 attrs.offset = offset;
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 return *slot;
405 #if !HAVE_blockage
406 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
410 gen_blockage (void)
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
416 #endif
419 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
424 gen_raw_REG (enum machine_mode mode, int regno)
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
431 /* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
436 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
438 void **slot;
440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
443 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446 #endif
448 /* Look up the CONST_INT in the hash table. */
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
451 if (*slot == 0)
452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
454 return (rtx) *slot;
458 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
460 return GEN_INT (trunc_int_for_mode (c, mode));
463 /* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
467 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470 static rtx
471 lookup_const_double (rtx real)
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
477 return (rtx) *slot;
480 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
483 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
488 real->u.rv = value;
490 return lookup_const_double (real);
493 /* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
497 static rtx
498 lookup_const_fixed (rtx fixed)
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
504 return (rtx) *slot;
507 /* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
511 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
516 fixed->u.fv = value;
518 return lookup_const_fixed (fixed);
521 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
529 rtx value;
530 unsigned int i;
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
542 if (mode != VOIDmode)
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
570 return lookup_const_double (value);
574 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
590 if (mode == Pmode && !reload_in_progress)
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return frame_pointer_rtx;
595 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
598 return hard_frame_pointer_rtx;
599 #endif
600 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
601 if (regno == ARG_POINTER_REGNUM)
602 return arg_pointer_rtx;
603 #endif
604 #ifdef RETURN_ADDRESS_POINTER_REGNUM
605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
606 return return_address_pointer_rtx;
607 #endif
608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
610 return pic_offset_table_rtx;
611 if (regno == STACK_POINTER_REGNUM)
612 return stack_pointer_rtx;
615 #if 0
616 /* If the per-function register table has been set up, try to re-use
617 an existing entry in that table to avoid useless generation of RTL.
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
622 on the amount of useless RTL that gets generated.
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
633 #endif
635 return gen_raw_REG (mode, regno);
639 gen_rtx_MEM (enum machine_mode mode, rtx addr)
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
645 MEM_ATTRS (rt) = 0;
647 return rt;
650 /* Generate a memory referring to non-trapping constant memory. */
653 gen_const_mem (enum machine_mode mode, rtx addr)
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
661 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
665 gen_frame_mem (enum machine_mode mode, rtx addr)
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
673 /* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
677 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
681 if (!current_function_calls_alloca)
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
686 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
689 bool
690 validate_subreg (enum machine_mode omode, enum machine_mode imode,
691 const_rtx reg, unsigned int offset)
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
731 if (isize != osize)
732 return false;
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
739 /* This is a normal subreg. Verify that the offset is representable. */
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
745 unsigned int regno = REGNO (reg);
747 #ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
753 #endif
755 return subreg_offset_representable_p (regno, imode, offset, omode);
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
771 return true;
775 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
778 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 /* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
787 enum machine_mode inmode;
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
796 /* gen_rtvec (n, [rt1, ..., rtn])
798 ** This routine creates an rtvec and stores within it the
799 ** pointers to rtx's which are its arguments.
802 /*VARARGS1*/
803 rtvec
804 gen_rtvec (int n, ...)
806 int i, save_n;
807 rtx *vector;
808 va_list p;
810 va_start (p, n);
812 if (n == 0)
813 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
815 vector = alloca (n * sizeof (rtx));
817 for (i = 0; i < n; i++)
818 vector[i] = va_arg (p, rtx);
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
821 save_n = n;
822 va_end (p);
824 return gen_rtvec_v (save_n, vector);
827 rtvec
828 gen_rtvec_v (int n, rtx *argp)
830 int i;
831 rtvec rt_val;
833 if (n == 0)
834 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
836 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
838 for (i = 0; i < n; i++)
839 rt_val->elem[i] = *argp++;
841 return rt_val;
844 /* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
851 byte_lowpart_offset (enum machine_mode outer_mode,
852 enum machine_mode inner_mode)
854 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
855 return subreg_lowpart_offset (outer_mode, inner_mode);
856 else
857 return -subreg_lowpart_offset (inner_mode, outer_mode);
860 /* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
864 gen_reg_rtx (enum machine_mode mode)
866 rtx val;
868 gcc_assert (can_create_pseudo_p ());
870 if (generating_concat_p
871 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
872 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
874 /* For complex modes, don't make a single pseudo.
875 Instead, make a CONCAT of two pseudos.
876 This allows noncontiguous allocation of the real and imaginary parts,
877 which makes much better code. Besides, allocating DCmode
878 pseudos overstrains reload on some machines like the 386. */
879 rtx realpart, imagpart;
880 enum machine_mode partmode = GET_MODE_INNER (mode);
882 realpart = gen_reg_rtx (partmode);
883 imagpart = gen_reg_rtx (partmode);
884 return gen_rtx_CONCAT (mode, realpart, imagpart);
887 /* Make sure regno_pointer_align, and regno_reg_rtx are large
888 enough to have an element for this pseudo reg number. */
890 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
892 int old_size = crtl->emit.regno_pointer_align_length;
893 char *new;
894 rtx *new1;
896 new = xrealloc (crtl->emit.regno_pointer_align, old_size * 2);
897 memset (new + old_size, 0, old_size);
898 crtl->emit.regno_pointer_align = (unsigned char *) new;
900 new1 = ggc_realloc (regno_reg_rtx,
901 old_size * 2 * sizeof (rtx));
902 memset (new1 + old_size, 0, old_size * sizeof (rtx));
903 regno_reg_rtx = new1;
905 crtl->emit.regno_pointer_align_length = old_size * 2;
908 val = gen_raw_REG (mode, reg_rtx_no);
909 regno_reg_rtx[reg_rtx_no++] = val;
910 return val;
913 /* Update NEW with the same attributes as REG, but with OFFSET added
914 to the REG_OFFSET. */
916 static void
917 update_reg_offset (rtx new, rtx reg, int offset)
919 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
920 REG_OFFSET (reg) + offset);
923 /* Generate a register with same attributes as REG, but with OFFSET
924 added to the REG_OFFSET. */
927 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
928 int offset)
930 rtx new = gen_rtx_REG (mode, regno);
932 update_reg_offset (new, reg, offset);
933 return new;
936 /* Generate a new pseudo-register with the same attributes as REG, but
937 with OFFSET added to the REG_OFFSET. */
940 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
942 rtx new = gen_reg_rtx (mode);
944 update_reg_offset (new, reg, offset);
945 return new;
948 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
949 new register is a (possibly paradoxical) lowpart of the old one. */
951 void
952 adjust_reg_mode (rtx reg, enum machine_mode mode)
954 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
955 PUT_MODE (reg, mode);
958 /* Copy REG's attributes from X, if X has any attributes. If REG and X
959 have different modes, REG is a (possibly paradoxical) lowpart of X. */
961 void
962 set_reg_attrs_from_value (rtx reg, rtx x)
964 int offset;
966 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
967 if (MEM_P (x))
969 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
970 REG_ATTRS (reg)
971 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
972 if (MEM_POINTER (x))
973 mark_reg_pointer (reg, MEM_ALIGN (x));
975 else if (REG_P (x))
977 if (REG_ATTRS (x))
978 update_reg_offset (reg, x, offset);
979 if (REG_POINTER (x))
980 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
984 /* Generate a REG rtx for a new pseudo register, copying the mode
985 and attributes from X. */
988 gen_reg_rtx_and_attrs (rtx x)
990 rtx reg = gen_reg_rtx (GET_MODE (x));
991 set_reg_attrs_from_value (reg, x);
992 return reg;
995 /* Set the register attributes for registers contained in PARM_RTX.
996 Use needed values from memory attributes of MEM. */
998 void
999 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1001 if (REG_P (parm_rtx))
1002 set_reg_attrs_from_value (parm_rtx, mem);
1003 else if (GET_CODE (parm_rtx) == PARALLEL)
1005 /* Check for a NULL entry in the first slot, used to indicate that the
1006 parameter goes both on the stack and in registers. */
1007 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1008 for (; i < XVECLEN (parm_rtx, 0); i++)
1010 rtx x = XVECEXP (parm_rtx, 0, i);
1011 if (REG_P (XEXP (x, 0)))
1012 REG_ATTRS (XEXP (x, 0))
1013 = get_reg_attrs (MEM_EXPR (mem),
1014 INTVAL (XEXP (x, 1)));
1019 /* Set the REG_ATTRS for registers in value X, given that X represents
1020 decl T. */
1022 static void
1023 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1025 if (GET_CODE (x) == SUBREG)
1027 gcc_assert (subreg_lowpart_p (x));
1028 x = SUBREG_REG (x);
1030 if (REG_P (x))
1031 REG_ATTRS (x)
1032 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1033 DECL_MODE (t)));
1034 if (GET_CODE (x) == CONCAT)
1036 if (REG_P (XEXP (x, 0)))
1037 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1038 if (REG_P (XEXP (x, 1)))
1039 REG_ATTRS (XEXP (x, 1))
1040 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1042 if (GET_CODE (x) == PARALLEL)
1044 int i, start;
1046 /* Check for a NULL entry, used to indicate that the parameter goes
1047 both on the stack and in registers. */
1048 if (XEXP (XVECEXP (x, 0, 0), 0))
1049 start = 0;
1050 else
1051 start = 1;
1053 for (i = start; i < XVECLEN (x, 0); i++)
1055 rtx y = XVECEXP (x, 0, i);
1056 if (REG_P (XEXP (y, 0)))
1057 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1062 /* Assign the RTX X to declaration T. */
1064 void
1065 set_decl_rtl (tree t, rtx x)
1067 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1068 if (x)
1069 set_reg_attrs_for_decl_rtl (t, x);
1072 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1073 if the ABI requires the parameter to be passed by reference. */
1075 void
1076 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1078 DECL_INCOMING_RTL (t) = x;
1079 if (x && !by_reference_p)
1080 set_reg_attrs_for_decl_rtl (t, x);
1083 /* Identify REG (which may be a CONCAT) as a user register. */
1085 void
1086 mark_user_reg (rtx reg)
1088 if (GET_CODE (reg) == CONCAT)
1090 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1091 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1093 else
1095 gcc_assert (REG_P (reg));
1096 REG_USERVAR_P (reg) = 1;
1100 /* Identify REG as a probable pointer register and show its alignment
1101 as ALIGN, if nonzero. */
1103 void
1104 mark_reg_pointer (rtx reg, int align)
1106 if (! REG_POINTER (reg))
1108 REG_POINTER (reg) = 1;
1110 if (align)
1111 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1113 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1114 /* We can no-longer be sure just how aligned this pointer is. */
1115 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1118 /* Return 1 plus largest pseudo reg number used in the current function. */
1121 max_reg_num (void)
1123 return reg_rtx_no;
1126 /* Return 1 + the largest label number used so far in the current function. */
1129 max_label_num (void)
1131 return label_num;
1134 /* Return first label number used in this function (if any were used). */
1137 get_first_label_num (void)
1139 return first_label_num;
1142 /* If the rtx for label was created during the expansion of a nested
1143 function, then first_label_num won't include this label number.
1144 Fix this now so that array indicies work later. */
1146 void
1147 maybe_set_first_label_num (rtx x)
1149 if (CODE_LABEL_NUMBER (x) < first_label_num)
1150 first_label_num = CODE_LABEL_NUMBER (x);
1153 /* Return a value representing some low-order bits of X, where the number
1154 of low-order bits is given by MODE. Note that no conversion is done
1155 between floating-point and fixed-point values, rather, the bit
1156 representation is returned.
1158 This function handles the cases in common between gen_lowpart, below,
1159 and two variants in cse.c and combine.c. These are the cases that can
1160 be safely handled at all points in the compilation.
1162 If this is not a case we can handle, return 0. */
1165 gen_lowpart_common (enum machine_mode mode, rtx x)
1167 int msize = GET_MODE_SIZE (mode);
1168 int xsize;
1169 int offset = 0;
1170 enum machine_mode innermode;
1172 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1173 so we have to make one up. Yuk. */
1174 innermode = GET_MODE (x);
1175 if (GET_CODE (x) == CONST_INT
1176 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1177 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1178 else if (innermode == VOIDmode)
1179 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1181 xsize = GET_MODE_SIZE (innermode);
1183 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1185 if (innermode == mode)
1186 return x;
1188 /* MODE must occupy no more words than the mode of X. */
1189 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1190 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1191 return 0;
1193 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1194 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1195 return 0;
1197 offset = subreg_lowpart_offset (mode, innermode);
1199 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1200 && (GET_MODE_CLASS (mode) == MODE_INT
1201 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1203 /* If we are getting the low-order part of something that has been
1204 sign- or zero-extended, we can either just use the object being
1205 extended or make a narrower extension. If we want an even smaller
1206 piece than the size of the object being extended, call ourselves
1207 recursively.
1209 This case is used mostly by combine and cse. */
1211 if (GET_MODE (XEXP (x, 0)) == mode)
1212 return XEXP (x, 0);
1213 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1214 return gen_lowpart_common (mode, XEXP (x, 0));
1215 else if (msize < xsize)
1216 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1218 else if (GET_CODE (x) == SUBREG || REG_P (x)
1219 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1220 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1221 return simplify_gen_subreg (mode, x, innermode, offset);
1223 /* Otherwise, we can't do this. */
1224 return 0;
1228 gen_highpart (enum machine_mode mode, rtx x)
1230 unsigned int msize = GET_MODE_SIZE (mode);
1231 rtx result;
1233 /* This case loses if X is a subreg. To catch bugs early,
1234 complain if an invalid MODE is used even in other cases. */
1235 gcc_assert (msize <= UNITS_PER_WORD
1236 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1238 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1239 subreg_highpart_offset (mode, GET_MODE (x)));
1240 gcc_assert (result);
1242 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1243 the target if we have a MEM. gen_highpart must return a valid operand,
1244 emitting code if necessary to do so. */
1245 if (MEM_P (result))
1247 result = validize_mem (result);
1248 gcc_assert (result);
1251 return result;
1254 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1255 be VOIDmode constant. */
1257 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1259 if (GET_MODE (exp) != VOIDmode)
1261 gcc_assert (GET_MODE (exp) == innermode);
1262 return gen_highpart (outermode, exp);
1264 return simplify_gen_subreg (outermode, exp, innermode,
1265 subreg_highpart_offset (outermode, innermode));
1268 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1270 unsigned int
1271 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1273 unsigned int offset = 0;
1274 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1276 if (difference > 0)
1278 if (WORDS_BIG_ENDIAN)
1279 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1280 if (BYTES_BIG_ENDIAN)
1281 offset += difference % UNITS_PER_WORD;
1284 return offset;
1287 /* Return offset in bytes to get OUTERMODE high part
1288 of the value in mode INNERMODE stored in memory in target format. */
1289 unsigned int
1290 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1292 unsigned int offset = 0;
1293 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1295 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1297 if (difference > 0)
1299 if (! WORDS_BIG_ENDIAN)
1300 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1301 if (! BYTES_BIG_ENDIAN)
1302 offset += difference % UNITS_PER_WORD;
1305 return offset;
1308 /* Return 1 iff X, assumed to be a SUBREG,
1309 refers to the least significant part of its containing reg.
1310 If X is not a SUBREG, always return 1 (it is its own low part!). */
1313 subreg_lowpart_p (const_rtx x)
1315 if (GET_CODE (x) != SUBREG)
1316 return 1;
1317 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1318 return 0;
1320 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1321 == SUBREG_BYTE (x));
1324 /* Return subword OFFSET of operand OP.
1325 The word number, OFFSET, is interpreted as the word number starting
1326 at the low-order address. OFFSET 0 is the low-order word if not
1327 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1329 If we cannot extract the required word, we return zero. Otherwise,
1330 an rtx corresponding to the requested word will be returned.
1332 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1333 reload has completed, a valid address will always be returned. After
1334 reload, if a valid address cannot be returned, we return zero.
1336 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1337 it is the responsibility of the caller.
1339 MODE is the mode of OP in case it is a CONST_INT.
1341 ??? This is still rather broken for some cases. The problem for the
1342 moment is that all callers of this thing provide no 'goal mode' to
1343 tell us to work with. This exists because all callers were written
1344 in a word based SUBREG world.
1345 Now use of this function can be deprecated by simplify_subreg in most
1346 cases.
1350 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1352 if (mode == VOIDmode)
1353 mode = GET_MODE (op);
1355 gcc_assert (mode != VOIDmode);
1357 /* If OP is narrower than a word, fail. */
1358 if (mode != BLKmode
1359 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1360 return 0;
1362 /* If we want a word outside OP, return zero. */
1363 if (mode != BLKmode
1364 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1365 return const0_rtx;
1367 /* Form a new MEM at the requested address. */
1368 if (MEM_P (op))
1370 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1372 if (! validate_address)
1373 return new;
1375 else if (reload_completed)
1377 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1378 return 0;
1380 else
1381 return replace_equiv_address (new, XEXP (new, 0));
1384 /* Rest can be handled by simplify_subreg. */
1385 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1388 /* Similar to `operand_subword', but never return 0. If we can't
1389 extract the required subword, put OP into a register and try again.
1390 The second attempt must succeed. We always validate the address in
1391 this case.
1393 MODE is the mode of OP, in case it is CONST_INT. */
1396 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1398 rtx result = operand_subword (op, offset, 1, mode);
1400 if (result)
1401 return result;
1403 if (mode != BLKmode && mode != VOIDmode)
1405 /* If this is a register which can not be accessed by words, copy it
1406 to a pseudo register. */
1407 if (REG_P (op))
1408 op = copy_to_reg (op);
1409 else
1410 op = force_reg (mode, op);
1413 result = operand_subword (op, offset, 1, mode);
1414 gcc_assert (result);
1416 return result;
1419 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1420 or (2) a component ref of something variable. Represent the later with
1421 a NULL expression. */
1423 static tree
1424 component_ref_for_mem_expr (tree ref)
1426 tree inner = TREE_OPERAND (ref, 0);
1428 if (TREE_CODE (inner) == COMPONENT_REF)
1429 inner = component_ref_for_mem_expr (inner);
1430 else
1432 /* Now remove any conversions: they don't change what the underlying
1433 object is. Likewise for SAVE_EXPR. */
1434 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1435 || TREE_CODE (inner) == NON_LVALUE_EXPR
1436 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1437 || TREE_CODE (inner) == SAVE_EXPR)
1438 inner = TREE_OPERAND (inner, 0);
1440 if (! DECL_P (inner))
1441 inner = NULL_TREE;
1444 if (inner == TREE_OPERAND (ref, 0))
1445 return ref;
1446 else
1447 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1448 TREE_OPERAND (ref, 1), NULL_TREE);
1451 /* Returns 1 if both MEM_EXPR can be considered equal
1452 and 0 otherwise. */
1455 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1457 if (expr1 == expr2)
1458 return 1;
1460 if (! expr1 || ! expr2)
1461 return 0;
1463 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1464 return 0;
1466 if (TREE_CODE (expr1) == COMPONENT_REF)
1467 return
1468 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1469 TREE_OPERAND (expr2, 0))
1470 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1471 TREE_OPERAND (expr2, 1));
1473 if (INDIRECT_REF_P (expr1))
1474 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1475 TREE_OPERAND (expr2, 0));
1477 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1478 have been resolved here. */
1479 gcc_assert (DECL_P (expr1));
1481 /* Decls with different pointers can't be equal. */
1482 return 0;
1485 /* Given REF, a MEM, and T, either the type of X or the expression
1486 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1487 if we are making a new object of this type. BITPOS is nonzero if
1488 there is an offset outstanding on T that will be applied later. */
1490 void
1491 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1492 HOST_WIDE_INT bitpos)
1494 alias_set_type alias = MEM_ALIAS_SET (ref);
1495 tree expr = MEM_EXPR (ref);
1496 rtx offset = MEM_OFFSET (ref);
1497 rtx size = MEM_SIZE (ref);
1498 unsigned int align = MEM_ALIGN (ref);
1499 HOST_WIDE_INT apply_bitpos = 0;
1500 tree type;
1502 /* It can happen that type_for_mode was given a mode for which there
1503 is no language-level type. In which case it returns NULL, which
1504 we can see here. */
1505 if (t == NULL_TREE)
1506 return;
1508 type = TYPE_P (t) ? t : TREE_TYPE (t);
1509 if (type == error_mark_node)
1510 return;
1512 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1513 wrong answer, as it assumes that DECL_RTL already has the right alias
1514 info. Callers should not set DECL_RTL until after the call to
1515 set_mem_attributes. */
1516 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1518 /* Get the alias set from the expression or type (perhaps using a
1519 front-end routine) and use it. */
1520 alias = get_alias_set (t);
1522 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1523 MEM_IN_STRUCT_P (ref)
1524 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1525 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1527 /* If we are making an object of this type, or if this is a DECL, we know
1528 that it is a scalar if the type is not an aggregate. */
1529 if ((objectp || DECL_P (t))
1530 && ! AGGREGATE_TYPE_P (type)
1531 && TREE_CODE (type) != COMPLEX_TYPE)
1532 MEM_SCALAR_P (ref) = 1;
1534 /* We can set the alignment from the type if we are making an object,
1535 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1536 if (objectp || TREE_CODE (t) == INDIRECT_REF
1537 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1538 || TYPE_ALIGN_OK (type))
1539 align = MAX (align, TYPE_ALIGN (type));
1540 else
1541 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1543 if (integer_zerop (TREE_OPERAND (t, 1)))
1544 /* We don't know anything about the alignment. */
1545 align = BITS_PER_UNIT;
1546 else
1547 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1550 /* If the size is known, we can set that. */
1551 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1552 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1554 /* If T is not a type, we may be able to deduce some more information about
1555 the expression. */
1556 if (! TYPE_P (t))
1558 tree base;
1560 if (TREE_THIS_VOLATILE (t))
1561 MEM_VOLATILE_P (ref) = 1;
1563 /* Now remove any conversions: they don't change what the underlying
1564 object is. Likewise for SAVE_EXPR. */
1565 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1566 || TREE_CODE (t) == NON_LVALUE_EXPR
1567 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1568 || TREE_CODE (t) == SAVE_EXPR)
1569 t = TREE_OPERAND (t, 0);
1571 /* We may look through structure-like accesses for the purposes of
1572 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1573 base = t;
1574 while (TREE_CODE (base) == COMPONENT_REF
1575 || TREE_CODE (base) == REALPART_EXPR
1576 || TREE_CODE (base) == IMAGPART_EXPR
1577 || TREE_CODE (base) == BIT_FIELD_REF)
1578 base = TREE_OPERAND (base, 0);
1580 if (DECL_P (base))
1582 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1583 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1584 else
1585 MEM_NOTRAP_P (ref) = 1;
1587 else
1588 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1590 base = get_base_address (base);
1591 if (base && DECL_P (base)
1592 && TREE_READONLY (base)
1593 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1595 tree base_type = TREE_TYPE (base);
1596 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1597 || DECL_ARTIFICIAL (base));
1598 MEM_READONLY_P (ref) = 1;
1601 /* If this expression uses it's parent's alias set, mark it such
1602 that we won't change it. */
1603 if (component_uses_parent_alias_set (t))
1604 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1606 /* If this is a decl, set the attributes of the MEM from it. */
1607 if (DECL_P (t))
1609 expr = t;
1610 offset = const0_rtx;
1611 apply_bitpos = bitpos;
1612 size = (DECL_SIZE_UNIT (t)
1613 && host_integerp (DECL_SIZE_UNIT (t), 1)
1614 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1615 align = DECL_ALIGN (t);
1618 /* If this is a constant, we know the alignment. */
1619 else if (CONSTANT_CLASS_P (t))
1621 align = TYPE_ALIGN (type);
1622 #ifdef CONSTANT_ALIGNMENT
1623 align = CONSTANT_ALIGNMENT (t, align);
1624 #endif
1627 /* If this is a field reference and not a bit-field, record it. */
1628 /* ??? There is some information that can be gleened from bit-fields,
1629 such as the word offset in the structure that might be modified.
1630 But skip it for now. */
1631 else if (TREE_CODE (t) == COMPONENT_REF
1632 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1634 expr = component_ref_for_mem_expr (t);
1635 offset = const0_rtx;
1636 apply_bitpos = bitpos;
1637 /* ??? Any reason the field size would be different than
1638 the size we got from the type? */
1641 /* If this is an array reference, look for an outer field reference. */
1642 else if (TREE_CODE (t) == ARRAY_REF)
1644 tree off_tree = size_zero_node;
1645 /* We can't modify t, because we use it at the end of the
1646 function. */
1647 tree t2 = t;
1651 tree index = TREE_OPERAND (t2, 1);
1652 tree low_bound = array_ref_low_bound (t2);
1653 tree unit_size = array_ref_element_size (t2);
1655 /* We assume all arrays have sizes that are a multiple of a byte.
1656 First subtract the lower bound, if any, in the type of the
1657 index, then convert to sizetype and multiply by the size of
1658 the array element. */
1659 if (! integer_zerop (low_bound))
1660 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1661 index, low_bound);
1663 off_tree = size_binop (PLUS_EXPR,
1664 size_binop (MULT_EXPR,
1665 fold_convert (sizetype,
1666 index),
1667 unit_size),
1668 off_tree);
1669 t2 = TREE_OPERAND (t2, 0);
1671 while (TREE_CODE (t2) == ARRAY_REF);
1673 if (DECL_P (t2))
1675 expr = t2;
1676 offset = NULL;
1677 if (host_integerp (off_tree, 1))
1679 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1680 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1681 align = DECL_ALIGN (t2);
1682 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1683 align = aoff;
1684 offset = GEN_INT (ioff);
1685 apply_bitpos = bitpos;
1688 else if (TREE_CODE (t2) == COMPONENT_REF)
1690 expr = component_ref_for_mem_expr (t2);
1691 if (host_integerp (off_tree, 1))
1693 offset = GEN_INT (tree_low_cst (off_tree, 1));
1694 apply_bitpos = bitpos;
1696 /* ??? Any reason the field size would be different than
1697 the size we got from the type? */
1699 else if (flag_argument_noalias > 1
1700 && (INDIRECT_REF_P (t2))
1701 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1703 expr = t2;
1704 offset = NULL;
1708 /* If this is a Fortran indirect argument reference, record the
1709 parameter decl. */
1710 else if (flag_argument_noalias > 1
1711 && (INDIRECT_REF_P (t))
1712 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1714 expr = t;
1715 offset = NULL;
1719 /* If we modified OFFSET based on T, then subtract the outstanding
1720 bit position offset. Similarly, increase the size of the accessed
1721 object to contain the negative offset. */
1722 if (apply_bitpos)
1724 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1725 if (size)
1726 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1729 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1731 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1732 we're overlapping. */
1733 offset = NULL;
1734 expr = NULL;
1737 /* Now set the attributes we computed above. */
1738 MEM_ATTRS (ref)
1739 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1741 /* If this is already known to be a scalar or aggregate, we are done. */
1742 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1743 return;
1745 /* If it is a reference into an aggregate, this is part of an aggregate.
1746 Otherwise we don't know. */
1747 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1748 || TREE_CODE (t) == ARRAY_RANGE_REF
1749 || TREE_CODE (t) == BIT_FIELD_REF)
1750 MEM_IN_STRUCT_P (ref) = 1;
1753 void
1754 set_mem_attributes (rtx ref, tree t, int objectp)
1756 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1759 /* Set MEM to the decl that REG refers to. */
1761 void
1762 set_mem_attrs_from_reg (rtx mem, rtx reg)
1764 MEM_ATTRS (mem)
1765 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1766 GEN_INT (REG_OFFSET (reg)),
1767 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1770 /* Set the alias set of MEM to SET. */
1772 void
1773 set_mem_alias_set (rtx mem, alias_set_type set)
1775 #ifdef ENABLE_CHECKING
1776 /* If the new and old alias sets don't conflict, something is wrong. */
1777 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1778 #endif
1780 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1781 MEM_SIZE (mem), MEM_ALIGN (mem),
1782 GET_MODE (mem));
1785 /* Set the alignment of MEM to ALIGN bits. */
1787 void
1788 set_mem_align (rtx mem, unsigned int align)
1790 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1791 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1792 GET_MODE (mem));
1795 /* Set the expr for MEM to EXPR. */
1797 void
1798 set_mem_expr (rtx mem, tree expr)
1800 MEM_ATTRS (mem)
1801 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1802 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1805 /* Set the offset of MEM to OFFSET. */
1807 void
1808 set_mem_offset (rtx mem, rtx offset)
1810 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1811 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1812 GET_MODE (mem));
1815 /* Set the size of MEM to SIZE. */
1817 void
1818 set_mem_size (rtx mem, rtx size)
1820 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1821 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1822 GET_MODE (mem));
1825 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1826 and its address changed to ADDR. (VOIDmode means don't change the mode.
1827 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1828 returned memory location is required to be valid. The memory
1829 attributes are not changed. */
1831 static rtx
1832 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1834 rtx new;
1836 gcc_assert (MEM_P (memref));
1837 if (mode == VOIDmode)
1838 mode = GET_MODE (memref);
1839 if (addr == 0)
1840 addr = XEXP (memref, 0);
1841 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1842 && (!validate || memory_address_p (mode, addr)))
1843 return memref;
1845 if (validate)
1847 if (reload_in_progress || reload_completed)
1848 gcc_assert (memory_address_p (mode, addr));
1849 else
1850 addr = memory_address (mode, addr);
1853 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1854 return memref;
1856 new = gen_rtx_MEM (mode, addr);
1857 MEM_COPY_ATTRIBUTES (new, memref);
1858 return new;
1861 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1862 way we are changing MEMREF, so we only preserve the alias set. */
1865 change_address (rtx memref, enum machine_mode mode, rtx addr)
1867 rtx new = change_address_1 (memref, mode, addr, 1), size;
1868 enum machine_mode mmode = GET_MODE (new);
1869 unsigned int align;
1871 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1872 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1874 /* If there are no changes, just return the original memory reference. */
1875 if (new == memref)
1877 if (MEM_ATTRS (memref) == 0
1878 || (MEM_EXPR (memref) == NULL
1879 && MEM_OFFSET (memref) == NULL
1880 && MEM_SIZE (memref) == size
1881 && MEM_ALIGN (memref) == align))
1882 return new;
1884 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1885 MEM_COPY_ATTRIBUTES (new, memref);
1888 MEM_ATTRS (new)
1889 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1891 return new;
1894 /* Return a memory reference like MEMREF, but with its mode changed
1895 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1896 nonzero, the memory address is forced to be valid.
1897 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1898 and caller is responsible for adjusting MEMREF base register. */
1901 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1902 int validate, int adjust)
1904 rtx addr = XEXP (memref, 0);
1905 rtx new;
1906 rtx memoffset = MEM_OFFSET (memref);
1907 rtx size = 0;
1908 unsigned int memalign = MEM_ALIGN (memref);
1910 /* If there are no changes, just return the original memory reference. */
1911 if (mode == GET_MODE (memref) && !offset
1912 && (!validate || memory_address_p (mode, addr)))
1913 return memref;
1915 /* ??? Prefer to create garbage instead of creating shared rtl.
1916 This may happen even if offset is nonzero -- consider
1917 (plus (plus reg reg) const_int) -- so do this always. */
1918 addr = copy_rtx (addr);
1920 if (adjust)
1922 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1923 object, we can merge it into the LO_SUM. */
1924 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1925 && offset >= 0
1926 && (unsigned HOST_WIDE_INT) offset
1927 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1928 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1929 plus_constant (XEXP (addr, 1), offset));
1930 else
1931 addr = plus_constant (addr, offset);
1934 new = change_address_1 (memref, mode, addr, validate);
1936 /* Compute the new values of the memory attributes due to this adjustment.
1937 We add the offsets and update the alignment. */
1938 if (memoffset)
1939 memoffset = GEN_INT (offset + INTVAL (memoffset));
1941 /* Compute the new alignment by taking the MIN of the alignment and the
1942 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1943 if zero. */
1944 if (offset != 0)
1945 memalign
1946 = MIN (memalign,
1947 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1949 /* We can compute the size in a number of ways. */
1950 if (GET_MODE (new) != BLKmode)
1951 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1952 else if (MEM_SIZE (memref))
1953 size = plus_constant (MEM_SIZE (memref), -offset);
1955 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1956 memoffset, size, memalign, GET_MODE (new));
1958 /* At some point, we should validate that this offset is within the object,
1959 if all the appropriate values are known. */
1960 return new;
1963 /* Return a memory reference like MEMREF, but with its mode changed
1964 to MODE and its address changed to ADDR, which is assumed to be
1965 MEMREF offseted by OFFSET bytes. If VALIDATE is
1966 nonzero, the memory address is forced to be valid. */
1969 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1970 HOST_WIDE_INT offset, int validate)
1972 memref = change_address_1 (memref, VOIDmode, addr, validate);
1973 return adjust_address_1 (memref, mode, offset, validate, 0);
1976 /* Return a memory reference like MEMREF, but whose address is changed by
1977 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1978 known to be in OFFSET (possibly 1). */
1981 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1983 rtx new, addr = XEXP (memref, 0);
1985 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1987 /* At this point we don't know _why_ the address is invalid. It
1988 could have secondary memory references, multiplies or anything.
1990 However, if we did go and rearrange things, we can wind up not
1991 being able to recognize the magic around pic_offset_table_rtx.
1992 This stuff is fragile, and is yet another example of why it is
1993 bad to expose PIC machinery too early. */
1994 if (! memory_address_p (GET_MODE (memref), new)
1995 && GET_CODE (addr) == PLUS
1996 && XEXP (addr, 0) == pic_offset_table_rtx)
1998 addr = force_reg (GET_MODE (addr), addr);
1999 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2002 update_temp_slot_address (XEXP (memref, 0), new);
2003 new = change_address_1 (memref, VOIDmode, new, 1);
2005 /* If there are no changes, just return the original memory reference. */
2006 if (new == memref)
2007 return new;
2009 /* Update the alignment to reflect the offset. Reset the offset, which
2010 we don't know. */
2011 MEM_ATTRS (new)
2012 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2013 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2014 GET_MODE (new));
2015 return new;
2018 /* Return a memory reference like MEMREF, but with its address changed to
2019 ADDR. The caller is asserting that the actual piece of memory pointed
2020 to is the same, just the form of the address is being changed, such as
2021 by putting something into a register. */
2024 replace_equiv_address (rtx memref, rtx addr)
2026 /* change_address_1 copies the memory attribute structure without change
2027 and that's exactly what we want here. */
2028 update_temp_slot_address (XEXP (memref, 0), addr);
2029 return change_address_1 (memref, VOIDmode, addr, 1);
2032 /* Likewise, but the reference is not required to be valid. */
2035 replace_equiv_address_nv (rtx memref, rtx addr)
2037 return change_address_1 (memref, VOIDmode, addr, 0);
2040 /* Return a memory reference like MEMREF, but with its mode widened to
2041 MODE and offset by OFFSET. This would be used by targets that e.g.
2042 cannot issue QImode memory operations and have to use SImode memory
2043 operations plus masking logic. */
2046 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2048 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2049 tree expr = MEM_EXPR (new);
2050 rtx memoffset = MEM_OFFSET (new);
2051 unsigned int size = GET_MODE_SIZE (mode);
2053 /* If there are no changes, just return the original memory reference. */
2054 if (new == memref)
2055 return new;
2057 /* If we don't know what offset we were at within the expression, then
2058 we can't know if we've overstepped the bounds. */
2059 if (! memoffset)
2060 expr = NULL_TREE;
2062 while (expr)
2064 if (TREE_CODE (expr) == COMPONENT_REF)
2066 tree field = TREE_OPERAND (expr, 1);
2067 tree offset = component_ref_field_offset (expr);
2069 if (! DECL_SIZE_UNIT (field))
2071 expr = NULL_TREE;
2072 break;
2075 /* Is the field at least as large as the access? If so, ok,
2076 otherwise strip back to the containing structure. */
2077 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2078 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2079 && INTVAL (memoffset) >= 0)
2080 break;
2082 if (! host_integerp (offset, 1))
2084 expr = NULL_TREE;
2085 break;
2088 expr = TREE_OPERAND (expr, 0);
2089 memoffset
2090 = (GEN_INT (INTVAL (memoffset)
2091 + tree_low_cst (offset, 1)
2092 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2093 / BITS_PER_UNIT)));
2095 /* Similarly for the decl. */
2096 else if (DECL_P (expr)
2097 && DECL_SIZE_UNIT (expr)
2098 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2099 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2100 && (! memoffset || INTVAL (memoffset) >= 0))
2101 break;
2102 else
2104 /* The widened memory access overflows the expression, which means
2105 that it could alias another expression. Zap it. */
2106 expr = NULL_TREE;
2107 break;
2111 if (! expr)
2112 memoffset = NULL_RTX;
2114 /* The widened memory may alias other stuff, so zap the alias set. */
2115 /* ??? Maybe use get_alias_set on any remaining expression. */
2117 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2118 MEM_ALIGN (new), mode);
2120 return new;
2123 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2126 gen_label_rtx (void)
2128 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2129 NULL, label_num++, NULL);
2132 /* For procedure integration. */
2134 /* Install new pointers to the first and last insns in the chain.
2135 Also, set cur_insn_uid to one higher than the last in use.
2136 Used for an inline-procedure after copying the insn chain. */
2138 void
2139 set_new_first_and_last_insn (rtx first, rtx last)
2141 rtx insn;
2143 first_insn = first;
2144 last_insn = last;
2145 cur_insn_uid = 0;
2147 for (insn = first; insn; insn = NEXT_INSN (insn))
2148 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2150 cur_insn_uid++;
2153 /* Go through all the RTL insn bodies and copy any invalid shared
2154 structure. This routine should only be called once. */
2156 static void
2157 unshare_all_rtl_1 (rtx insn)
2159 /* Unshare just about everything else. */
2160 unshare_all_rtl_in_chain (insn);
2162 /* Make sure the addresses of stack slots found outside the insn chain
2163 (such as, in DECL_RTL of a variable) are not shared
2164 with the insn chain.
2166 This special care is necessary when the stack slot MEM does not
2167 actually appear in the insn chain. If it does appear, its address
2168 is unshared from all else at that point. */
2169 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2172 /* Go through all the RTL insn bodies and copy any invalid shared
2173 structure, again. This is a fairly expensive thing to do so it
2174 should be done sparingly. */
2176 void
2177 unshare_all_rtl_again (rtx insn)
2179 rtx p;
2180 tree decl;
2182 for (p = insn; p; p = NEXT_INSN (p))
2183 if (INSN_P (p))
2185 reset_used_flags (PATTERN (p));
2186 reset_used_flags (REG_NOTES (p));
2189 /* Make sure that virtual stack slots are not shared. */
2190 set_used_decls (DECL_INITIAL (cfun->decl));
2192 /* Make sure that virtual parameters are not shared. */
2193 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2194 set_used_flags (DECL_RTL (decl));
2196 reset_used_flags (stack_slot_list);
2198 unshare_all_rtl_1 (insn);
2201 unsigned int
2202 unshare_all_rtl (void)
2204 unshare_all_rtl_1 (get_insns ());
2205 return 0;
2208 struct rtl_opt_pass pass_unshare_all_rtl =
2211 RTL_PASS,
2212 "unshare", /* name */
2213 NULL, /* gate */
2214 unshare_all_rtl, /* execute */
2215 NULL, /* sub */
2216 NULL, /* next */
2217 0, /* static_pass_number */
2218 0, /* tv_id */
2219 0, /* properties_required */
2220 0, /* properties_provided */
2221 0, /* properties_destroyed */
2222 0, /* todo_flags_start */
2223 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2228 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2229 Recursively does the same for subexpressions. */
2231 static void
2232 verify_rtx_sharing (rtx orig, rtx insn)
2234 rtx x = orig;
2235 int i;
2236 enum rtx_code code;
2237 const char *format_ptr;
2239 if (x == 0)
2240 return;
2242 code = GET_CODE (x);
2244 /* These types may be freely shared. */
2246 switch (code)
2248 case REG:
2249 case CONST_INT:
2250 case CONST_DOUBLE:
2251 case CONST_FIXED:
2252 case CONST_VECTOR:
2253 case SYMBOL_REF:
2254 case LABEL_REF:
2255 case CODE_LABEL:
2256 case PC:
2257 case CC0:
2258 case SCRATCH:
2259 return;
2260 /* SCRATCH must be shared because they represent distinct values. */
2261 case CLOBBER:
2262 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2263 return;
2264 break;
2266 case CONST:
2267 if (shared_const_p (orig))
2268 return;
2269 break;
2271 case MEM:
2272 /* A MEM is allowed to be shared if its address is constant. */
2273 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2274 || reload_completed || reload_in_progress)
2275 return;
2277 break;
2279 default:
2280 break;
2283 /* This rtx may not be shared. If it has already been seen,
2284 replace it with a copy of itself. */
2285 #ifdef ENABLE_CHECKING
2286 if (RTX_FLAG (x, used))
2288 error ("invalid rtl sharing found in the insn");
2289 debug_rtx (insn);
2290 error ("shared rtx");
2291 debug_rtx (x);
2292 internal_error ("internal consistency failure");
2294 #endif
2295 gcc_assert (!RTX_FLAG (x, used));
2297 RTX_FLAG (x, used) = 1;
2299 /* Now scan the subexpressions recursively. */
2301 format_ptr = GET_RTX_FORMAT (code);
2303 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2305 switch (*format_ptr++)
2307 case 'e':
2308 verify_rtx_sharing (XEXP (x, i), insn);
2309 break;
2311 case 'E':
2312 if (XVEC (x, i) != NULL)
2314 int j;
2315 int len = XVECLEN (x, i);
2317 for (j = 0; j < len; j++)
2319 /* We allow sharing of ASM_OPERANDS inside single
2320 instruction. */
2321 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2322 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2323 == ASM_OPERANDS))
2324 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2325 else
2326 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2329 break;
2332 return;
2335 /* Go through all the RTL insn bodies and check that there is no unexpected
2336 sharing in between the subexpressions. */
2338 void
2339 verify_rtl_sharing (void)
2341 rtx p;
2343 for (p = get_insns (); p; p = NEXT_INSN (p))
2344 if (INSN_P (p))
2346 reset_used_flags (PATTERN (p));
2347 reset_used_flags (REG_NOTES (p));
2348 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2350 int i;
2351 rtx q, sequence = PATTERN (p);
2353 for (i = 0; i < XVECLEN (sequence, 0); i++)
2355 q = XVECEXP (sequence, 0, i);
2356 gcc_assert (INSN_P (q));
2357 reset_used_flags (PATTERN (q));
2358 reset_used_flags (REG_NOTES (q));
2363 for (p = get_insns (); p; p = NEXT_INSN (p))
2364 if (INSN_P (p))
2366 verify_rtx_sharing (PATTERN (p), p);
2367 verify_rtx_sharing (REG_NOTES (p), p);
2371 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2372 Assumes the mark bits are cleared at entry. */
2374 void
2375 unshare_all_rtl_in_chain (rtx insn)
2377 for (; insn; insn = NEXT_INSN (insn))
2378 if (INSN_P (insn))
2380 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2381 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2385 /* Go through all virtual stack slots of a function and mark them as
2386 shared. We never replace the DECL_RTLs themselves with a copy,
2387 but expressions mentioned into a DECL_RTL cannot be shared with
2388 expressions in the instruction stream.
2390 Note that reload may convert pseudo registers into memories in-place.
2391 Pseudo registers are always shared, but MEMs never are. Thus if we
2392 reset the used flags on MEMs in the instruction stream, we must set
2393 them again on MEMs that appear in DECL_RTLs. */
2395 static void
2396 set_used_decls (tree blk)
2398 tree t;
2400 /* Mark decls. */
2401 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2402 if (DECL_RTL_SET_P (t))
2403 set_used_flags (DECL_RTL (t));
2405 /* Now process sub-blocks. */
2406 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2407 set_used_decls (t);
2410 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2411 Recursively does the same for subexpressions. Uses
2412 copy_rtx_if_shared_1 to reduce stack space. */
2415 copy_rtx_if_shared (rtx orig)
2417 copy_rtx_if_shared_1 (&orig);
2418 return orig;
2421 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2422 use. Recursively does the same for subexpressions. */
2424 static void
2425 copy_rtx_if_shared_1 (rtx *orig1)
2427 rtx x;
2428 int i;
2429 enum rtx_code code;
2430 rtx *last_ptr;
2431 const char *format_ptr;
2432 int copied = 0;
2433 int length;
2435 /* Repeat is used to turn tail-recursion into iteration. */
2436 repeat:
2437 x = *orig1;
2439 if (x == 0)
2440 return;
2442 code = GET_CODE (x);
2444 /* These types may be freely shared. */
2446 switch (code)
2448 case REG:
2449 case CONST_INT:
2450 case CONST_DOUBLE:
2451 case CONST_FIXED:
2452 case CONST_VECTOR:
2453 case SYMBOL_REF:
2454 case LABEL_REF:
2455 case CODE_LABEL:
2456 case PC:
2457 case CC0:
2458 case SCRATCH:
2459 /* SCRATCH must be shared because they represent distinct values. */
2460 return;
2461 case CLOBBER:
2462 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2463 return;
2464 break;
2466 case CONST:
2467 if (shared_const_p (x))
2468 return;
2469 break;
2471 case INSN:
2472 case JUMP_INSN:
2473 case CALL_INSN:
2474 case NOTE:
2475 case BARRIER:
2476 /* The chain of insns is not being copied. */
2477 return;
2479 default:
2480 break;
2483 /* This rtx may not be shared. If it has already been seen,
2484 replace it with a copy of itself. */
2486 if (RTX_FLAG (x, used))
2488 x = shallow_copy_rtx (x);
2489 copied = 1;
2491 RTX_FLAG (x, used) = 1;
2493 /* Now scan the subexpressions recursively.
2494 We can store any replaced subexpressions directly into X
2495 since we know X is not shared! Any vectors in X
2496 must be copied if X was copied. */
2498 format_ptr = GET_RTX_FORMAT (code);
2499 length = GET_RTX_LENGTH (code);
2500 last_ptr = NULL;
2502 for (i = 0; i < length; i++)
2504 switch (*format_ptr++)
2506 case 'e':
2507 if (last_ptr)
2508 copy_rtx_if_shared_1 (last_ptr);
2509 last_ptr = &XEXP (x, i);
2510 break;
2512 case 'E':
2513 if (XVEC (x, i) != NULL)
2515 int j;
2516 int len = XVECLEN (x, i);
2518 /* Copy the vector iff I copied the rtx and the length
2519 is nonzero. */
2520 if (copied && len > 0)
2521 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2523 /* Call recursively on all inside the vector. */
2524 for (j = 0; j < len; j++)
2526 if (last_ptr)
2527 copy_rtx_if_shared_1 (last_ptr);
2528 last_ptr = &XVECEXP (x, i, j);
2531 break;
2534 *orig1 = x;
2535 if (last_ptr)
2537 orig1 = last_ptr;
2538 goto repeat;
2540 return;
2543 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2544 to look for shared sub-parts. */
2546 void
2547 reset_used_flags (rtx x)
2549 int i, j;
2550 enum rtx_code code;
2551 const char *format_ptr;
2552 int length;
2554 /* Repeat is used to turn tail-recursion into iteration. */
2555 repeat:
2556 if (x == 0)
2557 return;
2559 code = GET_CODE (x);
2561 /* These types may be freely shared so we needn't do any resetting
2562 for them. */
2564 switch (code)
2566 case REG:
2567 case CONST_INT:
2568 case CONST_DOUBLE:
2569 case CONST_FIXED:
2570 case CONST_VECTOR:
2571 case SYMBOL_REF:
2572 case CODE_LABEL:
2573 case PC:
2574 case CC0:
2575 return;
2577 case INSN:
2578 case JUMP_INSN:
2579 case CALL_INSN:
2580 case NOTE:
2581 case LABEL_REF:
2582 case BARRIER:
2583 /* The chain of insns is not being copied. */
2584 return;
2586 default:
2587 break;
2590 RTX_FLAG (x, used) = 0;
2592 format_ptr = GET_RTX_FORMAT (code);
2593 length = GET_RTX_LENGTH (code);
2595 for (i = 0; i < length; i++)
2597 switch (*format_ptr++)
2599 case 'e':
2600 if (i == length-1)
2602 x = XEXP (x, i);
2603 goto repeat;
2605 reset_used_flags (XEXP (x, i));
2606 break;
2608 case 'E':
2609 for (j = 0; j < XVECLEN (x, i); j++)
2610 reset_used_flags (XVECEXP (x, i, j));
2611 break;
2616 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2617 to look for shared sub-parts. */
2619 void
2620 set_used_flags (rtx x)
2622 int i, j;
2623 enum rtx_code code;
2624 const char *format_ptr;
2626 if (x == 0)
2627 return;
2629 code = GET_CODE (x);
2631 /* These types may be freely shared so we needn't do any resetting
2632 for them. */
2634 switch (code)
2636 case REG:
2637 case CONST_INT:
2638 case CONST_DOUBLE:
2639 case CONST_FIXED:
2640 case CONST_VECTOR:
2641 case SYMBOL_REF:
2642 case CODE_LABEL:
2643 case PC:
2644 case CC0:
2645 return;
2647 case INSN:
2648 case JUMP_INSN:
2649 case CALL_INSN:
2650 case NOTE:
2651 case LABEL_REF:
2652 case BARRIER:
2653 /* The chain of insns is not being copied. */
2654 return;
2656 default:
2657 break;
2660 RTX_FLAG (x, used) = 1;
2662 format_ptr = GET_RTX_FORMAT (code);
2663 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2665 switch (*format_ptr++)
2667 case 'e':
2668 set_used_flags (XEXP (x, i));
2669 break;
2671 case 'E':
2672 for (j = 0; j < XVECLEN (x, i); j++)
2673 set_used_flags (XVECEXP (x, i, j));
2674 break;
2679 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2680 Return X or the rtx for the pseudo reg the value of X was copied into.
2681 OTHER must be valid as a SET_DEST. */
2684 make_safe_from (rtx x, rtx other)
2686 while (1)
2687 switch (GET_CODE (other))
2689 case SUBREG:
2690 other = SUBREG_REG (other);
2691 break;
2692 case STRICT_LOW_PART:
2693 case SIGN_EXTEND:
2694 case ZERO_EXTEND:
2695 other = XEXP (other, 0);
2696 break;
2697 default:
2698 goto done;
2700 done:
2701 if ((MEM_P (other)
2702 && ! CONSTANT_P (x)
2703 && !REG_P (x)
2704 && GET_CODE (x) != SUBREG)
2705 || (REG_P (other)
2706 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2707 || reg_mentioned_p (other, x))))
2709 rtx temp = gen_reg_rtx (GET_MODE (x));
2710 emit_move_insn (temp, x);
2711 return temp;
2713 return x;
2716 /* Emission of insns (adding them to the doubly-linked list). */
2718 /* Return the first insn of the current sequence or current function. */
2721 get_insns (void)
2723 return first_insn;
2726 /* Specify a new insn as the first in the chain. */
2728 void
2729 set_first_insn (rtx insn)
2731 gcc_assert (!PREV_INSN (insn));
2732 first_insn = insn;
2735 /* Return the last insn emitted in current sequence or current function. */
2738 get_last_insn (void)
2740 return last_insn;
2743 /* Specify a new insn as the last in the chain. */
2745 void
2746 set_last_insn (rtx insn)
2748 gcc_assert (!NEXT_INSN (insn));
2749 last_insn = insn;
2752 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2755 get_last_insn_anywhere (void)
2757 struct sequence_stack *stack;
2758 if (last_insn)
2759 return last_insn;
2760 for (stack = seq_stack; stack; stack = stack->next)
2761 if (stack->last != 0)
2762 return stack->last;
2763 return 0;
2766 /* Return the first nonnote insn emitted in current sequence or current
2767 function. This routine looks inside SEQUENCEs. */
2770 get_first_nonnote_insn (void)
2772 rtx insn = first_insn;
2774 if (insn)
2776 if (NOTE_P (insn))
2777 for (insn = next_insn (insn);
2778 insn && NOTE_P (insn);
2779 insn = next_insn (insn))
2780 continue;
2781 else
2783 if (NONJUMP_INSN_P (insn)
2784 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2785 insn = XVECEXP (PATTERN (insn), 0, 0);
2789 return insn;
2792 /* Return the last nonnote insn emitted in current sequence or current
2793 function. This routine looks inside SEQUENCEs. */
2796 get_last_nonnote_insn (void)
2798 rtx insn = last_insn;
2800 if (insn)
2802 if (NOTE_P (insn))
2803 for (insn = previous_insn (insn);
2804 insn && NOTE_P (insn);
2805 insn = previous_insn (insn))
2806 continue;
2807 else
2809 if (NONJUMP_INSN_P (insn)
2810 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2811 insn = XVECEXP (PATTERN (insn), 0,
2812 XVECLEN (PATTERN (insn), 0) - 1);
2816 return insn;
2819 /* Return a number larger than any instruction's uid in this function. */
2822 get_max_uid (void)
2824 return cur_insn_uid;
2827 /* Return the next insn. If it is a SEQUENCE, return the first insn
2828 of the sequence. */
2831 next_insn (rtx insn)
2833 if (insn)
2835 insn = NEXT_INSN (insn);
2836 if (insn && NONJUMP_INSN_P (insn)
2837 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2838 insn = XVECEXP (PATTERN (insn), 0, 0);
2841 return insn;
2844 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2845 of the sequence. */
2848 previous_insn (rtx insn)
2850 if (insn)
2852 insn = PREV_INSN (insn);
2853 if (insn && NONJUMP_INSN_P (insn)
2854 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2855 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2858 return insn;
2861 /* Return the next insn after INSN that is not a NOTE. This routine does not
2862 look inside SEQUENCEs. */
2865 next_nonnote_insn (rtx insn)
2867 while (insn)
2869 insn = NEXT_INSN (insn);
2870 if (insn == 0 || !NOTE_P (insn))
2871 break;
2874 return insn;
2877 /* Return the previous insn before INSN that is not a NOTE. This routine does
2878 not look inside SEQUENCEs. */
2881 prev_nonnote_insn (rtx insn)
2883 while (insn)
2885 insn = PREV_INSN (insn);
2886 if (insn == 0 || !NOTE_P (insn))
2887 break;
2890 return insn;
2893 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2894 or 0, if there is none. This routine does not look inside
2895 SEQUENCEs. */
2898 next_real_insn (rtx insn)
2900 while (insn)
2902 insn = NEXT_INSN (insn);
2903 if (insn == 0 || INSN_P (insn))
2904 break;
2907 return insn;
2910 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2911 or 0, if there is none. This routine does not look inside
2912 SEQUENCEs. */
2915 prev_real_insn (rtx insn)
2917 while (insn)
2919 insn = PREV_INSN (insn);
2920 if (insn == 0 || INSN_P (insn))
2921 break;
2924 return insn;
2927 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2928 This routine does not look inside SEQUENCEs. */
2931 last_call_insn (void)
2933 rtx insn;
2935 for (insn = get_last_insn ();
2936 insn && !CALL_P (insn);
2937 insn = PREV_INSN (insn))
2940 return insn;
2943 /* Find the next insn after INSN that really does something. This routine
2944 does not look inside SEQUENCEs. Until reload has completed, this is the
2945 same as next_real_insn. */
2948 active_insn_p (const_rtx insn)
2950 return (CALL_P (insn) || JUMP_P (insn)
2951 || (NONJUMP_INSN_P (insn)
2952 && (! reload_completed
2953 || (GET_CODE (PATTERN (insn)) != USE
2954 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2958 next_active_insn (rtx insn)
2960 while (insn)
2962 insn = NEXT_INSN (insn);
2963 if (insn == 0 || active_insn_p (insn))
2964 break;
2967 return insn;
2970 /* Find the last insn before INSN that really does something. This routine
2971 does not look inside SEQUENCEs. Until reload has completed, this is the
2972 same as prev_real_insn. */
2975 prev_active_insn (rtx insn)
2977 while (insn)
2979 insn = PREV_INSN (insn);
2980 if (insn == 0 || active_insn_p (insn))
2981 break;
2984 return insn;
2987 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2990 next_label (rtx insn)
2992 while (insn)
2994 insn = NEXT_INSN (insn);
2995 if (insn == 0 || LABEL_P (insn))
2996 break;
2999 return insn;
3002 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3005 prev_label (rtx insn)
3007 while (insn)
3009 insn = PREV_INSN (insn);
3010 if (insn == 0 || LABEL_P (insn))
3011 break;
3014 return insn;
3017 /* Return the last label to mark the same position as LABEL. Return null
3018 if LABEL itself is null. */
3021 skip_consecutive_labels (rtx label)
3023 rtx insn;
3025 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3026 if (LABEL_P (insn))
3027 label = insn;
3029 return label;
3032 #ifdef HAVE_cc0
3033 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3034 and REG_CC_USER notes so we can find it. */
3036 void
3037 link_cc0_insns (rtx insn)
3039 rtx user = next_nonnote_insn (insn);
3041 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3042 user = XVECEXP (PATTERN (user), 0, 0);
3044 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3045 REG_NOTES (user));
3046 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3049 /* Return the next insn that uses CC0 after INSN, which is assumed to
3050 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3051 applied to the result of this function should yield INSN).
3053 Normally, this is simply the next insn. However, if a REG_CC_USER note
3054 is present, it contains the insn that uses CC0.
3056 Return 0 if we can't find the insn. */
3059 next_cc0_user (rtx insn)
3061 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3063 if (note)
3064 return XEXP (note, 0);
3066 insn = next_nonnote_insn (insn);
3067 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3068 insn = XVECEXP (PATTERN (insn), 0, 0);
3070 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3071 return insn;
3073 return 0;
3076 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3077 note, it is the previous insn. */
3080 prev_cc0_setter (rtx insn)
3082 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3084 if (note)
3085 return XEXP (note, 0);
3087 insn = prev_nonnote_insn (insn);
3088 gcc_assert (sets_cc0_p (PATTERN (insn)));
3090 return insn;
3092 #endif
3094 #ifdef AUTO_INC_DEC
3095 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3097 static int
3098 find_auto_inc (rtx *xp, void *data)
3100 rtx x = *xp;
3101 rtx reg = data;
3103 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3104 return 0;
3106 switch (GET_CODE (x))
3108 case PRE_DEC:
3109 case PRE_INC:
3110 case POST_DEC:
3111 case POST_INC:
3112 case PRE_MODIFY:
3113 case POST_MODIFY:
3114 if (rtx_equal_p (reg, XEXP (x, 0)))
3115 return 1;
3116 break;
3118 default:
3119 gcc_unreachable ();
3121 return -1;
3123 #endif
3125 /* Increment the label uses for all labels present in rtx. */
3127 static void
3128 mark_label_nuses (rtx x)
3130 enum rtx_code code;
3131 int i, j;
3132 const char *fmt;
3134 code = GET_CODE (x);
3135 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3136 LABEL_NUSES (XEXP (x, 0))++;
3138 fmt = GET_RTX_FORMAT (code);
3139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3141 if (fmt[i] == 'e')
3142 mark_label_nuses (XEXP (x, i));
3143 else if (fmt[i] == 'E')
3144 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3145 mark_label_nuses (XVECEXP (x, i, j));
3150 /* Try splitting insns that can be split for better scheduling.
3151 PAT is the pattern which might split.
3152 TRIAL is the insn providing PAT.
3153 LAST is nonzero if we should return the last insn of the sequence produced.
3155 If this routine succeeds in splitting, it returns the first or last
3156 replacement insn depending on the value of LAST. Otherwise, it
3157 returns TRIAL. If the insn to be returned can be split, it will be. */
3160 try_split (rtx pat, rtx trial, int last)
3162 rtx before = PREV_INSN (trial);
3163 rtx after = NEXT_INSN (trial);
3164 int has_barrier = 0;
3165 rtx tem, note_retval, note_libcall;
3166 rtx note, seq;
3167 int probability;
3168 rtx insn_last, insn;
3169 int njumps = 0;
3171 if (any_condjump_p (trial)
3172 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3173 split_branch_probability = INTVAL (XEXP (note, 0));
3174 probability = split_branch_probability;
3176 seq = split_insns (pat, trial);
3178 split_branch_probability = -1;
3180 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3181 We may need to handle this specially. */
3182 if (after && BARRIER_P (after))
3184 has_barrier = 1;
3185 after = NEXT_INSN (after);
3188 if (!seq)
3189 return trial;
3191 /* Avoid infinite loop if any insn of the result matches
3192 the original pattern. */
3193 insn_last = seq;
3194 while (1)
3196 if (INSN_P (insn_last)
3197 && rtx_equal_p (PATTERN (insn_last), pat))
3198 return trial;
3199 if (!NEXT_INSN (insn_last))
3200 break;
3201 insn_last = NEXT_INSN (insn_last);
3204 /* We will be adding the new sequence to the function. The splitters
3205 may have introduced invalid RTL sharing, so unshare the sequence now. */
3206 unshare_all_rtl_in_chain (seq);
3208 /* Mark labels. */
3209 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3211 if (JUMP_P (insn))
3213 mark_jump_label (PATTERN (insn), insn, 0);
3214 njumps++;
3215 if (probability != -1
3216 && any_condjump_p (insn)
3217 && !find_reg_note (insn, REG_BR_PROB, 0))
3219 /* We can preserve the REG_BR_PROB notes only if exactly
3220 one jump is created, otherwise the machine description
3221 is responsible for this step using
3222 split_branch_probability variable. */
3223 gcc_assert (njumps == 1);
3224 REG_NOTES (insn)
3225 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3226 GEN_INT (probability),
3227 REG_NOTES (insn));
3232 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3233 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3234 if (CALL_P (trial))
3236 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3237 if (CALL_P (insn))
3239 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3240 while (*p)
3241 p = &XEXP (*p, 1);
3242 *p = CALL_INSN_FUNCTION_USAGE (trial);
3243 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3247 /* Copy notes, particularly those related to the CFG. */
3248 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3250 switch (REG_NOTE_KIND (note))
3252 case REG_EH_REGION:
3253 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3255 if (CALL_P (insn)
3256 || (flag_non_call_exceptions && INSN_P (insn)
3257 && may_trap_p (PATTERN (insn))))
3258 REG_NOTES (insn)
3259 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3260 XEXP (note, 0),
3261 REG_NOTES (insn));
3263 break;
3265 case REG_NORETURN:
3266 case REG_SETJMP:
3267 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3269 if (CALL_P (insn))
3270 REG_NOTES (insn)
3271 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3272 XEXP (note, 0),
3273 REG_NOTES (insn));
3275 break;
3277 case REG_NON_LOCAL_GOTO:
3278 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3280 if (JUMP_P (insn))
3281 REG_NOTES (insn)
3282 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3283 XEXP (note, 0),
3284 REG_NOTES (insn));
3286 break;
3288 #ifdef AUTO_INC_DEC
3289 case REG_INC:
3290 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3292 rtx reg = XEXP (note, 0);
3293 if (!FIND_REG_INC_NOTE (insn, reg)
3294 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3295 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3296 REG_NOTES (insn));
3298 break;
3299 #endif
3301 case REG_LIBCALL:
3302 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3303 after split. */
3304 REG_NOTES (insn_last)
3305 = gen_rtx_INSN_LIST (REG_LIBCALL,
3306 XEXP (note, 0),
3307 REG_NOTES (insn_last));
3309 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3310 XEXP (note_retval, 0) = insn_last;
3311 break;
3313 case REG_RETVAL:
3314 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3315 after split. */
3316 REG_NOTES (insn_last)
3317 = gen_rtx_INSN_LIST (REG_RETVAL,
3318 XEXP (note, 0),
3319 REG_NOTES (insn_last));
3321 note_libcall = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL);
3322 XEXP (note_libcall, 0) = insn_last;
3323 break;
3325 default:
3326 break;
3330 /* If there are LABELS inside the split insns increment the
3331 usage count so we don't delete the label. */
3332 if (INSN_P (trial))
3334 insn = insn_last;
3335 while (insn != NULL_RTX)
3337 /* JUMP_P insns have already been "marked" above. */
3338 if (NONJUMP_INSN_P (insn))
3339 mark_label_nuses (PATTERN (insn));
3341 insn = PREV_INSN (insn);
3345 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3347 delete_insn (trial);
3348 if (has_barrier)
3349 emit_barrier_after (tem);
3351 /* Recursively call try_split for each new insn created; by the
3352 time control returns here that insn will be fully split, so
3353 set LAST and continue from the insn after the one returned.
3354 We can't use next_active_insn here since AFTER may be a note.
3355 Ignore deleted insns, which can be occur if not optimizing. */
3356 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3357 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3358 tem = try_split (PATTERN (tem), tem, 1);
3360 /* Return either the first or the last insn, depending on which was
3361 requested. */
3362 return last
3363 ? (after ? PREV_INSN (after) : last_insn)
3364 : NEXT_INSN (before);
3367 /* Make and return an INSN rtx, initializing all its slots.
3368 Store PATTERN in the pattern slots. */
3371 make_insn_raw (rtx pattern)
3373 rtx insn;
3375 insn = rtx_alloc (INSN);
3377 INSN_UID (insn) = cur_insn_uid++;
3378 PATTERN (insn) = pattern;
3379 INSN_CODE (insn) = -1;
3380 REG_NOTES (insn) = NULL;
3381 INSN_LOCATOR (insn) = curr_insn_locator ();
3382 BLOCK_FOR_INSN (insn) = NULL;
3384 #ifdef ENABLE_RTL_CHECKING
3385 if (insn
3386 && INSN_P (insn)
3387 && (returnjump_p (insn)
3388 || (GET_CODE (insn) == SET
3389 && SET_DEST (insn) == pc_rtx)))
3391 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3392 debug_rtx (insn);
3394 #endif
3396 return insn;
3399 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3402 make_jump_insn_raw (rtx pattern)
3404 rtx insn;
3406 insn = rtx_alloc (JUMP_INSN);
3407 INSN_UID (insn) = cur_insn_uid++;
3409 PATTERN (insn) = pattern;
3410 INSN_CODE (insn) = -1;
3411 REG_NOTES (insn) = NULL;
3412 JUMP_LABEL (insn) = NULL;
3413 INSN_LOCATOR (insn) = curr_insn_locator ();
3414 BLOCK_FOR_INSN (insn) = NULL;
3416 return insn;
3419 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3421 static rtx
3422 make_call_insn_raw (rtx pattern)
3424 rtx insn;
3426 insn = rtx_alloc (CALL_INSN);
3427 INSN_UID (insn) = cur_insn_uid++;
3429 PATTERN (insn) = pattern;
3430 INSN_CODE (insn) = -1;
3431 REG_NOTES (insn) = NULL;
3432 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3433 INSN_LOCATOR (insn) = curr_insn_locator ();
3434 BLOCK_FOR_INSN (insn) = NULL;
3436 return insn;
3439 /* Add INSN to the end of the doubly-linked list.
3440 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3442 void
3443 add_insn (rtx insn)
3445 PREV_INSN (insn) = last_insn;
3446 NEXT_INSN (insn) = 0;
3448 if (NULL != last_insn)
3449 NEXT_INSN (last_insn) = insn;
3451 if (NULL == first_insn)
3452 first_insn = insn;
3454 last_insn = insn;
3457 /* Add INSN into the doubly-linked list after insn AFTER. This and
3458 the next should be the only functions called to insert an insn once
3459 delay slots have been filled since only they know how to update a
3460 SEQUENCE. */
3462 void
3463 add_insn_after (rtx insn, rtx after, basic_block bb)
3465 rtx next = NEXT_INSN (after);
3467 gcc_assert (!optimize || !INSN_DELETED_P (after));
3469 NEXT_INSN (insn) = next;
3470 PREV_INSN (insn) = after;
3472 if (next)
3474 PREV_INSN (next) = insn;
3475 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3476 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3478 else if (last_insn == after)
3479 last_insn = insn;
3480 else
3482 struct sequence_stack *stack = seq_stack;
3483 /* Scan all pending sequences too. */
3484 for (; stack; stack = stack->next)
3485 if (after == stack->last)
3487 stack->last = insn;
3488 break;
3491 gcc_assert (stack);
3494 if (!BARRIER_P (after)
3495 && !BARRIER_P (insn)
3496 && (bb = BLOCK_FOR_INSN (after)))
3498 set_block_for_insn (insn, bb);
3499 if (INSN_P (insn))
3500 df_insn_rescan (insn);
3501 /* Should not happen as first in the BB is always
3502 either NOTE or LABEL. */
3503 if (BB_END (bb) == after
3504 /* Avoid clobbering of structure when creating new BB. */
3505 && !BARRIER_P (insn)
3506 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3507 BB_END (bb) = insn;
3510 NEXT_INSN (after) = insn;
3511 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3513 rtx sequence = PATTERN (after);
3514 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3518 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3519 the previous should be the only functions called to insert an insn
3520 once delay slots have been filled since only they know how to
3521 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3522 bb from before. */
3524 void
3525 add_insn_before (rtx insn, rtx before, basic_block bb)
3527 rtx prev = PREV_INSN (before);
3529 gcc_assert (!optimize || !INSN_DELETED_P (before));
3531 PREV_INSN (insn) = prev;
3532 NEXT_INSN (insn) = before;
3534 if (prev)
3536 NEXT_INSN (prev) = insn;
3537 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3539 rtx sequence = PATTERN (prev);
3540 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3543 else if (first_insn == before)
3544 first_insn = insn;
3545 else
3547 struct sequence_stack *stack = seq_stack;
3548 /* Scan all pending sequences too. */
3549 for (; stack; stack = stack->next)
3550 if (before == stack->first)
3552 stack->first = insn;
3553 break;
3556 gcc_assert (stack);
3559 if (!bb
3560 && !BARRIER_P (before)
3561 && !BARRIER_P (insn))
3562 bb = BLOCK_FOR_INSN (before);
3564 if (bb)
3566 set_block_for_insn (insn, bb);
3567 if (INSN_P (insn))
3568 df_insn_rescan (insn);
3569 /* Should not happen as first in the BB is always either NOTE or
3570 LABEL. */
3571 gcc_assert (BB_HEAD (bb) != insn
3572 /* Avoid clobbering of structure when creating new BB. */
3573 || BARRIER_P (insn)
3574 || NOTE_INSN_BASIC_BLOCK_P (insn));
3577 PREV_INSN (before) = insn;
3578 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3579 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3583 /* Replace insn with an deleted instruction note. */
3585 void set_insn_deleted (rtx insn)
3587 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3588 PUT_CODE (insn, NOTE);
3589 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3593 /* Remove an insn from its doubly-linked list. This function knows how
3594 to handle sequences. */
3595 void
3596 remove_insn (rtx insn)
3598 rtx next = NEXT_INSN (insn);
3599 rtx prev = PREV_INSN (insn);
3600 basic_block bb;
3602 /* Later in the code, the block will be marked dirty. */
3603 df_insn_delete (NULL, INSN_UID (insn));
3605 if (prev)
3607 NEXT_INSN (prev) = next;
3608 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3610 rtx sequence = PATTERN (prev);
3611 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3614 else if (first_insn == insn)
3615 first_insn = next;
3616 else
3618 struct sequence_stack *stack = seq_stack;
3619 /* Scan all pending sequences too. */
3620 for (; stack; stack = stack->next)
3621 if (insn == stack->first)
3623 stack->first = next;
3624 break;
3627 gcc_assert (stack);
3630 if (next)
3632 PREV_INSN (next) = prev;
3633 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3634 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3636 else if (last_insn == insn)
3637 last_insn = prev;
3638 else
3640 struct sequence_stack *stack = seq_stack;
3641 /* Scan all pending sequences too. */
3642 for (; stack; stack = stack->next)
3643 if (insn == stack->last)
3645 stack->last = prev;
3646 break;
3649 gcc_assert (stack);
3651 if (!BARRIER_P (insn)
3652 && (bb = BLOCK_FOR_INSN (insn)))
3654 if (INSN_P (insn))
3655 df_set_bb_dirty (bb);
3656 if (BB_HEAD (bb) == insn)
3658 /* Never ever delete the basic block note without deleting whole
3659 basic block. */
3660 gcc_assert (!NOTE_P (insn));
3661 BB_HEAD (bb) = next;
3663 if (BB_END (bb) == insn)
3664 BB_END (bb) = prev;
3668 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3670 void
3671 add_function_usage_to (rtx call_insn, rtx call_fusage)
3673 gcc_assert (call_insn && CALL_P (call_insn));
3675 /* Put the register usage information on the CALL. If there is already
3676 some usage information, put ours at the end. */
3677 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3679 rtx link;
3681 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3682 link = XEXP (link, 1))
3685 XEXP (link, 1) = call_fusage;
3687 else
3688 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3691 /* Delete all insns made since FROM.
3692 FROM becomes the new last instruction. */
3694 void
3695 delete_insns_since (rtx from)
3697 if (from == 0)
3698 first_insn = 0;
3699 else
3700 NEXT_INSN (from) = 0;
3701 last_insn = from;
3704 /* This function is deprecated, please use sequences instead.
3706 Move a consecutive bunch of insns to a different place in the chain.
3707 The insns to be moved are those between FROM and TO.
3708 They are moved to a new position after the insn AFTER.
3709 AFTER must not be FROM or TO or any insn in between.
3711 This function does not know about SEQUENCEs and hence should not be
3712 called after delay-slot filling has been done. */
3714 void
3715 reorder_insns_nobb (rtx from, rtx to, rtx after)
3717 /* Splice this bunch out of where it is now. */
3718 if (PREV_INSN (from))
3719 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3720 if (NEXT_INSN (to))
3721 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3722 if (last_insn == to)
3723 last_insn = PREV_INSN (from);
3724 if (first_insn == from)
3725 first_insn = NEXT_INSN (to);
3727 /* Make the new neighbors point to it and it to them. */
3728 if (NEXT_INSN (after))
3729 PREV_INSN (NEXT_INSN (after)) = to;
3731 NEXT_INSN (to) = NEXT_INSN (after);
3732 PREV_INSN (from) = after;
3733 NEXT_INSN (after) = from;
3734 if (after == last_insn)
3735 last_insn = to;
3738 /* Same as function above, but take care to update BB boundaries. */
3739 void
3740 reorder_insns (rtx from, rtx to, rtx after)
3742 rtx prev = PREV_INSN (from);
3743 basic_block bb, bb2;
3745 reorder_insns_nobb (from, to, after);
3747 if (!BARRIER_P (after)
3748 && (bb = BLOCK_FOR_INSN (after)))
3750 rtx x;
3751 df_set_bb_dirty (bb);
3753 if (!BARRIER_P (from)
3754 && (bb2 = BLOCK_FOR_INSN (from)))
3756 if (BB_END (bb2) == to)
3757 BB_END (bb2) = prev;
3758 df_set_bb_dirty (bb2);
3761 if (BB_END (bb) == after)
3762 BB_END (bb) = to;
3764 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3765 if (!BARRIER_P (x))
3766 df_insn_change_bb (x, bb);
3771 /* Emit insn(s) of given code and pattern
3772 at a specified place within the doubly-linked list.
3774 All of the emit_foo global entry points accept an object
3775 X which is either an insn list or a PATTERN of a single
3776 instruction.
3778 There are thus a few canonical ways to generate code and
3779 emit it at a specific place in the instruction stream. For
3780 example, consider the instruction named SPOT and the fact that
3781 we would like to emit some instructions before SPOT. We might
3782 do it like this:
3784 start_sequence ();
3785 ... emit the new instructions ...
3786 insns_head = get_insns ();
3787 end_sequence ();
3789 emit_insn_before (insns_head, SPOT);
3791 It used to be common to generate SEQUENCE rtl instead, but that
3792 is a relic of the past which no longer occurs. The reason is that
3793 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3794 generated would almost certainly die right after it was created. */
3796 /* Make X be output before the instruction BEFORE. */
3799 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3801 rtx last = before;
3802 rtx insn;
3804 gcc_assert (before);
3806 if (x == NULL_RTX)
3807 return last;
3809 switch (GET_CODE (x))
3811 case INSN:
3812 case JUMP_INSN:
3813 case CALL_INSN:
3814 case CODE_LABEL:
3815 case BARRIER:
3816 case NOTE:
3817 insn = x;
3818 while (insn)
3820 rtx next = NEXT_INSN (insn);
3821 add_insn_before (insn, before, bb);
3822 last = insn;
3823 insn = next;
3825 break;
3827 #ifdef ENABLE_RTL_CHECKING
3828 case SEQUENCE:
3829 gcc_unreachable ();
3830 break;
3831 #endif
3833 default:
3834 last = make_insn_raw (x);
3835 add_insn_before (last, before, bb);
3836 break;
3839 return last;
3842 /* Make an instruction with body X and code JUMP_INSN
3843 and output it before the instruction BEFORE. */
3846 emit_jump_insn_before_noloc (rtx x, rtx before)
3848 rtx insn, last = NULL_RTX;
3850 gcc_assert (before);
3852 switch (GET_CODE (x))
3854 case INSN:
3855 case JUMP_INSN:
3856 case CALL_INSN:
3857 case CODE_LABEL:
3858 case BARRIER:
3859 case NOTE:
3860 insn = x;
3861 while (insn)
3863 rtx next = NEXT_INSN (insn);
3864 add_insn_before (insn, before, NULL);
3865 last = insn;
3866 insn = next;
3868 break;
3870 #ifdef ENABLE_RTL_CHECKING
3871 case SEQUENCE:
3872 gcc_unreachable ();
3873 break;
3874 #endif
3876 default:
3877 last = make_jump_insn_raw (x);
3878 add_insn_before (last, before, NULL);
3879 break;
3882 return last;
3885 /* Make an instruction with body X and code CALL_INSN
3886 and output it before the instruction BEFORE. */
3889 emit_call_insn_before_noloc (rtx x, rtx before)
3891 rtx last = NULL_RTX, insn;
3893 gcc_assert (before);
3895 switch (GET_CODE (x))
3897 case INSN:
3898 case JUMP_INSN:
3899 case CALL_INSN:
3900 case CODE_LABEL:
3901 case BARRIER:
3902 case NOTE:
3903 insn = x;
3904 while (insn)
3906 rtx next = NEXT_INSN (insn);
3907 add_insn_before (insn, before, NULL);
3908 last = insn;
3909 insn = next;
3911 break;
3913 #ifdef ENABLE_RTL_CHECKING
3914 case SEQUENCE:
3915 gcc_unreachable ();
3916 break;
3917 #endif
3919 default:
3920 last = make_call_insn_raw (x);
3921 add_insn_before (last, before, NULL);
3922 break;
3925 return last;
3928 /* Make an insn of code BARRIER
3929 and output it before the insn BEFORE. */
3932 emit_barrier_before (rtx before)
3934 rtx insn = rtx_alloc (BARRIER);
3936 INSN_UID (insn) = cur_insn_uid++;
3938 add_insn_before (insn, before, NULL);
3939 return insn;
3942 /* Emit the label LABEL before the insn BEFORE. */
3945 emit_label_before (rtx label, rtx before)
3947 /* This can be called twice for the same label as a result of the
3948 confusion that follows a syntax error! So make it harmless. */
3949 if (INSN_UID (label) == 0)
3951 INSN_UID (label) = cur_insn_uid++;
3952 add_insn_before (label, before, NULL);
3955 return label;
3958 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3961 emit_note_before (enum insn_note subtype, rtx before)
3963 rtx note = rtx_alloc (NOTE);
3964 INSN_UID (note) = cur_insn_uid++;
3965 NOTE_KIND (note) = subtype;
3966 BLOCK_FOR_INSN (note) = NULL;
3967 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3969 add_insn_before (note, before, NULL);
3970 return note;
3973 /* Helper for emit_insn_after, handles lists of instructions
3974 efficiently. */
3976 static rtx
3977 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
3979 rtx last;
3980 rtx after_after;
3981 if (!bb && !BARRIER_P (after))
3982 bb = BLOCK_FOR_INSN (after);
3984 if (bb)
3986 df_set_bb_dirty (bb);
3987 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3988 if (!BARRIER_P (last))
3990 set_block_for_insn (last, bb);
3991 df_insn_rescan (last);
3993 if (!BARRIER_P (last))
3995 set_block_for_insn (last, bb);
3996 df_insn_rescan (last);
3998 if (BB_END (bb) == after)
3999 BB_END (bb) = last;
4001 else
4002 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4003 continue;
4005 after_after = NEXT_INSN (after);
4007 NEXT_INSN (after) = first;
4008 PREV_INSN (first) = after;
4009 NEXT_INSN (last) = after_after;
4010 if (after_after)
4011 PREV_INSN (after_after) = last;
4013 if (after == last_insn)
4014 last_insn = last;
4015 return last;
4018 /* Make X be output after the insn AFTER and set the BB of insn. If
4019 BB is NULL, an attempt is made to infer the BB from AFTER. */
4022 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4024 rtx last = after;
4026 gcc_assert (after);
4028 if (x == NULL_RTX)
4029 return last;
4031 switch (GET_CODE (x))
4033 case INSN:
4034 case JUMP_INSN:
4035 case CALL_INSN:
4036 case CODE_LABEL:
4037 case BARRIER:
4038 case NOTE:
4039 last = emit_insn_after_1 (x, after, bb);
4040 break;
4042 #ifdef ENABLE_RTL_CHECKING
4043 case SEQUENCE:
4044 gcc_unreachable ();
4045 break;
4046 #endif
4048 default:
4049 last = make_insn_raw (x);
4050 add_insn_after (last, after, bb);
4051 break;
4054 return last;
4058 /* Make an insn of code JUMP_INSN with body X
4059 and output it after the insn AFTER. */
4062 emit_jump_insn_after_noloc (rtx x, rtx after)
4064 rtx last;
4066 gcc_assert (after);
4068 switch (GET_CODE (x))
4070 case INSN:
4071 case JUMP_INSN:
4072 case CALL_INSN:
4073 case CODE_LABEL:
4074 case BARRIER:
4075 case NOTE:
4076 last = emit_insn_after_1 (x, after, NULL);
4077 break;
4079 #ifdef ENABLE_RTL_CHECKING
4080 case SEQUENCE:
4081 gcc_unreachable ();
4082 break;
4083 #endif
4085 default:
4086 last = make_jump_insn_raw (x);
4087 add_insn_after (last, after, NULL);
4088 break;
4091 return last;
4094 /* Make an instruction with body X and code CALL_INSN
4095 and output it after the instruction AFTER. */
4098 emit_call_insn_after_noloc (rtx x, rtx after)
4100 rtx last;
4102 gcc_assert (after);
4104 switch (GET_CODE (x))
4106 case INSN:
4107 case JUMP_INSN:
4108 case CALL_INSN:
4109 case CODE_LABEL:
4110 case BARRIER:
4111 case NOTE:
4112 last = emit_insn_after_1 (x, after, NULL);
4113 break;
4115 #ifdef ENABLE_RTL_CHECKING
4116 case SEQUENCE:
4117 gcc_unreachable ();
4118 break;
4119 #endif
4121 default:
4122 last = make_call_insn_raw (x);
4123 add_insn_after (last, after, NULL);
4124 break;
4127 return last;
4130 /* Make an insn of code BARRIER
4131 and output it after the insn AFTER. */
4134 emit_barrier_after (rtx after)
4136 rtx insn = rtx_alloc (BARRIER);
4138 INSN_UID (insn) = cur_insn_uid++;
4140 add_insn_after (insn, after, NULL);
4141 return insn;
4144 /* Emit the label LABEL after the insn AFTER. */
4147 emit_label_after (rtx label, rtx after)
4149 /* This can be called twice for the same label
4150 as a result of the confusion that follows a syntax error!
4151 So make it harmless. */
4152 if (INSN_UID (label) == 0)
4154 INSN_UID (label) = cur_insn_uid++;
4155 add_insn_after (label, after, NULL);
4158 return label;
4161 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4164 emit_note_after (enum insn_note subtype, rtx after)
4166 rtx note = rtx_alloc (NOTE);
4167 INSN_UID (note) = cur_insn_uid++;
4168 NOTE_KIND (note) = subtype;
4169 BLOCK_FOR_INSN (note) = NULL;
4170 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4171 add_insn_after (note, after, NULL);
4172 return note;
4175 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4177 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4179 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4181 if (pattern == NULL_RTX || !loc)
4182 return last;
4184 after = NEXT_INSN (after);
4185 while (1)
4187 if (active_insn_p (after) && !INSN_LOCATOR (after))
4188 INSN_LOCATOR (after) = loc;
4189 if (after == last)
4190 break;
4191 after = NEXT_INSN (after);
4193 return last;
4196 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4198 emit_insn_after (rtx pattern, rtx after)
4200 if (INSN_P (after))
4201 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4202 else
4203 return emit_insn_after_noloc (pattern, after, NULL);
4206 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4208 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4210 rtx last = emit_jump_insn_after_noloc (pattern, after);
4212 if (pattern == NULL_RTX || !loc)
4213 return last;
4215 after = NEXT_INSN (after);
4216 while (1)
4218 if (active_insn_p (after) && !INSN_LOCATOR (after))
4219 INSN_LOCATOR (after) = loc;
4220 if (after == last)
4221 break;
4222 after = NEXT_INSN (after);
4224 return last;
4227 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4229 emit_jump_insn_after (rtx pattern, rtx after)
4231 if (INSN_P (after))
4232 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4233 else
4234 return emit_jump_insn_after_noloc (pattern, after);
4237 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4239 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4241 rtx last = emit_call_insn_after_noloc (pattern, after);
4243 if (pattern == NULL_RTX || !loc)
4244 return last;
4246 after = NEXT_INSN (after);
4247 while (1)
4249 if (active_insn_p (after) && !INSN_LOCATOR (after))
4250 INSN_LOCATOR (after) = loc;
4251 if (after == last)
4252 break;
4253 after = NEXT_INSN (after);
4255 return last;
4258 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4260 emit_call_insn_after (rtx pattern, rtx after)
4262 if (INSN_P (after))
4263 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4264 else
4265 return emit_call_insn_after_noloc (pattern, after);
4268 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4270 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4272 rtx first = PREV_INSN (before);
4273 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4275 if (pattern == NULL_RTX || !loc)
4276 return last;
4278 if (!first)
4279 first = get_insns ();
4280 else
4281 first = NEXT_INSN (first);
4282 while (1)
4284 if (active_insn_p (first) && !INSN_LOCATOR (first))
4285 INSN_LOCATOR (first) = loc;
4286 if (first == last)
4287 break;
4288 first = NEXT_INSN (first);
4290 return last;
4293 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4295 emit_insn_before (rtx pattern, rtx before)
4297 if (INSN_P (before))
4298 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4299 else
4300 return emit_insn_before_noloc (pattern, before, NULL);
4303 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4305 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4307 rtx first = PREV_INSN (before);
4308 rtx last = emit_jump_insn_before_noloc (pattern, before);
4310 if (pattern == NULL_RTX)
4311 return last;
4313 first = NEXT_INSN (first);
4314 while (1)
4316 if (active_insn_p (first) && !INSN_LOCATOR (first))
4317 INSN_LOCATOR (first) = loc;
4318 if (first == last)
4319 break;
4320 first = NEXT_INSN (first);
4322 return last;
4325 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4327 emit_jump_insn_before (rtx pattern, rtx before)
4329 if (INSN_P (before))
4330 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4331 else
4332 return emit_jump_insn_before_noloc (pattern, before);
4335 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4337 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4339 rtx first = PREV_INSN (before);
4340 rtx last = emit_call_insn_before_noloc (pattern, before);
4342 if (pattern == NULL_RTX)
4343 return last;
4345 first = NEXT_INSN (first);
4346 while (1)
4348 if (active_insn_p (first) && !INSN_LOCATOR (first))
4349 INSN_LOCATOR (first) = loc;
4350 if (first == last)
4351 break;
4352 first = NEXT_INSN (first);
4354 return last;
4357 /* like emit_call_insn_before_noloc,
4358 but set insn_locator according to before. */
4360 emit_call_insn_before (rtx pattern, rtx before)
4362 if (INSN_P (before))
4363 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4364 else
4365 return emit_call_insn_before_noloc (pattern, before);
4368 /* Take X and emit it at the end of the doubly-linked
4369 INSN list.
4371 Returns the last insn emitted. */
4374 emit_insn (rtx x)
4376 rtx last = last_insn;
4377 rtx insn;
4379 if (x == NULL_RTX)
4380 return last;
4382 switch (GET_CODE (x))
4384 case INSN:
4385 case JUMP_INSN:
4386 case CALL_INSN:
4387 case CODE_LABEL:
4388 case BARRIER:
4389 case NOTE:
4390 insn = x;
4391 while (insn)
4393 rtx next = NEXT_INSN (insn);
4394 add_insn (insn);
4395 last = insn;
4396 insn = next;
4398 break;
4400 #ifdef ENABLE_RTL_CHECKING
4401 case SEQUENCE:
4402 gcc_unreachable ();
4403 break;
4404 #endif
4406 default:
4407 last = make_insn_raw (x);
4408 add_insn (last);
4409 break;
4412 return last;
4415 /* Make an insn of code JUMP_INSN with pattern X
4416 and add it to the end of the doubly-linked list. */
4419 emit_jump_insn (rtx x)
4421 rtx last = NULL_RTX, insn;
4423 switch (GET_CODE (x))
4425 case INSN:
4426 case JUMP_INSN:
4427 case CALL_INSN:
4428 case CODE_LABEL:
4429 case BARRIER:
4430 case NOTE:
4431 insn = x;
4432 while (insn)
4434 rtx next = NEXT_INSN (insn);
4435 add_insn (insn);
4436 last = insn;
4437 insn = next;
4439 break;
4441 #ifdef ENABLE_RTL_CHECKING
4442 case SEQUENCE:
4443 gcc_unreachable ();
4444 break;
4445 #endif
4447 default:
4448 last = make_jump_insn_raw (x);
4449 add_insn (last);
4450 break;
4453 return last;
4456 /* Make an insn of code CALL_INSN with pattern X
4457 and add it to the end of the doubly-linked list. */
4460 emit_call_insn (rtx x)
4462 rtx insn;
4464 switch (GET_CODE (x))
4466 case INSN:
4467 case JUMP_INSN:
4468 case CALL_INSN:
4469 case CODE_LABEL:
4470 case BARRIER:
4471 case NOTE:
4472 insn = emit_insn (x);
4473 break;
4475 #ifdef ENABLE_RTL_CHECKING
4476 case SEQUENCE:
4477 gcc_unreachable ();
4478 break;
4479 #endif
4481 default:
4482 insn = make_call_insn_raw (x);
4483 add_insn (insn);
4484 break;
4487 return insn;
4490 /* Add the label LABEL to the end of the doubly-linked list. */
4493 emit_label (rtx label)
4495 /* This can be called twice for the same label
4496 as a result of the confusion that follows a syntax error!
4497 So make it harmless. */
4498 if (INSN_UID (label) == 0)
4500 INSN_UID (label) = cur_insn_uid++;
4501 add_insn (label);
4503 return label;
4506 /* Make an insn of code BARRIER
4507 and add it to the end of the doubly-linked list. */
4510 emit_barrier (void)
4512 rtx barrier = rtx_alloc (BARRIER);
4513 INSN_UID (barrier) = cur_insn_uid++;
4514 add_insn (barrier);
4515 return barrier;
4518 /* Emit a copy of note ORIG. */
4521 emit_note_copy (rtx orig)
4523 rtx note;
4525 note = rtx_alloc (NOTE);
4527 INSN_UID (note) = cur_insn_uid++;
4528 NOTE_DATA (note) = NOTE_DATA (orig);
4529 NOTE_KIND (note) = NOTE_KIND (orig);
4530 BLOCK_FOR_INSN (note) = NULL;
4531 add_insn (note);
4533 return note;
4536 /* Make an insn of code NOTE or type NOTE_NO
4537 and add it to the end of the doubly-linked list. */
4540 emit_note (enum insn_note kind)
4542 rtx note;
4544 note = rtx_alloc (NOTE);
4545 INSN_UID (note) = cur_insn_uid++;
4546 NOTE_KIND (note) = kind;
4547 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4548 BLOCK_FOR_INSN (note) = NULL;
4549 add_insn (note);
4550 return note;
4553 /* Cause next statement to emit a line note even if the line number
4554 has not changed. */
4556 void
4557 force_next_line_note (void)
4559 last_location = -1;
4562 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4563 note of this type already exists, remove it first. */
4566 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4568 rtx note = find_reg_note (insn, kind, NULL_RTX);
4569 rtx new_note = NULL;
4571 switch (kind)
4573 case REG_EQUAL:
4574 case REG_EQUIV:
4575 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4576 has multiple sets (some callers assume single_set
4577 means the insn only has one set, when in fact it
4578 means the insn only has one * useful * set). */
4579 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4581 gcc_assert (!note);
4582 return NULL_RTX;
4585 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4586 It serves no useful purpose and breaks eliminate_regs. */
4587 if (GET_CODE (datum) == ASM_OPERANDS)
4588 return NULL_RTX;
4590 if (note)
4592 XEXP (note, 0) = datum;
4593 df_notes_rescan (insn);
4594 return note;
4596 break;
4598 default:
4599 if (note)
4601 XEXP (note, 0) = datum;
4602 return note;
4604 break;
4607 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4608 REG_NOTES (insn) = new_note;
4610 switch (kind)
4612 case REG_EQUAL:
4613 case REG_EQUIV:
4614 df_notes_rescan (insn);
4615 break;
4616 default:
4617 break;
4620 return REG_NOTES (insn);
4623 /* Return an indication of which type of insn should have X as a body.
4624 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4626 static enum rtx_code
4627 classify_insn (rtx x)
4629 if (LABEL_P (x))
4630 return CODE_LABEL;
4631 if (GET_CODE (x) == CALL)
4632 return CALL_INSN;
4633 if (GET_CODE (x) == RETURN)
4634 return JUMP_INSN;
4635 if (GET_CODE (x) == SET)
4637 if (SET_DEST (x) == pc_rtx)
4638 return JUMP_INSN;
4639 else if (GET_CODE (SET_SRC (x)) == CALL)
4640 return CALL_INSN;
4641 else
4642 return INSN;
4644 if (GET_CODE (x) == PARALLEL)
4646 int j;
4647 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4648 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4649 return CALL_INSN;
4650 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4651 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4652 return JUMP_INSN;
4653 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4654 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4655 return CALL_INSN;
4657 return INSN;
4660 /* Emit the rtl pattern X as an appropriate kind of insn.
4661 If X is a label, it is simply added into the insn chain. */
4664 emit (rtx x)
4666 enum rtx_code code = classify_insn (x);
4668 switch (code)
4670 case CODE_LABEL:
4671 return emit_label (x);
4672 case INSN:
4673 return emit_insn (x);
4674 case JUMP_INSN:
4676 rtx insn = emit_jump_insn (x);
4677 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4678 return emit_barrier ();
4679 return insn;
4681 case CALL_INSN:
4682 return emit_call_insn (x);
4683 default:
4684 gcc_unreachable ();
4688 /* Space for free sequence stack entries. */
4689 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4691 /* Begin emitting insns to a sequence. If this sequence will contain
4692 something that might cause the compiler to pop arguments to function
4693 calls (because those pops have previously been deferred; see
4694 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4695 before calling this function. That will ensure that the deferred
4696 pops are not accidentally emitted in the middle of this sequence. */
4698 void
4699 start_sequence (void)
4701 struct sequence_stack *tem;
4703 if (free_sequence_stack != NULL)
4705 tem = free_sequence_stack;
4706 free_sequence_stack = tem->next;
4708 else
4709 tem = ggc_alloc (sizeof (struct sequence_stack));
4711 tem->next = seq_stack;
4712 tem->first = first_insn;
4713 tem->last = last_insn;
4715 seq_stack = tem;
4717 first_insn = 0;
4718 last_insn = 0;
4721 /* Set up the insn chain starting with FIRST as the current sequence,
4722 saving the previously current one. See the documentation for
4723 start_sequence for more information about how to use this function. */
4725 void
4726 push_to_sequence (rtx first)
4728 rtx last;
4730 start_sequence ();
4732 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4734 first_insn = first;
4735 last_insn = last;
4738 /* Like push_to_sequence, but take the last insn as an argument to avoid
4739 looping through the list. */
4741 void
4742 push_to_sequence2 (rtx first, rtx last)
4744 start_sequence ();
4746 first_insn = first;
4747 last_insn = last;
4750 /* Set up the outer-level insn chain
4751 as the current sequence, saving the previously current one. */
4753 void
4754 push_topmost_sequence (void)
4756 struct sequence_stack *stack, *top = NULL;
4758 start_sequence ();
4760 for (stack = seq_stack; stack; stack = stack->next)
4761 top = stack;
4763 first_insn = top->first;
4764 last_insn = top->last;
4767 /* After emitting to the outer-level insn chain, update the outer-level
4768 insn chain, and restore the previous saved state. */
4770 void
4771 pop_topmost_sequence (void)
4773 struct sequence_stack *stack, *top = NULL;
4775 for (stack = seq_stack; stack; stack = stack->next)
4776 top = stack;
4778 top->first = first_insn;
4779 top->last = last_insn;
4781 end_sequence ();
4784 /* After emitting to a sequence, restore previous saved state.
4786 To get the contents of the sequence just made, you must call
4787 `get_insns' *before* calling here.
4789 If the compiler might have deferred popping arguments while
4790 generating this sequence, and this sequence will not be immediately
4791 inserted into the instruction stream, use do_pending_stack_adjust
4792 before calling get_insns. That will ensure that the deferred
4793 pops are inserted into this sequence, and not into some random
4794 location in the instruction stream. See INHIBIT_DEFER_POP for more
4795 information about deferred popping of arguments. */
4797 void
4798 end_sequence (void)
4800 struct sequence_stack *tem = seq_stack;
4802 first_insn = tem->first;
4803 last_insn = tem->last;
4804 seq_stack = tem->next;
4806 memset (tem, 0, sizeof (*tem));
4807 tem->next = free_sequence_stack;
4808 free_sequence_stack = tem;
4811 /* Return 1 if currently emitting into a sequence. */
4814 in_sequence_p (void)
4816 return seq_stack != 0;
4819 /* Put the various virtual registers into REGNO_REG_RTX. */
4821 static void
4822 init_virtual_regs (void)
4824 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4825 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4826 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4827 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4828 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4832 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4833 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4834 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4835 static int copy_insn_n_scratches;
4837 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4838 copied an ASM_OPERANDS.
4839 In that case, it is the original input-operand vector. */
4840 static rtvec orig_asm_operands_vector;
4842 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4843 copied an ASM_OPERANDS.
4844 In that case, it is the copied input-operand vector. */
4845 static rtvec copy_asm_operands_vector;
4847 /* Likewise for the constraints vector. */
4848 static rtvec orig_asm_constraints_vector;
4849 static rtvec copy_asm_constraints_vector;
4851 /* Recursively create a new copy of an rtx for copy_insn.
4852 This function differs from copy_rtx in that it handles SCRATCHes and
4853 ASM_OPERANDs properly.
4854 Normally, this function is not used directly; use copy_insn as front end.
4855 However, you could first copy an insn pattern with copy_insn and then use
4856 this function afterwards to properly copy any REG_NOTEs containing
4857 SCRATCHes. */
4860 copy_insn_1 (rtx orig)
4862 rtx copy;
4863 int i, j;
4864 RTX_CODE code;
4865 const char *format_ptr;
4867 code = GET_CODE (orig);
4869 switch (code)
4871 case REG:
4872 case CONST_INT:
4873 case CONST_DOUBLE:
4874 case CONST_FIXED:
4875 case CONST_VECTOR:
4876 case SYMBOL_REF:
4877 case CODE_LABEL:
4878 case PC:
4879 case CC0:
4880 return orig;
4881 case CLOBBER:
4882 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4883 return orig;
4884 break;
4886 case SCRATCH:
4887 for (i = 0; i < copy_insn_n_scratches; i++)
4888 if (copy_insn_scratch_in[i] == orig)
4889 return copy_insn_scratch_out[i];
4890 break;
4892 case CONST:
4893 if (shared_const_p (orig))
4894 return orig;
4895 break;
4897 /* A MEM with a constant address is not sharable. The problem is that
4898 the constant address may need to be reloaded. If the mem is shared,
4899 then reloading one copy of this mem will cause all copies to appear
4900 to have been reloaded. */
4902 default:
4903 break;
4906 /* Copy the various flags, fields, and other information. We assume
4907 that all fields need copying, and then clear the fields that should
4908 not be copied. That is the sensible default behavior, and forces
4909 us to explicitly document why we are *not* copying a flag. */
4910 copy = shallow_copy_rtx (orig);
4912 /* We do not copy the USED flag, which is used as a mark bit during
4913 walks over the RTL. */
4914 RTX_FLAG (copy, used) = 0;
4916 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4917 if (INSN_P (orig))
4919 RTX_FLAG (copy, jump) = 0;
4920 RTX_FLAG (copy, call) = 0;
4921 RTX_FLAG (copy, frame_related) = 0;
4924 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4926 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4927 switch (*format_ptr++)
4929 case 'e':
4930 if (XEXP (orig, i) != NULL)
4931 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4932 break;
4934 case 'E':
4935 case 'V':
4936 if (XVEC (orig, i) == orig_asm_constraints_vector)
4937 XVEC (copy, i) = copy_asm_constraints_vector;
4938 else if (XVEC (orig, i) == orig_asm_operands_vector)
4939 XVEC (copy, i) = copy_asm_operands_vector;
4940 else if (XVEC (orig, i) != NULL)
4942 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4943 for (j = 0; j < XVECLEN (copy, i); j++)
4944 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4946 break;
4948 case 't':
4949 case 'w':
4950 case 'i':
4951 case 's':
4952 case 'S':
4953 case 'u':
4954 case '0':
4955 /* These are left unchanged. */
4956 break;
4958 default:
4959 gcc_unreachable ();
4962 if (code == SCRATCH)
4964 i = copy_insn_n_scratches++;
4965 gcc_assert (i < MAX_RECOG_OPERANDS);
4966 copy_insn_scratch_in[i] = orig;
4967 copy_insn_scratch_out[i] = copy;
4969 else if (code == ASM_OPERANDS)
4971 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4972 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4973 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4974 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4977 return copy;
4980 /* Create a new copy of an rtx.
4981 This function differs from copy_rtx in that it handles SCRATCHes and
4982 ASM_OPERANDs properly.
4983 INSN doesn't really have to be a full INSN; it could be just the
4984 pattern. */
4986 copy_insn (rtx insn)
4988 copy_insn_n_scratches = 0;
4989 orig_asm_operands_vector = 0;
4990 orig_asm_constraints_vector = 0;
4991 copy_asm_operands_vector = 0;
4992 copy_asm_constraints_vector = 0;
4993 return copy_insn_1 (insn);
4996 /* Initialize data structures and variables in this file
4997 before generating rtl for each function. */
4999 void
5000 init_emit (void)
5002 first_insn = NULL;
5003 last_insn = NULL;
5004 cur_insn_uid = 1;
5005 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5006 last_location = UNKNOWN_LOCATION;
5007 first_label_num = label_num;
5008 seq_stack = NULL;
5010 /* Init the tables that describe all the pseudo regs. */
5012 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5014 crtl->emit.regno_pointer_align
5015 = xcalloc (crtl->emit.regno_pointer_align_length
5016 * sizeof (unsigned char), 1);
5018 regno_reg_rtx
5019 = ggc_alloc (crtl->emit.regno_pointer_align_length * sizeof (rtx));
5021 /* Put copies of all the hard registers into regno_reg_rtx. */
5022 memcpy (regno_reg_rtx,
5023 static_regno_reg_rtx,
5024 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5026 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5027 init_virtual_regs ();
5029 /* Indicate that the virtual registers and stack locations are
5030 all pointers. */
5031 REG_POINTER (stack_pointer_rtx) = 1;
5032 REG_POINTER (frame_pointer_rtx) = 1;
5033 REG_POINTER (hard_frame_pointer_rtx) = 1;
5034 REG_POINTER (arg_pointer_rtx) = 1;
5036 REG_POINTER (virtual_incoming_args_rtx) = 1;
5037 REG_POINTER (virtual_stack_vars_rtx) = 1;
5038 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5039 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5040 REG_POINTER (virtual_cfa_rtx) = 1;
5042 #ifdef STACK_BOUNDARY
5043 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5044 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5045 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5046 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5048 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5049 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5050 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5051 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5052 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5053 #endif
5055 #ifdef INIT_EXPANDERS
5056 INIT_EXPANDERS;
5057 #endif
5060 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5062 static rtx
5063 gen_const_vector (enum machine_mode mode, int constant)
5065 rtx tem;
5066 rtvec v;
5067 int units, i;
5068 enum machine_mode inner;
5070 units = GET_MODE_NUNITS (mode);
5071 inner = GET_MODE_INNER (mode);
5073 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5075 v = rtvec_alloc (units);
5077 /* We need to call this function after we set the scalar const_tiny_rtx
5078 entries. */
5079 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5081 for (i = 0; i < units; ++i)
5082 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5084 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5085 return tem;
5088 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5089 all elements are zero, and the one vector when all elements are one. */
5091 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5093 enum machine_mode inner = GET_MODE_INNER (mode);
5094 int nunits = GET_MODE_NUNITS (mode);
5095 rtx x;
5096 int i;
5098 /* Check to see if all of the elements have the same value. */
5099 x = RTVEC_ELT (v, nunits - 1);
5100 for (i = nunits - 2; i >= 0; i--)
5101 if (RTVEC_ELT (v, i) != x)
5102 break;
5104 /* If the values are all the same, check to see if we can use one of the
5105 standard constant vectors. */
5106 if (i == -1)
5108 if (x == CONST0_RTX (inner))
5109 return CONST0_RTX (mode);
5110 else if (x == CONST1_RTX (inner))
5111 return CONST1_RTX (mode);
5114 return gen_rtx_raw_CONST_VECTOR (mode, v);
5117 /* Initialise global register information required by all functions. */
5119 void
5120 init_emit_regs (void)
5122 int i;
5124 /* Reset register attributes */
5125 htab_empty (reg_attrs_htab);
5127 /* We need reg_raw_mode, so initialize the modes now. */
5128 init_reg_modes_target ();
5130 /* Assign register numbers to the globally defined register rtx. */
5131 pc_rtx = gen_rtx_PC (VOIDmode);
5132 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5133 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5134 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5135 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5136 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5137 virtual_incoming_args_rtx =
5138 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5139 virtual_stack_vars_rtx =
5140 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5141 virtual_stack_dynamic_rtx =
5142 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5143 virtual_outgoing_args_rtx =
5144 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5145 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5147 /* Initialize RTL for commonly used hard registers. These are
5148 copied into regno_reg_rtx as we begin to compile each function. */
5149 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5150 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5152 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5153 return_address_pointer_rtx
5154 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5155 #endif
5157 #ifdef STATIC_CHAIN_REGNUM
5158 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5160 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5161 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5162 static_chain_incoming_rtx
5163 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5164 else
5165 #endif
5166 static_chain_incoming_rtx = static_chain_rtx;
5167 #endif
5169 #ifdef STATIC_CHAIN
5170 static_chain_rtx = STATIC_CHAIN;
5172 #ifdef STATIC_CHAIN_INCOMING
5173 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5174 #else
5175 static_chain_incoming_rtx = static_chain_rtx;
5176 #endif
5177 #endif
5179 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5180 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5181 else
5182 pic_offset_table_rtx = NULL_RTX;
5185 /* Create some permanent unique rtl objects shared between all functions.
5186 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5188 void
5189 init_emit_once (int line_numbers)
5191 int i;
5192 enum machine_mode mode;
5193 enum machine_mode double_mode;
5195 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5196 hash tables. */
5197 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5198 const_int_htab_eq, NULL);
5200 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5201 const_double_htab_eq, NULL);
5203 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5204 const_fixed_htab_eq, NULL);
5206 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5207 mem_attrs_htab_eq, NULL);
5208 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5209 reg_attrs_htab_eq, NULL);
5211 no_line_numbers = ! line_numbers;
5213 /* Compute the word and byte modes. */
5215 byte_mode = VOIDmode;
5216 word_mode = VOIDmode;
5217 double_mode = VOIDmode;
5219 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5220 mode != VOIDmode;
5221 mode = GET_MODE_WIDER_MODE (mode))
5223 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5224 && byte_mode == VOIDmode)
5225 byte_mode = mode;
5227 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5228 && word_mode == VOIDmode)
5229 word_mode = mode;
5232 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5233 mode != VOIDmode;
5234 mode = GET_MODE_WIDER_MODE (mode))
5236 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5237 && double_mode == VOIDmode)
5238 double_mode = mode;
5241 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5243 #ifdef INIT_EXPANDERS
5244 /* This is to initialize {init|mark|free}_machine_status before the first
5245 call to push_function_context_to. This is needed by the Chill front
5246 end which calls push_function_context_to before the first call to
5247 init_function_start. */
5248 INIT_EXPANDERS;
5249 #endif
5251 /* Create the unique rtx's for certain rtx codes and operand values. */
5253 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5254 tries to use these variables. */
5255 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5256 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5257 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5259 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5260 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5261 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5262 else
5263 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5265 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5266 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5267 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5269 dconstm1 = dconst1;
5270 dconstm1.sign = 1;
5272 dconsthalf = dconst1;
5273 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5275 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5277 const REAL_VALUE_TYPE *const r =
5278 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5280 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5281 mode != VOIDmode;
5282 mode = GET_MODE_WIDER_MODE (mode))
5283 const_tiny_rtx[i][(int) mode] =
5284 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5286 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5287 mode != VOIDmode;
5288 mode = GET_MODE_WIDER_MODE (mode))
5289 const_tiny_rtx[i][(int) mode] =
5290 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5292 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5294 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5295 mode != VOIDmode;
5296 mode = GET_MODE_WIDER_MODE (mode))
5297 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5299 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5300 mode != VOIDmode;
5301 mode = GET_MODE_WIDER_MODE (mode))
5302 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5305 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5306 mode != VOIDmode;
5307 mode = GET_MODE_WIDER_MODE (mode))
5309 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5310 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5313 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5314 mode != VOIDmode;
5315 mode = GET_MODE_WIDER_MODE (mode))
5317 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5318 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5322 mode != VOIDmode;
5323 mode = GET_MODE_WIDER_MODE (mode))
5325 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5326 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5329 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5330 mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
5333 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5334 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5337 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5338 mode != VOIDmode;
5339 mode = GET_MODE_WIDER_MODE (mode))
5341 FCONST0(mode).data.high = 0;
5342 FCONST0(mode).data.low = 0;
5343 FCONST0(mode).mode = mode;
5344 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5345 FCONST0 (mode), mode);
5348 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5349 mode != VOIDmode;
5350 mode = GET_MODE_WIDER_MODE (mode))
5352 FCONST0(mode).data.high = 0;
5353 FCONST0(mode).data.low = 0;
5354 FCONST0(mode).mode = mode;
5355 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5356 FCONST0 (mode), mode);
5359 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5360 mode != VOIDmode;
5361 mode = GET_MODE_WIDER_MODE (mode))
5363 FCONST0(mode).data.high = 0;
5364 FCONST0(mode).data.low = 0;
5365 FCONST0(mode).mode = mode;
5366 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5367 FCONST0 (mode), mode);
5369 /* We store the value 1. */
5370 FCONST1(mode).data.high = 0;
5371 FCONST1(mode).data.low = 0;
5372 FCONST1(mode).mode = mode;
5373 lshift_double (1, 0, GET_MODE_FBIT (mode),
5374 2 * HOST_BITS_PER_WIDE_INT,
5375 &FCONST1(mode).data.low,
5376 &FCONST1(mode).data.high,
5377 SIGNED_FIXED_POINT_MODE_P (mode));
5378 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5379 FCONST1 (mode), mode);
5382 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5383 mode != VOIDmode;
5384 mode = GET_MODE_WIDER_MODE (mode))
5386 FCONST0(mode).data.high = 0;
5387 FCONST0(mode).data.low = 0;
5388 FCONST0(mode).mode = mode;
5389 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5390 FCONST0 (mode), mode);
5392 /* We store the value 1. */
5393 FCONST1(mode).data.high = 0;
5394 FCONST1(mode).data.low = 0;
5395 FCONST1(mode).mode = mode;
5396 lshift_double (1, 0, GET_MODE_FBIT (mode),
5397 2 * HOST_BITS_PER_WIDE_INT,
5398 &FCONST1(mode).data.low,
5399 &FCONST1(mode).data.high,
5400 SIGNED_FIXED_POINT_MODE_P (mode));
5401 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5402 FCONST1 (mode), mode);
5405 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5406 mode != VOIDmode;
5407 mode = GET_MODE_WIDER_MODE (mode))
5409 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5412 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5413 mode != VOIDmode;
5414 mode = GET_MODE_WIDER_MODE (mode))
5416 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5419 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5420 mode != VOIDmode;
5421 mode = GET_MODE_WIDER_MODE (mode))
5423 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5424 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5427 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5428 mode != VOIDmode;
5429 mode = GET_MODE_WIDER_MODE (mode))
5431 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5432 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5435 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5436 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5437 const_tiny_rtx[0][i] = const0_rtx;
5439 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5440 if (STORE_FLAG_VALUE == 1)
5441 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5444 /* Produce exact duplicate of insn INSN after AFTER.
5445 Care updating of libcall regions if present. */
5448 emit_copy_of_insn_after (rtx insn, rtx after)
5450 rtx new;
5451 rtx note1, note2, link;
5453 switch (GET_CODE (insn))
5455 case INSN:
5456 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5457 break;
5459 case JUMP_INSN:
5460 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5461 break;
5463 case CALL_INSN:
5464 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5465 if (CALL_INSN_FUNCTION_USAGE (insn))
5466 CALL_INSN_FUNCTION_USAGE (new)
5467 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5468 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5469 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5470 break;
5472 default:
5473 gcc_unreachable ();
5476 /* Update LABEL_NUSES. */
5477 mark_jump_label (PATTERN (new), new, 0);
5479 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5481 /* If the old insn is frame related, then so is the new one. This is
5482 primarily needed for IA-64 unwind info which marks epilogue insns,
5483 which may be duplicated by the basic block reordering code. */
5484 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5486 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5487 will make them. REG_LABEL_TARGETs are created there too, but are
5488 supposed to be sticky, so we copy them. */
5489 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5490 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5492 if (GET_CODE (link) == EXPR_LIST)
5493 REG_NOTES (new)
5494 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5495 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5496 else
5497 REG_NOTES (new)
5498 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5499 XEXP (link, 0), REG_NOTES (new));
5502 /* Fix the libcall sequences. */
5503 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5505 rtx p = new;
5506 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5507 p = PREV_INSN (p);
5508 XEXP (note1, 0) = p;
5509 XEXP (note2, 0) = new;
5511 INSN_CODE (new) = INSN_CODE (insn);
5512 return new;
5515 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5517 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5519 if (hard_reg_clobbers[mode][regno])
5520 return hard_reg_clobbers[mode][regno];
5521 else
5522 return (hard_reg_clobbers[mode][regno] =
5523 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5526 #include "gt-emit-rtl.h"