* testsuite/libgomp.fortran/vla7.f90: Add -w to options.
[official-gcc.git] / gcc / ada / s-taprop-lynxos.adb
blob06313ed5fdfd747d279ce64071048b6fb6b15415
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a LynxOS version of this file, adapted to make
35 -- SCHED_FIFO and ceiling locking (Annex D compliance) work properly
37 -- This package contains all the GNULL primitives that interface directly
38 -- with the underlying OS.
40 pragma Polling (Off);
41 -- Turn off polling, we do not want ATC polling to take place during
42 -- tasking operations. It causes infinite loops and other problems.
44 with System.Tasking.Debug;
45 -- used for Known_Tasks
47 with System.Interrupt_Management;
48 -- used for Keep_Unmasked
49 -- Abort_Task_Interrupt
50 -- Interrupt_ID
52 with System.OS_Primitives;
53 -- used for Delay_Modes
55 with System.Task_Info;
56 -- used for Task_Info_Type
58 with Interfaces.C;
59 -- used for int
60 -- size_t
62 with System.Parameters;
63 -- used for Size_Type
65 with Unchecked_Deallocation;
67 package body System.Task_Primitives.Operations is
69 use System.Tasking.Debug;
70 use System.Tasking;
71 use Interfaces.C;
72 use System.OS_Interface;
73 use System.Parameters;
74 use System.OS_Primitives;
76 ----------------
77 -- Local Data --
78 ----------------
80 -- The followings are logically constants, but need to be initialized
81 -- at run time.
83 Single_RTS_Lock : aliased RTS_Lock;
84 -- This is a lock to allow only one thread of control in the RTS at
85 -- a time; it is used to execute in mutual exclusion from all other tasks.
86 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
88 ATCB_Key : aliased pthread_key_t;
89 -- Key used to find the Ada Task_Id associated with a thread
91 Environment_Task_Id : Task_Id;
92 -- A variable to hold Task_Id for the environment task
94 Locking_Policy : Character;
95 pragma Import (C, Locking_Policy, "__gl_locking_policy");
96 -- Value of the pragma Locking_Policy:
97 -- 'C' for Ceiling_Locking
98 -- 'I' for Inherit_Locking
99 -- ' ' for none.
101 Unblocked_Signal_Mask : aliased sigset_t;
102 -- The set of signals that should unblocked in all tasks
104 -- The followings are internal configuration constants needed
106 Next_Serial_Number : Task_Serial_Number := 100;
107 -- We start at 100, to reserve some special values for
108 -- using in error checking.
110 Time_Slice_Val : Integer;
111 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
113 Dispatching_Policy : Character;
114 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
116 Foreign_Task_Elaborated : aliased Boolean := True;
117 -- Used to identified fake tasks (i.e., non-Ada Threads)
119 --------------------
120 -- Local Packages --
121 --------------------
123 package Specific is
125 procedure Initialize (Environment_Task : Task_Id);
126 pragma Inline (Initialize);
127 -- Initialize various data needed by this package
129 function Is_Valid_Task return Boolean;
130 pragma Inline (Is_Valid_Task);
131 -- Does the current thread have an ATCB?
133 procedure Set (Self_Id : Task_Id);
134 pragma Inline (Set);
135 -- Set the self id for the current task
137 function Self return Task_Id;
138 pragma Inline (Self);
139 -- Return a pointer to the Ada Task Control Block of the calling task
141 end Specific;
143 package body Specific is separate;
144 -- The body of this package is target specific
146 ---------------------------------
147 -- Support for foreign threads --
148 ---------------------------------
150 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
151 -- Allocate and Initialize a new ATCB for the current Thread
153 function Register_Foreign_Thread
154 (Thread : Thread_Id) return Task_Id is separate;
156 -----------------------
157 -- Local Subprograms --
158 -----------------------
160 procedure Abort_Handler (Sig : Signal);
161 -- Signal handler used to implement asynchronous abort
163 procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority);
164 -- This procedure calls the scheduler of the OS to set thread's priority
166 -------------------
167 -- Abort_Handler --
168 -------------------
170 procedure Abort_Handler (Sig : Signal) is
171 pragma Unreferenced (Sig);
173 T : constant Task_Id := Self;
174 Result : Interfaces.C.int;
175 Old_Set : aliased sigset_t;
177 begin
178 -- It is not safe to raise an exception when using ZCX and the GCC
179 -- exception handling mechanism.
181 if ZCX_By_Default and then GCC_ZCX_Support then
182 return;
183 end if;
185 if T.Deferral_Level = 0
186 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
187 not T.Aborting
188 then
189 T.Aborting := True;
191 -- Make sure signals used for RTS internal purpose are unmasked
193 Result :=
194 pthread_sigmask (SIG_UNBLOCK,
195 Unblocked_Signal_Mask'Unchecked_Access,
196 Old_Set'Unchecked_Access);
197 pragma Assert (Result = 0);
199 raise Standard'Abort_Signal;
200 end if;
201 end Abort_Handler;
203 -----------------
204 -- Stack_Guard --
205 -----------------
207 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
208 Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
209 Guard_Page_Address : Address;
211 Res : Interfaces.C.int;
213 begin
214 if Stack_Base_Available then
216 -- Compute the guard page address
218 Guard_Page_Address :=
219 Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
221 if On then
222 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON);
223 else
224 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF);
225 end if;
227 pragma Assert (Res = 0);
228 end if;
229 end Stack_Guard;
231 --------------------
232 -- Get_Thread_Id --
233 --------------------
235 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
236 begin
237 return T.Common.LL.Thread;
238 end Get_Thread_Id;
240 ----------
241 -- Self --
242 ----------
244 function Self return Task_Id renames Specific.Self;
246 ---------------------
247 -- Initialize_Lock --
248 ---------------------
250 procedure Initialize_Lock
251 (Prio : System.Any_Priority;
252 L : access Lock)
254 Attributes : aliased pthread_mutexattr_t;
255 Result : Interfaces.C.int;
257 begin
258 Result := pthread_mutexattr_init (Attributes'Access);
259 pragma Assert (Result = 0 or else Result = ENOMEM);
261 if Result = ENOMEM then
262 raise Storage_Error;
263 end if;
265 if Locking_Policy = 'C' then
266 L.Ceiling := Prio;
267 end if;
269 Result := pthread_mutex_init (L.Mutex'Access, Attributes'Access);
270 pragma Assert (Result = 0 or else Result = ENOMEM);
272 if Result = ENOMEM then
273 raise Storage_Error;
274 end if;
276 Result := pthread_mutexattr_destroy (Attributes'Access);
277 pragma Assert (Result = 0);
278 end Initialize_Lock;
280 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
281 pragma Unreferenced (Level);
283 Attributes : aliased pthread_mutexattr_t;
284 Result : Interfaces.C.int;
286 begin
287 Result := pthread_mutexattr_init (Attributes'Access);
288 pragma Assert (Result = 0 or else Result = ENOMEM);
290 if Result = ENOMEM then
291 raise Storage_Error;
292 end if;
294 Result := pthread_mutex_init (L, Attributes'Access);
295 pragma Assert (Result = 0 or else Result = ENOMEM);
297 if Result = ENOMEM then
298 Result := pthread_mutexattr_destroy (Attributes'Access);
299 raise Storage_Error;
300 end if;
302 Result := pthread_mutexattr_destroy (Attributes'Access);
303 pragma Assert (Result = 0);
304 end Initialize_Lock;
306 -------------------
307 -- Finalize_Lock --
308 -------------------
310 procedure Finalize_Lock (L : access Lock) is
311 Result : Interfaces.C.int;
312 begin
313 Result := pthread_mutex_destroy (L.Mutex'Access);
314 pragma Assert (Result = 0);
315 end Finalize_Lock;
317 procedure Finalize_Lock (L : access RTS_Lock) is
318 Result : Interfaces.C.int;
319 begin
320 Result := pthread_mutex_destroy (L);
321 pragma Assert (Result = 0);
322 end Finalize_Lock;
324 ----------------
325 -- Write_Lock --
326 ----------------
328 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
329 Result : Interfaces.C.int;
330 T : constant Task_Id := Self;
332 begin
333 if Locking_Policy = 'C' then
334 if T.Common.Current_Priority > L.Ceiling then
335 Ceiling_Violation := True;
336 return;
337 end if;
339 L.Saved_Priority := T.Common.Current_Priority;
341 if T.Common.Current_Priority < L.Ceiling then
342 Set_OS_Priority (T, L.Ceiling);
343 end if;
344 end if;
346 Result := pthread_mutex_lock (L.Mutex'Access);
348 -- Assume that the cause of EINVAL is a priority ceiling violation
350 Ceiling_Violation := (Result = EINVAL);
351 pragma Assert (Result = 0 or else Result = EINVAL);
352 end Write_Lock;
354 -- No tricks on RTS_Locks
356 procedure Write_Lock
357 (L : access RTS_Lock; Global_Lock : Boolean := False)
359 Result : Interfaces.C.int;
360 begin
361 if not Single_Lock or else Global_Lock then
362 Result := pthread_mutex_lock (L);
363 pragma Assert (Result = 0);
364 end if;
365 end Write_Lock;
367 procedure Write_Lock (T : Task_Id) is
368 Result : Interfaces.C.int;
369 begin
370 if not Single_Lock then
371 Result := pthread_mutex_lock (T.Common.LL.L'Access);
372 pragma Assert (Result = 0);
373 end if;
374 end Write_Lock;
376 ---------------
377 -- Read_Lock --
378 ---------------
380 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
381 begin
382 Write_Lock (L, Ceiling_Violation);
383 end Read_Lock;
385 ------------
386 -- Unlock --
387 ------------
389 procedure Unlock (L : access Lock) is
390 Result : Interfaces.C.int;
391 T : constant Task_Id := Self;
393 begin
394 Result := pthread_mutex_unlock (L.Mutex'Access);
395 pragma Assert (Result = 0);
397 if Locking_Policy = 'C' then
398 if T.Common.Current_Priority > L.Saved_Priority then
399 Set_OS_Priority (T, L.Saved_Priority);
400 end if;
401 end if;
402 end Unlock;
404 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
405 Result : Interfaces.C.int;
406 begin
407 if not Single_Lock or else Global_Lock then
408 Result := pthread_mutex_unlock (L);
409 pragma Assert (Result = 0);
410 end if;
411 end Unlock;
413 procedure Unlock (T : Task_Id) is
414 Result : Interfaces.C.int;
415 begin
416 if not Single_Lock then
417 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
418 pragma Assert (Result = 0);
419 end if;
420 end Unlock;
422 -----------
423 -- Sleep --
424 -----------
426 procedure Sleep
427 (Self_ID : Task_Id;
428 Reason : System.Tasking.Task_States)
430 pragma Unreferenced (Reason);
431 Result : Interfaces.C.int;
433 begin
434 if Single_Lock then
435 Result := pthread_cond_wait
436 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
437 else
438 Result := pthread_cond_wait
439 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
440 end if;
442 -- EINTR is not considered a failure
444 pragma Assert (Result = 0 or else Result = EINTR);
445 end Sleep;
447 -----------------
448 -- Timed_Sleep --
449 -----------------
451 -- This is for use within the run-time system, so abort is
452 -- assumed to be already deferred, and the caller should be
453 -- holding its own ATCB lock.
455 procedure Timed_Sleep
456 (Self_ID : Task_Id;
457 Time : Duration;
458 Mode : ST.Delay_Modes;
459 Reason : Task_States;
460 Timedout : out Boolean;
461 Yielded : out Boolean)
463 pragma Unreferenced (Reason);
465 Check_Time : constant Duration := Monotonic_Clock;
466 Rel_Time : Duration;
467 Abs_Time : Duration;
468 Request : aliased timespec;
469 Result : Interfaces.C.int;
471 begin
472 Timedout := True;
473 Yielded := False;
475 if Mode = Relative then
476 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
478 if Relative_Timed_Wait then
479 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
480 end if;
482 else
483 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
485 if Relative_Timed_Wait then
486 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
487 end if;
488 end if;
490 if Abs_Time > Check_Time then
491 if Relative_Timed_Wait then
492 Request := To_Timespec (Rel_Time);
493 else
494 Request := To_Timespec (Abs_Time);
495 end if;
497 loop
498 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
499 or else Self_ID.Pending_Priority_Change;
501 if Single_Lock then
502 Result := pthread_cond_timedwait
503 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
504 Request'Access);
506 else
507 Result := pthread_cond_timedwait
508 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
509 Request'Access);
510 end if;
512 exit when Abs_Time <= Monotonic_Clock;
514 if Result = 0 or Result = EINTR then
516 -- Somebody may have called Wakeup for us
518 Timedout := False;
519 exit;
520 end if;
522 pragma Assert (Result = ETIMEDOUT);
523 end loop;
524 end if;
525 end Timed_Sleep;
527 -----------------
528 -- Timed_Delay --
529 -----------------
531 -- This is for use in implementing delay statements, so we assume
532 -- the caller is abort-deferred but is holding no locks.
534 procedure Timed_Delay
535 (Self_ID : Task_Id;
536 Time : Duration;
537 Mode : ST.Delay_Modes)
539 Check_Time : constant Duration := Monotonic_Clock;
540 Abs_Time : Duration;
541 Rel_Time : Duration;
542 Request : aliased timespec;
543 Result : Interfaces.C.int;
545 begin
546 if Single_Lock then
547 Lock_RTS;
548 end if;
550 -- Comments needed in code below ???
552 Write_Lock (Self_ID);
554 if Mode = Relative then
555 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
557 if Relative_Timed_Wait then
558 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
559 end if;
561 else
562 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
564 if Relative_Timed_Wait then
565 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
566 end if;
567 end if;
569 if Abs_Time > Check_Time then
570 if Relative_Timed_Wait then
571 Request := To_Timespec (Rel_Time);
572 else
573 Request := To_Timespec (Abs_Time);
574 end if;
576 Self_ID.Common.State := Delay_Sleep;
578 loop
579 if Self_ID.Pending_Priority_Change then
580 Self_ID.Pending_Priority_Change := False;
581 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
582 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
583 end if;
585 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
587 if Single_Lock then
588 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
589 Single_RTS_Lock'Access, Request'Access);
590 else
591 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
592 Self_ID.Common.LL.L'Access, Request'Access);
593 end if;
595 exit when Abs_Time <= Monotonic_Clock;
597 pragma Assert (Result = 0
598 or else Result = ETIMEDOUT
599 or else Result = EINTR);
600 end loop;
602 Self_ID.Common.State := Runnable;
603 end if;
605 Unlock (Self_ID);
607 if Single_Lock then
608 Unlock_RTS;
609 end if;
611 Result := sched_yield;
612 end Timed_Delay;
614 ---------------------
615 -- Monotonic_Clock --
616 ---------------------
618 function Monotonic_Clock return Duration is
619 TS : aliased timespec;
620 Result : Interfaces.C.int;
621 begin
622 Result := clock_gettime
623 (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access);
624 pragma Assert (Result = 0);
625 return To_Duration (TS);
626 end Monotonic_Clock;
628 -------------------
629 -- RT_Resolution --
630 -------------------
632 function RT_Resolution return Duration is
633 Res : aliased timespec;
634 Result : Interfaces.C.int;
635 begin
636 Result := clock_getres
637 (clock_id => CLOCK_REALTIME, Res => Res'Unchecked_Access);
638 pragma Assert (Result = 0);
639 return To_Duration (Res);
640 end RT_Resolution;
642 ------------
643 -- Wakeup --
644 ------------
646 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
647 pragma Unreferenced (Reason);
648 Result : Interfaces.C.int;
649 begin
650 Result := pthread_cond_signal (T.Common.LL.CV'Access);
651 pragma Assert (Result = 0);
652 end Wakeup;
654 -----------
655 -- Yield --
656 -----------
658 procedure Yield (Do_Yield : Boolean := True) is
659 Result : Interfaces.C.int;
660 pragma Unreferenced (Result);
661 begin
662 if Do_Yield then
663 Result := sched_yield;
664 end if;
665 end Yield;
667 ------------------
668 -- Set_Priority --
669 ------------------
671 procedure Set_OS_Priority (T : Task_Id; Prio : System.Any_Priority) is
672 Result : Interfaces.C.int;
673 Param : aliased struct_sched_param;
675 begin
676 Param.sched_priority := Interfaces.C.int (Prio);
678 if Time_Slice_Supported and then Time_Slice_Val > 0 then
679 Result := pthread_setschedparam
680 (T.Common.LL.Thread, SCHED_RR, Param'Access);
682 elsif Dispatching_Policy = 'F' or else Time_Slice_Val = 0 then
683 Result := pthread_setschedparam
684 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
686 else
687 Result := pthread_setschedparam
688 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
689 end if;
691 pragma Assert (Result = 0);
692 end Set_OS_Priority;
694 type Prio_Array_Type is array (System.Any_Priority) of Integer;
695 pragma Atomic_Components (Prio_Array_Type);
696 Prio_Array : Prio_Array_Type;
697 -- Comments needed for these declarations ???
699 procedure Set_Priority
700 (T : Task_Id;
701 Prio : System.Any_Priority;
702 Loss_Of_Inheritance : Boolean := False)
704 Array_Item : Integer;
706 begin
707 Set_OS_Priority (T, Prio);
709 if Locking_Policy = 'C' then
710 -- Annex D requirements: loss of inheritance puts task at the
711 -- beginning of the queue for that prio; copied from 5ztaprop
712 -- (VxWorks)
714 if Loss_Of_Inheritance
715 and then Prio < T.Common.Current_Priority then
717 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
718 Prio_Array (T.Common.Base_Priority) := Array_Item;
720 loop
721 Yield;
722 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
723 or else Prio_Array (T.Common.Base_Priority) = 1;
724 end loop;
726 Prio_Array (T.Common.Base_Priority) :=
727 Prio_Array (T.Common.Base_Priority) - 1;
728 end if;
729 end if;
731 T.Common.Current_Priority := Prio;
732 end Set_Priority;
734 ------------------
735 -- Get_Priority --
736 ------------------
738 function Get_Priority (T : Task_Id) return System.Any_Priority is
739 begin
740 return T.Common.Current_Priority;
741 end Get_Priority;
743 ----------------
744 -- Enter_Task --
745 ----------------
747 procedure Enter_Task (Self_ID : Task_Id) is
748 begin
749 Self_ID.Common.LL.Thread := pthread_self;
750 Self_ID.Common.LL.LWP := lwp_self;
752 Specific.Set (Self_ID);
754 Lock_RTS;
756 for J in Known_Tasks'Range loop
757 if Known_Tasks (J) = null then
758 Known_Tasks (J) := Self_ID;
759 Self_ID.Known_Tasks_Index := J;
760 exit;
761 end if;
762 end loop;
764 Unlock_RTS;
765 end Enter_Task;
767 --------------
768 -- New_ATCB --
769 --------------
771 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
772 begin
773 return new Ada_Task_Control_Block (Entry_Num);
774 end New_ATCB;
776 -------------------
777 -- Is_Valid_Task --
778 -------------------
780 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
782 -----------------------------
783 -- Register_Foreign_Thread --
784 -----------------------------
786 function Register_Foreign_Thread return Task_Id is
787 begin
788 if Is_Valid_Task then
789 return Self;
790 else
791 return Register_Foreign_Thread (pthread_self);
792 end if;
793 end Register_Foreign_Thread;
795 --------------------
796 -- Initialize_TCB --
797 --------------------
799 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
800 Mutex_Attr : aliased pthread_mutexattr_t;
801 Result : Interfaces.C.int;
802 Cond_Attr : aliased pthread_condattr_t;
804 begin
805 -- Give the task a unique serial number
807 Self_ID.Serial_Number := Next_Serial_Number;
808 Next_Serial_Number := Next_Serial_Number + 1;
809 pragma Assert (Next_Serial_Number /= 0);
811 if not Single_Lock then
812 Result := pthread_mutexattr_init (Mutex_Attr'Access);
813 pragma Assert (Result = 0 or else Result = ENOMEM);
815 if Result = 0 then
816 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
817 Mutex_Attr'Access);
818 pragma Assert (Result = 0 or else Result = ENOMEM);
819 end if;
821 if Result /= 0 then
822 Succeeded := False;
823 return;
824 end if;
826 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
827 pragma Assert (Result = 0);
828 end if;
830 Result := pthread_condattr_init (Cond_Attr'Access);
831 pragma Assert (Result = 0 or else Result = ENOMEM);
833 if Result = 0 then
834 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
835 Cond_Attr'Access);
836 pragma Assert (Result = 0 or else Result = ENOMEM);
837 end if;
839 if Result = 0 then
840 Succeeded := True;
841 else
842 if not Single_Lock then
843 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
844 pragma Assert (Result = 0);
845 end if;
847 Succeeded := False;
848 end if;
850 Result := pthread_condattr_destroy (Cond_Attr'Access);
851 pragma Assert (Result = 0);
852 end Initialize_TCB;
854 -----------------
855 -- Create_Task --
856 -----------------
858 procedure Create_Task
859 (T : Task_Id;
860 Wrapper : System.Address;
861 Stack_Size : System.Parameters.Size_Type;
862 Priority : System.Any_Priority;
863 Succeeded : out Boolean)
865 Attributes : aliased pthread_attr_t;
866 Adjusted_Stack_Size : Interfaces.C.size_t;
867 Result : Interfaces.C.int;
869 use System.Task_Info;
871 begin
872 if Stack_Size = Unspecified_Size then
873 Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size);
875 elsif Stack_Size < Minimum_Stack_Size then
876 Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size);
878 else
879 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
880 end if;
882 if Stack_Base_Available then
884 -- If Stack Checking is supported then allocate 2 additional pages:
886 -- In the worst case, stack is allocated at something like
887 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
888 -- to be sure the effective stack size is greater than what
889 -- has been asked.
891 Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size;
892 end if;
894 Result := pthread_attr_init (Attributes'Access);
895 pragma Assert (Result = 0 or else Result = ENOMEM);
897 if Result /= 0 then
898 Succeeded := False;
899 return;
900 end if;
902 Result := pthread_attr_setdetachstate
903 (Attributes'Access, PTHREAD_CREATE_DETACHED);
904 pragma Assert (Result = 0);
906 Result := pthread_attr_setstacksize
907 (Attributes'Access, Adjusted_Stack_Size);
908 pragma Assert (Result = 0);
910 if T.Common.Task_Info /= Default_Scope then
912 -- We are assuming that Scope_Type has the same values than the
913 -- corresponding C macros
915 Result := pthread_attr_setscope
916 (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info));
917 pragma Assert (Result = 0);
918 end if;
920 -- Since the initial signal mask of a thread is inherited from the
921 -- creator, and the Environment task has all its signals masked, we
922 -- do not need to manipulate caller's signal mask at this point.
923 -- All tasks in RTS will have All_Tasks_Mask initially.
925 Result := pthread_create
926 (T.Common.LL.Thread'Access,
927 Attributes'Access,
928 Thread_Body_Access (Wrapper),
929 To_Address (T));
930 pragma Assert (Result = 0 or else Result = EAGAIN);
932 Succeeded := Result = 0;
934 Result := pthread_attr_destroy (Attributes'Access);
935 pragma Assert (Result = 0);
937 Set_Priority (T, Priority);
938 end Create_Task;
940 ------------------
941 -- Finalize_TCB --
942 ------------------
944 procedure Finalize_TCB (T : Task_Id) is
945 Result : Interfaces.C.int;
946 Tmp : Task_Id := T;
947 Is_Self : constant Boolean := T = Self;
949 procedure Free is new
950 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
952 begin
953 if not Single_Lock then
954 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
955 pragma Assert (Result = 0);
956 end if;
958 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
959 pragma Assert (Result = 0);
961 if T.Known_Tasks_Index /= -1 then
962 Known_Tasks (T.Known_Tasks_Index) := null;
963 end if;
965 Free (Tmp);
967 if Is_Self then
968 Result := st_setspecific (ATCB_Key, System.Null_Address);
969 pragma Assert (Result = 0);
970 end if;
972 end Finalize_TCB;
974 ---------------
975 -- Exit_Task --
976 ---------------
978 procedure Exit_Task is
979 begin
980 Specific.Set (null);
981 end Exit_Task;
983 ----------------
984 -- Abort_Task --
985 ----------------
987 procedure Abort_Task (T : Task_Id) is
988 Result : Interfaces.C.int;
989 begin
990 Result := pthread_kill (T.Common.LL.Thread,
991 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
992 pragma Assert (Result = 0);
993 end Abort_Task;
995 ----------------
996 -- Initialize --
997 ----------------
999 procedure Initialize (S : in out Suspension_Object) is
1000 Mutex_Attr : aliased pthread_mutexattr_t;
1001 Cond_Attr : aliased pthread_condattr_t;
1002 Result : Interfaces.C.int;
1004 begin
1005 -- Initialize internal state. It is always initialized to False (ARM
1006 -- D.10 par. 6).
1008 S.State := False;
1009 S.Waiting := False;
1011 -- Initialize internal mutex
1013 Result := pthread_mutexattr_init (Mutex_Attr'Access);
1014 pragma Assert (Result = 0 or else Result = ENOMEM);
1016 if Result = ENOMEM then
1017 raise Storage_Error;
1018 end if;
1020 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
1021 pragma Assert (Result = 0 or else Result = ENOMEM);
1023 if Result = ENOMEM then
1024 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1025 pragma Assert (Result = 0);
1027 raise Storage_Error;
1028 end if;
1030 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1031 pragma Assert (Result = 0);
1033 -- Initialize internal condition variable
1035 Result := pthread_condattr_init (Cond_Attr'Access);
1036 pragma Assert (Result = 0 or else Result = ENOMEM);
1038 if Result /= 0 then
1039 Result := pthread_mutex_destroy (S.L'Access);
1040 pragma Assert (Result = 0);
1042 if Result = ENOMEM then
1043 raise Storage_Error;
1044 end if;
1045 end if;
1047 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
1048 pragma Assert (Result = 0 or else Result = ENOMEM);
1050 if Result /= 0 then
1051 Result := pthread_mutex_destroy (S.L'Access);
1052 pragma Assert (Result = 0);
1054 if Result = ENOMEM then
1055 Result := pthread_condattr_destroy (Cond_Attr'Access);
1056 pragma Assert (Result = 0);
1058 raise Storage_Error;
1059 end if;
1060 end if;
1062 Result := pthread_condattr_destroy (Cond_Attr'Access);
1063 pragma Assert (Result = 0);
1064 end Initialize;
1066 --------------
1067 -- Finalize --
1068 --------------
1070 procedure Finalize (S : in out Suspension_Object) is
1071 Result : Interfaces.C.int;
1072 begin
1073 -- Destroy internal mutex
1075 Result := pthread_mutex_destroy (S.L'Access);
1076 pragma Assert (Result = 0);
1078 -- Destroy internal condition variable
1080 Result := pthread_cond_destroy (S.CV'Access);
1081 pragma Assert (Result = 0);
1082 end Finalize;
1084 -------------------
1085 -- Current_State --
1086 -------------------
1088 function Current_State (S : Suspension_Object) return Boolean is
1089 begin
1090 -- We do not want to use lock on this read operation. State is marked
1091 -- as Atomic so that we ensure that the value retrieved is correct.
1093 return S.State;
1094 end Current_State;
1096 ---------------
1097 -- Set_False --
1098 ---------------
1100 procedure Set_False (S : in out Suspension_Object) is
1101 Result : Interfaces.C.int;
1102 begin
1103 Result := pthread_mutex_lock (S.L'Access);
1104 pragma Assert (Result = 0);
1106 S.State := False;
1108 Result := pthread_mutex_unlock (S.L'Access);
1109 pragma Assert (Result = 0);
1110 end Set_False;
1112 --------------
1113 -- Set_True --
1114 --------------
1116 procedure Set_True (S : in out Suspension_Object) is
1117 Result : Interfaces.C.int;
1118 begin
1119 Result := pthread_mutex_lock (S.L'Access);
1120 pragma Assert (Result = 0);
1122 -- If there is already a task waiting on this suspension object then
1123 -- we resume it, leaving the state of the suspension object to False,
1124 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1125 -- the state to True.
1127 if S.Waiting then
1128 S.Waiting := False;
1129 S.State := False;
1131 Result := pthread_cond_signal (S.CV'Access);
1132 pragma Assert (Result = 0);
1133 else
1134 S.State := True;
1135 end if;
1137 Result := pthread_mutex_unlock (S.L'Access);
1138 pragma Assert (Result = 0);
1139 end Set_True;
1141 ------------------------
1142 -- Suspend_Until_True --
1143 ------------------------
1145 procedure Suspend_Until_True (S : in out Suspension_Object) is
1146 Result : Interfaces.C.int;
1147 begin
1148 Result := pthread_mutex_lock (S.L'Access);
1149 pragma Assert (Result = 0);
1151 if S.Waiting then
1152 -- Program_Error must be raised upon calling Suspend_Until_True
1153 -- if another task is already waiting on that suspension object
1154 -- (ARM D.10 par. 10).
1156 Result := pthread_mutex_unlock (S.L'Access);
1157 pragma Assert (Result = 0);
1159 raise Program_Error;
1160 else
1161 -- Suspend the task if the state is False. Otherwise, the task
1162 -- continues its execution, and the state of the suspension object
1163 -- is set to False (ARM D.10 par. 9).
1165 if S.State then
1166 S.State := False;
1167 else
1168 S.Waiting := True;
1169 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1170 end if;
1171 end if;
1173 Result := pthread_mutex_unlock (S.L'Access);
1174 pragma Assert (Result = 0);
1175 end Suspend_Until_True;
1177 ----------------
1178 -- Check_Exit --
1179 ----------------
1181 -- Dummy versions
1183 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1184 pragma Unreferenced (Self_ID);
1185 begin
1186 return True;
1187 end Check_Exit;
1189 --------------------
1190 -- Check_No_Locks --
1191 --------------------
1193 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1194 pragma Unreferenced (Self_ID);
1195 begin
1196 return True;
1197 end Check_No_Locks;
1199 ----------------------
1200 -- Environment_Task --
1201 ----------------------
1203 function Environment_Task return Task_Id is
1204 begin
1205 return Environment_Task_Id;
1206 end Environment_Task;
1208 --------------
1209 -- Lock_RTS --
1210 --------------
1212 procedure Lock_RTS is
1213 begin
1214 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1215 end Lock_RTS;
1217 ----------------
1218 -- Unlock_RTS --
1219 ----------------
1221 procedure Unlock_RTS is
1222 begin
1223 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1224 end Unlock_RTS;
1226 ------------------
1227 -- Suspend_Task --
1228 ------------------
1230 function Suspend_Task
1231 (T : ST.Task_Id;
1232 Thread_Self : Thread_Id) return Boolean
1234 pragma Unreferenced (T);
1235 pragma Unreferenced (Thread_Self);
1236 begin
1237 return False;
1238 end Suspend_Task;
1240 -----------------
1241 -- Resume_Task --
1242 -----------------
1244 function Resume_Task
1245 (T : ST.Task_Id;
1246 Thread_Self : Thread_Id) return Boolean
1248 pragma Unreferenced (T);
1249 pragma Unreferenced (Thread_Self);
1250 begin
1251 return False;
1252 end Resume_Task;
1254 ----------------
1255 -- Initialize --
1256 ----------------
1258 procedure Initialize (Environment_Task : Task_Id) is
1259 act : aliased struct_sigaction;
1260 old_act : aliased struct_sigaction;
1261 Tmp_Set : aliased sigset_t;
1262 Result : Interfaces.C.int;
1264 function State
1265 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1266 pragma Import (C, State, "__gnat_get_interrupt_state");
1267 -- Get interrupt state. Defined in a-init.c
1268 -- The input argument is the interrupt number,
1269 -- and the result is one of the following:
1271 Default : constant Character := 's';
1272 -- 'n' this interrupt not set by any Interrupt_State pragma
1273 -- 'u' Interrupt_State pragma set state to User
1274 -- 'r' Interrupt_State pragma set state to Runtime
1275 -- 's' Interrupt_State pragma set state to System (use "default"
1276 -- system handler)
1278 begin
1279 Environment_Task_Id := Environment_Task;
1281 Interrupt_Management.Initialize;
1283 -- Prepare the set of signals that should unblocked in all tasks
1285 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1286 pragma Assert (Result = 0);
1288 for J in Interrupt_Management.Interrupt_ID loop
1289 if System.Interrupt_Management.Keep_Unmasked (J) then
1290 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1291 pragma Assert (Result = 0);
1292 end if;
1293 end loop;
1295 -- Initialize the lock used to synchronize chain of all ATCBs
1297 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1299 Specific.Initialize (Environment_Task);
1301 Enter_Task (Environment_Task);
1303 -- Install the abort-signal handler
1305 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1306 /= Default
1307 then
1308 act.sa_flags := 0;
1309 act.sa_handler := Abort_Handler'Address;
1311 Result := sigemptyset (Tmp_Set'Access);
1312 pragma Assert (Result = 0);
1313 act.sa_mask := Tmp_Set;
1315 Result :=
1316 sigaction
1317 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1318 act'Unchecked_Access,
1319 old_act'Unchecked_Access);
1321 pragma Assert (Result = 0);
1322 end if;
1323 end Initialize;
1325 end System.Task_Primitives.Operations;