typeck.c (cp_truthvalue_conversion): Add tsubst_flags_t parameter and use it in calls...
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blobd5c1b5b925f9fdd49356e578529735bb3d6ff77e
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-dfa.h"
47 /* The maximum number of dominator BBs we search for conditions
48 of loop header copies we use for simplifying a conditional
49 expression. */
50 #define MAX_DOMINATORS_TO_WALK 8
54 Analysis of number of iterations of an affine exit test.
58 /* Bounds on some value, BELOW <= X <= UP. */
60 struct bounds
62 mpz_t below, up;
65 static bool number_of_iterations_popcount (loop_p loop, edge exit,
66 enum tree_code code,
67 class tree_niter_desc *niter);
70 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
72 static void
73 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
75 tree type = TREE_TYPE (expr);
76 tree op0, op1;
77 bool negate = false;
79 *var = expr;
80 mpz_set_ui (offset, 0);
82 switch (TREE_CODE (expr))
84 case MINUS_EXPR:
85 negate = true;
86 /* Fallthru. */
88 case PLUS_EXPR:
89 case POINTER_PLUS_EXPR:
90 op0 = TREE_OPERAND (expr, 0);
91 op1 = TREE_OPERAND (expr, 1);
93 if (TREE_CODE (op1) != INTEGER_CST)
94 break;
96 *var = op0;
97 /* Always sign extend the offset. */
98 wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
99 if (negate)
100 mpz_neg (offset, offset);
101 break;
103 case INTEGER_CST:
104 *var = build_int_cst_type (type, 0);
105 wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
106 break;
108 default:
109 break;
113 /* From condition C0 CMP C1 derives information regarding the value range
114 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
116 static void
117 refine_value_range_using_guard (tree type, tree var,
118 tree c0, enum tree_code cmp, tree c1,
119 mpz_t below, mpz_t up)
121 tree varc0, varc1, ctype;
122 mpz_t offc0, offc1;
123 mpz_t mint, maxt, minc1, maxc1;
124 wide_int minv, maxv;
125 bool no_wrap = nowrap_type_p (type);
126 bool c0_ok, c1_ok;
127 signop sgn = TYPE_SIGN (type);
129 switch (cmp)
131 case LT_EXPR:
132 case LE_EXPR:
133 case GT_EXPR:
134 case GE_EXPR:
135 STRIP_SIGN_NOPS (c0);
136 STRIP_SIGN_NOPS (c1);
137 ctype = TREE_TYPE (c0);
138 if (!useless_type_conversion_p (ctype, type))
139 return;
141 break;
143 case EQ_EXPR:
144 /* We could derive quite precise information from EQ_EXPR, however,
145 such a guard is unlikely to appear, so we do not bother with
146 handling it. */
147 return;
149 case NE_EXPR:
150 /* NE_EXPR comparisons do not contain much of useful information,
151 except for cases of comparing with bounds. */
152 if (TREE_CODE (c1) != INTEGER_CST
153 || !INTEGRAL_TYPE_P (type))
154 return;
156 /* Ensure that the condition speaks about an expression in the same
157 type as X and Y. */
158 ctype = TREE_TYPE (c0);
159 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
160 return;
161 c0 = fold_convert (type, c0);
162 c1 = fold_convert (type, c1);
164 if (operand_equal_p (var, c0, 0))
166 mpz_t valc1;
168 /* Case of comparing VAR with its below/up bounds. */
169 mpz_init (valc1);
170 wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
171 if (mpz_cmp (valc1, below) == 0)
172 cmp = GT_EXPR;
173 if (mpz_cmp (valc1, up) == 0)
174 cmp = LT_EXPR;
176 mpz_clear (valc1);
178 else
180 /* Case of comparing with the bounds of the type. */
181 wide_int min = wi::min_value (type);
182 wide_int max = wi::max_value (type);
184 if (wi::to_wide (c1) == min)
185 cmp = GT_EXPR;
186 if (wi::to_wide (c1) == max)
187 cmp = LT_EXPR;
190 /* Quick return if no useful information. */
191 if (cmp == NE_EXPR)
192 return;
194 break;
196 default:
197 return;
200 mpz_init (offc0);
201 mpz_init (offc1);
202 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
203 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
205 /* We are only interested in comparisons of expressions based on VAR. */
206 if (operand_equal_p (var, varc1, 0))
208 std::swap (varc0, varc1);
209 mpz_swap (offc0, offc1);
210 cmp = swap_tree_comparison (cmp);
212 else if (!operand_equal_p (var, varc0, 0))
214 mpz_clear (offc0);
215 mpz_clear (offc1);
216 return;
219 mpz_init (mint);
220 mpz_init (maxt);
221 get_type_static_bounds (type, mint, maxt);
222 mpz_init (minc1);
223 mpz_init (maxc1);
224 /* Setup range information for varc1. */
225 if (integer_zerop (varc1))
227 wi::to_mpz (0, minc1, TYPE_SIGN (type));
228 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
230 else if (TREE_CODE (varc1) == SSA_NAME
231 && INTEGRAL_TYPE_P (type)
232 && get_range_info (varc1, &minv, &maxv) == VR_RANGE)
234 gcc_assert (wi::le_p (minv, maxv, sgn));
235 wi::to_mpz (minv, minc1, sgn);
236 wi::to_mpz (maxv, maxc1, sgn);
238 else
240 mpz_set (minc1, mint);
241 mpz_set (maxc1, maxt);
244 /* Compute valid range information for varc1 + offc1. Note nothing
245 useful can be derived if it overflows or underflows. Overflow or
246 underflow could happen when:
248 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
249 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
250 mpz_add (minc1, minc1, offc1);
251 mpz_add (maxc1, maxc1, offc1);
252 c1_ok = (no_wrap
253 || mpz_sgn (offc1) == 0
254 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
255 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
256 if (!c1_ok)
257 goto end;
259 if (mpz_cmp (minc1, mint) < 0)
260 mpz_set (minc1, mint);
261 if (mpz_cmp (maxc1, maxt) > 0)
262 mpz_set (maxc1, maxt);
264 if (cmp == LT_EXPR)
266 cmp = LE_EXPR;
267 mpz_sub_ui (maxc1, maxc1, 1);
269 if (cmp == GT_EXPR)
271 cmp = GE_EXPR;
272 mpz_add_ui (minc1, minc1, 1);
275 /* Compute range information for varc0. If there is no overflow,
276 the condition implied that
278 (varc0) cmp (varc1 + offc1 - offc0)
280 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
281 or the below bound if cmp is GE_EXPR.
283 To prove there is no overflow/underflow, we need to check below
284 four cases:
285 1) cmp == LE_EXPR && offc0 > 0
287 (varc0 + offc0) doesn't overflow
288 && (varc1 + offc1 - offc0) doesn't underflow
290 2) cmp == LE_EXPR && offc0 < 0
292 (varc0 + offc0) doesn't underflow
293 && (varc1 + offc1 - offc0) doesn't overfloe
295 In this case, (varc0 + offc0) will never underflow if we can
296 prove (varc1 + offc1 - offc0) doesn't overflow.
298 3) cmp == GE_EXPR && offc0 < 0
300 (varc0 + offc0) doesn't underflow
301 && (varc1 + offc1 - offc0) doesn't overflow
303 4) cmp == GE_EXPR && offc0 > 0
305 (varc0 + offc0) doesn't overflow
306 && (varc1 + offc1 - offc0) doesn't underflow
308 In this case, (varc0 + offc0) will never overflow if we can
309 prove (varc1 + offc1 - offc0) doesn't underflow.
311 Note we only handle case 2 and 4 in below code. */
313 mpz_sub (minc1, minc1, offc0);
314 mpz_sub (maxc1, maxc1, offc0);
315 c0_ok = (no_wrap
316 || mpz_sgn (offc0) == 0
317 || (cmp == LE_EXPR
318 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
319 || (cmp == GE_EXPR
320 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
321 if (!c0_ok)
322 goto end;
324 if (cmp == LE_EXPR)
326 if (mpz_cmp (up, maxc1) > 0)
327 mpz_set (up, maxc1);
329 else
331 if (mpz_cmp (below, minc1) < 0)
332 mpz_set (below, minc1);
335 end:
336 mpz_clear (mint);
337 mpz_clear (maxt);
338 mpz_clear (minc1);
339 mpz_clear (maxc1);
340 mpz_clear (offc0);
341 mpz_clear (offc1);
344 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
345 in TYPE to MIN and MAX. */
347 static void
348 determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
349 mpz_t min, mpz_t max)
351 int cnt = 0;
352 mpz_t minm, maxm;
353 basic_block bb;
354 wide_int minv, maxv;
355 enum value_range_kind rtype = VR_VARYING;
357 /* If the expression is a constant, we know its value exactly. */
358 if (integer_zerop (var))
360 mpz_set (min, off);
361 mpz_set (max, off);
362 return;
365 get_type_static_bounds (type, min, max);
367 /* See if we have some range info from VRP. */
368 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
370 edge e = loop_preheader_edge (loop);
371 signop sgn = TYPE_SIGN (type);
372 gphi_iterator gsi;
374 /* Either for VAR itself... */
375 rtype = get_range_info (var, &minv, &maxv);
376 /* Or for PHI results in loop->header where VAR is used as
377 PHI argument from the loop preheader edge. */
378 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
380 gphi *phi = gsi.phi ();
381 wide_int minc, maxc;
382 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
383 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
384 == VR_RANGE))
386 if (rtype != VR_RANGE)
388 rtype = VR_RANGE;
389 minv = minc;
390 maxv = maxc;
392 else
394 minv = wi::max (minv, minc, sgn);
395 maxv = wi::min (maxv, maxc, sgn);
396 /* If the PHI result range are inconsistent with
397 the VAR range, give up on looking at the PHI
398 results. This can happen if VR_UNDEFINED is
399 involved. */
400 if (wi::gt_p (minv, maxv, sgn))
402 rtype = get_range_info (var, &minv, &maxv);
403 break;
408 mpz_init (minm);
409 mpz_init (maxm);
410 if (rtype != VR_RANGE)
412 mpz_set (minm, min);
413 mpz_set (maxm, max);
415 else
417 gcc_assert (wi::le_p (minv, maxv, sgn));
418 wi::to_mpz (minv, minm, sgn);
419 wi::to_mpz (maxv, maxm, sgn);
421 /* Now walk the dominators of the loop header and use the entry
422 guards to refine the estimates. */
423 for (bb = loop->header;
424 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
425 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
427 edge e;
428 tree c0, c1;
429 gimple *cond;
430 enum tree_code cmp;
432 if (!single_pred_p (bb))
433 continue;
434 e = single_pred_edge (bb);
436 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
437 continue;
439 cond = last_stmt (e->src);
440 c0 = gimple_cond_lhs (cond);
441 cmp = gimple_cond_code (cond);
442 c1 = gimple_cond_rhs (cond);
444 if (e->flags & EDGE_FALSE_VALUE)
445 cmp = invert_tree_comparison (cmp, false);
447 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
448 ++cnt;
451 mpz_add (minm, minm, off);
452 mpz_add (maxm, maxm, off);
453 /* If the computation may not wrap or off is zero, then this
454 is always fine. If off is negative and minv + off isn't
455 smaller than type's minimum, or off is positive and
456 maxv + off isn't bigger than type's maximum, use the more
457 precise range too. */
458 if (nowrap_type_p (type)
459 || mpz_sgn (off) == 0
460 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
461 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
463 mpz_set (min, minm);
464 mpz_set (max, maxm);
465 mpz_clear (minm);
466 mpz_clear (maxm);
467 return;
469 mpz_clear (minm);
470 mpz_clear (maxm);
473 /* If the computation may wrap, we know nothing about the value, except for
474 the range of the type. */
475 if (!nowrap_type_p (type))
476 return;
478 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
479 add it to MIN, otherwise to MAX. */
480 if (mpz_sgn (off) < 0)
481 mpz_add (max, max, off);
482 else
483 mpz_add (min, min, off);
486 /* Stores the bounds on the difference of the values of the expressions
487 (var + X) and (var + Y), computed in TYPE, to BNDS. */
489 static void
490 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
491 bounds *bnds)
493 int rel = mpz_cmp (x, y);
494 bool may_wrap = !nowrap_type_p (type);
495 mpz_t m;
497 /* If X == Y, then the expressions are always equal.
498 If X > Y, there are the following possibilities:
499 a) neither of var + X and var + Y overflow or underflow, or both of
500 them do. Then their difference is X - Y.
501 b) var + X overflows, and var + Y does not. Then the values of the
502 expressions are var + X - M and var + Y, where M is the range of
503 the type, and their difference is X - Y - M.
504 c) var + Y underflows and var + X does not. Their difference again
505 is M - X + Y.
506 Therefore, if the arithmetics in type does not overflow, then the
507 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
508 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
509 (X - Y, X - Y + M). */
511 if (rel == 0)
513 mpz_set_ui (bnds->below, 0);
514 mpz_set_ui (bnds->up, 0);
515 return;
518 mpz_init (m);
519 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
520 mpz_add_ui (m, m, 1);
521 mpz_sub (bnds->up, x, y);
522 mpz_set (bnds->below, bnds->up);
524 if (may_wrap)
526 if (rel > 0)
527 mpz_sub (bnds->below, bnds->below, m);
528 else
529 mpz_add (bnds->up, bnds->up, m);
532 mpz_clear (m);
535 /* From condition C0 CMP C1 derives information regarding the
536 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
537 and stores it to BNDS. */
539 static void
540 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
541 tree vary, mpz_t offy,
542 tree c0, enum tree_code cmp, tree c1,
543 bounds *bnds)
545 tree varc0, varc1, ctype;
546 mpz_t offc0, offc1, loffx, loffy, bnd;
547 bool lbound = false;
548 bool no_wrap = nowrap_type_p (type);
549 bool x_ok, y_ok;
551 switch (cmp)
553 case LT_EXPR:
554 case LE_EXPR:
555 case GT_EXPR:
556 case GE_EXPR:
557 STRIP_SIGN_NOPS (c0);
558 STRIP_SIGN_NOPS (c1);
559 ctype = TREE_TYPE (c0);
560 if (!useless_type_conversion_p (ctype, type))
561 return;
563 break;
565 case EQ_EXPR:
566 /* We could derive quite precise information from EQ_EXPR, however, such
567 a guard is unlikely to appear, so we do not bother with handling
568 it. */
569 return;
571 case NE_EXPR:
572 /* NE_EXPR comparisons do not contain much of useful information, except for
573 special case of comparing with the bounds of the type. */
574 if (TREE_CODE (c1) != INTEGER_CST
575 || !INTEGRAL_TYPE_P (type))
576 return;
578 /* Ensure that the condition speaks about an expression in the same type
579 as X and Y. */
580 ctype = TREE_TYPE (c0);
581 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
582 return;
583 c0 = fold_convert (type, c0);
584 c1 = fold_convert (type, c1);
586 if (TYPE_MIN_VALUE (type)
587 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
589 cmp = GT_EXPR;
590 break;
592 if (TYPE_MAX_VALUE (type)
593 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
595 cmp = LT_EXPR;
596 break;
599 return;
600 default:
601 return;
604 mpz_init (offc0);
605 mpz_init (offc1);
606 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
607 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
609 /* We are only interested in comparisons of expressions based on VARX and
610 VARY. TODO -- we might also be able to derive some bounds from
611 expressions containing just one of the variables. */
613 if (operand_equal_p (varx, varc1, 0))
615 std::swap (varc0, varc1);
616 mpz_swap (offc0, offc1);
617 cmp = swap_tree_comparison (cmp);
620 if (!operand_equal_p (varx, varc0, 0)
621 || !operand_equal_p (vary, varc1, 0))
622 goto end;
624 mpz_init_set (loffx, offx);
625 mpz_init_set (loffy, offy);
627 if (cmp == GT_EXPR || cmp == GE_EXPR)
629 std::swap (varx, vary);
630 mpz_swap (offc0, offc1);
631 mpz_swap (loffx, loffy);
632 cmp = swap_tree_comparison (cmp);
633 lbound = true;
636 /* If there is no overflow, the condition implies that
638 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
640 The overflows and underflows may complicate things a bit; each
641 overflow decreases the appropriate offset by M, and underflow
642 increases it by M. The above inequality would not necessarily be
643 true if
645 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
646 VARX + OFFC0 overflows, but VARX + OFFX does not.
647 This may only happen if OFFX < OFFC0.
648 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
649 VARY + OFFC1 underflows and VARY + OFFY does not.
650 This may only happen if OFFY > OFFC1. */
652 if (no_wrap)
654 x_ok = true;
655 y_ok = true;
657 else
659 x_ok = (integer_zerop (varx)
660 || mpz_cmp (loffx, offc0) >= 0);
661 y_ok = (integer_zerop (vary)
662 || mpz_cmp (loffy, offc1) <= 0);
665 if (x_ok && y_ok)
667 mpz_init (bnd);
668 mpz_sub (bnd, loffx, loffy);
669 mpz_add (bnd, bnd, offc1);
670 mpz_sub (bnd, bnd, offc0);
672 if (cmp == LT_EXPR)
673 mpz_sub_ui (bnd, bnd, 1);
675 if (lbound)
677 mpz_neg (bnd, bnd);
678 if (mpz_cmp (bnds->below, bnd) < 0)
679 mpz_set (bnds->below, bnd);
681 else
683 if (mpz_cmp (bnd, bnds->up) < 0)
684 mpz_set (bnds->up, bnd);
686 mpz_clear (bnd);
689 mpz_clear (loffx);
690 mpz_clear (loffy);
691 end:
692 mpz_clear (offc0);
693 mpz_clear (offc1);
696 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
697 The subtraction is considered to be performed in arbitrary precision,
698 without overflows.
700 We do not attempt to be too clever regarding the value ranges of X and
701 Y; most of the time, they are just integers or ssa names offsetted by
702 integer. However, we try to use the information contained in the
703 comparisons before the loop (usually created by loop header copying). */
705 static void
706 bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
708 tree type = TREE_TYPE (x);
709 tree varx, vary;
710 mpz_t offx, offy;
711 mpz_t minx, maxx, miny, maxy;
712 int cnt = 0;
713 edge e;
714 basic_block bb;
715 tree c0, c1;
716 gimple *cond;
717 enum tree_code cmp;
719 /* Get rid of unnecessary casts, but preserve the value of
720 the expressions. */
721 STRIP_SIGN_NOPS (x);
722 STRIP_SIGN_NOPS (y);
724 mpz_init (bnds->below);
725 mpz_init (bnds->up);
726 mpz_init (offx);
727 mpz_init (offy);
728 split_to_var_and_offset (x, &varx, offx);
729 split_to_var_and_offset (y, &vary, offy);
731 if (!integer_zerop (varx)
732 && operand_equal_p (varx, vary, 0))
734 /* Special case VARX == VARY -- we just need to compare the
735 offsets. The matters are a bit more complicated in the
736 case addition of offsets may wrap. */
737 bound_difference_of_offsetted_base (type, offx, offy, bnds);
739 else
741 /* Otherwise, use the value ranges to determine the initial
742 estimates on below and up. */
743 mpz_init (minx);
744 mpz_init (maxx);
745 mpz_init (miny);
746 mpz_init (maxy);
747 determine_value_range (loop, type, varx, offx, minx, maxx);
748 determine_value_range (loop, type, vary, offy, miny, maxy);
750 mpz_sub (bnds->below, minx, maxy);
751 mpz_sub (bnds->up, maxx, miny);
752 mpz_clear (minx);
753 mpz_clear (maxx);
754 mpz_clear (miny);
755 mpz_clear (maxy);
758 /* If both X and Y are constants, we cannot get any more precise. */
759 if (integer_zerop (varx) && integer_zerop (vary))
760 goto end;
762 /* Now walk the dominators of the loop header and use the entry
763 guards to refine the estimates. */
764 for (bb = loop->header;
765 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
766 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
768 if (!single_pred_p (bb))
769 continue;
770 e = single_pred_edge (bb);
772 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
773 continue;
775 cond = last_stmt (e->src);
776 c0 = gimple_cond_lhs (cond);
777 cmp = gimple_cond_code (cond);
778 c1 = gimple_cond_rhs (cond);
780 if (e->flags & EDGE_FALSE_VALUE)
781 cmp = invert_tree_comparison (cmp, false);
783 refine_bounds_using_guard (type, varx, offx, vary, offy,
784 c0, cmp, c1, bnds);
785 ++cnt;
788 end:
789 mpz_clear (offx);
790 mpz_clear (offy);
793 /* Update the bounds in BNDS that restrict the value of X to the bounds
794 that restrict the value of X + DELTA. X can be obtained as a
795 difference of two values in TYPE. */
797 static void
798 bounds_add (bounds *bnds, const widest_int &delta, tree type)
800 mpz_t mdelta, max;
802 mpz_init (mdelta);
803 wi::to_mpz (delta, mdelta, SIGNED);
805 mpz_init (max);
806 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
808 mpz_add (bnds->up, bnds->up, mdelta);
809 mpz_add (bnds->below, bnds->below, mdelta);
811 if (mpz_cmp (bnds->up, max) > 0)
812 mpz_set (bnds->up, max);
814 mpz_neg (max, max);
815 if (mpz_cmp (bnds->below, max) < 0)
816 mpz_set (bnds->below, max);
818 mpz_clear (mdelta);
819 mpz_clear (max);
822 /* Update the bounds in BNDS that restrict the value of X to the bounds
823 that restrict the value of -X. */
825 static void
826 bounds_negate (bounds *bnds)
828 mpz_t tmp;
830 mpz_init_set (tmp, bnds->up);
831 mpz_neg (bnds->up, bnds->below);
832 mpz_neg (bnds->below, tmp);
833 mpz_clear (tmp);
836 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
838 static tree
839 inverse (tree x, tree mask)
841 tree type = TREE_TYPE (x);
842 tree rslt;
843 unsigned ctr = tree_floor_log2 (mask);
845 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
847 unsigned HOST_WIDE_INT ix;
848 unsigned HOST_WIDE_INT imask;
849 unsigned HOST_WIDE_INT irslt = 1;
851 gcc_assert (cst_and_fits_in_hwi (x));
852 gcc_assert (cst_and_fits_in_hwi (mask));
854 ix = int_cst_value (x);
855 imask = int_cst_value (mask);
857 for (; ctr; ctr--)
859 irslt *= ix;
860 ix *= ix;
862 irslt &= imask;
864 rslt = build_int_cst_type (type, irslt);
866 else
868 rslt = build_int_cst (type, 1);
869 for (; ctr; ctr--)
871 rslt = int_const_binop (MULT_EXPR, rslt, x);
872 x = int_const_binop (MULT_EXPR, x, x);
874 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
877 return rslt;
880 /* Derives the upper bound BND on the number of executions of loop with exit
881 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
882 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
883 that the loop ends through this exit, i.e., the induction variable ever
884 reaches the value of C.
886 The value C is equal to final - base, where final and base are the final and
887 initial value of the actual induction variable in the analysed loop. BNDS
888 bounds the value of this difference when computed in signed type with
889 unbounded range, while the computation of C is performed in an unsigned
890 type with the range matching the range of the type of the induction variable.
891 In particular, BNDS.up contains an upper bound on C in the following cases:
892 -- if the iv must reach its final value without overflow, i.e., if
893 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
894 -- if final >= base, which we know to hold when BNDS.below >= 0. */
896 static void
897 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
898 bounds *bnds, bool exit_must_be_taken)
900 widest_int max;
901 mpz_t d;
902 tree type = TREE_TYPE (c);
903 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
904 || mpz_sgn (bnds->below) >= 0);
906 if (integer_onep (s)
907 || (TREE_CODE (c) == INTEGER_CST
908 && TREE_CODE (s) == INTEGER_CST
909 && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
910 TYPE_SIGN (type)) == 0)
911 || (TYPE_OVERFLOW_UNDEFINED (type)
912 && multiple_of_p (type, c, s)))
914 /* If C is an exact multiple of S, then its value will be reached before
915 the induction variable overflows (unless the loop is exited in some
916 other way before). Note that the actual induction variable in the
917 loop (which ranges from base to final instead of from 0 to C) may
918 overflow, in which case BNDS.up will not be giving a correct upper
919 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
920 no_overflow = true;
921 exit_must_be_taken = true;
924 /* If the induction variable can overflow, the number of iterations is at
925 most the period of the control variable (or infinite, but in that case
926 the whole # of iterations analysis will fail). */
927 if (!no_overflow)
929 max = wi::mask <widest_int> (TYPE_PRECISION (type)
930 - wi::ctz (wi::to_wide (s)), false);
931 wi::to_mpz (max, bnd, UNSIGNED);
932 return;
935 /* Now we know that the induction variable does not overflow, so the loop
936 iterates at most (range of type / S) times. */
937 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
939 /* If the induction variable is guaranteed to reach the value of C before
940 overflow, ... */
941 if (exit_must_be_taken)
943 /* ... then we can strengthen this to C / S, and possibly we can use
944 the upper bound on C given by BNDS. */
945 if (TREE_CODE (c) == INTEGER_CST)
946 wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
947 else if (bnds_u_valid)
948 mpz_set (bnd, bnds->up);
951 mpz_init (d);
952 wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
953 mpz_fdiv_q (bnd, bnd, d);
954 mpz_clear (d);
957 /* Determines number of iterations of loop whose ending condition
958 is IV <> FINAL. TYPE is the type of the iv. The number of
959 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
960 we know that the exit must be taken eventually, i.e., that the IV
961 ever reaches the value FINAL (we derived this earlier, and possibly set
962 NITER->assumptions to make sure this is the case). BNDS contains the
963 bounds on the difference FINAL - IV->base. */
965 static bool
966 number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
967 tree final, class tree_niter_desc *niter,
968 bool exit_must_be_taken, bounds *bnds)
970 tree niter_type = unsigned_type_for (type);
971 tree s, c, d, bits, assumption, tmp, bound;
972 mpz_t max;
974 niter->control = *iv;
975 niter->bound = final;
976 niter->cmp = NE_EXPR;
978 /* Rearrange the terms so that we get inequality S * i <> C, with S
979 positive. Also cast everything to the unsigned type. If IV does
980 not overflow, BNDS bounds the value of C. Also, this is the
981 case if the computation |FINAL - IV->base| does not overflow, i.e.,
982 if BNDS->below in the result is nonnegative. */
983 if (tree_int_cst_sign_bit (iv->step))
985 s = fold_convert (niter_type,
986 fold_build1 (NEGATE_EXPR, type, iv->step));
987 c = fold_build2 (MINUS_EXPR, niter_type,
988 fold_convert (niter_type, iv->base),
989 fold_convert (niter_type, final));
990 bounds_negate (bnds);
992 else
994 s = fold_convert (niter_type, iv->step);
995 c = fold_build2 (MINUS_EXPR, niter_type,
996 fold_convert (niter_type, final),
997 fold_convert (niter_type, iv->base));
1000 mpz_init (max);
1001 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
1002 exit_must_be_taken);
1003 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
1004 TYPE_SIGN (niter_type));
1005 mpz_clear (max);
1007 /* Compute no-overflow information for the control iv. This can be
1008 proven when below two conditions are satisfied:
1010 1) IV evaluates toward FINAL at beginning, i.e:
1011 base <= FINAL ; step > 0
1012 base >= FINAL ; step < 0
1014 2) |FINAL - base| is an exact multiple of step.
1016 Unfortunately, it's hard to prove above conditions after pass loop-ch
1017 because loop with exit condition (IV != FINAL) usually will be guarded
1018 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1019 can alternatively try to prove below conditions:
1021 1') IV evaluates toward FINAL at beginning, i.e:
1022 new_base = base - step < FINAL ; step > 0
1023 && base - step doesn't underflow
1024 new_base = base - step > FINAL ; step < 0
1025 && base - step doesn't overflow
1027 2') |FINAL - new_base| is an exact multiple of step.
1029 Please refer to PR34114 as an example of loop-ch's impact, also refer
1030 to PR72817 as an example why condition 2') is necessary.
1032 Note, for NE_EXPR, base equals to FINAL is a special case, in
1033 which the loop exits immediately, and the iv does not overflow. */
1034 if (!niter->control.no_overflow
1035 && (integer_onep (s) || multiple_of_p (type, c, s)))
1037 tree t, cond, new_c, relaxed_cond = boolean_false_node;
1039 if (tree_int_cst_sign_bit (iv->step))
1041 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1042 if (TREE_CODE (type) == INTEGER_TYPE)
1044 /* Only when base - step doesn't overflow. */
1045 t = TYPE_MAX_VALUE (type);
1046 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1047 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1048 if (integer_nonzerop (t))
1050 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1051 new_c = fold_build2 (MINUS_EXPR, niter_type,
1052 fold_convert (niter_type, t),
1053 fold_convert (niter_type, final));
1054 if (multiple_of_p (type, new_c, s))
1055 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node,
1056 t, final);
1060 else
1062 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1063 if (TREE_CODE (type) == INTEGER_TYPE)
1065 /* Only when base - step doesn't underflow. */
1066 t = TYPE_MIN_VALUE (type);
1067 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1068 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1069 if (integer_nonzerop (t))
1071 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1072 new_c = fold_build2 (MINUS_EXPR, niter_type,
1073 fold_convert (niter_type, final),
1074 fold_convert (niter_type, t));
1075 if (multiple_of_p (type, new_c, s))
1076 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node,
1077 t, final);
1082 t = simplify_using_initial_conditions (loop, cond);
1083 if (!t || !integer_onep (t))
1084 t = simplify_using_initial_conditions (loop, relaxed_cond);
1086 if (t && integer_onep (t))
1087 niter->control.no_overflow = true;
1090 /* First the trivial cases -- when the step is 1. */
1091 if (integer_onep (s))
1093 niter->niter = c;
1094 return true;
1096 if (niter->control.no_overflow && multiple_of_p (type, c, s))
1098 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, c, s);
1099 return true;
1102 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1103 is infinite. Otherwise, the number of iterations is
1104 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1105 bits = num_ending_zeros (s);
1106 bound = build_low_bits_mask (niter_type,
1107 (TYPE_PRECISION (niter_type)
1108 - tree_to_uhwi (bits)));
1110 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1111 build_int_cst (niter_type, 1), bits);
1112 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1114 if (!exit_must_be_taken)
1116 /* If we cannot assume that the exit is taken eventually, record the
1117 assumptions for divisibility of c. */
1118 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1119 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1120 assumption, build_int_cst (niter_type, 0));
1121 if (!integer_nonzerop (assumption))
1122 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1123 niter->assumptions, assumption);
1126 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1127 if (integer_onep (s))
1129 niter->niter = c;
1131 else
1133 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1134 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1136 return true;
1139 /* Checks whether we can determine the final value of the control variable
1140 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1141 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1142 of the step. The assumptions necessary to ensure that the computation
1143 of the final value does not overflow are recorded in NITER. If we
1144 find the final value, we adjust DELTA and return TRUE. Otherwise
1145 we return false. BNDS bounds the value of IV1->base - IV0->base,
1146 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1147 true if we know that the exit must be taken eventually. */
1149 static bool
1150 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1151 class tree_niter_desc *niter,
1152 tree *delta, tree step,
1153 bool exit_must_be_taken, bounds *bnds)
1155 tree niter_type = TREE_TYPE (step);
1156 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1157 tree tmod;
1158 mpz_t mmod;
1159 tree assumption = boolean_true_node, bound, noloop;
1160 bool ret = false, fv_comp_no_overflow;
1161 tree type1 = type;
1162 if (POINTER_TYPE_P (type))
1163 type1 = sizetype;
1165 if (TREE_CODE (mod) != INTEGER_CST)
1166 return false;
1167 if (integer_nonzerop (mod))
1168 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1169 tmod = fold_convert (type1, mod);
1171 mpz_init (mmod);
1172 wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
1173 mpz_neg (mmod, mmod);
1175 /* If the induction variable does not overflow and the exit is taken,
1176 then the computation of the final value does not overflow. This is
1177 also obviously the case if the new final value is equal to the
1178 current one. Finally, we postulate this for pointer type variables,
1179 as the code cannot rely on the object to that the pointer points being
1180 placed at the end of the address space (and more pragmatically,
1181 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1182 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1183 fv_comp_no_overflow = true;
1184 else if (!exit_must_be_taken)
1185 fv_comp_no_overflow = false;
1186 else
1187 fv_comp_no_overflow =
1188 (iv0->no_overflow && integer_nonzerop (iv0->step))
1189 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1191 if (integer_nonzerop (iv0->step))
1193 /* The final value of the iv is iv1->base + MOD, assuming that this
1194 computation does not overflow, and that
1195 iv0->base <= iv1->base + MOD. */
1196 if (!fv_comp_no_overflow)
1198 bound = fold_build2 (MINUS_EXPR, type1,
1199 TYPE_MAX_VALUE (type1), tmod);
1200 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1201 iv1->base, bound);
1202 if (integer_zerop (assumption))
1203 goto end;
1205 if (mpz_cmp (mmod, bnds->below) < 0)
1206 noloop = boolean_false_node;
1207 else if (POINTER_TYPE_P (type))
1208 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1209 iv0->base,
1210 fold_build_pointer_plus (iv1->base, tmod));
1211 else
1212 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1213 iv0->base,
1214 fold_build2 (PLUS_EXPR, type1,
1215 iv1->base, tmod));
1217 else
1219 /* The final value of the iv is iv0->base - MOD, assuming that this
1220 computation does not overflow, and that
1221 iv0->base - MOD <= iv1->base. */
1222 if (!fv_comp_no_overflow)
1224 bound = fold_build2 (PLUS_EXPR, type1,
1225 TYPE_MIN_VALUE (type1), tmod);
1226 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1227 iv0->base, bound);
1228 if (integer_zerop (assumption))
1229 goto end;
1231 if (mpz_cmp (mmod, bnds->below) < 0)
1232 noloop = boolean_false_node;
1233 else if (POINTER_TYPE_P (type))
1234 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1235 fold_build_pointer_plus (iv0->base,
1236 fold_build1 (NEGATE_EXPR,
1237 type1, tmod)),
1238 iv1->base);
1239 else
1240 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1241 fold_build2 (MINUS_EXPR, type1,
1242 iv0->base, tmod),
1243 iv1->base);
1246 if (!integer_nonzerop (assumption))
1247 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1248 niter->assumptions,
1249 assumption);
1250 if (!integer_zerop (noloop))
1251 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1252 niter->may_be_zero,
1253 noloop);
1254 bounds_add (bnds, wi::to_widest (mod), type);
1255 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1257 ret = true;
1258 end:
1259 mpz_clear (mmod);
1260 return ret;
1263 /* Add assertions to NITER that ensure that the control variable of the loop
1264 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1265 are TYPE. Returns false if we can prove that there is an overflow, true
1266 otherwise. STEP is the absolute value of the step. */
1268 static bool
1269 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1270 class tree_niter_desc *niter, tree step)
1272 tree bound, d, assumption, diff;
1273 tree niter_type = TREE_TYPE (step);
1275 if (integer_nonzerop (iv0->step))
1277 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1278 if (iv0->no_overflow)
1279 return true;
1281 /* If iv0->base is a constant, we can determine the last value before
1282 overflow precisely; otherwise we conservatively assume
1283 MAX - STEP + 1. */
1285 if (TREE_CODE (iv0->base) == INTEGER_CST)
1287 d = fold_build2 (MINUS_EXPR, niter_type,
1288 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1289 fold_convert (niter_type, iv0->base));
1290 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1292 else
1293 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1294 build_int_cst (niter_type, 1));
1295 bound = fold_build2 (MINUS_EXPR, type,
1296 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1297 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1298 iv1->base, bound);
1300 else
1302 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1303 if (iv1->no_overflow)
1304 return true;
1306 if (TREE_CODE (iv1->base) == INTEGER_CST)
1308 d = fold_build2 (MINUS_EXPR, niter_type,
1309 fold_convert (niter_type, iv1->base),
1310 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1311 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1313 else
1314 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1315 build_int_cst (niter_type, 1));
1316 bound = fold_build2 (PLUS_EXPR, type,
1317 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1318 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1319 iv0->base, bound);
1322 if (integer_zerop (assumption))
1323 return false;
1324 if (!integer_nonzerop (assumption))
1325 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1326 niter->assumptions, assumption);
1328 iv0->no_overflow = true;
1329 iv1->no_overflow = true;
1330 return true;
1333 /* Add an assumption to NITER that a loop whose ending condition
1334 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1335 bounds the value of IV1->base - IV0->base. */
1337 static void
1338 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1339 class tree_niter_desc *niter, bounds *bnds)
1341 tree assumption = boolean_true_node, bound, diff;
1342 tree mbz, mbzl, mbzr, type1;
1343 bool rolls_p, no_overflow_p;
1344 widest_int dstep;
1345 mpz_t mstep, max;
1347 /* We are going to compute the number of iterations as
1348 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1349 variant of TYPE. This formula only works if
1351 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1353 (where MAX is the maximum value of the unsigned variant of TYPE, and
1354 the computations in this formula are performed in full precision,
1355 i.e., without overflows).
1357 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1358 we have a condition of the form iv0->base - step < iv1->base before the loop,
1359 and for loops iv0->base < iv1->base - step * i the condition
1360 iv0->base < iv1->base + step, due to loop header copying, which enable us
1361 to prove the lower bound.
1363 The upper bound is more complicated. Unless the expressions for initial
1364 and final value themselves contain enough information, we usually cannot
1365 derive it from the context. */
1367 /* First check whether the answer does not follow from the bounds we gathered
1368 before. */
1369 if (integer_nonzerop (iv0->step))
1370 dstep = wi::to_widest (iv0->step);
1371 else
1373 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1374 dstep = -dstep;
1377 mpz_init (mstep);
1378 wi::to_mpz (dstep, mstep, UNSIGNED);
1379 mpz_neg (mstep, mstep);
1380 mpz_add_ui (mstep, mstep, 1);
1382 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1384 mpz_init (max);
1385 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1386 mpz_add (max, max, mstep);
1387 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1388 /* For pointers, only values lying inside a single object
1389 can be compared or manipulated by pointer arithmetics.
1390 Gcc in general does not allow or handle objects larger
1391 than half of the address space, hence the upper bound
1392 is satisfied for pointers. */
1393 || POINTER_TYPE_P (type));
1394 mpz_clear (mstep);
1395 mpz_clear (max);
1397 if (rolls_p && no_overflow_p)
1398 return;
1400 type1 = type;
1401 if (POINTER_TYPE_P (type))
1402 type1 = sizetype;
1404 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1405 we must be careful not to introduce overflow. */
1407 if (integer_nonzerop (iv0->step))
1409 diff = fold_build2 (MINUS_EXPR, type1,
1410 iv0->step, build_int_cst (type1, 1));
1412 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1413 0 address never belongs to any object, we can assume this for
1414 pointers. */
1415 if (!POINTER_TYPE_P (type))
1417 bound = fold_build2 (PLUS_EXPR, type1,
1418 TYPE_MIN_VALUE (type), diff);
1419 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1420 iv0->base, bound);
1423 /* And then we can compute iv0->base - diff, and compare it with
1424 iv1->base. */
1425 mbzl = fold_build2 (MINUS_EXPR, type1,
1426 fold_convert (type1, iv0->base), diff);
1427 mbzr = fold_convert (type1, iv1->base);
1429 else
1431 diff = fold_build2 (PLUS_EXPR, type1,
1432 iv1->step, build_int_cst (type1, 1));
1434 if (!POINTER_TYPE_P (type))
1436 bound = fold_build2 (PLUS_EXPR, type1,
1437 TYPE_MAX_VALUE (type), diff);
1438 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1439 iv1->base, bound);
1442 mbzl = fold_convert (type1, iv0->base);
1443 mbzr = fold_build2 (MINUS_EXPR, type1,
1444 fold_convert (type1, iv1->base), diff);
1447 if (!integer_nonzerop (assumption))
1448 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1449 niter->assumptions, assumption);
1450 if (!rolls_p)
1452 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1453 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1454 niter->may_be_zero, mbz);
1458 /* Determines number of iterations of loop whose ending condition
1459 is IV0 < IV1. TYPE is the type of the iv. The number of
1460 iterations is stored to NITER. BNDS bounds the difference
1461 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1462 that the exit must be taken eventually. */
1464 static bool
1465 number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
1466 affine_iv *iv1, class tree_niter_desc *niter,
1467 bool exit_must_be_taken, bounds *bnds)
1469 tree niter_type = unsigned_type_for (type);
1470 tree delta, step, s;
1471 mpz_t mstep, tmp;
1473 if (integer_nonzerop (iv0->step))
1475 niter->control = *iv0;
1476 niter->cmp = LT_EXPR;
1477 niter->bound = iv1->base;
1479 else
1481 niter->control = *iv1;
1482 niter->cmp = GT_EXPR;
1483 niter->bound = iv0->base;
1486 delta = fold_build2 (MINUS_EXPR, niter_type,
1487 fold_convert (niter_type, iv1->base),
1488 fold_convert (niter_type, iv0->base));
1490 /* First handle the special case that the step is +-1. */
1491 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1492 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1494 /* for (i = iv0->base; i < iv1->base; i++)
1498 for (i = iv1->base; i > iv0->base; i--).
1500 In both cases # of iterations is iv1->base - iv0->base, assuming that
1501 iv1->base >= iv0->base.
1503 First try to derive a lower bound on the value of
1504 iv1->base - iv0->base, computed in full precision. If the difference
1505 is nonnegative, we are done, otherwise we must record the
1506 condition. */
1508 if (mpz_sgn (bnds->below) < 0)
1509 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1510 iv1->base, iv0->base);
1511 niter->niter = delta;
1512 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1513 TYPE_SIGN (niter_type));
1514 niter->control.no_overflow = true;
1515 return true;
1518 if (integer_nonzerop (iv0->step))
1519 step = fold_convert (niter_type, iv0->step);
1520 else
1521 step = fold_convert (niter_type,
1522 fold_build1 (NEGATE_EXPR, type, iv1->step));
1524 /* If we can determine the final value of the control iv exactly, we can
1525 transform the condition to != comparison. In particular, this will be
1526 the case if DELTA is constant. */
1527 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1528 exit_must_be_taken, bnds))
1530 affine_iv zps;
1532 zps.base = build_int_cst (niter_type, 0);
1533 zps.step = step;
1534 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1535 zps does not overflow. */
1536 zps.no_overflow = true;
1538 return number_of_iterations_ne (loop, type, &zps,
1539 delta, niter, true, bnds);
1542 /* Make sure that the control iv does not overflow. */
1543 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1544 return false;
1546 /* We determine the number of iterations as (delta + step - 1) / step. For
1547 this to work, we must know that iv1->base >= iv0->base - step + 1,
1548 otherwise the loop does not roll. */
1549 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1551 s = fold_build2 (MINUS_EXPR, niter_type,
1552 step, build_int_cst (niter_type, 1));
1553 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1554 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1556 mpz_init (mstep);
1557 mpz_init (tmp);
1558 wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
1559 mpz_add (tmp, bnds->up, mstep);
1560 mpz_sub_ui (tmp, tmp, 1);
1561 mpz_fdiv_q (tmp, tmp, mstep);
1562 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1563 TYPE_SIGN (niter_type));
1564 mpz_clear (mstep);
1565 mpz_clear (tmp);
1567 return true;
1570 /* Determines number of iterations of loop whose ending condition
1571 is IV0 <= IV1. TYPE is the type of the iv. The number of
1572 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1573 we know that this condition must eventually become false (we derived this
1574 earlier, and possibly set NITER->assumptions to make sure this
1575 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1577 static bool
1578 number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
1579 affine_iv *iv1, class tree_niter_desc *niter,
1580 bool exit_must_be_taken, bounds *bnds)
1582 tree assumption;
1583 tree type1 = type;
1584 if (POINTER_TYPE_P (type))
1585 type1 = sizetype;
1587 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1588 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1589 value of the type. This we must know anyway, since if it is
1590 equal to this value, the loop rolls forever. We do not check
1591 this condition for pointer type ivs, as the code cannot rely on
1592 the object to that the pointer points being placed at the end of
1593 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1594 not defined for pointers). */
1596 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1598 if (integer_nonzerop (iv0->step))
1599 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1600 iv1->base, TYPE_MAX_VALUE (type));
1601 else
1602 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1603 iv0->base, TYPE_MIN_VALUE (type));
1605 if (integer_zerop (assumption))
1606 return false;
1607 if (!integer_nonzerop (assumption))
1608 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1609 niter->assumptions, assumption);
1612 if (integer_nonzerop (iv0->step))
1614 if (POINTER_TYPE_P (type))
1615 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1616 else
1617 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1618 build_int_cst (type1, 1));
1620 else if (POINTER_TYPE_P (type))
1621 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1622 else
1623 iv0->base = fold_build2 (MINUS_EXPR, type1,
1624 iv0->base, build_int_cst (type1, 1));
1626 bounds_add (bnds, 1, type1);
1628 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1629 bnds);
1632 /* Dumps description of affine induction variable IV to FILE. */
1634 static void
1635 dump_affine_iv (FILE *file, affine_iv *iv)
1637 if (!integer_zerop (iv->step))
1638 fprintf (file, "[");
1640 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1642 if (!integer_zerop (iv->step))
1644 fprintf (file, ", + , ");
1645 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1646 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1650 /* Given exit condition IV0 CODE IV1 in TYPE, this function adjusts
1651 the condition for loop-until-wrap cases. For example:
1652 (unsigned){8, -1}_loop < 10 => {0, 1} != 9
1653 10 < (unsigned){0, max - 7}_loop => {0, 1} != 8
1654 Return true if condition is successfully adjusted. */
1656 static bool
1657 adjust_cond_for_loop_until_wrap (tree type, affine_iv *iv0, tree_code *code,
1658 affine_iv *iv1)
1660 /* Only support simple cases for the moment. */
1661 if (TREE_CODE (iv0->base) != INTEGER_CST
1662 || TREE_CODE (iv1->base) != INTEGER_CST)
1663 return false;
1665 tree niter_type = unsigned_type_for (type), high, low;
1666 /* Case: i-- < 10. */
1667 if (integer_zerop (iv1->step))
1669 /* TODO: Should handle case in which abs(step) != 1. */
1670 if (!integer_minus_onep (iv0->step))
1671 return false;
1672 /* Give up on infinite loop. */
1673 if (*code == LE_EXPR
1674 && tree_int_cst_equal (iv1->base, TYPE_MAX_VALUE (type)))
1675 return false;
1676 high = fold_build2 (PLUS_EXPR, niter_type,
1677 fold_convert (niter_type, iv0->base),
1678 build_int_cst (niter_type, 1));
1679 low = fold_convert (niter_type, TYPE_MIN_VALUE (type));
1681 else if (integer_zerop (iv0->step))
1683 /* TODO: Should handle case in which abs(step) != 1. */
1684 if (!integer_onep (iv1->step))
1685 return false;
1686 /* Give up on infinite loop. */
1687 if (*code == LE_EXPR
1688 && tree_int_cst_equal (iv0->base, TYPE_MIN_VALUE (type)))
1689 return false;
1690 high = fold_convert (niter_type, TYPE_MAX_VALUE (type));
1691 low = fold_build2 (MINUS_EXPR, niter_type,
1692 fold_convert (niter_type, iv1->base),
1693 build_int_cst (niter_type, 1));
1695 else
1696 gcc_unreachable ();
1698 iv0->base = low;
1699 iv0->step = fold_convert (niter_type, integer_one_node);
1700 iv1->base = high;
1701 iv1->step = build_int_cst (niter_type, 0);
1702 *code = NE_EXPR;
1703 return true;
1706 /* Determine the number of iterations according to condition (for staying
1707 inside loop) which compares two induction variables using comparison
1708 operator CODE. The induction variable on left side of the comparison
1709 is IV0, the right-hand side is IV1. Both induction variables must have
1710 type TYPE, which must be an integer or pointer type. The steps of the
1711 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1713 LOOP is the loop whose number of iterations we are determining.
1715 ONLY_EXIT is true if we are sure this is the only way the loop could be
1716 exited (including possibly non-returning function calls, exceptions, etc.)
1717 -- in this case we can use the information whether the control induction
1718 variables can overflow or not in a more efficient way.
1720 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1722 The results (number of iterations and assumptions as described in
1723 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1724 Returns false if it fails to determine number of iterations, true if it
1725 was determined (possibly with some assumptions). */
1727 static bool
1728 number_of_iterations_cond (class loop *loop,
1729 tree type, affine_iv *iv0, enum tree_code code,
1730 affine_iv *iv1, class tree_niter_desc *niter,
1731 bool only_exit, bool every_iteration)
1733 bool exit_must_be_taken = false, ret;
1734 bounds bnds;
1736 /* If the test is not executed every iteration, wrapping may make the test
1737 to pass again.
1738 TODO: the overflow case can be still used as unreliable estimate of upper
1739 bound. But we have no API to pass it down to number of iterations code
1740 and, at present, it will not use it anyway. */
1741 if (!every_iteration
1742 && (!iv0->no_overflow || !iv1->no_overflow
1743 || code == NE_EXPR || code == EQ_EXPR))
1744 return false;
1746 /* The meaning of these assumptions is this:
1747 if !assumptions
1748 then the rest of information does not have to be valid
1749 if may_be_zero then the loop does not roll, even if
1750 niter != 0. */
1751 niter->assumptions = boolean_true_node;
1752 niter->may_be_zero = boolean_false_node;
1753 niter->niter = NULL_TREE;
1754 niter->max = 0;
1755 niter->bound = NULL_TREE;
1756 niter->cmp = ERROR_MARK;
1758 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1759 the control variable is on lhs. */
1760 if (code == GE_EXPR || code == GT_EXPR
1761 || (code == NE_EXPR && integer_zerop (iv0->step)))
1763 std::swap (iv0, iv1);
1764 code = swap_tree_comparison (code);
1767 if (POINTER_TYPE_P (type))
1769 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1770 to the same object. If they do, the control variable cannot wrap
1771 (as wrap around the bounds of memory will never return a pointer
1772 that would be guaranteed to point to the same object, even if we
1773 avoid undefined behavior by casting to size_t and back). */
1774 iv0->no_overflow = true;
1775 iv1->no_overflow = true;
1778 /* If the control induction variable does not overflow and the only exit
1779 from the loop is the one that we analyze, we know it must be taken
1780 eventually. */
1781 if (only_exit)
1783 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1784 exit_must_be_taken = true;
1785 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1786 exit_must_be_taken = true;
1789 /* We can handle cases which neither of the sides of the comparison is
1790 invariant:
1792 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1793 as if:
1794 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1796 provided that either below condition is satisfied:
1798 a) the test is NE_EXPR;
1799 b) iv0.step - iv1.step is integer and iv0/iv1 don't overflow.
1801 This rarely occurs in practice, but it is simple enough to manage. */
1802 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1804 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1805 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1806 iv0->step, iv1->step);
1808 /* No need to check sign of the new step since below code takes care
1809 of this well. */
1810 if (code != NE_EXPR
1811 && (TREE_CODE (step) != INTEGER_CST
1812 || !iv0->no_overflow || !iv1->no_overflow))
1813 return false;
1815 iv0->step = step;
1816 if (!POINTER_TYPE_P (type))
1817 iv0->no_overflow = false;
1819 iv1->step = build_int_cst (step_type, 0);
1820 iv1->no_overflow = true;
1823 /* If the result of the comparison is a constant, the loop is weird. More
1824 precise handling would be possible, but the situation is not common enough
1825 to waste time on it. */
1826 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1827 return false;
1829 /* If the loop exits immediately, there is nothing to do. */
1830 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1831 if (tem && integer_zerop (tem))
1833 if (!every_iteration)
1834 return false;
1835 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1836 niter->max = 0;
1837 return true;
1840 /* Handle special case loops: while (i-- < 10) and while (10 < i++) by
1841 adjusting iv0, iv1 and code. */
1842 if (code != NE_EXPR
1843 && (tree_int_cst_sign_bit (iv0->step)
1844 || (!integer_zerop (iv1->step)
1845 && !tree_int_cst_sign_bit (iv1->step)))
1846 && !adjust_cond_for_loop_until_wrap (type, iv0, &code, iv1))
1847 return false;
1849 /* OK, now we know we have a senseful loop. Handle several cases, depending
1850 on what comparison operator is used. */
1851 bound_difference (loop, iv1->base, iv0->base, &bnds);
1853 if (dump_file && (dump_flags & TDF_DETAILS))
1855 fprintf (dump_file,
1856 "Analyzing # of iterations of loop %d\n", loop->num);
1858 fprintf (dump_file, " exit condition ");
1859 dump_affine_iv (dump_file, iv0);
1860 fprintf (dump_file, " %s ",
1861 code == NE_EXPR ? "!="
1862 : code == LT_EXPR ? "<"
1863 : "<=");
1864 dump_affine_iv (dump_file, iv1);
1865 fprintf (dump_file, "\n");
1867 fprintf (dump_file, " bounds on difference of bases: ");
1868 mpz_out_str (dump_file, 10, bnds.below);
1869 fprintf (dump_file, " ... ");
1870 mpz_out_str (dump_file, 10, bnds.up);
1871 fprintf (dump_file, "\n");
1874 switch (code)
1876 case NE_EXPR:
1877 gcc_assert (integer_zerop (iv1->step));
1878 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1879 exit_must_be_taken, &bnds);
1880 break;
1882 case LT_EXPR:
1883 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1884 exit_must_be_taken, &bnds);
1885 break;
1887 case LE_EXPR:
1888 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1889 exit_must_be_taken, &bnds);
1890 break;
1892 default:
1893 gcc_unreachable ();
1896 mpz_clear (bnds.up);
1897 mpz_clear (bnds.below);
1899 if (dump_file && (dump_flags & TDF_DETAILS))
1901 if (ret)
1903 fprintf (dump_file, " result:\n");
1904 if (!integer_nonzerop (niter->assumptions))
1906 fprintf (dump_file, " under assumptions ");
1907 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1908 fprintf (dump_file, "\n");
1911 if (!integer_zerop (niter->may_be_zero))
1913 fprintf (dump_file, " zero if ");
1914 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1915 fprintf (dump_file, "\n");
1918 fprintf (dump_file, " # of iterations ");
1919 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1920 fprintf (dump_file, ", bounded by ");
1921 print_decu (niter->max, dump_file);
1922 fprintf (dump_file, "\n");
1924 else
1925 fprintf (dump_file, " failed\n\n");
1927 return ret;
1930 /* Substitute NEW_TREE for OLD in EXPR and fold the result.
1931 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
1932 all SSA names are replaced with the result of calling the VALUEIZE
1933 function with the SSA name as argument. */
1935 tree
1936 simplify_replace_tree (tree expr, tree old, tree new_tree,
1937 tree (*valueize) (tree, void*), void *context)
1939 unsigned i, n;
1940 tree ret = NULL_TREE, e, se;
1942 if (!expr)
1943 return NULL_TREE;
1945 /* Do not bother to replace constants. */
1946 if (CONSTANT_CLASS_P (expr))
1947 return expr;
1949 if (valueize)
1951 if (TREE_CODE (expr) == SSA_NAME)
1953 new_tree = valueize (expr, context);
1954 if (new_tree != expr)
1955 return new_tree;
1958 else if (expr == old
1959 || operand_equal_p (expr, old, 0))
1960 return unshare_expr (new_tree);
1962 if (!EXPR_P (expr))
1963 return expr;
1965 n = TREE_OPERAND_LENGTH (expr);
1966 for (i = 0; i < n; i++)
1968 e = TREE_OPERAND (expr, i);
1969 se = simplify_replace_tree (e, old, new_tree, valueize, context);
1970 if (e == se)
1971 continue;
1973 if (!ret)
1974 ret = copy_node (expr);
1976 TREE_OPERAND (ret, i) = se;
1979 return (ret ? fold (ret) : expr);
1982 /* Expand definitions of ssa names in EXPR as long as they are simple
1983 enough, and return the new expression. If STOP is specified, stop
1984 expanding if EXPR equals to it. */
1986 static tree
1987 expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
1989 unsigned i, n;
1990 tree ret = NULL_TREE, e, ee, e1;
1991 enum tree_code code;
1992 gimple *stmt;
1994 if (expr == NULL_TREE)
1995 return expr;
1997 if (is_gimple_min_invariant (expr))
1998 return expr;
2000 code = TREE_CODE (expr);
2001 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2003 n = TREE_OPERAND_LENGTH (expr);
2004 for (i = 0; i < n; i++)
2006 e = TREE_OPERAND (expr, i);
2007 /* SCEV analysis feeds us with a proper expression
2008 graph matching the SSA graph. Avoid turning it
2009 into a tree here, thus handle tree sharing
2010 properly.
2011 ??? The SSA walk below still turns the SSA graph
2012 into a tree but until we find a testcase do not
2013 introduce additional tree sharing here. */
2014 bool existed_p;
2015 tree &cee = cache.get_or_insert (e, &existed_p);
2016 if (existed_p)
2017 ee = cee;
2018 else
2020 cee = e;
2021 ee = expand_simple_operations (e, stop, cache);
2022 if (ee != e)
2023 *cache.get (e) = ee;
2025 if (e == ee)
2026 continue;
2028 if (!ret)
2029 ret = copy_node (expr);
2031 TREE_OPERAND (ret, i) = ee;
2034 if (!ret)
2035 return expr;
2037 fold_defer_overflow_warnings ();
2038 ret = fold (ret);
2039 fold_undefer_and_ignore_overflow_warnings ();
2040 return ret;
2043 /* Stop if it's not ssa name or the one we don't want to expand. */
2044 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2045 return expr;
2047 stmt = SSA_NAME_DEF_STMT (expr);
2048 if (gimple_code (stmt) == GIMPLE_PHI)
2050 basic_block src, dest;
2052 if (gimple_phi_num_args (stmt) != 1)
2053 return expr;
2054 e = PHI_ARG_DEF (stmt, 0);
2056 /* Avoid propagating through loop exit phi nodes, which
2057 could break loop-closed SSA form restrictions. */
2058 dest = gimple_bb (stmt);
2059 src = single_pred (dest);
2060 if (TREE_CODE (e) == SSA_NAME
2061 && src->loop_father != dest->loop_father)
2062 return expr;
2064 return expand_simple_operations (e, stop, cache);
2066 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2067 return expr;
2069 /* Avoid expanding to expressions that contain SSA names that need
2070 to take part in abnormal coalescing. */
2071 ssa_op_iter iter;
2072 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2073 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2074 return expr;
2076 e = gimple_assign_rhs1 (stmt);
2077 code = gimple_assign_rhs_code (stmt);
2078 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2080 if (is_gimple_min_invariant (e))
2081 return e;
2083 if (code == SSA_NAME)
2084 return expand_simple_operations (e, stop, cache);
2085 else if (code == ADDR_EXPR)
2087 poly_int64 offset;
2088 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2089 &offset);
2090 if (base
2091 && TREE_CODE (base) == MEM_REF)
2093 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
2094 cache);
2095 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2096 wide_int_to_tree (sizetype,
2097 mem_ref_offset (base)
2098 + offset));
2102 return expr;
2105 switch (code)
2107 CASE_CONVERT:
2108 /* Casts are simple. */
2109 ee = expand_simple_operations (e, stop, cache);
2110 return fold_build1 (code, TREE_TYPE (expr), ee);
2112 case PLUS_EXPR:
2113 case MINUS_EXPR:
2114 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2115 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2116 return expr;
2117 /* Fallthru. */
2118 case POINTER_PLUS_EXPR:
2119 /* And increments and decrements by a constant are simple. */
2120 e1 = gimple_assign_rhs2 (stmt);
2121 if (!is_gimple_min_invariant (e1))
2122 return expr;
2124 ee = expand_simple_operations (e, stop, cache);
2125 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2127 default:
2128 return expr;
2132 tree
2133 expand_simple_operations (tree expr, tree stop)
2135 hash_map<tree, tree> cache;
2136 return expand_simple_operations (expr, stop, cache);
2139 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2140 expression (or EXPR unchanged, if no simplification was possible). */
2142 static tree
2143 tree_simplify_using_condition_1 (tree cond, tree expr)
2145 bool changed;
2146 tree e, e0, e1, e2, notcond;
2147 enum tree_code code = TREE_CODE (expr);
2149 if (code == INTEGER_CST)
2150 return expr;
2152 if (code == TRUTH_OR_EXPR
2153 || code == TRUTH_AND_EXPR
2154 || code == COND_EXPR)
2156 changed = false;
2158 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2159 if (TREE_OPERAND (expr, 0) != e0)
2160 changed = true;
2162 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2163 if (TREE_OPERAND (expr, 1) != e1)
2164 changed = true;
2166 if (code == COND_EXPR)
2168 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2169 if (TREE_OPERAND (expr, 2) != e2)
2170 changed = true;
2172 else
2173 e2 = NULL_TREE;
2175 if (changed)
2177 if (code == COND_EXPR)
2178 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2179 else
2180 expr = fold_build2 (code, boolean_type_node, e0, e1);
2183 return expr;
2186 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2187 propagation, and vice versa. Fold does not handle this, since it is
2188 considered too expensive. */
2189 if (TREE_CODE (cond) == EQ_EXPR)
2191 e0 = TREE_OPERAND (cond, 0);
2192 e1 = TREE_OPERAND (cond, 1);
2194 /* We know that e0 == e1. Check whether we cannot simplify expr
2195 using this fact. */
2196 e = simplify_replace_tree (expr, e0, e1);
2197 if (integer_zerop (e) || integer_nonzerop (e))
2198 return e;
2200 e = simplify_replace_tree (expr, e1, e0);
2201 if (integer_zerop (e) || integer_nonzerop (e))
2202 return e;
2204 if (TREE_CODE (expr) == EQ_EXPR)
2206 e0 = TREE_OPERAND (expr, 0);
2207 e1 = TREE_OPERAND (expr, 1);
2209 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2210 e = simplify_replace_tree (cond, e0, e1);
2211 if (integer_zerop (e))
2212 return e;
2213 e = simplify_replace_tree (cond, e1, e0);
2214 if (integer_zerop (e))
2215 return e;
2217 if (TREE_CODE (expr) == NE_EXPR)
2219 e0 = TREE_OPERAND (expr, 0);
2220 e1 = TREE_OPERAND (expr, 1);
2222 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2223 e = simplify_replace_tree (cond, e0, e1);
2224 if (integer_zerop (e))
2225 return boolean_true_node;
2226 e = simplify_replace_tree (cond, e1, e0);
2227 if (integer_zerop (e))
2228 return boolean_true_node;
2231 /* Check whether COND ==> EXPR. */
2232 notcond = invert_truthvalue (cond);
2233 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2234 if (e && integer_nonzerop (e))
2235 return e;
2237 /* Check whether COND ==> not EXPR. */
2238 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2239 if (e && integer_zerop (e))
2240 return e;
2242 return expr;
2245 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2246 expression (or EXPR unchanged, if no simplification was possible).
2247 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2248 of simple operations in definitions of ssa names in COND are expanded,
2249 so that things like casts or incrementing the value of the bound before
2250 the loop do not cause us to fail. */
2252 static tree
2253 tree_simplify_using_condition (tree cond, tree expr)
2255 cond = expand_simple_operations (cond);
2257 return tree_simplify_using_condition_1 (cond, expr);
2260 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2261 Returns the simplified expression (or EXPR unchanged, if no
2262 simplification was possible). */
2264 tree
2265 simplify_using_initial_conditions (class loop *loop, tree expr)
2267 edge e;
2268 basic_block bb;
2269 gimple *stmt;
2270 tree cond, expanded, backup;
2271 int cnt = 0;
2273 if (TREE_CODE (expr) == INTEGER_CST)
2274 return expr;
2276 backup = expanded = expand_simple_operations (expr);
2278 /* Limit walking the dominators to avoid quadraticness in
2279 the number of BBs times the number of loops in degenerate
2280 cases. */
2281 for (bb = loop->header;
2282 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2283 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2285 if (!single_pred_p (bb))
2286 continue;
2287 e = single_pred_edge (bb);
2289 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2290 continue;
2292 stmt = last_stmt (e->src);
2293 cond = fold_build2 (gimple_cond_code (stmt),
2294 boolean_type_node,
2295 gimple_cond_lhs (stmt),
2296 gimple_cond_rhs (stmt));
2297 if (e->flags & EDGE_FALSE_VALUE)
2298 cond = invert_truthvalue (cond);
2299 expanded = tree_simplify_using_condition (cond, expanded);
2300 /* Break if EXPR is simplified to const values. */
2301 if (expanded
2302 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
2303 return expanded;
2305 ++cnt;
2308 /* Return the original expression if no simplification is done. */
2309 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
2312 /* Tries to simplify EXPR using the evolutions of the loop invariants
2313 in the superloops of LOOP. Returns the simplified expression
2314 (or EXPR unchanged, if no simplification was possible). */
2316 static tree
2317 simplify_using_outer_evolutions (class loop *loop, tree expr)
2319 enum tree_code code = TREE_CODE (expr);
2320 bool changed;
2321 tree e, e0, e1, e2;
2323 if (is_gimple_min_invariant (expr))
2324 return expr;
2326 if (code == TRUTH_OR_EXPR
2327 || code == TRUTH_AND_EXPR
2328 || code == COND_EXPR)
2330 changed = false;
2332 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
2333 if (TREE_OPERAND (expr, 0) != e0)
2334 changed = true;
2336 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
2337 if (TREE_OPERAND (expr, 1) != e1)
2338 changed = true;
2340 if (code == COND_EXPR)
2342 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
2343 if (TREE_OPERAND (expr, 2) != e2)
2344 changed = true;
2346 else
2347 e2 = NULL_TREE;
2349 if (changed)
2351 if (code == COND_EXPR)
2352 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2353 else
2354 expr = fold_build2 (code, boolean_type_node, e0, e1);
2357 return expr;
2360 e = instantiate_parameters (loop, expr);
2361 if (is_gimple_min_invariant (e))
2362 return e;
2364 return expr;
2367 /* Returns true if EXIT is the only possible exit from LOOP. */
2369 bool
2370 loop_only_exit_p (const class loop *loop, const_edge exit)
2372 basic_block *body;
2373 gimple_stmt_iterator bsi;
2374 unsigned i;
2376 if (exit != single_exit (loop))
2377 return false;
2379 body = get_loop_body (loop);
2380 for (i = 0; i < loop->num_nodes; i++)
2382 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2383 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
2385 free (body);
2386 return true;
2390 free (body);
2391 return true;
2394 /* Stores description of number of iterations of LOOP derived from
2395 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
2396 information could be derived (and fields of NITER have meaning described
2397 in comments at class tree_niter_desc declaration), false otherwise.
2398 When EVERY_ITERATION is true, only tests that are known to be executed
2399 every iteration are considered (i.e. only test that alone bounds the loop).
2400 If AT_STMT is not NULL, this function stores LOOP's condition statement in
2401 it when returning true. */
2403 bool
2404 number_of_iterations_exit_assumptions (class loop *loop, edge exit,
2405 class tree_niter_desc *niter,
2406 gcond **at_stmt, bool every_iteration)
2408 gimple *last;
2409 gcond *stmt;
2410 tree type;
2411 tree op0, op1;
2412 enum tree_code code;
2413 affine_iv iv0, iv1;
2414 bool safe;
2416 /* Nothing to analyze if the loop is known to be infinite. */
2417 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
2418 return false;
2420 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
2422 if (every_iteration && !safe)
2423 return false;
2425 niter->assumptions = boolean_false_node;
2426 niter->control.base = NULL_TREE;
2427 niter->control.step = NULL_TREE;
2428 niter->control.no_overflow = false;
2429 last = last_stmt (exit->src);
2430 if (!last)
2431 return false;
2432 stmt = dyn_cast <gcond *> (last);
2433 if (!stmt)
2434 return false;
2436 /* We want the condition for staying inside loop. */
2437 code = gimple_cond_code (stmt);
2438 if (exit->flags & EDGE_TRUE_VALUE)
2439 code = invert_tree_comparison (code, false);
2441 switch (code)
2443 case GT_EXPR:
2444 case GE_EXPR:
2445 case LT_EXPR:
2446 case LE_EXPR:
2447 case NE_EXPR:
2448 break;
2450 default:
2451 return false;
2454 op0 = gimple_cond_lhs (stmt);
2455 op1 = gimple_cond_rhs (stmt);
2456 type = TREE_TYPE (op0);
2458 if (TREE_CODE (type) != INTEGER_TYPE
2459 && !POINTER_TYPE_P (type))
2460 return false;
2462 tree iv0_niters = NULL_TREE;
2463 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2464 op0, &iv0, safe ? &iv0_niters : NULL, false))
2465 return number_of_iterations_popcount (loop, exit, code, niter);
2466 tree iv1_niters = NULL_TREE;
2467 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2468 op1, &iv1, safe ? &iv1_niters : NULL, false))
2469 return false;
2470 /* Give up on complicated case. */
2471 if (iv0_niters && iv1_niters)
2472 return false;
2474 /* We don't want to see undefined signed overflow warnings while
2475 computing the number of iterations. */
2476 fold_defer_overflow_warnings ();
2478 iv0.base = expand_simple_operations (iv0.base);
2479 iv1.base = expand_simple_operations (iv1.base);
2480 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
2481 loop_only_exit_p (loop, exit), safe))
2483 fold_undefer_and_ignore_overflow_warnings ();
2484 return false;
2487 /* Incorporate additional assumption implied by control iv. */
2488 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
2489 if (iv_niters)
2491 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
2492 fold_convert (TREE_TYPE (niter->niter),
2493 iv_niters));
2495 if (!integer_nonzerop (assumption))
2496 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2497 niter->assumptions, assumption);
2499 /* Refine upper bound if possible. */
2500 if (TREE_CODE (iv_niters) == INTEGER_CST
2501 && niter->max > wi::to_widest (iv_niters))
2502 niter->max = wi::to_widest (iv_niters);
2505 /* There is no assumptions if the loop is known to be finite. */
2506 if (!integer_zerop (niter->assumptions)
2507 && loop_constraint_set_p (loop, LOOP_C_FINITE))
2508 niter->assumptions = boolean_true_node;
2510 if (optimize >= 3)
2512 niter->assumptions = simplify_using_outer_evolutions (loop,
2513 niter->assumptions);
2514 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2515 niter->may_be_zero);
2516 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2519 niter->assumptions
2520 = simplify_using_initial_conditions (loop,
2521 niter->assumptions);
2522 niter->may_be_zero
2523 = simplify_using_initial_conditions (loop,
2524 niter->may_be_zero);
2526 fold_undefer_and_ignore_overflow_warnings ();
2528 /* If NITER has simplified into a constant, update MAX. */
2529 if (TREE_CODE (niter->niter) == INTEGER_CST)
2530 niter->max = wi::to_widest (niter->niter);
2532 if (at_stmt)
2533 *at_stmt = stmt;
2535 return (!integer_zerop (niter->assumptions));
2539 /* Utility function to check if OP is defined by a stmt
2540 that is a val - 1. */
2542 static bool
2543 ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2545 gimple *stmt;
2546 return (TREE_CODE (op) == SSA_NAME
2547 && (stmt = SSA_NAME_DEF_STMT (op))
2548 && is_gimple_assign (stmt)
2549 && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
2550 && val == gimple_assign_rhs1 (stmt)
2551 && integer_minus_onep (gimple_assign_rhs2 (stmt)));
2555 /* See if LOOP is a popcout implementation, determine NITER for the loop
2557 We match:
2558 <bb 2>
2559 goto <bb 4>
2561 <bb 3>
2562 _1 = b_11 + -1
2563 b_6 = _1 & b_11
2565 <bb 4>
2566 b_11 = PHI <b_5(D)(2), b_6(3)>
2568 exit block
2569 if (b_11 != 0)
2570 goto <bb 3>
2571 else
2572 goto <bb 5>
2574 OR we match copy-header version:
2575 if (b_5 != 0)
2576 goto <bb 3>
2577 else
2578 goto <bb 4>
2580 <bb 3>
2581 b_11 = PHI <b_5(2), b_6(3)>
2582 _1 = b_11 + -1
2583 b_6 = _1 & b_11
2585 exit block
2586 if (b_6 != 0)
2587 goto <bb 3>
2588 else
2589 goto <bb 4>
2591 If popcount pattern, update NITER accordingly.
2592 i.e., set NITER to __builtin_popcount (b)
2593 return true if we did, false otherwise.
2597 static bool
2598 number_of_iterations_popcount (loop_p loop, edge exit,
2599 enum tree_code code,
2600 class tree_niter_desc *niter)
2602 bool adjust = true;
2603 tree iter;
2604 HOST_WIDE_INT max;
2605 adjust = true;
2606 tree fn = NULL_TREE;
2608 /* Check loop terminating branch is like
2609 if (b != 0). */
2610 gimple *stmt = last_stmt (exit->src);
2611 if (!stmt
2612 || gimple_code (stmt) != GIMPLE_COND
2613 || code != NE_EXPR
2614 || !integer_zerop (gimple_cond_rhs (stmt))
2615 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME)
2616 return false;
2618 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2620 /* Depending on copy-header is performed, feeding PHI stmts might be in
2621 the loop header or loop latch, handle this. */
2622 if (gimple_code (and_stmt) == GIMPLE_PHI
2623 && gimple_bb (and_stmt) == loop->header
2624 && gimple_phi_num_args (and_stmt) == 2
2625 && (TREE_CODE (gimple_phi_arg_def (and_stmt,
2626 loop_latch_edge (loop)->dest_idx))
2627 == SSA_NAME))
2629 /* SSA used in exit condition is defined by PHI stmt
2630 b_11 = PHI <b_5(D)(2), b_6(3)>
2631 from the PHI stmt, get the and_stmt
2632 b_6 = _1 & b_11. */
2633 tree t = gimple_phi_arg_def (and_stmt, loop_latch_edge (loop)->dest_idx);
2634 and_stmt = SSA_NAME_DEF_STMT (t);
2635 adjust = false;
2638 /* Make sure it is indeed an and stmt (b_6 = _1 & b_11). */
2639 if (!is_gimple_assign (and_stmt)
2640 || gimple_assign_rhs_code (and_stmt) != BIT_AND_EXPR)
2641 return false;
2643 tree b_11 = gimple_assign_rhs1 (and_stmt);
2644 tree _1 = gimple_assign_rhs2 (and_stmt);
2646 /* Check that _1 is defined by _b11 + -1 (_1 = b_11 + -1).
2647 Also make sure that b_11 is the same in and_stmt and _1 defining stmt.
2648 Also canonicalize if _1 and _b11 are revrsed. */
2649 if (ssa_defined_by_minus_one_stmt_p (b_11, _1))
2650 std::swap (b_11, _1);
2651 else if (ssa_defined_by_minus_one_stmt_p (_1, b_11))
2653 else
2654 return false;
2655 /* Check the recurrence:
2656 ... = PHI <b_5(2), b_6(3)>. */
2657 gimple *phi = SSA_NAME_DEF_STMT (b_11);
2658 if (gimple_code (phi) != GIMPLE_PHI
2659 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2660 || (gimple_assign_lhs (and_stmt)
2661 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2662 return false;
2664 /* We found a match. Get the corresponding popcount builtin. */
2665 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2666 if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION (integer_type_node))
2667 fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
2668 else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
2669 (long_integer_type_node))
2670 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
2671 else if (TYPE_PRECISION (TREE_TYPE (src)) == TYPE_PRECISION
2672 (long_long_integer_type_node))
2673 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
2675 /* ??? Support promoting char/short to int. */
2676 if (!fn)
2677 return false;
2679 /* Update NITER params accordingly */
2680 tree utype = unsigned_type_for (TREE_TYPE (src));
2681 src = fold_convert (utype, src);
2682 tree call = fold_convert (utype, build_call_expr (fn, 1, src));
2683 if (adjust)
2684 iter = fold_build2 (MINUS_EXPR, utype,
2685 call,
2686 build_int_cst (utype, 1));
2687 else
2688 iter = call;
2690 if (TREE_CODE (call) == INTEGER_CST)
2691 max = tree_to_uhwi (call);
2692 else
2693 max = TYPE_PRECISION (TREE_TYPE (src));
2694 if (adjust)
2695 max = max - 1;
2697 niter->niter = iter;
2698 niter->assumptions = boolean_true_node;
2700 if (adjust)
2702 tree may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2703 build_zero_cst
2704 (TREE_TYPE (src)));
2705 niter->may_be_zero =
2706 simplify_using_initial_conditions (loop, may_be_zero);
2708 else
2709 niter->may_be_zero = boolean_false_node;
2711 niter->max = max;
2712 niter->bound = NULL_TREE;
2713 niter->cmp = ERROR_MARK;
2714 return true;
2718 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
2719 the niter information holds unconditionally. */
2721 bool
2722 number_of_iterations_exit (class loop *loop, edge exit,
2723 class tree_niter_desc *niter,
2724 bool warn, bool every_iteration)
2726 gcond *stmt;
2727 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
2728 &stmt, every_iteration))
2729 return false;
2731 if (integer_nonzerop (niter->assumptions))
2732 return true;
2734 if (warn && dump_enabled_p ())
2735 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
2736 "missed loop optimization: niters analysis ends up "
2737 "with assumptions.\n");
2739 return false;
2742 /* Try to determine the number of iterations of LOOP. If we succeed,
2743 expression giving number of iterations is returned and *EXIT is
2744 set to the edge from that the information is obtained. Otherwise
2745 chrec_dont_know is returned. */
2747 tree
2748 find_loop_niter (class loop *loop, edge *exit)
2750 unsigned i;
2751 vec<edge> exits = get_loop_exit_edges (loop);
2752 edge ex;
2753 tree niter = NULL_TREE, aniter;
2754 class tree_niter_desc desc;
2756 *exit = NULL;
2757 FOR_EACH_VEC_ELT (exits, i, ex)
2759 if (!number_of_iterations_exit (loop, ex, &desc, false))
2760 continue;
2762 if (integer_nonzerop (desc.may_be_zero))
2764 /* We exit in the first iteration through this exit.
2765 We won't find anything better. */
2766 niter = build_int_cst (unsigned_type_node, 0);
2767 *exit = ex;
2768 break;
2771 if (!integer_zerop (desc.may_be_zero))
2772 continue;
2774 aniter = desc.niter;
2776 if (!niter)
2778 /* Nothing recorded yet. */
2779 niter = aniter;
2780 *exit = ex;
2781 continue;
2784 /* Prefer constants, the lower the better. */
2785 if (TREE_CODE (aniter) != INTEGER_CST)
2786 continue;
2788 if (TREE_CODE (niter) != INTEGER_CST)
2790 niter = aniter;
2791 *exit = ex;
2792 continue;
2795 if (tree_int_cst_lt (aniter, niter))
2797 niter = aniter;
2798 *exit = ex;
2799 continue;
2802 exits.release ();
2804 return niter ? niter : chrec_dont_know;
2807 /* Return true if loop is known to have bounded number of iterations. */
2809 bool
2810 finite_loop_p (class loop *loop)
2812 widest_int nit;
2813 int flags;
2815 flags = flags_from_decl_or_type (current_function_decl);
2816 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2818 if (dump_file && (dump_flags & TDF_DETAILS))
2819 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2820 loop->num);
2821 return true;
2824 if (loop->any_upper_bound
2825 || max_loop_iterations (loop, &nit))
2827 if (dump_file && (dump_flags & TDF_DETAILS))
2828 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2829 loop->num);
2830 return true;
2833 if (flag_finite_loops)
2835 unsigned i;
2836 vec<edge> exits = get_loop_exit_edges (loop);
2837 edge ex;
2839 /* If the loop has a normal exit, we can assume it will terminate. */
2840 FOR_EACH_VEC_ELT (exits, i, ex)
2841 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_FAKE)))
2843 exits.release ();
2844 if (dump_file)
2845 fprintf (dump_file, "Assume loop %i to be finite: it has an exit "
2846 "and -ffinite-loops is on.\n", loop->num);
2847 return true;
2850 exits.release ();
2853 return false;
2858 Analysis of a number of iterations of a loop by a brute-force evaluation.
2862 /* Bound on the number of iterations we try to evaluate. */
2864 #define MAX_ITERATIONS_TO_TRACK \
2865 ((unsigned) param_max_iterations_to_track)
2867 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2868 result by a chain of operations such that all but exactly one of their
2869 operands are constants. */
2871 static gphi *
2872 chain_of_csts_start (class loop *loop, tree x)
2874 gimple *stmt = SSA_NAME_DEF_STMT (x);
2875 tree use;
2876 basic_block bb = gimple_bb (stmt);
2877 enum tree_code code;
2879 if (!bb
2880 || !flow_bb_inside_loop_p (loop, bb))
2881 return NULL;
2883 if (gimple_code (stmt) == GIMPLE_PHI)
2885 if (bb == loop->header)
2886 return as_a <gphi *> (stmt);
2888 return NULL;
2891 if (gimple_code (stmt) != GIMPLE_ASSIGN
2892 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2893 return NULL;
2895 code = gimple_assign_rhs_code (stmt);
2896 if (gimple_references_memory_p (stmt)
2897 || TREE_CODE_CLASS (code) == tcc_reference
2898 || (code == ADDR_EXPR
2899 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2900 return NULL;
2902 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2903 if (use == NULL_TREE)
2904 return NULL;
2906 return chain_of_csts_start (loop, use);
2909 /* Determines whether the expression X is derived from a result of a phi node
2910 in header of LOOP such that
2912 * the derivation of X consists only from operations with constants
2913 * the initial value of the phi node is constant
2914 * the value of the phi node in the next iteration can be derived from the
2915 value in the current iteration by a chain of operations with constants,
2916 or is also a constant
2918 If such phi node exists, it is returned, otherwise NULL is returned. */
2920 static gphi *
2921 get_base_for (class loop *loop, tree x)
2923 gphi *phi;
2924 tree init, next;
2926 if (is_gimple_min_invariant (x))
2927 return NULL;
2929 phi = chain_of_csts_start (loop, x);
2930 if (!phi)
2931 return NULL;
2933 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2934 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2936 if (!is_gimple_min_invariant (init))
2937 return NULL;
2939 if (TREE_CODE (next) == SSA_NAME
2940 && chain_of_csts_start (loop, next) != phi)
2941 return NULL;
2943 return phi;
2946 /* Given an expression X, then
2948 * if X is NULL_TREE, we return the constant BASE.
2949 * if X is a constant, we return the constant X.
2950 * otherwise X is a SSA name, whose value in the considered loop is derived
2951 by a chain of operations with constant from a result of a phi node in
2952 the header of the loop. Then we return value of X when the value of the
2953 result of this phi node is given by the constant BASE. */
2955 static tree
2956 get_val_for (tree x, tree base)
2958 gimple *stmt;
2960 gcc_checking_assert (is_gimple_min_invariant (base));
2962 if (!x)
2963 return base;
2964 else if (is_gimple_min_invariant (x))
2965 return x;
2967 stmt = SSA_NAME_DEF_STMT (x);
2968 if (gimple_code (stmt) == GIMPLE_PHI)
2969 return base;
2971 gcc_checking_assert (is_gimple_assign (stmt));
2973 /* STMT must be either an assignment of a single SSA name or an
2974 expression involving an SSA name and a constant. Try to fold that
2975 expression using the value for the SSA name. */
2976 if (gimple_assign_ssa_name_copy_p (stmt))
2977 return get_val_for (gimple_assign_rhs1 (stmt), base);
2978 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2979 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2980 return fold_build1 (gimple_assign_rhs_code (stmt),
2981 gimple_expr_type (stmt),
2982 get_val_for (gimple_assign_rhs1 (stmt), base));
2983 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2985 tree rhs1 = gimple_assign_rhs1 (stmt);
2986 tree rhs2 = gimple_assign_rhs2 (stmt);
2987 if (TREE_CODE (rhs1) == SSA_NAME)
2988 rhs1 = get_val_for (rhs1, base);
2989 else if (TREE_CODE (rhs2) == SSA_NAME)
2990 rhs2 = get_val_for (rhs2, base);
2991 else
2992 gcc_unreachable ();
2993 return fold_build2 (gimple_assign_rhs_code (stmt),
2994 gimple_expr_type (stmt), rhs1, rhs2);
2996 else
2997 gcc_unreachable ();
3001 /* Tries to count the number of iterations of LOOP till it exits by EXIT
3002 by brute force -- i.e. by determining the value of the operands of the
3003 condition at EXIT in first few iterations of the loop (assuming that
3004 these values are constant) and determining the first one in that the
3005 condition is not satisfied. Returns the constant giving the number
3006 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3008 tree
3009 loop_niter_by_eval (class loop *loop, edge exit)
3011 tree acnd;
3012 tree op[2], val[2], next[2], aval[2];
3013 gphi *phi;
3014 gimple *cond;
3015 unsigned i, j;
3016 enum tree_code cmp;
3018 cond = last_stmt (exit->src);
3019 if (!cond || gimple_code (cond) != GIMPLE_COND)
3020 return chrec_dont_know;
3022 cmp = gimple_cond_code (cond);
3023 if (exit->flags & EDGE_TRUE_VALUE)
3024 cmp = invert_tree_comparison (cmp, false);
3026 switch (cmp)
3028 case EQ_EXPR:
3029 case NE_EXPR:
3030 case GT_EXPR:
3031 case GE_EXPR:
3032 case LT_EXPR:
3033 case LE_EXPR:
3034 op[0] = gimple_cond_lhs (cond);
3035 op[1] = gimple_cond_rhs (cond);
3036 break;
3038 default:
3039 return chrec_dont_know;
3042 for (j = 0; j < 2; j++)
3044 if (is_gimple_min_invariant (op[j]))
3046 val[j] = op[j];
3047 next[j] = NULL_TREE;
3048 op[j] = NULL_TREE;
3050 else
3052 phi = get_base_for (loop, op[j]);
3053 if (!phi)
3054 return chrec_dont_know;
3055 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3056 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3060 /* Don't issue signed overflow warnings. */
3061 fold_defer_overflow_warnings ();
3063 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3065 for (j = 0; j < 2; j++)
3066 aval[j] = get_val_for (op[j], val[j]);
3068 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3069 if (acnd && integer_zerop (acnd))
3071 fold_undefer_and_ignore_overflow_warnings ();
3072 if (dump_file && (dump_flags & TDF_DETAILS))
3073 fprintf (dump_file,
3074 "Proved that loop %d iterates %d times using brute force.\n",
3075 loop->num, i);
3076 return build_int_cst (unsigned_type_node, i);
3079 for (j = 0; j < 2; j++)
3081 aval[j] = val[j];
3082 val[j] = get_val_for (next[j], val[j]);
3083 if (!is_gimple_min_invariant (val[j]))
3085 fold_undefer_and_ignore_overflow_warnings ();
3086 return chrec_dont_know;
3090 /* If the next iteration would use the same base values
3091 as the current one, there is no point looping further,
3092 all following iterations will be the same as this one. */
3093 if (val[0] == aval[0] && val[1] == aval[1])
3094 break;
3097 fold_undefer_and_ignore_overflow_warnings ();
3099 return chrec_dont_know;
3102 /* Finds the exit of the LOOP by that the loop exits after a constant
3103 number of iterations and stores the exit edge to *EXIT. The constant
3104 giving the number of iterations of LOOP is returned. The number of
3105 iterations is determined using loop_niter_by_eval (i.e. by brute force
3106 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3107 determines the number of iterations, chrec_dont_know is returned. */
3109 tree
3110 find_loop_niter_by_eval (class loop *loop, edge *exit)
3112 unsigned i;
3113 vec<edge> exits = get_loop_exit_edges (loop);
3114 edge ex;
3115 tree niter = NULL_TREE, aniter;
3117 *exit = NULL;
3119 /* Loops with multiple exits are expensive to handle and less important. */
3120 if (!flag_expensive_optimizations
3121 && exits.length () > 1)
3123 exits.release ();
3124 return chrec_dont_know;
3127 FOR_EACH_VEC_ELT (exits, i, ex)
3129 if (!just_once_each_iteration_p (loop, ex->src))
3130 continue;
3132 aniter = loop_niter_by_eval (loop, ex);
3133 if (chrec_contains_undetermined (aniter))
3134 continue;
3136 if (niter
3137 && !tree_int_cst_lt (aniter, niter))
3138 continue;
3140 niter = aniter;
3141 *exit = ex;
3143 exits.release ();
3145 return niter ? niter : chrec_dont_know;
3150 Analysis of upper bounds on number of iterations of a loop.
3154 static widest_int derive_constant_upper_bound_ops (tree, tree,
3155 enum tree_code, tree);
3157 /* Returns a constant upper bound on the value of the right-hand side of
3158 an assignment statement STMT. */
3160 static widest_int
3161 derive_constant_upper_bound_assign (gimple *stmt)
3163 enum tree_code code = gimple_assign_rhs_code (stmt);
3164 tree op0 = gimple_assign_rhs1 (stmt);
3165 tree op1 = gimple_assign_rhs2 (stmt);
3167 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3168 op0, code, op1);
3171 /* Returns a constant upper bound on the value of expression VAL. VAL
3172 is considered to be unsigned. If its type is signed, its value must
3173 be nonnegative. */
3175 static widest_int
3176 derive_constant_upper_bound (tree val)
3178 enum tree_code code;
3179 tree op0, op1, op2;
3181 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3182 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3185 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3186 whose type is TYPE. The expression is considered to be unsigned. If
3187 its type is signed, its value must be nonnegative. */
3189 static widest_int
3190 derive_constant_upper_bound_ops (tree type, tree op0,
3191 enum tree_code code, tree op1)
3193 tree subtype, maxt;
3194 widest_int bnd, max, cst;
3195 gimple *stmt;
3197 if (INTEGRAL_TYPE_P (type))
3198 maxt = TYPE_MAX_VALUE (type);
3199 else
3200 maxt = upper_bound_in_type (type, type);
3202 max = wi::to_widest (maxt);
3204 switch (code)
3206 case INTEGER_CST:
3207 return wi::to_widest (op0);
3209 CASE_CONVERT:
3210 subtype = TREE_TYPE (op0);
3211 if (!TYPE_UNSIGNED (subtype)
3212 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3213 that OP0 is nonnegative. */
3214 && TYPE_UNSIGNED (type)
3215 && !tree_expr_nonnegative_p (op0))
3217 /* If we cannot prove that the casted expression is nonnegative,
3218 we cannot establish more useful upper bound than the precision
3219 of the type gives us. */
3220 return max;
3223 /* We now know that op0 is an nonnegative value. Try deriving an upper
3224 bound for it. */
3225 bnd = derive_constant_upper_bound (op0);
3227 /* If the bound does not fit in TYPE, max. value of TYPE could be
3228 attained. */
3229 if (wi::ltu_p (max, bnd))
3230 return max;
3232 return bnd;
3234 case PLUS_EXPR:
3235 case POINTER_PLUS_EXPR:
3236 case MINUS_EXPR:
3237 if (TREE_CODE (op1) != INTEGER_CST
3238 || !tree_expr_nonnegative_p (op0))
3239 return max;
3241 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3242 choose the most logical way how to treat this constant regardless
3243 of the signedness of the type. */
3244 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
3245 if (code != MINUS_EXPR)
3246 cst = -cst;
3248 bnd = derive_constant_upper_bound (op0);
3250 if (wi::neg_p (cst))
3252 cst = -cst;
3253 /* Avoid CST == 0x80000... */
3254 if (wi::neg_p (cst))
3255 return max;
3257 /* OP0 + CST. We need to check that
3258 BND <= MAX (type) - CST. */
3260 widest_int mmax = max - cst;
3261 if (wi::leu_p (bnd, mmax))
3262 return max;
3264 return bnd + cst;
3266 else
3268 /* OP0 - CST, where CST >= 0.
3270 If TYPE is signed, we have already verified that OP0 >= 0, and we
3271 know that the result is nonnegative. This implies that
3272 VAL <= BND - CST.
3274 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3275 otherwise the operation underflows.
3278 /* This should only happen if the type is unsigned; however, for
3279 buggy programs that use overflowing signed arithmetics even with
3280 -fno-wrapv, this condition may also be true for signed values. */
3281 if (wi::ltu_p (bnd, cst))
3282 return max;
3284 if (TYPE_UNSIGNED (type))
3286 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3287 wide_int_to_tree (type, cst));
3288 if (!tem || integer_nonzerop (tem))
3289 return max;
3292 bnd -= cst;
3295 return bnd;
3297 case FLOOR_DIV_EXPR:
3298 case EXACT_DIV_EXPR:
3299 if (TREE_CODE (op1) != INTEGER_CST
3300 || tree_int_cst_sign_bit (op1))
3301 return max;
3303 bnd = derive_constant_upper_bound (op0);
3304 return wi::udiv_floor (bnd, wi::to_widest (op1));
3306 case BIT_AND_EXPR:
3307 if (TREE_CODE (op1) != INTEGER_CST
3308 || tree_int_cst_sign_bit (op1))
3309 return max;
3310 return wi::to_widest (op1);
3312 case SSA_NAME:
3313 stmt = SSA_NAME_DEF_STMT (op0);
3314 if (gimple_code (stmt) != GIMPLE_ASSIGN
3315 || gimple_assign_lhs (stmt) != op0)
3316 return max;
3317 return derive_constant_upper_bound_assign (stmt);
3319 default:
3320 return max;
3324 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3326 static void
3327 do_warn_aggressive_loop_optimizations (class loop *loop,
3328 widest_int i_bound, gimple *stmt)
3330 /* Don't warn if the loop doesn't have known constant bound. */
3331 if (!loop->nb_iterations
3332 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3333 || !warn_aggressive_loop_optimizations
3334 /* To avoid warning multiple times for the same loop,
3335 only start warning when we preserve loops. */
3336 || (cfun->curr_properties & PROP_loops) == 0
3337 /* Only warn once per loop. */
3338 || loop->warned_aggressive_loop_optimizations
3339 /* Only warn if undefined behavior gives us lower estimate than the
3340 known constant bound. */
3341 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
3342 /* And undefined behavior happens unconditionally. */
3343 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
3344 return;
3346 edge e = single_exit (loop);
3347 if (e == NULL)
3348 return;
3350 gimple *estmt = last_stmt (e->src);
3351 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
3352 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
3353 ? UNSIGNED : SIGNED);
3354 auto_diagnostic_group d;
3355 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
3356 "iteration %s invokes undefined behavior", buf))
3357 inform (gimple_location (estmt), "within this loop");
3358 loop->warned_aggressive_loop_optimizations = true;
3361 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3362 is true if the loop is exited immediately after STMT, and this exit
3363 is taken at last when the STMT is executed BOUND + 1 times.
3364 REALISTIC is true if BOUND is expected to be close to the real number
3365 of iterations. UPPER is true if we are sure the loop iterates at most
3366 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3368 static void
3369 record_estimate (class loop *loop, tree bound, const widest_int &i_bound,
3370 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3372 widest_int delta;
3374 if (dump_file && (dump_flags & TDF_DETAILS))
3376 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
3377 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3378 fprintf (dump_file, " is %sexecuted at most ",
3379 upper ? "" : "probably ");
3380 print_generic_expr (dump_file, bound, TDF_SLIM);
3381 fprintf (dump_file, " (bounded by ");
3382 print_decu (i_bound, dump_file);
3383 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
3386 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3387 real number of iterations. */
3388 if (TREE_CODE (bound) != INTEGER_CST)
3389 realistic = false;
3390 else
3391 gcc_checking_assert (i_bound == wi::to_widest (bound));
3393 /* If we have a guaranteed upper bound, record it in the appropriate
3394 list, unless this is an !is_exit bound (i.e. undefined behavior in
3395 at_stmt) in a loop with known constant number of iterations. */
3396 if (upper
3397 && (is_exit
3398 || loop->nb_iterations == NULL_TREE
3399 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3401 class nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3403 elt->bound = i_bound;
3404 elt->stmt = at_stmt;
3405 elt->is_exit = is_exit;
3406 elt->next = loop->bounds;
3407 loop->bounds = elt;
3410 /* If statement is executed on every path to the loop latch, we can directly
3411 infer the upper bound on the # of iterations of the loop. */
3412 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3413 upper = false;
3415 /* Update the number of iteration estimates according to the bound.
3416 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3417 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3418 later if such statement must be executed on last iteration */
3419 if (is_exit)
3420 delta = 0;
3421 else
3422 delta = 1;
3423 widest_int new_i_bound = i_bound + delta;
3425 /* If an overflow occurred, ignore the result. */
3426 if (wi::ltu_p (new_i_bound, delta))
3427 return;
3429 if (upper && !is_exit)
3430 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3431 record_niter_bound (loop, new_i_bound, realistic, upper);
3434 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3435 and doesn't overflow. */
3437 static void
3438 record_control_iv (class loop *loop, class tree_niter_desc *niter)
3440 struct control_iv *iv;
3442 if (!niter->control.base || !niter->control.step)
3443 return;
3445 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3446 return;
3448 iv = ggc_alloc<control_iv> ();
3449 iv->base = niter->control.base;
3450 iv->step = niter->control.step;
3451 iv->next = loop->control_ivs;
3452 loop->control_ivs = iv;
3454 return;
3457 /* This function returns TRUE if below conditions are satisfied:
3458 1) VAR is SSA variable.
3459 2) VAR is an IV:{base, step} in its defining loop.
3460 3) IV doesn't overflow.
3461 4) Both base and step are integer constants.
3462 5) Base is the MIN/MAX value depends on IS_MIN.
3463 Store value of base to INIT correspondingly. */
3465 static bool
3466 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
3468 if (TREE_CODE (var) != SSA_NAME)
3469 return false;
3471 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
3472 class loop *loop = loop_containing_stmt (def_stmt);
3474 if (loop == NULL)
3475 return false;
3477 affine_iv iv;
3478 if (!simple_iv (loop, loop, var, &iv, false))
3479 return false;
3481 if (!iv.no_overflow)
3482 return false;
3484 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
3485 return false;
3487 if (is_min == tree_int_cst_sign_bit (iv.step))
3488 return false;
3490 *init = wi::to_wide (iv.base);
3491 return true;
3494 /* Record the estimate on number of iterations of LOOP based on the fact that
3495 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3496 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3497 estimated number of iterations is expected to be close to the real one.
3498 UPPER is true if we are sure the induction variable does not wrap. */
3500 static void
3501 record_nonwrapping_iv (class loop *loop, tree base, tree step, gimple *stmt,
3502 tree low, tree high, bool realistic, bool upper)
3504 tree niter_bound, extreme, delta;
3505 tree type = TREE_TYPE (base), unsigned_type;
3506 tree orig_base = base;
3508 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3509 return;
3511 if (dump_file && (dump_flags & TDF_DETAILS))
3513 fprintf (dump_file, "Induction variable (");
3514 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
3515 fprintf (dump_file, ") ");
3516 print_generic_expr (dump_file, base, TDF_SLIM);
3517 fprintf (dump_file, " + ");
3518 print_generic_expr (dump_file, step, TDF_SLIM);
3519 fprintf (dump_file, " * iteration does not wrap in statement ");
3520 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3521 fprintf (dump_file, " in loop %d.\n", loop->num);
3524 unsigned_type = unsigned_type_for (type);
3525 base = fold_convert (unsigned_type, base);
3526 step = fold_convert (unsigned_type, step);
3528 if (tree_int_cst_sign_bit (step))
3530 wide_int min, max;
3531 extreme = fold_convert (unsigned_type, low);
3532 if (TREE_CODE (orig_base) == SSA_NAME
3533 && TREE_CODE (high) == INTEGER_CST
3534 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3535 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3536 || get_cst_init_from_scev (orig_base, &max, false))
3537 && wi::gts_p (wi::to_wide (high), max))
3538 base = wide_int_to_tree (unsigned_type, max);
3539 else if (TREE_CODE (base) != INTEGER_CST
3540 && dominated_by_p (CDI_DOMINATORS,
3541 loop->latch, gimple_bb (stmt)))
3542 base = fold_convert (unsigned_type, high);
3543 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3544 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
3546 else
3548 wide_int min, max;
3549 extreme = fold_convert (unsigned_type, high);
3550 if (TREE_CODE (orig_base) == SSA_NAME
3551 && TREE_CODE (low) == INTEGER_CST
3552 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3553 && (get_range_info (orig_base, &min, &max) == VR_RANGE
3554 || get_cst_init_from_scev (orig_base, &min, true))
3555 && wi::gts_p (min, wi::to_wide (low)))
3556 base = wide_int_to_tree (unsigned_type, min);
3557 else if (TREE_CODE (base) != INTEGER_CST
3558 && dominated_by_p (CDI_DOMINATORS,
3559 loop->latch, gimple_bb (stmt)))
3560 base = fold_convert (unsigned_type, low);
3561 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3564 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3565 would get out of the range. */
3566 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
3567 widest_int max = derive_constant_upper_bound (niter_bound);
3568 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
3571 /* Determine information about number of iterations a LOOP from the index
3572 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3573 guaranteed to be executed in every iteration of LOOP. Callback for
3574 for_each_index. */
3576 struct ilb_data
3578 class loop *loop;
3579 gimple *stmt;
3582 static bool
3583 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
3585 struct ilb_data *data = (struct ilb_data *) dta;
3586 tree ev, init, step;
3587 tree low, high, type, next;
3588 bool sign, upper = true, at_end = false;
3589 class loop *loop = data->loop;
3591 if (TREE_CODE (base) != ARRAY_REF)
3592 return true;
3594 /* For arrays at the end of the structure, we are not guaranteed that they
3595 do not really extend over their declared size. However, for arrays of
3596 size greater than one, this is unlikely to be intended. */
3597 if (array_at_struct_end_p (base))
3599 at_end = true;
3600 upper = false;
3603 class loop *dloop = loop_containing_stmt (data->stmt);
3604 if (!dloop)
3605 return true;
3607 ev = analyze_scalar_evolution (dloop, *idx);
3608 ev = instantiate_parameters (loop, ev);
3609 init = initial_condition (ev);
3610 step = evolution_part_in_loop_num (ev, loop->num);
3612 if (!init
3613 || !step
3614 || TREE_CODE (step) != INTEGER_CST
3615 || integer_zerop (step)
3616 || tree_contains_chrecs (init, NULL)
3617 || chrec_contains_symbols_defined_in_loop (init, loop->num))
3618 return true;
3620 low = array_ref_low_bound (base);
3621 high = array_ref_up_bound (base);
3623 /* The case of nonconstant bounds could be handled, but it would be
3624 complicated. */
3625 if (TREE_CODE (low) != INTEGER_CST
3626 || !high
3627 || TREE_CODE (high) != INTEGER_CST)
3628 return true;
3629 sign = tree_int_cst_sign_bit (step);
3630 type = TREE_TYPE (step);
3632 /* The array of length 1 at the end of a structure most likely extends
3633 beyond its bounds. */
3634 if (at_end
3635 && operand_equal_p (low, high, 0))
3636 return true;
3638 /* In case the relevant bound of the array does not fit in type, or
3639 it does, but bound + step (in type) still belongs into the range of the
3640 array, the index may wrap and still stay within the range of the array
3641 (consider e.g. if the array is indexed by the full range of
3642 unsigned char).
3644 To make things simpler, we require both bounds to fit into type, although
3645 there are cases where this would not be strictly necessary. */
3646 if (!int_fits_type_p (high, type)
3647 || !int_fits_type_p (low, type))
3648 return true;
3649 low = fold_convert (type, low);
3650 high = fold_convert (type, high);
3652 if (sign)
3653 next = fold_binary (PLUS_EXPR, type, low, step);
3654 else
3655 next = fold_binary (PLUS_EXPR, type, high, step);
3657 if (tree_int_cst_compare (low, next) <= 0
3658 && tree_int_cst_compare (next, high) <= 0)
3659 return true;
3661 /* If access is not executed on every iteration, we must ensure that overlow
3662 may not make the access valid later. */
3663 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
3664 && scev_probably_wraps_p (NULL_TREE,
3665 initial_condition_in_loop_num (ev, loop->num),
3666 step, data->stmt, loop, true))
3667 upper = false;
3669 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
3670 return true;
3673 /* Determine information about number of iterations a LOOP from the bounds
3674 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3675 STMT is guaranteed to be executed in every iteration of LOOP.*/
3677 static void
3678 infer_loop_bounds_from_ref (class loop *loop, gimple *stmt, tree ref)
3680 struct ilb_data data;
3682 data.loop = loop;
3683 data.stmt = stmt;
3684 for_each_index (&ref, idx_infer_loop_bounds, &data);
3687 /* Determine information about number of iterations of a LOOP from the way
3688 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3689 executed in every iteration of LOOP. */
3691 static void
3692 infer_loop_bounds_from_array (class loop *loop, gimple *stmt)
3694 if (is_gimple_assign (stmt))
3696 tree op0 = gimple_assign_lhs (stmt);
3697 tree op1 = gimple_assign_rhs1 (stmt);
3699 /* For each memory access, analyze its access function
3700 and record a bound on the loop iteration domain. */
3701 if (REFERENCE_CLASS_P (op0))
3702 infer_loop_bounds_from_ref (loop, stmt, op0);
3704 if (REFERENCE_CLASS_P (op1))
3705 infer_loop_bounds_from_ref (loop, stmt, op1);
3707 else if (is_gimple_call (stmt))
3709 tree arg, lhs;
3710 unsigned i, n = gimple_call_num_args (stmt);
3712 lhs = gimple_call_lhs (stmt);
3713 if (lhs && REFERENCE_CLASS_P (lhs))
3714 infer_loop_bounds_from_ref (loop, stmt, lhs);
3716 for (i = 0; i < n; i++)
3718 arg = gimple_call_arg (stmt, i);
3719 if (REFERENCE_CLASS_P (arg))
3720 infer_loop_bounds_from_ref (loop, stmt, arg);
3725 /* Determine information about number of iterations of a LOOP from the fact
3726 that pointer arithmetics in STMT does not overflow. */
3728 static void
3729 infer_loop_bounds_from_pointer_arith (class loop *loop, gimple *stmt)
3731 tree def, base, step, scev, type, low, high;
3732 tree var, ptr;
3734 if (!is_gimple_assign (stmt)
3735 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
3736 return;
3738 def = gimple_assign_lhs (stmt);
3739 if (TREE_CODE (def) != SSA_NAME)
3740 return;
3742 type = TREE_TYPE (def);
3743 if (!nowrap_type_p (type))
3744 return;
3746 ptr = gimple_assign_rhs1 (stmt);
3747 if (!expr_invariant_in_loop_p (loop, ptr))
3748 return;
3750 var = gimple_assign_rhs2 (stmt);
3751 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3752 return;
3754 class loop *uloop = loop_containing_stmt (stmt);
3755 scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
3756 if (chrec_contains_undetermined (scev))
3757 return;
3759 base = initial_condition_in_loop_num (scev, loop->num);
3760 step = evolution_part_in_loop_num (scev, loop->num);
3762 if (!base || !step
3763 || TREE_CODE (step) != INTEGER_CST
3764 || tree_contains_chrecs (base, NULL)
3765 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3766 return;
3768 low = lower_bound_in_type (type, type);
3769 high = upper_bound_in_type (type, type);
3771 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3772 produce a NULL pointer. The contrary would mean NULL points to an object,
3773 while NULL is supposed to compare unequal with the address of all objects.
3774 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3775 NULL pointer since that would mean wrapping, which we assume here not to
3776 happen. So, we can exclude NULL from the valid range of pointer
3777 arithmetic. */
3778 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3779 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3781 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3784 /* Determine information about number of iterations of a LOOP from the fact
3785 that signed arithmetics in STMT does not overflow. */
3787 static void
3788 infer_loop_bounds_from_signedness (class loop *loop, gimple *stmt)
3790 tree def, base, step, scev, type, low, high;
3792 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3793 return;
3795 def = gimple_assign_lhs (stmt);
3797 if (TREE_CODE (def) != SSA_NAME)
3798 return;
3800 type = TREE_TYPE (def);
3801 if (!INTEGRAL_TYPE_P (type)
3802 || !TYPE_OVERFLOW_UNDEFINED (type))
3803 return;
3805 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3806 if (chrec_contains_undetermined (scev))
3807 return;
3809 base = initial_condition_in_loop_num (scev, loop->num);
3810 step = evolution_part_in_loop_num (scev, loop->num);
3812 if (!base || !step
3813 || TREE_CODE (step) != INTEGER_CST
3814 || tree_contains_chrecs (base, NULL)
3815 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3816 return;
3818 low = lower_bound_in_type (type, type);
3819 high = upper_bound_in_type (type, type);
3820 wide_int minv, maxv;
3821 if (get_range_info (def, &minv, &maxv) == VR_RANGE)
3823 low = wide_int_to_tree (type, minv);
3824 high = wide_int_to_tree (type, maxv);
3827 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3830 /* The following analyzers are extracting informations on the bounds
3831 of LOOP from the following undefined behaviors:
3833 - data references should not access elements over the statically
3834 allocated size,
3836 - signed variables should not overflow when flag_wrapv is not set.
3839 static void
3840 infer_loop_bounds_from_undefined (class loop *loop)
3842 unsigned i;
3843 basic_block *bbs;
3844 gimple_stmt_iterator bsi;
3845 basic_block bb;
3846 bool reliable;
3848 bbs = get_loop_body (loop);
3850 for (i = 0; i < loop->num_nodes; i++)
3852 bb = bbs[i];
3854 /* If BB is not executed in each iteration of the loop, we cannot
3855 use the operations in it to infer reliable upper bound on the
3856 # of iterations of the loop. However, we can use it as a guess.
3857 Reliable guesses come only from array bounds. */
3858 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
3860 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3862 gimple *stmt = gsi_stmt (bsi);
3864 infer_loop_bounds_from_array (loop, stmt);
3866 if (reliable)
3868 infer_loop_bounds_from_signedness (loop, stmt);
3869 infer_loop_bounds_from_pointer_arith (loop, stmt);
3875 free (bbs);
3878 /* Compare wide ints, callback for qsort. */
3880 static int
3881 wide_int_cmp (const void *p1, const void *p2)
3883 const widest_int *d1 = (const widest_int *) p1;
3884 const widest_int *d2 = (const widest_int *) p2;
3885 return wi::cmpu (*d1, *d2);
3888 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3889 Lookup by binary search. */
3891 static int
3892 bound_index (vec<widest_int> bounds, const widest_int &bound)
3894 unsigned int end = bounds.length ();
3895 unsigned int begin = 0;
3897 /* Find a matching index by means of a binary search. */
3898 while (begin != end)
3900 unsigned int middle = (begin + end) / 2;
3901 widest_int index = bounds[middle];
3903 if (index == bound)
3904 return middle;
3905 else if (wi::ltu_p (index, bound))
3906 begin = middle + 1;
3907 else
3908 end = middle;
3910 gcc_unreachable ();
3913 /* We recorded loop bounds only for statements dominating loop latch (and thus
3914 executed each loop iteration). If there are any bounds on statements not
3915 dominating the loop latch we can improve the estimate by walking the loop
3916 body and seeing if every path from loop header to loop latch contains
3917 some bounded statement. */
3919 static void
3920 discover_iteration_bound_by_body_walk (class loop *loop)
3922 class nb_iter_bound *elt;
3923 auto_vec<widest_int> bounds;
3924 vec<vec<basic_block> > queues = vNULL;
3925 vec<basic_block> queue = vNULL;
3926 ptrdiff_t queue_index;
3927 ptrdiff_t latch_index = 0;
3929 /* Discover what bounds may interest us. */
3930 for (elt = loop->bounds; elt; elt = elt->next)
3932 widest_int bound = elt->bound;
3934 /* Exit terminates loop at given iteration, while non-exits produce undefined
3935 effect on the next iteration. */
3936 if (!elt->is_exit)
3938 bound += 1;
3939 /* If an overflow occurred, ignore the result. */
3940 if (bound == 0)
3941 continue;
3944 if (!loop->any_upper_bound
3945 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3946 bounds.safe_push (bound);
3949 /* Exit early if there is nothing to do. */
3950 if (!bounds.exists ())
3951 return;
3953 if (dump_file && (dump_flags & TDF_DETAILS))
3954 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3956 /* Sort the bounds in decreasing order. */
3957 bounds.qsort (wide_int_cmp);
3959 /* For every basic block record the lowest bound that is guaranteed to
3960 terminate the loop. */
3962 hash_map<basic_block, ptrdiff_t> bb_bounds;
3963 for (elt = loop->bounds; elt; elt = elt->next)
3965 widest_int bound = elt->bound;
3966 if (!elt->is_exit)
3968 bound += 1;
3969 /* If an overflow occurred, ignore the result. */
3970 if (bound == 0)
3971 continue;
3974 if (!loop->any_upper_bound
3975 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3977 ptrdiff_t index = bound_index (bounds, bound);
3978 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
3979 if (!entry)
3980 bb_bounds.put (gimple_bb (elt->stmt), index);
3981 else if ((ptrdiff_t)*entry > index)
3982 *entry = index;
3986 hash_map<basic_block, ptrdiff_t> block_priority;
3988 /* Perform shortest path discovery loop->header ... loop->latch.
3990 The "distance" is given by the smallest loop bound of basic block
3991 present in the path and we look for path with largest smallest bound
3992 on it.
3994 To avoid the need for fibonacci heap on double ints we simply compress
3995 double ints into indexes to BOUNDS array and then represent the queue
3996 as arrays of queues for every index.
3997 Index of BOUNDS.length() means that the execution of given BB has
3998 no bounds determined.
4000 VISITED is a pointer map translating basic block into smallest index
4001 it was inserted into the priority queue with. */
4002 latch_index = -1;
4004 /* Start walk in loop header with index set to infinite bound. */
4005 queue_index = bounds.length ();
4006 queues.safe_grow_cleared (queue_index + 1);
4007 queue.safe_push (loop->header);
4008 queues[queue_index] = queue;
4009 block_priority.put (loop->header, queue_index);
4011 for (; queue_index >= 0; queue_index--)
4013 if (latch_index < queue_index)
4015 while (queues[queue_index].length ())
4017 basic_block bb;
4018 ptrdiff_t bound_index = queue_index;
4019 edge e;
4020 edge_iterator ei;
4022 queue = queues[queue_index];
4023 bb = queue.pop ();
4025 /* OK, we later inserted the BB with lower priority, skip it. */
4026 if (*block_priority.get (bb) > queue_index)
4027 continue;
4029 /* See if we can improve the bound. */
4030 ptrdiff_t *entry = bb_bounds.get (bb);
4031 if (entry && *entry < bound_index)
4032 bound_index = *entry;
4034 /* Insert succesors into the queue, watch for latch edge
4035 and record greatest index we saw. */
4036 FOR_EACH_EDGE (e, ei, bb->succs)
4038 bool insert = false;
4040 if (loop_exit_edge_p (loop, e))
4041 continue;
4043 if (e == loop_latch_edge (loop)
4044 && latch_index < bound_index)
4045 latch_index = bound_index;
4046 else if (!(entry = block_priority.get (e->dest)))
4048 insert = true;
4049 block_priority.put (e->dest, bound_index);
4051 else if (*entry < bound_index)
4053 insert = true;
4054 *entry = bound_index;
4057 if (insert)
4058 queues[bound_index].safe_push (e->dest);
4062 queues[queue_index].release ();
4065 gcc_assert (latch_index >= 0);
4066 if ((unsigned)latch_index < bounds.length ())
4068 if (dump_file && (dump_flags & TDF_DETAILS))
4070 fprintf (dump_file, "Found better loop bound ");
4071 print_decu (bounds[latch_index], dump_file);
4072 fprintf (dump_file, "\n");
4074 record_niter_bound (loop, bounds[latch_index], false, true);
4077 queues.release ();
4080 /* See if every path cross the loop goes through a statement that is known
4081 to not execute at the last iteration. In that case we can decrese iteration
4082 count by 1. */
4084 static void
4085 maybe_lower_iteration_bound (class loop *loop)
4087 hash_set<gimple *> *not_executed_last_iteration = NULL;
4088 class nb_iter_bound *elt;
4089 bool found_exit = false;
4090 auto_vec<basic_block> queue;
4091 bitmap visited;
4093 /* Collect all statements with interesting (i.e. lower than
4094 nb_iterations_upper_bound) bound on them.
4096 TODO: Due to the way record_estimate choose estimates to store, the bounds
4097 will be always nb_iterations_upper_bound-1. We can change this to record
4098 also statements not dominating the loop latch and update the walk bellow
4099 to the shortest path algorithm. */
4100 for (elt = loop->bounds; elt; elt = elt->next)
4102 if (!elt->is_exit
4103 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
4105 if (!not_executed_last_iteration)
4106 not_executed_last_iteration = new hash_set<gimple *>;
4107 not_executed_last_iteration->add (elt->stmt);
4110 if (!not_executed_last_iteration)
4111 return;
4113 /* Start DFS walk in the loop header and see if we can reach the
4114 loop latch or any of the exits (including statements with side
4115 effects that may terminate the loop otherwise) without visiting
4116 any of the statements known to have undefined effect on the last
4117 iteration. */
4118 queue.safe_push (loop->header);
4119 visited = BITMAP_ALLOC (NULL);
4120 bitmap_set_bit (visited, loop->header->index);
4121 found_exit = false;
4125 basic_block bb = queue.pop ();
4126 gimple_stmt_iterator gsi;
4127 bool stmt_found = false;
4129 /* Loop for possible exits and statements bounding the execution. */
4130 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4132 gimple *stmt = gsi_stmt (gsi);
4133 if (not_executed_last_iteration->contains (stmt))
4135 stmt_found = true;
4136 break;
4138 if (gimple_has_side_effects (stmt))
4140 found_exit = true;
4141 break;
4144 if (found_exit)
4145 break;
4147 /* If no bounding statement is found, continue the walk. */
4148 if (!stmt_found)
4150 edge e;
4151 edge_iterator ei;
4153 FOR_EACH_EDGE (e, ei, bb->succs)
4155 if (loop_exit_edge_p (loop, e)
4156 || e == loop_latch_edge (loop))
4158 found_exit = true;
4159 break;
4161 if (bitmap_set_bit (visited, e->dest->index))
4162 queue.safe_push (e->dest);
4166 while (queue.length () && !found_exit);
4168 /* If every path through the loop reach bounding statement before exit,
4169 then we know the last iteration of the loop will have undefined effect
4170 and we can decrease number of iterations. */
4172 if (!found_exit)
4174 if (dump_file && (dump_flags & TDF_DETAILS))
4175 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
4176 "undefined statement must be executed at the last iteration.\n");
4177 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
4178 false, true);
4181 BITMAP_FREE (visited);
4182 delete not_executed_last_iteration;
4185 /* Get expected upper bound for number of loop iterations for
4186 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4188 static tree
4189 get_upper_bound_based_on_builtin_expr_with_prob (gcond *cond)
4191 if (cond == NULL)
4192 return NULL_TREE;
4194 tree lhs = gimple_cond_lhs (cond);
4195 if (TREE_CODE (lhs) != SSA_NAME)
4196 return NULL_TREE;
4198 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
4199 gcall *def = dyn_cast<gcall *> (stmt);
4200 if (def == NULL)
4201 return NULL_TREE;
4203 tree decl = gimple_call_fndecl (def);
4204 if (!decl
4205 || !fndecl_built_in_p (decl, BUILT_IN_EXPECT_WITH_PROBABILITY)
4206 || gimple_call_num_args (stmt) != 3)
4207 return NULL_TREE;
4209 tree c = gimple_call_arg (def, 1);
4210 tree condt = TREE_TYPE (lhs);
4211 tree res = fold_build2 (gimple_cond_code (cond),
4212 condt, c,
4213 gimple_cond_rhs (cond));
4214 if (TREE_CODE (res) != INTEGER_CST)
4215 return NULL_TREE;
4218 tree prob = gimple_call_arg (def, 2);
4219 tree t = TREE_TYPE (prob);
4220 tree one
4221 = build_real_from_int_cst (t,
4222 integer_one_node);
4223 if (integer_zerop (res))
4224 prob = fold_build2 (MINUS_EXPR, t, one, prob);
4225 tree r = fold_build2 (RDIV_EXPR, t, one, prob);
4226 if (TREE_CODE (r) != REAL_CST)
4227 return NULL_TREE;
4229 HOST_WIDE_INT probi
4230 = real_to_integer (TREE_REAL_CST_PTR (r));
4231 return build_int_cst (condt, probi);
4234 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4235 is true also use estimates derived from undefined behavior. */
4237 void
4238 estimate_numbers_of_iterations (class loop *loop)
4240 vec<edge> exits;
4241 tree niter, type;
4242 unsigned i;
4243 class tree_niter_desc niter_desc;
4244 edge ex;
4245 widest_int bound;
4246 edge likely_exit;
4248 /* Give up if we already have tried to compute an estimation. */
4249 if (loop->estimate_state != EST_NOT_COMPUTED)
4250 return;
4252 loop->estimate_state = EST_AVAILABLE;
4254 /* If we have a measured profile, use it to estimate the number of
4255 iterations. Normally this is recorded by branch_prob right after
4256 reading the profile. In case we however found a new loop, record the
4257 information here.
4259 Explicitly check for profile status so we do not report
4260 wrong prediction hitrates for guessed loop iterations heuristics.
4261 Do not recompute already recorded bounds - we ought to be better on
4262 updating iteration bounds than updating profile in general and thus
4263 recomputing iteration bounds later in the compilation process will just
4264 introduce random roundoff errors. */
4265 if (!loop->any_estimate
4266 && loop->header->count.reliable_p ())
4268 gcov_type nit = expected_loop_iterations_unbounded (loop);
4269 bound = gcov_type_to_wide_int (nit);
4270 record_niter_bound (loop, bound, true, false);
4273 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4274 to be constant, we avoid undefined behavior implied bounds and instead
4275 diagnose those loops with -Waggressive-loop-optimizations. */
4276 number_of_latch_executions (loop);
4278 exits = get_loop_exit_edges (loop);
4279 likely_exit = single_likely_exit (loop);
4280 FOR_EACH_VEC_ELT (exits, i, ex)
4282 if (ex == likely_exit)
4284 gimple *stmt = last_stmt (ex->src);
4285 if (stmt != NULL)
4287 gcond *cond = dyn_cast<gcond *> (stmt);
4288 tree niter_bound
4289 = get_upper_bound_based_on_builtin_expr_with_prob (cond);
4290 if (niter_bound != NULL_TREE)
4292 widest_int max = derive_constant_upper_bound (niter_bound);
4293 record_estimate (loop, niter_bound, max, cond,
4294 true, true, false);
4299 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
4300 continue;
4302 niter = niter_desc.niter;
4303 type = TREE_TYPE (niter);
4304 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4305 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4306 build_int_cst (type, 0),
4307 niter);
4308 record_estimate (loop, niter, niter_desc.max,
4309 last_stmt (ex->src),
4310 true, ex == likely_exit, true);
4311 record_control_iv (loop, &niter_desc);
4313 exits.release ();
4315 if (flag_aggressive_loop_optimizations)
4316 infer_loop_bounds_from_undefined (loop);
4318 discover_iteration_bound_by_body_walk (loop);
4320 maybe_lower_iteration_bound (loop);
4322 /* If we know the exact number of iterations of this loop, try to
4323 not break code with undefined behavior by not recording smaller
4324 maximum number of iterations. */
4325 if (loop->nb_iterations
4326 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
4328 loop->any_upper_bound = true;
4329 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
4333 /* Sets NIT to the estimated number of executions of the latch of the
4334 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4335 large as the number of iterations. If we have no reliable estimate,
4336 the function returns false, otherwise returns true. */
4338 bool
4339 estimated_loop_iterations (class loop *loop, widest_int *nit)
4341 /* When SCEV information is available, try to update loop iterations
4342 estimate. Otherwise just return whatever we recorded earlier. */
4343 if (scev_initialized_p ())
4344 estimate_numbers_of_iterations (loop);
4346 return (get_estimated_loop_iterations (loop, nit));
4349 /* Similar to estimated_loop_iterations, but returns the estimate only
4350 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4351 on the number of iterations of LOOP could not be derived, returns -1. */
4353 HOST_WIDE_INT
4354 estimated_loop_iterations_int (class loop *loop)
4356 widest_int nit;
4357 HOST_WIDE_INT hwi_nit;
4359 if (!estimated_loop_iterations (loop, &nit))
4360 return -1;
4362 if (!wi::fits_shwi_p (nit))
4363 return -1;
4364 hwi_nit = nit.to_shwi ();
4366 return hwi_nit < 0 ? -1 : hwi_nit;
4370 /* Sets NIT to an upper bound for the maximum number of executions of the
4371 latch of the LOOP. If we have no reliable estimate, the function returns
4372 false, otherwise returns true. */
4374 bool
4375 max_loop_iterations (class loop *loop, widest_int *nit)
4377 /* When SCEV information is available, try to update loop iterations
4378 estimate. Otherwise just return whatever we recorded earlier. */
4379 if (scev_initialized_p ())
4380 estimate_numbers_of_iterations (loop);
4382 return get_max_loop_iterations (loop, nit);
4385 /* Similar to max_loop_iterations, but returns the estimate only
4386 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4387 on the number of iterations of LOOP could not be derived, returns -1. */
4389 HOST_WIDE_INT
4390 max_loop_iterations_int (class loop *loop)
4392 widest_int nit;
4393 HOST_WIDE_INT hwi_nit;
4395 if (!max_loop_iterations (loop, &nit))
4396 return -1;
4398 if (!wi::fits_shwi_p (nit))
4399 return -1;
4400 hwi_nit = nit.to_shwi ();
4402 return hwi_nit < 0 ? -1 : hwi_nit;
4405 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4406 latch of the LOOP. If we have no reliable estimate, the function returns
4407 false, otherwise returns true. */
4409 bool
4410 likely_max_loop_iterations (class loop *loop, widest_int *nit)
4412 /* When SCEV information is available, try to update loop iterations
4413 estimate. Otherwise just return whatever we recorded earlier. */
4414 if (scev_initialized_p ())
4415 estimate_numbers_of_iterations (loop);
4417 return get_likely_max_loop_iterations (loop, nit);
4420 /* Similar to max_loop_iterations, but returns the estimate only
4421 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4422 on the number of iterations of LOOP could not be derived, returns -1. */
4424 HOST_WIDE_INT
4425 likely_max_loop_iterations_int (class loop *loop)
4427 widest_int nit;
4428 HOST_WIDE_INT hwi_nit;
4430 if (!likely_max_loop_iterations (loop, &nit))
4431 return -1;
4433 if (!wi::fits_shwi_p (nit))
4434 return -1;
4435 hwi_nit = nit.to_shwi ();
4437 return hwi_nit < 0 ? -1 : hwi_nit;
4440 /* Returns an estimate for the number of executions of statements
4441 in the LOOP. For statements before the loop exit, this exceeds
4442 the number of execution of the latch by one. */
4444 HOST_WIDE_INT
4445 estimated_stmt_executions_int (class loop *loop)
4447 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
4448 HOST_WIDE_INT snit;
4450 if (nit == -1)
4451 return -1;
4453 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
4455 /* If the computation overflows, return -1. */
4456 return snit < 0 ? -1 : snit;
4459 /* Sets NIT to the maximum number of executions of the latch of the
4460 LOOP, plus one. If we have no reliable estimate, the function returns
4461 false, otherwise returns true. */
4463 bool
4464 max_stmt_executions (class loop *loop, widest_int *nit)
4466 widest_int nit_minus_one;
4468 if (!max_loop_iterations (loop, nit))
4469 return false;
4471 nit_minus_one = *nit;
4473 *nit += 1;
4475 return wi::gtu_p (*nit, nit_minus_one);
4478 /* Sets NIT to the estimated maximum number of executions of the latch of the
4479 LOOP, plus one. If we have no likely estimate, the function returns
4480 false, otherwise returns true. */
4482 bool
4483 likely_max_stmt_executions (class loop *loop, widest_int *nit)
4485 widest_int nit_minus_one;
4487 if (!likely_max_loop_iterations (loop, nit))
4488 return false;
4490 nit_minus_one = *nit;
4492 *nit += 1;
4494 return wi::gtu_p (*nit, nit_minus_one);
4497 /* Sets NIT to the estimated number of executions of the latch of the
4498 LOOP, plus one. If we have no reliable estimate, the function returns
4499 false, otherwise returns true. */
4501 bool
4502 estimated_stmt_executions (class loop *loop, widest_int *nit)
4504 widest_int nit_minus_one;
4506 if (!estimated_loop_iterations (loop, nit))
4507 return false;
4509 nit_minus_one = *nit;
4511 *nit += 1;
4513 return wi::gtu_p (*nit, nit_minus_one);
4516 /* Records estimates on numbers of iterations of loops. */
4518 void
4519 estimate_numbers_of_iterations (function *fn)
4521 class loop *loop;
4523 /* We don't want to issue signed overflow warnings while getting
4524 loop iteration estimates. */
4525 fold_defer_overflow_warnings ();
4527 FOR_EACH_LOOP_FN (fn, loop, 0)
4528 estimate_numbers_of_iterations (loop);
4530 fold_undefer_and_ignore_overflow_warnings ();
4533 /* Returns true if statement S1 dominates statement S2. */
4535 bool
4536 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
4538 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
4540 if (!bb1
4541 || s1 == s2)
4542 return true;
4544 if (bb1 == bb2)
4546 gimple_stmt_iterator bsi;
4548 if (gimple_code (s2) == GIMPLE_PHI)
4549 return false;
4551 if (gimple_code (s1) == GIMPLE_PHI)
4552 return true;
4554 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
4555 if (gsi_stmt (bsi) == s1)
4556 return true;
4558 return false;
4561 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
4564 /* Returns true when we can prove that the number of executions of
4565 STMT in the loop is at most NITER, according to the bound on
4566 the number of executions of the statement NITER_BOUND->stmt recorded in
4567 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
4569 ??? This code can become quite a CPU hog - we can have many bounds,
4570 and large basic block forcing stmt_dominates_stmt_p to be queried
4571 many times on a large basic blocks, so the whole thing is O(n^2)
4572 for scev_probably_wraps_p invocation (that can be done n times).
4574 It would make more sense (and give better answers) to remember BB
4575 bounds computed by discover_iteration_bound_by_body_walk. */
4577 static bool
4578 n_of_executions_at_most (gimple *stmt,
4579 class nb_iter_bound *niter_bound,
4580 tree niter)
4582 widest_int bound = niter_bound->bound;
4583 tree nit_type = TREE_TYPE (niter), e;
4584 enum tree_code cmp;
4586 gcc_assert (TYPE_UNSIGNED (nit_type));
4588 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
4589 the number of iterations is small. */
4590 if (!wi::fits_to_tree_p (bound, nit_type))
4591 return false;
4593 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
4594 times. This means that:
4596 -- if NITER_BOUND->is_exit is true, then everything after
4597 it at most NITER_BOUND->bound times.
4599 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
4600 is executed, then NITER_BOUND->stmt is executed as well in the same
4601 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4603 If we can determine that NITER_BOUND->stmt is always executed
4604 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4605 We conclude that if both statements belong to the same
4606 basic block and STMT is before NITER_BOUND->stmt and there are no
4607 statements with side effects in between. */
4609 if (niter_bound->is_exit)
4611 if (stmt == niter_bound->stmt
4612 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4613 return false;
4614 cmp = GE_EXPR;
4616 else
4618 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4620 gimple_stmt_iterator bsi;
4621 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
4622 || gimple_code (stmt) == GIMPLE_PHI
4623 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
4624 return false;
4626 /* By stmt_dominates_stmt_p we already know that STMT appears
4627 before NITER_BOUND->STMT. Still need to test that the loop
4628 cannot be terinated by a side effect in between. */
4629 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
4630 gsi_next (&bsi))
4631 if (gimple_has_side_effects (gsi_stmt (bsi)))
4632 return false;
4633 bound += 1;
4634 if (bound == 0
4635 || !wi::fits_to_tree_p (bound, nit_type))
4636 return false;
4638 cmp = GT_EXPR;
4641 e = fold_binary (cmp, boolean_type_node,
4642 niter, wide_int_to_tree (nit_type, bound));
4643 return e && integer_nonzerop (e);
4646 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4648 bool
4649 nowrap_type_p (tree type)
4651 if (ANY_INTEGRAL_TYPE_P (type)
4652 && TYPE_OVERFLOW_UNDEFINED (type))
4653 return true;
4655 if (POINTER_TYPE_P (type))
4656 return true;
4658 return false;
4661 /* Return true if we can prove LOOP is exited before evolution of induction
4662 variable {BASE, STEP} overflows with respect to its type bound. */
4664 static bool
4665 loop_exits_before_overflow (tree base, tree step,
4666 gimple *at_stmt, class loop *loop)
4668 widest_int niter;
4669 struct control_iv *civ;
4670 class nb_iter_bound *bound;
4671 tree e, delta, step_abs, unsigned_base;
4672 tree type = TREE_TYPE (step);
4673 tree unsigned_type, valid_niter;
4675 /* Don't issue signed overflow warnings. */
4676 fold_defer_overflow_warnings ();
4678 /* Compute the number of iterations before we reach the bound of the
4679 type, and verify that the loop is exited before this occurs. */
4680 unsigned_type = unsigned_type_for (type);
4681 unsigned_base = fold_convert (unsigned_type, base);
4683 if (tree_int_cst_sign_bit (step))
4685 tree extreme = fold_convert (unsigned_type,
4686 lower_bound_in_type (type, type));
4687 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
4688 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
4689 fold_convert (unsigned_type, step));
4691 else
4693 tree extreme = fold_convert (unsigned_type,
4694 upper_bound_in_type (type, type));
4695 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
4696 step_abs = fold_convert (unsigned_type, step);
4699 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
4701 estimate_numbers_of_iterations (loop);
4703 if (max_loop_iterations (loop, &niter)
4704 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
4705 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
4706 wide_int_to_tree (TREE_TYPE (valid_niter),
4707 niter))) != NULL
4708 && integer_nonzerop (e))
4710 fold_undefer_and_ignore_overflow_warnings ();
4711 return true;
4713 if (at_stmt)
4714 for (bound = loop->bounds; bound; bound = bound->next)
4716 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
4718 fold_undefer_and_ignore_overflow_warnings ();
4719 return true;
4722 fold_undefer_and_ignore_overflow_warnings ();
4724 /* Try to prove loop is exited before {base, step} overflows with the
4725 help of analyzed loop control IV. This is done only for IVs with
4726 constant step because otherwise we don't have the information. */
4727 if (TREE_CODE (step) == INTEGER_CST)
4729 for (civ = loop->control_ivs; civ; civ = civ->next)
4731 enum tree_code code;
4732 tree civ_type = TREE_TYPE (civ->step);
4734 /* Have to consider type difference because operand_equal_p ignores
4735 that for constants. */
4736 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
4737 || element_precision (type) != element_precision (civ_type))
4738 continue;
4740 /* Only consider control IV with same step. */
4741 if (!operand_equal_p (step, civ->step, 0))
4742 continue;
4744 /* Done proving if this is a no-overflow control IV. */
4745 if (operand_equal_p (base, civ->base, 0))
4746 return true;
4748 /* Control IV is recorded after expanding simple operations,
4749 Here we expand base and compare it too. */
4750 tree expanded_base = expand_simple_operations (base);
4751 if (operand_equal_p (expanded_base, civ->base, 0))
4752 return true;
4754 /* If this is a before stepping control IV, in other words, we have
4756 {civ_base, step} = {base + step, step}
4758 Because civ {base + step, step} doesn't overflow during loop
4759 iterations, {base, step} will not overflow if we can prove the
4760 operation "base + step" does not overflow. Specifically, we try
4761 to prove below conditions are satisfied:
4763 base <= UPPER_BOUND (type) - step ;;step > 0
4764 base >= LOWER_BOUND (type) - step ;;step < 0
4766 by proving the reverse conditions are false using loop's initial
4767 condition. */
4768 if (POINTER_TYPE_P (TREE_TYPE (base)))
4769 code = POINTER_PLUS_EXPR;
4770 else
4771 code = PLUS_EXPR;
4773 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
4774 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
4775 expanded_base, step);
4776 if (operand_equal_p (stepped, civ->base, 0)
4777 || operand_equal_p (expanded_stepped, civ->base, 0))
4779 tree extreme;
4781 if (tree_int_cst_sign_bit (step))
4783 code = LT_EXPR;
4784 extreme = lower_bound_in_type (type, type);
4786 else
4788 code = GT_EXPR;
4789 extreme = upper_bound_in_type (type, type);
4791 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
4792 e = fold_build2 (code, boolean_type_node, base, extreme);
4793 e = simplify_using_initial_conditions (loop, e);
4794 if (integer_zerop (e))
4795 return true;
4800 return false;
4803 /* VAR is scev variable whose evolution part is constant STEP, this function
4804 proves that VAR can't overflow by using value range info. If VAR's value
4805 range is [MIN, MAX], it can be proven by:
4806 MAX + step doesn't overflow ; if step > 0
4808 MIN + step doesn't underflow ; if step < 0.
4810 We can only do this if var is computed in every loop iteration, i.e, var's
4811 definition has to dominate loop latch. Consider below example:
4814 unsigned int i;
4816 <bb 3>:
4818 <bb 4>:
4819 # RANGE [0, 4294967294] NONZERO 65535
4820 # i_21 = PHI <0(3), i_18(9)>
4821 if (i_21 != 0)
4822 goto <bb 6>;
4823 else
4824 goto <bb 8>;
4826 <bb 6>:
4827 # RANGE [0, 65533] NONZERO 65535
4828 _6 = i_21 + 4294967295;
4829 # RANGE [0, 65533] NONZERO 65535
4830 _7 = (long unsigned int) _6;
4831 # RANGE [0, 524264] NONZERO 524280
4832 _8 = _7 * 8;
4833 # PT = nonlocal escaped
4834 _9 = a_14 + _8;
4835 *_9 = 0;
4837 <bb 8>:
4838 # RANGE [1, 65535] NONZERO 65535
4839 i_18 = i_21 + 1;
4840 if (i_18 >= 65535)
4841 goto <bb 10>;
4842 else
4843 goto <bb 9>;
4845 <bb 9>:
4846 goto <bb 4>;
4848 <bb 10>:
4849 return;
4852 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
4853 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
4854 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
4855 (4294967295, 4294967296, ...). */
4857 static bool
4858 scev_var_range_cant_overflow (tree var, tree step, class loop *loop)
4860 tree type;
4861 wide_int minv, maxv, diff, step_wi;
4862 enum value_range_kind rtype;
4864 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
4865 return false;
4867 /* Check if VAR evaluates in every loop iteration. It's not the case
4868 if VAR is default definition or does not dominate loop's latch. */
4869 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
4870 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
4871 return false;
4873 rtype = get_range_info (var, &minv, &maxv);
4874 if (rtype != VR_RANGE)
4875 return false;
4877 /* VAR is a scev whose evolution part is STEP and value range info
4878 is [MIN, MAX], we can prove its no-overflowness by conditions:
4880 type_MAX - MAX >= step ; if step > 0
4881 MIN - type_MIN >= |step| ; if step < 0.
4883 Or VAR must take value outside of value range, which is not true. */
4884 step_wi = wi::to_wide (step);
4885 type = TREE_TYPE (var);
4886 if (tree_int_cst_sign_bit (step))
4888 diff = minv - wi::to_wide (lower_bound_in_type (type, type));
4889 step_wi = - step_wi;
4891 else
4892 diff = wi::to_wide (upper_bound_in_type (type, type)) - maxv;
4894 return (wi::geu_p (diff, step_wi));
4897 /* Return false only when the induction variable BASE + STEP * I is
4898 known to not overflow: i.e. when the number of iterations is small
4899 enough with respect to the step and initial condition in order to
4900 keep the evolution confined in TYPEs bounds. Return true when the
4901 iv is known to overflow or when the property is not computable.
4903 USE_OVERFLOW_SEMANTICS is true if this function should assume that
4904 the rules for overflow of the given language apply (e.g., that signed
4905 arithmetics in C does not overflow).
4907 If VAR is a ssa variable, this function also returns false if VAR can
4908 be proven not overflow with value range info. */
4910 bool
4911 scev_probably_wraps_p (tree var, tree base, tree step,
4912 gimple *at_stmt, class loop *loop,
4913 bool use_overflow_semantics)
4915 /* FIXME: We really need something like
4916 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
4918 We used to test for the following situation that frequently appears
4919 during address arithmetics:
4921 D.1621_13 = (long unsigned intD.4) D.1620_12;
4922 D.1622_14 = D.1621_13 * 8;
4923 D.1623_15 = (doubleD.29 *) D.1622_14;
4925 And derived that the sequence corresponding to D_14
4926 can be proved to not wrap because it is used for computing a
4927 memory access; however, this is not really the case -- for example,
4928 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4929 2032, 2040, 0, 8, ..., but the code is still legal. */
4931 if (chrec_contains_undetermined (base)
4932 || chrec_contains_undetermined (step))
4933 return true;
4935 if (integer_zerop (step))
4936 return false;
4938 /* If we can use the fact that signed and pointer arithmetics does not
4939 wrap, we are done. */
4940 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
4941 return false;
4943 /* To be able to use estimates on number of iterations of the loop,
4944 we must have an upper bound on the absolute value of the step. */
4945 if (TREE_CODE (step) != INTEGER_CST)
4946 return true;
4948 /* Check if var can be proven not overflow with value range info. */
4949 if (var && TREE_CODE (var) == SSA_NAME
4950 && scev_var_range_cant_overflow (var, step, loop))
4951 return false;
4953 if (loop_exits_before_overflow (base, step, at_stmt, loop))
4954 return false;
4956 /* At this point we still don't have a proof that the iv does not
4957 overflow: give up. */
4958 return true;
4961 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4963 void
4964 free_numbers_of_iterations_estimates (class loop *loop)
4966 struct control_iv *civ;
4967 class nb_iter_bound *bound;
4969 loop->nb_iterations = NULL;
4970 loop->estimate_state = EST_NOT_COMPUTED;
4971 for (bound = loop->bounds; bound;)
4973 class nb_iter_bound *next = bound->next;
4974 ggc_free (bound);
4975 bound = next;
4977 loop->bounds = NULL;
4979 for (civ = loop->control_ivs; civ;)
4981 struct control_iv *next = civ->next;
4982 ggc_free (civ);
4983 civ = next;
4985 loop->control_ivs = NULL;
4988 /* Frees the information on upper bounds on numbers of iterations of loops. */
4990 void
4991 free_numbers_of_iterations_estimates (function *fn)
4993 class loop *loop;
4995 FOR_EACH_LOOP_FN (fn, loop, 0)
4996 free_numbers_of_iterations_estimates (loop);
4999 /* Substitute value VAL for ssa name NAME inside expressions held
5000 at LOOP. */
5002 void
5003 substitute_in_loop_info (class loop *loop, tree name, tree val)
5005 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);