* sv.po: Update.
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob633e3d1f43095e1b2319bdf644d2491003990eca
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "rtl.h"
27 #include "ssa.h"
28 #include "alias.h"
29 #include "stor-layout.h"
30 #include "fold-const.h"
31 #include "calls.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expmed.h"
35 #include "dojump.h"
36 #include "explow.h"
37 #include "emit-rtl.h"
38 #include "varasm.h"
39 #include "stmt.h"
40 #include "expr.h"
41 #include "tm_p.h"
42 #include "gimple-pretty-print.h"
43 #include "intl.h"
44 #include "internal-fn.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "tree-cfg.h"
48 #include "tree-ssa-loop-ivopts.h"
49 #include "tree-ssa-loop-niter.h"
50 #include "tree-ssa-loop.h"
51 #include "dumpfile.h"
52 #include "cfgloop.h"
53 #include "tree-chrec.h"
54 #include "tree-scalar-evolution.h"
55 #include "tree-data-ref.h"
56 #include "params.h"
57 #include "diagnostic-core.h"
58 #include "tree-inline.h"
59 #include "tree-pass.h"
60 #include "wide-int-print.h"
63 /* The maximum number of dominator BBs we search for conditions
64 of loop header copies we use for simplifying a conditional
65 expression. */
66 #define MAX_DOMINATORS_TO_WALK 8
70 Analysis of number of iterations of an affine exit test.
74 /* Bounds on some value, BELOW <= X <= UP. */
76 typedef struct
78 mpz_t below, up;
79 } bounds;
82 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
84 static void
85 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
87 tree type = TREE_TYPE (expr);
88 tree op0, op1;
89 bool negate = false;
91 *var = expr;
92 mpz_set_ui (offset, 0);
94 switch (TREE_CODE (expr))
96 case MINUS_EXPR:
97 negate = true;
98 /* Fallthru. */
100 case PLUS_EXPR:
101 case POINTER_PLUS_EXPR:
102 op0 = TREE_OPERAND (expr, 0);
103 op1 = TREE_OPERAND (expr, 1);
105 if (TREE_CODE (op1) != INTEGER_CST)
106 break;
108 *var = op0;
109 /* Always sign extend the offset. */
110 wi::to_mpz (op1, offset, SIGNED);
111 if (negate)
112 mpz_neg (offset, offset);
113 break;
115 case INTEGER_CST:
116 *var = build_int_cst_type (type, 0);
117 wi::to_mpz (expr, offset, TYPE_SIGN (type));
118 break;
120 default:
121 break;
125 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
126 in TYPE to MIN and MAX. */
128 static void
129 determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
130 mpz_t min, mpz_t max)
132 wide_int minv, maxv;
133 enum value_range_type rtype = VR_VARYING;
135 /* If the expression is a constant, we know its value exactly. */
136 if (integer_zerop (var))
138 mpz_set (min, off);
139 mpz_set (max, off);
140 return;
143 get_type_static_bounds (type, min, max);
145 /* See if we have some range info from VRP. */
146 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
148 edge e = loop_preheader_edge (loop);
149 signop sgn = TYPE_SIGN (type);
150 gphi_iterator gsi;
152 /* Either for VAR itself... */
153 rtype = get_range_info (var, &minv, &maxv);
154 /* Or for PHI results in loop->header where VAR is used as
155 PHI argument from the loop preheader edge. */
156 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
158 gphi *phi = gsi.phi ();
159 wide_int minc, maxc;
160 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
161 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
162 == VR_RANGE))
164 if (rtype != VR_RANGE)
166 rtype = VR_RANGE;
167 minv = minc;
168 maxv = maxc;
170 else
172 minv = wi::max (minv, minc, sgn);
173 maxv = wi::min (maxv, maxc, sgn);
174 /* If the PHI result range are inconsistent with
175 the VAR range, give up on looking at the PHI
176 results. This can happen if VR_UNDEFINED is
177 involved. */
178 if (wi::gt_p (minv, maxv, sgn))
180 rtype = get_range_info (var, &minv, &maxv);
181 break;
186 if (rtype == VR_RANGE)
188 mpz_t minm, maxm;
189 gcc_assert (wi::le_p (minv, maxv, sgn));
190 mpz_init (minm);
191 mpz_init (maxm);
192 wi::to_mpz (minv, minm, sgn);
193 wi::to_mpz (maxv, maxm, sgn);
194 mpz_add (minm, minm, off);
195 mpz_add (maxm, maxm, off);
196 /* If the computation may not wrap or off is zero, then this
197 is always fine. If off is negative and minv + off isn't
198 smaller than type's minimum, or off is positive and
199 maxv + off isn't bigger than type's maximum, use the more
200 precise range too. */
201 if (nowrap_type_p (type)
202 || mpz_sgn (off) == 0
203 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
204 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
206 mpz_set (min, minm);
207 mpz_set (max, maxm);
208 mpz_clear (minm);
209 mpz_clear (maxm);
210 return;
212 mpz_clear (minm);
213 mpz_clear (maxm);
217 /* If the computation may wrap, we know nothing about the value, except for
218 the range of the type. */
219 if (!nowrap_type_p (type))
220 return;
222 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
223 add it to MIN, otherwise to MAX. */
224 if (mpz_sgn (off) < 0)
225 mpz_add (max, max, off);
226 else
227 mpz_add (min, min, off);
230 /* Stores the bounds on the difference of the values of the expressions
231 (var + X) and (var + Y), computed in TYPE, to BNDS. */
233 static void
234 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
235 bounds *bnds)
237 int rel = mpz_cmp (x, y);
238 bool may_wrap = !nowrap_type_p (type);
239 mpz_t m;
241 /* If X == Y, then the expressions are always equal.
242 If X > Y, there are the following possibilities:
243 a) neither of var + X and var + Y overflow or underflow, or both of
244 them do. Then their difference is X - Y.
245 b) var + X overflows, and var + Y does not. Then the values of the
246 expressions are var + X - M and var + Y, where M is the range of
247 the type, and their difference is X - Y - M.
248 c) var + Y underflows and var + X does not. Their difference again
249 is M - X + Y.
250 Therefore, if the arithmetics in type does not overflow, then the
251 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
252 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
253 (X - Y, X - Y + M). */
255 if (rel == 0)
257 mpz_set_ui (bnds->below, 0);
258 mpz_set_ui (bnds->up, 0);
259 return;
262 mpz_init (m);
263 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
264 mpz_add_ui (m, m, 1);
265 mpz_sub (bnds->up, x, y);
266 mpz_set (bnds->below, bnds->up);
268 if (may_wrap)
270 if (rel > 0)
271 mpz_sub (bnds->below, bnds->below, m);
272 else
273 mpz_add (bnds->up, bnds->up, m);
276 mpz_clear (m);
279 /* From condition C0 CMP C1 derives information regarding the
280 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
281 and stores it to BNDS. */
283 static void
284 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
285 tree vary, mpz_t offy,
286 tree c0, enum tree_code cmp, tree c1,
287 bounds *bnds)
289 tree varc0, varc1, ctype;
290 mpz_t offc0, offc1, loffx, loffy, bnd;
291 bool lbound = false;
292 bool no_wrap = nowrap_type_p (type);
293 bool x_ok, y_ok;
295 switch (cmp)
297 case LT_EXPR:
298 case LE_EXPR:
299 case GT_EXPR:
300 case GE_EXPR:
301 STRIP_SIGN_NOPS (c0);
302 STRIP_SIGN_NOPS (c1);
303 ctype = TREE_TYPE (c0);
304 if (!useless_type_conversion_p (ctype, type))
305 return;
307 break;
309 case EQ_EXPR:
310 /* We could derive quite precise information from EQ_EXPR, however, such
311 a guard is unlikely to appear, so we do not bother with handling
312 it. */
313 return;
315 case NE_EXPR:
316 /* NE_EXPR comparisons do not contain much of useful information, except for
317 special case of comparing with the bounds of the type. */
318 if (TREE_CODE (c1) != INTEGER_CST
319 || !INTEGRAL_TYPE_P (type))
320 return;
322 /* Ensure that the condition speaks about an expression in the same type
323 as X and Y. */
324 ctype = TREE_TYPE (c0);
325 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
326 return;
327 c0 = fold_convert (type, c0);
328 c1 = fold_convert (type, c1);
330 if (TYPE_MIN_VALUE (type)
331 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
333 cmp = GT_EXPR;
334 break;
336 if (TYPE_MAX_VALUE (type)
337 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
339 cmp = LT_EXPR;
340 break;
343 return;
344 default:
345 return;
348 mpz_init (offc0);
349 mpz_init (offc1);
350 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
351 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
353 /* We are only interested in comparisons of expressions based on VARX and
354 VARY. TODO -- we might also be able to derive some bounds from
355 expressions containing just one of the variables. */
357 if (operand_equal_p (varx, varc1, 0))
359 std::swap (varc0, varc1);
360 mpz_swap (offc0, offc1);
361 cmp = swap_tree_comparison (cmp);
364 if (!operand_equal_p (varx, varc0, 0)
365 || !operand_equal_p (vary, varc1, 0))
366 goto end;
368 mpz_init_set (loffx, offx);
369 mpz_init_set (loffy, offy);
371 if (cmp == GT_EXPR || cmp == GE_EXPR)
373 std::swap (varx, vary);
374 mpz_swap (offc0, offc1);
375 mpz_swap (loffx, loffy);
376 cmp = swap_tree_comparison (cmp);
377 lbound = true;
380 /* If there is no overflow, the condition implies that
382 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
384 The overflows and underflows may complicate things a bit; each
385 overflow decreases the appropriate offset by M, and underflow
386 increases it by M. The above inequality would not necessarily be
387 true if
389 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
390 VARX + OFFC0 overflows, but VARX + OFFX does not.
391 This may only happen if OFFX < OFFC0.
392 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
393 VARY + OFFC1 underflows and VARY + OFFY does not.
394 This may only happen if OFFY > OFFC1. */
396 if (no_wrap)
398 x_ok = true;
399 y_ok = true;
401 else
403 x_ok = (integer_zerop (varx)
404 || mpz_cmp (loffx, offc0) >= 0);
405 y_ok = (integer_zerop (vary)
406 || mpz_cmp (loffy, offc1) <= 0);
409 if (x_ok && y_ok)
411 mpz_init (bnd);
412 mpz_sub (bnd, loffx, loffy);
413 mpz_add (bnd, bnd, offc1);
414 mpz_sub (bnd, bnd, offc0);
416 if (cmp == LT_EXPR)
417 mpz_sub_ui (bnd, bnd, 1);
419 if (lbound)
421 mpz_neg (bnd, bnd);
422 if (mpz_cmp (bnds->below, bnd) < 0)
423 mpz_set (bnds->below, bnd);
425 else
427 if (mpz_cmp (bnd, bnds->up) < 0)
428 mpz_set (bnds->up, bnd);
430 mpz_clear (bnd);
433 mpz_clear (loffx);
434 mpz_clear (loffy);
435 end:
436 mpz_clear (offc0);
437 mpz_clear (offc1);
440 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
441 The subtraction is considered to be performed in arbitrary precision,
442 without overflows.
444 We do not attempt to be too clever regarding the value ranges of X and
445 Y; most of the time, they are just integers or ssa names offsetted by
446 integer. However, we try to use the information contained in the
447 comparisons before the loop (usually created by loop header copying). */
449 static void
450 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
452 tree type = TREE_TYPE (x);
453 tree varx, vary;
454 mpz_t offx, offy;
455 mpz_t minx, maxx, miny, maxy;
456 int cnt = 0;
457 edge e;
458 basic_block bb;
459 tree c0, c1;
460 gimple cond;
461 enum tree_code cmp;
463 /* Get rid of unnecessary casts, but preserve the value of
464 the expressions. */
465 STRIP_SIGN_NOPS (x);
466 STRIP_SIGN_NOPS (y);
468 mpz_init (bnds->below);
469 mpz_init (bnds->up);
470 mpz_init (offx);
471 mpz_init (offy);
472 split_to_var_and_offset (x, &varx, offx);
473 split_to_var_and_offset (y, &vary, offy);
475 if (!integer_zerop (varx)
476 && operand_equal_p (varx, vary, 0))
478 /* Special case VARX == VARY -- we just need to compare the
479 offsets. The matters are a bit more complicated in the
480 case addition of offsets may wrap. */
481 bound_difference_of_offsetted_base (type, offx, offy, bnds);
483 else
485 /* Otherwise, use the value ranges to determine the initial
486 estimates on below and up. */
487 mpz_init (minx);
488 mpz_init (maxx);
489 mpz_init (miny);
490 mpz_init (maxy);
491 determine_value_range (loop, type, varx, offx, minx, maxx);
492 determine_value_range (loop, type, vary, offy, miny, maxy);
494 mpz_sub (bnds->below, minx, maxy);
495 mpz_sub (bnds->up, maxx, miny);
496 mpz_clear (minx);
497 mpz_clear (maxx);
498 mpz_clear (miny);
499 mpz_clear (maxy);
502 /* If both X and Y are constants, we cannot get any more precise. */
503 if (integer_zerop (varx) && integer_zerop (vary))
504 goto end;
506 /* Now walk the dominators of the loop header and use the entry
507 guards to refine the estimates. */
508 for (bb = loop->header;
509 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
510 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
512 if (!single_pred_p (bb))
513 continue;
514 e = single_pred_edge (bb);
516 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
517 continue;
519 cond = last_stmt (e->src);
520 c0 = gimple_cond_lhs (cond);
521 cmp = gimple_cond_code (cond);
522 c1 = gimple_cond_rhs (cond);
524 if (e->flags & EDGE_FALSE_VALUE)
525 cmp = invert_tree_comparison (cmp, false);
527 refine_bounds_using_guard (type, varx, offx, vary, offy,
528 c0, cmp, c1, bnds);
529 ++cnt;
532 end:
533 mpz_clear (offx);
534 mpz_clear (offy);
537 /* Update the bounds in BNDS that restrict the value of X to the bounds
538 that restrict the value of X + DELTA. X can be obtained as a
539 difference of two values in TYPE. */
541 static void
542 bounds_add (bounds *bnds, const widest_int &delta, tree type)
544 mpz_t mdelta, max;
546 mpz_init (mdelta);
547 wi::to_mpz (delta, mdelta, SIGNED);
549 mpz_init (max);
550 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
552 mpz_add (bnds->up, bnds->up, mdelta);
553 mpz_add (bnds->below, bnds->below, mdelta);
555 if (mpz_cmp (bnds->up, max) > 0)
556 mpz_set (bnds->up, max);
558 mpz_neg (max, max);
559 if (mpz_cmp (bnds->below, max) < 0)
560 mpz_set (bnds->below, max);
562 mpz_clear (mdelta);
563 mpz_clear (max);
566 /* Update the bounds in BNDS that restrict the value of X to the bounds
567 that restrict the value of -X. */
569 static void
570 bounds_negate (bounds *bnds)
572 mpz_t tmp;
574 mpz_init_set (tmp, bnds->up);
575 mpz_neg (bnds->up, bnds->below);
576 mpz_neg (bnds->below, tmp);
577 mpz_clear (tmp);
580 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
582 static tree
583 inverse (tree x, tree mask)
585 tree type = TREE_TYPE (x);
586 tree rslt;
587 unsigned ctr = tree_floor_log2 (mask);
589 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
591 unsigned HOST_WIDE_INT ix;
592 unsigned HOST_WIDE_INT imask;
593 unsigned HOST_WIDE_INT irslt = 1;
595 gcc_assert (cst_and_fits_in_hwi (x));
596 gcc_assert (cst_and_fits_in_hwi (mask));
598 ix = int_cst_value (x);
599 imask = int_cst_value (mask);
601 for (; ctr; ctr--)
603 irslt *= ix;
604 ix *= ix;
606 irslt &= imask;
608 rslt = build_int_cst_type (type, irslt);
610 else
612 rslt = build_int_cst (type, 1);
613 for (; ctr; ctr--)
615 rslt = int_const_binop (MULT_EXPR, rslt, x);
616 x = int_const_binop (MULT_EXPR, x, x);
618 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
621 return rslt;
624 /* Derives the upper bound BND on the number of executions of loop with exit
625 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
626 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
627 that the loop ends through this exit, i.e., the induction variable ever
628 reaches the value of C.
630 The value C is equal to final - base, where final and base are the final and
631 initial value of the actual induction variable in the analysed loop. BNDS
632 bounds the value of this difference when computed in signed type with
633 unbounded range, while the computation of C is performed in an unsigned
634 type with the range matching the range of the type of the induction variable.
635 In particular, BNDS.up contains an upper bound on C in the following cases:
636 -- if the iv must reach its final value without overflow, i.e., if
637 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
638 -- if final >= base, which we know to hold when BNDS.below >= 0. */
640 static void
641 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
642 bounds *bnds, bool exit_must_be_taken)
644 widest_int max;
645 mpz_t d;
646 tree type = TREE_TYPE (c);
647 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
648 || mpz_sgn (bnds->below) >= 0);
650 if (integer_onep (s)
651 || (TREE_CODE (c) == INTEGER_CST
652 && TREE_CODE (s) == INTEGER_CST
653 && wi::mod_trunc (c, s, TYPE_SIGN (type)) == 0)
654 || (TYPE_OVERFLOW_UNDEFINED (type)
655 && multiple_of_p (type, c, s)))
657 /* If C is an exact multiple of S, then its value will be reached before
658 the induction variable overflows (unless the loop is exited in some
659 other way before). Note that the actual induction variable in the
660 loop (which ranges from base to final instead of from 0 to C) may
661 overflow, in which case BNDS.up will not be giving a correct upper
662 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
663 no_overflow = true;
664 exit_must_be_taken = true;
667 /* If the induction variable can overflow, the number of iterations is at
668 most the period of the control variable (or infinite, but in that case
669 the whole # of iterations analysis will fail). */
670 if (!no_overflow)
672 max = wi::mask <widest_int> (TYPE_PRECISION (type) - wi::ctz (s), false);
673 wi::to_mpz (max, bnd, UNSIGNED);
674 return;
677 /* Now we know that the induction variable does not overflow, so the loop
678 iterates at most (range of type / S) times. */
679 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
681 /* If the induction variable is guaranteed to reach the value of C before
682 overflow, ... */
683 if (exit_must_be_taken)
685 /* ... then we can strengthen this to C / S, and possibly we can use
686 the upper bound on C given by BNDS. */
687 if (TREE_CODE (c) == INTEGER_CST)
688 wi::to_mpz (c, bnd, UNSIGNED);
689 else if (bnds_u_valid)
690 mpz_set (bnd, bnds->up);
693 mpz_init (d);
694 wi::to_mpz (s, d, UNSIGNED);
695 mpz_fdiv_q (bnd, bnd, d);
696 mpz_clear (d);
699 /* Determines number of iterations of loop whose ending condition
700 is IV <> FINAL. TYPE is the type of the iv. The number of
701 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
702 we know that the exit must be taken eventually, i.e., that the IV
703 ever reaches the value FINAL (we derived this earlier, and possibly set
704 NITER->assumptions to make sure this is the case). BNDS contains the
705 bounds on the difference FINAL - IV->base. */
707 static bool
708 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
709 struct tree_niter_desc *niter, bool exit_must_be_taken,
710 bounds *bnds)
712 tree niter_type = unsigned_type_for (type);
713 tree s, c, d, bits, assumption, tmp, bound;
714 mpz_t max;
716 niter->control = *iv;
717 niter->bound = final;
718 niter->cmp = NE_EXPR;
720 /* Rearrange the terms so that we get inequality S * i <> C, with S
721 positive. Also cast everything to the unsigned type. If IV does
722 not overflow, BNDS bounds the value of C. Also, this is the
723 case if the computation |FINAL - IV->base| does not overflow, i.e.,
724 if BNDS->below in the result is nonnegative. */
725 if (tree_int_cst_sign_bit (iv->step))
727 s = fold_convert (niter_type,
728 fold_build1 (NEGATE_EXPR, type, iv->step));
729 c = fold_build2 (MINUS_EXPR, niter_type,
730 fold_convert (niter_type, iv->base),
731 fold_convert (niter_type, final));
732 bounds_negate (bnds);
734 else
736 s = fold_convert (niter_type, iv->step);
737 c = fold_build2 (MINUS_EXPR, niter_type,
738 fold_convert (niter_type, final),
739 fold_convert (niter_type, iv->base));
742 mpz_init (max);
743 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
744 exit_must_be_taken);
745 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
746 TYPE_SIGN (niter_type));
747 mpz_clear (max);
749 /* First the trivial cases -- when the step is 1. */
750 if (integer_onep (s))
752 niter->niter = c;
753 return true;
756 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
757 is infinite. Otherwise, the number of iterations is
758 (inverse(s/d) * (c/d)) mod (size of mode/d). */
759 bits = num_ending_zeros (s);
760 bound = build_low_bits_mask (niter_type,
761 (TYPE_PRECISION (niter_type)
762 - tree_to_uhwi (bits)));
764 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
765 build_int_cst (niter_type, 1), bits);
766 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
768 if (!exit_must_be_taken)
770 /* If we cannot assume that the exit is taken eventually, record the
771 assumptions for divisibility of c. */
772 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
773 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
774 assumption, build_int_cst (niter_type, 0));
775 if (!integer_nonzerop (assumption))
776 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
777 niter->assumptions, assumption);
780 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
781 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
782 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
783 return true;
786 /* Checks whether we can determine the final value of the control variable
787 of the loop with ending condition IV0 < IV1 (computed in TYPE).
788 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
789 of the step. The assumptions necessary to ensure that the computation
790 of the final value does not overflow are recorded in NITER. If we
791 find the final value, we adjust DELTA and return TRUE. Otherwise
792 we return false. BNDS bounds the value of IV1->base - IV0->base,
793 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
794 true if we know that the exit must be taken eventually. */
796 static bool
797 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
798 struct tree_niter_desc *niter,
799 tree *delta, tree step,
800 bool exit_must_be_taken, bounds *bnds)
802 tree niter_type = TREE_TYPE (step);
803 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
804 tree tmod;
805 mpz_t mmod;
806 tree assumption = boolean_true_node, bound, noloop;
807 bool ret = false, fv_comp_no_overflow;
808 tree type1 = type;
809 if (POINTER_TYPE_P (type))
810 type1 = sizetype;
812 if (TREE_CODE (mod) != INTEGER_CST)
813 return false;
814 if (integer_nonzerop (mod))
815 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
816 tmod = fold_convert (type1, mod);
818 mpz_init (mmod);
819 wi::to_mpz (mod, mmod, UNSIGNED);
820 mpz_neg (mmod, mmod);
822 /* If the induction variable does not overflow and the exit is taken,
823 then the computation of the final value does not overflow. This is
824 also obviously the case if the new final value is equal to the
825 current one. Finally, we postulate this for pointer type variables,
826 as the code cannot rely on the object to that the pointer points being
827 placed at the end of the address space (and more pragmatically,
828 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
829 if (integer_zerop (mod) || POINTER_TYPE_P (type))
830 fv_comp_no_overflow = true;
831 else if (!exit_must_be_taken)
832 fv_comp_no_overflow = false;
833 else
834 fv_comp_no_overflow =
835 (iv0->no_overflow && integer_nonzerop (iv0->step))
836 || (iv1->no_overflow && integer_nonzerop (iv1->step));
838 if (integer_nonzerop (iv0->step))
840 /* The final value of the iv is iv1->base + MOD, assuming that this
841 computation does not overflow, and that
842 iv0->base <= iv1->base + MOD. */
843 if (!fv_comp_no_overflow)
845 bound = fold_build2 (MINUS_EXPR, type1,
846 TYPE_MAX_VALUE (type1), tmod);
847 assumption = fold_build2 (LE_EXPR, boolean_type_node,
848 iv1->base, bound);
849 if (integer_zerop (assumption))
850 goto end;
852 if (mpz_cmp (mmod, bnds->below) < 0)
853 noloop = boolean_false_node;
854 else if (POINTER_TYPE_P (type))
855 noloop = fold_build2 (GT_EXPR, boolean_type_node,
856 iv0->base,
857 fold_build_pointer_plus (iv1->base, tmod));
858 else
859 noloop = fold_build2 (GT_EXPR, boolean_type_node,
860 iv0->base,
861 fold_build2 (PLUS_EXPR, type1,
862 iv1->base, tmod));
864 else
866 /* The final value of the iv is iv0->base - MOD, assuming that this
867 computation does not overflow, and that
868 iv0->base - MOD <= iv1->base. */
869 if (!fv_comp_no_overflow)
871 bound = fold_build2 (PLUS_EXPR, type1,
872 TYPE_MIN_VALUE (type1), tmod);
873 assumption = fold_build2 (GE_EXPR, boolean_type_node,
874 iv0->base, bound);
875 if (integer_zerop (assumption))
876 goto end;
878 if (mpz_cmp (mmod, bnds->below) < 0)
879 noloop = boolean_false_node;
880 else if (POINTER_TYPE_P (type))
881 noloop = fold_build2 (GT_EXPR, boolean_type_node,
882 fold_build_pointer_plus (iv0->base,
883 fold_build1 (NEGATE_EXPR,
884 type1, tmod)),
885 iv1->base);
886 else
887 noloop = fold_build2 (GT_EXPR, boolean_type_node,
888 fold_build2 (MINUS_EXPR, type1,
889 iv0->base, tmod),
890 iv1->base);
893 if (!integer_nonzerop (assumption))
894 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
895 niter->assumptions,
896 assumption);
897 if (!integer_zerop (noloop))
898 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
899 niter->may_be_zero,
900 noloop);
901 bounds_add (bnds, wi::to_widest (mod), type);
902 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
904 ret = true;
905 end:
906 mpz_clear (mmod);
907 return ret;
910 /* Add assertions to NITER that ensure that the control variable of the loop
911 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
912 are TYPE. Returns false if we can prove that there is an overflow, true
913 otherwise. STEP is the absolute value of the step. */
915 static bool
916 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
917 struct tree_niter_desc *niter, tree step)
919 tree bound, d, assumption, diff;
920 tree niter_type = TREE_TYPE (step);
922 if (integer_nonzerop (iv0->step))
924 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
925 if (iv0->no_overflow)
926 return true;
928 /* If iv0->base is a constant, we can determine the last value before
929 overflow precisely; otherwise we conservatively assume
930 MAX - STEP + 1. */
932 if (TREE_CODE (iv0->base) == INTEGER_CST)
934 d = fold_build2 (MINUS_EXPR, niter_type,
935 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
936 fold_convert (niter_type, iv0->base));
937 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
939 else
940 diff = fold_build2 (MINUS_EXPR, niter_type, step,
941 build_int_cst (niter_type, 1));
942 bound = fold_build2 (MINUS_EXPR, type,
943 TYPE_MAX_VALUE (type), fold_convert (type, diff));
944 assumption = fold_build2 (LE_EXPR, boolean_type_node,
945 iv1->base, bound);
947 else
949 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
950 if (iv1->no_overflow)
951 return true;
953 if (TREE_CODE (iv1->base) == INTEGER_CST)
955 d = fold_build2 (MINUS_EXPR, niter_type,
956 fold_convert (niter_type, iv1->base),
957 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
958 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
960 else
961 diff = fold_build2 (MINUS_EXPR, niter_type, step,
962 build_int_cst (niter_type, 1));
963 bound = fold_build2 (PLUS_EXPR, type,
964 TYPE_MIN_VALUE (type), fold_convert (type, diff));
965 assumption = fold_build2 (GE_EXPR, boolean_type_node,
966 iv0->base, bound);
969 if (integer_zerop (assumption))
970 return false;
971 if (!integer_nonzerop (assumption))
972 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
973 niter->assumptions, assumption);
975 iv0->no_overflow = true;
976 iv1->no_overflow = true;
977 return true;
980 /* Add an assumption to NITER that a loop whose ending condition
981 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
982 bounds the value of IV1->base - IV0->base. */
984 static void
985 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
986 struct tree_niter_desc *niter, bounds *bnds)
988 tree assumption = boolean_true_node, bound, diff;
989 tree mbz, mbzl, mbzr, type1;
990 bool rolls_p, no_overflow_p;
991 widest_int dstep;
992 mpz_t mstep, max;
994 /* We are going to compute the number of iterations as
995 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
996 variant of TYPE. This formula only works if
998 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1000 (where MAX is the maximum value of the unsigned variant of TYPE, and
1001 the computations in this formula are performed in full precision,
1002 i.e., without overflows).
1004 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1005 we have a condition of the form iv0->base - step < iv1->base before the loop,
1006 and for loops iv0->base < iv1->base - step * i the condition
1007 iv0->base < iv1->base + step, due to loop header copying, which enable us
1008 to prove the lower bound.
1010 The upper bound is more complicated. Unless the expressions for initial
1011 and final value themselves contain enough information, we usually cannot
1012 derive it from the context. */
1014 /* First check whether the answer does not follow from the bounds we gathered
1015 before. */
1016 if (integer_nonzerop (iv0->step))
1017 dstep = wi::to_widest (iv0->step);
1018 else
1020 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1021 dstep = -dstep;
1024 mpz_init (mstep);
1025 wi::to_mpz (dstep, mstep, UNSIGNED);
1026 mpz_neg (mstep, mstep);
1027 mpz_add_ui (mstep, mstep, 1);
1029 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1031 mpz_init (max);
1032 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1033 mpz_add (max, max, mstep);
1034 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1035 /* For pointers, only values lying inside a single object
1036 can be compared or manipulated by pointer arithmetics.
1037 Gcc in general does not allow or handle objects larger
1038 than half of the address space, hence the upper bound
1039 is satisfied for pointers. */
1040 || POINTER_TYPE_P (type));
1041 mpz_clear (mstep);
1042 mpz_clear (max);
1044 if (rolls_p && no_overflow_p)
1045 return;
1047 type1 = type;
1048 if (POINTER_TYPE_P (type))
1049 type1 = sizetype;
1051 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1052 we must be careful not to introduce overflow. */
1054 if (integer_nonzerop (iv0->step))
1056 diff = fold_build2 (MINUS_EXPR, type1,
1057 iv0->step, build_int_cst (type1, 1));
1059 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1060 0 address never belongs to any object, we can assume this for
1061 pointers. */
1062 if (!POINTER_TYPE_P (type))
1064 bound = fold_build2 (PLUS_EXPR, type1,
1065 TYPE_MIN_VALUE (type), diff);
1066 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1067 iv0->base, bound);
1070 /* And then we can compute iv0->base - diff, and compare it with
1071 iv1->base. */
1072 mbzl = fold_build2 (MINUS_EXPR, type1,
1073 fold_convert (type1, iv0->base), diff);
1074 mbzr = fold_convert (type1, iv1->base);
1076 else
1078 diff = fold_build2 (PLUS_EXPR, type1,
1079 iv1->step, build_int_cst (type1, 1));
1081 if (!POINTER_TYPE_P (type))
1083 bound = fold_build2 (PLUS_EXPR, type1,
1084 TYPE_MAX_VALUE (type), diff);
1085 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1086 iv1->base, bound);
1089 mbzl = fold_convert (type1, iv0->base);
1090 mbzr = fold_build2 (MINUS_EXPR, type1,
1091 fold_convert (type1, iv1->base), diff);
1094 if (!integer_nonzerop (assumption))
1095 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1096 niter->assumptions, assumption);
1097 if (!rolls_p)
1099 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1100 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1101 niter->may_be_zero, mbz);
1105 /* Determines number of iterations of loop whose ending condition
1106 is IV0 < IV1. TYPE is the type of the iv. The number of
1107 iterations is stored to NITER. BNDS bounds the difference
1108 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1109 that the exit must be taken eventually. */
1111 static bool
1112 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1113 struct tree_niter_desc *niter,
1114 bool exit_must_be_taken, bounds *bnds)
1116 tree niter_type = unsigned_type_for (type);
1117 tree delta, step, s;
1118 mpz_t mstep, tmp;
1120 if (integer_nonzerop (iv0->step))
1122 niter->control = *iv0;
1123 niter->cmp = LT_EXPR;
1124 niter->bound = iv1->base;
1126 else
1128 niter->control = *iv1;
1129 niter->cmp = GT_EXPR;
1130 niter->bound = iv0->base;
1133 delta = fold_build2 (MINUS_EXPR, niter_type,
1134 fold_convert (niter_type, iv1->base),
1135 fold_convert (niter_type, iv0->base));
1137 /* First handle the special case that the step is +-1. */
1138 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1139 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1141 /* for (i = iv0->base; i < iv1->base; i++)
1145 for (i = iv1->base; i > iv0->base; i--).
1147 In both cases # of iterations is iv1->base - iv0->base, assuming that
1148 iv1->base >= iv0->base.
1150 First try to derive a lower bound on the value of
1151 iv1->base - iv0->base, computed in full precision. If the difference
1152 is nonnegative, we are done, otherwise we must record the
1153 condition. */
1155 if (mpz_sgn (bnds->below) < 0)
1156 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1157 iv1->base, iv0->base);
1158 niter->niter = delta;
1159 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1160 TYPE_SIGN (niter_type));
1161 niter->control.no_overflow = true;
1162 return true;
1165 if (integer_nonzerop (iv0->step))
1166 step = fold_convert (niter_type, iv0->step);
1167 else
1168 step = fold_convert (niter_type,
1169 fold_build1 (NEGATE_EXPR, type, iv1->step));
1171 /* If we can determine the final value of the control iv exactly, we can
1172 transform the condition to != comparison. In particular, this will be
1173 the case if DELTA is constant. */
1174 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1175 exit_must_be_taken, bnds))
1177 affine_iv zps;
1179 zps.base = build_int_cst (niter_type, 0);
1180 zps.step = step;
1181 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1182 zps does not overflow. */
1183 zps.no_overflow = true;
1185 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1188 /* Make sure that the control iv does not overflow. */
1189 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1190 return false;
1192 /* We determine the number of iterations as (delta + step - 1) / step. For
1193 this to work, we must know that iv1->base >= iv0->base - step + 1,
1194 otherwise the loop does not roll. */
1195 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1197 s = fold_build2 (MINUS_EXPR, niter_type,
1198 step, build_int_cst (niter_type, 1));
1199 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1200 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1202 mpz_init (mstep);
1203 mpz_init (tmp);
1204 wi::to_mpz (step, mstep, UNSIGNED);
1205 mpz_add (tmp, bnds->up, mstep);
1206 mpz_sub_ui (tmp, tmp, 1);
1207 mpz_fdiv_q (tmp, tmp, mstep);
1208 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1209 TYPE_SIGN (niter_type));
1210 mpz_clear (mstep);
1211 mpz_clear (tmp);
1213 return true;
1216 /* Determines number of iterations of loop whose ending condition
1217 is IV0 <= IV1. TYPE is the type of the iv. The number of
1218 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1219 we know that this condition must eventually become false (we derived this
1220 earlier, and possibly set NITER->assumptions to make sure this
1221 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1223 static bool
1224 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1225 struct tree_niter_desc *niter, bool exit_must_be_taken,
1226 bounds *bnds)
1228 tree assumption;
1229 tree type1 = type;
1230 if (POINTER_TYPE_P (type))
1231 type1 = sizetype;
1233 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1234 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1235 value of the type. This we must know anyway, since if it is
1236 equal to this value, the loop rolls forever. We do not check
1237 this condition for pointer type ivs, as the code cannot rely on
1238 the object to that the pointer points being placed at the end of
1239 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1240 not defined for pointers). */
1242 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1244 if (integer_nonzerop (iv0->step))
1245 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1246 iv1->base, TYPE_MAX_VALUE (type));
1247 else
1248 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1249 iv0->base, TYPE_MIN_VALUE (type));
1251 if (integer_zerop (assumption))
1252 return false;
1253 if (!integer_nonzerop (assumption))
1254 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1255 niter->assumptions, assumption);
1258 if (integer_nonzerop (iv0->step))
1260 if (POINTER_TYPE_P (type))
1261 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1262 else
1263 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1264 build_int_cst (type1, 1));
1266 else if (POINTER_TYPE_P (type))
1267 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1268 else
1269 iv0->base = fold_build2 (MINUS_EXPR, type1,
1270 iv0->base, build_int_cst (type1, 1));
1272 bounds_add (bnds, 1, type1);
1274 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1275 bnds);
1278 /* Dumps description of affine induction variable IV to FILE. */
1280 static void
1281 dump_affine_iv (FILE *file, affine_iv *iv)
1283 if (!integer_zerop (iv->step))
1284 fprintf (file, "[");
1286 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1288 if (!integer_zerop (iv->step))
1290 fprintf (file, ", + , ");
1291 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1292 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1296 /* Determine the number of iterations according to condition (for staying
1297 inside loop) which compares two induction variables using comparison
1298 operator CODE. The induction variable on left side of the comparison
1299 is IV0, the right-hand side is IV1. Both induction variables must have
1300 type TYPE, which must be an integer or pointer type. The steps of the
1301 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1303 LOOP is the loop whose number of iterations we are determining.
1305 ONLY_EXIT is true if we are sure this is the only way the loop could be
1306 exited (including possibly non-returning function calls, exceptions, etc.)
1307 -- in this case we can use the information whether the control induction
1308 variables can overflow or not in a more efficient way.
1310 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1312 The results (number of iterations and assumptions as described in
1313 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1314 Returns false if it fails to determine number of iterations, true if it
1315 was determined (possibly with some assumptions). */
1317 static bool
1318 number_of_iterations_cond (struct loop *loop,
1319 tree type, affine_iv *iv0, enum tree_code code,
1320 affine_iv *iv1, struct tree_niter_desc *niter,
1321 bool only_exit, bool every_iteration)
1323 bool exit_must_be_taken = false, ret;
1324 bounds bnds;
1326 /* If the test is not executed every iteration, wrapping may make the test
1327 to pass again.
1328 TODO: the overflow case can be still used as unreliable estimate of upper
1329 bound. But we have no API to pass it down to number of iterations code
1330 and, at present, it will not use it anyway. */
1331 if (!every_iteration
1332 && (!iv0->no_overflow || !iv1->no_overflow
1333 || code == NE_EXPR || code == EQ_EXPR))
1334 return false;
1336 /* The meaning of these assumptions is this:
1337 if !assumptions
1338 then the rest of information does not have to be valid
1339 if may_be_zero then the loop does not roll, even if
1340 niter != 0. */
1341 niter->assumptions = boolean_true_node;
1342 niter->may_be_zero = boolean_false_node;
1343 niter->niter = NULL_TREE;
1344 niter->max = 0;
1345 niter->bound = NULL_TREE;
1346 niter->cmp = ERROR_MARK;
1348 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1349 the control variable is on lhs. */
1350 if (code == GE_EXPR || code == GT_EXPR
1351 || (code == NE_EXPR && integer_zerop (iv0->step)))
1353 std::swap (iv0, iv1);
1354 code = swap_tree_comparison (code);
1357 if (POINTER_TYPE_P (type))
1359 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1360 to the same object. If they do, the control variable cannot wrap
1361 (as wrap around the bounds of memory will never return a pointer
1362 that would be guaranteed to point to the same object, even if we
1363 avoid undefined behavior by casting to size_t and back). */
1364 iv0->no_overflow = true;
1365 iv1->no_overflow = true;
1368 /* If the control induction variable does not overflow and the only exit
1369 from the loop is the one that we analyze, we know it must be taken
1370 eventually. */
1371 if (only_exit)
1373 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1374 exit_must_be_taken = true;
1375 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1376 exit_must_be_taken = true;
1379 /* We can handle the case when neither of the sides of the comparison is
1380 invariant, provided that the test is NE_EXPR. This rarely occurs in
1381 practice, but it is simple enough to manage. */
1382 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1384 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1385 if (code != NE_EXPR)
1386 return false;
1388 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1389 iv0->step, iv1->step);
1390 iv0->no_overflow = false;
1391 iv1->step = build_int_cst (step_type, 0);
1392 iv1->no_overflow = true;
1395 /* If the result of the comparison is a constant, the loop is weird. More
1396 precise handling would be possible, but the situation is not common enough
1397 to waste time on it. */
1398 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1399 return false;
1401 /* Ignore loops of while (i-- < 10) type. */
1402 if (code != NE_EXPR)
1404 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1405 return false;
1407 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1408 return false;
1411 /* If the loop exits immediately, there is nothing to do. */
1412 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1413 if (tem && integer_zerop (tem))
1415 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1416 niter->max = 0;
1417 return true;
1420 /* OK, now we know we have a senseful loop. Handle several cases, depending
1421 on what comparison operator is used. */
1422 bound_difference (loop, iv1->base, iv0->base, &bnds);
1424 if (dump_file && (dump_flags & TDF_DETAILS))
1426 fprintf (dump_file,
1427 "Analyzing # of iterations of loop %d\n", loop->num);
1429 fprintf (dump_file, " exit condition ");
1430 dump_affine_iv (dump_file, iv0);
1431 fprintf (dump_file, " %s ",
1432 code == NE_EXPR ? "!="
1433 : code == LT_EXPR ? "<"
1434 : "<=");
1435 dump_affine_iv (dump_file, iv1);
1436 fprintf (dump_file, "\n");
1438 fprintf (dump_file, " bounds on difference of bases: ");
1439 mpz_out_str (dump_file, 10, bnds.below);
1440 fprintf (dump_file, " ... ");
1441 mpz_out_str (dump_file, 10, bnds.up);
1442 fprintf (dump_file, "\n");
1445 switch (code)
1447 case NE_EXPR:
1448 gcc_assert (integer_zerop (iv1->step));
1449 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1450 exit_must_be_taken, &bnds);
1451 break;
1453 case LT_EXPR:
1454 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1455 &bnds);
1456 break;
1458 case LE_EXPR:
1459 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1460 &bnds);
1461 break;
1463 default:
1464 gcc_unreachable ();
1467 mpz_clear (bnds.up);
1468 mpz_clear (bnds.below);
1470 if (dump_file && (dump_flags & TDF_DETAILS))
1472 if (ret)
1474 fprintf (dump_file, " result:\n");
1475 if (!integer_nonzerop (niter->assumptions))
1477 fprintf (dump_file, " under assumptions ");
1478 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1479 fprintf (dump_file, "\n");
1482 if (!integer_zerop (niter->may_be_zero))
1484 fprintf (dump_file, " zero if ");
1485 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1486 fprintf (dump_file, "\n");
1489 fprintf (dump_file, " # of iterations ");
1490 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1491 fprintf (dump_file, ", bounded by ");
1492 print_decu (niter->max, dump_file);
1493 fprintf (dump_file, "\n");
1495 else
1496 fprintf (dump_file, " failed\n\n");
1498 return ret;
1501 /* Substitute NEW for OLD in EXPR and fold the result. */
1503 static tree
1504 simplify_replace_tree (tree expr, tree old, tree new_tree)
1506 unsigned i, n;
1507 tree ret = NULL_TREE, e, se;
1509 if (!expr)
1510 return NULL_TREE;
1512 /* Do not bother to replace constants. */
1513 if (CONSTANT_CLASS_P (old))
1514 return expr;
1516 if (expr == old
1517 || operand_equal_p (expr, old, 0))
1518 return unshare_expr (new_tree);
1520 if (!EXPR_P (expr))
1521 return expr;
1523 n = TREE_OPERAND_LENGTH (expr);
1524 for (i = 0; i < n; i++)
1526 e = TREE_OPERAND (expr, i);
1527 se = simplify_replace_tree (e, old, new_tree);
1528 if (e == se)
1529 continue;
1531 if (!ret)
1532 ret = copy_node (expr);
1534 TREE_OPERAND (ret, i) = se;
1537 return (ret ? fold (ret) : expr);
1540 /* Expand definitions of ssa names in EXPR as long as they are simple
1541 enough, and return the new expression. If STOP is specified, stop
1542 expanding if EXPR equals to it. */
1544 tree
1545 expand_simple_operations (tree expr, tree stop)
1547 unsigned i, n;
1548 tree ret = NULL_TREE, e, ee, e1;
1549 enum tree_code code;
1550 gimple stmt;
1552 if (expr == NULL_TREE)
1553 return expr;
1555 if (is_gimple_min_invariant (expr))
1556 return expr;
1558 code = TREE_CODE (expr);
1559 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1561 n = TREE_OPERAND_LENGTH (expr);
1562 for (i = 0; i < n; i++)
1564 e = TREE_OPERAND (expr, i);
1565 ee = expand_simple_operations (e, stop);
1566 if (e == ee)
1567 continue;
1569 if (!ret)
1570 ret = copy_node (expr);
1572 TREE_OPERAND (ret, i) = ee;
1575 if (!ret)
1576 return expr;
1578 fold_defer_overflow_warnings ();
1579 ret = fold (ret);
1580 fold_undefer_and_ignore_overflow_warnings ();
1581 return ret;
1584 /* Stop if it's not ssa name or the one we don't want to expand. */
1585 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
1586 return expr;
1588 stmt = SSA_NAME_DEF_STMT (expr);
1589 if (gimple_code (stmt) == GIMPLE_PHI)
1591 basic_block src, dest;
1593 if (gimple_phi_num_args (stmt) != 1)
1594 return expr;
1595 e = PHI_ARG_DEF (stmt, 0);
1597 /* Avoid propagating through loop exit phi nodes, which
1598 could break loop-closed SSA form restrictions. */
1599 dest = gimple_bb (stmt);
1600 src = single_pred (dest);
1601 if (TREE_CODE (e) == SSA_NAME
1602 && src->loop_father != dest->loop_father)
1603 return expr;
1605 return expand_simple_operations (e, stop);
1607 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1608 return expr;
1610 /* Avoid expanding to expressions that contain SSA names that need
1611 to take part in abnormal coalescing. */
1612 ssa_op_iter iter;
1613 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
1614 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
1615 return expr;
1617 e = gimple_assign_rhs1 (stmt);
1618 code = gimple_assign_rhs_code (stmt);
1619 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1621 if (is_gimple_min_invariant (e))
1622 return e;
1624 if (code == SSA_NAME)
1625 return expand_simple_operations (e, stop);
1627 return expr;
1630 switch (code)
1632 CASE_CONVERT:
1633 /* Casts are simple. */
1634 ee = expand_simple_operations (e, stop);
1635 return fold_build1 (code, TREE_TYPE (expr), ee);
1637 case PLUS_EXPR:
1638 case MINUS_EXPR:
1639 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
1640 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
1641 return expr;
1642 /* Fallthru. */
1643 case POINTER_PLUS_EXPR:
1644 /* And increments and decrements by a constant are simple. */
1645 e1 = gimple_assign_rhs2 (stmt);
1646 if (!is_gimple_min_invariant (e1))
1647 return expr;
1649 ee = expand_simple_operations (e, stop);
1650 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1652 default:
1653 return expr;
1657 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1658 expression (or EXPR unchanged, if no simplification was possible). */
1660 static tree
1661 tree_simplify_using_condition_1 (tree cond, tree expr)
1663 bool changed;
1664 tree e, te, e0, e1, e2, notcond;
1665 enum tree_code code = TREE_CODE (expr);
1667 if (code == INTEGER_CST)
1668 return expr;
1670 if (code == TRUTH_OR_EXPR
1671 || code == TRUTH_AND_EXPR
1672 || code == COND_EXPR)
1674 changed = false;
1676 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1677 if (TREE_OPERAND (expr, 0) != e0)
1678 changed = true;
1680 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1681 if (TREE_OPERAND (expr, 1) != e1)
1682 changed = true;
1684 if (code == COND_EXPR)
1686 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1687 if (TREE_OPERAND (expr, 2) != e2)
1688 changed = true;
1690 else
1691 e2 = NULL_TREE;
1693 if (changed)
1695 if (code == COND_EXPR)
1696 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1697 else
1698 expr = fold_build2 (code, boolean_type_node, e0, e1);
1701 return expr;
1704 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1705 propagation, and vice versa. Fold does not handle this, since it is
1706 considered too expensive. */
1707 if (TREE_CODE (cond) == EQ_EXPR)
1709 e0 = TREE_OPERAND (cond, 0);
1710 e1 = TREE_OPERAND (cond, 1);
1712 /* We know that e0 == e1. Check whether we cannot simplify expr
1713 using this fact. */
1714 e = simplify_replace_tree (expr, e0, e1);
1715 if (integer_zerop (e) || integer_nonzerop (e))
1716 return e;
1718 e = simplify_replace_tree (expr, e1, e0);
1719 if (integer_zerop (e) || integer_nonzerop (e))
1720 return e;
1722 if (TREE_CODE (expr) == EQ_EXPR)
1724 e0 = TREE_OPERAND (expr, 0);
1725 e1 = TREE_OPERAND (expr, 1);
1727 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1728 e = simplify_replace_tree (cond, e0, e1);
1729 if (integer_zerop (e))
1730 return e;
1731 e = simplify_replace_tree (cond, e1, e0);
1732 if (integer_zerop (e))
1733 return e;
1735 if (TREE_CODE (expr) == NE_EXPR)
1737 e0 = TREE_OPERAND (expr, 0);
1738 e1 = TREE_OPERAND (expr, 1);
1740 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1741 e = simplify_replace_tree (cond, e0, e1);
1742 if (integer_zerop (e))
1743 return boolean_true_node;
1744 e = simplify_replace_tree (cond, e1, e0);
1745 if (integer_zerop (e))
1746 return boolean_true_node;
1749 te = expand_simple_operations (expr);
1751 /* Check whether COND ==> EXPR. */
1752 notcond = invert_truthvalue (cond);
1753 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1754 if (e && integer_nonzerop (e))
1755 return e;
1757 /* Check whether COND ==> not EXPR. */
1758 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1759 if (e && integer_zerop (e))
1760 return e;
1762 return expr;
1765 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1766 expression (or EXPR unchanged, if no simplification was possible).
1767 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1768 of simple operations in definitions of ssa names in COND are expanded,
1769 so that things like casts or incrementing the value of the bound before
1770 the loop do not cause us to fail. */
1772 static tree
1773 tree_simplify_using_condition (tree cond, tree expr)
1775 cond = expand_simple_operations (cond);
1777 return tree_simplify_using_condition_1 (cond, expr);
1780 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1781 Returns the simplified expression (or EXPR unchanged, if no
1782 simplification was possible).*/
1784 static tree
1785 simplify_using_initial_conditions (struct loop *loop, tree expr)
1787 edge e;
1788 basic_block bb;
1789 gimple stmt;
1790 tree cond;
1791 int cnt = 0;
1793 if (TREE_CODE (expr) == INTEGER_CST)
1794 return expr;
1796 /* Limit walking the dominators to avoid quadraticness in
1797 the number of BBs times the number of loops in degenerate
1798 cases. */
1799 for (bb = loop->header;
1800 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
1801 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1803 if (!single_pred_p (bb))
1804 continue;
1805 e = single_pred_edge (bb);
1807 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1808 continue;
1810 stmt = last_stmt (e->src);
1811 cond = fold_build2 (gimple_cond_code (stmt),
1812 boolean_type_node,
1813 gimple_cond_lhs (stmt),
1814 gimple_cond_rhs (stmt));
1815 if (e->flags & EDGE_FALSE_VALUE)
1816 cond = invert_truthvalue (cond);
1817 expr = tree_simplify_using_condition (cond, expr);
1818 ++cnt;
1821 return expr;
1824 /* Tries to simplify EXPR using the evolutions of the loop invariants
1825 in the superloops of LOOP. Returns the simplified expression
1826 (or EXPR unchanged, if no simplification was possible). */
1828 static tree
1829 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1831 enum tree_code code = TREE_CODE (expr);
1832 bool changed;
1833 tree e, e0, e1, e2;
1835 if (is_gimple_min_invariant (expr))
1836 return expr;
1838 if (code == TRUTH_OR_EXPR
1839 || code == TRUTH_AND_EXPR
1840 || code == COND_EXPR)
1842 changed = false;
1844 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1845 if (TREE_OPERAND (expr, 0) != e0)
1846 changed = true;
1848 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1849 if (TREE_OPERAND (expr, 1) != e1)
1850 changed = true;
1852 if (code == COND_EXPR)
1854 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1855 if (TREE_OPERAND (expr, 2) != e2)
1856 changed = true;
1858 else
1859 e2 = NULL_TREE;
1861 if (changed)
1863 if (code == COND_EXPR)
1864 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1865 else
1866 expr = fold_build2 (code, boolean_type_node, e0, e1);
1869 return expr;
1872 e = instantiate_parameters (loop, expr);
1873 if (is_gimple_min_invariant (e))
1874 return e;
1876 return expr;
1879 /* Returns true if EXIT is the only possible exit from LOOP. */
1881 bool
1882 loop_only_exit_p (const struct loop *loop, const_edge exit)
1884 basic_block *body;
1885 gimple_stmt_iterator bsi;
1886 unsigned i;
1887 gimple call;
1889 if (exit != single_exit (loop))
1890 return false;
1892 body = get_loop_body (loop);
1893 for (i = 0; i < loop->num_nodes; i++)
1895 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1897 call = gsi_stmt (bsi);
1898 if (gimple_code (call) != GIMPLE_CALL)
1899 continue;
1901 if (gimple_has_side_effects (call))
1903 free (body);
1904 return false;
1909 free (body);
1910 return true;
1913 /* Stores description of number of iterations of LOOP derived from
1914 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1915 useful information could be derived (and fields of NITER has
1916 meaning described in comments at struct tree_niter_desc
1917 declaration), false otherwise. If WARN is true and
1918 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1919 potentially unsafe assumptions.
1920 When EVERY_ITERATION is true, only tests that are known to be executed
1921 every iteration are considered (i.e. only test that alone bounds the loop).
1924 bool
1925 number_of_iterations_exit (struct loop *loop, edge exit,
1926 struct tree_niter_desc *niter,
1927 bool warn, bool every_iteration)
1929 gimple last;
1930 gcond *stmt;
1931 tree type;
1932 tree op0, op1;
1933 enum tree_code code;
1934 affine_iv iv0, iv1;
1935 bool safe;
1937 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
1939 if (every_iteration && !safe)
1940 return false;
1942 niter->assumptions = boolean_false_node;
1943 niter->control.base = NULL_TREE;
1944 niter->control.step = NULL_TREE;
1945 niter->control.no_overflow = false;
1946 last = last_stmt (exit->src);
1947 if (!last)
1948 return false;
1949 stmt = dyn_cast <gcond *> (last);
1950 if (!stmt)
1951 return false;
1953 /* We want the condition for staying inside loop. */
1954 code = gimple_cond_code (stmt);
1955 if (exit->flags & EDGE_TRUE_VALUE)
1956 code = invert_tree_comparison (code, false);
1958 switch (code)
1960 case GT_EXPR:
1961 case GE_EXPR:
1962 case LT_EXPR:
1963 case LE_EXPR:
1964 case NE_EXPR:
1965 break;
1967 default:
1968 return false;
1971 op0 = gimple_cond_lhs (stmt);
1972 op1 = gimple_cond_rhs (stmt);
1973 type = TREE_TYPE (op0);
1975 if (TREE_CODE (type) != INTEGER_TYPE
1976 && !POINTER_TYPE_P (type))
1977 return false;
1979 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1980 return false;
1981 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1982 return false;
1984 /* We don't want to see undefined signed overflow warnings while
1985 computing the number of iterations. */
1986 fold_defer_overflow_warnings ();
1988 iv0.base = expand_simple_operations (iv0.base);
1989 iv1.base = expand_simple_operations (iv1.base);
1990 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1991 loop_only_exit_p (loop, exit), safe))
1993 fold_undefer_and_ignore_overflow_warnings ();
1994 return false;
1997 if (optimize >= 3)
1999 niter->assumptions = simplify_using_outer_evolutions (loop,
2000 niter->assumptions);
2001 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2002 niter->may_be_zero);
2003 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2006 niter->assumptions
2007 = simplify_using_initial_conditions (loop,
2008 niter->assumptions);
2009 niter->may_be_zero
2010 = simplify_using_initial_conditions (loop,
2011 niter->may_be_zero);
2013 fold_undefer_and_ignore_overflow_warnings ();
2015 /* If NITER has simplified into a constant, update MAX. */
2016 if (TREE_CODE (niter->niter) == INTEGER_CST)
2017 niter->max = wi::to_widest (niter->niter);
2019 if (integer_onep (niter->assumptions))
2020 return true;
2022 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
2023 But if we can prove that there is overflow or some other source of weird
2024 behavior, ignore the loop even with -funsafe-loop-optimizations. */
2025 if (integer_zerop (niter->assumptions) || !single_exit (loop))
2026 return false;
2028 if (flag_unsafe_loop_optimizations)
2029 niter->assumptions = boolean_true_node;
2031 if (warn)
2033 const char *wording;
2034 location_t loc = gimple_location (stmt);
2036 /* We can provide a more specific warning if one of the operator is
2037 constant and the other advances by +1 or -1. */
2038 if (!integer_zerop (iv1.step)
2039 ? (integer_zerop (iv0.step)
2040 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
2041 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
2042 wording =
2043 flag_unsafe_loop_optimizations
2044 ? N_("assuming that the loop is not infinite")
2045 : N_("cannot optimize possibly infinite loops");
2046 else
2047 wording =
2048 flag_unsafe_loop_optimizations
2049 ? N_("assuming that the loop counter does not overflow")
2050 : N_("cannot optimize loop, the loop counter may overflow");
2052 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
2053 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
2056 return flag_unsafe_loop_optimizations;
2059 /* Try to determine the number of iterations of LOOP. If we succeed,
2060 expression giving number of iterations is returned and *EXIT is
2061 set to the edge from that the information is obtained. Otherwise
2062 chrec_dont_know is returned. */
2064 tree
2065 find_loop_niter (struct loop *loop, edge *exit)
2067 unsigned i;
2068 vec<edge> exits = get_loop_exit_edges (loop);
2069 edge ex;
2070 tree niter = NULL_TREE, aniter;
2071 struct tree_niter_desc desc;
2073 *exit = NULL;
2074 FOR_EACH_VEC_ELT (exits, i, ex)
2076 if (!number_of_iterations_exit (loop, ex, &desc, false))
2077 continue;
2079 if (integer_nonzerop (desc.may_be_zero))
2081 /* We exit in the first iteration through this exit.
2082 We won't find anything better. */
2083 niter = build_int_cst (unsigned_type_node, 0);
2084 *exit = ex;
2085 break;
2088 if (!integer_zerop (desc.may_be_zero))
2089 continue;
2091 aniter = desc.niter;
2093 if (!niter)
2095 /* Nothing recorded yet. */
2096 niter = aniter;
2097 *exit = ex;
2098 continue;
2101 /* Prefer constants, the lower the better. */
2102 if (TREE_CODE (aniter) != INTEGER_CST)
2103 continue;
2105 if (TREE_CODE (niter) != INTEGER_CST)
2107 niter = aniter;
2108 *exit = ex;
2109 continue;
2112 if (tree_int_cst_lt (aniter, niter))
2114 niter = aniter;
2115 *exit = ex;
2116 continue;
2119 exits.release ();
2121 return niter ? niter : chrec_dont_know;
2124 /* Return true if loop is known to have bounded number of iterations. */
2126 bool
2127 finite_loop_p (struct loop *loop)
2129 widest_int nit;
2130 int flags;
2132 if (flag_unsafe_loop_optimizations)
2133 return true;
2134 flags = flags_from_decl_or_type (current_function_decl);
2135 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2137 if (dump_file && (dump_flags & TDF_DETAILS))
2138 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2139 loop->num);
2140 return true;
2143 if (loop->any_upper_bound
2144 || max_loop_iterations (loop, &nit))
2146 if (dump_file && (dump_flags & TDF_DETAILS))
2147 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2148 loop->num);
2149 return true;
2151 return false;
2156 Analysis of a number of iterations of a loop by a brute-force evaluation.
2160 /* Bound on the number of iterations we try to evaluate. */
2162 #define MAX_ITERATIONS_TO_TRACK \
2163 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2165 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2166 result by a chain of operations such that all but exactly one of their
2167 operands are constants. */
2169 static gphi *
2170 chain_of_csts_start (struct loop *loop, tree x)
2172 gimple stmt = SSA_NAME_DEF_STMT (x);
2173 tree use;
2174 basic_block bb = gimple_bb (stmt);
2175 enum tree_code code;
2177 if (!bb
2178 || !flow_bb_inside_loop_p (loop, bb))
2179 return NULL;
2181 if (gimple_code (stmt) == GIMPLE_PHI)
2183 if (bb == loop->header)
2184 return as_a <gphi *> (stmt);
2186 return NULL;
2189 if (gimple_code (stmt) != GIMPLE_ASSIGN
2190 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2191 return NULL;
2193 code = gimple_assign_rhs_code (stmt);
2194 if (gimple_references_memory_p (stmt)
2195 || TREE_CODE_CLASS (code) == tcc_reference
2196 || (code == ADDR_EXPR
2197 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2198 return NULL;
2200 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2201 if (use == NULL_TREE)
2202 return NULL;
2204 return chain_of_csts_start (loop, use);
2207 /* Determines whether the expression X is derived from a result of a phi node
2208 in header of LOOP such that
2210 * the derivation of X consists only from operations with constants
2211 * the initial value of the phi node is constant
2212 * the value of the phi node in the next iteration can be derived from the
2213 value in the current iteration by a chain of operations with constants.
2215 If such phi node exists, it is returned, otherwise NULL is returned. */
2217 static gphi *
2218 get_base_for (struct loop *loop, tree x)
2220 gphi *phi;
2221 tree init, next;
2223 if (is_gimple_min_invariant (x))
2224 return NULL;
2226 phi = chain_of_csts_start (loop, x);
2227 if (!phi)
2228 return NULL;
2230 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2231 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2233 if (TREE_CODE (next) != SSA_NAME)
2234 return NULL;
2236 if (!is_gimple_min_invariant (init))
2237 return NULL;
2239 if (chain_of_csts_start (loop, next) != phi)
2240 return NULL;
2242 return phi;
2245 /* Given an expression X, then
2247 * if X is NULL_TREE, we return the constant BASE.
2248 * otherwise X is a SSA name, whose value in the considered loop is derived
2249 by a chain of operations with constant from a result of a phi node in
2250 the header of the loop. Then we return value of X when the value of the
2251 result of this phi node is given by the constant BASE. */
2253 static tree
2254 get_val_for (tree x, tree base)
2256 gimple stmt;
2258 gcc_checking_assert (is_gimple_min_invariant (base));
2260 if (!x)
2261 return base;
2263 stmt = SSA_NAME_DEF_STMT (x);
2264 if (gimple_code (stmt) == GIMPLE_PHI)
2265 return base;
2267 gcc_checking_assert (is_gimple_assign (stmt));
2269 /* STMT must be either an assignment of a single SSA name or an
2270 expression involving an SSA name and a constant. Try to fold that
2271 expression using the value for the SSA name. */
2272 if (gimple_assign_ssa_name_copy_p (stmt))
2273 return get_val_for (gimple_assign_rhs1 (stmt), base);
2274 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2275 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2277 return fold_build1 (gimple_assign_rhs_code (stmt),
2278 gimple_expr_type (stmt),
2279 get_val_for (gimple_assign_rhs1 (stmt), base));
2281 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2283 tree rhs1 = gimple_assign_rhs1 (stmt);
2284 tree rhs2 = gimple_assign_rhs2 (stmt);
2285 if (TREE_CODE (rhs1) == SSA_NAME)
2286 rhs1 = get_val_for (rhs1, base);
2287 else if (TREE_CODE (rhs2) == SSA_NAME)
2288 rhs2 = get_val_for (rhs2, base);
2289 else
2290 gcc_unreachable ();
2291 return fold_build2 (gimple_assign_rhs_code (stmt),
2292 gimple_expr_type (stmt), rhs1, rhs2);
2294 else
2295 gcc_unreachable ();
2299 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2300 by brute force -- i.e. by determining the value of the operands of the
2301 condition at EXIT in first few iterations of the loop (assuming that
2302 these values are constant) and determining the first one in that the
2303 condition is not satisfied. Returns the constant giving the number
2304 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2306 tree
2307 loop_niter_by_eval (struct loop *loop, edge exit)
2309 tree acnd;
2310 tree op[2], val[2], next[2], aval[2];
2311 gphi *phi;
2312 gimple cond;
2313 unsigned i, j;
2314 enum tree_code cmp;
2316 cond = last_stmt (exit->src);
2317 if (!cond || gimple_code (cond) != GIMPLE_COND)
2318 return chrec_dont_know;
2320 cmp = gimple_cond_code (cond);
2321 if (exit->flags & EDGE_TRUE_VALUE)
2322 cmp = invert_tree_comparison (cmp, false);
2324 switch (cmp)
2326 case EQ_EXPR:
2327 case NE_EXPR:
2328 case GT_EXPR:
2329 case GE_EXPR:
2330 case LT_EXPR:
2331 case LE_EXPR:
2332 op[0] = gimple_cond_lhs (cond);
2333 op[1] = gimple_cond_rhs (cond);
2334 break;
2336 default:
2337 return chrec_dont_know;
2340 for (j = 0; j < 2; j++)
2342 if (is_gimple_min_invariant (op[j]))
2344 val[j] = op[j];
2345 next[j] = NULL_TREE;
2346 op[j] = NULL_TREE;
2348 else
2350 phi = get_base_for (loop, op[j]);
2351 if (!phi)
2352 return chrec_dont_know;
2353 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2354 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2358 /* Don't issue signed overflow warnings. */
2359 fold_defer_overflow_warnings ();
2361 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2363 for (j = 0; j < 2; j++)
2364 aval[j] = get_val_for (op[j], val[j]);
2366 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2367 if (acnd && integer_zerop (acnd))
2369 fold_undefer_and_ignore_overflow_warnings ();
2370 if (dump_file && (dump_flags & TDF_DETAILS))
2371 fprintf (dump_file,
2372 "Proved that loop %d iterates %d times using brute force.\n",
2373 loop->num, i);
2374 return build_int_cst (unsigned_type_node, i);
2377 for (j = 0; j < 2; j++)
2379 val[j] = get_val_for (next[j], val[j]);
2380 if (!is_gimple_min_invariant (val[j]))
2382 fold_undefer_and_ignore_overflow_warnings ();
2383 return chrec_dont_know;
2388 fold_undefer_and_ignore_overflow_warnings ();
2390 return chrec_dont_know;
2393 /* Finds the exit of the LOOP by that the loop exits after a constant
2394 number of iterations and stores the exit edge to *EXIT. The constant
2395 giving the number of iterations of LOOP is returned. The number of
2396 iterations is determined using loop_niter_by_eval (i.e. by brute force
2397 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2398 determines the number of iterations, chrec_dont_know is returned. */
2400 tree
2401 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2403 unsigned i;
2404 vec<edge> exits = get_loop_exit_edges (loop);
2405 edge ex;
2406 tree niter = NULL_TREE, aniter;
2408 *exit = NULL;
2410 /* Loops with multiple exits are expensive to handle and less important. */
2411 if (!flag_expensive_optimizations
2412 && exits.length () > 1)
2414 exits.release ();
2415 return chrec_dont_know;
2418 FOR_EACH_VEC_ELT (exits, i, ex)
2420 if (!just_once_each_iteration_p (loop, ex->src))
2421 continue;
2423 aniter = loop_niter_by_eval (loop, ex);
2424 if (chrec_contains_undetermined (aniter))
2425 continue;
2427 if (niter
2428 && !tree_int_cst_lt (aniter, niter))
2429 continue;
2431 niter = aniter;
2432 *exit = ex;
2434 exits.release ();
2436 return niter ? niter : chrec_dont_know;
2441 Analysis of upper bounds on number of iterations of a loop.
2445 static widest_int derive_constant_upper_bound_ops (tree, tree,
2446 enum tree_code, tree);
2448 /* Returns a constant upper bound on the value of the right-hand side of
2449 an assignment statement STMT. */
2451 static widest_int
2452 derive_constant_upper_bound_assign (gimple stmt)
2454 enum tree_code code = gimple_assign_rhs_code (stmt);
2455 tree op0 = gimple_assign_rhs1 (stmt);
2456 tree op1 = gimple_assign_rhs2 (stmt);
2458 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2459 op0, code, op1);
2462 /* Returns a constant upper bound on the value of expression VAL. VAL
2463 is considered to be unsigned. If its type is signed, its value must
2464 be nonnegative. */
2466 static widest_int
2467 derive_constant_upper_bound (tree val)
2469 enum tree_code code;
2470 tree op0, op1;
2472 extract_ops_from_tree (val, &code, &op0, &op1);
2473 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2476 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2477 whose type is TYPE. The expression is considered to be unsigned. If
2478 its type is signed, its value must be nonnegative. */
2480 static widest_int
2481 derive_constant_upper_bound_ops (tree type, tree op0,
2482 enum tree_code code, tree op1)
2484 tree subtype, maxt;
2485 widest_int bnd, max, mmax, cst;
2486 gimple stmt;
2488 if (INTEGRAL_TYPE_P (type))
2489 maxt = TYPE_MAX_VALUE (type);
2490 else
2491 maxt = upper_bound_in_type (type, type);
2493 max = wi::to_widest (maxt);
2495 switch (code)
2497 case INTEGER_CST:
2498 return wi::to_widest (op0);
2500 CASE_CONVERT:
2501 subtype = TREE_TYPE (op0);
2502 if (!TYPE_UNSIGNED (subtype)
2503 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2504 that OP0 is nonnegative. */
2505 && TYPE_UNSIGNED (type)
2506 && !tree_expr_nonnegative_p (op0))
2508 /* If we cannot prove that the casted expression is nonnegative,
2509 we cannot establish more useful upper bound than the precision
2510 of the type gives us. */
2511 return max;
2514 /* We now know that op0 is an nonnegative value. Try deriving an upper
2515 bound for it. */
2516 bnd = derive_constant_upper_bound (op0);
2518 /* If the bound does not fit in TYPE, max. value of TYPE could be
2519 attained. */
2520 if (wi::ltu_p (max, bnd))
2521 return max;
2523 return bnd;
2525 case PLUS_EXPR:
2526 case POINTER_PLUS_EXPR:
2527 case MINUS_EXPR:
2528 if (TREE_CODE (op1) != INTEGER_CST
2529 || !tree_expr_nonnegative_p (op0))
2530 return max;
2532 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2533 choose the most logical way how to treat this constant regardless
2534 of the signedness of the type. */
2535 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
2536 if (code != MINUS_EXPR)
2537 cst = -cst;
2539 bnd = derive_constant_upper_bound (op0);
2541 if (wi::neg_p (cst))
2543 cst = -cst;
2544 /* Avoid CST == 0x80000... */
2545 if (wi::neg_p (cst))
2546 return max;
2548 /* OP0 + CST. We need to check that
2549 BND <= MAX (type) - CST. */
2551 mmax -= cst;
2552 if (wi::ltu_p (bnd, max))
2553 return max;
2555 return bnd + cst;
2557 else
2559 /* OP0 - CST, where CST >= 0.
2561 If TYPE is signed, we have already verified that OP0 >= 0, and we
2562 know that the result is nonnegative. This implies that
2563 VAL <= BND - CST.
2565 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2566 otherwise the operation underflows.
2569 /* This should only happen if the type is unsigned; however, for
2570 buggy programs that use overflowing signed arithmetics even with
2571 -fno-wrapv, this condition may also be true for signed values. */
2572 if (wi::ltu_p (bnd, cst))
2573 return max;
2575 if (TYPE_UNSIGNED (type))
2577 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2578 wide_int_to_tree (type, cst));
2579 if (!tem || integer_nonzerop (tem))
2580 return max;
2583 bnd -= cst;
2586 return bnd;
2588 case FLOOR_DIV_EXPR:
2589 case EXACT_DIV_EXPR:
2590 if (TREE_CODE (op1) != INTEGER_CST
2591 || tree_int_cst_sign_bit (op1))
2592 return max;
2594 bnd = derive_constant_upper_bound (op0);
2595 return wi::udiv_floor (bnd, wi::to_widest (op1));
2597 case BIT_AND_EXPR:
2598 if (TREE_CODE (op1) != INTEGER_CST
2599 || tree_int_cst_sign_bit (op1))
2600 return max;
2601 return wi::to_widest (op1);
2603 case SSA_NAME:
2604 stmt = SSA_NAME_DEF_STMT (op0);
2605 if (gimple_code (stmt) != GIMPLE_ASSIGN
2606 || gimple_assign_lhs (stmt) != op0)
2607 return max;
2608 return derive_constant_upper_bound_assign (stmt);
2610 default:
2611 return max;
2615 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2617 static void
2618 do_warn_aggressive_loop_optimizations (struct loop *loop,
2619 widest_int i_bound, gimple stmt)
2621 /* Don't warn if the loop doesn't have known constant bound. */
2622 if (!loop->nb_iterations
2623 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2624 || !warn_aggressive_loop_optimizations
2625 /* To avoid warning multiple times for the same loop,
2626 only start warning when we preserve loops. */
2627 || (cfun->curr_properties & PROP_loops) == 0
2628 /* Only warn once per loop. */
2629 || loop->warned_aggressive_loop_optimizations
2630 /* Only warn if undefined behavior gives us lower estimate than the
2631 known constant bound. */
2632 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
2633 /* And undefined behavior happens unconditionally. */
2634 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2635 return;
2637 edge e = single_exit (loop);
2638 if (e == NULL)
2639 return;
2641 gimple estmt = last_stmt (e->src);
2642 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2643 "iteration %E invokes undefined behavior",
2644 wide_int_to_tree (TREE_TYPE (loop->nb_iterations),
2645 i_bound)))
2646 inform (gimple_location (estmt), "containing loop");
2647 loop->warned_aggressive_loop_optimizations = true;
2650 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2651 is true if the loop is exited immediately after STMT, and this exit
2652 is taken at last when the STMT is executed BOUND + 1 times.
2653 REALISTIC is true if BOUND is expected to be close to the real number
2654 of iterations. UPPER is true if we are sure the loop iterates at most
2655 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
2657 static void
2658 record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
2659 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2661 widest_int delta;
2663 if (dump_file && (dump_flags & TDF_DETAILS))
2665 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2666 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2667 fprintf (dump_file, " is %sexecuted at most ",
2668 upper ? "" : "probably ");
2669 print_generic_expr (dump_file, bound, TDF_SLIM);
2670 fprintf (dump_file, " (bounded by ");
2671 print_decu (i_bound, dump_file);
2672 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2675 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2676 real number of iterations. */
2677 if (TREE_CODE (bound) != INTEGER_CST)
2678 realistic = false;
2679 else
2680 gcc_checking_assert (i_bound == wi::to_widest (bound));
2681 if (!upper && !realistic)
2682 return;
2684 /* If we have a guaranteed upper bound, record it in the appropriate
2685 list, unless this is an !is_exit bound (i.e. undefined behavior in
2686 at_stmt) in a loop with known constant number of iterations. */
2687 if (upper
2688 && (is_exit
2689 || loop->nb_iterations == NULL_TREE
2690 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
2692 struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
2694 elt->bound = i_bound;
2695 elt->stmt = at_stmt;
2696 elt->is_exit = is_exit;
2697 elt->next = loop->bounds;
2698 loop->bounds = elt;
2701 /* If statement is executed on every path to the loop latch, we can directly
2702 infer the upper bound on the # of iterations of the loop. */
2703 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2704 return;
2706 /* Update the number of iteration estimates according to the bound.
2707 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2708 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2709 later if such statement must be executed on last iteration */
2710 if (is_exit)
2711 delta = 0;
2712 else
2713 delta = 1;
2714 widest_int new_i_bound = i_bound + delta;
2716 /* If an overflow occurred, ignore the result. */
2717 if (wi::ltu_p (new_i_bound, delta))
2718 return;
2720 if (upper && !is_exit)
2721 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
2722 record_niter_bound (loop, new_i_bound, realistic, upper);
2725 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
2726 and doesn't overflow. */
2728 static void
2729 record_control_iv (struct loop *loop, struct tree_niter_desc *niter)
2731 struct control_iv *iv;
2733 if (!niter->control.base || !niter->control.step)
2734 return;
2736 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
2737 return;
2739 iv = ggc_alloc<control_iv> ();
2740 iv->base = niter->control.base;
2741 iv->step = niter->control.step;
2742 iv->next = loop->control_ivs;
2743 loop->control_ivs = iv;
2745 return;
2748 /* Record the estimate on number of iterations of LOOP based on the fact that
2749 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2750 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2751 estimated number of iterations is expected to be close to the real one.
2752 UPPER is true if we are sure the induction variable does not wrap. */
2754 static void
2755 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2756 tree low, tree high, bool realistic, bool upper)
2758 tree niter_bound, extreme, delta;
2759 tree type = TREE_TYPE (base), unsigned_type;
2760 tree orig_base = base;
2762 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2763 return;
2765 if (dump_file && (dump_flags & TDF_DETAILS))
2767 fprintf (dump_file, "Induction variable (");
2768 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2769 fprintf (dump_file, ") ");
2770 print_generic_expr (dump_file, base, TDF_SLIM);
2771 fprintf (dump_file, " + ");
2772 print_generic_expr (dump_file, step, TDF_SLIM);
2773 fprintf (dump_file, " * iteration does not wrap in statement ");
2774 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2775 fprintf (dump_file, " in loop %d.\n", loop->num);
2778 unsigned_type = unsigned_type_for (type);
2779 base = fold_convert (unsigned_type, base);
2780 step = fold_convert (unsigned_type, step);
2782 if (tree_int_cst_sign_bit (step))
2784 wide_int min, max;
2785 extreme = fold_convert (unsigned_type, low);
2786 if (TREE_CODE (orig_base) == SSA_NAME
2787 && TREE_CODE (high) == INTEGER_CST
2788 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
2789 && get_range_info (orig_base, &min, &max) == VR_RANGE
2790 && wi::gts_p (high, max))
2791 base = wide_int_to_tree (unsigned_type, max);
2792 else if (TREE_CODE (base) != INTEGER_CST)
2793 base = fold_convert (unsigned_type, high);
2794 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2795 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2797 else
2799 wide_int min, max;
2800 extreme = fold_convert (unsigned_type, high);
2801 if (TREE_CODE (orig_base) == SSA_NAME
2802 && TREE_CODE (low) == INTEGER_CST
2803 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
2804 && get_range_info (orig_base, &min, &max) == VR_RANGE
2805 && wi::gts_p (min, low))
2806 base = wide_int_to_tree (unsigned_type, min);
2807 else if (TREE_CODE (base) != INTEGER_CST)
2808 base = fold_convert (unsigned_type, low);
2809 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2812 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2813 would get out of the range. */
2814 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2815 widest_int max = derive_constant_upper_bound (niter_bound);
2816 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2819 /* Determine information about number of iterations a LOOP from the index
2820 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2821 guaranteed to be executed in every iteration of LOOP. Callback for
2822 for_each_index. */
2824 struct ilb_data
2826 struct loop *loop;
2827 gimple stmt;
2830 static bool
2831 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2833 struct ilb_data *data = (struct ilb_data *) dta;
2834 tree ev, init, step;
2835 tree low, high, type, next;
2836 bool sign, upper = true, at_end = false;
2837 struct loop *loop = data->loop;
2838 bool reliable = true;
2840 if (TREE_CODE (base) != ARRAY_REF)
2841 return true;
2843 /* For arrays at the end of the structure, we are not guaranteed that they
2844 do not really extend over their declared size. However, for arrays of
2845 size greater than one, this is unlikely to be intended. */
2846 if (array_at_struct_end_p (base))
2848 at_end = true;
2849 upper = false;
2852 struct loop *dloop = loop_containing_stmt (data->stmt);
2853 if (!dloop)
2854 return true;
2856 ev = analyze_scalar_evolution (dloop, *idx);
2857 ev = instantiate_parameters (loop, ev);
2858 init = initial_condition (ev);
2859 step = evolution_part_in_loop_num (ev, loop->num);
2861 if (!init
2862 || !step
2863 || TREE_CODE (step) != INTEGER_CST
2864 || integer_zerop (step)
2865 || tree_contains_chrecs (init, NULL)
2866 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2867 return true;
2869 low = array_ref_low_bound (base);
2870 high = array_ref_up_bound (base);
2872 /* The case of nonconstant bounds could be handled, but it would be
2873 complicated. */
2874 if (TREE_CODE (low) != INTEGER_CST
2875 || !high
2876 || TREE_CODE (high) != INTEGER_CST)
2877 return true;
2878 sign = tree_int_cst_sign_bit (step);
2879 type = TREE_TYPE (step);
2881 /* The array of length 1 at the end of a structure most likely extends
2882 beyond its bounds. */
2883 if (at_end
2884 && operand_equal_p (low, high, 0))
2885 return true;
2887 /* In case the relevant bound of the array does not fit in type, or
2888 it does, but bound + step (in type) still belongs into the range of the
2889 array, the index may wrap and still stay within the range of the array
2890 (consider e.g. if the array is indexed by the full range of
2891 unsigned char).
2893 To make things simpler, we require both bounds to fit into type, although
2894 there are cases where this would not be strictly necessary. */
2895 if (!int_fits_type_p (high, type)
2896 || !int_fits_type_p (low, type))
2897 return true;
2898 low = fold_convert (type, low);
2899 high = fold_convert (type, high);
2901 if (sign)
2902 next = fold_binary (PLUS_EXPR, type, low, step);
2903 else
2904 next = fold_binary (PLUS_EXPR, type, high, step);
2906 if (tree_int_cst_compare (low, next) <= 0
2907 && tree_int_cst_compare (next, high) <= 0)
2908 return true;
2910 /* If access is not executed on every iteration, we must ensure that overlow may
2911 not make the access valid later. */
2912 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
2913 && scev_probably_wraps_p (initial_condition_in_loop_num (ev, loop->num),
2914 step, data->stmt, loop, true))
2915 reliable = false;
2917 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, reliable, upper);
2918 return true;
2921 /* Determine information about number of iterations a LOOP from the bounds
2922 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2923 STMT is guaranteed to be executed in every iteration of LOOP.*/
2925 static void
2926 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
2928 struct ilb_data data;
2930 data.loop = loop;
2931 data.stmt = stmt;
2932 for_each_index (&ref, idx_infer_loop_bounds, &data);
2935 /* Determine information about number of iterations of a LOOP from the way
2936 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2937 executed in every iteration of LOOP. */
2939 static void
2940 infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
2942 if (is_gimple_assign (stmt))
2944 tree op0 = gimple_assign_lhs (stmt);
2945 tree op1 = gimple_assign_rhs1 (stmt);
2947 /* For each memory access, analyze its access function
2948 and record a bound on the loop iteration domain. */
2949 if (REFERENCE_CLASS_P (op0))
2950 infer_loop_bounds_from_ref (loop, stmt, op0);
2952 if (REFERENCE_CLASS_P (op1))
2953 infer_loop_bounds_from_ref (loop, stmt, op1);
2955 else if (is_gimple_call (stmt))
2957 tree arg, lhs;
2958 unsigned i, n = gimple_call_num_args (stmt);
2960 lhs = gimple_call_lhs (stmt);
2961 if (lhs && REFERENCE_CLASS_P (lhs))
2962 infer_loop_bounds_from_ref (loop, stmt, lhs);
2964 for (i = 0; i < n; i++)
2966 arg = gimple_call_arg (stmt, i);
2967 if (REFERENCE_CLASS_P (arg))
2968 infer_loop_bounds_from_ref (loop, stmt, arg);
2973 /* Determine information about number of iterations of a LOOP from the fact
2974 that pointer arithmetics in STMT does not overflow. */
2976 static void
2977 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2979 tree def, base, step, scev, type, low, high;
2980 tree var, ptr;
2982 if (!is_gimple_assign (stmt)
2983 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2984 return;
2986 def = gimple_assign_lhs (stmt);
2987 if (TREE_CODE (def) != SSA_NAME)
2988 return;
2990 type = TREE_TYPE (def);
2991 if (!nowrap_type_p (type))
2992 return;
2994 ptr = gimple_assign_rhs1 (stmt);
2995 if (!expr_invariant_in_loop_p (loop, ptr))
2996 return;
2998 var = gimple_assign_rhs2 (stmt);
2999 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3000 return;
3002 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3003 if (chrec_contains_undetermined (scev))
3004 return;
3006 base = initial_condition_in_loop_num (scev, loop->num);
3007 step = evolution_part_in_loop_num (scev, loop->num);
3009 if (!base || !step
3010 || TREE_CODE (step) != INTEGER_CST
3011 || tree_contains_chrecs (base, NULL)
3012 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3013 return;
3015 low = lower_bound_in_type (type, type);
3016 high = upper_bound_in_type (type, type);
3018 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3019 produce a NULL pointer. The contrary would mean NULL points to an object,
3020 while NULL is supposed to compare unequal with the address of all objects.
3021 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3022 NULL pointer since that would mean wrapping, which we assume here not to
3023 happen. So, we can exclude NULL from the valid range of pointer
3024 arithmetic. */
3025 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3026 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3028 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3031 /* Determine information about number of iterations of a LOOP from the fact
3032 that signed arithmetics in STMT does not overflow. */
3034 static void
3035 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
3037 tree def, base, step, scev, type, low, high;
3039 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3040 return;
3042 def = gimple_assign_lhs (stmt);
3044 if (TREE_CODE (def) != SSA_NAME)
3045 return;
3047 type = TREE_TYPE (def);
3048 if (!INTEGRAL_TYPE_P (type)
3049 || !TYPE_OVERFLOW_UNDEFINED (type))
3050 return;
3052 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3053 if (chrec_contains_undetermined (scev))
3054 return;
3056 base = initial_condition_in_loop_num (scev, loop->num);
3057 step = evolution_part_in_loop_num (scev, loop->num);
3059 if (!base || !step
3060 || TREE_CODE (step) != INTEGER_CST
3061 || tree_contains_chrecs (base, NULL)
3062 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3063 return;
3065 low = lower_bound_in_type (type, type);
3066 high = upper_bound_in_type (type, type);
3068 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3071 /* The following analyzers are extracting informations on the bounds
3072 of LOOP from the following undefined behaviors:
3074 - data references should not access elements over the statically
3075 allocated size,
3077 - signed variables should not overflow when flag_wrapv is not set.
3080 static void
3081 infer_loop_bounds_from_undefined (struct loop *loop)
3083 unsigned i;
3084 basic_block *bbs;
3085 gimple_stmt_iterator bsi;
3086 basic_block bb;
3087 bool reliable;
3089 bbs = get_loop_body (loop);
3091 for (i = 0; i < loop->num_nodes; i++)
3093 bb = bbs[i];
3095 /* If BB is not executed in each iteration of the loop, we cannot
3096 use the operations in it to infer reliable upper bound on the
3097 # of iterations of the loop. However, we can use it as a guess.
3098 Reliable guesses come only from array bounds. */
3099 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
3101 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3103 gimple stmt = gsi_stmt (bsi);
3105 infer_loop_bounds_from_array (loop, stmt);
3107 if (reliable)
3109 infer_loop_bounds_from_signedness (loop, stmt);
3110 infer_loop_bounds_from_pointer_arith (loop, stmt);
3116 free (bbs);
3119 /* Compare wide ints, callback for qsort. */
3121 static int
3122 wide_int_cmp (const void *p1, const void *p2)
3124 const widest_int *d1 = (const widest_int *) p1;
3125 const widest_int *d2 = (const widest_int *) p2;
3126 return wi::cmpu (*d1, *d2);
3129 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3130 Lookup by binary search. */
3132 static int
3133 bound_index (vec<widest_int> bounds, const widest_int &bound)
3135 unsigned int end = bounds.length ();
3136 unsigned int begin = 0;
3138 /* Find a matching index by means of a binary search. */
3139 while (begin != end)
3141 unsigned int middle = (begin + end) / 2;
3142 widest_int index = bounds[middle];
3144 if (index == bound)
3145 return middle;
3146 else if (wi::ltu_p (index, bound))
3147 begin = middle + 1;
3148 else
3149 end = middle;
3151 gcc_unreachable ();
3154 /* We recorded loop bounds only for statements dominating loop latch (and thus
3155 executed each loop iteration). If there are any bounds on statements not
3156 dominating the loop latch we can improve the estimate by walking the loop
3157 body and seeing if every path from loop header to loop latch contains
3158 some bounded statement. */
3160 static void
3161 discover_iteration_bound_by_body_walk (struct loop *loop)
3163 struct nb_iter_bound *elt;
3164 vec<widest_int> bounds = vNULL;
3165 vec<vec<basic_block> > queues = vNULL;
3166 vec<basic_block> queue = vNULL;
3167 ptrdiff_t queue_index;
3168 ptrdiff_t latch_index = 0;
3170 /* Discover what bounds may interest us. */
3171 for (elt = loop->bounds; elt; elt = elt->next)
3173 widest_int bound = elt->bound;
3175 /* Exit terminates loop at given iteration, while non-exits produce undefined
3176 effect on the next iteration. */
3177 if (!elt->is_exit)
3179 bound += 1;
3180 /* If an overflow occurred, ignore the result. */
3181 if (bound == 0)
3182 continue;
3185 if (!loop->any_upper_bound
3186 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3187 bounds.safe_push (bound);
3190 /* Exit early if there is nothing to do. */
3191 if (!bounds.exists ())
3192 return;
3194 if (dump_file && (dump_flags & TDF_DETAILS))
3195 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3197 /* Sort the bounds in decreasing order. */
3198 bounds.qsort (wide_int_cmp);
3200 /* For every basic block record the lowest bound that is guaranteed to
3201 terminate the loop. */
3203 hash_map<basic_block, ptrdiff_t> bb_bounds;
3204 for (elt = loop->bounds; elt; elt = elt->next)
3206 widest_int bound = elt->bound;
3207 if (!elt->is_exit)
3209 bound += 1;
3210 /* If an overflow occurred, ignore the result. */
3211 if (bound == 0)
3212 continue;
3215 if (!loop->any_upper_bound
3216 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3218 ptrdiff_t index = bound_index (bounds, bound);
3219 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
3220 if (!entry)
3221 bb_bounds.put (gimple_bb (elt->stmt), index);
3222 else if ((ptrdiff_t)*entry > index)
3223 *entry = index;
3227 hash_map<basic_block, ptrdiff_t> block_priority;
3229 /* Perform shortest path discovery loop->header ... loop->latch.
3231 The "distance" is given by the smallest loop bound of basic block
3232 present in the path and we look for path with largest smallest bound
3233 on it.
3235 To avoid the need for fibonacci heap on double ints we simply compress
3236 double ints into indexes to BOUNDS array and then represent the queue
3237 as arrays of queues for every index.
3238 Index of BOUNDS.length() means that the execution of given BB has
3239 no bounds determined.
3241 VISITED is a pointer map translating basic block into smallest index
3242 it was inserted into the priority queue with. */
3243 latch_index = -1;
3245 /* Start walk in loop header with index set to infinite bound. */
3246 queue_index = bounds.length ();
3247 queues.safe_grow_cleared (queue_index + 1);
3248 queue.safe_push (loop->header);
3249 queues[queue_index] = queue;
3250 block_priority.put (loop->header, queue_index);
3252 for (; queue_index >= 0; queue_index--)
3254 if (latch_index < queue_index)
3256 while (queues[queue_index].length ())
3258 basic_block bb;
3259 ptrdiff_t bound_index = queue_index;
3260 edge e;
3261 edge_iterator ei;
3263 queue = queues[queue_index];
3264 bb = queue.pop ();
3266 /* OK, we later inserted the BB with lower priority, skip it. */
3267 if (*block_priority.get (bb) > queue_index)
3268 continue;
3270 /* See if we can improve the bound. */
3271 ptrdiff_t *entry = bb_bounds.get (bb);
3272 if (entry && *entry < bound_index)
3273 bound_index = *entry;
3275 /* Insert succesors into the queue, watch for latch edge
3276 and record greatest index we saw. */
3277 FOR_EACH_EDGE (e, ei, bb->succs)
3279 bool insert = false;
3281 if (loop_exit_edge_p (loop, e))
3282 continue;
3284 if (e == loop_latch_edge (loop)
3285 && latch_index < bound_index)
3286 latch_index = bound_index;
3287 else if (!(entry = block_priority.get (e->dest)))
3289 insert = true;
3290 block_priority.put (e->dest, bound_index);
3292 else if (*entry < bound_index)
3294 insert = true;
3295 *entry = bound_index;
3298 if (insert)
3299 queues[bound_index].safe_push (e->dest);
3303 queues[queue_index].release ();
3306 gcc_assert (latch_index >= 0);
3307 if ((unsigned)latch_index < bounds.length ())
3309 if (dump_file && (dump_flags & TDF_DETAILS))
3311 fprintf (dump_file, "Found better loop bound ");
3312 print_decu (bounds[latch_index], dump_file);
3313 fprintf (dump_file, "\n");
3315 record_niter_bound (loop, bounds[latch_index], false, true);
3318 queues.release ();
3319 bounds.release ();
3322 /* See if every path cross the loop goes through a statement that is known
3323 to not execute at the last iteration. In that case we can decrese iteration
3324 count by 1. */
3326 static void
3327 maybe_lower_iteration_bound (struct loop *loop)
3329 hash_set<gimple> *not_executed_last_iteration = NULL;
3330 struct nb_iter_bound *elt;
3331 bool found_exit = false;
3332 vec<basic_block> queue = vNULL;
3333 bitmap visited;
3335 /* Collect all statements with interesting (i.e. lower than
3336 nb_iterations_upper_bound) bound on them.
3338 TODO: Due to the way record_estimate choose estimates to store, the bounds
3339 will be always nb_iterations_upper_bound-1. We can change this to record
3340 also statements not dominating the loop latch and update the walk bellow
3341 to the shortest path algorthm. */
3342 for (elt = loop->bounds; elt; elt = elt->next)
3344 if (!elt->is_exit
3345 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
3347 if (!not_executed_last_iteration)
3348 not_executed_last_iteration = new hash_set<gimple>;
3349 not_executed_last_iteration->add (elt->stmt);
3352 if (!not_executed_last_iteration)
3353 return;
3355 /* Start DFS walk in the loop header and see if we can reach the
3356 loop latch or any of the exits (including statements with side
3357 effects that may terminate the loop otherwise) without visiting
3358 any of the statements known to have undefined effect on the last
3359 iteration. */
3360 queue.safe_push (loop->header);
3361 visited = BITMAP_ALLOC (NULL);
3362 bitmap_set_bit (visited, loop->header->index);
3363 found_exit = false;
3367 basic_block bb = queue.pop ();
3368 gimple_stmt_iterator gsi;
3369 bool stmt_found = false;
3371 /* Loop for possible exits and statements bounding the execution. */
3372 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3374 gimple stmt = gsi_stmt (gsi);
3375 if (not_executed_last_iteration->contains (stmt))
3377 stmt_found = true;
3378 break;
3380 if (gimple_has_side_effects (stmt))
3382 found_exit = true;
3383 break;
3386 if (found_exit)
3387 break;
3389 /* If no bounding statement is found, continue the walk. */
3390 if (!stmt_found)
3392 edge e;
3393 edge_iterator ei;
3395 FOR_EACH_EDGE (e, ei, bb->succs)
3397 if (loop_exit_edge_p (loop, e)
3398 || e == loop_latch_edge (loop))
3400 found_exit = true;
3401 break;
3403 if (bitmap_set_bit (visited, e->dest->index))
3404 queue.safe_push (e->dest);
3408 while (queue.length () && !found_exit);
3410 /* If every path through the loop reach bounding statement before exit,
3411 then we know the last iteration of the loop will have undefined effect
3412 and we can decrease number of iterations. */
3414 if (!found_exit)
3416 if (dump_file && (dump_flags & TDF_DETAILS))
3417 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3418 "undefined statement must be executed at the last iteration.\n");
3419 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
3420 false, true);
3423 BITMAP_FREE (visited);
3424 queue.release ();
3425 delete not_executed_last_iteration;
3428 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3429 is true also use estimates derived from undefined behavior. */
3431 static void
3432 estimate_numbers_of_iterations_loop (struct loop *loop)
3434 vec<edge> exits;
3435 tree niter, type;
3436 unsigned i;
3437 struct tree_niter_desc niter_desc;
3438 edge ex;
3439 widest_int bound;
3440 edge likely_exit;
3442 /* Give up if we already have tried to compute an estimation. */
3443 if (loop->estimate_state != EST_NOT_COMPUTED)
3444 return;
3446 loop->estimate_state = EST_AVAILABLE;
3447 /* Force estimate compuation but leave any existing upper bound in place. */
3448 loop->any_estimate = false;
3450 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3451 to be constant, we avoid undefined behavior implied bounds and instead
3452 diagnose those loops with -Waggressive-loop-optimizations. */
3453 number_of_latch_executions (loop);
3455 exits = get_loop_exit_edges (loop);
3456 likely_exit = single_likely_exit (loop);
3457 FOR_EACH_VEC_ELT (exits, i, ex)
3459 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3460 continue;
3462 niter = niter_desc.niter;
3463 type = TREE_TYPE (niter);
3464 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3465 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3466 build_int_cst (type, 0),
3467 niter);
3468 record_estimate (loop, niter, niter_desc.max,
3469 last_stmt (ex->src),
3470 true, ex == likely_exit, true);
3471 record_control_iv (loop, &niter_desc);
3473 exits.release ();
3475 if (flag_aggressive_loop_optimizations)
3476 infer_loop_bounds_from_undefined (loop);
3478 discover_iteration_bound_by_body_walk (loop);
3480 maybe_lower_iteration_bound (loop);
3482 /* If we have a measured profile, use it to estimate the number of
3483 iterations. */
3484 if (loop->header->count != 0)
3486 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3487 bound = gcov_type_to_wide_int (nit);
3488 record_niter_bound (loop, bound, true, false);
3491 /* If we know the exact number of iterations of this loop, try to
3492 not break code with undefined behavior by not recording smaller
3493 maximum number of iterations. */
3494 if (loop->nb_iterations
3495 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3497 loop->any_upper_bound = true;
3498 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
3502 /* Sets NIT to the estimated number of executions of the latch of the
3503 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3504 large as the number of iterations. If we have no reliable estimate,
3505 the function returns false, otherwise returns true. */
3507 bool
3508 estimated_loop_iterations (struct loop *loop, widest_int *nit)
3510 /* When SCEV information is available, try to update loop iterations
3511 estimate. Otherwise just return whatever we recorded earlier. */
3512 if (scev_initialized_p ())
3513 estimate_numbers_of_iterations_loop (loop);
3515 return (get_estimated_loop_iterations (loop, nit));
3518 /* Similar to estimated_loop_iterations, but returns the estimate only
3519 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3520 on the number of iterations of LOOP could not be derived, returns -1. */
3522 HOST_WIDE_INT
3523 estimated_loop_iterations_int (struct loop *loop)
3525 widest_int nit;
3526 HOST_WIDE_INT hwi_nit;
3528 if (!estimated_loop_iterations (loop, &nit))
3529 return -1;
3531 if (!wi::fits_shwi_p (nit))
3532 return -1;
3533 hwi_nit = nit.to_shwi ();
3535 return hwi_nit < 0 ? -1 : hwi_nit;
3539 /* Sets NIT to an upper bound for the maximum number of executions of the
3540 latch of the LOOP. If we have no reliable estimate, the function returns
3541 false, otherwise returns true. */
3543 bool
3544 max_loop_iterations (struct loop *loop, widest_int *nit)
3546 /* When SCEV information is available, try to update loop iterations
3547 estimate. Otherwise just return whatever we recorded earlier. */
3548 if (scev_initialized_p ())
3549 estimate_numbers_of_iterations_loop (loop);
3551 return get_max_loop_iterations (loop, nit);
3554 /* Similar to max_loop_iterations, but returns the estimate only
3555 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3556 on the number of iterations of LOOP could not be derived, returns -1. */
3558 HOST_WIDE_INT
3559 max_loop_iterations_int (struct loop *loop)
3561 widest_int nit;
3562 HOST_WIDE_INT hwi_nit;
3564 if (!max_loop_iterations (loop, &nit))
3565 return -1;
3567 if (!wi::fits_shwi_p (nit))
3568 return -1;
3569 hwi_nit = nit.to_shwi ();
3571 return hwi_nit < 0 ? -1 : hwi_nit;
3574 /* Returns an estimate for the number of executions of statements
3575 in the LOOP. For statements before the loop exit, this exceeds
3576 the number of execution of the latch by one. */
3578 HOST_WIDE_INT
3579 estimated_stmt_executions_int (struct loop *loop)
3581 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3582 HOST_WIDE_INT snit;
3584 if (nit == -1)
3585 return -1;
3587 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3589 /* If the computation overflows, return -1. */
3590 return snit < 0 ? -1 : snit;
3593 /* Sets NIT to the estimated maximum number of executions of the latch of the
3594 LOOP, plus one. If we have no reliable estimate, the function returns
3595 false, otherwise returns true. */
3597 bool
3598 max_stmt_executions (struct loop *loop, widest_int *nit)
3600 widest_int nit_minus_one;
3602 if (!max_loop_iterations (loop, nit))
3603 return false;
3605 nit_minus_one = *nit;
3607 *nit += 1;
3609 return wi::gtu_p (*nit, nit_minus_one);
3612 /* Sets NIT to the estimated number of executions of the latch of the
3613 LOOP, plus one. If we have no reliable estimate, the function returns
3614 false, otherwise returns true. */
3616 bool
3617 estimated_stmt_executions (struct loop *loop, widest_int *nit)
3619 widest_int nit_minus_one;
3621 if (!estimated_loop_iterations (loop, nit))
3622 return false;
3624 nit_minus_one = *nit;
3626 *nit += 1;
3628 return wi::gtu_p (*nit, nit_minus_one);
3631 /* Records estimates on numbers of iterations of loops. */
3633 void
3634 estimate_numbers_of_iterations (void)
3636 struct loop *loop;
3638 /* We don't want to issue signed overflow warnings while getting
3639 loop iteration estimates. */
3640 fold_defer_overflow_warnings ();
3642 FOR_EACH_LOOP (loop, 0)
3644 estimate_numbers_of_iterations_loop (loop);
3647 fold_undefer_and_ignore_overflow_warnings ();
3650 /* Returns true if statement S1 dominates statement S2. */
3652 bool
3653 stmt_dominates_stmt_p (gimple s1, gimple s2)
3655 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3657 if (!bb1
3658 || s1 == s2)
3659 return true;
3661 if (bb1 == bb2)
3663 gimple_stmt_iterator bsi;
3665 if (gimple_code (s2) == GIMPLE_PHI)
3666 return false;
3668 if (gimple_code (s1) == GIMPLE_PHI)
3669 return true;
3671 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3672 if (gsi_stmt (bsi) == s1)
3673 return true;
3675 return false;
3678 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3681 /* Returns true when we can prove that the number of executions of
3682 STMT in the loop is at most NITER, according to the bound on
3683 the number of executions of the statement NITER_BOUND->stmt recorded in
3684 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3686 ??? This code can become quite a CPU hog - we can have many bounds,
3687 and large basic block forcing stmt_dominates_stmt_p to be queried
3688 many times on a large basic blocks, so the whole thing is O(n^2)
3689 for scev_probably_wraps_p invocation (that can be done n times).
3691 It would make more sense (and give better answers) to remember BB
3692 bounds computed by discover_iteration_bound_by_body_walk. */
3694 static bool
3695 n_of_executions_at_most (gimple stmt,
3696 struct nb_iter_bound *niter_bound,
3697 tree niter)
3699 widest_int bound = niter_bound->bound;
3700 tree nit_type = TREE_TYPE (niter), e;
3701 enum tree_code cmp;
3703 gcc_assert (TYPE_UNSIGNED (nit_type));
3705 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3706 the number of iterations is small. */
3707 if (!wi::fits_to_tree_p (bound, nit_type))
3708 return false;
3710 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3711 times. This means that:
3713 -- if NITER_BOUND->is_exit is true, then everything after
3714 it at most NITER_BOUND->bound times.
3716 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3717 is executed, then NITER_BOUND->stmt is executed as well in the same
3718 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3720 If we can determine that NITER_BOUND->stmt is always executed
3721 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3722 We conclude that if both statements belong to the same
3723 basic block and STMT is before NITER_BOUND->stmt and there are no
3724 statements with side effects in between. */
3726 if (niter_bound->is_exit)
3728 if (stmt == niter_bound->stmt
3729 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3730 return false;
3731 cmp = GE_EXPR;
3733 else
3735 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3737 gimple_stmt_iterator bsi;
3738 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3739 || gimple_code (stmt) == GIMPLE_PHI
3740 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
3741 return false;
3743 /* By stmt_dominates_stmt_p we already know that STMT appears
3744 before NITER_BOUND->STMT. Still need to test that the loop
3745 can not be terinated by a side effect in between. */
3746 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
3747 gsi_next (&bsi))
3748 if (gimple_has_side_effects (gsi_stmt (bsi)))
3749 return false;
3750 bound += 1;
3751 if (bound == 0
3752 || !wi::fits_to_tree_p (bound, nit_type))
3753 return false;
3755 cmp = GT_EXPR;
3758 e = fold_binary (cmp, boolean_type_node,
3759 niter, wide_int_to_tree (nit_type, bound));
3760 return e && integer_nonzerop (e);
3763 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3765 bool
3766 nowrap_type_p (tree type)
3768 if (INTEGRAL_TYPE_P (type)
3769 && TYPE_OVERFLOW_UNDEFINED (type))
3770 return true;
3772 if (POINTER_TYPE_P (type))
3773 return true;
3775 return false;
3778 /* Return true if we can prove LOOP is exited before evolution of induction
3779 variabled {BASE, STEP} overflows with respect to its type bound. */
3781 static bool
3782 loop_exits_before_overflow (tree base, tree step,
3783 gimple at_stmt, struct loop *loop)
3785 widest_int niter;
3786 struct control_iv *civ;
3787 struct nb_iter_bound *bound;
3788 tree e, delta, step_abs, unsigned_base;
3789 tree type = TREE_TYPE (step);
3790 tree unsigned_type, valid_niter;
3792 /* Don't issue signed overflow warnings. */
3793 fold_defer_overflow_warnings ();
3795 /* Compute the number of iterations before we reach the bound of the
3796 type, and verify that the loop is exited before this occurs. */
3797 unsigned_type = unsigned_type_for (type);
3798 unsigned_base = fold_convert (unsigned_type, base);
3800 if (tree_int_cst_sign_bit (step))
3802 tree extreme = fold_convert (unsigned_type,
3803 lower_bound_in_type (type, type));
3804 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
3805 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3806 fold_convert (unsigned_type, step));
3808 else
3810 tree extreme = fold_convert (unsigned_type,
3811 upper_bound_in_type (type, type));
3812 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
3813 step_abs = fold_convert (unsigned_type, step);
3816 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3818 estimate_numbers_of_iterations_loop (loop);
3820 if (max_loop_iterations (loop, &niter)
3821 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
3822 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
3823 wide_int_to_tree (TREE_TYPE (valid_niter),
3824 niter))) != NULL
3825 && integer_nonzerop (e))
3827 fold_undefer_and_ignore_overflow_warnings ();
3828 return true;
3830 if (at_stmt)
3831 for (bound = loop->bounds; bound; bound = bound->next)
3833 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3835 fold_undefer_and_ignore_overflow_warnings ();
3836 return true;
3839 fold_undefer_and_ignore_overflow_warnings ();
3841 /* Try to prove loop is exited before {base, step} overflows with the
3842 help of analyzed loop control IV. This is done only for IVs with
3843 constant step because otherwise we don't have the information. */
3844 if (TREE_CODE (step) == INTEGER_CST)
3845 for (civ = loop->control_ivs; civ; civ = civ->next)
3847 enum tree_code code;
3848 tree stepped, extreme, civ_type = TREE_TYPE (civ->step);
3850 /* Have to consider type difference because operand_equal_p ignores
3851 that for constants. */
3852 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
3853 || element_precision (type) != element_precision (civ_type))
3854 continue;
3856 /* Only consider control IV with same step. */
3857 if (!operand_equal_p (step, civ->step, 0))
3858 continue;
3860 /* Done proving if this is a no-overflow control IV. */
3861 if (operand_equal_p (base, civ->base, 0))
3862 return true;
3864 /* If this is a before stepping control IV, in other words, we have
3866 {civ_base, step} = {base + step, step}
3868 Because civ {base + step, step} doesn't overflow during loop
3869 iterations, {base, step} will not overflow if we can prove the
3870 operation "base + step" does not overflow. Specifically, we try
3871 to prove below conditions are satisfied:
3873 base <= UPPER_BOUND (type) - step ;;step > 0
3874 base >= LOWER_BOUND (type) - step ;;step < 0
3876 by proving the reverse conditions are false using loop's initial
3877 condition. */
3878 if (POINTER_TYPE_P (TREE_TYPE (base)))
3879 code = POINTER_PLUS_EXPR;
3880 else
3881 code = PLUS_EXPR;
3883 stepped = fold_build2 (code, TREE_TYPE (base), base, step);
3884 if (operand_equal_p (stepped, civ->base, 0))
3886 if (tree_int_cst_sign_bit (step))
3888 code = LT_EXPR;
3889 extreme = lower_bound_in_type (type, type);
3891 else
3893 code = GT_EXPR;
3894 extreme = upper_bound_in_type (type, type);
3896 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
3897 e = fold_build2 (code, boolean_type_node, base, extreme);
3898 e = simplify_using_initial_conditions (loop, e);
3899 if (integer_zerop (e))
3900 return true;
3902 continue;
3905 /* Similar to above, only in this case we have:
3907 {civ_base, step} = {(signed T)((unsigned T)base + step), step}
3908 && TREE_TYPE (civ_base) = signed T.
3910 We prove that below condition is satisfied:
3912 (signed T)((unsigned T)base + step)
3913 == (signed T)(unsigned T)base + step
3914 == base + step
3916 because of exact the same reason as above. This also proves
3917 there is no overflow in the operation "base + step", thus the
3918 induction variable {base, step} during loop iterations.
3920 This is necessary to handle cases as below:
3922 int foo (int *a, signed char s, signed char l)
3924 signed char i;
3925 for (i = s; i < l; i++)
3926 a[i] = 0;
3927 return 0;
3930 The variable I is firstly converted to type unsigned char,
3931 incremented, then converted back to type signed char. */
3932 if (!CONVERT_EXPR_P (civ->base) || TREE_TYPE (civ->base) != type)
3933 continue;
3934 e = TREE_OPERAND (civ->base, 0);
3935 if (TREE_CODE (e) != PLUS_EXPR
3936 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3937 || !operand_equal_p (step,
3938 fold_convert (type,
3939 TREE_OPERAND (e, 1)), 0))
3940 continue;
3941 e = TREE_OPERAND (e, 0);
3942 if (!CONVERT_EXPR_P (e) || !operand_equal_p (e, unsigned_base, 0))
3943 continue;
3944 e = TREE_OPERAND (e, 0);
3945 /* It may still be possible to prove no overflow even if condition
3946 "operand_equal_p (e, base, 0)" isn't satisfied here, like below
3947 example:
3949 e : ssa_var ; unsigned long type
3950 base : (int) ssa_var
3951 unsigned_base : (unsigned int) ssa_var
3953 Unfortunately this is a rare case observed during GCC profiled
3954 bootstrap. See PR66638 for more information.
3956 For now, we just skip the possibility. */
3957 if (!operand_equal_p (e, base, 0))
3958 continue;
3960 if (tree_int_cst_sign_bit (step))
3962 code = LT_EXPR;
3963 extreme = lower_bound_in_type (type, type);
3965 else
3967 code = GT_EXPR;
3968 extreme = upper_bound_in_type (type, type);
3970 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
3971 e = fold_build2 (code, boolean_type_node, base, extreme);
3972 e = simplify_using_initial_conditions (loop, e);
3973 if (integer_zerop (e))
3974 return true;
3977 return false;
3980 /* Return false only when the induction variable BASE + STEP * I is
3981 known to not overflow: i.e. when the number of iterations is small
3982 enough with respect to the step and initial condition in order to
3983 keep the evolution confined in TYPEs bounds. Return true when the
3984 iv is known to overflow or when the property is not computable.
3986 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3987 the rules for overflow of the given language apply (e.g., that signed
3988 arithmetics in C does not overflow). */
3990 bool
3991 scev_probably_wraps_p (tree base, tree step,
3992 gimple at_stmt, struct loop *loop,
3993 bool use_overflow_semantics)
3995 /* FIXME: We really need something like
3996 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3998 We used to test for the following situation that frequently appears
3999 during address arithmetics:
4001 D.1621_13 = (long unsigned intD.4) D.1620_12;
4002 D.1622_14 = D.1621_13 * 8;
4003 D.1623_15 = (doubleD.29 *) D.1622_14;
4005 And derived that the sequence corresponding to D_14
4006 can be proved to not wrap because it is used for computing a
4007 memory access; however, this is not really the case -- for example,
4008 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4009 2032, 2040, 0, 8, ..., but the code is still legal. */
4011 if (chrec_contains_undetermined (base)
4012 || chrec_contains_undetermined (step))
4013 return true;
4015 if (integer_zerop (step))
4016 return false;
4018 /* If we can use the fact that signed and pointer arithmetics does not
4019 wrap, we are done. */
4020 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
4021 return false;
4023 /* To be able to use estimates on number of iterations of the loop,
4024 we must have an upper bound on the absolute value of the step. */
4025 if (TREE_CODE (step) != INTEGER_CST)
4026 return true;
4028 if (loop_exits_before_overflow (base, step, at_stmt, loop))
4029 return false;
4031 /* At this point we still don't have a proof that the iv does not
4032 overflow: give up. */
4033 return true;
4036 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4038 void
4039 free_numbers_of_iterations_estimates_loop (struct loop *loop)
4041 struct control_iv *civ;
4042 struct nb_iter_bound *bound;
4044 loop->nb_iterations = NULL;
4045 loop->estimate_state = EST_NOT_COMPUTED;
4046 for (bound = loop->bounds; bound;)
4048 struct nb_iter_bound *next = bound->next;
4049 ggc_free (bound);
4050 bound = next;
4052 loop->bounds = NULL;
4054 for (civ = loop->control_ivs; civ;)
4056 struct control_iv *next = civ->next;
4057 ggc_free (civ);
4058 civ = next;
4060 loop->control_ivs = NULL;
4063 /* Frees the information on upper bounds on numbers of iterations of loops. */
4065 void
4066 free_numbers_of_iterations_estimates (void)
4068 struct loop *loop;
4070 FOR_EACH_LOOP (loop, 0)
4072 free_numbers_of_iterations_estimates_loop (loop);
4076 /* Substitute value VAL for ssa name NAME inside expressions held
4077 at LOOP. */
4079 void
4080 substitute_in_loop_info (struct loop *loop, tree name, tree val)
4082 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);