* testsuite/libgomp.fortran/vla7.f90: Add -w to options.
[official-gcc.git] / gcc / ada / sem_ch6.adb
blobb6c262b5ad49681ce0671f200c5e1c17851162a6
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Tss; use Exp_Tss;
36 with Fname; use Fname;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Lib; use Lib;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Rtsfind; use Rtsfind;
47 with Sem; use Sem;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch4; use Sem_Ch4;
51 with Sem_Ch5; use Sem_Ch5;
52 with Sem_Ch8; use Sem_Ch8;
53 with Sem_Ch10; use Sem_Ch10;
54 with Sem_Ch12; use Sem_Ch12;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Prag; use Sem_Prag;
61 with Sem_Res; use Sem_Res;
62 with Sem_Util; use Sem_Util;
63 with Sem_Type; use Sem_Type;
64 with Sem_Warn; use Sem_Warn;
65 with Sinput; use Sinput;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Sinfo.CN; use Sinfo.CN;
69 with Snames; use Snames;
70 with Stringt; use Stringt;
71 with Style;
72 with Stylesw; use Stylesw;
73 with Tbuild; use Tbuild;
74 with Uintp; use Uintp;
75 with Urealp; use Urealp;
76 with Validsw; use Validsw;
78 package body Sem_Ch6 is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Analyze_Return_Type (N : Node_Id);
85 -- Subsidiary to Process_Formals: analyze subtype mark in function
86 -- specification, in a context where the formals are visible and hide
87 -- outer homographs.
89 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
90 -- Analyze a generic subprogram body. N is the body to be analyzed, and
91 -- Gen_Id is the defining entity Id for the corresponding spec.
93 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
94 -- If a subprogram has pragma Inline and inlining is active, use generic
95 -- machinery to build an unexpanded body for the subprogram. This body is
96 -- subsequenty used for inline expansions at call sites. If subprogram can
97 -- be inlined (depending on size and nature of local declarations) this
98 -- function returns true. Otherwise subprogram body is treated normally.
99 -- If proper warnings are enabled and the subprogram contains a construct
100 -- that cannot be inlined, the offending construct is flagged accordingly.
102 type Conformance_Type is
103 (Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
104 -- Conformance type used for following call, meaning matches the
105 -- RM definitions of the corresponding terms.
107 procedure Check_Conformance
108 (New_Id : Entity_Id;
109 Old_Id : Entity_Id;
110 Ctype : Conformance_Type;
111 Errmsg : Boolean;
112 Conforms : out Boolean;
113 Err_Loc : Node_Id := Empty;
114 Get_Inst : Boolean := False;
115 Skip_Controlling_Formals : Boolean := False);
116 -- Given two entities, this procedure checks that the profiles associated
117 -- with these entities meet the conformance criterion given by the third
118 -- parameter. If they conform, Conforms is set True and control returns
119 -- to the caller. If they do not conform, Conforms is set to False, and
120 -- in addition, if Errmsg is True on the call, proper messages are output
121 -- to complain about the conformance failure. If Err_Loc is non_Empty
122 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
123 -- error messages are placed on the appropriate part of the construct
124 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
125 -- against a formal access-to-subprogram type so Get_Instance_Of must
126 -- be called.
128 procedure Check_Overriding_Indicator
129 (Subp : Entity_Id;
130 Does_Override : Boolean);
131 -- Verify the consistency of an overriding_indicator given for subprogram
132 -- declaration, body, renaming, or instantiation. The flag Does_Override
133 -- is set if the scope into which we are introducing the subprogram
134 -- contains a type-conformant subprogram that becomes hidden by the new
135 -- subprogram.
137 procedure Check_Subprogram_Order (N : Node_Id);
138 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
139 -- the alpha ordering rule for N if this ordering requirement applicable.
141 procedure Check_Returns
142 (HSS : Node_Id;
143 Mode : Character;
144 Err : out Boolean);
145 -- Called to check for missing return statements in a function body, or
146 -- for returns present in a procedure body which has No_Return set. L is
147 -- the handled statement sequence for the subprogram body. This procedure
148 -- checks all flow paths to make sure they either have return (Mode = 'F')
149 -- or do not have a return (Mode = 'P'). The flag Err is set if there are
150 -- any control paths not explicitly terminated by a return in the function
151 -- case, and is True otherwise.
153 function Conforming_Types
154 (T1 : Entity_Id;
155 T2 : Entity_Id;
156 Ctype : Conformance_Type;
157 Get_Inst : Boolean := False) return Boolean;
158 -- Check that two formal parameter types conform, checking both for
159 -- equality of base types, and where required statically matching
160 -- subtypes, depending on the setting of Ctype.
162 procedure Enter_Overloaded_Entity (S : Entity_Id);
163 -- This procedure makes S, a new overloaded entity, into the first visible
164 -- entity with that name.
166 procedure Install_Entity (E : Entity_Id);
167 -- Make single entity visible. Used for generic formals as well
169 procedure Install_Formals (Id : Entity_Id);
170 -- On entry to a subprogram body, make the formals visible. Note that
171 -- simply placing the subprogram on the scope stack is not sufficient:
172 -- the formals must become the current entities for their names.
174 function Is_Non_Overriding_Operation
175 (Prev_E : Entity_Id;
176 New_E : Entity_Id) return Boolean;
177 -- Enforce the rule given in 12.3(18): a private operation in an instance
178 -- overrides an inherited operation only if the corresponding operation
179 -- was overriding in the generic. This can happen for primitive operations
180 -- of types derived (in the generic unit) from formal private or formal
181 -- derived types.
183 procedure Make_Inequality_Operator (S : Entity_Id);
184 -- Create the declaration for an inequality operator that is implicitly
185 -- created by a user-defined equality operator that yields a boolean.
187 procedure May_Need_Actuals (Fun : Entity_Id);
188 -- Flag functions that can be called without parameters, i.e. those that
189 -- have no parameters, or those for which defaults exist for all parameters
191 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id);
192 -- If there is a separate spec for a subprogram or generic subprogram, the
193 -- formals of the body are treated as references to the corresponding
194 -- formals of the spec. This reference does not count as an actual use of
195 -- the formal, in order to diagnose formals that are unused in the body.
197 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
198 -- Formal_Id is an formal parameter entity. This procedure deals with
199 -- setting the proper validity status for this entity, which depends
200 -- on the kind of parameter and the validity checking mode.
202 ---------------------------------------------
203 -- Analyze_Abstract_Subprogram_Declaration --
204 ---------------------------------------------
206 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
207 Designator : constant Entity_Id :=
208 Analyze_Subprogram_Specification (Specification (N));
209 Scop : constant Entity_Id := Current_Scope;
211 begin
212 Generate_Definition (Designator);
213 Set_Is_Abstract (Designator);
214 New_Overloaded_Entity (Designator);
215 Check_Delayed_Subprogram (Designator);
217 Set_Categorization_From_Scope (Designator, Scop);
219 if Ekind (Scope (Designator)) = E_Protected_Type then
220 Error_Msg_N
221 ("abstract subprogram not allowed in protected type", N);
222 end if;
224 Generate_Reference_To_Formals (Designator);
225 end Analyze_Abstract_Subprogram_Declaration;
227 ----------------------------
228 -- Analyze_Function_Call --
229 ----------------------------
231 procedure Analyze_Function_Call (N : Node_Id) is
232 P : constant Node_Id := Name (N);
233 L : constant List_Id := Parameter_Associations (N);
234 Actual : Node_Id;
236 begin
237 Analyze (P);
239 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
240 -- as B (A, X). If the rewriting is successful, the call has been
241 -- analyzed and we just return.
243 if Nkind (P) = N_Selected_Component
244 and then Name (N) /= P
245 and then Is_Rewrite_Substitution (N)
246 and then Present (Etype (N))
247 then
248 return;
249 end if;
251 -- If error analyzing name, then set Any_Type as result type and return
253 if Etype (P) = Any_Type then
254 Set_Etype (N, Any_Type);
255 return;
256 end if;
258 -- Otherwise analyze the parameters
260 if Present (L) then
261 Actual := First (L);
262 while Present (Actual) loop
263 Analyze (Actual);
264 Check_Parameterless_Call (Actual);
265 Next (Actual);
266 end loop;
267 end if;
269 Analyze_Call (N);
270 end Analyze_Function_Call;
272 -------------------------------------
273 -- Analyze_Generic_Subprogram_Body --
274 -------------------------------------
276 procedure Analyze_Generic_Subprogram_Body
277 (N : Node_Id;
278 Gen_Id : Entity_Id)
280 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
281 Kind : constant Entity_Kind := Ekind (Gen_Id);
282 Body_Id : Entity_Id;
283 New_N : Node_Id;
284 Spec : Node_Id;
286 begin
287 -- Copy body and disable expansion while analyzing the generic For a
288 -- stub, do not copy the stub (which would load the proper body), this
289 -- will be done when the proper body is analyzed.
291 if Nkind (N) /= N_Subprogram_Body_Stub then
292 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
293 Rewrite (N, New_N);
294 Start_Generic;
295 end if;
297 Spec := Specification (N);
299 -- Within the body of the generic, the subprogram is callable, and
300 -- behaves like the corresponding non-generic unit.
302 Body_Id := Defining_Entity (Spec);
304 if Kind = E_Generic_Procedure
305 and then Nkind (Spec) /= N_Procedure_Specification
306 then
307 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
308 return;
310 elsif Kind = E_Generic_Function
311 and then Nkind (Spec) /= N_Function_Specification
312 then
313 Error_Msg_N ("invalid body for generic function ", Body_Id);
314 return;
315 end if;
317 Set_Corresponding_Body (Gen_Decl, Body_Id);
319 if Has_Completion (Gen_Id)
320 and then Nkind (Parent (N)) /= N_Subunit
321 then
322 Error_Msg_N ("duplicate generic body", N);
323 return;
324 else
325 Set_Has_Completion (Gen_Id);
326 end if;
328 if Nkind (N) = N_Subprogram_Body_Stub then
329 Set_Ekind (Defining_Entity (Specification (N)), Kind);
330 else
331 Set_Corresponding_Spec (N, Gen_Id);
332 end if;
334 if Nkind (Parent (N)) = N_Compilation_Unit then
335 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
336 end if;
338 -- Make generic parameters immediately visible in the body. They are
339 -- needed to process the formals declarations. Then make the formals
340 -- visible in a separate step.
342 New_Scope (Gen_Id);
344 declare
345 E : Entity_Id;
346 First_Ent : Entity_Id;
348 begin
349 First_Ent := First_Entity (Gen_Id);
351 E := First_Ent;
352 while Present (E) and then not Is_Formal (E) loop
353 Install_Entity (E);
354 Next_Entity (E);
355 end loop;
357 Set_Use (Generic_Formal_Declarations (Gen_Decl));
359 -- Now generic formals are visible, and the specification can be
360 -- analyzed, for subsequent conformance check.
362 Body_Id := Analyze_Subprogram_Specification (Spec);
364 -- Make formal parameters visible
366 if Present (E) then
368 -- E is the first formal parameter, we loop through the formals
369 -- installing them so that they will be visible.
371 Set_First_Entity (Gen_Id, E);
372 while Present (E) loop
373 Install_Entity (E);
374 Next_Formal (E);
375 end loop;
376 end if;
378 -- Visible generic entity is callable within its own body
380 Set_Ekind (Gen_Id, Ekind (Body_Id));
381 Set_Ekind (Body_Id, E_Subprogram_Body);
382 Set_Convention (Body_Id, Convention (Gen_Id));
383 Set_Scope (Body_Id, Scope (Gen_Id));
384 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
386 if Nkind (N) = N_Subprogram_Body_Stub then
388 -- No body to analyze, so restore state of generic unit
390 Set_Ekind (Gen_Id, Kind);
391 Set_Ekind (Body_Id, Kind);
393 if Present (First_Ent) then
394 Set_First_Entity (Gen_Id, First_Ent);
395 end if;
397 End_Scope;
398 return;
399 end if;
401 -- If this is a compilation unit, it must be made visible explicitly,
402 -- because the compilation of the declaration, unlike other library
403 -- unit declarations, does not. If it is not a unit, the following
404 -- is redundant but harmless.
406 Set_Is_Immediately_Visible (Gen_Id);
407 Reference_Body_Formals (Gen_Id, Body_Id);
409 Set_Actual_Subtypes (N, Current_Scope);
410 Analyze_Declarations (Declarations (N));
411 Check_Completion;
412 Analyze (Handled_Statement_Sequence (N));
414 Save_Global_References (Original_Node (N));
416 -- Prior to exiting the scope, include generic formals again (if any
417 -- are present) in the set of local entities.
419 if Present (First_Ent) then
420 Set_First_Entity (Gen_Id, First_Ent);
421 end if;
423 Check_References (Gen_Id);
424 end;
426 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
427 End_Scope;
428 Check_Subprogram_Order (N);
430 -- Outside of its body, unit is generic again
432 Set_Ekind (Gen_Id, Kind);
433 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
434 Style.Check_Identifier (Body_Id, Gen_Id);
435 End_Generic;
436 end Analyze_Generic_Subprogram_Body;
438 -----------------------------
439 -- Analyze_Operator_Symbol --
440 -----------------------------
442 -- An operator symbol such as "+" or "and" may appear in context where the
443 -- literal denotes an entity name, such as "+"(x, y) or in context when it
444 -- is just a string, as in (conjunction = "or"). In these cases the parser
445 -- generates this node, and the semantics does the disambiguation. Other
446 -- such case are actuals in an instantiation, the generic unit in an
447 -- instantiation, and pragma arguments.
449 procedure Analyze_Operator_Symbol (N : Node_Id) is
450 Par : constant Node_Id := Parent (N);
452 begin
453 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
454 or else Nkind (Par) = N_Function_Instantiation
455 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
456 or else (Nkind (Par) = N_Pragma_Argument_Association
457 and then not Is_Pragma_String_Literal (Par))
458 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
459 or else (Nkind (Par) = N_Attribute_Reference
460 and then Attribute_Name (Par) /= Name_Value)
461 then
462 Find_Direct_Name (N);
464 else
465 Change_Operator_Symbol_To_String_Literal (N);
466 Analyze (N);
467 end if;
468 end Analyze_Operator_Symbol;
470 -----------------------------------
471 -- Analyze_Parameter_Association --
472 -----------------------------------
474 procedure Analyze_Parameter_Association (N : Node_Id) is
475 begin
476 Analyze (Explicit_Actual_Parameter (N));
477 end Analyze_Parameter_Association;
479 ----------------------------
480 -- Analyze_Procedure_Call --
481 ----------------------------
483 procedure Analyze_Procedure_Call (N : Node_Id) is
484 Loc : constant Source_Ptr := Sloc (N);
485 P : constant Node_Id := Name (N);
486 Actuals : constant List_Id := Parameter_Associations (N);
487 Actual : Node_Id;
488 New_N : Node_Id;
490 procedure Analyze_Call_And_Resolve;
491 -- Do Analyze and Resolve calls for procedure call
493 ------------------------------
494 -- Analyze_Call_And_Resolve --
495 ------------------------------
497 procedure Analyze_Call_And_Resolve is
498 begin
499 if Nkind (N) = N_Procedure_Call_Statement then
500 Analyze_Call (N);
501 Resolve (N, Standard_Void_Type);
502 else
503 Analyze (N);
504 end if;
505 end Analyze_Call_And_Resolve;
507 -- Start of processing for Analyze_Procedure_Call
509 begin
510 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
511 -- a procedure call or an entry call. The prefix may denote an access
512 -- to subprogram type, in which case an implicit dereference applies.
513 -- If the prefix is an indexed component (without implicit defererence)
514 -- then the construct denotes a call to a member of an entire family.
515 -- If the prefix is a simple name, it may still denote a call to a
516 -- parameterless member of an entry family. Resolution of these various
517 -- interpretations is delicate.
519 Analyze (P);
521 -- If this is a call of the form Obj.Op, the call may have been
522 -- analyzed and possibly rewritten into a block, in which case
523 -- we are done.
525 if Analyzed (N) then
526 return;
527 end if;
529 -- If error analyzing prefix, then set Any_Type as result and return
531 if Etype (P) = Any_Type then
532 Set_Etype (N, Any_Type);
533 return;
534 end if;
536 -- Otherwise analyze the parameters
538 if Present (Actuals) then
539 Actual := First (Actuals);
541 while Present (Actual) loop
542 Analyze (Actual);
543 Check_Parameterless_Call (Actual);
544 Next (Actual);
545 end loop;
546 end if;
548 -- Special processing for Elab_Spec and Elab_Body calls
550 if Nkind (P) = N_Attribute_Reference
551 and then (Attribute_Name (P) = Name_Elab_Spec
552 or else Attribute_Name (P) = Name_Elab_Body)
553 then
554 if Present (Actuals) then
555 Error_Msg_N
556 ("no parameters allowed for this call", First (Actuals));
557 return;
558 end if;
560 Set_Etype (N, Standard_Void_Type);
561 Set_Analyzed (N);
563 elsif Is_Entity_Name (P)
564 and then Is_Record_Type (Etype (Entity (P)))
565 and then Remote_AST_I_Dereference (P)
566 then
567 return;
569 elsif Is_Entity_Name (P)
570 and then Ekind (Entity (P)) /= E_Entry_Family
571 then
572 if Is_Access_Type (Etype (P))
573 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
574 and then No (Actuals)
575 and then Comes_From_Source (N)
576 then
577 Error_Msg_N ("missing explicit dereference in call", N);
578 end if;
580 Analyze_Call_And_Resolve;
582 -- If the prefix is the simple name of an entry family, this is
583 -- a parameterless call from within the task body itself.
585 elsif Is_Entity_Name (P)
586 and then Nkind (P) = N_Identifier
587 and then Ekind (Entity (P)) = E_Entry_Family
588 and then Present (Actuals)
589 and then No (Next (First (Actuals)))
590 then
591 -- Can be call to parameterless entry family. What appears to be the
592 -- sole argument is in fact the entry index. Rewrite prefix of node
593 -- accordingly. Source representation is unchanged by this
594 -- transformation.
596 New_N :=
597 Make_Indexed_Component (Loc,
598 Prefix =>
599 Make_Selected_Component (Loc,
600 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
601 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
602 Expressions => Actuals);
603 Set_Name (N, New_N);
604 Set_Etype (New_N, Standard_Void_Type);
605 Set_Parameter_Associations (N, No_List);
606 Analyze_Call_And_Resolve;
608 elsif Nkind (P) = N_Explicit_Dereference then
609 if Ekind (Etype (P)) = E_Subprogram_Type then
610 Analyze_Call_And_Resolve;
611 else
612 Error_Msg_N ("expect access to procedure in call", P);
613 end if;
615 -- The name can be a selected component or an indexed component that
616 -- yields an access to subprogram. Such a prefix is legal if the call
617 -- has parameter associations.
619 elsif Is_Access_Type (Etype (P))
620 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
621 then
622 if Present (Actuals) then
623 Analyze_Call_And_Resolve;
624 else
625 Error_Msg_N ("missing explicit dereference in call ", N);
626 end if;
628 -- If not an access to subprogram, then the prefix must resolve to the
629 -- name of an entry, entry family, or protected operation.
631 -- For the case of a simple entry call, P is a selected component where
632 -- the prefix is the task and the selector name is the entry. A call to
633 -- a protected procedure will have the same syntax. If the protected
634 -- object contains overloaded operations, the entity may appear as a
635 -- function, the context will select the operation whose type is Void.
637 elsif Nkind (P) = N_Selected_Component
638 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
639 or else
640 Ekind (Entity (Selector_Name (P))) = E_Procedure
641 or else
642 Ekind (Entity (Selector_Name (P))) = E_Function)
643 then
644 Analyze_Call_And_Resolve;
646 elsif Nkind (P) = N_Selected_Component
647 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
648 and then Present (Actuals)
649 and then No (Next (First (Actuals)))
650 then
651 -- Can be call to parameterless entry family. What appears to be the
652 -- sole argument is in fact the entry index. Rewrite prefix of node
653 -- accordingly. Source representation is unchanged by this
654 -- transformation.
656 New_N :=
657 Make_Indexed_Component (Loc,
658 Prefix => New_Copy (P),
659 Expressions => Actuals);
660 Set_Name (N, New_N);
661 Set_Etype (New_N, Standard_Void_Type);
662 Set_Parameter_Associations (N, No_List);
663 Analyze_Call_And_Resolve;
665 -- For the case of a reference to an element of an entry family, P is
666 -- an indexed component whose prefix is a selected component (task and
667 -- entry family), and whose index is the entry family index.
669 elsif Nkind (P) = N_Indexed_Component
670 and then Nkind (Prefix (P)) = N_Selected_Component
671 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
672 then
673 Analyze_Call_And_Resolve;
675 -- If the prefix is the name of an entry family, it is a call from
676 -- within the task body itself.
678 elsif Nkind (P) = N_Indexed_Component
679 and then Nkind (Prefix (P)) = N_Identifier
680 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
681 then
682 New_N :=
683 Make_Selected_Component (Loc,
684 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
685 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
686 Rewrite (Prefix (P), New_N);
687 Analyze (P);
688 Analyze_Call_And_Resolve;
690 -- Anything else is an error
692 else
693 Error_Msg_N ("invalid procedure or entry call", N);
694 end if;
695 end Analyze_Procedure_Call;
697 ------------------------------
698 -- Analyze_Return_Statement --
699 ------------------------------
701 procedure Analyze_Return_Statement (N : Node_Id) is
702 Loc : constant Source_Ptr := Sloc (N);
703 Expr : Node_Id;
704 Scope_Id : Entity_Id;
705 Kind : Entity_Kind;
706 R_Type : Entity_Id;
708 begin
709 -- Find subprogram or accept statement enclosing the return statement
711 Scope_Id := Empty;
712 for J in reverse 0 .. Scope_Stack.Last loop
713 Scope_Id := Scope_Stack.Table (J).Entity;
714 exit when Ekind (Scope_Id) /= E_Block and then
715 Ekind (Scope_Id) /= E_Loop;
716 end loop;
718 pragma Assert (Present (Scope_Id));
720 Kind := Ekind (Scope_Id);
721 Expr := Expression (N);
723 if Kind /= E_Function
724 and then Kind /= E_Generic_Function
725 and then Kind /= E_Procedure
726 and then Kind /= E_Generic_Procedure
727 and then Kind /= E_Entry
728 and then Kind /= E_Entry_Family
729 then
730 Error_Msg_N ("illegal context for return statement", N);
732 elsif Present (Expr) then
733 if Kind = E_Function or else Kind = E_Generic_Function then
734 Set_Return_Present (Scope_Id);
735 R_Type := Etype (Scope_Id);
736 Set_Return_Type (N, R_Type);
737 Analyze_And_Resolve (Expr, R_Type);
739 -- Ada 2005 (AI-318-02): When the result type is an anonymous
740 -- access type, apply an implicit conversion of the expression
741 -- to that type to force appropriate static and run-time
742 -- accessibility checks.
744 if Ada_Version >= Ada_05
745 and then Ekind (R_Type) = E_Anonymous_Access_Type
746 then
747 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
748 Analyze_And_Resolve (Expr, R_Type);
749 end if;
751 if (Is_Class_Wide_Type (Etype (Expr))
752 or else Is_Dynamically_Tagged (Expr))
753 and then not Is_Class_Wide_Type (R_Type)
754 then
755 Error_Msg_N
756 ("dynamically tagged expression not allowed!", Expr);
757 end if;
759 Apply_Constraint_Check (Expr, R_Type);
761 -- Ada 2005 (AI-318-02): Return-by-reference types have been
762 -- removed and replaced by anonymous access results. This is
763 -- an incompatibility with Ada 95. Not clear whether this
764 -- should be enforced yet or perhaps controllable with a
765 -- special switch. ???
767 -- if Ada_Version >= Ada_05
768 -- and then Is_Limited_Type (R_Type)
769 -- and then Nkind (Expr) /= N_Aggregate
770 -- and then Nkind (Expr) /= N_Extension_Aggregate
771 -- and then Nkind (Expr) /= N_Function_Call
772 -- then
773 -- Error_Msg_N
774 -- ("(Ada 2005) illegal operand for limited return", N);
775 -- end if;
777 -- ??? A real run-time accessibility check is needed in cases
778 -- involving dereferences of access parameters. For now we just
779 -- check the static cases.
781 if Is_Return_By_Reference_Type (Etype (Scope_Id))
782 and then Object_Access_Level (Expr)
783 > Subprogram_Access_Level (Scope_Id)
784 then
785 Rewrite (N,
786 Make_Raise_Program_Error (Loc,
787 Reason => PE_Accessibility_Check_Failed));
788 Analyze (N);
790 Error_Msg_N
791 ("cannot return a local value by reference?", N);
792 Error_Msg_NE
793 ("& will be raised at run time?!",
794 N, Standard_Program_Error);
795 end if;
797 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
798 Error_Msg_N ("procedure cannot return value (use function)", N);
800 else
801 Error_Msg_N ("accept statement cannot return value", N);
802 end if;
804 -- No expression present
806 else
807 if Kind = E_Function or Kind = E_Generic_Function then
808 Error_Msg_N ("missing expression in return from function", N);
809 end if;
811 if (Ekind (Scope_Id) = E_Procedure
812 or else Ekind (Scope_Id) = E_Generic_Procedure)
813 and then No_Return (Scope_Id)
814 then
815 Error_Msg_N
816 ("RETURN statement not allowed (No_Return)", N);
817 end if;
818 end if;
820 Check_Unreachable_Code (N);
821 end Analyze_Return_Statement;
823 -------------------------
824 -- Analyze_Return_Type --
825 -------------------------
827 procedure Analyze_Return_Type (N : Node_Id) is
828 Designator : constant Entity_Id := Defining_Entity (N);
829 Typ : Entity_Id := Empty;
831 begin
832 if Result_Definition (N) /= Error then
833 if Nkind (Result_Definition (N)) = N_Access_Definition then
834 Typ := Access_Definition (N, Result_Definition (N));
835 Set_Parent (Typ, Result_Definition (N));
836 Set_Is_Local_Anonymous_Access (Typ);
837 Set_Etype (Designator, Typ);
839 -- Ada 2005 (AI-231): Static checks
841 -- Null_Exclusion_Static_Checks needs to be extended to handle
842 -- null exclusion checks for function specifications. ???
844 -- if Null_Exclusion_Present (N) then
845 -- Null_Exclusion_Static_Checks (Param_Spec);
846 -- end if;
848 -- Subtype_Mark case
850 else
851 Find_Type (Result_Definition (N));
852 Typ := Entity (Result_Definition (N));
853 Set_Etype (Designator, Typ);
855 if Ekind (Typ) = E_Incomplete_Type
856 or else (Is_Class_Wide_Type (Typ)
857 and then
858 Ekind (Root_Type (Typ)) = E_Incomplete_Type)
859 then
860 Error_Msg_N
861 ("invalid use of incomplete type", Result_Definition (N));
862 end if;
863 end if;
865 else
866 Set_Etype (Designator, Any_Type);
867 end if;
868 end Analyze_Return_Type;
870 -----------------------------
871 -- Analyze_Subprogram_Body --
872 -----------------------------
874 -- This procedure is called for regular subprogram bodies, generic bodies,
875 -- and for subprogram stubs of both kinds. In the case of stubs, only the
876 -- specification matters, and is used to create a proper declaration for
877 -- the subprogram, or to perform conformance checks.
879 procedure Analyze_Subprogram_Body (N : Node_Id) is
880 Loc : constant Source_Ptr := Sloc (N);
881 Body_Spec : constant Node_Id := Specification (N);
882 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
883 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
884 Body_Deleted : constant Boolean := False;
886 HSS : Node_Id;
887 Spec_Id : Entity_Id;
888 Spec_Decl : Node_Id := Empty;
889 Last_Formal : Entity_Id := Empty;
890 Conformant : Boolean;
891 Missing_Ret : Boolean;
892 P_Ent : Entity_Id;
894 procedure Check_Inline_Pragma (Spec : in out Node_Id);
895 -- Look ahead to recognize a pragma that may appear after the body.
896 -- If there is a previous spec, check that it appears in the same
897 -- declarative part. If the pragma is Inline_Always, perform inlining
898 -- unconditionally, otherwise only if Front_End_Inlining is requested.
899 -- If the body acts as a spec, and inlining is required, we create a
900 -- subprogram declaration for it, in order to attach the body to inline.
902 procedure Copy_Parameter_List (Plist : List_Id);
903 -- Comment required ???
905 procedure Verify_Overriding_Indicator;
906 -- If there was a previous spec, the entity has been entered in the
907 -- current scope previously. If the body itself carries an overriding
908 -- indicator, check that it is consistent with the known status of the
909 -- entity.
911 -------------------------
912 -- Check_Inline_Pragma --
913 -------------------------
915 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
916 Prag : Node_Id;
917 Plist : List_Id;
919 begin
920 if not Expander_Active then
921 return;
922 end if;
924 if Is_List_Member (N)
925 and then Present (Next (N))
926 and then Nkind (Next (N)) = N_Pragma
927 then
928 Prag := Next (N);
930 if Nkind (Prag) = N_Pragma
931 and then
932 (Get_Pragma_Id (Chars (Prag)) = Pragma_Inline_Always
933 or else
934 (Front_End_Inlining
935 and then Get_Pragma_Id (Chars (Prag)) = Pragma_Inline))
936 and then
937 Chars
938 (Expression (First (Pragma_Argument_Associations (Prag))))
939 = Chars (Body_Id)
940 then
941 Prag := Next (N);
942 else
943 Prag := Empty;
944 end if;
945 else
946 Prag := Empty;
947 end if;
949 if Present (Prag) then
950 if Present (Spec_Id) then
951 if List_Containing (N) =
952 List_Containing (Unit_Declaration_Node (Spec_Id))
953 then
954 Analyze (Prag);
955 end if;
957 else
958 -- Create a subprogram declaration, to make treatment uniform
960 declare
961 Subp : constant Entity_Id :=
962 Make_Defining_Identifier (Loc, Chars (Body_Id));
963 Decl : constant Node_Id :=
964 Make_Subprogram_Declaration (Loc,
965 Specification => New_Copy_Tree (Specification (N)));
966 begin
967 Set_Defining_Unit_Name (Specification (Decl), Subp);
969 if Present (First_Formal (Body_Id)) then
970 Plist := New_List;
971 Copy_Parameter_List (Plist);
972 Set_Parameter_Specifications
973 (Specification (Decl), Plist);
974 end if;
976 Insert_Before (N, Decl);
977 Analyze (Decl);
978 Analyze (Prag);
979 Set_Has_Pragma_Inline (Subp);
981 if Get_Pragma_Id (Chars (Prag)) = Pragma_Inline_Always then
982 Set_Is_Inlined (Subp);
983 Set_Next_Rep_Item (Prag, First_Rep_Item (Subp));
984 Set_First_Rep_Item (Subp, Prag);
985 end if;
987 Spec := Subp;
988 end;
989 end if;
990 end if;
991 end Check_Inline_Pragma;
993 -------------------------
994 -- Copy_Parameter_List --
995 -------------------------
997 procedure Copy_Parameter_List (Plist : List_Id) is
998 Formal : Entity_Id;
1000 begin
1001 Formal := First_Formal (Body_Id);
1003 while Present (Formal) loop
1004 Append
1005 (Make_Parameter_Specification (Loc,
1006 Defining_Identifier =>
1007 Make_Defining_Identifier (Sloc (Formal),
1008 Chars => Chars (Formal)),
1009 In_Present => In_Present (Parent (Formal)),
1010 Out_Present => Out_Present (Parent (Formal)),
1011 Parameter_Type =>
1012 New_Reference_To (Etype (Formal), Loc),
1013 Expression =>
1014 New_Copy_Tree (Expression (Parent (Formal)))),
1015 Plist);
1017 Next_Formal (Formal);
1018 end loop;
1019 end Copy_Parameter_List;
1021 ---------------------------------
1022 -- Verify_Overriding_Indicator --
1023 ---------------------------------
1025 procedure Verify_Overriding_Indicator is
1026 begin
1027 if Must_Override (Body_Spec)
1028 and then not Is_Overriding_Operation (Spec_Id)
1029 then
1030 Error_Msg_NE
1031 ("subprogram& is not overriding", Body_Spec, Spec_Id);
1033 elsif Must_Not_Override (Body_Spec)
1034 and then Is_Overriding_Operation (Spec_Id)
1035 then
1036 Error_Msg_NE
1037 ("subprogram& overrides inherited operation",
1038 Body_Spec, Spec_Id);
1039 end if;
1040 end Verify_Overriding_Indicator;
1042 -- Start of processing for Analyze_Subprogram_Body
1044 begin
1045 if Debug_Flag_C then
1046 Write_Str ("==== Compiling subprogram body ");
1047 Write_Name (Chars (Body_Id));
1048 Write_Str (" from ");
1049 Write_Location (Loc);
1050 Write_Eol;
1051 end if;
1053 Trace_Scope (N, Body_Id, " Analyze subprogram");
1055 -- Generic subprograms are handled separately. They always have a
1056 -- generic specification. Determine whether current scope has a
1057 -- previous declaration.
1059 -- If the subprogram body is defined within an instance of the same
1060 -- name, the instance appears as a package renaming, and will be hidden
1061 -- within the subprogram.
1063 if Present (Prev_Id)
1064 and then not Is_Overloadable (Prev_Id)
1065 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
1066 or else Comes_From_Source (Prev_Id))
1067 then
1068 if Is_Generic_Subprogram (Prev_Id) then
1069 Spec_Id := Prev_Id;
1070 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1071 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1073 Analyze_Generic_Subprogram_Body (N, Spec_Id);
1074 return;
1076 else
1077 -- Previous entity conflicts with subprogram name. Attempting to
1078 -- enter name will post error.
1080 Enter_Name (Body_Id);
1081 return;
1082 end if;
1084 -- Non-generic case, find the subprogram declaration, if one was seen,
1085 -- or enter new overloaded entity in the current scope. If the
1086 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1087 -- part of the context of one of its subunits. No need to redo the
1088 -- analysis.
1090 elsif Prev_Id = Body_Id
1091 and then Has_Completion (Body_Id)
1092 then
1093 return;
1095 else
1096 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
1098 if Nkind (N) = N_Subprogram_Body_Stub
1099 or else No (Corresponding_Spec (N))
1100 then
1101 Spec_Id := Find_Corresponding_Spec (N);
1103 -- If this is a duplicate body, no point in analyzing it
1105 if Error_Posted (N) then
1106 return;
1107 end if;
1109 -- A subprogram body should cause freezing of its own declaration,
1110 -- but if there was no previous explicit declaration, then the
1111 -- subprogram will get frozen too late (there may be code within
1112 -- the body that depends on the subprogram having been frozen,
1113 -- such as uses of extra formals), so we force it to be frozen
1114 -- here. Same holds if the body and the spec are compilation
1115 -- units.
1117 if No (Spec_Id) then
1118 Freeze_Before (N, Body_Id);
1120 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1121 Freeze_Before (N, Spec_Id);
1122 end if;
1123 else
1124 Spec_Id := Corresponding_Spec (N);
1125 end if;
1126 end if;
1128 -- Do not inline any subprogram that contains nested subprograms, since
1129 -- the backend inlining circuit seems to generate uninitialized
1130 -- references in this case. We know this happens in the case of front
1131 -- end ZCX support, but it also appears it can happen in other cases as
1132 -- well. The backend often rejects attempts to inline in the case of
1133 -- nested procedures anyway, so little if anything is lost by this.
1134 -- Note that this is test is for the benefit of the back-end. There is
1135 -- a separate test for front-end inlining that also rejects nested
1136 -- subprograms.
1138 -- Do not do this test if errors have been detected, because in some
1139 -- error cases, this code blows up, and we don't need it anyway if
1140 -- there have been errors, since we won't get to the linker anyway.
1142 if Comes_From_Source (Body_Id)
1143 and then Serious_Errors_Detected = 0
1144 then
1145 P_Ent := Body_Id;
1146 loop
1147 P_Ent := Scope (P_Ent);
1148 exit when No (P_Ent) or else P_Ent = Standard_Standard;
1150 if Is_Subprogram (P_Ent) then
1151 Set_Is_Inlined (P_Ent, False);
1153 if Comes_From_Source (P_Ent)
1154 and then Has_Pragma_Inline (P_Ent)
1155 then
1156 Cannot_Inline
1157 ("cannot inline& (nested subprogram)?",
1158 N, P_Ent);
1159 end if;
1160 end if;
1161 end loop;
1162 end if;
1164 Check_Inline_Pragma (Spec_Id);
1166 -- Case of fully private operation in the body of the protected type.
1167 -- We must create a declaration for the subprogram, in order to attach
1168 -- the protected subprogram that will be used in internal calls.
1170 if No (Spec_Id)
1171 and then Comes_From_Source (N)
1172 and then Is_Protected_Type (Current_Scope)
1173 then
1174 declare
1175 Decl : Node_Id;
1176 Plist : List_Id;
1177 Formal : Entity_Id;
1178 New_Spec : Node_Id;
1180 begin
1181 Formal := First_Formal (Body_Id);
1183 -- The protected operation always has at least one formal, namely
1184 -- the object itself, but it is only placed in the parameter list
1185 -- if expansion is enabled.
1187 if Present (Formal)
1188 or else Expander_Active
1189 then
1190 Plist := New_List;
1192 else
1193 Plist := No_List;
1194 end if;
1196 Copy_Parameter_List (Plist);
1198 if Nkind (Body_Spec) = N_Procedure_Specification then
1199 New_Spec :=
1200 Make_Procedure_Specification (Loc,
1201 Defining_Unit_Name =>
1202 Make_Defining_Identifier (Sloc (Body_Id),
1203 Chars => Chars (Body_Id)),
1204 Parameter_Specifications => Plist);
1205 else
1206 New_Spec :=
1207 Make_Function_Specification (Loc,
1208 Defining_Unit_Name =>
1209 Make_Defining_Identifier (Sloc (Body_Id),
1210 Chars => Chars (Body_Id)),
1211 Parameter_Specifications => Plist,
1212 Result_Definition =>
1213 New_Occurrence_Of (Etype (Body_Id), Loc));
1214 end if;
1216 Decl :=
1217 Make_Subprogram_Declaration (Loc,
1218 Specification => New_Spec);
1219 Insert_Before (N, Decl);
1220 Spec_Id := Defining_Unit_Name (New_Spec);
1222 -- Indicate that the entity comes from source, to ensure that
1223 -- cross-reference information is properly generated. The body
1224 -- itself is rewritten during expansion, and the body entity will
1225 -- not appear in calls to the operation.
1227 Set_Comes_From_Source (Spec_Id, True);
1228 Analyze (Decl);
1229 Set_Has_Completion (Spec_Id);
1230 Set_Convention (Spec_Id, Convention_Protected);
1231 end;
1233 elsif Present (Spec_Id) then
1234 Spec_Decl := Unit_Declaration_Node (Spec_Id);
1235 Verify_Overriding_Indicator;
1236 end if;
1238 -- Place subprogram on scope stack, and make formals visible. If there
1239 -- is a spec, the visible entity remains that of the spec.
1241 if Present (Spec_Id) then
1242 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
1244 if Is_Child_Unit (Spec_Id) then
1245 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
1246 end if;
1248 if Style_Check then
1249 Style.Check_Identifier (Body_Id, Spec_Id);
1250 end if;
1252 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1253 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1255 if Is_Abstract (Spec_Id) then
1256 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1257 return;
1258 else
1259 Set_Convention (Body_Id, Convention (Spec_Id));
1260 Set_Has_Completion (Spec_Id);
1262 if Is_Protected_Type (Scope (Spec_Id)) then
1263 Set_Privals_Chain (Spec_Id, New_Elmt_List);
1264 end if;
1266 -- If this is a body generated for a renaming, do not check for
1267 -- full conformance. The check is redundant, because the spec of
1268 -- the body is a copy of the spec in the renaming declaration,
1269 -- and the test can lead to spurious errors on nested defaults.
1271 if Present (Spec_Decl)
1272 and then not Comes_From_Source (N)
1273 and then
1274 (Nkind (Original_Node (Spec_Decl)) =
1275 N_Subprogram_Renaming_Declaration
1276 or else (Present (Corresponding_Body (Spec_Decl))
1277 and then
1278 Nkind (Unit_Declaration_Node
1279 (Corresponding_Body (Spec_Decl))) =
1280 N_Subprogram_Renaming_Declaration))
1281 then
1282 Conformant := True;
1283 else
1284 Check_Conformance
1285 (Body_Id, Spec_Id,
1286 Fully_Conformant, True, Conformant, Body_Id);
1287 end if;
1289 -- If the body is not fully conformant, we have to decide if we
1290 -- should analyze it or not. If it has a really messed up profile
1291 -- then we probably should not analyze it, since we will get too
1292 -- many bogus messages.
1294 -- Our decision is to go ahead in the non-fully conformant case
1295 -- only if it is at least mode conformant with the spec. Note
1296 -- that the call to Check_Fully_Conformant has issued the proper
1297 -- error messages to complain about the lack of conformance.
1299 if not Conformant
1300 and then not Mode_Conformant (Body_Id, Spec_Id)
1301 then
1302 return;
1303 end if;
1304 end if;
1306 if Spec_Id /= Body_Id then
1307 Reference_Body_Formals (Spec_Id, Body_Id);
1308 end if;
1310 if Nkind (N) /= N_Subprogram_Body_Stub then
1311 Set_Corresponding_Spec (N, Spec_Id);
1313 -- Ada 2005 (AI-345): Restore the correct Etype: here we undo the
1314 -- work done by Analyze_Subprogram_Specification to allow the
1315 -- overriding of task, protected and interface primitives.
1317 if Comes_From_Source (Spec_Id)
1318 and then Present (First_Entity (Spec_Id))
1319 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
1320 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
1321 and then Present (Abstract_Interfaces
1322 (Etype (First_Entity (Spec_Id))))
1323 and then Present (Corresponding_Concurrent_Type
1324 (Etype (First_Entity (Spec_Id))))
1325 then
1326 Set_Etype (First_Entity (Spec_Id),
1327 Corresponding_Concurrent_Type
1328 (Etype (First_Entity (Spec_Id))));
1329 end if;
1331 -- Comment needed here, since this is not Ada 2005 stuff! ???
1333 Install_Formals (Spec_Id);
1334 Last_Formal := Last_Entity (Spec_Id);
1335 New_Scope (Spec_Id);
1337 -- Make sure that the subprogram is immediately visible. For
1338 -- child units that have no separate spec this is indispensable.
1339 -- Otherwise it is safe albeit redundant.
1341 Set_Is_Immediately_Visible (Spec_Id);
1342 end if;
1344 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
1345 Set_Ekind (Body_Id, E_Subprogram_Body);
1346 Set_Scope (Body_Id, Scope (Spec_Id));
1348 -- Case of subprogram body with no previous spec
1350 else
1351 if Style_Check
1352 and then Comes_From_Source (Body_Id)
1353 and then not Suppress_Style_Checks (Body_Id)
1354 and then not In_Instance
1355 then
1356 Style.Body_With_No_Spec (N);
1357 end if;
1359 New_Overloaded_Entity (Body_Id);
1361 if Nkind (N) /= N_Subprogram_Body_Stub then
1362 Set_Acts_As_Spec (N);
1363 Generate_Definition (Body_Id);
1364 Generate_Reference
1365 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
1366 Generate_Reference_To_Formals (Body_Id);
1367 Install_Formals (Body_Id);
1368 New_Scope (Body_Id);
1369 end if;
1370 end if;
1372 -- If this is the proper body of a stub, we must verify that the stub
1373 -- conforms to the body, and to the previous spec if one was present.
1374 -- we know already that the body conforms to that spec. This test is
1375 -- only required for subprograms that come from source.
1377 if Nkind (Parent (N)) = N_Subunit
1378 and then Comes_From_Source (N)
1379 and then not Error_Posted (Body_Id)
1380 and then Nkind (Corresponding_Stub (Parent (N))) =
1381 N_Subprogram_Body_Stub
1382 then
1383 declare
1384 Old_Id : constant Entity_Id :=
1385 Defining_Entity
1386 (Specification (Corresponding_Stub (Parent (N))));
1388 Conformant : Boolean := False;
1390 begin
1391 if No (Spec_Id) then
1392 Check_Fully_Conformant (Body_Id, Old_Id);
1394 else
1395 Check_Conformance
1396 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
1398 if not Conformant then
1400 -- The stub was taken to be a new declaration. Indicate
1401 -- that it lacks a body.
1403 Set_Has_Completion (Old_Id, False);
1404 end if;
1405 end if;
1406 end;
1407 end if;
1409 Set_Has_Completion (Body_Id);
1410 Check_Eliminated (Body_Id);
1412 if Nkind (N) = N_Subprogram_Body_Stub then
1413 return;
1415 elsif Present (Spec_Id)
1416 and then Expander_Active
1417 and then
1418 (Is_Always_Inlined (Spec_Id)
1419 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
1420 then
1421 Build_Body_To_Inline (N, Spec_Id);
1422 end if;
1424 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
1425 -- if its specification we have to install the private withed units.
1427 if Is_Compilation_Unit (Body_Id)
1428 and then Scope (Body_Id) = Standard_Standard
1429 then
1430 Install_Private_With_Clauses (Body_Id);
1431 end if;
1433 -- Now we can go on to analyze the body
1435 HSS := Handled_Statement_Sequence (N);
1436 Set_Actual_Subtypes (N, Current_Scope);
1437 Analyze_Declarations (Declarations (N));
1438 Check_Completion;
1439 Analyze (HSS);
1440 Process_End_Label (HSS, 't', Current_Scope);
1441 End_Scope;
1442 Check_Subprogram_Order (N);
1443 Set_Analyzed (Body_Id);
1445 -- If we have a separate spec, then the analysis of the declarations
1446 -- caused the entities in the body to be chained to the spec id, but
1447 -- we want them chained to the body id. Only the formal parameters
1448 -- end up chained to the spec id in this case.
1450 if Present (Spec_Id) then
1452 -- We must conform to the categorization of our spec
1454 Validate_Categorization_Dependency (N, Spec_Id);
1456 -- And if this is a child unit, the parent units must conform
1458 if Is_Child_Unit (Spec_Id) then
1459 Validate_Categorization_Dependency
1460 (Unit_Declaration_Node (Spec_Id), Spec_Id);
1461 end if;
1463 if Present (Last_Formal) then
1464 Set_Next_Entity
1465 (Last_Entity (Body_Id), Next_Entity (Last_Formal));
1466 Set_Next_Entity (Last_Formal, Empty);
1467 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1468 Set_Last_Entity (Spec_Id, Last_Formal);
1470 else
1471 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
1472 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1473 Set_First_Entity (Spec_Id, Empty);
1474 Set_Last_Entity (Spec_Id, Empty);
1475 end if;
1476 end if;
1478 -- If function, check return statements
1480 if Nkind (Body_Spec) = N_Function_Specification then
1481 declare
1482 Id : Entity_Id;
1484 begin
1485 if Present (Spec_Id) then
1486 Id := Spec_Id;
1487 else
1488 Id := Body_Id;
1489 end if;
1491 if Return_Present (Id) then
1492 Check_Returns (HSS, 'F', Missing_Ret);
1494 if Missing_Ret then
1495 Set_Has_Missing_Return (Id);
1496 end if;
1498 elsif not Is_Machine_Code_Subprogram (Id)
1499 and then not Body_Deleted
1500 then
1501 Error_Msg_N ("missing RETURN statement in function body", N);
1502 end if;
1503 end;
1505 -- If procedure with No_Return, check returns
1507 elsif Nkind (Body_Spec) = N_Procedure_Specification
1508 and then Present (Spec_Id)
1509 and then No_Return (Spec_Id)
1510 then
1511 Check_Returns (HSS, 'P', Missing_Ret);
1512 end if;
1514 -- Now we are going to check for variables that are never modified in
1515 -- the body of the procedure. We omit these checks if the first
1516 -- statement of the procedure raises an exception. In particular this
1517 -- deals with the common idiom of a stubbed function, which might
1518 -- appear as something like
1520 -- function F (A : Integer) return Some_Type;
1521 -- X : Some_Type;
1522 -- begin
1523 -- raise Program_Error;
1524 -- return X;
1525 -- end F;
1527 -- Here the purpose of X is simply to satisfy the (annoying)
1528 -- requirement in Ada that there be at least one return, and we
1529 -- certainly do not want to go posting warnings on X that it is not
1530 -- initialized!
1532 declare
1533 Stm : Node_Id := First (Statements (HSS));
1535 begin
1536 -- Skip an initial label (for one thing this occurs when we are in
1537 -- front end ZCX mode, but in any case it is irrelevant).
1539 if Nkind (Stm) = N_Label then
1540 Next (Stm);
1541 end if;
1543 -- Do the test on the original statement before expansion
1545 declare
1546 Ostm : constant Node_Id := Original_Node (Stm);
1548 begin
1549 -- If explicit raise statement, return with no checks
1551 if Nkind (Ostm) = N_Raise_Statement then
1552 return;
1554 -- Check for explicit call cases which likely raise an exception
1556 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
1557 if Is_Entity_Name (Name (Ostm)) then
1558 declare
1559 Ent : constant Entity_Id := Entity (Name (Ostm));
1561 begin
1562 -- If the procedure is marked No_Return, then likely it
1563 -- raises an exception, but in any case it is not coming
1564 -- back here, so no need to check beyond the call.
1566 if Ekind (Ent) = E_Procedure
1567 and then No_Return (Ent)
1568 then
1569 return;
1571 -- If the procedure name is Raise_Exception, then also
1572 -- assume that it raises an exception. The main target
1573 -- here is Ada.Exceptions.Raise_Exception, but this name
1574 -- is pretty evocative in any context! Note that the
1575 -- procedure in Ada.Exceptions is not marked No_Return
1576 -- because of the annoying case of the null exception Id.
1578 elsif Chars (Ent) = Name_Raise_Exception then
1579 return;
1580 end if;
1581 end;
1582 end if;
1583 end if;
1584 end;
1585 end;
1587 -- Check for variables that are never modified
1589 declare
1590 E1, E2 : Entity_Id;
1592 begin
1593 -- If there is a separate spec, then transfer Never_Set_In_Source
1594 -- flags from out parameters to the corresponding entities in the
1595 -- body. The reason we do that is we want to post error flags on
1596 -- the body entities, not the spec entities.
1598 if Present (Spec_Id) then
1599 E1 := First_Entity (Spec_Id);
1601 while Present (E1) loop
1602 if Ekind (E1) = E_Out_Parameter then
1603 E2 := First_Entity (Body_Id);
1604 while Present (E2) loop
1605 exit when Chars (E1) = Chars (E2);
1606 Next_Entity (E2);
1607 end loop;
1609 if Present (E2) then
1610 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
1611 end if;
1612 end if;
1614 Next_Entity (E1);
1615 end loop;
1616 end if;
1618 -- Check references in body unless it was deleted. Note that the
1619 -- check of Body_Deleted here is not just for efficiency, it is
1620 -- necessary to avoid junk warnings on formal parameters.
1622 if not Body_Deleted then
1623 Check_References (Body_Id);
1624 end if;
1625 end;
1626 end Analyze_Subprogram_Body;
1628 ------------------------------------
1629 -- Analyze_Subprogram_Declaration --
1630 ------------------------------------
1632 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
1633 Designator : constant Entity_Id :=
1634 Analyze_Subprogram_Specification (Specification (N));
1635 Scop : constant Entity_Id := Current_Scope;
1637 -- Start of processing for Analyze_Subprogram_Declaration
1639 begin
1640 Generate_Definition (Designator);
1642 -- Check for RCI unit subprogram declarations against in-lined
1643 -- subprograms and subprograms having access parameter or limited
1644 -- parameter without Read and Write (RM E.2.3(12-13)).
1646 Validate_RCI_Subprogram_Declaration (N);
1648 Trace_Scope
1650 Defining_Entity (N),
1651 " Analyze subprogram spec. ");
1653 if Debug_Flag_C then
1654 Write_Str ("==== Compiling subprogram spec ");
1655 Write_Name (Chars (Designator));
1656 Write_Str (" from ");
1657 Write_Location (Sloc (N));
1658 Write_Eol;
1659 end if;
1661 New_Overloaded_Entity (Designator);
1662 Check_Delayed_Subprogram (Designator);
1664 -- What is the following code for, it used to be
1666 -- ??? Set_Suppress_Elaboration_Checks
1667 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
1669 -- The following seems equivalent, but a bit dubious
1671 if Elaboration_Checks_Suppressed (Designator) then
1672 Set_Kill_Elaboration_Checks (Designator);
1673 end if;
1675 if Scop /= Standard_Standard
1676 and then not Is_Child_Unit (Designator)
1677 then
1678 Set_Categorization_From_Scope (Designator, Scop);
1679 else
1680 -- For a compilation unit, check for library-unit pragmas
1682 New_Scope (Designator);
1683 Set_Categorization_From_Pragmas (N);
1684 Validate_Categorization_Dependency (N, Designator);
1685 Pop_Scope;
1686 end if;
1688 -- For a compilation unit, set body required. This flag will only be
1689 -- reset if a valid Import or Interface pragma is processed later on.
1691 if Nkind (Parent (N)) = N_Compilation_Unit then
1692 Set_Body_Required (Parent (N), True);
1694 if Ada_Version >= Ada_05
1695 and then Nkind (Specification (N)) = N_Procedure_Specification
1696 and then Null_Present (Specification (N))
1697 then
1698 Error_Msg_N
1699 ("null procedure cannot be declared at library level", N);
1700 end if;
1701 end if;
1703 Generate_Reference_To_Formals (Designator);
1704 Check_Eliminated (Designator);
1706 -- Ada 2005: if procedure is declared with "is null" qualifier,
1707 -- it requires no body.
1709 if Nkind (Specification (N)) = N_Procedure_Specification
1710 and then Null_Present (Specification (N))
1711 then
1712 Set_Has_Completion (Designator);
1713 Set_Is_Inlined (Designator);
1714 end if;
1715 end Analyze_Subprogram_Declaration;
1717 --------------------------------------
1718 -- Analyze_Subprogram_Specification --
1719 --------------------------------------
1721 -- Reminder: N here really is a subprogram specification (not a subprogram
1722 -- declaration). This procedure is called to analyze the specification in
1723 -- both subprogram bodies and subprogram declarations (specs).
1725 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
1726 Designator : constant Entity_Id := Defining_Entity (N);
1727 Formals : constant List_Id := Parameter_Specifications (N);
1729 function Has_Interface_Formals (T : List_Id) return Boolean;
1730 -- Ada 2005 (AI-251): Returns true if some non class-wide interface
1731 -- formal is found.
1733 ---------------------------
1734 -- Has_Interface_Formals --
1735 ---------------------------
1737 function Has_Interface_Formals (T : List_Id) return Boolean is
1738 Param_Spec : Node_Id;
1739 Formal : Entity_Id;
1741 begin
1742 Param_Spec := First (T);
1744 while Present (Param_Spec) loop
1745 Formal := Defining_Identifier (Param_Spec);
1747 if Is_Class_Wide_Type (Etype (Formal)) then
1748 null;
1750 elsif Is_Interface (Etype (Formal)) then
1751 return True;
1752 end if;
1754 Next (Param_Spec);
1755 end loop;
1757 return False;
1758 end Has_Interface_Formals;
1760 -- Start of processing for Analyze_Subprogram_Specification
1762 begin
1763 Generate_Definition (Designator);
1765 if Nkind (N) = N_Function_Specification then
1766 Set_Ekind (Designator, E_Function);
1767 Set_Mechanism (Designator, Default_Mechanism);
1769 else
1770 Set_Ekind (Designator, E_Procedure);
1771 Set_Etype (Designator, Standard_Void_Type);
1772 end if;
1774 -- Introduce new scope for analysis of the formals and of the
1775 -- return type.
1777 Set_Scope (Designator, Current_Scope);
1779 if Present (Formals) then
1780 New_Scope (Designator);
1781 Process_Formals (Formals, N);
1783 -- Ada 2005 (AI-345): Allow overriding primitives of protected
1784 -- interfaces by means of normal subprograms. For this purpose
1785 -- temporarily use the corresponding record type as the etype
1786 -- of the first formal.
1788 if Ada_Version >= Ada_05
1789 and then Comes_From_Source (Designator)
1790 and then Present (First_Entity (Designator))
1791 and then (Ekind (Etype (First_Entity (Designator)))
1792 = E_Protected_Type
1793 or else
1794 Ekind (Etype (First_Entity (Designator)))
1795 = E_Task_Type)
1796 and then Present (Corresponding_Record_Type
1797 (Etype (First_Entity (Designator))))
1798 and then Present (Abstract_Interfaces
1799 (Corresponding_Record_Type
1800 (Etype (First_Entity (Designator)))))
1801 then
1802 Set_Etype (First_Entity (Designator),
1803 Corresponding_Record_Type (Etype (First_Entity (Designator))));
1804 end if;
1806 End_Scope;
1808 elsif Nkind (N) = N_Function_Specification then
1809 Analyze_Return_Type (N);
1810 end if;
1812 if Nkind (N) = N_Function_Specification then
1813 if Nkind (Designator) = N_Defining_Operator_Symbol then
1814 Valid_Operator_Definition (Designator);
1815 end if;
1817 May_Need_Actuals (Designator);
1819 if Is_Abstract (Etype (Designator))
1820 and then Nkind (Parent (N))
1821 /= N_Abstract_Subprogram_Declaration
1822 and then (Nkind (Parent (N)))
1823 /= N_Formal_Abstract_Subprogram_Declaration
1824 and then (Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1825 or else not Is_Entity_Name (Name (Parent (N)))
1826 or else not Is_Abstract (Entity (Name (Parent (N)))))
1827 then
1828 Error_Msg_N
1829 ("function that returns abstract type must be abstract", N);
1830 end if;
1831 end if;
1833 if Ada_Version >= Ada_05
1834 and then Comes_From_Source (N)
1835 and then Nkind (Parent (N)) /= N_Abstract_Subprogram_Declaration
1836 and then (Nkind (N) /= N_Procedure_Specification
1837 or else
1838 not Null_Present (N))
1839 and then Has_Interface_Formals (Formals)
1840 then
1841 Error_Msg_Name_1 := Chars (Defining_Unit_Name
1842 (Specification (Parent (N))));
1843 Error_Msg_N
1844 ("(Ada 2005) interface subprogram % must be abstract or null", N);
1845 end if;
1847 return Designator;
1848 end Analyze_Subprogram_Specification;
1850 --------------------------
1851 -- Build_Body_To_Inline --
1852 --------------------------
1854 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
1855 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
1856 Original_Body : Node_Id;
1857 Body_To_Analyze : Node_Id;
1858 Max_Size : constant := 10;
1859 Stat_Count : Integer := 0;
1861 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
1862 -- Check for declarations that make inlining not worthwhile
1864 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
1865 -- Check for statements that make inlining not worthwhile: any tasking
1866 -- statement, nested at any level. Keep track of total number of
1867 -- elementary statements, as a measure of acceptable size.
1869 function Has_Pending_Instantiation return Boolean;
1870 -- If some enclosing body contains instantiations that appear before
1871 -- the corresponding generic body, the enclosing body has a freeze node
1872 -- so that it can be elaborated after the generic itself. This might
1873 -- conflict with subsequent inlinings, so that it is unsafe to try to
1874 -- inline in such a case.
1876 procedure Remove_Pragmas;
1877 -- A pragma Unreferenced that mentions a formal parameter has no
1878 -- meaning when the body is inlined and the formals are rewritten.
1879 -- Remove it from body to inline. The analysis of the non-inlined body
1880 -- will handle the pragma properly.
1882 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
1883 -- If the body of the subprogram includes a call that returns an
1884 -- unconstrained type, the secondary stack is involved, and it
1885 -- is not worth inlining.
1887 ------------------------------
1888 -- Has_Excluded_Declaration --
1889 ------------------------------
1891 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
1892 D : Node_Id;
1894 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
1895 -- Nested subprograms make a given body ineligible for inlining, but
1896 -- we make an exception for instantiations of unchecked conversion.
1897 -- The body has not been analyzed yet, so check the name, and verify
1898 -- that the visible entity with that name is the predefined unit.
1900 -----------------------------
1901 -- Is_Unchecked_Conversion --
1902 -----------------------------
1904 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
1905 Id : constant Node_Id := Name (D);
1906 Conv : Entity_Id;
1908 begin
1909 if Nkind (Id) = N_Identifier
1910 and then Chars (Id) = Name_Unchecked_Conversion
1911 then
1912 Conv := Current_Entity (Id);
1914 elsif (Nkind (Id) = N_Selected_Component
1915 or else Nkind (Id) = N_Expanded_Name)
1916 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
1917 then
1918 Conv := Current_Entity (Selector_Name (Id));
1920 else
1921 return False;
1922 end if;
1924 return Present (Conv)
1925 and then Is_Predefined_File_Name
1926 (Unit_File_Name (Get_Source_Unit (Conv)))
1927 and then Is_Intrinsic_Subprogram (Conv);
1928 end Is_Unchecked_Conversion;
1930 -- Start of processing for Has_Excluded_Declaration
1932 begin
1933 D := First (Decls);
1935 while Present (D) loop
1936 if (Nkind (D) = N_Function_Instantiation
1937 and then not Is_Unchecked_Conversion (D))
1938 or else Nkind (D) = N_Protected_Type_Declaration
1939 or else Nkind (D) = N_Package_Declaration
1940 or else Nkind (D) = N_Package_Instantiation
1941 or else Nkind (D) = N_Subprogram_Body
1942 or else Nkind (D) = N_Procedure_Instantiation
1943 or else Nkind (D) = N_Task_Type_Declaration
1944 then
1945 Cannot_Inline
1946 ("cannot inline & (non-allowed declaration)?", D, Subp);
1947 return True;
1948 end if;
1950 Next (D);
1951 end loop;
1953 return False;
1954 end Has_Excluded_Declaration;
1956 ----------------------------
1957 -- Has_Excluded_Statement --
1958 ----------------------------
1960 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
1961 S : Node_Id;
1962 E : Node_Id;
1964 begin
1965 S := First (Stats);
1967 while Present (S) loop
1968 Stat_Count := Stat_Count + 1;
1970 if Nkind (S) = N_Abort_Statement
1971 or else Nkind (S) = N_Asynchronous_Select
1972 or else Nkind (S) = N_Conditional_Entry_Call
1973 or else Nkind (S) = N_Delay_Relative_Statement
1974 or else Nkind (S) = N_Delay_Until_Statement
1975 or else Nkind (S) = N_Selective_Accept
1976 or else Nkind (S) = N_Timed_Entry_Call
1977 then
1978 Cannot_Inline
1979 ("cannot inline & (non-allowed statement)?", S, Subp);
1980 return True;
1982 elsif Nkind (S) = N_Block_Statement then
1983 if Present (Declarations (S))
1984 and then Has_Excluded_Declaration (Declarations (S))
1985 then
1986 return True;
1988 elsif Present (Handled_Statement_Sequence (S))
1989 and then
1990 (Present
1991 (Exception_Handlers (Handled_Statement_Sequence (S)))
1992 or else
1993 Has_Excluded_Statement
1994 (Statements (Handled_Statement_Sequence (S))))
1995 then
1996 return True;
1997 end if;
1999 elsif Nkind (S) = N_Case_Statement then
2000 E := First (Alternatives (S));
2001 while Present (E) loop
2002 if Has_Excluded_Statement (Statements (E)) then
2003 return True;
2004 end if;
2006 Next (E);
2007 end loop;
2009 elsif Nkind (S) = N_If_Statement then
2010 if Has_Excluded_Statement (Then_Statements (S)) then
2011 return True;
2012 end if;
2014 if Present (Elsif_Parts (S)) then
2015 E := First (Elsif_Parts (S));
2016 while Present (E) loop
2017 if Has_Excluded_Statement (Then_Statements (E)) then
2018 return True;
2019 end if;
2020 Next (E);
2021 end loop;
2022 end if;
2024 if Present (Else_Statements (S))
2025 and then Has_Excluded_Statement (Else_Statements (S))
2026 then
2027 return True;
2028 end if;
2030 elsif Nkind (S) = N_Loop_Statement
2031 and then Has_Excluded_Statement (Statements (S))
2032 then
2033 return True;
2034 end if;
2036 Next (S);
2037 end loop;
2039 return False;
2040 end Has_Excluded_Statement;
2042 -------------------------------
2043 -- Has_Pending_Instantiation --
2044 -------------------------------
2046 function Has_Pending_Instantiation return Boolean is
2047 S : Entity_Id := Current_Scope;
2049 begin
2050 while Present (S) loop
2051 if Is_Compilation_Unit (S)
2052 or else Is_Child_Unit (S)
2053 then
2054 return False;
2055 elsif Ekind (S) = E_Package
2056 and then Has_Forward_Instantiation (S)
2057 then
2058 return True;
2059 end if;
2061 S := Scope (S);
2062 end loop;
2064 return False;
2065 end Has_Pending_Instantiation;
2067 --------------------
2068 -- Remove_Pragmas --
2069 --------------------
2071 procedure Remove_Pragmas is
2072 Decl : Node_Id;
2073 Nxt : Node_Id;
2075 begin
2076 Decl := First (Declarations (Body_To_Analyze));
2077 while Present (Decl) loop
2078 Nxt := Next (Decl);
2080 if Nkind (Decl) = N_Pragma
2081 and then Chars (Decl) = Name_Unreferenced
2082 then
2083 Remove (Decl);
2084 end if;
2086 Decl := Nxt;
2087 end loop;
2088 end Remove_Pragmas;
2090 --------------------------
2091 -- Uses_Secondary_Stack --
2092 --------------------------
2094 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
2095 function Check_Call (N : Node_Id) return Traverse_Result;
2096 -- Look for function calls that return an unconstrained type
2098 ----------------
2099 -- Check_Call --
2100 ----------------
2102 function Check_Call (N : Node_Id) return Traverse_Result is
2103 begin
2104 if Nkind (N) = N_Function_Call
2105 and then Is_Entity_Name (Name (N))
2106 and then Is_Composite_Type (Etype (Entity (Name (N))))
2107 and then not Is_Constrained (Etype (Entity (Name (N))))
2108 then
2109 Cannot_Inline
2110 ("cannot inline & (call returns unconstrained type)?",
2111 N, Subp);
2112 return Abandon;
2113 else
2114 return OK;
2115 end if;
2116 end Check_Call;
2118 function Check_Calls is new Traverse_Func (Check_Call);
2120 begin
2121 return Check_Calls (Bod) = Abandon;
2122 end Uses_Secondary_Stack;
2124 -- Start of processing for Build_Body_To_Inline
2126 begin
2127 if Nkind (Decl) = N_Subprogram_Declaration
2128 and then Present (Body_To_Inline (Decl))
2129 then
2130 return; -- Done already.
2132 -- Functions that return unconstrained composite types will require
2133 -- secondary stack handling, and cannot currently be inlined.
2134 -- Ditto for functions that return controlled types, where controlled
2135 -- actions interfere in complex ways with inlining.
2137 elsif Ekind (Subp) = E_Function
2138 and then not Is_Scalar_Type (Etype (Subp))
2139 and then not Is_Access_Type (Etype (Subp))
2140 and then not Is_Constrained (Etype (Subp))
2141 then
2142 Cannot_Inline
2143 ("cannot inline & (unconstrained return type)?", N, Subp);
2144 return;
2146 elsif Ekind (Subp) = E_Function
2147 and then Controlled_Type (Etype (Subp))
2148 then
2149 Cannot_Inline
2150 ("cannot inline & (controlled return type)?", N, Subp);
2151 return;
2152 end if;
2154 if Present (Declarations (N))
2155 and then Has_Excluded_Declaration (Declarations (N))
2156 then
2157 return;
2158 end if;
2160 if Present (Handled_Statement_Sequence (N)) then
2161 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
2162 Cannot_Inline
2163 ("cannot inline& (exception handler)?",
2164 First (Exception_Handlers (Handled_Statement_Sequence (N))),
2165 Subp);
2166 return;
2167 elsif
2168 Has_Excluded_Statement
2169 (Statements (Handled_Statement_Sequence (N)))
2170 then
2171 return;
2172 end if;
2173 end if;
2175 -- We do not inline a subprogram that is too large, unless it is
2176 -- marked Inline_Always. This pragma does not suppress the other
2177 -- checks on inlining (forbidden declarations, handlers, etc).
2179 if Stat_Count > Max_Size
2180 and then not Is_Always_Inlined (Subp)
2181 then
2182 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
2183 return;
2184 end if;
2186 if Has_Pending_Instantiation then
2187 Cannot_Inline
2188 ("cannot inline& (forward instance within enclosing body)?",
2189 N, Subp);
2190 return;
2191 end if;
2193 -- Within an instance, the body to inline must be treated as a nested
2194 -- generic, so that the proper global references are preserved.
2196 if In_Instance then
2197 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2198 Original_Body := Copy_Generic_Node (N, Empty, True);
2199 else
2200 Original_Body := Copy_Separate_Tree (N);
2201 end if;
2203 -- We need to capture references to the formals in order to substitute
2204 -- the actuals at the point of inlining, i.e. instantiation. To treat
2205 -- the formals as globals to the body to inline, we nest it within
2206 -- a dummy parameterless subprogram, declared within the real one.
2207 -- To avoid generating an internal name (which is never public, and
2208 -- which affects serial numbers of other generated names), we use
2209 -- an internal symbol that cannot conflict with user declarations.
2211 Set_Parameter_Specifications (Specification (Original_Body), No_List);
2212 Set_Defining_Unit_Name
2213 (Specification (Original_Body),
2214 Make_Defining_Identifier (Sloc (N), Name_uParent));
2215 Set_Corresponding_Spec (Original_Body, Empty);
2217 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
2219 -- Set return type of function, which is also global and does not need
2220 -- to be resolved.
2222 if Ekind (Subp) = E_Function then
2223 Set_Result_Definition (Specification (Body_To_Analyze),
2224 New_Occurrence_Of (Etype (Subp), Sloc (N)));
2225 end if;
2227 if No (Declarations (N)) then
2228 Set_Declarations (N, New_List (Body_To_Analyze));
2229 else
2230 Append (Body_To_Analyze, Declarations (N));
2231 end if;
2233 Expander_Mode_Save_And_Set (False);
2234 Remove_Pragmas;
2236 Analyze (Body_To_Analyze);
2237 New_Scope (Defining_Entity (Body_To_Analyze));
2238 Save_Global_References (Original_Body);
2239 End_Scope;
2240 Remove (Body_To_Analyze);
2242 Expander_Mode_Restore;
2244 if In_Instance then
2245 Restore_Env;
2246 end if;
2248 -- If secondary stk used there is no point in inlining. We have
2249 -- already issued the warning in this case, so nothing to do.
2251 if Uses_Secondary_Stack (Body_To_Analyze) then
2252 return;
2253 end if;
2255 Set_Body_To_Inline (Decl, Original_Body);
2256 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
2257 Set_Is_Inlined (Subp);
2258 end Build_Body_To_Inline;
2260 -------------------
2261 -- Cannot_Inline --
2262 -------------------
2264 procedure Cannot_Inline (Msg : String; N : Node_Id; Subp : Entity_Id) is
2265 begin
2266 -- Do not emit warning if this is a predefined unit which is not
2267 -- the main unit. With validity checks enabled, some predefined
2268 -- subprograms may contain nested subprograms and become ineligible
2269 -- for inlining.
2271 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
2272 and then not In_Extended_Main_Source_Unit (Subp)
2273 then
2274 null;
2276 elsif Is_Always_Inlined (Subp) then
2278 -- Remove last character (question mark) to make this into an error,
2279 -- because the Inline_Always pragma cannot be obeyed.
2281 Error_Msg_NE (Msg (1 .. Msg'Length - 1), N, Subp);
2283 elsif Ineffective_Inline_Warnings then
2284 Error_Msg_NE (Msg, N, Subp);
2285 end if;
2286 end Cannot_Inline;
2288 -----------------------
2289 -- Check_Conformance --
2290 -----------------------
2292 procedure Check_Conformance
2293 (New_Id : Entity_Id;
2294 Old_Id : Entity_Id;
2295 Ctype : Conformance_Type;
2296 Errmsg : Boolean;
2297 Conforms : out Boolean;
2298 Err_Loc : Node_Id := Empty;
2299 Get_Inst : Boolean := False;
2300 Skip_Controlling_Formals : Boolean := False)
2302 Old_Type : constant Entity_Id := Etype (Old_Id);
2303 New_Type : constant Entity_Id := Etype (New_Id);
2304 Old_Formal : Entity_Id;
2305 New_Formal : Entity_Id;
2307 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
2308 -- Post error message for conformance error on given node. Two messages
2309 -- are output. The first points to the previous declaration with a
2310 -- general "no conformance" message. The second is the detailed reason,
2311 -- supplied as Msg. The parameter N provide information for a possible
2312 -- & insertion in the message, and also provides the location for
2313 -- posting the message in the absence of a specified Err_Loc location.
2315 -----------------------
2316 -- Conformance_Error --
2317 -----------------------
2319 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
2320 Enode : Node_Id;
2322 begin
2323 Conforms := False;
2325 if Errmsg then
2326 if No (Err_Loc) then
2327 Enode := N;
2328 else
2329 Enode := Err_Loc;
2330 end if;
2332 Error_Msg_Sloc := Sloc (Old_Id);
2334 case Ctype is
2335 when Type_Conformant =>
2336 Error_Msg_N
2337 ("not type conformant with declaration#!", Enode);
2339 when Mode_Conformant =>
2340 Error_Msg_N
2341 ("not mode conformant with declaration#!", Enode);
2343 when Subtype_Conformant =>
2344 Error_Msg_N
2345 ("not subtype conformant with declaration#!", Enode);
2347 when Fully_Conformant =>
2348 Error_Msg_N
2349 ("not fully conformant with declaration#!", Enode);
2350 end case;
2352 Error_Msg_NE (Msg, Enode, N);
2353 end if;
2354 end Conformance_Error;
2356 -- Start of processing for Check_Conformance
2358 begin
2359 Conforms := True;
2361 -- We need a special case for operators, since they don't appear
2362 -- explicitly.
2364 if Ctype = Type_Conformant then
2365 if Ekind (New_Id) = E_Operator
2366 and then Operator_Matches_Spec (New_Id, Old_Id)
2367 then
2368 return;
2369 end if;
2370 end if;
2372 -- If both are functions/operators, check return types conform
2374 if Old_Type /= Standard_Void_Type
2375 and then New_Type /= Standard_Void_Type
2376 then
2377 if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
2378 Conformance_Error ("return type does not match!", New_Id);
2379 return;
2380 end if;
2382 -- Ada 2005 (AI-231): In case of anonymous access types check the
2383 -- null-exclusion and access-to-constant attributes must match.
2385 if Ada_Version >= Ada_05
2386 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
2387 and then
2388 (Can_Never_Be_Null (Old_Type)
2389 /= Can_Never_Be_Null (New_Type)
2390 or else Is_Access_Constant (Etype (Old_Type))
2391 /= Is_Access_Constant (Etype (New_Type)))
2392 then
2393 Conformance_Error ("return type does not match!", New_Id);
2394 return;
2395 end if;
2397 -- If either is a function/operator and the other isn't, error
2399 elsif Old_Type /= Standard_Void_Type
2400 or else New_Type /= Standard_Void_Type
2401 then
2402 Conformance_Error ("functions can only match functions!", New_Id);
2403 return;
2404 end if;
2406 -- In subtype conformant case, conventions must match (RM 6.3.1(16))
2407 -- If this is a renaming as body, refine error message to indicate that
2408 -- the conflict is with the original declaration. If the entity is not
2409 -- frozen, the conventions don't have to match, the one of the renamed
2410 -- entity is inherited.
2412 if Ctype >= Subtype_Conformant then
2413 if Convention (Old_Id) /= Convention (New_Id) then
2415 if not Is_Frozen (New_Id) then
2416 null;
2418 elsif Present (Err_Loc)
2419 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
2420 and then Present (Corresponding_Spec (Err_Loc))
2421 then
2422 Error_Msg_Name_1 := Chars (New_Id);
2423 Error_Msg_Name_2 :=
2424 Name_Ada + Convention_Id'Pos (Convention (New_Id));
2426 Conformance_Error ("prior declaration for% has convention %!");
2428 else
2429 Conformance_Error ("calling conventions do not match!");
2430 end if;
2432 return;
2434 elsif Is_Formal_Subprogram (Old_Id)
2435 or else Is_Formal_Subprogram (New_Id)
2436 then
2437 Conformance_Error ("formal subprograms not allowed!");
2438 return;
2439 end if;
2440 end if;
2442 -- Deal with parameters
2444 -- Note: we use the entity information, rather than going directly
2445 -- to the specification in the tree. This is not only simpler, but
2446 -- absolutely necessary for some cases of conformance tests between
2447 -- operators, where the declaration tree simply does not exist!
2449 Old_Formal := First_Formal (Old_Id);
2450 New_Formal := First_Formal (New_Id);
2452 while Present (Old_Formal) and then Present (New_Formal) loop
2453 if Is_Controlling_Formal (Old_Formal)
2454 and then Is_Controlling_Formal (New_Formal)
2455 and then Skip_Controlling_Formals
2456 then
2457 goto Skip_Controlling_Formal;
2458 end if;
2460 if Ctype = Fully_Conformant then
2462 -- Names must match. Error message is more accurate if we do
2463 -- this before checking that the types of the formals match.
2465 if Chars (Old_Formal) /= Chars (New_Formal) then
2466 Conformance_Error ("name & does not match!", New_Formal);
2468 -- Set error posted flag on new formal as well to stop
2469 -- junk cascaded messages in some cases.
2471 Set_Error_Posted (New_Formal);
2472 return;
2473 end if;
2474 end if;
2476 -- Types must always match. In the visible part of an instance,
2477 -- usual overloading rules for dispatching operations apply, and
2478 -- we check base types (not the actual subtypes).
2480 if In_Instance_Visible_Part
2481 and then Is_Dispatching_Operation (New_Id)
2482 then
2483 if not Conforming_Types
2484 (Base_Type (Etype (Old_Formal)),
2485 Base_Type (Etype (New_Formal)), Ctype, Get_Inst)
2486 then
2487 Conformance_Error ("type of & does not match!", New_Formal);
2488 return;
2489 end if;
2491 elsif not Conforming_Types
2492 (Etype (Old_Formal), Etype (New_Formal), Ctype, Get_Inst)
2493 then
2494 Conformance_Error ("type of & does not match!", New_Formal);
2495 return;
2496 end if;
2498 -- For mode conformance, mode must match
2500 if Ctype >= Mode_Conformant
2501 and then Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal)
2502 then
2503 Conformance_Error ("mode of & does not match!", New_Formal);
2504 return;
2505 end if;
2507 -- Full conformance checks
2509 if Ctype = Fully_Conformant then
2511 -- We have checked already that names match
2513 if Parameter_Mode (Old_Formal) = E_In_Parameter then
2515 -- Ada 2005 (AI-231): In case of anonymous access types check
2516 -- the null-exclusion and access-to-constant attributes must
2517 -- match.
2519 if Ada_Version >= Ada_05
2520 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
2521 and then
2522 (Can_Never_Be_Null (Old_Formal)
2523 /= Can_Never_Be_Null (New_Formal)
2524 or else Is_Access_Constant (Etype (Old_Formal))
2525 /= Is_Access_Constant (Etype (New_Formal)))
2526 then
2527 -- It is allowed to omit the null-exclusion in case of
2528 -- stream attribute subprograms
2530 declare
2531 TSS_Name : TSS_Name_Type;
2533 begin
2534 Get_Name_String (Chars (New_Id));
2535 TSS_Name :=
2536 TSS_Name_Type
2537 (Name_Buffer
2538 (Name_Len - TSS_Name'Length + 1 .. Name_Len));
2540 if TSS_Name /= TSS_Stream_Read
2541 and then TSS_Name /= TSS_Stream_Write
2542 and then TSS_Name /= TSS_Stream_Input
2543 and then TSS_Name /= TSS_Stream_Output
2544 then
2545 Conformance_Error
2546 ("type of & does not match!", New_Formal);
2547 return;
2548 end if;
2549 end;
2550 end if;
2552 -- Check default expressions for in parameters
2554 declare
2555 NewD : constant Boolean :=
2556 Present (Default_Value (New_Formal));
2557 OldD : constant Boolean :=
2558 Present (Default_Value (Old_Formal));
2559 begin
2560 if NewD or OldD then
2562 -- The old default value has been analyzed because the
2563 -- current full declaration will have frozen everything
2564 -- before. The new default values have not been
2565 -- analyzed, so analyze them now before we check for
2566 -- conformance.
2568 if NewD then
2569 New_Scope (New_Id);
2570 Analyze_Per_Use_Expression
2571 (Default_Value (New_Formal), Etype (New_Formal));
2572 End_Scope;
2573 end if;
2575 if not (NewD and OldD)
2576 or else not Fully_Conformant_Expressions
2577 (Default_Value (Old_Formal),
2578 Default_Value (New_Formal))
2579 then
2580 Conformance_Error
2581 ("default expression for & does not match!",
2582 New_Formal);
2583 return;
2584 end if;
2585 end if;
2586 end;
2587 end if;
2588 end if;
2590 -- A couple of special checks for Ada 83 mode. These checks are
2591 -- skipped if either entity is an operator in package Standard.
2592 -- or if either old or new instance is not from the source program.
2594 if Ada_Version = Ada_83
2595 and then Sloc (Old_Id) > Standard_Location
2596 and then Sloc (New_Id) > Standard_Location
2597 and then Comes_From_Source (Old_Id)
2598 and then Comes_From_Source (New_Id)
2599 then
2600 declare
2601 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
2602 New_Param : constant Node_Id := Declaration_Node (New_Formal);
2604 begin
2605 -- Explicit IN must be present or absent in both cases. This
2606 -- test is required only in the full conformance case.
2608 if In_Present (Old_Param) /= In_Present (New_Param)
2609 and then Ctype = Fully_Conformant
2610 then
2611 Conformance_Error
2612 ("(Ada 83) IN must appear in both declarations",
2613 New_Formal);
2614 return;
2615 end if;
2617 -- Grouping (use of comma in param lists) must be the same
2618 -- This is where we catch a misconformance like:
2620 -- A,B : Integer
2621 -- A : Integer; B : Integer
2623 -- which are represented identically in the tree except
2624 -- for the setting of the flags More_Ids and Prev_Ids.
2626 if More_Ids (Old_Param) /= More_Ids (New_Param)
2627 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
2628 then
2629 Conformance_Error
2630 ("grouping of & does not match!", New_Formal);
2631 return;
2632 end if;
2633 end;
2634 end if;
2636 -- This label is required when skipping controlling formals
2638 <<Skip_Controlling_Formal>>
2640 Next_Formal (Old_Formal);
2641 Next_Formal (New_Formal);
2642 end loop;
2644 if Present (Old_Formal) then
2645 Conformance_Error ("too few parameters!");
2646 return;
2648 elsif Present (New_Formal) then
2649 Conformance_Error ("too many parameters!", New_Formal);
2650 return;
2651 end if;
2652 end Check_Conformance;
2654 ------------------------------
2655 -- Check_Delayed_Subprogram --
2656 ------------------------------
2658 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
2659 F : Entity_Id;
2661 procedure Possible_Freeze (T : Entity_Id);
2662 -- T is the type of either a formal parameter or of the return type.
2663 -- If T is not yet frozen and needs a delayed freeze, then the
2664 -- subprogram itself must be delayed.
2666 ---------------------
2667 -- Possible_Freeze --
2668 ---------------------
2670 procedure Possible_Freeze (T : Entity_Id) is
2671 begin
2672 if Has_Delayed_Freeze (T)
2673 and then not Is_Frozen (T)
2674 then
2675 Set_Has_Delayed_Freeze (Designator);
2677 elsif Is_Access_Type (T)
2678 and then Has_Delayed_Freeze (Designated_Type (T))
2679 and then not Is_Frozen (Designated_Type (T))
2680 then
2681 Set_Has_Delayed_Freeze (Designator);
2682 end if;
2683 end Possible_Freeze;
2685 -- Start of processing for Check_Delayed_Subprogram
2687 begin
2688 -- Never need to freeze abstract subprogram
2690 if Is_Abstract (Designator) then
2691 null;
2692 else
2693 -- Need delayed freeze if return type itself needs a delayed
2694 -- freeze and is not yet frozen.
2696 Possible_Freeze (Etype (Designator));
2697 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
2699 -- Need delayed freeze if any of the formal types themselves need
2700 -- a delayed freeze and are not yet frozen.
2702 F := First_Formal (Designator);
2703 while Present (F) loop
2704 Possible_Freeze (Etype (F));
2705 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
2706 Next_Formal (F);
2707 end loop;
2708 end if;
2710 -- Mark functions that return by reference. Note that it cannot be
2711 -- done for delayed_freeze subprograms because the underlying
2712 -- returned type may not be known yet (for private types)
2714 if not Has_Delayed_Freeze (Designator)
2715 and then Expander_Active
2716 then
2717 declare
2718 Typ : constant Entity_Id := Etype (Designator);
2719 Utyp : constant Entity_Id := Underlying_Type (Typ);
2721 begin
2722 if Is_Return_By_Reference_Type (Typ) then
2723 Set_Returns_By_Ref (Designator);
2725 elsif Present (Utyp) and then Controlled_Type (Utyp) then
2726 Set_Returns_By_Ref (Designator);
2727 end if;
2728 end;
2729 end if;
2730 end Check_Delayed_Subprogram;
2732 ------------------------------------
2733 -- Check_Discriminant_Conformance --
2734 ------------------------------------
2736 procedure Check_Discriminant_Conformance
2737 (N : Node_Id;
2738 Prev : Entity_Id;
2739 Prev_Loc : Node_Id)
2741 Old_Discr : Entity_Id := First_Discriminant (Prev);
2742 New_Discr : Node_Id := First (Discriminant_Specifications (N));
2743 New_Discr_Id : Entity_Id;
2744 New_Discr_Type : Entity_Id;
2746 procedure Conformance_Error (Msg : String; N : Node_Id);
2747 -- Post error message for conformance error on given node. Two messages
2748 -- are output. The first points to the previous declaration with a
2749 -- general "no conformance" message. The second is the detailed reason,
2750 -- supplied as Msg. The parameter N provide information for a possible
2751 -- & insertion in the message.
2753 -----------------------
2754 -- Conformance_Error --
2755 -----------------------
2757 procedure Conformance_Error (Msg : String; N : Node_Id) is
2758 begin
2759 Error_Msg_Sloc := Sloc (Prev_Loc);
2760 Error_Msg_N ("not fully conformant with declaration#!", N);
2761 Error_Msg_NE (Msg, N, N);
2762 end Conformance_Error;
2764 -- Start of processing for Check_Discriminant_Conformance
2766 begin
2767 while Present (Old_Discr) and then Present (New_Discr) loop
2769 New_Discr_Id := Defining_Identifier (New_Discr);
2771 -- The subtype mark of the discriminant on the full type has not
2772 -- been analyzed so we do it here. For an access discriminant a new
2773 -- type is created.
2775 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
2776 New_Discr_Type :=
2777 Access_Definition (N, Discriminant_Type (New_Discr));
2779 else
2780 Analyze (Discriminant_Type (New_Discr));
2781 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
2782 end if;
2784 if not Conforming_Types
2785 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
2786 then
2787 Conformance_Error ("type of & does not match!", New_Discr_Id);
2788 return;
2789 else
2790 -- Treat the new discriminant as an occurrence of the old one,
2791 -- for navigation purposes, and fill in some semantic
2792 -- information, for completeness.
2794 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
2795 Set_Etype (New_Discr_Id, Etype (Old_Discr));
2796 Set_Scope (New_Discr_Id, Scope (Old_Discr));
2797 end if;
2799 -- Names must match
2801 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
2802 Conformance_Error ("name & does not match!", New_Discr_Id);
2803 return;
2804 end if;
2806 -- Default expressions must match
2808 declare
2809 NewD : constant Boolean :=
2810 Present (Expression (New_Discr));
2811 OldD : constant Boolean :=
2812 Present (Expression (Parent (Old_Discr)));
2814 begin
2815 if NewD or OldD then
2817 -- The old default value has been analyzed and expanded,
2818 -- because the current full declaration will have frozen
2819 -- everything before. The new default values have not been
2820 -- expanded, so expand now to check conformance.
2822 if NewD then
2823 Analyze_Per_Use_Expression
2824 (Expression (New_Discr), New_Discr_Type);
2825 end if;
2827 if not (NewD and OldD)
2828 or else not Fully_Conformant_Expressions
2829 (Expression (Parent (Old_Discr)),
2830 Expression (New_Discr))
2832 then
2833 Conformance_Error
2834 ("default expression for & does not match!",
2835 New_Discr_Id);
2836 return;
2837 end if;
2838 end if;
2839 end;
2841 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
2843 if Ada_Version = Ada_83 then
2844 declare
2845 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
2847 begin
2848 -- Grouping (use of comma in param lists) must be the same
2849 -- This is where we catch a misconformance like:
2851 -- A,B : Integer
2852 -- A : Integer; B : Integer
2854 -- which are represented identically in the tree except
2855 -- for the setting of the flags More_Ids and Prev_Ids.
2857 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
2858 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
2859 then
2860 Conformance_Error
2861 ("grouping of & does not match!", New_Discr_Id);
2862 return;
2863 end if;
2864 end;
2865 end if;
2867 Next_Discriminant (Old_Discr);
2868 Next (New_Discr);
2869 end loop;
2871 if Present (Old_Discr) then
2872 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
2873 return;
2875 elsif Present (New_Discr) then
2876 Conformance_Error
2877 ("too many discriminants!", Defining_Identifier (New_Discr));
2878 return;
2879 end if;
2880 end Check_Discriminant_Conformance;
2882 ----------------------------
2883 -- Check_Fully_Conformant --
2884 ----------------------------
2886 procedure Check_Fully_Conformant
2887 (New_Id : Entity_Id;
2888 Old_Id : Entity_Id;
2889 Err_Loc : Node_Id := Empty)
2891 Result : Boolean;
2892 begin
2893 Check_Conformance
2894 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
2895 end Check_Fully_Conformant;
2897 ---------------------------
2898 -- Check_Mode_Conformant --
2899 ---------------------------
2901 procedure Check_Mode_Conformant
2902 (New_Id : Entity_Id;
2903 Old_Id : Entity_Id;
2904 Err_Loc : Node_Id := Empty;
2905 Get_Inst : Boolean := False)
2907 Result : Boolean;
2909 begin
2910 Check_Conformance
2911 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
2912 end Check_Mode_Conformant;
2914 --------------------------------
2915 -- Check_Overriding_Indicator --
2916 --------------------------------
2918 procedure Check_Overriding_Indicator
2919 (Subp : Entity_Id;
2920 Does_Override : Boolean)
2922 Decl : Node_Id;
2923 Spec : Node_Id;
2925 begin
2926 if Ekind (Subp) = E_Enumeration_Literal then
2928 -- No overriding indicator for literals
2930 return;
2932 else
2933 Decl := Unit_Declaration_Node (Subp);
2934 end if;
2936 if Nkind (Decl) = N_Subprogram_Declaration
2937 or else Nkind (Decl) = N_Subprogram_Body
2938 or else Nkind (Decl) = N_Subprogram_Renaming_Declaration
2939 or else Nkind (Decl) = N_Subprogram_Body_Stub
2940 then
2941 Spec := Specification (Decl);
2942 else
2943 return;
2944 end if;
2946 if not Does_Override then
2947 if Must_Override (Spec) then
2948 Error_Msg_NE ("subprogram& is not overriding", Spec, Subp);
2949 end if;
2951 else
2952 if Must_Not_Override (Spec) then
2953 Error_Msg_NE
2954 ("subprogram& overrides inherited operation", Spec, Subp);
2955 end if;
2956 end if;
2957 end Check_Overriding_Indicator;
2959 -------------------
2960 -- Check_Returns --
2961 -------------------
2963 procedure Check_Returns
2964 (HSS : Node_Id;
2965 Mode : Character;
2966 Err : out Boolean)
2968 Handler : Node_Id;
2970 procedure Check_Statement_Sequence (L : List_Id);
2971 -- Internal recursive procedure to check a list of statements for proper
2972 -- termination by a return statement (or a transfer of control or a
2973 -- compound statement that is itself internally properly terminated).
2975 ------------------------------
2976 -- Check_Statement_Sequence --
2977 ------------------------------
2979 procedure Check_Statement_Sequence (L : List_Id) is
2980 Last_Stm : Node_Id;
2981 Kind : Node_Kind;
2983 Raise_Exception_Call : Boolean;
2984 -- Set True if statement sequence terminated by Raise_Exception call
2985 -- or a Reraise_Occurrence call.
2987 begin
2988 Raise_Exception_Call := False;
2990 -- Get last real statement
2992 Last_Stm := Last (L);
2994 -- Don't count pragmas
2996 while Nkind (Last_Stm) = N_Pragma
2998 -- Don't count call to SS_Release (can happen after Raise_Exception)
3000 or else
3001 (Nkind (Last_Stm) = N_Procedure_Call_Statement
3002 and then
3003 Nkind (Name (Last_Stm)) = N_Identifier
3004 and then
3005 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
3007 -- Don't count exception junk
3009 or else
3010 ((Nkind (Last_Stm) = N_Goto_Statement
3011 or else Nkind (Last_Stm) = N_Label
3012 or else Nkind (Last_Stm) = N_Object_Declaration)
3013 and then Exception_Junk (Last_Stm))
3014 loop
3015 Prev (Last_Stm);
3016 end loop;
3018 -- Here we have the "real" last statement
3020 Kind := Nkind (Last_Stm);
3022 -- Transfer of control, OK. Note that in the No_Return procedure
3023 -- case, we already diagnosed any explicit return statements, so
3024 -- we can treat them as OK in this context.
3026 if Is_Transfer (Last_Stm) then
3027 return;
3029 -- Check cases of explicit non-indirect procedure calls
3031 elsif Kind = N_Procedure_Call_Statement
3032 and then Is_Entity_Name (Name (Last_Stm))
3033 then
3034 -- Check call to Raise_Exception procedure which is treated
3035 -- specially, as is a call to Reraise_Occurrence.
3037 -- We suppress the warning in these cases since it is likely that
3038 -- the programmer really does not expect to deal with the case
3039 -- of Null_Occurrence, and thus would find a warning about a
3040 -- missing return curious, and raising Program_Error does not
3041 -- seem such a bad behavior if this does occur.
3043 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
3044 or else
3045 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
3046 then
3047 Raise_Exception_Call := True;
3049 -- For Raise_Exception call, test first argument, if it is
3050 -- an attribute reference for a 'Identity call, then we know
3051 -- that the call cannot possibly return.
3053 declare
3054 Arg : constant Node_Id :=
3055 Original_Node (First_Actual (Last_Stm));
3057 begin
3058 if Nkind (Arg) = N_Attribute_Reference
3059 and then Attribute_Name (Arg) = Name_Identity
3060 then
3061 return;
3062 end if;
3063 end;
3064 end if;
3066 -- If statement, need to look inside if there is an else and check
3067 -- each constituent statement sequence for proper termination.
3069 elsif Kind = N_If_Statement
3070 and then Present (Else_Statements (Last_Stm))
3071 then
3072 Check_Statement_Sequence (Then_Statements (Last_Stm));
3073 Check_Statement_Sequence (Else_Statements (Last_Stm));
3075 if Present (Elsif_Parts (Last_Stm)) then
3076 declare
3077 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
3079 begin
3080 while Present (Elsif_Part) loop
3081 Check_Statement_Sequence (Then_Statements (Elsif_Part));
3082 Next (Elsif_Part);
3083 end loop;
3084 end;
3085 end if;
3087 return;
3089 -- Case statement, check each case for proper termination
3091 elsif Kind = N_Case_Statement then
3092 declare
3093 Case_Alt : Node_Id;
3095 begin
3096 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
3097 while Present (Case_Alt) loop
3098 Check_Statement_Sequence (Statements (Case_Alt));
3099 Next_Non_Pragma (Case_Alt);
3100 end loop;
3101 end;
3103 return;
3105 -- Block statement, check its handled sequence of statements
3107 elsif Kind = N_Block_Statement then
3108 declare
3109 Err1 : Boolean;
3111 begin
3112 Check_Returns
3113 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
3115 if Err1 then
3116 Err := True;
3117 end if;
3119 return;
3120 end;
3122 -- Loop statement. If there is an iteration scheme, we can definitely
3123 -- fall out of the loop. Similarly if there is an exit statement, we
3124 -- can fall out. In either case we need a following return.
3126 elsif Kind = N_Loop_Statement then
3127 if Present (Iteration_Scheme (Last_Stm))
3128 or else Has_Exit (Entity (Identifier (Last_Stm)))
3129 then
3130 null;
3132 -- A loop with no exit statement or iteration scheme if either
3133 -- an inifite loop, or it has some other exit (raise/return).
3134 -- In either case, no warning is required.
3136 else
3137 return;
3138 end if;
3140 -- Timed entry call, check entry call and delay alternatives
3142 -- Note: in expanded code, the timed entry call has been converted
3143 -- to a set of expanded statements on which the check will work
3144 -- correctly in any case.
3146 elsif Kind = N_Timed_Entry_Call then
3147 declare
3148 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
3149 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
3151 begin
3152 -- If statement sequence of entry call alternative is missing,
3153 -- then we can definitely fall through, and we post the error
3154 -- message on the entry call alternative itself.
3156 if No (Statements (ECA)) then
3157 Last_Stm := ECA;
3159 -- If statement sequence of delay alternative is missing, then
3160 -- we can definitely fall through, and we post the error
3161 -- message on the delay alternative itself.
3163 -- Note: if both ECA and DCA are missing the return, then we
3164 -- post only one message, should be enough to fix the bugs.
3165 -- If not we will get a message next time on the DCA when the
3166 -- ECA is fixed!
3168 elsif No (Statements (DCA)) then
3169 Last_Stm := DCA;
3171 -- Else check both statement sequences
3173 else
3174 Check_Statement_Sequence (Statements (ECA));
3175 Check_Statement_Sequence (Statements (DCA));
3176 return;
3177 end if;
3178 end;
3180 -- Conditional entry call, check entry call and else part
3182 -- Note: in expanded code, the conditional entry call has been
3183 -- converted to a set of expanded statements on which the check
3184 -- will work correctly in any case.
3186 elsif Kind = N_Conditional_Entry_Call then
3187 declare
3188 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
3190 begin
3191 -- If statement sequence of entry call alternative is missing,
3192 -- then we can definitely fall through, and we post the error
3193 -- message on the entry call alternative itself.
3195 if No (Statements (ECA)) then
3196 Last_Stm := ECA;
3198 -- Else check statement sequence and else part
3200 else
3201 Check_Statement_Sequence (Statements (ECA));
3202 Check_Statement_Sequence (Else_Statements (Last_Stm));
3203 return;
3204 end if;
3205 end;
3206 end if;
3208 -- If we fall through, issue appropriate message
3210 if Mode = 'F' then
3212 if not Raise_Exception_Call then
3213 Error_Msg_N
3214 ("?RETURN statement missing following this statement!",
3215 Last_Stm);
3216 Error_Msg_N
3217 ("\?Program_Error may be raised at run time",
3218 Last_Stm);
3219 end if;
3221 -- Note: we set Err even though we have not issued a warning
3222 -- because we still have a case of a missing return. This is
3223 -- an extremely marginal case, probably will never be noticed
3224 -- but we might as well get it right.
3226 Err := True;
3228 else
3229 Error_Msg_N
3230 ("implied return after this statement not allowed (No_Return)",
3231 Last_Stm);
3232 end if;
3233 end Check_Statement_Sequence;
3235 -- Start of processing for Check_Returns
3237 begin
3238 Err := False;
3239 Check_Statement_Sequence (Statements (HSS));
3241 if Present (Exception_Handlers (HSS)) then
3242 Handler := First_Non_Pragma (Exception_Handlers (HSS));
3243 while Present (Handler) loop
3244 Check_Statement_Sequence (Statements (Handler));
3245 Next_Non_Pragma (Handler);
3246 end loop;
3247 end if;
3248 end Check_Returns;
3250 ----------------------------
3251 -- Check_Subprogram_Order --
3252 ----------------------------
3254 procedure Check_Subprogram_Order (N : Node_Id) is
3256 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
3257 -- This is used to check if S1 > S2 in the sense required by this
3258 -- test, for example nameab < namec, but name2 < name10.
3260 -----------------------------
3261 -- Subprogram_Name_Greater --
3262 -----------------------------
3264 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
3265 L1, L2 : Positive;
3266 N1, N2 : Natural;
3268 begin
3269 -- Remove trailing numeric parts
3271 L1 := S1'Last;
3272 while S1 (L1) in '0' .. '9' loop
3273 L1 := L1 - 1;
3274 end loop;
3276 L2 := S2'Last;
3277 while S2 (L2) in '0' .. '9' loop
3278 L2 := L2 - 1;
3279 end loop;
3281 -- If non-numeric parts non-equal, that's decisive
3283 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
3284 return False;
3286 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
3287 return True;
3289 -- If non-numeric parts equal, compare suffixed numeric parts. Note
3290 -- that a missing suffix is treated as numeric zero in this test.
3292 else
3293 N1 := 0;
3294 while L1 < S1'Last loop
3295 L1 := L1 + 1;
3296 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
3297 end loop;
3299 N2 := 0;
3300 while L2 < S2'Last loop
3301 L2 := L2 + 1;
3302 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
3303 end loop;
3305 return N1 > N2;
3306 end if;
3307 end Subprogram_Name_Greater;
3309 -- Start of processing for Check_Subprogram_Order
3311 begin
3312 -- Check body in alpha order if this is option
3314 if Style_Check
3315 and then Style_Check_Order_Subprograms
3316 and then Nkind (N) = N_Subprogram_Body
3317 and then Comes_From_Source (N)
3318 and then In_Extended_Main_Source_Unit (N)
3319 then
3320 declare
3321 LSN : String_Ptr
3322 renames Scope_Stack.Table
3323 (Scope_Stack.Last).Last_Subprogram_Name;
3325 Body_Id : constant Entity_Id :=
3326 Defining_Entity (Specification (N));
3328 begin
3329 Get_Decoded_Name_String (Chars (Body_Id));
3331 if LSN /= null then
3332 if Subprogram_Name_Greater
3333 (LSN.all, Name_Buffer (1 .. Name_Len))
3334 then
3335 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
3336 end if;
3338 Free (LSN);
3339 end if;
3341 LSN := new String'(Name_Buffer (1 .. Name_Len));
3342 end;
3343 end if;
3344 end Check_Subprogram_Order;
3346 ------------------------------
3347 -- Check_Subtype_Conformant --
3348 ------------------------------
3350 procedure Check_Subtype_Conformant
3351 (New_Id : Entity_Id;
3352 Old_Id : Entity_Id;
3353 Err_Loc : Node_Id := Empty)
3355 Result : Boolean;
3356 begin
3357 Check_Conformance
3358 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
3359 end Check_Subtype_Conformant;
3361 ---------------------------
3362 -- Check_Type_Conformant --
3363 ---------------------------
3365 procedure Check_Type_Conformant
3366 (New_Id : Entity_Id;
3367 Old_Id : Entity_Id;
3368 Err_Loc : Node_Id := Empty)
3370 Result : Boolean;
3371 begin
3372 Check_Conformance
3373 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
3374 end Check_Type_Conformant;
3376 ----------------------
3377 -- Conforming_Types --
3378 ----------------------
3380 function Conforming_Types
3381 (T1 : Entity_Id;
3382 T2 : Entity_Id;
3383 Ctype : Conformance_Type;
3384 Get_Inst : Boolean := False) return Boolean
3386 Type_1 : Entity_Id := T1;
3387 Type_2 : Entity_Id := T2;
3388 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
3390 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
3391 -- If neither T1 nor T2 are generic actual types, or if they are
3392 -- in different scopes (e.g. parent and child instances), then verify
3393 -- that the base types are equal. Otherwise T1 and T2 must be
3394 -- on the same subtype chain. The whole purpose of this procedure
3395 -- is to prevent spurious ambiguities in an instantiation that may
3396 -- arise if two distinct generic types are instantiated with the
3397 -- same actual.
3399 ----------------------
3400 -- Base_Types_Match --
3401 ----------------------
3403 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
3404 begin
3405 if T1 = T2 then
3406 return True;
3408 elsif Base_Type (T1) = Base_Type (T2) then
3410 -- The following is too permissive. A more precise test must
3411 -- check that the generic actual is an ancestor subtype of the
3412 -- other ???.
3414 return not Is_Generic_Actual_Type (T1)
3415 or else not Is_Generic_Actual_Type (T2)
3416 or else Scope (T1) /= Scope (T2);
3418 -- In some cases a type imported through a limited_with clause,
3419 -- and its non-limited view are both visible, for example in an
3420 -- anonymous access_to_classwide type in a formal. Both entities
3421 -- designate the same type.
3423 elsif From_With_Type (T1)
3424 and then Ekind (T1) = E_Incomplete_Type
3425 and then T2 = Non_Limited_View (T1)
3426 then
3427 return True;
3429 elsif From_With_Type (T2)
3430 and then Ekind (T2) = E_Incomplete_Type
3431 and then T1 = Non_Limited_View (T2)
3432 then
3433 return True;
3435 else
3436 return False;
3437 end if;
3438 end Base_Types_Match;
3440 -- Start of processing for Conforming_Types
3442 begin
3443 -- The context is an instance association for a formal
3444 -- access-to-subprogram type; the formal parameter types require
3445 -- mapping because they may denote other formal parameters of the
3446 -- generic unit.
3448 if Get_Inst then
3449 Type_1 := Get_Instance_Of (T1);
3450 Type_2 := Get_Instance_Of (T2);
3451 end if;
3453 -- First see if base types match
3455 if Base_Types_Match (Type_1, Type_2) then
3456 return Ctype <= Mode_Conformant
3457 or else Subtypes_Statically_Match (Type_1, Type_2);
3459 elsif Is_Incomplete_Or_Private_Type (Type_1)
3460 and then Present (Full_View (Type_1))
3461 and then Base_Types_Match (Full_View (Type_1), Type_2)
3462 then
3463 return Ctype <= Mode_Conformant
3464 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
3466 elsif Ekind (Type_2) = E_Incomplete_Type
3467 and then Present (Full_View (Type_2))
3468 and then Base_Types_Match (Type_1, Full_View (Type_2))
3469 then
3470 return Ctype <= Mode_Conformant
3471 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
3473 elsif Is_Private_Type (Type_2)
3474 and then In_Instance
3475 and then Present (Full_View (Type_2))
3476 and then Base_Types_Match (Type_1, Full_View (Type_2))
3477 then
3478 return Ctype <= Mode_Conformant
3479 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
3480 end if;
3482 -- Ada 2005 (AI-254): Anonymous access to subprogram types must be
3483 -- treated recursively because they carry a signature.
3485 Are_Anonymous_Access_To_Subprogram_Types :=
3487 -- Case 1: Anonymous access to subprogram types
3489 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
3490 and then Ekind (Type_2) = E_Anonymous_Access_Subprogram_Type)
3492 -- Case 2: Anonymous access to PROTECTED subprogram types. In this
3493 -- case the anonymous type_declaration has been replaced by an
3494 -- occurrence of an internal access to subprogram type declaration
3495 -- available through the Original_Access_Type attribute
3497 or else
3498 (Ekind (Type_1) = E_Access_Protected_Subprogram_Type
3499 and then Ekind (Type_2) = E_Access_Protected_Subprogram_Type
3500 and then not Comes_From_Source (Type_1)
3501 and then not Comes_From_Source (Type_2)
3502 and then Present (Original_Access_Type (Type_1))
3503 and then Present (Original_Access_Type (Type_2))
3504 and then Ekind (Original_Access_Type (Type_1)) =
3505 E_Anonymous_Access_Protected_Subprogram_Type
3506 and then Ekind (Original_Access_Type (Type_2)) =
3507 E_Anonymous_Access_Protected_Subprogram_Type);
3509 -- Test anonymous access type case. For this case, static subtype
3510 -- matching is required for mode conformance (RM 6.3.1(15))
3512 if (Ekind (Type_1) = E_Anonymous_Access_Type
3513 and then Ekind (Type_2) = E_Anonymous_Access_Type)
3514 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
3515 then
3516 declare
3517 Desig_1 : Entity_Id;
3518 Desig_2 : Entity_Id;
3520 begin
3521 Desig_1 := Directly_Designated_Type (Type_1);
3523 -- An access parameter can designate an incomplete type
3524 -- If the incomplete type is the limited view of a type
3525 -- from a limited_with_clause, check whether the non-limited
3526 -- view is available.
3528 if Ekind (Desig_1) = E_Incomplete_Type then
3529 if Present (Full_View (Desig_1)) then
3530 Desig_1 := Full_View (Desig_1);
3532 elsif Present (Non_Limited_View (Desig_1)) then
3533 Desig_1 := Non_Limited_View (Desig_1);
3534 end if;
3535 end if;
3537 Desig_2 := Directly_Designated_Type (Type_2);
3539 if Ekind (Desig_2) = E_Incomplete_Type then
3540 if Present (Full_View (Desig_2)) then
3541 Desig_2 := Full_View (Desig_2);
3542 elsif Present (Non_Limited_View (Desig_2)) then
3543 Desig_2 := Non_Limited_View (Desig_2);
3544 end if;
3545 end if;
3547 -- The context is an instance association for a formal
3548 -- access-to-subprogram type; formal access parameter designated
3549 -- types require mapping because they may denote other formal
3550 -- parameters of the generic unit.
3552 if Get_Inst then
3553 Desig_1 := Get_Instance_Of (Desig_1);
3554 Desig_2 := Get_Instance_Of (Desig_2);
3555 end if;
3557 -- It is possible for a Class_Wide_Type to be introduced for an
3558 -- incomplete type, in which case there is a separate class_ wide
3559 -- type for the full view. The types conform if their Etypes
3560 -- conform, i.e. one may be the full view of the other. This can
3561 -- only happen in the context of an access parameter, other uses
3562 -- of an incomplete Class_Wide_Type are illegal.
3564 if Is_Class_Wide_Type (Desig_1)
3565 and then Is_Class_Wide_Type (Desig_2)
3566 then
3567 return
3568 Conforming_Types
3569 (Etype (Base_Type (Desig_1)),
3570 Etype (Base_Type (Desig_2)), Ctype);
3572 elsif Are_Anonymous_Access_To_Subprogram_Types then
3573 if Ada_Version < Ada_05 then
3574 return Ctype = Type_Conformant
3575 or else
3576 Subtypes_Statically_Match (Desig_1, Desig_2);
3578 -- We must check the conformance of the signatures themselves
3580 else
3581 declare
3582 Conformant : Boolean;
3583 begin
3584 Check_Conformance
3585 (Desig_1, Desig_2, Ctype, False, Conformant);
3586 return Conformant;
3587 end;
3588 end if;
3590 else
3591 return Base_Type (Desig_1) = Base_Type (Desig_2)
3592 and then (Ctype = Type_Conformant
3593 or else
3594 Subtypes_Statically_Match (Desig_1, Desig_2));
3595 end if;
3596 end;
3598 -- Otherwise definitely no match
3600 else
3601 return False;
3602 end if;
3603 end Conforming_Types;
3605 --------------------------
3606 -- Create_Extra_Formals --
3607 --------------------------
3609 procedure Create_Extra_Formals (E : Entity_Id) is
3610 Formal : Entity_Id;
3611 Last_Extra : Entity_Id;
3612 Formal_Type : Entity_Id;
3613 P_Formal : Entity_Id := Empty;
3615 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id;
3616 -- Add an extra formal, associated with the current Formal. The extra
3617 -- formal is added to the list of extra formals, and also returned as
3618 -- the result. These formals are always of mode IN.
3620 ----------------------
3621 -- Add_Extra_Formal --
3622 ----------------------
3624 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id is
3625 EF : constant Entity_Id :=
3626 Make_Defining_Identifier (Sloc (Formal),
3627 Chars => New_External_Name (Chars (Formal), 'F'));
3629 begin
3630 -- We never generate extra formals if expansion is not active
3631 -- because we don't need them unless we are generating code.
3633 if not Expander_Active then
3634 return Empty;
3635 end if;
3637 -- A little optimization. Never generate an extra formal for the
3638 -- _init operand of an initialization procedure, since it could
3639 -- never be used.
3641 if Chars (Formal) = Name_uInit then
3642 return Empty;
3643 end if;
3645 Set_Ekind (EF, E_In_Parameter);
3646 Set_Actual_Subtype (EF, Typ);
3647 Set_Etype (EF, Typ);
3648 Set_Scope (EF, Scope (Formal));
3649 Set_Mechanism (EF, Default_Mechanism);
3650 Set_Formal_Validity (EF);
3652 Set_Extra_Formal (Last_Extra, EF);
3653 Last_Extra := EF;
3654 return EF;
3655 end Add_Extra_Formal;
3657 -- Start of processing for Create_Extra_Formals
3659 begin
3660 -- If this is a derived subprogram then the subtypes of the parent
3661 -- subprogram's formal parameters will be used to to determine the need
3662 -- for extra formals.
3664 if Is_Overloadable (E) and then Present (Alias (E)) then
3665 P_Formal := First_Formal (Alias (E));
3666 end if;
3668 Last_Extra := Empty;
3669 Formal := First_Formal (E);
3670 while Present (Formal) loop
3671 Last_Extra := Formal;
3672 Next_Formal (Formal);
3673 end loop;
3675 -- If Extra_formals where already created, don't do it again. This
3676 -- situation may arise for subprogram types created as part of
3677 -- dispatching calls (see Expand_Dispatching_Call)
3679 if Present (Last_Extra) and then
3680 Present (Extra_Formal (Last_Extra))
3681 then
3682 return;
3683 end if;
3685 Formal := First_Formal (E);
3687 while Present (Formal) loop
3689 -- Create extra formal for supporting the attribute 'Constrained.
3690 -- The case of a private type view without discriminants also
3691 -- requires the extra formal if the underlying type has defaulted
3692 -- discriminants.
3694 if Ekind (Formal) /= E_In_Parameter then
3695 if Present (P_Formal) then
3696 Formal_Type := Etype (P_Formal);
3697 else
3698 Formal_Type := Etype (Formal);
3699 end if;
3701 -- Do not produce extra formals for Unchecked_Union parameters.
3702 -- Jump directly to the end of the loop.
3704 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
3705 goto Skip_Extra_Formal_Generation;
3706 end if;
3708 if not Has_Discriminants (Formal_Type)
3709 and then Ekind (Formal_Type) in Private_Kind
3710 and then Present (Underlying_Type (Formal_Type))
3711 then
3712 Formal_Type := Underlying_Type (Formal_Type);
3713 end if;
3715 if Has_Discriminants (Formal_Type)
3716 and then
3717 ((not Is_Constrained (Formal_Type)
3718 and then not Is_Indefinite_Subtype (Formal_Type))
3719 or else Present (Extra_Formal (Formal)))
3720 then
3721 Set_Extra_Constrained
3722 (Formal, Add_Extra_Formal (Standard_Boolean));
3723 end if;
3724 end if;
3726 -- Create extra formal for supporting accessibility checking
3728 -- This is suppressed if we specifically suppress accessibility
3729 -- checks at the pacage level for either the subprogram, or the
3730 -- package in which it resides. However, we do not suppress it
3731 -- simply if the scope has accessibility checks suppressed, since
3732 -- this could cause trouble when clients are compiled with a
3733 -- different suppression setting. The explicit checks at the
3734 -- package level are safe from this point of view.
3736 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
3737 and then not
3738 (Explicit_Suppress (E, Accessibility_Check)
3739 or else
3740 Explicit_Suppress (Scope (E), Accessibility_Check))
3741 and then
3742 (not Present (P_Formal)
3743 or else Present (Extra_Accessibility (P_Formal)))
3744 then
3745 -- Temporary kludge: for now we avoid creating the extra formal
3746 -- for access parameters of protected operations because of
3747 -- problem with the case of internal protected calls. ???
3749 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
3750 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
3751 then
3752 Set_Extra_Accessibility
3753 (Formal, Add_Extra_Formal (Standard_Natural));
3754 end if;
3755 end if;
3757 if Present (P_Formal) then
3758 Next_Formal (P_Formal);
3759 end if;
3761 -- This label is required when skipping extra formal generation for
3762 -- Unchecked_Union parameters.
3764 <<Skip_Extra_Formal_Generation>>
3766 Next_Formal (Formal);
3767 end loop;
3768 end Create_Extra_Formals;
3770 -----------------------------
3771 -- Enter_Overloaded_Entity --
3772 -----------------------------
3774 procedure Enter_Overloaded_Entity (S : Entity_Id) is
3775 E : Entity_Id := Current_Entity_In_Scope (S);
3776 C_E : Entity_Id := Current_Entity (S);
3778 begin
3779 if Present (E) then
3780 Set_Has_Homonym (E);
3781 Set_Has_Homonym (S);
3782 end if;
3784 Set_Is_Immediately_Visible (S);
3785 Set_Scope (S, Current_Scope);
3787 -- Chain new entity if front of homonym in current scope, so that
3788 -- homonyms are contiguous.
3790 if Present (E)
3791 and then E /= C_E
3792 then
3793 while Homonym (C_E) /= E loop
3794 C_E := Homonym (C_E);
3795 end loop;
3797 Set_Homonym (C_E, S);
3799 else
3800 E := C_E;
3801 Set_Current_Entity (S);
3802 end if;
3804 Set_Homonym (S, E);
3806 Append_Entity (S, Current_Scope);
3807 Set_Public_Status (S);
3809 if Debug_Flag_E then
3810 Write_Str ("New overloaded entity chain: ");
3811 Write_Name (Chars (S));
3813 E := S;
3814 while Present (E) loop
3815 Write_Str (" "); Write_Int (Int (E));
3816 E := Homonym (E);
3817 end loop;
3819 Write_Eol;
3820 end if;
3822 -- Generate warning for hiding
3824 if Warn_On_Hiding
3825 and then Comes_From_Source (S)
3826 and then In_Extended_Main_Source_Unit (S)
3827 then
3828 E := S;
3829 loop
3830 E := Homonym (E);
3831 exit when No (E);
3833 -- Warn unless genuine overloading
3835 if (not Is_Overloadable (E))
3836 or else Subtype_Conformant (E, S)
3837 then
3838 Error_Msg_Sloc := Sloc (E);
3839 Error_Msg_N ("declaration of & hides one#?", S);
3840 end if;
3841 end loop;
3842 end if;
3843 end Enter_Overloaded_Entity;
3845 -----------------------------
3846 -- Find_Corresponding_Spec --
3847 -----------------------------
3849 function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
3850 Spec : constant Node_Id := Specification (N);
3851 Designator : constant Entity_Id := Defining_Entity (Spec);
3853 E : Entity_Id;
3855 begin
3856 E := Current_Entity (Designator);
3858 while Present (E) loop
3860 -- We are looking for a matching spec. It must have the same scope,
3861 -- and the same name, and either be type conformant, or be the case
3862 -- of a library procedure spec and its body (which belong to one
3863 -- another regardless of whether they are type conformant or not).
3865 if Scope (E) = Current_Scope then
3866 if Current_Scope = Standard_Standard
3867 or else (Ekind (E) = Ekind (Designator)
3868 and then Type_Conformant (E, Designator))
3869 then
3870 -- Within an instantiation, we know that spec and body are
3871 -- subtype conformant, because they were subtype conformant
3872 -- in the generic. We choose the subtype-conformant entity
3873 -- here as well, to resolve spurious ambiguities in the
3874 -- instance that were not present in the generic (i.e. when
3875 -- two different types are given the same actual). If we are
3876 -- looking for a spec to match a body, full conformance is
3877 -- expected.
3879 if In_Instance then
3880 Set_Convention (Designator, Convention (E));
3882 if Nkind (N) = N_Subprogram_Body
3883 and then Present (Homonym (E))
3884 and then not Fully_Conformant (E, Designator)
3885 then
3886 goto Next_Entity;
3888 elsif not Subtype_Conformant (E, Designator) then
3889 goto Next_Entity;
3890 end if;
3891 end if;
3893 if not Has_Completion (E) then
3895 if Nkind (N) /= N_Subprogram_Body_Stub then
3896 Set_Corresponding_Spec (N, E);
3897 end if;
3899 Set_Has_Completion (E);
3900 return E;
3902 elsif Nkind (Parent (N)) = N_Subunit then
3904 -- If this is the proper body of a subunit, the completion
3905 -- flag is set when analyzing the stub.
3907 return E;
3909 -- If body already exists, this is an error unless the
3910 -- previous declaration is the implicit declaration of
3911 -- a derived subprogram, or this is a spurious overloading
3912 -- in an instance.
3914 elsif No (Alias (E))
3915 and then not Is_Intrinsic_Subprogram (E)
3916 and then not In_Instance
3917 then
3918 Error_Msg_Sloc := Sloc (E);
3919 if Is_Imported (E) then
3920 Error_Msg_NE
3921 ("body not allowed for imported subprogram & declared#",
3922 N, E);
3923 else
3924 Error_Msg_NE ("duplicate body for & declared#", N, E);
3925 end if;
3926 end if;
3928 elsif Is_Child_Unit (E)
3929 and then
3930 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
3931 and then
3932 Nkind (Parent (Unit_Declaration_Node (Designator)))
3933 = N_Compilation_Unit
3934 then
3936 -- Child units cannot be overloaded, so a conformance mismatch
3937 -- between body and a previous spec is an error.
3939 Error_Msg_N
3940 ("body of child unit does not match previous declaration", N);
3941 end if;
3942 end if;
3944 <<Next_Entity>>
3945 E := Homonym (E);
3946 end loop;
3948 -- On exit, we know that no previous declaration of subprogram exists
3950 return Empty;
3951 end Find_Corresponding_Spec;
3953 ----------------------
3954 -- Fully_Conformant --
3955 ----------------------
3957 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
3958 Result : Boolean;
3959 begin
3960 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
3961 return Result;
3962 end Fully_Conformant;
3964 ----------------------------------
3965 -- Fully_Conformant_Expressions --
3966 ----------------------------------
3968 function Fully_Conformant_Expressions
3969 (Given_E1 : Node_Id;
3970 Given_E2 : Node_Id) return Boolean
3972 E1 : constant Node_Id := Original_Node (Given_E1);
3973 E2 : constant Node_Id := Original_Node (Given_E2);
3974 -- We always test conformance on original nodes, since it is possible
3975 -- for analysis and/or expansion to make things look as though they
3976 -- conform when they do not, e.g. by converting 1+2 into 3.
3978 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
3979 renames Fully_Conformant_Expressions;
3981 function FCL (L1, L2 : List_Id) return Boolean;
3982 -- Compare elements of two lists for conformance. Elements have to
3983 -- be conformant, and actuals inserted as default parameters do not
3984 -- match explicit actuals with the same value.
3986 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
3987 -- Compare an operator node with a function call
3989 ---------
3990 -- FCL --
3991 ---------
3993 function FCL (L1, L2 : List_Id) return Boolean is
3994 N1, N2 : Node_Id;
3996 begin
3997 if L1 = No_List then
3998 N1 := Empty;
3999 else
4000 N1 := First (L1);
4001 end if;
4003 if L2 = No_List then
4004 N2 := Empty;
4005 else
4006 N2 := First (L2);
4007 end if;
4009 -- Compare two lists, skipping rewrite insertions (we want to
4010 -- compare the original trees, not the expanded versions!)
4012 loop
4013 if Is_Rewrite_Insertion (N1) then
4014 Next (N1);
4015 elsif Is_Rewrite_Insertion (N2) then
4016 Next (N2);
4017 elsif No (N1) then
4018 return No (N2);
4019 elsif No (N2) then
4020 return False;
4021 elsif not FCE (N1, N2) then
4022 return False;
4023 else
4024 Next (N1);
4025 Next (N2);
4026 end if;
4027 end loop;
4028 end FCL;
4030 ---------
4031 -- FCO --
4032 ---------
4034 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
4035 Actuals : constant List_Id := Parameter_Associations (Call_Node);
4036 Act : Node_Id;
4038 begin
4039 if No (Actuals)
4040 or else Entity (Op_Node) /= Entity (Name (Call_Node))
4041 then
4042 return False;
4044 else
4045 Act := First (Actuals);
4047 if Nkind (Op_Node) in N_Binary_Op then
4049 if not FCE (Left_Opnd (Op_Node), Act) then
4050 return False;
4051 end if;
4053 Next (Act);
4054 end if;
4056 return Present (Act)
4057 and then FCE (Right_Opnd (Op_Node), Act)
4058 and then No (Next (Act));
4059 end if;
4060 end FCO;
4062 -- Start of processing for Fully_Conformant_Expressions
4064 begin
4065 -- Non-conformant if paren count does not match. Note: if some idiot
4066 -- complains that we don't do this right for more than 3 levels of
4067 -- parentheses, they will be treated with the respect they deserve :-)
4069 if Paren_Count (E1) /= Paren_Count (E2) then
4070 return False;
4072 -- If same entities are referenced, then they are conformant even if
4073 -- they have different forms (RM 8.3.1(19-20)).
4075 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
4076 if Present (Entity (E1)) then
4077 return Entity (E1) = Entity (E2)
4078 or else (Chars (Entity (E1)) = Chars (Entity (E2))
4079 and then Ekind (Entity (E1)) = E_Discriminant
4080 and then Ekind (Entity (E2)) = E_In_Parameter);
4082 elsif Nkind (E1) = N_Expanded_Name
4083 and then Nkind (E2) = N_Expanded_Name
4084 and then Nkind (Selector_Name (E1)) = N_Character_Literal
4085 and then Nkind (Selector_Name (E2)) = N_Character_Literal
4086 then
4087 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
4089 else
4090 -- Identifiers in component associations don't always have
4091 -- entities, but their names must conform.
4093 return Nkind (E1) = N_Identifier
4094 and then Nkind (E2) = N_Identifier
4095 and then Chars (E1) = Chars (E2);
4096 end if;
4098 elsif Nkind (E1) = N_Character_Literal
4099 and then Nkind (E2) = N_Expanded_Name
4100 then
4101 return Nkind (Selector_Name (E2)) = N_Character_Literal
4102 and then Chars (E1) = Chars (Selector_Name (E2));
4104 elsif Nkind (E2) = N_Character_Literal
4105 and then Nkind (E1) = N_Expanded_Name
4106 then
4107 return Nkind (Selector_Name (E1)) = N_Character_Literal
4108 and then Chars (E2) = Chars (Selector_Name (E1));
4110 elsif Nkind (E1) in N_Op
4111 and then Nkind (E2) = N_Function_Call
4112 then
4113 return FCO (E1, E2);
4115 elsif Nkind (E2) in N_Op
4116 and then Nkind (E1) = N_Function_Call
4117 then
4118 return FCO (E2, E1);
4120 -- Otherwise we must have the same syntactic entity
4122 elsif Nkind (E1) /= Nkind (E2) then
4123 return False;
4125 -- At this point, we specialize by node type
4127 else
4128 case Nkind (E1) is
4130 when N_Aggregate =>
4131 return
4132 FCL (Expressions (E1), Expressions (E2))
4133 and then FCL (Component_Associations (E1),
4134 Component_Associations (E2));
4136 when N_Allocator =>
4137 if Nkind (Expression (E1)) = N_Qualified_Expression
4138 or else
4139 Nkind (Expression (E2)) = N_Qualified_Expression
4140 then
4141 return FCE (Expression (E1), Expression (E2));
4143 -- Check that the subtype marks and any constraints
4144 -- are conformant
4146 else
4147 declare
4148 Indic1 : constant Node_Id := Expression (E1);
4149 Indic2 : constant Node_Id := Expression (E2);
4150 Elt1 : Node_Id;
4151 Elt2 : Node_Id;
4153 begin
4154 if Nkind (Indic1) /= N_Subtype_Indication then
4155 return
4156 Nkind (Indic2) /= N_Subtype_Indication
4157 and then Entity (Indic1) = Entity (Indic2);
4159 elsif Nkind (Indic2) /= N_Subtype_Indication then
4160 return
4161 Nkind (Indic1) /= N_Subtype_Indication
4162 and then Entity (Indic1) = Entity (Indic2);
4164 else
4165 if Entity (Subtype_Mark (Indic1)) /=
4166 Entity (Subtype_Mark (Indic2))
4167 then
4168 return False;
4169 end if;
4171 Elt1 := First (Constraints (Constraint (Indic1)));
4172 Elt2 := First (Constraints (Constraint (Indic2)));
4174 while Present (Elt1) and then Present (Elt2) loop
4175 if not FCE (Elt1, Elt2) then
4176 return False;
4177 end if;
4179 Next (Elt1);
4180 Next (Elt2);
4181 end loop;
4183 return True;
4184 end if;
4185 end;
4186 end if;
4188 when N_Attribute_Reference =>
4189 return
4190 Attribute_Name (E1) = Attribute_Name (E2)
4191 and then FCL (Expressions (E1), Expressions (E2));
4193 when N_Binary_Op =>
4194 return
4195 Entity (E1) = Entity (E2)
4196 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
4197 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
4199 when N_And_Then | N_Or_Else | N_In | N_Not_In =>
4200 return
4201 FCE (Left_Opnd (E1), Left_Opnd (E2))
4202 and then
4203 FCE (Right_Opnd (E1), Right_Opnd (E2));
4205 when N_Character_Literal =>
4206 return
4207 Char_Literal_Value (E1) = Char_Literal_Value (E2);
4209 when N_Component_Association =>
4210 return
4211 FCL (Choices (E1), Choices (E2))
4212 and then FCE (Expression (E1), Expression (E2));
4214 when N_Conditional_Expression =>
4215 return
4216 FCL (Expressions (E1), Expressions (E2));
4218 when N_Explicit_Dereference =>
4219 return
4220 FCE (Prefix (E1), Prefix (E2));
4222 when N_Extension_Aggregate =>
4223 return
4224 FCL (Expressions (E1), Expressions (E2))
4225 and then Null_Record_Present (E1) =
4226 Null_Record_Present (E2)
4227 and then FCL (Component_Associations (E1),
4228 Component_Associations (E2));
4230 when N_Function_Call =>
4231 return
4232 FCE (Name (E1), Name (E2))
4233 and then FCL (Parameter_Associations (E1),
4234 Parameter_Associations (E2));
4236 when N_Indexed_Component =>
4237 return
4238 FCE (Prefix (E1), Prefix (E2))
4239 and then FCL (Expressions (E1), Expressions (E2));
4241 when N_Integer_Literal =>
4242 return (Intval (E1) = Intval (E2));
4244 when N_Null =>
4245 return True;
4247 when N_Operator_Symbol =>
4248 return
4249 Chars (E1) = Chars (E2);
4251 when N_Others_Choice =>
4252 return True;
4254 when N_Parameter_Association =>
4255 return
4256 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
4257 and then FCE (Explicit_Actual_Parameter (E1),
4258 Explicit_Actual_Parameter (E2));
4260 when N_Qualified_Expression =>
4261 return
4262 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
4263 and then FCE (Expression (E1), Expression (E2));
4265 when N_Range =>
4266 return
4267 FCE (Low_Bound (E1), Low_Bound (E2))
4268 and then FCE (High_Bound (E1), High_Bound (E2));
4270 when N_Real_Literal =>
4271 return (Realval (E1) = Realval (E2));
4273 when N_Selected_Component =>
4274 return
4275 FCE (Prefix (E1), Prefix (E2))
4276 and then FCE (Selector_Name (E1), Selector_Name (E2));
4278 when N_Slice =>
4279 return
4280 FCE (Prefix (E1), Prefix (E2))
4281 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
4283 when N_String_Literal =>
4284 declare
4285 S1 : constant String_Id := Strval (E1);
4286 S2 : constant String_Id := Strval (E2);
4287 L1 : constant Nat := String_Length (S1);
4288 L2 : constant Nat := String_Length (S2);
4290 begin
4291 if L1 /= L2 then
4292 return False;
4294 else
4295 for J in 1 .. L1 loop
4296 if Get_String_Char (S1, J) /=
4297 Get_String_Char (S2, J)
4298 then
4299 return False;
4300 end if;
4301 end loop;
4303 return True;
4304 end if;
4305 end;
4307 when N_Type_Conversion =>
4308 return
4309 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
4310 and then FCE (Expression (E1), Expression (E2));
4312 when N_Unary_Op =>
4313 return
4314 Entity (E1) = Entity (E2)
4315 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
4317 when N_Unchecked_Type_Conversion =>
4318 return
4319 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
4320 and then FCE (Expression (E1), Expression (E2));
4322 -- All other node types cannot appear in this context. Strictly
4323 -- we should raise a fatal internal error. Instead we just ignore
4324 -- the nodes. This means that if anyone makes a mistake in the
4325 -- expander and mucks an expression tree irretrievably, the
4326 -- result will be a failure to detect a (probably very obscure)
4327 -- case of non-conformance, which is better than bombing on some
4328 -- case where two expressions do in fact conform.
4330 when others =>
4331 return True;
4333 end case;
4334 end if;
4335 end Fully_Conformant_Expressions;
4337 ----------------------------------------
4338 -- Fully_Conformant_Discrete_Subtypes --
4339 ----------------------------------------
4341 function Fully_Conformant_Discrete_Subtypes
4342 (Given_S1 : Node_Id;
4343 Given_S2 : Node_Id) return Boolean
4345 S1 : constant Node_Id := Original_Node (Given_S1);
4346 S2 : constant Node_Id := Original_Node (Given_S2);
4348 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
4349 -- Special-case for a bound given by a discriminant, which in the body
4350 -- is replaced with the discriminal of the enclosing type.
4352 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
4353 -- Check both bounds
4355 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
4356 begin
4357 if Is_Entity_Name (B1)
4358 and then Is_Entity_Name (B2)
4359 and then Ekind (Entity (B1)) = E_Discriminant
4360 then
4361 return Chars (B1) = Chars (B2);
4363 else
4364 return Fully_Conformant_Expressions (B1, B2);
4365 end if;
4366 end Conforming_Bounds;
4368 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
4369 begin
4370 return
4371 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
4372 and then
4373 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
4374 end Conforming_Ranges;
4376 -- Start of processing for Fully_Conformant_Discrete_Subtypes
4378 begin
4379 if Nkind (S1) /= Nkind (S2) then
4380 return False;
4382 elsif Is_Entity_Name (S1) then
4383 return Entity (S1) = Entity (S2);
4385 elsif Nkind (S1) = N_Range then
4386 return Conforming_Ranges (S1, S2);
4388 elsif Nkind (S1) = N_Subtype_Indication then
4389 return
4390 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
4391 and then
4392 Conforming_Ranges
4393 (Range_Expression (Constraint (S1)),
4394 Range_Expression (Constraint (S2)));
4395 else
4396 return True;
4397 end if;
4398 end Fully_Conformant_Discrete_Subtypes;
4400 --------------------
4401 -- Install_Entity --
4402 --------------------
4404 procedure Install_Entity (E : Entity_Id) is
4405 Prev : constant Entity_Id := Current_Entity (E);
4407 begin
4408 Set_Is_Immediately_Visible (E);
4409 Set_Current_Entity (E);
4410 Set_Homonym (E, Prev);
4411 end Install_Entity;
4413 ---------------------
4414 -- Install_Formals --
4415 ---------------------
4417 procedure Install_Formals (Id : Entity_Id) is
4418 F : Entity_Id;
4420 begin
4421 F := First_Formal (Id);
4423 while Present (F) loop
4424 Install_Entity (F);
4425 Next_Formal (F);
4426 end loop;
4427 end Install_Formals;
4429 ---------------------------------
4430 -- Is_Non_Overriding_Operation --
4431 ---------------------------------
4433 function Is_Non_Overriding_Operation
4434 (Prev_E : Entity_Id;
4435 New_E : Entity_Id) return Boolean
4437 Formal : Entity_Id;
4438 F_Typ : Entity_Id;
4439 G_Typ : Entity_Id := Empty;
4441 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
4442 -- If F_Type is a derived type associated with a generic actual
4443 -- subtype, then return its Generic_Parent_Type attribute, else return
4444 -- Empty.
4446 function Types_Correspond
4447 (P_Type : Entity_Id;
4448 N_Type : Entity_Id) return Boolean;
4449 -- Returns true if and only if the types (or designated types in the
4450 -- case of anonymous access types) are the same or N_Type is derived
4451 -- directly or indirectly from P_Type.
4453 -----------------------------
4454 -- Get_Generic_Parent_Type --
4455 -----------------------------
4457 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
4458 G_Typ : Entity_Id;
4459 Indic : Node_Id;
4461 begin
4462 if Is_Derived_Type (F_Typ)
4463 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
4464 then
4465 -- The tree must be traversed to determine the parent subtype in
4466 -- the generic unit, which unfortunately isn't always available
4467 -- via semantic attributes. ??? (Note: The use of Original_Node
4468 -- is needed for cases where a full derived type has been
4469 -- rewritten.)
4471 Indic := Subtype_Indication
4472 (Type_Definition (Original_Node (Parent (F_Typ))));
4474 if Nkind (Indic) = N_Subtype_Indication then
4475 G_Typ := Entity (Subtype_Mark (Indic));
4476 else
4477 G_Typ := Entity (Indic);
4478 end if;
4480 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
4481 and then Present (Generic_Parent_Type (Parent (G_Typ)))
4482 then
4483 return Generic_Parent_Type (Parent (G_Typ));
4484 end if;
4485 end if;
4487 return Empty;
4488 end Get_Generic_Parent_Type;
4490 ----------------------
4491 -- Types_Correspond --
4492 ----------------------
4494 function Types_Correspond
4495 (P_Type : Entity_Id;
4496 N_Type : Entity_Id) return Boolean
4498 Prev_Type : Entity_Id := Base_Type (P_Type);
4499 New_Type : Entity_Id := Base_Type (N_Type);
4501 begin
4502 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
4503 Prev_Type := Designated_Type (Prev_Type);
4504 end if;
4506 if Ekind (New_Type) = E_Anonymous_Access_Type then
4507 New_Type := Designated_Type (New_Type);
4508 end if;
4510 if Prev_Type = New_Type then
4511 return True;
4513 elsif not Is_Class_Wide_Type (New_Type) then
4514 while Etype (New_Type) /= New_Type loop
4515 New_Type := Etype (New_Type);
4516 if New_Type = Prev_Type then
4517 return True;
4518 end if;
4519 end loop;
4520 end if;
4521 return False;
4522 end Types_Correspond;
4524 -- Start of processing for Is_Non_Overriding_Operation
4526 begin
4527 -- In the case where both operations are implicit derived subprograms
4528 -- then neither overrides the other. This can only occur in certain
4529 -- obscure cases (e.g., derivation from homographs created in a generic
4530 -- instantiation).
4532 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
4533 return True;
4535 elsif Ekind (Current_Scope) = E_Package
4536 and then Is_Generic_Instance (Current_Scope)
4537 and then In_Private_Part (Current_Scope)
4538 and then Comes_From_Source (New_E)
4539 then
4540 -- We examine the formals and result subtype of the inherited
4541 -- operation, to determine whether their type is derived from (the
4542 -- instance of) a generic type.
4544 Formal := First_Formal (Prev_E);
4546 while Present (Formal) loop
4547 F_Typ := Base_Type (Etype (Formal));
4549 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4550 F_Typ := Designated_Type (F_Typ);
4551 end if;
4553 G_Typ := Get_Generic_Parent_Type (F_Typ);
4555 Next_Formal (Formal);
4556 end loop;
4558 if not Present (G_Typ) and then Ekind (Prev_E) = E_Function then
4559 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
4560 end if;
4562 if No (G_Typ) then
4563 return False;
4564 end if;
4566 -- If the generic type is a private type, then the original
4567 -- operation was not overriding in the generic, because there was
4568 -- no primitive operation to override.
4570 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
4571 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
4572 N_Formal_Private_Type_Definition
4573 then
4574 return True;
4576 -- The generic parent type is the ancestor of a formal derived
4577 -- type declaration. We need to check whether it has a primitive
4578 -- operation that should be overridden by New_E in the generic.
4580 else
4581 declare
4582 P_Formal : Entity_Id;
4583 N_Formal : Entity_Id;
4584 P_Typ : Entity_Id;
4585 N_Typ : Entity_Id;
4586 P_Prim : Entity_Id;
4587 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
4589 begin
4590 while Present (Prim_Elt) loop
4591 P_Prim := Node (Prim_Elt);
4593 if Chars (P_Prim) = Chars (New_E)
4594 and then Ekind (P_Prim) = Ekind (New_E)
4595 then
4596 P_Formal := First_Formal (P_Prim);
4597 N_Formal := First_Formal (New_E);
4598 while Present (P_Formal) and then Present (N_Formal) loop
4599 P_Typ := Etype (P_Formal);
4600 N_Typ := Etype (N_Formal);
4602 if not Types_Correspond (P_Typ, N_Typ) then
4603 exit;
4604 end if;
4606 Next_Entity (P_Formal);
4607 Next_Entity (N_Formal);
4608 end loop;
4610 -- Found a matching primitive operation belonging to the
4611 -- formal ancestor type, so the new subprogram is
4612 -- overriding.
4614 if not Present (P_Formal)
4615 and then not Present (N_Formal)
4616 and then (Ekind (New_E) /= E_Function
4617 or else
4618 Types_Correspond
4619 (Etype (P_Prim), Etype (New_E)))
4620 then
4621 return False;
4622 end if;
4623 end if;
4625 Next_Elmt (Prim_Elt);
4626 end loop;
4628 -- If no match found, then the new subprogram does not
4629 -- override in the generic (nor in the instance).
4631 return True;
4632 end;
4633 end if;
4634 else
4635 return False;
4636 end if;
4637 end Is_Non_Overriding_Operation;
4639 ------------------------------
4640 -- Make_Inequality_Operator --
4641 ------------------------------
4643 -- S is the defining identifier of an equality operator. We build a
4644 -- subprogram declaration with the right signature. This operation is
4645 -- intrinsic, because it is always expanded as the negation of the
4646 -- call to the equality function.
4648 procedure Make_Inequality_Operator (S : Entity_Id) is
4649 Loc : constant Source_Ptr := Sloc (S);
4650 Decl : Node_Id;
4651 Formals : List_Id;
4652 Op_Name : Entity_Id;
4654 A : Entity_Id;
4655 B : Entity_Id;
4657 begin
4658 -- Check that equality was properly defined
4660 if No (Next_Formal (First_Formal (S))) then
4661 return;
4662 end if;
4664 A := Make_Defining_Identifier (Loc, Chars (First_Formal (S)));
4665 B := Make_Defining_Identifier (Loc,
4666 Chars (Next_Formal (First_Formal (S))));
4668 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
4670 Formals := New_List (
4671 Make_Parameter_Specification (Loc,
4672 Defining_Identifier => A,
4673 Parameter_Type =>
4674 New_Reference_To (Etype (First_Formal (S)), Loc)),
4676 Make_Parameter_Specification (Loc,
4677 Defining_Identifier => B,
4678 Parameter_Type =>
4679 New_Reference_To (Etype (Next_Formal (First_Formal (S))), Loc)));
4681 Decl :=
4682 Make_Subprogram_Declaration (Loc,
4683 Specification =>
4684 Make_Function_Specification (Loc,
4685 Defining_Unit_Name => Op_Name,
4686 Parameter_Specifications => Formals,
4687 Result_Definition => New_Reference_To (Standard_Boolean, Loc)));
4689 -- Insert inequality right after equality if it is explicit or after
4690 -- the derived type when implicit. These entities are created only for
4691 -- visibility purposes, and eventually replaced in the course of
4692 -- expansion, so they do not need to be attached to the tree and seen
4693 -- by the back-end. Keeping them internal also avoids spurious freezing
4694 -- problems. The declaration is inserted in the tree for analysis, and
4695 -- removed afterwards. If the equality operator comes from an explicit
4696 -- declaration, attach the inequality immediately after. Else the
4697 -- equality is inherited from a derived type declaration, so insert
4698 -- inequality after that declaration.
4700 if No (Alias (S)) then
4701 Insert_After (Unit_Declaration_Node (S), Decl);
4702 elsif Is_List_Member (Parent (S)) then
4703 Insert_After (Parent (S), Decl);
4704 else
4705 Insert_After (Parent (Etype (First_Formal (S))), Decl);
4706 end if;
4708 Mark_Rewrite_Insertion (Decl);
4709 Set_Is_Intrinsic_Subprogram (Op_Name);
4710 Analyze (Decl);
4711 Remove (Decl);
4712 Set_Has_Completion (Op_Name);
4713 Set_Corresponding_Equality (Op_Name, S);
4714 Set_Is_Abstract (Op_Name, Is_Abstract (S));
4715 end Make_Inequality_Operator;
4717 ----------------------
4718 -- May_Need_Actuals --
4719 ----------------------
4721 procedure May_Need_Actuals (Fun : Entity_Id) is
4722 F : Entity_Id;
4723 B : Boolean;
4725 begin
4726 F := First_Formal (Fun);
4727 B := True;
4729 while Present (F) loop
4730 if No (Default_Value (F)) then
4731 B := False;
4732 exit;
4733 end if;
4735 Next_Formal (F);
4736 end loop;
4738 Set_Needs_No_Actuals (Fun, B);
4739 end May_Need_Actuals;
4741 ---------------------
4742 -- Mode_Conformant --
4743 ---------------------
4745 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
4746 Result : Boolean;
4747 begin
4748 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
4749 return Result;
4750 end Mode_Conformant;
4752 ---------------------------
4753 -- New_Overloaded_Entity --
4754 ---------------------------
4756 procedure New_Overloaded_Entity
4757 (S : Entity_Id;
4758 Derived_Type : Entity_Id := Empty)
4760 Does_Override : Boolean := False;
4761 -- Set if the current scope has an operation that is type-conformant
4762 -- with S, and becomes hidden by S.
4764 E : Entity_Id;
4765 -- Entity that S overrides
4767 Prev_Vis : Entity_Id := Empty;
4768 -- Needs comment ???
4770 Is_Alias_Interface : Boolean := False;
4772 function Is_Private_Declaration (E : Entity_Id) return Boolean;
4773 -- Check that E is declared in the private part of the current package,
4774 -- or in the package body, where it may hide a previous declaration.
4775 -- We can't use In_Private_Part by itself because this flag is also
4776 -- set when freezing entities, so we must examine the place of the
4777 -- declaration in the tree, and recognize wrapper packages as well.
4779 procedure Maybe_Primitive_Operation (Is_Overriding : Boolean := False);
4780 -- If the subprogram being analyzed is a primitive operation of
4781 -- the type of one of its formals, set the corresponding flag.
4783 ----------------------------
4784 -- Is_Private_Declaration --
4785 ----------------------------
4787 function Is_Private_Declaration (E : Entity_Id) return Boolean is
4788 Priv_Decls : List_Id;
4789 Decl : constant Node_Id := Unit_Declaration_Node (E);
4791 begin
4792 if Is_Package_Or_Generic_Package (Current_Scope)
4793 and then In_Private_Part (Current_Scope)
4794 then
4795 Priv_Decls :=
4796 Private_Declarations (
4797 Specification (Unit_Declaration_Node (Current_Scope)));
4799 return In_Package_Body (Current_Scope)
4800 or else
4801 (Is_List_Member (Decl)
4802 and then List_Containing (Decl) = Priv_Decls)
4803 or else (Nkind (Parent (Decl)) = N_Package_Specification
4804 and then not Is_Compilation_Unit (
4805 Defining_Entity (Parent (Decl)))
4806 and then List_Containing (Parent (Parent (Decl)))
4807 = Priv_Decls);
4808 else
4809 return False;
4810 end if;
4811 end Is_Private_Declaration;
4813 -------------------------------
4814 -- Maybe_Primitive_Operation --
4815 -------------------------------
4817 procedure Maybe_Primitive_Operation (Is_Overriding : Boolean := False) is
4818 Formal : Entity_Id;
4819 F_Typ : Entity_Id;
4820 B_Typ : Entity_Id;
4822 function Visible_Part_Type (T : Entity_Id) return Boolean;
4823 -- Returns true if T is declared in the visible part of
4824 -- the current package scope; otherwise returns false.
4825 -- Assumes that T is declared in a package.
4827 procedure Check_Private_Overriding (T : Entity_Id);
4828 -- Checks that if a primitive abstract subprogram of a visible
4829 -- abstract type is declared in a private part, then it must
4830 -- override an abstract subprogram declared in the visible part.
4831 -- Also checks that if a primitive function with a controlling
4832 -- result is declared in a private part, then it must override
4833 -- a function declared in the visible part.
4835 ------------------------------
4836 -- Check_Private_Overriding --
4837 ------------------------------
4839 procedure Check_Private_Overriding (T : Entity_Id) is
4840 begin
4841 if Ekind (Current_Scope) = E_Package
4842 and then In_Private_Part (Current_Scope)
4843 and then Visible_Part_Type (T)
4844 and then not In_Instance
4845 then
4846 if Is_Abstract (T)
4847 and then Is_Abstract (S)
4848 and then (not Is_Overriding or else not Is_Abstract (E))
4849 then
4850 if not Is_Interface (T) then
4851 Error_Msg_N ("abstract subprograms must be visible "
4852 & "('R'M 3.9.3(10))!", S);
4854 -- Ada 2005 (AI-251)
4856 else
4857 Error_Msg_N ("primitive subprograms of interface types "
4858 & "declared in a visible part, must be declared in "
4859 & "the visible part ('R'M 3.9.4)!", S);
4860 end if;
4862 elsif Ekind (S) = E_Function
4863 and then Is_Tagged_Type (T)
4864 and then T = Base_Type (Etype (S))
4865 and then not Is_Overriding
4866 then
4867 Error_Msg_N
4868 ("private function with tagged result must"
4869 & " override visible-part function", S);
4870 Error_Msg_N
4871 ("\move subprogram to the visible part"
4872 & " ('R'M 3.9.3(10))", S);
4873 end if;
4874 end if;
4875 end Check_Private_Overriding;
4877 -----------------------
4878 -- Visible_Part_Type --
4879 -----------------------
4881 function Visible_Part_Type (T : Entity_Id) return Boolean is
4882 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
4883 N : Node_Id;
4885 begin
4886 -- If the entity is a private type, then it must be
4887 -- declared in a visible part.
4889 if Ekind (T) in Private_Kind then
4890 return True;
4891 end if;
4893 -- Otherwise, we traverse the visible part looking for its
4894 -- corresponding declaration. We cannot use the declaration
4895 -- node directly because in the private part the entity of a
4896 -- private type is the one in the full view, which does not
4897 -- indicate that it is the completion of something visible.
4899 N := First (Visible_Declarations (Specification (P)));
4900 while Present (N) loop
4901 if Nkind (N) = N_Full_Type_Declaration
4902 and then Present (Defining_Identifier (N))
4903 and then T = Defining_Identifier (N)
4904 then
4905 return True;
4907 elsif (Nkind (N) = N_Private_Type_Declaration
4908 or else
4909 Nkind (N) = N_Private_Extension_Declaration)
4910 and then Present (Defining_Identifier (N))
4911 and then T = Full_View (Defining_Identifier (N))
4912 then
4913 return True;
4914 end if;
4916 Next (N);
4917 end loop;
4919 return False;
4920 end Visible_Part_Type;
4922 -- Start of processing for Maybe_Primitive_Operation
4924 begin
4925 if not Comes_From_Source (S) then
4926 null;
4928 -- If the subprogram is at library level, it is not primitive
4929 -- operation.
4931 elsif Current_Scope = Standard_Standard then
4932 null;
4934 elsif (Ekind (Current_Scope) = E_Package
4935 and then not In_Package_Body (Current_Scope))
4936 or else Is_Overriding
4937 then
4938 -- For function, check return type
4940 if Ekind (S) = E_Function then
4941 B_Typ := Base_Type (Etype (S));
4943 if Scope (B_Typ) = Current_Scope then
4944 Set_Has_Primitive_Operations (B_Typ);
4945 Check_Private_Overriding (B_Typ);
4946 end if;
4947 end if;
4949 -- For all subprograms, check formals
4951 Formal := First_Formal (S);
4952 while Present (Formal) loop
4953 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
4954 F_Typ := Designated_Type (Etype (Formal));
4955 else
4956 F_Typ := Etype (Formal);
4957 end if;
4959 B_Typ := Base_Type (F_Typ);
4961 if Scope (B_Typ) = Current_Scope then
4962 Set_Has_Primitive_Operations (B_Typ);
4963 Check_Private_Overriding (B_Typ);
4964 end if;
4966 Next_Formal (Formal);
4967 end loop;
4968 end if;
4969 end Maybe_Primitive_Operation;
4971 -- Start of processing for New_Overloaded_Entity
4973 begin
4974 -- We need to look for an entity that S may override. This must be a
4975 -- homonym in the current scope, so we look for the first homonym of
4976 -- S in the current scope as the starting point for the search.
4978 E := Current_Entity_In_Scope (S);
4980 -- If there is no homonym then this is definitely not overriding
4982 if No (E) then
4983 Enter_Overloaded_Entity (S);
4984 Check_Dispatching_Operation (S, Empty);
4985 Maybe_Primitive_Operation;
4987 -- Ada 2005 (AI-397): Subprograms in the context of protected
4988 -- types have their overriding indicators checked in Sem_Ch9.
4990 if Ekind (S) not in Subprogram_Kind
4991 or else Ekind (Scope (S)) /= E_Protected_Type
4992 then
4993 Check_Overriding_Indicator (S, False);
4994 end if;
4996 -- If there is a homonym that is not overloadable, then we have an
4997 -- error, except for the special cases checked explicitly below.
4999 elsif not Is_Overloadable (E) then
5001 -- Check for spurious conflict produced by a subprogram that has the
5002 -- same name as that of the enclosing generic package. The conflict
5003 -- occurs within an instance, between the subprogram and the renaming
5004 -- declaration for the package. After the subprogram, the package
5005 -- renaming declaration becomes hidden.
5007 if Ekind (E) = E_Package
5008 and then Present (Renamed_Object (E))
5009 and then Renamed_Object (E) = Current_Scope
5010 and then Nkind (Parent (Renamed_Object (E))) =
5011 N_Package_Specification
5012 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
5013 then
5014 Set_Is_Hidden (E);
5015 Set_Is_Immediately_Visible (E, False);
5016 Enter_Overloaded_Entity (S);
5017 Set_Homonym (S, Homonym (E));
5018 Check_Dispatching_Operation (S, Empty);
5019 Check_Overriding_Indicator (S, False);
5021 -- If the subprogram is implicit it is hidden by the previous
5022 -- declaration. However if it is dispatching, it must appear in the
5023 -- dispatch table anyway, because it can be dispatched to even if it
5024 -- cannot be called directly.
5026 elsif Present (Alias (S))
5027 and then not Comes_From_Source (S)
5028 then
5029 Set_Scope (S, Current_Scope);
5031 if Is_Dispatching_Operation (Alias (S)) then
5032 Check_Dispatching_Operation (S, Empty);
5033 end if;
5035 return;
5037 else
5038 Error_Msg_Sloc := Sloc (E);
5039 Error_Msg_N ("& conflicts with declaration#", S);
5041 -- Useful additional warning
5043 if Is_Generic_Unit (E) then
5044 Error_Msg_N ("\previous generic unit cannot be overloaded", S);
5045 end if;
5047 return;
5048 end if;
5050 -- E exists and is overloadable
5052 else
5053 Is_Alias_Interface :=
5054 Present (Alias (S))
5055 and then Is_Dispatching_Operation (Alias (S))
5056 and then Present (DTC_Entity (Alias (S)))
5057 and then Is_Interface (Scope (DTC_Entity (Alias (S))));
5059 -- Loop through E and its homonyms to determine if any of them is
5060 -- the candidate for overriding by S.
5062 while Present (E) loop
5064 -- Definitely not interesting if not in the current scope
5066 if Scope (E) /= Current_Scope then
5067 null;
5069 -- Check if we have type conformance
5071 -- Ada 2005 (AI-251): In case of overriding an interface
5072 -- subprogram it is not an error that the old and new entities
5073 -- have the same profile, and hence we skip this code.
5075 elsif not Is_Alias_Interface
5076 and then Type_Conformant (E, S)
5077 then
5078 -- If the old and new entities have the same profile and one
5079 -- is not the body of the other, then this is an error, unless
5080 -- one of them is implicitly declared.
5082 -- There are some cases when both can be implicit, for example
5083 -- when both a literal and a function that overrides it are
5084 -- inherited in a derivation, or when an inhertited operation
5085 -- of a tagged full type overrides the ineherited operation of
5086 -- a private extension. Ada 83 had a special rule for the the
5087 -- literal case. In Ada95, the later implicit operation hides
5088 -- the former, and the literal is always the former. In the
5089 -- odd case where both are derived operations declared at the
5090 -- same point, both operations should be declared, and in that
5091 -- case we bypass the following test and proceed to the next
5092 -- part (this can only occur for certain obscure cases
5093 -- involving homographs in instances and can't occur for
5094 -- dispatching operations ???). Note that the following
5095 -- condition is less than clear. For example, it's not at all
5096 -- clear why there's a test for E_Entry here. ???
5098 if Present (Alias (S))
5099 and then (No (Alias (E))
5100 or else Comes_From_Source (E)
5101 or else Is_Dispatching_Operation (E))
5102 and then
5103 (Ekind (E) = E_Entry
5104 or else Ekind (E) /= E_Enumeration_Literal)
5105 then
5106 -- When an derived operation is overloaded it may be due to
5107 -- the fact that the full view of a private extension
5108 -- re-inherits. It has to be dealt with.
5110 if Is_Package_Or_Generic_Package (Current_Scope)
5111 and then In_Private_Part (Current_Scope)
5112 then
5113 Check_Operation_From_Private_View (S, E);
5114 end if;
5116 -- In any case the implicit operation remains hidden by
5117 -- the existing declaration, which is overriding.
5119 Set_Is_Overriding_Operation (E);
5121 if Comes_From_Source (E) then
5122 Check_Overriding_Indicator (E, True);
5124 -- Indicate that E overrides the operation from which
5125 -- S is inherited.
5127 if Present (Alias (S)) then
5128 Set_Overridden_Operation (E, Alias (S));
5129 else
5130 Set_Overridden_Operation (E, S);
5131 end if;
5132 end if;
5134 return;
5136 -- Within an instance, the renaming declarations for
5137 -- actual subprograms may become ambiguous, but they do
5138 -- not hide each other.
5140 elsif Ekind (E) /= E_Entry
5141 and then not Comes_From_Source (E)
5142 and then not Is_Generic_Instance (E)
5143 and then (Present (Alias (E))
5144 or else Is_Intrinsic_Subprogram (E))
5145 and then (not In_Instance
5146 or else No (Parent (E))
5147 or else Nkind (Unit_Declaration_Node (E)) /=
5148 N_Subprogram_Renaming_Declaration)
5149 then
5150 -- A subprogram child unit is not allowed to override
5151 -- an inherited subprogram (10.1.1(20)).
5153 if Is_Child_Unit (S) then
5154 Error_Msg_N
5155 ("child unit overrides inherited subprogram in parent",
5157 return;
5158 end if;
5160 if Is_Non_Overriding_Operation (E, S) then
5161 Enter_Overloaded_Entity (S);
5162 if not Present (Derived_Type)
5163 or else Is_Tagged_Type (Derived_Type)
5164 then
5165 Check_Dispatching_Operation (S, Empty);
5166 end if;
5168 return;
5169 end if;
5171 -- E is a derived operation or an internal operator which
5172 -- is being overridden. Remove E from further visibility.
5173 -- Furthermore, if E is a dispatching operation, it must be
5174 -- replaced in the list of primitive operations of its type
5175 -- (see Override_Dispatching_Operation).
5177 Does_Override := True;
5179 declare
5180 Prev : Entity_Id;
5182 begin
5183 Prev := First_Entity (Current_Scope);
5185 while Present (Prev)
5186 and then Next_Entity (Prev) /= E
5187 loop
5188 Next_Entity (Prev);
5189 end loop;
5191 -- It is possible for E to be in the current scope and
5192 -- yet not in the entity chain. This can only occur in a
5193 -- generic context where E is an implicit concatenation
5194 -- in the formal part, because in a generic body the
5195 -- entity chain starts with the formals.
5197 pragma Assert
5198 (Present (Prev) or else Chars (E) = Name_Op_Concat);
5200 -- E must be removed both from the entity_list of the
5201 -- current scope, and from the visibility chain
5203 if Debug_Flag_E then
5204 Write_Str ("Override implicit operation ");
5205 Write_Int (Int (E));
5206 Write_Eol;
5207 end if;
5209 -- If E is a predefined concatenation, it stands for four
5210 -- different operations. As a result, a single explicit
5211 -- declaration does not hide it. In a possible ambiguous
5212 -- situation, Disambiguate chooses the user-defined op,
5213 -- so it is correct to retain the previous internal one.
5215 if Chars (E) /= Name_Op_Concat
5216 or else Ekind (E) /= E_Operator
5217 then
5218 -- For nondispatching derived operations that are
5219 -- overridden by a subprogram declared in the private
5220 -- part of a package, we retain the derived
5221 -- subprogram but mark it as not immediately visible.
5222 -- If the derived operation was declared in the
5223 -- visible part then this ensures that it will still
5224 -- be visible outside the package with the proper
5225 -- signature (calls from outside must also be
5226 -- directed to this version rather than the
5227 -- overriding one, unlike the dispatching case).
5228 -- Calls from inside the package will still resolve
5229 -- to the overriding subprogram since the derived one
5230 -- is marked as not visible within the package.
5232 -- If the private operation is dispatching, we achieve
5233 -- the overriding by keeping the implicit operation
5234 -- but setting its alias to be the overriding one. In
5235 -- this fashion the proper body is executed in all
5236 -- cases, but the original signature is used outside
5237 -- of the package.
5239 -- If the overriding is not in the private part, we
5240 -- remove the implicit operation altogether.
5242 if Is_Private_Declaration (S) then
5244 if not Is_Dispatching_Operation (E) then
5245 Set_Is_Immediately_Visible (E, False);
5246 else
5247 -- Work done in Override_Dispatching_Operation,
5248 -- so nothing else need to be done here.
5250 null;
5251 end if;
5253 else
5254 -- Find predecessor of E in Homonym chain
5256 if E = Current_Entity (E) then
5257 Prev_Vis := Empty;
5258 else
5259 Prev_Vis := Current_Entity (E);
5260 while Homonym (Prev_Vis) /= E loop
5261 Prev_Vis := Homonym (Prev_Vis);
5262 end loop;
5263 end if;
5265 if Prev_Vis /= Empty then
5267 -- Skip E in the visibility chain
5269 Set_Homonym (Prev_Vis, Homonym (E));
5271 else
5272 Set_Name_Entity_Id (Chars (E), Homonym (E));
5273 end if;
5275 Set_Next_Entity (Prev, Next_Entity (E));
5277 if No (Next_Entity (Prev)) then
5278 Set_Last_Entity (Current_Scope, Prev);
5279 end if;
5281 end if;
5282 end if;
5284 Enter_Overloaded_Entity (S);
5285 Set_Is_Overriding_Operation (S);
5286 Check_Overriding_Indicator (S, True);
5288 -- Indicate that S overrides the operation from which
5289 -- E is inherited.
5291 if Comes_From_Source (S) then
5292 if Present (Alias (E)) then
5293 Set_Overridden_Operation (S, Alias (E));
5294 else
5295 Set_Overridden_Operation (S, E);
5296 end if;
5297 end if;
5299 if Is_Dispatching_Operation (E) then
5301 -- An overriding dispatching subprogram inherits the
5302 -- convention of the overridden subprogram (by
5303 -- AI-117).
5305 Set_Convention (S, Convention (E));
5307 -- AI-251: For an entity overriding an interface
5308 -- primitive check if the entity also covers other
5309 -- abstract subprograms in the same scope. This is
5310 -- required to handle the general case, that is,
5311 -- 1) overriding other interface primitives, and
5312 -- 2) overriding abstract subprograms inherited from
5313 -- some abstract ancestor type.
5315 if Has_Homonym (E)
5316 and then Present (Alias (E))
5317 and then Ekind (Alias (E)) /= E_Operator
5318 and then Present (DTC_Entity (Alias (E)))
5319 and then Is_Interface (Scope (DTC_Entity
5320 (Alias (E))))
5321 then
5322 declare
5323 E1 : Entity_Id;
5325 begin
5326 E1 := Homonym (E);
5327 while Present (E1) loop
5328 if (Is_Overloadable (E1)
5329 or else Ekind (E1) = E_Subprogram_Type)
5330 and then Present (Alias (E1))
5331 and then Ekind (Alias (E1)) /= E_Operator
5332 and then Present (DTC_Entity (Alias (E1)))
5333 and then Is_Abstract
5334 (Scope (DTC_Entity (Alias (E1))))
5335 and then Type_Conformant (E1, S)
5336 then
5337 Check_Dispatching_Operation (S, E1);
5338 end if;
5340 E1 := Homonym (E1);
5341 end loop;
5342 end;
5343 end if;
5345 Check_Dispatching_Operation (S, E);
5347 else
5348 Check_Dispatching_Operation (S, Empty);
5349 end if;
5351 Maybe_Primitive_Operation (Is_Overriding => True);
5352 goto Check_Inequality;
5353 end;
5355 -- Apparent redeclarations in instances can occur when two
5356 -- formal types get the same actual type. The subprograms in
5357 -- in the instance are legal, even if not callable from the
5358 -- outside. Calls from within are disambiguated elsewhere.
5359 -- For dispatching operations in the visible part, the usual
5360 -- rules apply, and operations with the same profile are not
5361 -- legal (B830001).
5363 elsif (In_Instance_Visible_Part
5364 and then not Is_Dispatching_Operation (E))
5365 or else In_Instance_Not_Visible
5366 then
5367 null;
5369 -- Here we have a real error (identical profile)
5371 else
5372 Error_Msg_Sloc := Sloc (E);
5374 -- Avoid cascaded errors if the entity appears in
5375 -- subsequent calls.
5377 Set_Scope (S, Current_Scope);
5379 Error_Msg_N ("& conflicts with declaration#", S);
5381 if Is_Generic_Instance (S)
5382 and then not Has_Completion (E)
5383 then
5384 Error_Msg_N
5385 ("\instantiation cannot provide body for it", S);
5386 end if;
5388 return;
5389 end if;
5391 else
5392 null;
5393 end if;
5395 Prev_Vis := E;
5396 E := Homonym (E);
5397 end loop;
5399 -- On exit, we know that S is a new entity
5401 Enter_Overloaded_Entity (S);
5402 Maybe_Primitive_Operation;
5403 Check_Overriding_Indicator (S, Does_Override);
5405 -- If S is a derived operation for an untagged type then by
5406 -- definition it's not a dispatching operation (even if the parent
5407 -- operation was dispatching), so we don't call
5408 -- Check_Dispatching_Operation in that case.
5410 if not Present (Derived_Type)
5411 or else Is_Tagged_Type (Derived_Type)
5412 then
5413 Check_Dispatching_Operation (S, Empty);
5414 end if;
5415 end if;
5417 -- If this is a user-defined equality operator that is not a derived
5418 -- subprogram, create the corresponding inequality. If the operation is
5419 -- dispatching, the expansion is done elsewhere, and we do not create
5420 -- an explicit inequality operation.
5422 <<Check_Inequality>>
5423 if Chars (S) = Name_Op_Eq
5424 and then Etype (S) = Standard_Boolean
5425 and then Present (Parent (S))
5426 and then not Is_Dispatching_Operation (S)
5427 then
5428 Make_Inequality_Operator (S);
5429 end if;
5430 end New_Overloaded_Entity;
5432 ---------------------
5433 -- Process_Formals --
5434 ---------------------
5436 procedure Process_Formals
5437 (T : List_Id;
5438 Related_Nod : Node_Id)
5440 Param_Spec : Node_Id;
5441 Formal : Entity_Id;
5442 Formal_Type : Entity_Id;
5443 Default : Node_Id;
5444 Ptype : Entity_Id;
5446 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
5447 -- Check whether the default has a class-wide type. After analysis the
5448 -- default has the type of the formal, so we must also check explicitly
5449 -- for an access attribute.
5451 ---------------------------
5452 -- Is_Class_Wide_Default --
5453 ---------------------------
5455 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
5456 begin
5457 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
5458 or else (Nkind (D) = N_Attribute_Reference
5459 and then Attribute_Name (D) = Name_Access
5460 and then Is_Class_Wide_Type (Etype (Prefix (D))));
5461 end Is_Class_Wide_Default;
5463 -- Start of processing for Process_Formals
5465 begin
5466 -- In order to prevent premature use of the formals in the same formal
5467 -- part, the Ekind is left undefined until all default expressions are
5468 -- analyzed. The Ekind is established in a separate loop at the end.
5470 Param_Spec := First (T);
5472 while Present (Param_Spec) loop
5474 Formal := Defining_Identifier (Param_Spec);
5475 Enter_Name (Formal);
5477 -- Case of ordinary parameters
5479 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
5480 Find_Type (Parameter_Type (Param_Spec));
5481 Ptype := Parameter_Type (Param_Spec);
5483 if Ptype = Error then
5484 goto Continue;
5485 end if;
5487 Formal_Type := Entity (Ptype);
5489 if Ekind (Formal_Type) = E_Incomplete_Type
5490 or else (Is_Class_Wide_Type (Formal_Type)
5491 and then Ekind (Root_Type (Formal_Type)) =
5492 E_Incomplete_Type)
5493 then
5494 -- Ada 2005 (AI-326): Tagged incomplete types allowed
5496 if Is_Tagged_Type (Formal_Type) then
5497 null;
5499 elsif Nkind (Parent (T)) /= N_Access_Function_Definition
5500 and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
5501 then
5502 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
5503 end if;
5505 elsif Ekind (Formal_Type) = E_Void then
5506 Error_Msg_NE ("premature use of&",
5507 Parameter_Type (Param_Spec), Formal_Type);
5508 end if;
5510 -- Ada 2005 (AI-231): Create and decorate an internal subtype
5511 -- declaration corresponding to the null-excluding type of the
5512 -- formal in the enclosing scope. Finally, replace the parameter
5513 -- type of the formal with the internal subtype.
5515 if Ada_Version >= Ada_05
5516 and then Is_Access_Type (Formal_Type)
5517 and then Null_Exclusion_Present (Param_Spec)
5518 then
5519 if Can_Never_Be_Null (Formal_Type)
5520 and then Comes_From_Source (Related_Nod)
5521 then
5522 Error_Msg_N
5523 ("null exclusion must apply to a type that does not "
5524 & "exclude null ('R'M 3.10 (14)", Related_Nod);
5525 end if;
5527 Formal_Type :=
5528 Create_Null_Excluding_Itype
5529 (T => Formal_Type,
5530 Related_Nod => Related_Nod,
5531 Scope_Id => Scope (Current_Scope));
5532 end if;
5534 -- An access formal type
5536 else
5537 Formal_Type :=
5538 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
5540 -- Ada 2005 (AI-254)
5542 declare
5543 AD : constant Node_Id :=
5544 Access_To_Subprogram_Definition
5545 (Parameter_Type (Param_Spec));
5546 begin
5547 if Present (AD) and then Protected_Present (AD) then
5548 Formal_Type :=
5549 Replace_Anonymous_Access_To_Protected_Subprogram
5550 (Param_Spec, Formal_Type);
5551 end if;
5552 end;
5553 end if;
5555 Set_Etype (Formal, Formal_Type);
5556 Default := Expression (Param_Spec);
5558 if Present (Default) then
5559 if Out_Present (Param_Spec) then
5560 Error_Msg_N
5561 ("default initialization only allowed for IN parameters",
5562 Param_Spec);
5563 end if;
5565 -- Do the special preanalysis of the expression (see section on
5566 -- "Handling of Default Expressions" in the spec of package Sem).
5568 Analyze_Per_Use_Expression (Default, Formal_Type);
5570 -- Check that the designated type of an access parameter's default
5571 -- is not a class-wide type unless the parameter's designated type
5572 -- is also class-wide.
5574 if Ekind (Formal_Type) = E_Anonymous_Access_Type
5575 and then not From_With_Type (Formal_Type)
5576 and then Is_Class_Wide_Default (Default)
5577 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
5578 then
5579 Error_Msg_N
5580 ("access to class-wide expression not allowed here", Default);
5581 end if;
5582 end if;
5584 -- Ada 2005 (AI-231): Static checks
5586 if Ada_Version >= Ada_05
5587 and then Is_Access_Type (Etype (Formal))
5588 and then Can_Never_Be_Null (Etype (Formal))
5589 then
5590 Null_Exclusion_Static_Checks (Param_Spec);
5591 end if;
5593 <<Continue>>
5594 Next (Param_Spec);
5595 end loop;
5597 -- If this is the formal part of a function specification, analyze the
5598 -- subtype mark in the context where the formals are visible but not
5599 -- yet usable, and may hide outer homographs.
5601 if Nkind (Related_Nod) = N_Function_Specification then
5602 Analyze_Return_Type (Related_Nod);
5603 end if;
5605 -- Now set the kind (mode) of each formal
5607 Param_Spec := First (T);
5609 while Present (Param_Spec) loop
5610 Formal := Defining_Identifier (Param_Spec);
5611 Set_Formal_Mode (Formal);
5613 if Ekind (Formal) = E_In_Parameter then
5614 Set_Default_Value (Formal, Expression (Param_Spec));
5616 if Present (Expression (Param_Spec)) then
5617 Default := Expression (Param_Spec);
5619 if Is_Scalar_Type (Etype (Default)) then
5620 if Nkind
5621 (Parameter_Type (Param_Spec)) /= N_Access_Definition
5622 then
5623 Formal_Type := Entity (Parameter_Type (Param_Spec));
5625 else
5626 Formal_Type := Access_Definition
5627 (Related_Nod, Parameter_Type (Param_Spec));
5628 end if;
5630 Apply_Scalar_Range_Check (Default, Formal_Type);
5631 end if;
5632 end if;
5633 end if;
5635 Next (Param_Spec);
5636 end loop;
5638 end Process_Formals;
5640 ----------------------------
5641 -- Reference_Body_Formals --
5642 ----------------------------
5644 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
5645 Fs : Entity_Id;
5646 Fb : Entity_Id;
5648 begin
5649 if Error_Posted (Spec) then
5650 return;
5651 end if;
5653 Fs := First_Formal (Spec);
5654 Fb := First_Formal (Bod);
5656 while Present (Fs) loop
5657 Generate_Reference (Fs, Fb, 'b');
5659 if Style_Check then
5660 Style.Check_Identifier (Fb, Fs);
5661 end if;
5663 Set_Spec_Entity (Fb, Fs);
5664 Set_Referenced (Fs, False);
5665 Next_Formal (Fs);
5666 Next_Formal (Fb);
5667 end loop;
5668 end Reference_Body_Formals;
5670 -------------------------
5671 -- Set_Actual_Subtypes --
5672 -------------------------
5674 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
5675 Loc : constant Source_Ptr := Sloc (N);
5676 Decl : Node_Id;
5677 Formal : Entity_Id;
5678 T : Entity_Id;
5679 First_Stmt : Node_Id := Empty;
5680 AS_Needed : Boolean;
5682 begin
5683 -- If this is an emtpy initialization procedure, no need to create
5684 -- actual subtypes (small optimization).
5686 if Ekind (Subp) = E_Procedure
5687 and then Is_Null_Init_Proc (Subp)
5688 then
5689 return;
5690 end if;
5692 Formal := First_Formal (Subp);
5693 while Present (Formal) loop
5694 T := Etype (Formal);
5696 -- We never need an actual subtype for a constrained formal
5698 if Is_Constrained (T) then
5699 AS_Needed := False;
5701 -- If we have unknown discriminants, then we do not need an actual
5702 -- subtype, or more accurately we cannot figure it out! Note that
5703 -- all class-wide types have unknown discriminants.
5705 elsif Has_Unknown_Discriminants (T) then
5706 AS_Needed := False;
5708 -- At this stage we have an unconstrained type that may need an
5709 -- actual subtype. For sure the actual subtype is needed if we have
5710 -- an unconstrained array type.
5712 elsif Is_Array_Type (T) then
5713 AS_Needed := True;
5715 -- The only other case needing an actual subtype is an unconstrained
5716 -- record type which is an IN parameter (we cannot generate actual
5717 -- subtypes for the OUT or IN OUT case, since an assignment can
5718 -- change the discriminant values. However we exclude the case of
5719 -- initialization procedures, since discriminants are handled very
5720 -- specially in this context, see the section entitled "Handling of
5721 -- Discriminants" in Einfo.
5723 -- We also exclude the case of Discrim_SO_Functions (functions used
5724 -- in front end layout mode for size/offset values), since in such
5725 -- functions only discriminants are referenced, and not only are such
5726 -- subtypes not needed, but they cannot always be generated, because
5727 -- of order of elaboration issues.
5729 elsif Is_Record_Type (T)
5730 and then Ekind (Formal) = E_In_Parameter
5731 and then Chars (Formal) /= Name_uInit
5732 and then not Is_Unchecked_Union (T)
5733 and then not Is_Discrim_SO_Function (Subp)
5734 then
5735 AS_Needed := True;
5737 -- All other cases do not need an actual subtype
5739 else
5740 AS_Needed := False;
5741 end if;
5743 -- Generate actual subtypes for unconstrained arrays and
5744 -- unconstrained discriminated records.
5746 if AS_Needed then
5747 if Nkind (N) = N_Accept_Statement then
5749 -- If expansion is active, The formal is replaced by a local
5750 -- variable that renames the corresponding entry of the
5751 -- parameter block, and it is this local variable that may
5752 -- require an actual subtype.
5754 if Expander_Active then
5755 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
5756 else
5757 Decl := Build_Actual_Subtype (T, Formal);
5758 end if;
5760 if Present (Handled_Statement_Sequence (N)) then
5761 First_Stmt :=
5762 First (Statements (Handled_Statement_Sequence (N)));
5763 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
5764 Mark_Rewrite_Insertion (Decl);
5765 else
5766 -- If the accept statement has no body, there will be no
5767 -- reference to the actuals, so no need to compute actual
5768 -- subtypes.
5770 return;
5771 end if;
5773 else
5774 Decl := Build_Actual_Subtype (T, Formal);
5775 Prepend (Decl, Declarations (N));
5776 Mark_Rewrite_Insertion (Decl);
5777 end if;
5779 -- The declaration uses the bounds of an existing object, and
5780 -- therefore needs no constraint checks.
5782 Analyze (Decl, Suppress => All_Checks);
5784 -- We need to freeze manually the generated type when it is
5785 -- inserted anywhere else than in a declarative part.
5787 if Present (First_Stmt) then
5788 Insert_List_Before_And_Analyze (First_Stmt,
5789 Freeze_Entity (Defining_Identifier (Decl), Loc));
5790 end if;
5792 if Nkind (N) = N_Accept_Statement
5793 and then Expander_Active
5794 then
5795 Set_Actual_Subtype (Renamed_Object (Formal),
5796 Defining_Identifier (Decl));
5797 else
5798 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
5799 end if;
5800 end if;
5802 Next_Formal (Formal);
5803 end loop;
5804 end Set_Actual_Subtypes;
5806 ---------------------
5807 -- Set_Formal_Mode --
5808 ---------------------
5810 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
5811 Spec : constant Node_Id := Parent (Formal_Id);
5813 begin
5814 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
5815 -- since we ensure that corresponding actuals are always valid at the
5816 -- point of the call.
5818 if Out_Present (Spec) then
5819 if Ekind (Scope (Formal_Id)) = E_Function
5820 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
5821 then
5822 Error_Msg_N ("functions can only have IN parameters", Spec);
5823 Set_Ekind (Formal_Id, E_In_Parameter);
5825 elsif In_Present (Spec) then
5826 Set_Ekind (Formal_Id, E_In_Out_Parameter);
5828 else
5829 Set_Ekind (Formal_Id, E_Out_Parameter);
5830 Set_Never_Set_In_Source (Formal_Id, True);
5831 Set_Is_True_Constant (Formal_Id, False);
5832 Set_Current_Value (Formal_Id, Empty);
5833 end if;
5835 else
5836 Set_Ekind (Formal_Id, E_In_Parameter);
5837 end if;
5839 -- Set Is_Known_Non_Null for access parameters since the language
5840 -- guarantees that access parameters are always non-null. We also set
5841 -- Can_Never_Be_Null, since there is no way to change the value.
5843 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
5845 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
5846 -- null; In Ada 2005, only if then null_exclusion is explicit.
5848 if Ada_Version < Ada_05
5849 or else Can_Never_Be_Null (Etype (Formal_Id))
5850 then
5851 Set_Is_Known_Non_Null (Formal_Id);
5852 Set_Can_Never_Be_Null (Formal_Id);
5853 end if;
5855 -- Ada 2005 (AI-231): Null-exclusion access subtype
5857 elsif Is_Access_Type (Etype (Formal_Id))
5858 and then Can_Never_Be_Null (Etype (Formal_Id))
5859 then
5860 Set_Is_Known_Non_Null (Formal_Id);
5861 end if;
5863 Set_Mechanism (Formal_Id, Default_Mechanism);
5864 Set_Formal_Validity (Formal_Id);
5865 end Set_Formal_Mode;
5867 -------------------------
5868 -- Set_Formal_Validity --
5869 -------------------------
5871 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
5872 begin
5873 -- If no validity checking, then we cannot assume anything about the
5874 -- validity of parameters, since we do not know there is any checking
5875 -- of the validity on the call side.
5877 if not Validity_Checks_On then
5878 return;
5880 -- If validity checking for parameters is enabled, this means we are
5881 -- not supposed to make any assumptions about argument values.
5883 elsif Validity_Check_Parameters then
5884 return;
5886 -- If we are checking in parameters, we will assume that the caller is
5887 -- also checking parameters, so we can assume the parameter is valid.
5889 elsif Ekind (Formal_Id) = E_In_Parameter
5890 and then Validity_Check_In_Params
5891 then
5892 Set_Is_Known_Valid (Formal_Id, True);
5894 -- Similar treatment for IN OUT parameters
5896 elsif Ekind (Formal_Id) = E_In_Out_Parameter
5897 and then Validity_Check_In_Out_Params
5898 then
5899 Set_Is_Known_Valid (Formal_Id, True);
5900 end if;
5901 end Set_Formal_Validity;
5903 ------------------------
5904 -- Subtype_Conformant --
5905 ------------------------
5907 function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
5908 Result : Boolean;
5909 begin
5910 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
5911 return Result;
5912 end Subtype_Conformant;
5914 ---------------------
5915 -- Type_Conformant --
5916 ---------------------
5918 function Type_Conformant
5919 (New_Id : Entity_Id;
5920 Old_Id : Entity_Id;
5921 Skip_Controlling_Formals : Boolean := False) return Boolean
5923 Result : Boolean;
5924 begin
5925 Check_Conformance
5926 (New_Id, Old_Id, Type_Conformant, False, Result,
5927 Skip_Controlling_Formals => Skip_Controlling_Formals);
5928 return Result;
5929 end Type_Conformant;
5931 -------------------------------
5932 -- Valid_Operator_Definition --
5933 -------------------------------
5935 procedure Valid_Operator_Definition (Designator : Entity_Id) is
5936 N : Integer := 0;
5937 F : Entity_Id;
5938 Id : constant Name_Id := Chars (Designator);
5939 N_OK : Boolean;
5941 begin
5942 F := First_Formal (Designator);
5943 while Present (F) loop
5944 N := N + 1;
5946 if Present (Default_Value (F)) then
5947 Error_Msg_N
5948 ("default values not allowed for operator parameters",
5949 Parent (F));
5950 end if;
5952 Next_Formal (F);
5953 end loop;
5955 -- Verify that user-defined operators have proper number of arguments
5956 -- First case of operators which can only be unary
5958 if Id = Name_Op_Not
5959 or else Id = Name_Op_Abs
5960 then
5961 N_OK := (N = 1);
5963 -- Case of operators which can be unary or binary
5965 elsif Id = Name_Op_Add
5966 or Id = Name_Op_Subtract
5967 then
5968 N_OK := (N in 1 .. 2);
5970 -- All other operators can only be binary
5972 else
5973 N_OK := (N = 2);
5974 end if;
5976 if not N_OK then
5977 Error_Msg_N
5978 ("incorrect number of arguments for operator", Designator);
5979 end if;
5981 if Id = Name_Op_Ne
5982 and then Base_Type (Etype (Designator)) = Standard_Boolean
5983 and then not Is_Intrinsic_Subprogram (Designator)
5984 then
5985 Error_Msg_N
5986 ("explicit definition of inequality not allowed", Designator);
5987 end if;
5988 end Valid_Operator_Definition;
5990 end Sem_Ch6;