1 /* Timing variables for measuring compiler performance.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Contributed by Alex Samuel <samuel@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
29 #ifndef HAVE_STRUCT_TMS
40 # define RUSAGE_SELF 0
43 /* Calculation of scale factor to convert ticks to microseconds.
44 We mustn't use CLOCKS_PER_SEC except with clock(). */
45 #if HAVE_SYSCONF && defined _SC_CLK_TCK
46 # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
49 # define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
52 # define TICKS_PER_SECOND HZ /* traditional UNIX */
54 # define TICKS_PER_SECOND 100 /* often the correct value */
59 /* Prefer times to getrusage to clock (each gives successively less
62 # if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
63 extern clock_t times (struct tms
*);
66 # define HAVE_USER_TIME
67 # define HAVE_SYS_TIME
68 # define HAVE_WALL_TIME
71 # if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
72 extern int getrusage (int, struct rusage
*);
74 # define USE_GETRUSAGE
75 # define HAVE_USER_TIME
76 # define HAVE_SYS_TIME
79 # if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
80 extern clock_t clock (void);
83 # define HAVE_USER_TIME
88 /* libc is very likely to have snuck a call to sysconf() into one of
89 the underlying constants, and that can be very slow, so we have to
90 precompute them. Whose wonderful idea was it to make all those
91 _constants_ variable at run time, anyway? */
93 static double ticks_to_msec
;
94 #define TICKS_TO_MSEC (1 / (double)TICKS_PER_SECOND)
98 static double clocks_to_msec
;
99 #define CLOCKS_TO_MSEC (1 / (double)CLOCKS_PER_SEC)
102 /* True if timevars should be used. In GCC, this happens with
103 the -ftime-report flag. */
107 /* Total amount of memory allocated by garbage collector. */
109 size_t timevar_ggc_mem_total
;
111 /* The amount of memory that will cause us to report the timevar even
112 if the time spent is not significant. */
114 #define GGC_MEM_BOUND (1 << 20)
116 /* See timevar.h for an explanation of timing variables. */
118 /* A timing variable. */
122 /* Elapsed time for this variable. */
123 struct timevar_time_def elapsed
;
125 /* If this variable is timed independently of the timing stack,
126 using timevar_start, this contains the start time. */
127 struct timevar_time_def start_time
;
129 /* The name of this timing variable. */
132 /* Nonzero if this timing variable is running as a standalone
134 unsigned standalone
: 1;
136 /* Nonzero if this timing variable was ever started or pushed onto
141 /* An element on the timing stack. Elapsed time is attributed to the
142 topmost timing variable on the stack. */
144 struct timevar_stack_def
146 /* The timing variable at this stack level. */
147 struct timevar_def
*timevar
;
149 /* The next lower timing variable context in the stack. */
150 struct timevar_stack_def
*next
;
153 /* Declared timing variables. Constructed from the contents of
155 static struct timevar_def timevars
[TIMEVAR_LAST
];
157 /* The top of the timing stack. */
158 static struct timevar_stack_def
*stack
;
160 /* A list of unused (i.e. allocated and subsequently popped)
161 timevar_stack_def instances. */
162 static struct timevar_stack_def
*unused_stack_instances
;
164 /* The time at which the topmost element on the timing stack was
165 pushed. Time elapsed since then is attributed to the topmost
167 static struct timevar_time_def start_time
;
169 static void get_time (struct timevar_time_def
*);
170 static void timevar_accumulate (struct timevar_time_def
*,
171 struct timevar_time_def
*,
172 struct timevar_time_def
*);
174 /* Fill the current times into TIME. The definition of this function
175 also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
176 HAVE_WALL_TIME macros. */
179 get_time (struct timevar_time_def
*now
)
184 now
->ggc_mem
= timevar_ggc_mem_total
;
192 now
->wall
= times (&tms
) * ticks_to_msec
;
193 now
->user
= tms
.tms_utime
* ticks_to_msec
;
194 now
->sys
= tms
.tms_stime
* ticks_to_msec
;
197 struct rusage rusage
;
198 getrusage (RUSAGE_SELF
, &rusage
);
199 now
->user
= rusage
.ru_utime
.tv_sec
+ rusage
.ru_utime
.tv_usec
* 1e-6;
200 now
->sys
= rusage
.ru_stime
.tv_sec
+ rusage
.ru_stime
.tv_usec
* 1e-6;
203 now
->user
= clock () * clocks_to_msec
;
208 /* Add the difference between STOP_TIME and START_TIME to TIMER. */
211 timevar_accumulate (struct timevar_time_def
*timer
,
212 struct timevar_time_def
*start_time
,
213 struct timevar_time_def
*stop_time
)
215 timer
->user
+= stop_time
->user
- start_time
->user
;
216 timer
->sys
+= stop_time
->sys
- start_time
->sys
;
217 timer
->wall
+= stop_time
->wall
- start_time
->wall
;
218 timer
->ggc_mem
+= stop_time
->ggc_mem
- start_time
->ggc_mem
;
221 /* Initialize timing variables. */
226 timevar_enable
= true;
228 /* Zero all elapsed times. */
229 memset (timevars
, 0, sizeof (timevars
));
231 /* Initialize the names of timing variables. */
232 #define DEFTIMEVAR(identifier__, name__) \
233 timevars[identifier__].name = name__;
234 #include "timevar.def"
238 ticks_to_msec
= TICKS_TO_MSEC
;
241 clocks_to_msec
= CLOCKS_TO_MSEC
;
245 /* Push TIMEVAR onto the timing stack. No further elapsed time is
246 attributed to the previous topmost timing variable on the stack;
247 subsequent elapsed time is attributed to TIMEVAR, until it is
248 popped or another element is pushed on top.
250 TIMEVAR cannot be running as a standalone timer. */
253 timevar_push_1 (timevar_id_t timevar
)
255 struct timevar_def
*tv
= &timevars
[timevar
];
256 struct timevar_stack_def
*context
;
257 struct timevar_time_def now
;
259 /* Mark this timing variable as used. */
262 /* Can't push a standalone timer. */
263 gcc_assert (!tv
->standalone
);
265 /* What time is it? */
268 /* If the stack isn't empty, attribute the current elapsed time to
269 the old topmost element. */
271 timevar_accumulate (&stack
->timevar
->elapsed
, &start_time
, &now
);
273 /* Reset the start time; from now on, time is attributed to
277 /* See if we have a previously-allocated stack instance. If so,
278 take it off the list. If not, malloc a new one. */
279 if (unused_stack_instances
!= NULL
)
281 context
= unused_stack_instances
;
282 unused_stack_instances
= unused_stack_instances
->next
;
285 context
= XNEW (struct timevar_stack_def
);
287 /* Fill it in and put it on the stack. */
288 context
->timevar
= tv
;
289 context
->next
= stack
;
293 /* Pop the topmost timing variable element off the timing stack. The
294 popped variable must be TIMEVAR. Elapsed time since the that
295 element was pushed on, or since it was last exposed on top of the
296 stack when the element above it was popped off, is credited to that
300 timevar_pop_1 (timevar_id_t timevar
)
302 struct timevar_time_def now
;
303 struct timevar_stack_def
*popped
= stack
;
305 gcc_assert (&timevars
[timevar
] == stack
->timevar
);
307 /* What time is it? */
310 /* Attribute the elapsed time to the element we're popping. */
311 timevar_accumulate (&popped
->timevar
->elapsed
, &start_time
, &now
);
313 /* Reset the start time; from now on, time is attributed to the
314 element just exposed on the stack. */
317 /* Take the item off the stack. */
320 /* Don't delete the stack element; instead, add it to the list of
321 unused elements for later use. */
322 popped
->next
= unused_stack_instances
;
323 unused_stack_instances
= popped
;
326 /* Start timing TIMEVAR independently of the timing stack. Elapsed
327 time until timevar_stop is called for the same timing variable is
328 attributed to TIMEVAR. */
331 timevar_start (timevar_id_t timevar
)
333 struct timevar_def
*tv
= &timevars
[timevar
];
338 /* Mark this timing variable as used. */
341 /* Don't allow the same timing variable to be started more than
343 gcc_assert (!tv
->standalone
);
346 get_time (&tv
->start_time
);
349 /* Stop timing TIMEVAR. Time elapsed since timevar_start was called
350 is attributed to it. */
353 timevar_stop (timevar_id_t timevar
)
355 struct timevar_def
*tv
= &timevars
[timevar
];
356 struct timevar_time_def now
;
361 /* TIMEVAR must have been started via timevar_start. */
362 gcc_assert (tv
->standalone
);
363 tv
->standalone
= 0; /* Enable a restart. */
366 timevar_accumulate (&tv
->elapsed
, &tv
->start_time
, &now
);
370 /* Conditionally start timing TIMEVAR independently of the timing stack.
371 If the timer is already running, leave it running and return true.
372 Otherwise, start the timer and return false.
373 Elapsed time until the corresponding timevar_cond_stop
374 is called for the same timing variable is attributed to TIMEVAR. */
377 timevar_cond_start (timevar_id_t timevar
)
379 struct timevar_def
*tv
= &timevars
[timevar
];
384 /* Mark this timing variable as used. */
388 return true; /* The timevar is already running. */
390 /* Don't allow the same timing variable
391 to be unconditionally started more than once. */
394 get_time (&tv
->start_time
);
395 return false; /* The timevar was not already running. */
398 /* Conditionally stop timing TIMEVAR. The RUNNING parameter must come
399 from the return value of a dynamically matching timevar_cond_start.
400 If the timer had already been RUNNING, do nothing. Otherwise, time
401 elapsed since timevar_cond_start was called is attributed to it. */
404 timevar_cond_stop (timevar_id_t timevar
, bool running
)
406 struct timevar_def
*tv
;
407 struct timevar_time_def now
;
409 if (!timevar_enable
|| running
)
412 tv
= &timevars
[timevar
];
414 /* TIMEVAR must have been started via timevar_cond_start. */
415 gcc_assert (tv
->standalone
);
416 tv
->standalone
= 0; /* Enable a restart. */
419 timevar_accumulate (&tv
->elapsed
, &tv
->start_time
, &now
);
423 /* Validate that phase times are consistent. */
426 validate_phases (FILE *fp
)
428 unsigned int /* timevar_id_t */ id
;
429 struct timevar_time_def
*total
= &timevars
[TV_TOTAL
].elapsed
;
430 double phase_user
= 0.0;
431 double phase_sys
= 0.0;
432 double phase_wall
= 0.0;
433 size_t phase_ggc_mem
= 0;
434 static char phase_prefix
[] = "phase ";
435 const double tolerance
= 1.000001; /* One part in a million. */
437 for (id
= 0; id
< (unsigned int) TIMEVAR_LAST
; ++id
)
439 struct timevar_def
*tv
= &timevars
[(timevar_id_t
) id
];
441 /* Don't evaluate timing variables that were never used. */
445 if (strncmp (tv
->name
, phase_prefix
, sizeof phase_prefix
- 1) == 0)
447 phase_user
+= tv
->elapsed
.user
;
448 phase_sys
+= tv
->elapsed
.sys
;
449 phase_wall
+= tv
->elapsed
.wall
;
450 phase_ggc_mem
+= tv
->elapsed
.ggc_mem
;
454 if (phase_user
> total
->user
* tolerance
455 || phase_sys
> total
->sys
* tolerance
456 || phase_wall
> total
->wall
* tolerance
457 || phase_ggc_mem
> total
->ggc_mem
* tolerance
)
460 fprintf (fp
, "Timing error: total of phase timers exceeds total time.\n");
461 if (phase_user
> total
->user
)
462 fprintf (fp
, "user %24.18e > %24.18e\n", phase_user
, total
->user
);
463 if (phase_sys
> total
->sys
)
464 fprintf (fp
, "sys %24.18e > %24.18e\n", phase_sys
, total
->sys
);
465 if (phase_wall
> total
->wall
)
466 fprintf (fp
, "wall %24.18e > %24.18e\n", phase_wall
, total
->wall
);
467 if (phase_ggc_mem
> total
->ggc_mem
)
468 fprintf (fp
, "ggc_mem %24lu > %24lu\n", (unsigned long)phase_ggc_mem
,
469 (unsigned long)total
->ggc_mem
);
475 /* Summarize timing variables to FP. The timing variable TV_TOTAL has
476 a special meaning -- it's considered to be the total elapsed time,
477 for normalizing the others, and is displayed last. */
480 timevar_print (FILE *fp
)
482 /* Only print stuff if we have some sort of time information. */
483 #if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME)
484 unsigned int /* timevar_id_t */ id
;
485 struct timevar_time_def
*total
= &timevars
[TV_TOTAL
].elapsed
;
486 struct timevar_time_def now
;
491 /* Update timing information in case we're calling this from GDB. */
496 /* What time is it? */
499 /* If the stack isn't empty, attribute the current elapsed time to
500 the old topmost element. */
502 timevar_accumulate (&stack
->timevar
->elapsed
, &start_time
, &now
);
504 /* Reset the start time; from now on, time is attributed to
508 fputs ("\nExecution times (seconds)\n", fp
);
509 for (id
= 0; id
< (unsigned int) TIMEVAR_LAST
; ++id
)
511 struct timevar_def
*tv
= &timevars
[(timevar_id_t
) id
];
512 const double tiny
= 5e-3;
514 /* Don't print the total execution time here; that goes at the
516 if ((timevar_id_t
) id
== TV_TOTAL
)
519 /* Don't print timing variables that were never used. */
523 /* Don't print timing variables if we're going to get a row of
525 if (tv
->elapsed
.user
< tiny
526 && tv
->elapsed
.sys
< tiny
527 && tv
->elapsed
.wall
< tiny
528 && tv
->elapsed
.ggc_mem
< GGC_MEM_BOUND
)
531 /* The timing variable name. */
532 fprintf (fp
, " %-24s:", tv
->name
);
534 #ifdef HAVE_USER_TIME
535 /* Print user-mode time for this process. */
536 fprintf (fp
, "%7.2f (%2.0f%%) usr",
538 (total
->user
== 0 ? 0 : tv
->elapsed
.user
/ total
->user
) * 100);
539 #endif /* HAVE_USER_TIME */
542 /* Print system-mode time for this process. */
543 fprintf (fp
, "%7.2f (%2.0f%%) sys",
545 (total
->sys
== 0 ? 0 : tv
->elapsed
.sys
/ total
->sys
) * 100);
546 #endif /* HAVE_SYS_TIME */
548 #ifdef HAVE_WALL_TIME
549 /* Print wall clock time elapsed. */
550 fprintf (fp
, "%7.2f (%2.0f%%) wall",
552 (total
->wall
== 0 ? 0 : tv
->elapsed
.wall
/ total
->wall
) * 100);
553 #endif /* HAVE_WALL_TIME */
555 /* Print the amount of ggc memory allocated. */
556 fprintf (fp
, "%8u kB (%2.0f%%) ggc",
557 (unsigned) (tv
->elapsed
.ggc_mem
>> 10),
560 : (float) tv
->elapsed
.ggc_mem
/ total
->ggc_mem
) * 100);
565 /* Print total time. */
566 fputs (" TOTAL :", fp
);
567 #ifdef HAVE_USER_TIME
568 fprintf (fp
, "%7.2f ", total
->user
);
571 fprintf (fp
, "%7.2f ", total
->sys
);
573 #ifdef HAVE_WALL_TIME
574 fprintf (fp
, "%7.2f ", total
->wall
);
576 fprintf (fp
, "%8u kB\n", (unsigned) (total
->ggc_mem
>> 10));
578 #ifdef ENABLE_CHECKING
579 fprintf (fp
, "Extra diagnostic checks enabled; compiler may run slowly.\n");
580 fprintf (fp
, "Configure with --enable-checking=release to disable checks.\n");
582 #ifndef ENABLE_ASSERT_CHECKING
583 fprintf (fp
, "Internal checks disabled; compiler is not suited for release.\n");
584 fprintf (fp
, "Configure with --enable-checking=release to enable checks.\n");
587 #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
588 || defined (HAVE_WALL_TIME) */
590 validate_phases (fp
);
593 /* Prints a message to stderr stating that time elapsed in STR is
594 TOTAL (given in microseconds). */
597 print_time (const char *str
, long total
)
599 long all_time
= get_run_time ();
601 "time in %s: %ld.%06ld (%ld%%)\n",
602 str
, total
/ 1000000, total
% 1000000,
604 : (long) (((100.0 * (double) total
) / (double) all_time
) + .5));