PR middle-end/59175
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob7f29ea2053c064c0d113fa52678b1d2dae45c5cb
1 /* Loop invariant motion.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "gimple.h"
29 #include "gimplify.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "gimple-ssa.h"
33 #include "tree-cfg.h"
34 #include "tree-phinodes.h"
35 #include "ssa-iterators.h"
36 #include "tree-ssanames.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-ssa-loop.h"
39 #include "tree-into-ssa.h"
40 #include "cfgloop.h"
41 #include "domwalk.h"
42 #include "params.h"
43 #include "tree-pass.h"
44 #include "flags.h"
45 #include "hash-table.h"
46 #include "tree-affine.h"
47 #include "pointer-set.h"
48 #include "tree-ssa-propagate.h"
49 #include "trans-mem.h"
51 /* TODO: Support for predicated code motion. I.e.
53 while (1)
55 if (cond)
57 a = inv;
58 something;
62 Where COND and INV are invariants, but evaluating INV may trap or be
63 invalid from some other reason if !COND. This may be transformed to
65 if (cond)
66 a = inv;
67 while (1)
69 if (cond)
70 something;
71 } */
73 /* The auxiliary data kept for each statement. */
75 struct lim_aux_data
77 struct loop *max_loop; /* The outermost loop in that the statement
78 is invariant. */
80 struct loop *tgt_loop; /* The loop out of that we want to move the
81 invariant. */
83 struct loop *always_executed_in;
84 /* The outermost loop for that we are sure
85 the statement is executed if the loop
86 is entered. */
88 unsigned cost; /* Cost of the computation performed by the
89 statement. */
91 vec<gimple> depends; /* Vector of statements that must be also
92 hoisted out of the loop when this statement
93 is hoisted; i.e. those that define the
94 operands of the statement and are inside of
95 the MAX_LOOP loop. */
98 /* Maps statements to their lim_aux_data. */
100 static struct pointer_map_t *lim_aux_data_map;
102 /* Description of a memory reference location. */
104 typedef struct mem_ref_loc
106 tree *ref; /* The reference itself. */
107 gimple stmt; /* The statement in that it occurs. */
108 } *mem_ref_loc_p;
111 /* Description of a memory reference. */
113 typedef struct mem_ref
115 unsigned id; /* ID assigned to the memory reference
116 (its index in memory_accesses.refs_list) */
117 hashval_t hash; /* Its hash value. */
119 /* The memory access itself and associated caching of alias-oracle
120 query meta-data. */
121 ao_ref mem;
123 bitmap_head stored; /* The set of loops in that this memory location
124 is stored to. */
125 vec<vec<mem_ref_loc> > accesses_in_loop;
126 /* The locations of the accesses. Vector
127 indexed by the loop number. */
129 /* The following sets are computed on demand. We keep both set and
130 its complement, so that we know whether the information was
131 already computed or not. */
132 bitmap_head indep_loop; /* The set of loops in that the memory
133 reference is independent, meaning:
134 If it is stored in the loop, this store
135 is independent on all other loads and
136 stores.
137 If it is only loaded, then it is independent
138 on all stores in the loop. */
139 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
140 } *mem_ref_p;
142 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
143 to record (in)dependence against stores in the loop and its subloops, the
144 second to record (in)dependence against all references in the loop
145 and its subloops. */
146 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
148 /* Mem_ref hashtable helpers. */
150 struct mem_ref_hasher : typed_noop_remove <mem_ref>
152 typedef mem_ref value_type;
153 typedef tree_node compare_type;
154 static inline hashval_t hash (const value_type *);
155 static inline bool equal (const value_type *, const compare_type *);
158 /* A hash function for struct mem_ref object OBJ. */
160 inline hashval_t
161 mem_ref_hasher::hash (const value_type *mem)
163 return mem->hash;
166 /* An equality function for struct mem_ref object MEM1 with
167 memory reference OBJ2. */
169 inline bool
170 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
172 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
176 /* Description of memory accesses in loops. */
178 static struct
180 /* The hash table of memory references accessed in loops. */
181 hash_table <mem_ref_hasher> refs;
183 /* The list of memory references. */
184 vec<mem_ref_p> refs_list;
186 /* The set of memory references accessed in each loop. */
187 vec<bitmap_head> refs_in_loop;
189 /* The set of memory references stored in each loop. */
190 vec<bitmap_head> refs_stored_in_loop;
192 /* The set of memory references stored in each loop, including subloops . */
193 vec<bitmap_head> all_refs_stored_in_loop;
195 /* Cache for expanding memory addresses. */
196 struct pointer_map_t *ttae_cache;
197 } memory_accesses;
199 /* Obstack for the bitmaps in the above data structures. */
200 static bitmap_obstack lim_bitmap_obstack;
202 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
204 /* Minimum cost of an expensive expression. */
205 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
207 /* The outermost loop for which execution of the header guarantees that the
208 block will be executed. */
209 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
210 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
212 /* ID of the shared unanalyzable mem. */
213 #define UNANALYZABLE_MEM_ID 0
215 /* Whether the reference was analyzable. */
216 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
218 static struct lim_aux_data *
219 init_lim_data (gimple stmt)
221 void **p = pointer_map_insert (lim_aux_data_map, stmt);
223 *p = XCNEW (struct lim_aux_data);
224 return (struct lim_aux_data *) *p;
227 static struct lim_aux_data *
228 get_lim_data (gimple stmt)
230 void **p = pointer_map_contains (lim_aux_data_map, stmt);
231 if (!p)
232 return NULL;
234 return (struct lim_aux_data *) *p;
237 /* Releases the memory occupied by DATA. */
239 static void
240 free_lim_aux_data (struct lim_aux_data *data)
242 data->depends.release ();
243 free (data);
246 static void
247 clear_lim_data (gimple stmt)
249 void **p = pointer_map_contains (lim_aux_data_map, stmt);
250 if (!p)
251 return;
253 free_lim_aux_data ((struct lim_aux_data *) *p);
254 *p = NULL;
258 /* The possibilities of statement movement. */
259 enum move_pos
261 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
262 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
263 become executed -- memory accesses, ... */
264 MOVE_POSSIBLE /* Unlimited movement. */
268 /* If it is possible to hoist the statement STMT unconditionally,
269 returns MOVE_POSSIBLE.
270 If it is possible to hoist the statement STMT, but we must avoid making
271 it executed if it would not be executed in the original program (e.g.
272 because it may trap), return MOVE_PRESERVE_EXECUTION.
273 Otherwise return MOVE_IMPOSSIBLE. */
275 enum move_pos
276 movement_possibility (gimple stmt)
278 tree lhs;
279 enum move_pos ret = MOVE_POSSIBLE;
281 if (flag_unswitch_loops
282 && gimple_code (stmt) == GIMPLE_COND)
284 /* If we perform unswitching, force the operands of the invariant
285 condition to be moved out of the loop. */
286 return MOVE_POSSIBLE;
289 if (gimple_code (stmt) == GIMPLE_PHI
290 && gimple_phi_num_args (stmt) <= 2
291 && !virtual_operand_p (gimple_phi_result (stmt))
292 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
293 return MOVE_POSSIBLE;
295 if (gimple_get_lhs (stmt) == NULL_TREE)
296 return MOVE_IMPOSSIBLE;
298 if (gimple_vdef (stmt))
299 return MOVE_IMPOSSIBLE;
301 if (stmt_ends_bb_p (stmt)
302 || gimple_has_volatile_ops (stmt)
303 || gimple_has_side_effects (stmt)
304 || stmt_could_throw_p (stmt))
305 return MOVE_IMPOSSIBLE;
307 if (is_gimple_call (stmt))
309 /* While pure or const call is guaranteed to have no side effects, we
310 cannot move it arbitrarily. Consider code like
312 char *s = something ();
314 while (1)
316 if (s)
317 t = strlen (s);
318 else
319 t = 0;
322 Here the strlen call cannot be moved out of the loop, even though
323 s is invariant. In addition to possibly creating a call with
324 invalid arguments, moving out a function call that is not executed
325 may cause performance regressions in case the call is costly and
326 not executed at all. */
327 ret = MOVE_PRESERVE_EXECUTION;
328 lhs = gimple_call_lhs (stmt);
330 else if (is_gimple_assign (stmt))
331 lhs = gimple_assign_lhs (stmt);
332 else
333 return MOVE_IMPOSSIBLE;
335 if (TREE_CODE (lhs) == SSA_NAME
336 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
337 return MOVE_IMPOSSIBLE;
339 if (TREE_CODE (lhs) != SSA_NAME
340 || gimple_could_trap_p (stmt))
341 return MOVE_PRESERVE_EXECUTION;
343 /* Non local loads in a transaction cannot be hoisted out. Well,
344 unless the load happens on every path out of the loop, but we
345 don't take this into account yet. */
346 if (flag_tm
347 && gimple_in_transaction (stmt)
348 && gimple_assign_single_p (stmt))
350 tree rhs = gimple_assign_rhs1 (stmt);
351 if (DECL_P (rhs) && is_global_var (rhs))
353 if (dump_file)
355 fprintf (dump_file, "Cannot hoist conditional load of ");
356 print_generic_expr (dump_file, rhs, TDF_SLIM);
357 fprintf (dump_file, " because it is in a transaction.\n");
359 return MOVE_IMPOSSIBLE;
363 return ret;
366 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
367 loop to that we could move the expression using DEF if it did not have
368 other operands, i.e. the outermost loop enclosing LOOP in that the value
369 of DEF is invariant. */
371 static struct loop *
372 outermost_invariant_loop (tree def, struct loop *loop)
374 gimple def_stmt;
375 basic_block def_bb;
376 struct loop *max_loop;
377 struct lim_aux_data *lim_data;
379 if (!def)
380 return superloop_at_depth (loop, 1);
382 if (TREE_CODE (def) != SSA_NAME)
384 gcc_assert (is_gimple_min_invariant (def));
385 return superloop_at_depth (loop, 1);
388 def_stmt = SSA_NAME_DEF_STMT (def);
389 def_bb = gimple_bb (def_stmt);
390 if (!def_bb)
391 return superloop_at_depth (loop, 1);
393 max_loop = find_common_loop (loop, def_bb->loop_father);
395 lim_data = get_lim_data (def_stmt);
396 if (lim_data != NULL && lim_data->max_loop != NULL)
397 max_loop = find_common_loop (max_loop,
398 loop_outer (lim_data->max_loop));
399 if (max_loop == loop)
400 return NULL;
401 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
403 return max_loop;
406 /* DATA is a structure containing information associated with a statement
407 inside LOOP. DEF is one of the operands of this statement.
409 Find the outermost loop enclosing LOOP in that value of DEF is invariant
410 and record this in DATA->max_loop field. If DEF itself is defined inside
411 this loop as well (i.e. we need to hoist it out of the loop if we want
412 to hoist the statement represented by DATA), record the statement in that
413 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
414 add the cost of the computation of DEF to the DATA->cost.
416 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
418 static bool
419 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
420 bool add_cost)
422 gimple def_stmt = SSA_NAME_DEF_STMT (def);
423 basic_block def_bb = gimple_bb (def_stmt);
424 struct loop *max_loop;
425 struct lim_aux_data *def_data;
427 if (!def_bb)
428 return true;
430 max_loop = outermost_invariant_loop (def, loop);
431 if (!max_loop)
432 return false;
434 if (flow_loop_nested_p (data->max_loop, max_loop))
435 data->max_loop = max_loop;
437 def_data = get_lim_data (def_stmt);
438 if (!def_data)
439 return true;
441 if (add_cost
442 /* Only add the cost if the statement defining DEF is inside LOOP,
443 i.e. if it is likely that by moving the invariants dependent
444 on it, we will be able to avoid creating a new register for
445 it (since it will be only used in these dependent invariants). */
446 && def_bb->loop_father == loop)
447 data->cost += def_data->cost;
449 data->depends.safe_push (def_stmt);
451 return true;
454 /* Returns an estimate for a cost of statement STMT. The values here
455 are just ad-hoc constants, similar to costs for inlining. */
457 static unsigned
458 stmt_cost (gimple stmt)
460 /* Always try to create possibilities for unswitching. */
461 if (gimple_code (stmt) == GIMPLE_COND
462 || gimple_code (stmt) == GIMPLE_PHI)
463 return LIM_EXPENSIVE;
465 /* We should be hoisting calls if possible. */
466 if (is_gimple_call (stmt))
468 tree fndecl;
470 /* Unless the call is a builtin_constant_p; this always folds to a
471 constant, so moving it is useless. */
472 fndecl = gimple_call_fndecl (stmt);
473 if (fndecl
474 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
475 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
476 return 0;
478 return LIM_EXPENSIVE;
481 /* Hoisting memory references out should almost surely be a win. */
482 if (gimple_references_memory_p (stmt))
483 return LIM_EXPENSIVE;
485 if (gimple_code (stmt) != GIMPLE_ASSIGN)
486 return 1;
488 switch (gimple_assign_rhs_code (stmt))
490 case MULT_EXPR:
491 case WIDEN_MULT_EXPR:
492 case WIDEN_MULT_PLUS_EXPR:
493 case WIDEN_MULT_MINUS_EXPR:
494 case DOT_PROD_EXPR:
495 case FMA_EXPR:
496 case TRUNC_DIV_EXPR:
497 case CEIL_DIV_EXPR:
498 case FLOOR_DIV_EXPR:
499 case ROUND_DIV_EXPR:
500 case EXACT_DIV_EXPR:
501 case CEIL_MOD_EXPR:
502 case FLOOR_MOD_EXPR:
503 case ROUND_MOD_EXPR:
504 case TRUNC_MOD_EXPR:
505 case RDIV_EXPR:
506 /* Division and multiplication are usually expensive. */
507 return LIM_EXPENSIVE;
509 case LSHIFT_EXPR:
510 case RSHIFT_EXPR:
511 case WIDEN_LSHIFT_EXPR:
512 case LROTATE_EXPR:
513 case RROTATE_EXPR:
514 /* Shifts and rotates are usually expensive. */
515 return LIM_EXPENSIVE;
517 case CONSTRUCTOR:
518 /* Make vector construction cost proportional to the number
519 of elements. */
520 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
522 case SSA_NAME:
523 case PAREN_EXPR:
524 /* Whether or not something is wrapped inside a PAREN_EXPR
525 should not change move cost. Nor should an intermediate
526 unpropagated SSA name copy. */
527 return 0;
529 default:
530 return 1;
534 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
535 REF is independent. If REF is not independent in LOOP, NULL is returned
536 instead. */
538 static struct loop *
539 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
541 struct loop *aloop;
543 if (bitmap_bit_p (&ref->stored, loop->num))
544 return NULL;
546 for (aloop = outer;
547 aloop != loop;
548 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
549 if (!bitmap_bit_p (&ref->stored, aloop->num)
550 && ref_indep_loop_p (aloop, ref))
551 return aloop;
553 if (ref_indep_loop_p (loop, ref))
554 return loop;
555 else
556 return NULL;
559 /* If there is a simple load or store to a memory reference in STMT, returns
560 the location of the memory reference, and sets IS_STORE according to whether
561 it is a store or load. Otherwise, returns NULL. */
563 static tree *
564 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
566 tree *lhs, *rhs;
568 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
569 if (!gimple_assign_single_p (stmt))
570 return NULL;
572 lhs = gimple_assign_lhs_ptr (stmt);
573 rhs = gimple_assign_rhs1_ptr (stmt);
575 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
577 *is_store = false;
578 return rhs;
580 else if (gimple_vdef (stmt)
581 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
583 *is_store = true;
584 return lhs;
586 else
587 return NULL;
590 /* Returns the memory reference contained in STMT. */
592 static mem_ref_p
593 mem_ref_in_stmt (gimple stmt)
595 bool store;
596 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
597 hashval_t hash;
598 mem_ref_p ref;
600 if (!mem)
601 return NULL;
602 gcc_assert (!store);
604 hash = iterative_hash_expr (*mem, 0);
605 ref = memory_accesses.refs.find_with_hash (*mem, hash);
607 gcc_assert (ref != NULL);
608 return ref;
611 /* From a controlling predicate in DOM determine the arguments from
612 the PHI node PHI that are chosen if the predicate evaluates to
613 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
614 they are non-NULL. Returns true if the arguments can be determined,
615 else return false. */
617 static bool
618 extract_true_false_args_from_phi (basic_block dom, gimple phi,
619 tree *true_arg_p, tree *false_arg_p)
621 basic_block bb = gimple_bb (phi);
622 edge true_edge, false_edge, tem;
623 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
625 /* We have to verify that one edge into the PHI node is dominated
626 by the true edge of the predicate block and the other edge
627 dominated by the false edge. This ensures that the PHI argument
628 we are going to take is completely determined by the path we
629 take from the predicate block.
630 We can only use BB dominance checks below if the destination of
631 the true/false edges are dominated by their edge, thus only
632 have a single predecessor. */
633 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
634 tem = EDGE_PRED (bb, 0);
635 if (tem == true_edge
636 || (single_pred_p (true_edge->dest)
637 && (tem->src == true_edge->dest
638 || dominated_by_p (CDI_DOMINATORS,
639 tem->src, true_edge->dest))))
640 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
641 else if (tem == false_edge
642 || (single_pred_p (false_edge->dest)
643 && (tem->src == false_edge->dest
644 || dominated_by_p (CDI_DOMINATORS,
645 tem->src, false_edge->dest))))
646 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
647 else
648 return false;
649 tem = EDGE_PRED (bb, 1);
650 if (tem == true_edge
651 || (single_pred_p (true_edge->dest)
652 && (tem->src == true_edge->dest
653 || dominated_by_p (CDI_DOMINATORS,
654 tem->src, true_edge->dest))))
655 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
656 else if (tem == false_edge
657 || (single_pred_p (false_edge->dest)
658 && (tem->src == false_edge->dest
659 || dominated_by_p (CDI_DOMINATORS,
660 tem->src, false_edge->dest))))
661 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
662 else
663 return false;
664 if (!arg0 || !arg1)
665 return false;
667 if (true_arg_p)
668 *true_arg_p = arg0;
669 if (false_arg_p)
670 *false_arg_p = arg1;
672 return true;
675 /* Determine the outermost loop to that it is possible to hoist a statement
676 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
677 the outermost loop in that the value computed by STMT is invariant.
678 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
679 we preserve the fact whether STMT is executed. It also fills other related
680 information to LIM_DATA (STMT).
682 The function returns false if STMT cannot be hoisted outside of the loop it
683 is defined in, and true otherwise. */
685 static bool
686 determine_max_movement (gimple stmt, bool must_preserve_exec)
688 basic_block bb = gimple_bb (stmt);
689 struct loop *loop = bb->loop_father;
690 struct loop *level;
691 struct lim_aux_data *lim_data = get_lim_data (stmt);
692 tree val;
693 ssa_op_iter iter;
695 if (must_preserve_exec)
696 level = ALWAYS_EXECUTED_IN (bb);
697 else
698 level = superloop_at_depth (loop, 1);
699 lim_data->max_loop = level;
701 if (gimple_code (stmt) == GIMPLE_PHI)
703 use_operand_p use_p;
704 unsigned min_cost = UINT_MAX;
705 unsigned total_cost = 0;
706 struct lim_aux_data *def_data;
708 /* We will end up promoting dependencies to be unconditionally
709 evaluated. For this reason the PHI cost (and thus the
710 cost we remove from the loop by doing the invariant motion)
711 is that of the cheapest PHI argument dependency chain. */
712 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
714 val = USE_FROM_PTR (use_p);
715 if (TREE_CODE (val) != SSA_NAME)
716 continue;
717 if (!add_dependency (val, lim_data, loop, false))
718 return false;
719 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
720 if (def_data)
722 min_cost = MIN (min_cost, def_data->cost);
723 total_cost += def_data->cost;
727 lim_data->cost += min_cost;
729 if (gimple_phi_num_args (stmt) > 1)
731 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
732 gimple cond;
733 if (gsi_end_p (gsi_last_bb (dom)))
734 return false;
735 cond = gsi_stmt (gsi_last_bb (dom));
736 if (gimple_code (cond) != GIMPLE_COND)
737 return false;
738 /* Verify that this is an extended form of a diamond and
739 the PHI arguments are completely controlled by the
740 predicate in DOM. */
741 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
742 return false;
744 /* Fold in dependencies and cost of the condition. */
745 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
747 if (!add_dependency (val, lim_data, loop, false))
748 return false;
749 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
750 if (def_data)
751 total_cost += def_data->cost;
754 /* We want to avoid unconditionally executing very expensive
755 operations. As costs for our dependencies cannot be
756 negative just claim we are not invariand for this case.
757 We also are not sure whether the control-flow inside the
758 loop will vanish. */
759 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
760 && !(min_cost != 0
761 && total_cost / min_cost <= 2))
762 return false;
764 /* Assume that the control-flow in the loop will vanish.
765 ??? We should verify this and not artificially increase
766 the cost if that is not the case. */
767 lim_data->cost += stmt_cost (stmt);
770 return true;
772 else
773 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
774 if (!add_dependency (val, lim_data, loop, true))
775 return false;
777 if (gimple_vuse (stmt))
779 mem_ref_p ref = mem_ref_in_stmt (stmt);
781 if (ref)
783 lim_data->max_loop
784 = outermost_indep_loop (lim_data->max_loop, loop, ref);
785 if (!lim_data->max_loop)
786 return false;
788 else
790 if ((val = gimple_vuse (stmt)) != NULL_TREE)
792 if (!add_dependency (val, lim_data, loop, false))
793 return false;
798 lim_data->cost += stmt_cost (stmt);
800 return true;
803 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
804 and that one of the operands of this statement is computed by STMT.
805 Ensure that STMT (together with all the statements that define its
806 operands) is hoisted at least out of the loop LEVEL. */
808 static void
809 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
811 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
812 struct lim_aux_data *lim_data;
813 gimple dep_stmt;
814 unsigned i;
816 stmt_loop = find_common_loop (orig_loop, stmt_loop);
817 lim_data = get_lim_data (stmt);
818 if (lim_data != NULL && lim_data->tgt_loop != NULL)
819 stmt_loop = find_common_loop (stmt_loop,
820 loop_outer (lim_data->tgt_loop));
821 if (flow_loop_nested_p (stmt_loop, level))
822 return;
824 gcc_assert (level == lim_data->max_loop
825 || flow_loop_nested_p (lim_data->max_loop, level));
827 lim_data->tgt_loop = level;
828 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
829 set_level (dep_stmt, orig_loop, level);
832 /* Determines an outermost loop from that we want to hoist the statement STMT.
833 For now we chose the outermost possible loop. TODO -- use profiling
834 information to set it more sanely. */
836 static void
837 set_profitable_level (gimple stmt)
839 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
842 /* Returns true if STMT is a call that has side effects. */
844 static bool
845 nonpure_call_p (gimple stmt)
847 if (gimple_code (stmt) != GIMPLE_CALL)
848 return false;
850 return gimple_has_side_effects (stmt);
853 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
855 static gimple
856 rewrite_reciprocal (gimple_stmt_iterator *bsi)
858 gimple stmt, stmt1, stmt2;
859 tree name, lhs, type;
860 tree real_one;
861 gimple_stmt_iterator gsi;
863 stmt = gsi_stmt (*bsi);
864 lhs = gimple_assign_lhs (stmt);
865 type = TREE_TYPE (lhs);
867 real_one = build_one_cst (type);
869 name = make_temp_ssa_name (type, NULL, "reciptmp");
870 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, name, real_one,
871 gimple_assign_rhs2 (stmt));
873 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
874 gimple_assign_rhs1 (stmt));
876 /* Replace division stmt with reciprocal and multiply stmts.
877 The multiply stmt is not invariant, so update iterator
878 and avoid rescanning. */
879 gsi = *bsi;
880 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
881 gsi_replace (&gsi, stmt2, true);
883 /* Continue processing with invariant reciprocal statement. */
884 return stmt1;
887 /* Check if the pattern at *BSI is a bittest of the form
888 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
890 static gimple
891 rewrite_bittest (gimple_stmt_iterator *bsi)
893 gimple stmt, use_stmt, stmt1, stmt2;
894 tree lhs, name, t, a, b;
895 use_operand_p use;
897 stmt = gsi_stmt (*bsi);
898 lhs = gimple_assign_lhs (stmt);
900 /* Verify that the single use of lhs is a comparison against zero. */
901 if (TREE_CODE (lhs) != SSA_NAME
902 || !single_imm_use (lhs, &use, &use_stmt)
903 || gimple_code (use_stmt) != GIMPLE_COND)
904 return stmt;
905 if (gimple_cond_lhs (use_stmt) != lhs
906 || (gimple_cond_code (use_stmt) != NE_EXPR
907 && gimple_cond_code (use_stmt) != EQ_EXPR)
908 || !integer_zerop (gimple_cond_rhs (use_stmt)))
909 return stmt;
911 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
912 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
913 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
914 return stmt;
916 /* There is a conversion in between possibly inserted by fold. */
917 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
919 t = gimple_assign_rhs1 (stmt1);
920 if (TREE_CODE (t) != SSA_NAME
921 || !has_single_use (t))
922 return stmt;
923 stmt1 = SSA_NAME_DEF_STMT (t);
924 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
925 return stmt;
928 /* Verify that B is loop invariant but A is not. Verify that with
929 all the stmt walking we are still in the same loop. */
930 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
931 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
932 return stmt;
934 a = gimple_assign_rhs1 (stmt1);
935 b = gimple_assign_rhs2 (stmt1);
937 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
938 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
940 gimple_stmt_iterator rsi;
942 /* 1 << B */
943 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
944 build_int_cst (TREE_TYPE (a), 1), b);
945 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
946 stmt1 = gimple_build_assign (name, t);
948 /* A & (1 << B) */
949 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
950 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
951 stmt2 = gimple_build_assign (name, t);
953 /* Replace the SSA_NAME we compare against zero. Adjust
954 the type of zero accordingly. */
955 SET_USE (use, name);
956 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
958 /* Don't use gsi_replace here, none of the new assignments sets
959 the variable originally set in stmt. Move bsi to stmt1, and
960 then remove the original stmt, so that we get a chance to
961 retain debug info for it. */
962 rsi = *bsi;
963 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
964 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
965 gsi_remove (&rsi, true);
967 return stmt1;
970 return stmt;
973 /* For each statement determines the outermost loop in that it is invariant,
974 - statements on whose motion it depends and the cost of the computation.
975 - This information is stored to the LIM_DATA structure associated with
976 - each statement. */
977 class invariantness_dom_walker : public dom_walker
979 public:
980 invariantness_dom_walker (cdi_direction direction)
981 : dom_walker (direction) {}
983 virtual void before_dom_children (basic_block);
986 /* Determine the outermost loops in that statements in basic block BB are
987 invariant, and record them to the LIM_DATA associated with the statements.
988 Callback for dom_walker. */
990 void
991 invariantness_dom_walker::before_dom_children (basic_block bb)
993 enum move_pos pos;
994 gimple_stmt_iterator bsi;
995 gimple stmt;
996 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
997 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
998 struct lim_aux_data *lim_data;
1000 if (!loop_outer (bb->loop_father))
1001 return;
1003 if (dump_file && (dump_flags & TDF_DETAILS))
1004 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1005 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1007 /* Look at PHI nodes, but only if there is at most two.
1008 ??? We could relax this further by post-processing the inserted
1009 code and transforming adjacent cond-exprs with the same predicate
1010 to control flow again. */
1011 bsi = gsi_start_phis (bb);
1012 if (!gsi_end_p (bsi)
1013 && ((gsi_next (&bsi), gsi_end_p (bsi))
1014 || (gsi_next (&bsi), gsi_end_p (bsi))))
1015 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1017 stmt = gsi_stmt (bsi);
1019 pos = movement_possibility (stmt);
1020 if (pos == MOVE_IMPOSSIBLE)
1021 continue;
1023 lim_data = init_lim_data (stmt);
1024 lim_data->always_executed_in = outermost;
1026 if (!determine_max_movement (stmt, false))
1028 lim_data->max_loop = NULL;
1029 continue;
1032 if (dump_file && (dump_flags & TDF_DETAILS))
1034 print_gimple_stmt (dump_file, stmt, 2, 0);
1035 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1036 loop_depth (lim_data->max_loop),
1037 lim_data->cost);
1040 if (lim_data->cost >= LIM_EXPENSIVE)
1041 set_profitable_level (stmt);
1044 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1046 stmt = gsi_stmt (bsi);
1048 pos = movement_possibility (stmt);
1049 if (pos == MOVE_IMPOSSIBLE)
1051 if (nonpure_call_p (stmt))
1053 maybe_never = true;
1054 outermost = NULL;
1056 /* Make sure to note always_executed_in for stores to make
1057 store-motion work. */
1058 else if (stmt_makes_single_store (stmt))
1060 struct lim_aux_data *lim_data = init_lim_data (stmt);
1061 lim_data->always_executed_in = outermost;
1063 continue;
1066 if (is_gimple_assign (stmt)
1067 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1068 == GIMPLE_BINARY_RHS))
1070 tree op0 = gimple_assign_rhs1 (stmt);
1071 tree op1 = gimple_assign_rhs2 (stmt);
1072 struct loop *ol1 = outermost_invariant_loop (op1,
1073 loop_containing_stmt (stmt));
1075 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1076 to be hoisted out of loop, saving expensive divide. */
1077 if (pos == MOVE_POSSIBLE
1078 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1079 && flag_unsafe_math_optimizations
1080 && !flag_trapping_math
1081 && ol1 != NULL
1082 && outermost_invariant_loop (op0, ol1) == NULL)
1083 stmt = rewrite_reciprocal (&bsi);
1085 /* If the shift count is invariant, convert (A >> B) & 1 to
1086 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1087 saving an expensive shift. */
1088 if (pos == MOVE_POSSIBLE
1089 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1090 && integer_onep (op1)
1091 && TREE_CODE (op0) == SSA_NAME
1092 && has_single_use (op0))
1093 stmt = rewrite_bittest (&bsi);
1096 lim_data = init_lim_data (stmt);
1097 lim_data->always_executed_in = outermost;
1099 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1100 continue;
1102 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1104 lim_data->max_loop = NULL;
1105 continue;
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1110 print_gimple_stmt (dump_file, stmt, 2, 0);
1111 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1112 loop_depth (lim_data->max_loop),
1113 lim_data->cost);
1116 if (lim_data->cost >= LIM_EXPENSIVE)
1117 set_profitable_level (stmt);
1121 class move_computations_dom_walker : public dom_walker
1123 public:
1124 move_computations_dom_walker (cdi_direction direction)
1125 : dom_walker (direction), todo_ (0) {}
1127 virtual void before_dom_children (basic_block);
1129 unsigned int todo_;
1132 /* Return true if CODE is an operation that when operating on signed
1133 integer types involves undefined behavior on overflow and the
1134 operation can be expressed with unsigned arithmetic. */
1136 static bool
1137 arith_code_with_undefined_signed_overflow (tree_code code)
1139 switch (code)
1141 case PLUS_EXPR:
1142 case MINUS_EXPR:
1143 case MULT_EXPR:
1144 case NEGATE_EXPR:
1145 case POINTER_PLUS_EXPR:
1146 return true;
1147 default:
1148 return false;
1152 /* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
1153 operation that can be transformed to unsigned arithmetic by converting
1154 its operand, carrying out the operation in the corresponding unsigned
1155 type and converting the result back to the original type.
1157 Returns a sequence of statements that replace STMT and also contain
1158 a modified form of STMT itself. */
1160 static gimple_seq
1161 rewrite_to_defined_overflow (gimple stmt)
1163 if (dump_file && (dump_flags & TDF_DETAILS))
1165 fprintf (dump_file, "rewriting stmt with undefined signed "
1166 "overflow ");
1167 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1170 tree lhs = gimple_assign_lhs (stmt);
1171 tree type = unsigned_type_for (TREE_TYPE (lhs));
1172 gimple_seq stmts = NULL;
1173 for (unsigned i = 1; i < gimple_num_ops (stmt); ++i)
1175 gimple_seq stmts2 = NULL;
1176 gimple_set_op (stmt, i,
1177 force_gimple_operand (fold_convert (type,
1178 gimple_op (stmt, i)),
1179 &stmts2, true, NULL_TREE));
1180 gimple_seq_add_seq (&stmts, stmts2);
1182 gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt));
1183 if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
1184 gimple_assign_set_rhs_code (stmt, PLUS_EXPR);
1185 gimple_seq_add_stmt (&stmts, stmt);
1186 gimple cvt = gimple_build_assign_with_ops
1187 (NOP_EXPR, lhs, gimple_assign_lhs (stmt), NULL_TREE);
1188 gimple_seq_add_stmt (&stmts, cvt);
1190 return stmts;
1193 /* Hoist the statements in basic block BB out of the loops prescribed by
1194 data stored in LIM_DATA structures associated with each statement. Callback
1195 for walk_dominator_tree. */
1197 void
1198 move_computations_dom_walker::before_dom_children (basic_block bb)
1200 struct loop *level;
1201 gimple_stmt_iterator bsi;
1202 gimple stmt;
1203 unsigned cost = 0;
1204 struct lim_aux_data *lim_data;
1206 if (!loop_outer (bb->loop_father))
1207 return;
1209 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1211 gimple new_stmt;
1212 stmt = gsi_stmt (bsi);
1214 lim_data = get_lim_data (stmt);
1215 if (lim_data == NULL)
1217 gsi_next (&bsi);
1218 continue;
1221 cost = lim_data->cost;
1222 level = lim_data->tgt_loop;
1223 clear_lim_data (stmt);
1225 if (!level)
1227 gsi_next (&bsi);
1228 continue;
1231 if (dump_file && (dump_flags & TDF_DETAILS))
1233 fprintf (dump_file, "Moving PHI node\n");
1234 print_gimple_stmt (dump_file, stmt, 0, 0);
1235 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1236 cost, level->num);
1239 if (gimple_phi_num_args (stmt) == 1)
1241 tree arg = PHI_ARG_DEF (stmt, 0);
1242 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1243 gimple_phi_result (stmt),
1244 arg, NULL_TREE);
1246 else
1248 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1249 gimple cond = gsi_stmt (gsi_last_bb (dom));
1250 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1251 /* Get the PHI arguments corresponding to the true and false
1252 edges of COND. */
1253 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1254 gcc_assert (arg0 && arg1);
1255 t = build2 (gimple_cond_code (cond), boolean_type_node,
1256 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1257 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1258 gimple_phi_result (stmt),
1259 t, arg0, arg1);
1260 todo_ |= TODO_cleanup_cfg;
1262 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1263 remove_phi_node (&bsi, false);
1266 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1268 edge e;
1270 stmt = gsi_stmt (bsi);
1272 lim_data = get_lim_data (stmt);
1273 if (lim_data == NULL)
1275 gsi_next (&bsi);
1276 continue;
1279 cost = lim_data->cost;
1280 level = lim_data->tgt_loop;
1281 clear_lim_data (stmt);
1283 if (!level)
1285 gsi_next (&bsi);
1286 continue;
1289 /* We do not really want to move conditionals out of the loop; we just
1290 placed it here to force its operands to be moved if necessary. */
1291 if (gimple_code (stmt) == GIMPLE_COND)
1292 continue;
1294 if (dump_file && (dump_flags & TDF_DETAILS))
1296 fprintf (dump_file, "Moving statement\n");
1297 print_gimple_stmt (dump_file, stmt, 0, 0);
1298 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1299 cost, level->num);
1302 e = loop_preheader_edge (level);
1303 gcc_assert (!gimple_vdef (stmt));
1304 if (gimple_vuse (stmt))
1306 /* The new VUSE is the one from the virtual PHI in the loop
1307 header or the one already present. */
1308 gimple_stmt_iterator gsi2;
1309 for (gsi2 = gsi_start_phis (e->dest);
1310 !gsi_end_p (gsi2); gsi_next (&gsi2))
1312 gimple phi = gsi_stmt (gsi2);
1313 if (virtual_operand_p (gimple_phi_result (phi)))
1315 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1316 break;
1320 gsi_remove (&bsi, false);
1321 /* In case this is a stmt that is not unconditionally executed
1322 when the target loop header is executed and the stmt may
1323 invoke undefined integer or pointer overflow rewrite it to
1324 unsigned arithmetic. */
1325 if (is_gimple_assign (stmt)
1326 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1327 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1328 && arith_code_with_undefined_signed_overflow
1329 (gimple_assign_rhs_code (stmt))
1330 && (!ALWAYS_EXECUTED_IN (bb)
1331 || !(ALWAYS_EXECUTED_IN (bb) == level
1332 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1333 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1334 else
1335 gsi_insert_on_edge (e, stmt);
1339 /* Hoist the statements out of the loops prescribed by data stored in
1340 LIM_DATA structures associated with each statement.*/
1342 static unsigned int
1343 move_computations (void)
1345 move_computations_dom_walker walker (CDI_DOMINATORS);
1346 walker.walk (cfun->cfg->x_entry_block_ptr);
1348 gsi_commit_edge_inserts ();
1349 if (need_ssa_update_p (cfun))
1350 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1352 return walker.todo_;
1355 /* Checks whether the statement defining variable *INDEX can be hoisted
1356 out of the loop passed in DATA. Callback for for_each_index. */
1358 static bool
1359 may_move_till (tree ref, tree *index, void *data)
1361 struct loop *loop = (struct loop *) data, *max_loop;
1363 /* If REF is an array reference, check also that the step and the lower
1364 bound is invariant in LOOP. */
1365 if (TREE_CODE (ref) == ARRAY_REF)
1367 tree step = TREE_OPERAND (ref, 3);
1368 tree lbound = TREE_OPERAND (ref, 2);
1370 max_loop = outermost_invariant_loop (step, loop);
1371 if (!max_loop)
1372 return false;
1374 max_loop = outermost_invariant_loop (lbound, loop);
1375 if (!max_loop)
1376 return false;
1379 max_loop = outermost_invariant_loop (*index, loop);
1380 if (!max_loop)
1381 return false;
1383 return true;
1386 /* If OP is SSA NAME, force the statement that defines it to be
1387 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1389 static void
1390 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1392 gimple stmt;
1394 if (!op
1395 || is_gimple_min_invariant (op))
1396 return;
1398 gcc_assert (TREE_CODE (op) == SSA_NAME);
1400 stmt = SSA_NAME_DEF_STMT (op);
1401 if (gimple_nop_p (stmt))
1402 return;
1404 set_level (stmt, orig_loop, loop);
1407 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1408 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1409 for_each_index. */
1411 struct fmt_data
1413 struct loop *loop;
1414 struct loop *orig_loop;
1417 static bool
1418 force_move_till (tree ref, tree *index, void *data)
1420 struct fmt_data *fmt_data = (struct fmt_data *) data;
1422 if (TREE_CODE (ref) == ARRAY_REF)
1424 tree step = TREE_OPERAND (ref, 3);
1425 tree lbound = TREE_OPERAND (ref, 2);
1427 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1428 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1431 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1433 return true;
1436 /* A function to free the mem_ref object OBJ. */
1438 static void
1439 memref_free (struct mem_ref *mem)
1441 unsigned i;
1442 vec<mem_ref_loc> *accs;
1444 FOR_EACH_VEC_ELT (mem->accesses_in_loop, i, accs)
1445 accs->release ();
1446 mem->accesses_in_loop.release ();
1448 free (mem);
1451 /* Allocates and returns a memory reference description for MEM whose hash
1452 value is HASH and id is ID. */
1454 static mem_ref_p
1455 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1457 mem_ref_p ref = XNEW (struct mem_ref);
1458 ao_ref_init (&ref->mem, mem);
1459 ref->id = id;
1460 ref->hash = hash;
1461 bitmap_initialize (&ref->stored, &lim_bitmap_obstack);
1462 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1463 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1464 ref->accesses_in_loop.create (0);
1466 return ref;
1469 /* Records memory reference location *LOC in LOOP to the memory reference
1470 description REF. The reference occurs in statement STMT. */
1472 static void
1473 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1475 mem_ref_loc aref;
1477 if (ref->accesses_in_loop.length ()
1478 <= (unsigned) loop->num)
1479 ref->accesses_in_loop.safe_grow_cleared (loop->num + 1);
1481 aref.stmt = stmt;
1482 aref.ref = loc;
1483 ref->accesses_in_loop[loop->num].safe_push (aref);
1486 /* Marks reference REF as stored in LOOP. */
1488 static void
1489 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1491 while (loop != current_loops->tree_root
1492 && bitmap_set_bit (&ref->stored, loop->num))
1493 loop = loop_outer (loop);
1496 /* Gathers memory references in statement STMT in LOOP, storing the
1497 information about them in the memory_accesses structure. Marks
1498 the vops accessed through unrecognized statements there as
1499 well. */
1501 static void
1502 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1504 tree *mem = NULL;
1505 hashval_t hash;
1506 mem_ref **slot;
1507 mem_ref_p ref;
1508 bool is_stored;
1509 unsigned id;
1511 if (!gimple_vuse (stmt))
1512 return;
1514 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1515 if (!mem)
1517 /* We use the shared mem_ref for all unanalyzable refs. */
1518 id = UNANALYZABLE_MEM_ID;
1519 ref = memory_accesses.refs_list[id];
1520 if (dump_file && (dump_flags & TDF_DETAILS))
1522 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1523 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1525 is_stored = gimple_vdef (stmt);
1527 else
1529 hash = iterative_hash_expr (*mem, 0);
1530 slot = memory_accesses.refs.find_slot_with_hash (*mem, hash, INSERT);
1531 if (*slot)
1533 ref = (mem_ref_p) *slot;
1534 id = ref->id;
1536 else
1538 id = memory_accesses.refs_list.length ();
1539 ref = mem_ref_alloc (*mem, hash, id);
1540 memory_accesses.refs_list.safe_push (ref);
1541 *slot = ref;
1543 if (dump_file && (dump_flags & TDF_DETAILS))
1545 fprintf (dump_file, "Memory reference %u: ", id);
1546 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1547 fprintf (dump_file, "\n");
1551 record_mem_ref_loc (ref, loop, stmt, mem);
1553 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1554 if (is_stored)
1556 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1557 mark_ref_stored (ref, loop);
1559 return;
1562 static unsigned *bb_loop_postorder;
1564 /* qsort sort function to sort blocks after their loop fathers postorder. */
1566 static int
1567 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1569 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1570 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1571 struct loop *loop1 = bb1->loop_father;
1572 struct loop *loop2 = bb2->loop_father;
1573 if (loop1->num == loop2->num)
1574 return 0;
1575 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1578 /* Gathers memory references in loops. */
1580 static void
1581 analyze_memory_references (void)
1583 gimple_stmt_iterator bsi;
1584 basic_block bb, *bbs;
1585 struct loop *loop, *outer;
1586 loop_iterator li;
1587 unsigned i, n;
1589 /* Initialize bb_loop_postorder with a mapping from loop->num to
1590 its postorder index. */
1591 i = 0;
1592 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
1593 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1594 bb_loop_postorder[loop->num] = i++;
1595 /* Collect all basic-blocks in loops and sort them after their
1596 loops postorder. */
1597 i = 0;
1598 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1599 FOR_EACH_BB (bb)
1600 if (bb->loop_father != current_loops->tree_root)
1601 bbs[i++] = bb;
1602 n = i;
1603 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1604 free (bb_loop_postorder);
1606 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1607 That results in better locality for all the bitmaps. */
1608 for (i = 0; i < n; ++i)
1610 basic_block bb = bbs[i];
1611 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1612 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1615 free (bbs);
1617 /* Propagate the information about accessed memory references up
1618 the loop hierarchy. */
1619 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1621 /* Finalize the overall touched references (including subloops). */
1622 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1623 &memory_accesses.refs_stored_in_loop[loop->num]);
1625 /* Propagate the information about accessed memory references up
1626 the loop hierarchy. */
1627 outer = loop_outer (loop);
1628 if (outer == current_loops->tree_root)
1629 continue;
1631 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1632 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1636 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1637 tree_to_aff_combination_expand. */
1639 static bool
1640 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1641 struct pointer_map_t **ttae_cache)
1643 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1644 object and their offset differ in such a way that the locations cannot
1645 overlap, then they cannot alias. */
1646 double_int size1, size2;
1647 aff_tree off1, off2;
1649 /* Perform basic offset and type-based disambiguation. */
1650 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1651 return false;
1653 /* The expansion of addresses may be a bit expensive, thus we only do
1654 the check at -O2 and higher optimization levels. */
1655 if (optimize < 2)
1656 return true;
1658 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1659 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1660 aff_combination_expand (&off1, ttae_cache);
1661 aff_combination_expand (&off2, ttae_cache);
1662 aff_combination_scale (&off1, double_int_minus_one);
1663 aff_combination_add (&off2, &off1);
1665 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1666 return false;
1668 return true;
1671 /* Iterates over all locations of REF in LOOP and its subloops calling
1672 fn.operator() with the location as argument. When that operator
1673 returns true the iteration is stopped and true is returned.
1674 Otherwise false is returned. */
1676 template <typename FN>
1677 static bool
1678 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1680 unsigned i;
1681 mem_ref_loc_p loc;
1682 struct loop *subloop;
1684 if (ref->accesses_in_loop.length () > (unsigned) loop->num)
1685 FOR_EACH_VEC_ELT (ref->accesses_in_loop[loop->num], i, loc)
1686 if (fn (loc))
1687 return true;
1689 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1690 if (for_all_locs_in_loop (subloop, ref, fn))
1691 return true;
1693 return false;
1696 /* Rewrites location LOC by TMP_VAR. */
1698 struct rewrite_mem_ref_loc
1700 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1701 bool operator () (mem_ref_loc_p loc);
1702 tree tmp_var;
1705 bool
1706 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1708 *loc->ref = tmp_var;
1709 update_stmt (loc->stmt);
1710 return false;
1713 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1715 static void
1716 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1718 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1721 /* Stores the first reference location in LOCP. */
1723 struct first_mem_ref_loc_1
1725 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1726 bool operator () (mem_ref_loc_p loc);
1727 mem_ref_loc_p *locp;
1730 bool
1731 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1733 *locp = loc;
1734 return true;
1737 /* Returns the first reference location to REF in LOOP. */
1739 static mem_ref_loc_p
1740 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1742 mem_ref_loc_p locp = NULL;
1743 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1744 return locp;
1747 struct prev_flag_edges {
1748 /* Edge to insert new flag comparison code. */
1749 edge append_cond_position;
1751 /* Edge for fall through from previous flag comparison. */
1752 edge last_cond_fallthru;
1755 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1756 MEM along edge EX.
1758 The store is only done if MEM has changed. We do this so no
1759 changes to MEM occur on code paths that did not originally store
1760 into it.
1762 The common case for execute_sm will transform:
1764 for (...) {
1765 if (foo)
1766 stuff;
1767 else
1768 MEM = TMP_VAR;
1771 into:
1773 lsm = MEM;
1774 for (...) {
1775 if (foo)
1776 stuff;
1777 else
1778 lsm = TMP_VAR;
1780 MEM = lsm;
1782 This function will generate:
1784 lsm = MEM;
1786 lsm_flag = false;
1788 for (...) {
1789 if (foo)
1790 stuff;
1791 else {
1792 lsm = TMP_VAR;
1793 lsm_flag = true;
1796 if (lsm_flag) <--
1797 MEM = lsm; <--
1800 static void
1801 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1803 basic_block new_bb, then_bb, old_dest;
1804 bool loop_has_only_one_exit;
1805 edge then_old_edge, orig_ex = ex;
1806 gimple_stmt_iterator gsi;
1807 gimple stmt;
1808 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1810 /* ?? Insert store after previous store if applicable. See note
1811 below. */
1812 if (prev_edges)
1813 ex = prev_edges->append_cond_position;
1815 loop_has_only_one_exit = single_pred_p (ex->dest);
1817 if (loop_has_only_one_exit)
1818 ex = split_block_after_labels (ex->dest);
1820 old_dest = ex->dest;
1821 new_bb = split_edge (ex);
1822 then_bb = create_empty_bb (new_bb);
1823 if (current_loops && new_bb->loop_father)
1824 add_bb_to_loop (then_bb, new_bb->loop_father);
1826 gsi = gsi_start_bb (new_bb);
1827 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1828 NULL_TREE, NULL_TREE);
1829 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1831 gsi = gsi_start_bb (then_bb);
1832 /* Insert actual store. */
1833 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1834 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1836 make_edge (new_bb, then_bb, EDGE_TRUE_VALUE);
1837 make_edge (new_bb, old_dest, EDGE_FALSE_VALUE);
1838 then_old_edge = make_edge (then_bb, old_dest, EDGE_FALLTHRU);
1840 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1842 if (prev_edges)
1844 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1845 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1846 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1847 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1848 recompute_dominator (CDI_DOMINATORS, old_dest));
1851 /* ?? Because stores may alias, they must happen in the exact
1852 sequence they originally happened. Save the position right after
1853 the (_lsm) store we just created so we can continue appending after
1854 it and maintain the original order. */
1856 struct prev_flag_edges *p;
1858 if (orig_ex->aux)
1859 orig_ex->aux = NULL;
1860 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1861 p = (struct prev_flag_edges *) orig_ex->aux;
1862 p->append_cond_position = then_old_edge;
1863 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1864 orig_ex->aux = (void *) p;
1867 if (!loop_has_only_one_exit)
1868 for (gsi = gsi_start_phis (old_dest); !gsi_end_p (gsi); gsi_next (&gsi))
1870 gimple phi = gsi_stmt (gsi);
1871 unsigned i;
1873 for (i = 0; i < gimple_phi_num_args (phi); i++)
1874 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1876 tree arg = gimple_phi_arg_def (phi, i);
1877 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1878 update_stmt (phi);
1881 /* Remove the original fall through edge. This was the
1882 single_succ_edge (new_bb). */
1883 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1886 /* When REF is set on the location, set flag indicating the store. */
1888 struct sm_set_flag_if_changed
1890 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1891 bool operator () (mem_ref_loc_p loc);
1892 tree flag;
1895 bool
1896 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1898 /* Only set the flag for writes. */
1899 if (is_gimple_assign (loc->stmt)
1900 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1902 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1903 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1904 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1906 return false;
1909 /* Helper function for execute_sm. On every location where REF is
1910 set, set an appropriate flag indicating the store. */
1912 static tree
1913 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1915 tree flag;
1916 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1917 flag = create_tmp_reg (boolean_type_node, str);
1918 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1919 return flag;
1922 /* Executes store motion of memory reference REF from LOOP.
1923 Exits from the LOOP are stored in EXITS. The initialization of the
1924 temporary variable is put to the preheader of the loop, and assignments
1925 to the reference from the temporary variable are emitted to exits. */
1927 static void
1928 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1930 tree tmp_var, store_flag;
1931 unsigned i;
1932 gimple load;
1933 struct fmt_data fmt_data;
1934 edge ex;
1935 struct lim_aux_data *lim_data;
1936 bool multi_threaded_model_p = false;
1937 gimple_stmt_iterator gsi;
1939 if (dump_file && (dump_flags & TDF_DETAILS))
1941 fprintf (dump_file, "Executing store motion of ");
1942 print_generic_expr (dump_file, ref->mem.ref, 0);
1943 fprintf (dump_file, " from loop %d\n", loop->num);
1946 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1947 get_lsm_tmp_name (ref->mem.ref, ~0));
1949 fmt_data.loop = loop;
1950 fmt_data.orig_loop = loop;
1951 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1953 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1954 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1955 multi_threaded_model_p = true;
1957 if (multi_threaded_model_p)
1958 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1960 rewrite_mem_refs (loop, ref, tmp_var);
1962 /* Emit the load code on a random exit edge or into the latch if
1963 the loop does not exit, so that we are sure it will be processed
1964 by move_computations after all dependencies. */
1965 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1967 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1968 load altogether, since the store is predicated by a flag. We
1969 could, do the load only if it was originally in the loop. */
1970 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1971 lim_data = init_lim_data (load);
1972 lim_data->max_loop = loop;
1973 lim_data->tgt_loop = loop;
1974 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1976 if (multi_threaded_model_p)
1978 load = gimple_build_assign (store_flag, boolean_false_node);
1979 lim_data = init_lim_data (load);
1980 lim_data->max_loop = loop;
1981 lim_data->tgt_loop = loop;
1982 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1985 /* Sink the store to every exit from the loop. */
1986 FOR_EACH_VEC_ELT (exits, i, ex)
1987 if (!multi_threaded_model_p)
1989 gimple store;
1990 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
1991 gsi_insert_on_edge (ex, store);
1993 else
1994 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
1997 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1998 edges of the LOOP. */
2000 static void
2001 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2002 vec<edge> exits)
2004 mem_ref_p ref;
2005 unsigned i;
2006 bitmap_iterator bi;
2008 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2010 ref = memory_accesses.refs_list[i];
2011 execute_sm (loop, exits, ref);
2015 struct ref_always_accessed
2017 ref_always_accessed (struct loop *loop_, tree base_, bool stored_p_)
2018 : loop (loop_), base (base_), stored_p (stored_p_) {}
2019 bool operator () (mem_ref_loc_p loc);
2020 struct loop *loop;
2021 tree base;
2022 bool stored_p;
2025 bool
2026 ref_always_accessed::operator () (mem_ref_loc_p loc)
2028 struct loop *must_exec;
2030 if (!get_lim_data (loc->stmt))
2031 return false;
2033 /* If we require an always executed store make sure the statement
2034 stores to the reference. */
2035 if (stored_p)
2037 tree lhs;
2038 if (!gimple_get_lhs (loc->stmt))
2039 return false;
2040 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2041 if (!lhs)
2042 return false;
2043 if (INDIRECT_REF_P (lhs)
2044 || TREE_CODE (lhs) == MEM_REF)
2045 lhs = TREE_OPERAND (lhs, 0);
2046 if (lhs != base)
2047 return false;
2050 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2051 if (!must_exec)
2052 return false;
2054 if (must_exec == loop
2055 || flow_loop_nested_p (must_exec, loop))
2056 return true;
2058 return false;
2061 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2062 make sure REF is always stored to in LOOP. */
2064 static bool
2065 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2067 tree base = ao_ref_base (&ref->mem);
2068 if (TREE_CODE (base) == MEM_REF)
2069 base = TREE_OPERAND (base, 0);
2071 return for_all_locs_in_loop (loop, ref,
2072 ref_always_accessed (loop, base, stored_p));
2075 /* Returns true if REF1 and REF2 are independent. */
2077 static bool
2078 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2080 if (ref1 == ref2)
2081 return true;
2083 if (dump_file && (dump_flags & TDF_DETAILS))
2084 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2085 ref1->id, ref2->id);
2087 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2089 if (dump_file && (dump_flags & TDF_DETAILS))
2090 fprintf (dump_file, "dependent.\n");
2091 return false;
2093 else
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 fprintf (dump_file, "independent.\n");
2097 return true;
2101 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2102 and its super-loops. */
2104 static void
2105 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2107 /* We can propagate dependent-in-loop bits up the loop
2108 hierarchy to all outer loops. */
2109 while (loop != current_loops->tree_root
2110 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2111 loop = loop_outer (loop);
2114 /* Returns true if REF is independent on all other memory references in
2115 LOOP. */
2117 static bool
2118 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2120 bitmap refs_to_check;
2121 unsigned i;
2122 bitmap_iterator bi;
2123 mem_ref_p aref;
2125 if (stored_p)
2126 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2127 else
2128 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2130 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2131 return false;
2133 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2135 aref = memory_accesses.refs_list[i];
2136 if (!refs_independent_p (ref, aref))
2137 return false;
2140 return true;
2143 /* Returns true if REF is independent on all other memory references in
2144 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2146 static bool
2147 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2149 stored_p |= bitmap_bit_p (&ref->stored, loop->num);
2151 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2152 return true;
2153 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2154 return false;
2156 struct loop *inner = loop->inner;
2157 while (inner)
2159 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2160 return false;
2161 inner = inner->next;
2164 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2166 if (dump_file && (dump_flags & TDF_DETAILS))
2167 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2168 ref->id, loop->num, indep_p ? "independent" : "dependent");
2170 /* Record the computed result in the cache. */
2171 if (indep_p)
2173 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2174 && stored_p)
2176 /* If it's independend against all refs then it's independent
2177 against stores, too. */
2178 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2181 else
2183 record_dep_loop (loop, ref, stored_p);
2184 if (!stored_p)
2186 /* If it's dependent against stores it's dependent against
2187 all refs, too. */
2188 record_dep_loop (loop, ref, true);
2192 return indep_p;
2195 /* Returns true if REF is independent on all other memory references in
2196 LOOP. */
2198 static bool
2199 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2201 gcc_checking_assert (MEM_ANALYZABLE (ref));
2203 return ref_indep_loop_p_2 (loop, ref, false);
2206 /* Returns true if we can perform store motion of REF from LOOP. */
2208 static bool
2209 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2211 tree base;
2213 /* Can't hoist unanalyzable refs. */
2214 if (!MEM_ANALYZABLE (ref))
2215 return false;
2217 /* It should be movable. */
2218 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2219 || TREE_THIS_VOLATILE (ref->mem.ref)
2220 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2221 return false;
2223 /* If it can throw fail, we do not properly update EH info. */
2224 if (tree_could_throw_p (ref->mem.ref))
2225 return false;
2227 /* If it can trap, it must be always executed in LOOP.
2228 Readonly memory locations may trap when storing to them, but
2229 tree_could_trap_p is a predicate for rvalues, so check that
2230 explicitly. */
2231 base = get_base_address (ref->mem.ref);
2232 if ((tree_could_trap_p (ref->mem.ref)
2233 || (DECL_P (base) && TREE_READONLY (base)))
2234 && !ref_always_accessed_p (loop, ref, true))
2235 return false;
2237 /* And it must be independent on all other memory references
2238 in LOOP. */
2239 if (!ref_indep_loop_p (loop, ref))
2240 return false;
2242 return true;
2245 /* Marks the references in LOOP for that store motion should be performed
2246 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2247 motion was performed in one of the outer loops. */
2249 static void
2250 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2252 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2253 unsigned i;
2254 bitmap_iterator bi;
2255 mem_ref_p ref;
2257 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2259 ref = memory_accesses.refs_list[i];
2260 if (can_sm_ref_p (loop, ref))
2261 bitmap_set_bit (refs_to_sm, i);
2265 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2266 for a store motion optimization (i.e. whether we can insert statement
2267 on its exits). */
2269 static bool
2270 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2271 vec<edge> exits)
2273 unsigned i;
2274 edge ex;
2276 FOR_EACH_VEC_ELT (exits, i, ex)
2277 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2278 return false;
2280 return true;
2283 /* Try to perform store motion for all memory references modified inside
2284 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2285 store motion was executed in one of the outer loops. */
2287 static void
2288 store_motion_loop (struct loop *loop, bitmap sm_executed)
2290 vec<edge> exits = get_loop_exit_edges (loop);
2291 struct loop *subloop;
2292 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2294 if (loop_suitable_for_sm (loop, exits))
2296 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2297 hoist_memory_references (loop, sm_in_loop, exits);
2299 exits.release ();
2301 bitmap_ior_into (sm_executed, sm_in_loop);
2302 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2303 store_motion_loop (subloop, sm_executed);
2304 bitmap_and_compl_into (sm_executed, sm_in_loop);
2305 BITMAP_FREE (sm_in_loop);
2308 /* Try to perform store motion for all memory references modified inside
2309 loops. */
2311 static void
2312 store_motion (void)
2314 struct loop *loop;
2315 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2317 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2318 store_motion_loop (loop, sm_executed);
2320 BITMAP_FREE (sm_executed);
2321 gsi_commit_edge_inserts ();
2324 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2325 for each such basic block bb records the outermost loop for that execution
2326 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2327 blocks that contain a nonpure call. */
2329 static void
2330 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2332 basic_block bb = NULL, *bbs, last = NULL;
2333 unsigned i;
2334 edge e;
2335 struct loop *inn_loop = loop;
2337 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2339 bbs = get_loop_body_in_dom_order (loop);
2341 for (i = 0; i < loop->num_nodes; i++)
2343 edge_iterator ei;
2344 bb = bbs[i];
2346 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2347 last = bb;
2349 if (bitmap_bit_p (contains_call, bb->index))
2350 break;
2352 FOR_EACH_EDGE (e, ei, bb->succs)
2353 if (!flow_bb_inside_loop_p (loop, e->dest))
2354 break;
2355 if (e)
2356 break;
2358 /* A loop might be infinite (TODO use simple loop analysis
2359 to disprove this if possible). */
2360 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2361 break;
2363 if (!flow_bb_inside_loop_p (inn_loop, bb))
2364 break;
2366 if (bb->loop_father->header == bb)
2368 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2369 break;
2371 /* In a loop that is always entered we may proceed anyway.
2372 But record that we entered it and stop once we leave it. */
2373 inn_loop = bb->loop_father;
2377 while (1)
2379 SET_ALWAYS_EXECUTED_IN (last, loop);
2380 if (last == loop->header)
2381 break;
2382 last = get_immediate_dominator (CDI_DOMINATORS, last);
2385 free (bbs);
2388 for (loop = loop->inner; loop; loop = loop->next)
2389 fill_always_executed_in_1 (loop, contains_call);
2392 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2393 for each such basic block bb records the outermost loop for that execution
2394 of its header implies execution of bb. */
2396 static void
2397 fill_always_executed_in (void)
2399 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2400 basic_block bb;
2401 struct loop *loop;
2403 bitmap_clear (contains_call);
2404 FOR_EACH_BB (bb)
2406 gimple_stmt_iterator gsi;
2407 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2409 if (nonpure_call_p (gsi_stmt (gsi)))
2410 break;
2413 if (!gsi_end_p (gsi))
2414 bitmap_set_bit (contains_call, bb->index);
2417 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2418 fill_always_executed_in_1 (loop, contains_call);
2420 sbitmap_free (contains_call);
2424 /* Compute the global information needed by the loop invariant motion pass. */
2426 static void
2427 tree_ssa_lim_initialize (void)
2429 unsigned i;
2431 bitmap_obstack_initialize (&lim_bitmap_obstack);
2432 lim_aux_data_map = pointer_map_create ();
2434 if (flag_tm)
2435 compute_transaction_bits ();
2437 alloc_aux_for_edges (0);
2439 memory_accesses.refs.create (100);
2440 memory_accesses.refs_list.create (100);
2441 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2442 memory_accesses.refs_list.quick_push
2443 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2445 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2446 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2447 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2448 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2449 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2450 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2452 for (i = 0; i < number_of_loops (cfun); i++)
2454 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2455 &lim_bitmap_obstack);
2456 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2457 &lim_bitmap_obstack);
2458 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2459 &lim_bitmap_obstack);
2462 memory_accesses.ttae_cache = NULL;
2465 /* Cleans up after the invariant motion pass. */
2467 static void
2468 tree_ssa_lim_finalize (void)
2470 basic_block bb;
2471 unsigned i;
2472 mem_ref_p ref;
2474 free_aux_for_edges ();
2476 FOR_EACH_BB (bb)
2477 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2479 bitmap_obstack_release (&lim_bitmap_obstack);
2480 pointer_map_destroy (lim_aux_data_map);
2482 memory_accesses.refs.dispose ();
2484 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2485 memref_free (ref);
2486 memory_accesses.refs_list.release ();
2488 memory_accesses.refs_in_loop.release ();
2489 memory_accesses.refs_stored_in_loop.release ();
2490 memory_accesses.all_refs_stored_in_loop.release ();
2492 if (memory_accesses.ttae_cache)
2493 free_affine_expand_cache (&memory_accesses.ttae_cache);
2496 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2497 i.e. those that are likely to be win regardless of the register pressure. */
2499 unsigned int
2500 tree_ssa_lim (void)
2502 unsigned int todo;
2504 tree_ssa_lim_initialize ();
2506 /* Gathers information about memory accesses in the loops. */
2507 analyze_memory_references ();
2509 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2510 fill_always_executed_in ();
2512 /* For each statement determine the outermost loop in that it is
2513 invariant and cost for computing the invariant. */
2514 invariantness_dom_walker (CDI_DOMINATORS)
2515 .walk (cfun->cfg->x_entry_block_ptr);
2517 /* Execute store motion. Force the necessary invariants to be moved
2518 out of the loops as well. */
2519 store_motion ();
2521 /* Move the expressions that are expensive enough. */
2522 todo = move_computations ();
2524 tree_ssa_lim_finalize ();
2526 return todo;
2529 /* Loop invariant motion pass. */
2531 static unsigned int
2532 tree_ssa_loop_im (void)
2534 if (number_of_loops (cfun) <= 1)
2535 return 0;
2537 return tree_ssa_lim ();
2540 static bool
2541 gate_tree_ssa_loop_im (void)
2543 return flag_tree_loop_im != 0;
2546 namespace {
2548 const pass_data pass_data_lim =
2550 GIMPLE_PASS, /* type */
2551 "lim", /* name */
2552 OPTGROUP_LOOP, /* optinfo_flags */
2553 true, /* has_gate */
2554 true, /* has_execute */
2555 TV_LIM, /* tv_id */
2556 PROP_cfg, /* properties_required */
2557 0, /* properties_provided */
2558 0, /* properties_destroyed */
2559 0, /* todo_flags_start */
2560 0, /* todo_flags_finish */
2563 class pass_lim : public gimple_opt_pass
2565 public:
2566 pass_lim (gcc::context *ctxt)
2567 : gimple_opt_pass (pass_data_lim, ctxt)
2570 /* opt_pass methods: */
2571 opt_pass * clone () { return new pass_lim (m_ctxt); }
2572 bool gate () { return gate_tree_ssa_loop_im (); }
2573 unsigned int execute () { return tree_ssa_loop_im (); }
2575 }; // class pass_lim
2577 } // anon namespace
2579 gimple_opt_pass *
2580 make_pass_lim (gcc::context *ctxt)
2582 return new pass_lim (ctxt);