typeck.c (cp_truthvalue_conversion): Add tsubst_flags_t parameter and use it in calls...
[official-gcc.git] / gcc / tree-vectorizer.h
blobb029266f24e47af6e9a223186814ec2ac1b32600
1 /* Vectorizer
2 Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
29 #include <utility>
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 int misalign;
105 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
107 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
108 known alignment for that base. */
109 typedef hash_map<tree_operand_hash,
110 innermost_loop_behavior *> vec_base_alignments;
112 /************************************************************************
114 ************************************************************************/
115 typedef struct _slp_tree *slp_tree;
117 /* A computation tree of an SLP instance. Each node corresponds to a group of
118 stmts to be packed in a SIMD stmt. */
119 struct _slp_tree {
120 /* Nodes that contain def-stmts of this node statements operands. */
121 vec<slp_tree> children;
122 /* A group of scalar stmts to be vectorized together. */
123 vec<stmt_vec_info> stmts;
124 /* A group of scalar operands to be vectorized together. */
125 vec<tree> ops;
126 /* Load permutation relative to the stores, NULL if there is no
127 permutation. */
128 vec<unsigned> load_permutation;
129 /* Vectorized stmt/s. */
130 vec<stmt_vec_info> vec_stmts;
131 /* Number of vector stmts that are created to replace the group of scalar
132 stmts. It is calculated during the transformation phase as the number of
133 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
134 divided by vector size. */
135 unsigned int vec_stmts_size;
136 /* Reference count in the SLP graph. */
137 unsigned int refcnt;
138 /* The maximum number of vector elements for the subtree rooted
139 at this node. */
140 poly_uint64 max_nunits;
141 /* Whether the scalar computations use two different operators. */
142 bool two_operators;
143 /* The DEF type of this node. */
144 enum vect_def_type def_type;
148 /* SLP instance is a sequence of stmts in a loop that can be packed into
149 SIMD stmts. */
150 typedef class _slp_instance {
151 public:
152 /* The root of SLP tree. */
153 slp_tree root;
155 /* For vector constructors, the constructor stmt that the SLP tree is built
156 from, NULL otherwise. */
157 stmt_vec_info root_stmt;
159 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
160 unsigned int group_size;
162 /* The unrolling factor required to vectorized this SLP instance. */
163 poly_uint64 unrolling_factor;
165 /* The group of nodes that contain loads of this SLP instance. */
166 vec<slp_tree> loads;
168 /* The SLP node containing the reduction PHIs. */
169 slp_tree reduc_phis;
170 } *slp_instance;
173 /* Access Functions. */
174 #define SLP_INSTANCE_TREE(S) (S)->root
175 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
176 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
177 #define SLP_INSTANCE_LOADS(S) (S)->loads
178 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
180 #define SLP_TREE_CHILDREN(S) (S)->children
181 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
182 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
183 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
184 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
185 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
186 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
187 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
189 /* Key for map that records association between
190 scalar conditions and corresponding loop mask, and
191 is populated by vect_record_loop_mask. */
193 struct scalar_cond_masked_key
195 scalar_cond_masked_key (tree t, unsigned ncopies_)
196 : ncopies (ncopies_)
198 get_cond_ops_from_tree (t);
201 void get_cond_ops_from_tree (tree);
203 unsigned ncopies;
204 tree_code code;
205 tree op0;
206 tree op1;
209 template<>
210 struct default_hash_traits<scalar_cond_masked_key>
212 typedef scalar_cond_masked_key compare_type;
213 typedef scalar_cond_masked_key value_type;
215 static inline hashval_t
216 hash (value_type v)
218 inchash::hash h;
219 h.add_int (v.code);
220 inchash::add_expr (v.op0, h, 0);
221 inchash::add_expr (v.op1, h, 0);
222 h.add_int (v.ncopies);
223 return h.end ();
226 static inline bool
227 equal (value_type existing, value_type candidate)
229 return (existing.ncopies == candidate.ncopies
230 && existing.code == candidate.code
231 && operand_equal_p (existing.op0, candidate.op0, 0)
232 && operand_equal_p (existing.op1, candidate.op1, 0));
235 static inline void
236 mark_empty (value_type &v)
238 v.ncopies = 0;
241 static inline bool
242 is_empty (value_type v)
244 return v.ncopies == 0;
247 static inline void mark_deleted (value_type &) {}
249 static inline bool is_deleted (const value_type &)
251 return false;
254 static inline void remove (value_type &) {}
257 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
259 /* Describes two objects whose addresses must be unequal for the vectorized
260 loop to be valid. */
261 typedef std::pair<tree, tree> vec_object_pair;
263 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
264 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
265 class vec_lower_bound {
266 public:
267 vec_lower_bound () {}
268 vec_lower_bound (tree e, bool u, poly_uint64 m)
269 : expr (e), unsigned_p (u), min_value (m) {}
271 tree expr;
272 bool unsigned_p;
273 poly_uint64 min_value;
276 /* Vectorizer state shared between different analyses like vector sizes
277 of the same CFG region. */
278 class vec_info_shared {
279 public:
280 vec_info_shared();
281 ~vec_info_shared();
283 void save_datarefs();
284 void check_datarefs();
286 /* All data references. Freed by free_data_refs, so not an auto_vec. */
287 vec<data_reference_p> datarefs;
288 vec<data_reference> datarefs_copy;
290 /* The loop nest in which the data dependences are computed. */
291 auto_vec<loop_p> loop_nest;
293 /* All data dependences. Freed by free_dependence_relations, so not
294 an auto_vec. */
295 vec<ddr_p> ddrs;
298 /* Vectorizer state common between loop and basic-block vectorization. */
299 class vec_info {
300 public:
301 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
302 enum vec_kind { bb, loop };
304 vec_info (vec_kind, void *, vec_info_shared *);
305 ~vec_info ();
307 stmt_vec_info add_stmt (gimple *);
308 stmt_vec_info lookup_stmt (gimple *);
309 stmt_vec_info lookup_def (tree);
310 stmt_vec_info lookup_single_use (tree);
311 class dr_vec_info *lookup_dr (data_reference *);
312 void move_dr (stmt_vec_info, stmt_vec_info);
313 void remove_stmt (stmt_vec_info);
314 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
316 /* The type of vectorization. */
317 vec_kind kind;
319 /* Shared vectorizer state. */
320 vec_info_shared *shared;
322 /* The mapping of GIMPLE UID to stmt_vec_info. */
323 vec<stmt_vec_info> stmt_vec_infos;
325 /* All SLP instances. */
326 auto_vec<slp_instance> slp_instances;
328 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
329 known alignment for that base. */
330 vec_base_alignments base_alignments;
332 /* All interleaving chains of stores, represented by the first
333 stmt in the chain. */
334 auto_vec<stmt_vec_info> grouped_stores;
336 /* Cost data used by the target cost model. */
337 void *target_cost_data;
339 /* The set of vector modes used in the vectorized region. */
340 mode_set used_vector_modes;
342 /* The argument we should pass to related_vector_mode when looking up
343 the vector mode for a scalar mode, or VOIDmode if we haven't yet
344 made any decisions about which vector modes to use. */
345 machine_mode vector_mode;
347 private:
348 stmt_vec_info new_stmt_vec_info (gimple *stmt);
349 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
350 void free_stmt_vec_infos ();
351 void free_stmt_vec_info (stmt_vec_info);
354 class _loop_vec_info;
355 class _bb_vec_info;
357 template<>
358 template<>
359 inline bool
360 is_a_helper <_loop_vec_info *>::test (vec_info *i)
362 return i->kind == vec_info::loop;
365 template<>
366 template<>
367 inline bool
368 is_a_helper <_bb_vec_info *>::test (vec_info *i)
370 return i->kind == vec_info::bb;
374 /* In general, we can divide the vector statements in a vectorized loop
375 into related groups ("rgroups") and say that for each rgroup there is
376 some nS such that the rgroup operates on nS values from one scalar
377 iteration followed by nS values from the next. That is, if VF is the
378 vectorization factor of the loop, the rgroup operates on a sequence:
380 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
382 where (i,j) represents a scalar value with index j in a scalar
383 iteration with index i.
385 [ We use the term "rgroup" to emphasise that this grouping isn't
386 necessarily the same as the grouping of statements used elsewhere.
387 For example, if we implement a group of scalar loads using gather
388 loads, we'll use a separate gather load for each scalar load, and
389 thus each gather load will belong to its own rgroup. ]
391 In general this sequence will occupy nV vectors concatenated
392 together. If these vectors have nL lanes each, the total number
393 of scalar values N is given by:
395 N = nS * VF = nV * nL
397 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
398 are compile-time constants but VF and nL can be variable (if the target
399 supports variable-length vectors).
401 In classical vectorization, each iteration of the vector loop would
402 handle exactly VF iterations of the original scalar loop. However,
403 in a fully-masked loop, a particular iteration of the vector loop
404 might handle fewer than VF iterations of the scalar loop. The vector
405 lanes that correspond to iterations of the scalar loop are said to be
406 "active" and the other lanes are said to be "inactive".
408 In a fully-masked loop, many rgroups need to be masked to ensure that
409 they have no effect for the inactive lanes. Each such rgroup needs a
410 sequence of booleans in the same order as above, but with each (i,j)
411 replaced by a boolean that indicates whether iteration i is active.
412 This sequence occupies nV vector masks that again have nL lanes each.
413 Thus the mask sequence as a whole consists of VF independent booleans
414 that are each repeated nS times.
416 We make the simplifying assumption that if a sequence of nV masks is
417 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
418 VIEW_CONVERTing it. This holds for all current targets that support
419 fully-masked loops. For example, suppose the scalar loop is:
421 float *f;
422 double *d;
423 for (int i = 0; i < n; ++i)
425 f[i * 2 + 0] += 1.0f;
426 f[i * 2 + 1] += 2.0f;
427 d[i] += 3.0;
430 and suppose that vectors have 256 bits. The vectorized f accesses
431 will belong to one rgroup and the vectorized d access to another:
433 f rgroup: nS = 2, nV = 1, nL = 8
434 d rgroup: nS = 1, nV = 1, nL = 4
435 VF = 4
437 [ In this simple example the rgroups do correspond to the normal
438 SLP grouping scheme. ]
440 If only the first three lanes are active, the masks we need are:
442 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
443 d rgroup: 1 | 1 | 1 | 0
445 Here we can use a mask calculated for f's rgroup for d's, but not
446 vice versa.
448 Thus for each value of nV, it is enough to provide nV masks, with the
449 mask being calculated based on the highest nL (or, equivalently, based
450 on the highest nS) required by any rgroup with that nV. We therefore
451 represent the entire collection of masks as a two-level table, with the
452 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
453 the second being indexed by the mask index 0 <= i < nV. */
455 /* The masks needed by rgroups with nV vectors, according to the
456 description above. */
457 struct rgroup_masks {
458 /* The largest nS for all rgroups that use these masks. */
459 unsigned int max_nscalars_per_iter;
461 /* The type of mask to use, based on the highest nS recorded above. */
462 tree mask_type;
464 /* A vector of nV masks, in iteration order. */
465 vec<tree> masks;
468 typedef auto_vec<rgroup_masks> vec_loop_masks;
470 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
472 /*-----------------------------------------------------------------*/
473 /* Info on vectorized loops. */
474 /*-----------------------------------------------------------------*/
475 typedef class _loop_vec_info : public vec_info {
476 public:
477 _loop_vec_info (class loop *, vec_info_shared *);
478 ~_loop_vec_info ();
480 /* The loop to which this info struct refers to. */
481 class loop *loop;
483 /* The loop basic blocks. */
484 basic_block *bbs;
486 /* Number of latch executions. */
487 tree num_itersm1;
488 /* Number of iterations. */
489 tree num_iters;
490 /* Number of iterations of the original loop. */
491 tree num_iters_unchanged;
492 /* Condition under which this loop is analyzed and versioned. */
493 tree num_iters_assumptions;
495 /* Threshold of number of iterations below which vectorization will not be
496 performed. It is calculated from MIN_PROFITABLE_ITERS and
497 param_min_vect_loop_bound. */
498 unsigned int th;
500 /* When applying loop versioning, the vector form should only be used
501 if the number of scalar iterations is >= this value, on top of all
502 the other requirements. Ignored when loop versioning is not being
503 used. */
504 poly_uint64 versioning_threshold;
506 /* Unrolling factor */
507 poly_uint64 vectorization_factor;
509 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
510 if there is no particular limit. */
511 unsigned HOST_WIDE_INT max_vectorization_factor;
513 /* The masks that a fully-masked loop should use to avoid operating
514 on inactive scalars. */
515 vec_loop_masks masks;
517 /* Set of scalar conditions that have loop mask applied. */
518 scalar_cond_masked_set_type scalar_cond_masked_set;
520 /* If we are using a loop mask to align memory addresses, this variable
521 contains the number of vector elements that we should skip in the
522 first iteration of the vector loop (i.e. the number of leading
523 elements that should be false in the first mask). */
524 tree mask_skip_niters;
526 /* Type of the variables to use in the WHILE_ULT call for fully-masked
527 loops. */
528 tree mask_compare_type;
530 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
531 the loop should not be vectorized, if constant non-zero, simd_if_cond
532 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
533 should be versioned on that condition, using scalar loop if the condition
534 is false and vectorized loop otherwise. */
535 tree simd_if_cond;
537 /* Type of the IV to use in the WHILE_ULT call for fully-masked
538 loops. */
539 tree iv_type;
541 /* Unknown DRs according to which loop was peeled. */
542 class dr_vec_info *unaligned_dr;
544 /* peeling_for_alignment indicates whether peeling for alignment will take
545 place, and what the peeling factor should be:
546 peeling_for_alignment = X means:
547 If X=0: Peeling for alignment will not be applied.
548 If X>0: Peel first X iterations.
549 If X=-1: Generate a runtime test to calculate the number of iterations
550 to be peeled, using the dataref recorded in the field
551 unaligned_dr. */
552 int peeling_for_alignment;
554 /* The mask used to check the alignment of pointers or arrays. */
555 int ptr_mask;
557 /* Data Dependence Relations defining address ranges that are candidates
558 for a run-time aliasing check. */
559 auto_vec<ddr_p> may_alias_ddrs;
561 /* Data Dependence Relations defining address ranges together with segment
562 lengths from which the run-time aliasing check is built. */
563 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
565 /* Check that the addresses of each pair of objects is unequal. */
566 auto_vec<vec_object_pair> check_unequal_addrs;
568 /* List of values that are required to be nonzero. This is used to check
569 whether things like "x[i * n] += 1;" are safe and eventually gets added
570 to the checks for lower bounds below. */
571 auto_vec<tree> check_nonzero;
573 /* List of values that need to be checked for a minimum value. */
574 auto_vec<vec_lower_bound> lower_bounds;
576 /* Statements in the loop that have data references that are candidates for a
577 runtime (loop versioning) misalignment check. */
578 auto_vec<stmt_vec_info> may_misalign_stmts;
580 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
581 auto_vec<stmt_vec_info> reductions;
583 /* All reduction chains in the loop, represented by the first
584 stmt in the chain. */
585 auto_vec<stmt_vec_info> reduction_chains;
587 /* Cost vector for a single scalar iteration. */
588 auto_vec<stmt_info_for_cost> scalar_cost_vec;
590 /* Map of IV base/step expressions to inserted name in the preheader. */
591 hash_map<tree_operand_hash, tree> *ivexpr_map;
593 /* Map of OpenMP "omp simd array" scan variables to corresponding
594 rhs of the store of the initializer. */
595 hash_map<tree, tree> *scan_map;
597 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
598 applied to the loop, i.e., no unrolling is needed, this is 1. */
599 poly_uint64 slp_unrolling_factor;
601 /* Cost of a single scalar iteration. */
602 int single_scalar_iteration_cost;
604 /* Is the loop vectorizable? */
605 bool vectorizable;
607 /* Records whether we still have the option of using a fully-masked loop. */
608 bool can_fully_mask_p;
610 /* True if have decided to use a fully-masked loop. */
611 bool fully_masked_p;
613 /* When we have grouped data accesses with gaps, we may introduce invalid
614 memory accesses. We peel the last iteration of the loop to prevent
615 this. */
616 bool peeling_for_gaps;
618 /* When the number of iterations is not a multiple of the vector size
619 we need to peel off iterations at the end to form an epilogue loop. */
620 bool peeling_for_niter;
622 /* True if there are no loop carried data dependencies in the loop.
623 If loop->safelen <= 1, then this is always true, either the loop
624 didn't have any loop carried data dependencies, or the loop is being
625 vectorized guarded with some runtime alias checks, or couldn't
626 be vectorized at all, but then this field shouldn't be used.
627 For loop->safelen >= 2, the user has asserted that there are no
628 backward dependencies, but there still could be loop carried forward
629 dependencies in such loops. This flag will be false if normal
630 vectorizer data dependency analysis would fail or require versioning
631 for alias, but because of loop->safelen >= 2 it has been vectorized
632 even without versioning for alias. E.g. in:
633 #pragma omp simd
634 for (int i = 0; i < m; i++)
635 a[i] = a[i + k] * c;
636 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
637 DTRT even for k > 0 && k < m, but without safelen we would not
638 vectorize this, so this field would be false. */
639 bool no_data_dependencies;
641 /* Mark loops having masked stores. */
642 bool has_mask_store;
644 /* Queued scaling factor for the scalar loop. */
645 profile_probability scalar_loop_scaling;
647 /* If if-conversion versioned this loop before conversion, this is the
648 loop version without if-conversion. */
649 class loop *scalar_loop;
651 /* For loops being epilogues of already vectorized loops
652 this points to the original vectorized loop. Otherwise NULL. */
653 _loop_vec_info *orig_loop_info;
655 /* Used to store loop_vec_infos of epilogues of this loop during
656 analysis. */
657 vec<_loop_vec_info *> epilogue_vinfos;
659 } *loop_vec_info;
661 /* Access Functions. */
662 #define LOOP_VINFO_LOOP(L) (L)->loop
663 #define LOOP_VINFO_BBS(L) (L)->bbs
664 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
665 #define LOOP_VINFO_NITERS(L) (L)->num_iters
666 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
667 prologue peeling retain total unchanged scalar loop iterations for
668 cost model. */
669 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
670 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
671 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
672 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
673 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
674 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
675 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
676 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
677 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
678 #define LOOP_VINFO_MASKS(L) (L)->masks
679 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
680 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
681 #define LOOP_VINFO_MASK_IV_TYPE(L) (L)->iv_type
682 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
683 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
684 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
685 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
686 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
687 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
688 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
689 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
690 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
691 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
692 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
693 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
694 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
695 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
696 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
697 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
698 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
699 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
700 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
701 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
702 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
703 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
704 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
705 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
706 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
707 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
708 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
709 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
710 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
712 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
713 ((L)->may_misalign_stmts.length () > 0)
714 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
715 ((L)->comp_alias_ddrs.length () > 0 \
716 || (L)->check_unequal_addrs.length () > 0 \
717 || (L)->lower_bounds.length () > 0)
718 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
719 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
720 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
721 (LOOP_VINFO_SIMD_IF_COND (L))
722 #define LOOP_REQUIRES_VERSIONING(L) \
723 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
724 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
725 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
726 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
728 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
729 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
731 #define LOOP_VINFO_EPILOGUE_P(L) \
732 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
734 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
735 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
737 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
738 value signifies success, and a NULL value signifies failure, supporting
739 propagating an opt_problem * describing the failure back up the call
740 stack. */
741 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
743 static inline loop_vec_info
744 loop_vec_info_for_loop (class loop *loop)
746 return (loop_vec_info) loop->aux;
749 typedef class _bb_vec_info : public vec_info
751 public:
752 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
753 ~_bb_vec_info ();
755 basic_block bb;
756 gimple_stmt_iterator region_begin;
757 gimple_stmt_iterator region_end;
758 } *bb_vec_info;
760 #define BB_VINFO_BB(B) (B)->bb
761 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
762 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
763 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
764 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
765 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
767 static inline bb_vec_info
768 vec_info_for_bb (basic_block bb)
770 return (bb_vec_info) bb->aux;
773 /*-----------------------------------------------------------------*/
774 /* Info on vectorized defs. */
775 /*-----------------------------------------------------------------*/
776 enum stmt_vec_info_type {
777 undef_vec_info_type = 0,
778 load_vec_info_type,
779 store_vec_info_type,
780 shift_vec_info_type,
781 op_vec_info_type,
782 call_vec_info_type,
783 call_simd_clone_vec_info_type,
784 assignment_vec_info_type,
785 condition_vec_info_type,
786 comparison_vec_info_type,
787 reduc_vec_info_type,
788 induc_vec_info_type,
789 type_promotion_vec_info_type,
790 type_demotion_vec_info_type,
791 type_conversion_vec_info_type,
792 cycle_phi_info_type,
793 lc_phi_info_type,
794 loop_exit_ctrl_vec_info_type
797 /* Indicates whether/how a variable is used in the scope of loop/basic
798 block. */
799 enum vect_relevant {
800 vect_unused_in_scope = 0,
802 /* The def is only used outside the loop. */
803 vect_used_only_live,
804 /* The def is in the inner loop, and the use is in the outer loop, and the
805 use is a reduction stmt. */
806 vect_used_in_outer_by_reduction,
807 /* The def is in the inner loop, and the use is in the outer loop (and is
808 not part of reduction). */
809 vect_used_in_outer,
811 /* defs that feed computations that end up (only) in a reduction. These
812 defs may be used by non-reduction stmts, but eventually, any
813 computations/values that are affected by these defs are used to compute
814 a reduction (i.e. don't get stored to memory, for example). We use this
815 to identify computations that we can change the order in which they are
816 computed. */
817 vect_used_by_reduction,
819 vect_used_in_scope
822 /* The type of vectorization that can be applied to the stmt: regular loop-based
823 vectorization; pure SLP - the stmt is a part of SLP instances and does not
824 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
825 a part of SLP instance and also must be loop-based vectorized, since it has
826 uses outside SLP sequences.
828 In the loop context the meanings of pure and hybrid SLP are slightly
829 different. By saying that pure SLP is applied to the loop, we mean that we
830 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
831 vectorized without doing any conceptual unrolling, cause we don't pack
832 together stmts from different iterations, only within a single iteration.
833 Loop hybrid SLP means that we exploit both intra-iteration and
834 inter-iteration parallelism (e.g., number of elements in the vector is 4
835 and the slp-group-size is 2, in which case we don't have enough parallelism
836 within an iteration, so we obtain the rest of the parallelism from subsequent
837 iterations by unrolling the loop by 2). */
838 enum slp_vect_type {
839 loop_vect = 0,
840 pure_slp,
841 hybrid
844 /* Says whether a statement is a load, a store of a vectorized statement
845 result, or a store of an invariant value. */
846 enum vec_load_store_type {
847 VLS_LOAD,
848 VLS_STORE,
849 VLS_STORE_INVARIANT
852 /* Describes how we're going to vectorize an individual load or store,
853 or a group of loads or stores. */
854 enum vect_memory_access_type {
855 /* An access to an invariant address. This is used only for loads. */
856 VMAT_INVARIANT,
858 /* A simple contiguous access. */
859 VMAT_CONTIGUOUS,
861 /* A contiguous access that goes down in memory rather than up,
862 with no additional permutation. This is used only for stores
863 of invariants. */
864 VMAT_CONTIGUOUS_DOWN,
866 /* A simple contiguous access in which the elements need to be permuted
867 after loading or before storing. Only used for loop vectorization;
868 SLP uses separate permutes. */
869 VMAT_CONTIGUOUS_PERMUTE,
871 /* A simple contiguous access in which the elements need to be reversed
872 after loading or before storing. */
873 VMAT_CONTIGUOUS_REVERSE,
875 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
876 VMAT_LOAD_STORE_LANES,
878 /* An access in which each scalar element is loaded or stored
879 individually. */
880 VMAT_ELEMENTWISE,
882 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
883 SLP accesses. Each unrolled iteration uses a contiguous load
884 or store for the whole group, but the groups from separate iterations
885 are combined in the same way as for VMAT_ELEMENTWISE. */
886 VMAT_STRIDED_SLP,
888 /* The access uses gather loads or scatter stores. */
889 VMAT_GATHER_SCATTER
892 class dr_vec_info {
893 public:
894 /* The data reference itself. */
895 data_reference *dr;
896 /* The statement that contains the data reference. */
897 stmt_vec_info stmt;
898 /* The misalignment in bytes of the reference, or -1 if not known. */
899 int misalignment;
900 /* The byte alignment that we'd ideally like the reference to have,
901 and the value that misalignment is measured against. */
902 poly_uint64 target_alignment;
903 /* If true the alignment of base_decl needs to be increased. */
904 bool base_misaligned;
905 tree base_decl;
908 typedef struct data_reference *dr_p;
910 class _stmt_vec_info {
911 public:
913 enum stmt_vec_info_type type;
915 /* Indicates whether this stmts is part of a computation whose result is
916 used outside the loop. */
917 bool live;
919 /* Stmt is part of some pattern (computation idiom) */
920 bool in_pattern_p;
922 /* True if the statement was created during pattern recognition as
923 part of the replacement for RELATED_STMT. This implies that the
924 statement isn't part of any basic block, although for convenience
925 its gimple_bb is the same as for RELATED_STMT. */
926 bool pattern_stmt_p;
928 /* Is this statement vectorizable or should it be skipped in (partial)
929 vectorization. */
930 bool vectorizable;
932 /* The stmt to which this info struct refers to. */
933 gimple *stmt;
935 /* The vec_info with respect to which STMT is vectorized. */
936 vec_info *vinfo;
938 /* The vector type to be used for the LHS of this statement. */
939 tree vectype;
941 /* The vectorized version of the stmt. */
942 stmt_vec_info vectorized_stmt;
945 /* The following is relevant only for stmts that contain a non-scalar
946 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
947 at most one such data-ref. */
949 dr_vec_info dr_aux;
951 /* Information about the data-ref relative to this loop
952 nest (the loop that is being considered for vectorization). */
953 innermost_loop_behavior dr_wrt_vec_loop;
955 /* For loop PHI nodes, the base and evolution part of it. This makes sure
956 this information is still available in vect_update_ivs_after_vectorizer
957 where we may not be able to re-analyze the PHI nodes evolution as
958 peeling for the prologue loop can make it unanalyzable. The evolution
959 part is still correct after peeling, but the base may have changed from
960 the version here. */
961 tree loop_phi_evolution_base_unchanged;
962 tree loop_phi_evolution_part;
964 /* Used for various bookkeeping purposes, generally holding a pointer to
965 some other stmt S that is in some way "related" to this stmt.
966 Current use of this field is:
967 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
968 true): S is the "pattern stmt" that represents (and replaces) the
969 sequence of stmts that constitutes the pattern. Similarly, the
970 related_stmt of the "pattern stmt" points back to this stmt (which is
971 the last stmt in the original sequence of stmts that constitutes the
972 pattern). */
973 stmt_vec_info related_stmt;
975 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
976 The sequence is attached to the original statement rather than the
977 pattern statement. */
978 gimple_seq pattern_def_seq;
980 /* List of datarefs that are known to have the same alignment as the dataref
981 of this stmt. */
982 vec<dr_p> same_align_refs;
984 /* Selected SIMD clone's function info. First vector element
985 is SIMD clone's function decl, followed by a pair of trees (base + step)
986 for linear arguments (pair of NULLs for other arguments). */
987 vec<tree> simd_clone_info;
989 /* Classify the def of this stmt. */
990 enum vect_def_type def_type;
992 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
993 enum slp_vect_type slp_type;
995 /* Interleaving and reduction chains info. */
996 /* First element in the group. */
997 stmt_vec_info first_element;
998 /* Pointer to the next element in the group. */
999 stmt_vec_info next_element;
1000 /* The size of the group. */
1001 unsigned int size;
1002 /* For stores, number of stores from this group seen. We vectorize the last
1003 one. */
1004 unsigned int store_count;
1005 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1006 is 1. */
1007 unsigned int gap;
1009 /* The minimum negative dependence distance this stmt participates in
1010 or zero if none. */
1011 unsigned int min_neg_dist;
1013 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1014 of the loop induction variable and computation of array indexes. relevant
1015 indicates whether the stmt needs to be vectorized. */
1016 enum vect_relevant relevant;
1018 /* For loads if this is a gather, for stores if this is a scatter. */
1019 bool gather_scatter_p;
1021 /* True if this is an access with loop-invariant stride. */
1022 bool strided_p;
1024 /* For both loads and stores. */
1025 unsigned simd_lane_access_p : 3;
1027 /* Classifies how the load or store is going to be implemented
1028 for loop vectorization. */
1029 vect_memory_access_type memory_access_type;
1031 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1032 tree induc_cond_initial_val;
1034 /* If not NULL the value to be added to compute final reduction value. */
1035 tree reduc_epilogue_adjustment;
1037 /* On a reduction PHI the reduction type as detected by
1038 vect_is_simple_reduction and vectorizable_reduction. */
1039 enum vect_reduction_type reduc_type;
1041 /* The original reduction code, to be used in the epilogue. */
1042 enum tree_code reduc_code;
1043 /* An internal function we should use in the epilogue. */
1044 internal_fn reduc_fn;
1046 /* On a stmt participating in the reduction the index of the operand
1047 on the reduction SSA cycle. */
1048 int reduc_idx;
1050 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1051 On the def returned by vect_force_simple_reduction the
1052 corresponding PHI. */
1053 stmt_vec_info reduc_def;
1055 /* The vector input type relevant for reduction vectorization. */
1056 tree reduc_vectype_in;
1058 /* The vector type for performing the actual reduction. */
1059 tree reduc_vectype;
1061 /* Whether we force a single cycle PHI during reduction vectorization. */
1062 bool force_single_cycle;
1064 /* Whether on this stmt reduction meta is recorded. */
1065 bool is_reduc_info;
1067 /* The number of scalar stmt references from active SLP instances. */
1068 unsigned int num_slp_uses;
1070 /* If nonzero, the lhs of the statement could be truncated to this
1071 many bits without affecting any users of the result. */
1072 unsigned int min_output_precision;
1074 /* If nonzero, all non-boolean input operands have the same precision,
1075 and they could each be truncated to this many bits without changing
1076 the result. */
1077 unsigned int min_input_precision;
1079 /* If OPERATION_BITS is nonzero, the statement could be performed on
1080 an integer with the sign and number of bits given by OPERATION_SIGN
1081 and OPERATION_BITS without changing the result. */
1082 unsigned int operation_precision;
1083 signop operation_sign;
1085 /* True if this is only suitable for SLP vectorization. */
1086 bool slp_vect_only_p;
1089 /* Information about a gather/scatter call. */
1090 struct gather_scatter_info {
1091 /* The internal function to use for the gather/scatter operation,
1092 or IFN_LAST if a built-in function should be used instead. */
1093 internal_fn ifn;
1095 /* The FUNCTION_DECL for the built-in gather/scatter function,
1096 or null if an internal function should be used instead. */
1097 tree decl;
1099 /* The loop-invariant base value. */
1100 tree base;
1102 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1103 tree offset;
1105 /* Each offset element should be multiplied by this amount before
1106 being added to the base. */
1107 int scale;
1109 /* The definition type for the vectorized offset. */
1110 enum vect_def_type offset_dt;
1112 /* The type of the vectorized offset. */
1113 tree offset_vectype;
1115 /* The type of the scalar elements after loading or before storing. */
1116 tree element_type;
1118 /* The type of the scalar elements being loaded or stored. */
1119 tree memory_type;
1122 /* Access Functions. */
1123 #define STMT_VINFO_TYPE(S) (S)->type
1124 #define STMT_VINFO_STMT(S) (S)->stmt
1125 inline loop_vec_info
1126 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
1128 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
1129 return loop_vinfo;
1130 return NULL;
1132 inline bb_vec_info
1133 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
1135 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
1136 return bb_vinfo;
1137 return NULL;
1139 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1140 #define STMT_VINFO_LIVE_P(S) (S)->live
1141 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1142 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
1143 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1144 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1145 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1146 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1147 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1148 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1149 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1150 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1151 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1152 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1154 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1155 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1156 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1157 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1158 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1159 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1160 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1161 (S)->dr_wrt_vec_loop.base_misalignment
1162 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1163 (S)->dr_wrt_vec_loop.offset_alignment
1164 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1165 (S)->dr_wrt_vec_loop.step_alignment
1167 #define STMT_VINFO_DR_INFO(S) \
1168 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1170 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1171 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1172 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1173 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1174 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1175 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1176 #define STMT_VINFO_GROUPED_ACCESS(S) \
1177 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1178 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1179 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1180 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1181 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1182 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1183 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1184 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1185 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1186 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1187 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1188 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1190 #define DR_GROUP_FIRST_ELEMENT(S) \
1191 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1192 #define DR_GROUP_NEXT_ELEMENT(S) \
1193 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1194 #define DR_GROUP_SIZE(S) \
1195 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1196 #define DR_GROUP_STORE_COUNT(S) \
1197 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1198 #define DR_GROUP_GAP(S) \
1199 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1201 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1202 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1203 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1204 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1205 #define REDUC_GROUP_SIZE(S) \
1206 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1208 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1210 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1211 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1212 #define STMT_SLP_TYPE(S) (S)->slp_type
1214 #define VECT_MAX_COST 1000
1216 /* The maximum number of intermediate steps required in multi-step type
1217 conversion. */
1218 #define MAX_INTERM_CVT_STEPS 3
1220 #define MAX_VECTORIZATION_FACTOR INT_MAX
1222 /* Nonzero if TYPE represents a (scalar) boolean type or type
1223 in the middle-end compatible with it (unsigned precision 1 integral
1224 types). Used to determine which types should be vectorized as
1225 VECTOR_BOOLEAN_TYPE_P. */
1227 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1228 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1229 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1230 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1231 && TYPE_PRECISION (TYPE) == 1 \
1232 && TYPE_UNSIGNED (TYPE)))
1234 static inline bool
1235 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1237 return (loop->inner
1238 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1241 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1242 pattern. */
1244 static inline bool
1245 is_pattern_stmt_p (stmt_vec_info stmt_info)
1247 return stmt_info->pattern_stmt_p;
1250 /* If STMT_INFO is a pattern statement, return the statement that it
1251 replaces, otherwise return STMT_INFO itself. */
1253 inline stmt_vec_info
1254 vect_orig_stmt (stmt_vec_info stmt_info)
1256 if (is_pattern_stmt_p (stmt_info))
1257 return STMT_VINFO_RELATED_STMT (stmt_info);
1258 return stmt_info;
1261 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1263 static inline stmt_vec_info
1264 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1266 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1267 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1268 return stmt1_info;
1269 else
1270 return stmt2_info;
1273 /* If STMT_INFO has been replaced by a pattern statement, return the
1274 replacement statement, otherwise return STMT_INFO itself. */
1276 inline stmt_vec_info
1277 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1279 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1280 return STMT_VINFO_RELATED_STMT (stmt_info);
1281 return stmt_info;
1284 /* Return true if BB is a loop header. */
1286 static inline bool
1287 is_loop_header_bb_p (basic_block bb)
1289 if (bb == (bb->loop_father)->header)
1290 return true;
1291 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1292 return false;
1295 /* Return pow2 (X). */
1297 static inline int
1298 vect_pow2 (int x)
1300 int i, res = 1;
1302 for (i = 0; i < x; i++)
1303 res *= 2;
1305 return res;
1308 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1310 static inline int
1311 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1312 tree vectype, int misalign)
1314 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1315 vectype, misalign);
1318 /* Get cost by calling cost target builtin. */
1320 static inline
1321 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1323 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1326 /* Alias targetm.vectorize.init_cost. */
1328 static inline void *
1329 init_cost (class loop *loop_info)
1331 return targetm.vectorize.init_cost (loop_info);
1334 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1335 stmt_vec_info, int, unsigned,
1336 enum vect_cost_model_location);
1338 /* Alias targetm.vectorize.add_stmt_cost. */
1340 static inline unsigned
1341 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1342 stmt_vec_info stmt_info, int misalign,
1343 enum vect_cost_model_location where)
1345 unsigned cost = targetm.vectorize.add_stmt_cost (data, count, kind,
1346 stmt_info, misalign, where);
1347 if (dump_file && (dump_flags & TDF_DETAILS))
1348 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign,
1349 cost, where);
1350 return cost;
1353 /* Alias targetm.vectorize.finish_cost. */
1355 static inline void
1356 finish_cost (void *data, unsigned *prologue_cost,
1357 unsigned *body_cost, unsigned *epilogue_cost)
1359 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1362 /* Alias targetm.vectorize.destroy_cost_data. */
1364 static inline void
1365 destroy_cost_data (void *data)
1367 targetm.vectorize.destroy_cost_data (data);
1370 inline void
1371 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1373 stmt_info_for_cost *cost;
1374 unsigned i;
1375 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1376 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1377 cost->misalign, cost->where);
1380 /*-----------------------------------------------------------------*/
1381 /* Info on data references alignment. */
1382 /*-----------------------------------------------------------------*/
1383 #define DR_MISALIGNMENT_UNKNOWN (-1)
1384 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1386 inline void
1387 set_dr_misalignment (dr_vec_info *dr_info, int val)
1389 dr_info->misalignment = val;
1392 inline int
1393 dr_misalignment (dr_vec_info *dr_info)
1395 int misalign = dr_info->misalignment;
1396 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1397 return misalign;
1400 /* Reflects actual alignment of first access in the vectorized loop,
1401 taking into account peeling/versioning if applied. */
1402 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1403 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1405 /* Only defined once DR_MISALIGNMENT is defined. */
1406 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1408 /* Return true if data access DR_INFO is aligned to its target alignment
1409 (which may be less than a full vector). */
1411 static inline bool
1412 aligned_access_p (dr_vec_info *dr_info)
1414 return (DR_MISALIGNMENT (dr_info) == 0);
1417 /* Return TRUE if the alignment of the data access is known, and FALSE
1418 otherwise. */
1420 static inline bool
1421 known_alignment_for_access_p (dr_vec_info *dr_info)
1423 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1426 /* Return the minimum alignment in bytes that the vectorized version
1427 of DR_INFO is guaranteed to have. */
1429 static inline unsigned int
1430 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1432 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1433 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1434 if (DR_MISALIGNMENT (dr_info) == 0)
1435 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1436 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1439 /* Return the behavior of DR_INFO with respect to the vectorization context
1440 (which for outer loop vectorization might not be the behavior recorded
1441 in DR_INFO itself). */
1443 static inline innermost_loop_behavior *
1444 vect_dr_behavior (dr_vec_info *dr_info)
1446 stmt_vec_info stmt_info = dr_info->stmt;
1447 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1448 if (loop_vinfo == NULL
1449 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1450 return &DR_INNERMOST (dr_info->dr);
1451 else
1452 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1455 /* Return true if the vect cost model is unlimited. */
1456 static inline bool
1457 unlimited_cost_model (loop_p loop)
1459 if (loop != NULL && loop->force_vectorize
1460 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1461 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1462 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1465 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1466 if the first iteration should use a partial mask in order to achieve
1467 alignment. */
1469 static inline bool
1470 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1472 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1473 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1476 /* Return the number of vectors of type VECTYPE that are needed to get
1477 NUNITS elements. NUNITS should be based on the vectorization factor,
1478 so it is always a known multiple of the number of elements in VECTYPE. */
1480 static inline unsigned int
1481 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1483 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1486 /* Return the number of copies needed for loop vectorization when
1487 a statement operates on vectors of type VECTYPE. This is the
1488 vectorization factor divided by the number of elements in
1489 VECTYPE and is always known at compile time. */
1491 static inline unsigned int
1492 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1494 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1497 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1498 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1500 static inline void
1501 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1503 /* All unit counts have the form vec_info::vector_size * X for some
1504 rational X, so two unit sizes must have a common multiple.
1505 Everything is a multiple of the initial value of 1. */
1506 *max_nunits = force_common_multiple (*max_nunits, nunits);
1509 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1510 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1511 if we haven't yet recorded any vector types. */
1513 static inline void
1514 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1516 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1519 /* Return the vectorization factor that should be used for costing
1520 purposes while vectorizing the loop described by LOOP_VINFO.
1521 Pick a reasonable estimate if the vectorization factor isn't
1522 known at compile time. */
1524 static inline unsigned int
1525 vect_vf_for_cost (loop_vec_info loop_vinfo)
1527 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1530 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1531 Pick a reasonable estimate if the exact number isn't known at
1532 compile time. */
1534 static inline unsigned int
1535 vect_nunits_for_cost (tree vec_type)
1537 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1540 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1542 static inline unsigned HOST_WIDE_INT
1543 vect_max_vf (loop_vec_info loop_vinfo)
1545 unsigned HOST_WIDE_INT vf;
1546 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1547 return vf;
1548 return MAX_VECTORIZATION_FACTOR;
1551 /* Return the size of the value accessed by unvectorized data reference
1552 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1553 for the associated gimple statement, since that guarantees that DR_INFO
1554 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1555 here includes things like V1SI, which can be vectorized in the same way
1556 as a plain SI.) */
1558 inline unsigned int
1559 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1561 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1564 /* Return true if LOOP_VINFO requires a runtime check for whether the
1565 vector loop is profitable. */
1567 inline bool
1568 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1570 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1571 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1572 && th >= vect_vf_for_cost (loop_vinfo));
1575 /* Source location + hotness information. */
1576 extern dump_user_location_t vect_location;
1578 /* A macro for calling:
1579 dump_begin_scope (MSG, vect_location);
1580 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1581 and then calling
1582 dump_end_scope ();
1583 once the object goes out of scope, thus capturing the nesting of
1584 the scopes.
1586 These scopes affect dump messages within them: dump messages at the
1587 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1588 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1590 #define DUMP_VECT_SCOPE(MSG) \
1591 AUTO_DUMP_SCOPE (MSG, vect_location)
1593 /* A sentinel class for ensuring that the "vect_location" global gets
1594 reset at the end of a scope.
1596 The "vect_location" global is used during dumping and contains a
1597 location_t, which could contain references to a tree block via the
1598 ad-hoc data. This data is used for tracking inlining information,
1599 but it's not a GC root; it's simply assumed that such locations never
1600 get accessed if the blocks are optimized away.
1602 Hence we need to ensure that such locations are purged at the end
1603 of any operations using them (e.g. via this class). */
1605 class auto_purge_vect_location
1607 public:
1608 ~auto_purge_vect_location ();
1611 /*-----------------------------------------------------------------*/
1612 /* Function prototypes. */
1613 /*-----------------------------------------------------------------*/
1615 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1616 in tree-vect-loop-manip.c. */
1617 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1618 tree, tree, tree, bool);
1619 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1620 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1621 class loop *, edge);
1622 class loop *vect_loop_versioning (loop_vec_info);
1623 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1624 tree *, tree *, tree *, int, bool, bool,
1625 tree *, drs_init_vec &);
1626 extern void vect_prepare_for_masked_peels (loop_vec_info);
1627 extern dump_user_location_t find_loop_location (class loop *);
1628 extern bool vect_can_advance_ivs_p (loop_vec_info);
1629 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1631 /* In tree-vect-stmts.c. */
1632 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1633 poly_uint64 = 0);
1634 extern tree get_vectype_for_scalar_type (vec_info *, tree);
1635 extern tree get_mask_type_for_scalar_type (vec_info *, tree);
1636 extern tree get_same_sized_vectype (tree, tree);
1637 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1638 extern bool vect_get_loop_mask_type (loop_vec_info);
1639 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1640 stmt_vec_info * = NULL, gimple ** = NULL);
1641 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1642 tree *, stmt_vec_info * = NULL,
1643 gimple ** = NULL);
1644 extern bool supportable_widening_operation (enum tree_code, stmt_vec_info,
1645 tree, tree, enum tree_code *,
1646 enum tree_code *, int *,
1647 vec<tree> *);
1648 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1649 enum tree_code *, int *,
1650 vec<tree> *);
1651 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1652 enum vect_cost_for_stmt, stmt_vec_info,
1653 int, enum vect_cost_model_location);
1654 extern stmt_vec_info vect_finish_replace_stmt (stmt_vec_info, gimple *);
1655 extern stmt_vec_info vect_finish_stmt_generation (stmt_vec_info, gimple *,
1656 gimple_stmt_iterator *);
1657 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1658 extern tree vect_get_store_rhs (stmt_vec_info);
1659 extern tree vect_get_vec_def_for_operand_1 (stmt_vec_info, enum vect_def_type);
1660 extern tree vect_get_vec_def_for_operand (tree, stmt_vec_info, tree = NULL);
1661 extern void vect_get_vec_defs (tree, tree, stmt_vec_info, vec<tree> *,
1662 vec<tree> *, slp_tree);
1663 extern void vect_get_vec_defs_for_stmt_copy (vec_info *,
1664 vec<tree> *, vec<tree> *);
1665 extern tree vect_init_vector (stmt_vec_info, tree, tree,
1666 gimple_stmt_iterator *);
1667 extern tree vect_get_vec_def_for_stmt_copy (vec_info *, tree);
1668 extern bool vect_transform_stmt (stmt_vec_info, gimple_stmt_iterator *,
1669 slp_tree, slp_instance);
1670 extern void vect_remove_stores (stmt_vec_info);
1671 extern bool vect_nop_conversion_p (stmt_vec_info);
1672 extern opt_result vect_analyze_stmt (stmt_vec_info, bool *, slp_tree,
1673 slp_instance, stmt_vector_for_cost *);
1674 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1675 unsigned int *, unsigned int *,
1676 stmt_vector_for_cost *,
1677 stmt_vector_for_cost *, bool);
1678 extern void vect_get_store_cost (stmt_vec_info, int,
1679 unsigned int *, stmt_vector_for_cost *);
1680 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1681 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1682 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1683 extern void optimize_mask_stores (class loop*);
1684 extern gcall *vect_gen_while (tree, tree, tree);
1685 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1686 extern opt_result vect_get_vector_types_for_stmt (stmt_vec_info, tree *,
1687 tree *);
1688 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info);
1690 /* In tree-vect-data-refs.c. */
1691 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1692 extern enum dr_alignment_support vect_supportable_dr_alignment
1693 (dr_vec_info *, bool);
1694 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1695 HOST_WIDE_INT *);
1696 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1697 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1698 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1699 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1700 extern opt_result vect_verify_datarefs_alignment (loop_vec_info);
1701 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1702 extern opt_result vect_analyze_data_ref_accesses (vec_info *);
1703 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1704 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1705 tree, int, internal_fn *, tree *);
1706 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1707 gather_scatter_info *);
1708 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1709 vec<data_reference_p> *);
1710 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1711 extern void vect_record_base_alignments (vec_info *);
1712 extern tree vect_create_data_ref_ptr (stmt_vec_info, tree, class loop *, tree,
1713 tree *, gimple_stmt_iterator *,
1714 gimple **, bool,
1715 tree = NULL_TREE, tree = NULL_TREE);
1716 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *,
1717 stmt_vec_info, tree);
1718 extern void vect_copy_ref_info (tree, tree);
1719 extern tree vect_create_destination_var (tree, tree);
1720 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1721 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1722 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1723 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1724 extern void vect_permute_store_chain (vec<tree> ,unsigned int, stmt_vec_info,
1725 gimple_stmt_iterator *, vec<tree> *);
1726 extern tree vect_setup_realignment (stmt_vec_info, gimple_stmt_iterator *,
1727 tree *, enum dr_alignment_support, tree,
1728 class loop **);
1729 extern void vect_transform_grouped_load (stmt_vec_info, vec<tree> , int,
1730 gimple_stmt_iterator *);
1731 extern void vect_record_grouped_load_vectors (stmt_vec_info, vec<tree>);
1732 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1733 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1734 const char * = NULL);
1735 extern tree vect_create_addr_base_for_vector_ref (stmt_vec_info, gimple_seq *,
1736 tree, tree = NULL_TREE);
1738 /* In tree-vect-loop.c. */
1739 extern widest_int vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo);
1740 /* Used in tree-vect-loop-manip.c */
1741 extern void determine_peel_for_niter (loop_vec_info);
1742 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1743 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1744 enum tree_code);
1745 extern bool needs_fold_left_reduction_p (tree, tree_code);
1746 /* Drive for loop analysis stage. */
1747 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1748 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1749 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1750 tree *, bool);
1751 extern tree vect_halve_mask_nunits (tree, machine_mode);
1752 extern tree vect_double_mask_nunits (tree, machine_mode);
1753 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1754 unsigned int, tree, tree);
1755 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1756 unsigned int, tree, unsigned int);
1757 extern stmt_vec_info info_for_reduction (stmt_vec_info);
1759 /* Drive for loop transformation stage. */
1760 extern class loop *vect_transform_loop (loop_vec_info);
1761 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1762 vec_info_shared *);
1763 extern bool vectorizable_live_operation (stmt_vec_info, gimple_stmt_iterator *,
1764 slp_tree, slp_instance, int,
1765 bool, stmt_vector_for_cost *);
1766 extern bool vectorizable_reduction (stmt_vec_info, slp_tree, slp_instance,
1767 stmt_vector_for_cost *);
1768 extern bool vectorizable_induction (stmt_vec_info, gimple_stmt_iterator *,
1769 stmt_vec_info *, slp_tree,
1770 stmt_vector_for_cost *);
1771 extern bool vect_transform_reduction (stmt_vec_info, gimple_stmt_iterator *,
1772 stmt_vec_info *, slp_tree);
1773 extern bool vect_transform_cycle_phi (stmt_vec_info, stmt_vec_info *,
1774 slp_tree, slp_instance);
1775 extern bool vectorizable_lc_phi (stmt_vec_info, stmt_vec_info *, slp_tree);
1776 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1777 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1778 stmt_vector_for_cost *,
1779 stmt_vector_for_cost *,
1780 stmt_vector_for_cost *);
1781 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1783 /* In tree-vect-slp.c. */
1784 extern void vect_free_slp_instance (slp_instance, bool);
1785 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1786 gimple_stmt_iterator *, poly_uint64,
1787 slp_instance, bool, unsigned *);
1788 extern bool vect_slp_analyze_operations (vec_info *);
1789 extern void vect_schedule_slp (vec_info *);
1790 extern opt_result vect_analyze_slp (vec_info *, unsigned);
1791 extern bool vect_make_slp_decision (loop_vec_info);
1792 extern void vect_detect_hybrid_slp (loop_vec_info);
1793 extern void vect_get_slp_defs (slp_tree, vec<vec<tree> > *, unsigned n = -1U);
1794 extern bool vect_slp_bb (basic_block);
1795 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
1796 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
1797 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int,
1798 machine_mode,
1799 unsigned int * = NULL,
1800 tree * = NULL, tree * = NULL);
1801 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
1802 vec<tree>, unsigned int, vec<tree> &);
1803 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
1805 /* In tree-vect-patterns.c. */
1806 /* Pattern recognition functions.
1807 Additional pattern recognition functions can (and will) be added
1808 in the future. */
1809 void vect_pattern_recog (vec_info *);
1811 /* In tree-vectorizer.c. */
1812 unsigned vectorize_loops (void);
1813 void vect_free_loop_info_assumptions (class loop *);
1814 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
1817 #endif /* GCC_TREE_VECTORIZER_H */