PR middle-end/59175
[official-gcc.git] / gcc / ira.c
bloba813b02bef9c3a24fe9a9c01c841bf5688fff17d
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
31 Major IRA notions are:
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
144 IRA major passes are:
146 o Building IRA internal representation which consists of the
147 following subpasses:
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
156 * IRA creates live ranges of each allocno, calulates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
168 * IRA creates all caps (file ira-build.c).
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA can not assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloringh we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
254 * After allono assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is impelemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
330 IRA uses a lot of data representing the target processors. These
331 data are initilized in file ira.c.
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
340 Literature is worth to read for better understanding the code:
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "tree.h"
372 #include "rtl.h"
373 #include "tm_p.h"
374 #include "target.h"
375 #include "flags.h"
376 #include "obstack.h"
377 #include "bitmap.h"
378 #include "hard-reg-set.h"
379 #include "basic-block.h"
380 #include "df.h"
381 #include "expr.h"
382 #include "recog.h"
383 #include "params.h"
384 #include "tree-pass.h"
385 #include "output.h"
386 #include "except.h"
387 #include "reload.h"
388 #include "diagnostic-core.h"
389 #include "function.h"
390 #include "ggc.h"
391 #include "ira-int.h"
392 #include "lra.h"
393 #include "dce.h"
394 #include "dbgcnt.h"
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int ira_overall_cost, overall_cost_before;
422 int ira_reg_cost, ira_mem_cost;
423 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
426 /* All registers that can be eliminated. */
428 HARD_REG_SET eliminable_regset;
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
446 int i, m, hard_regno;
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
453 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
454 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
455 hard_regno + i);
460 #define no_unit_alloc_regs \
461 (this_target_ira_int->x_no_unit_alloc_regs)
463 /* The function sets up the three arrays declared above. */
464 static void
465 setup_class_hard_regs (void)
467 int cl, i, hard_regno, n;
468 HARD_REG_SET processed_hard_reg_set;
470 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
471 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
474 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
517 if (! use_hard_frame_p)
518 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519 setup_class_hard_regs ();
524 #define alloc_reg_class_subclasses \
525 (this_target_ira_int->x_alloc_reg_class_subclasses)
527 /* Initialize the table of subclasses of each reg class. */
528 static void
529 setup_reg_subclasses (void)
531 int i, j;
532 HARD_REG_SET temp_hard_regset2;
534 for (i = 0; i < N_REG_CLASSES; i++)
535 for (j = 0; j < N_REG_CLASSES; j++)
536 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538 for (i = 0; i < N_REG_CLASSES; i++)
540 if (i == (int) NO_REGS)
541 continue;
543 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
544 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
550 enum reg_class *p;
552 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 if (! hard_reg_set_subset_p (temp_hard_regset,
555 temp_hard_regset2))
556 continue;
557 p = &alloc_reg_class_subclasses[j][0];
558 while (*p != LIM_REG_CLASSES) p++;
559 *p = (enum reg_class) i;
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
567 static void
568 setup_class_subset_and_memory_move_costs (void)
570 int cl, cl2, mode, cost;
571 HARD_REG_SET temp_hard_regset2;
573 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
574 ira_memory_move_cost[mode][NO_REGS][0]
575 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
576 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
578 if (cl != (int) NO_REGS)
579 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
581 ira_max_memory_move_cost[mode][cl][0]
582 = ira_memory_move_cost[mode][cl][0]
583 = memory_move_cost ((enum machine_mode) mode,
584 (reg_class_t) cl, false);
585 ira_max_memory_move_cost[mode][cl][1]
586 = ira_memory_move_cost[mode][cl][1]
587 = memory_move_cost ((enum machine_mode) mode,
588 (reg_class_t) cl, true);
589 /* Costs for NO_REGS are used in cost calculation on the
590 1st pass when the preferred register classes are not
591 known yet. In this case we take the best scenario. */
592 if (ira_memory_move_cost[mode][NO_REGS][0]
593 > ira_memory_move_cost[mode][cl][0])
594 ira_max_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][NO_REGS][0]
596 = ira_memory_move_cost[mode][cl][0];
597 if (ira_memory_move_cost[mode][NO_REGS][1]
598 > ira_memory_move_cost[mode][cl][1])
599 ira_max_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][NO_REGS][1]
601 = ira_memory_move_cost[mode][cl][1];
604 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
605 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
607 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
608 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
609 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
611 ira_class_subset_p[cl][cl2]
612 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
613 if (! hard_reg_set_empty_p (temp_hard_regset2)
614 && hard_reg_set_subset_p (reg_class_contents[cl2],
615 reg_class_contents[cl]))
616 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
618 cost = ira_memory_move_cost[mode][cl2][0];
619 if (cost > ira_max_memory_move_cost[mode][cl][0])
620 ira_max_memory_move_cost[mode][cl][0] = cost;
621 cost = ira_memory_move_cost[mode][cl2][1];
622 if (cost > ira_max_memory_move_cost[mode][cl][1])
623 ira_max_memory_move_cost[mode][cl][1] = cost;
626 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
627 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
629 ira_memory_move_cost[mode][cl][0]
630 = ira_max_memory_move_cost[mode][cl][0];
631 ira_memory_move_cost[mode][cl][1]
632 = ira_max_memory_move_cost[mode][cl][1];
634 setup_reg_subclasses ();
639 /* Define the following macro if allocation through malloc if
640 preferable. */
641 #define IRA_NO_OBSTACK
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
645 IRA. */
646 static struct obstack ira_obstack;
647 #endif
649 /* Obstack used for storing all bitmaps of the IRA. */
650 static struct bitmap_obstack ira_bitmap_obstack;
652 /* Allocate memory of size LEN for IRA data. */
653 void *
654 ira_allocate (size_t len)
656 void *res;
658 #ifndef IRA_NO_OBSTACK
659 res = obstack_alloc (&ira_obstack, len);
660 #else
661 res = xmalloc (len);
662 #endif
663 return res;
666 /* Free memory ADDR allocated for IRA data. */
667 void
668 ira_free (void *addr ATTRIBUTE_UNUSED)
670 #ifndef IRA_NO_OBSTACK
671 /* do nothing */
672 #else
673 free (addr);
674 #endif
678 /* Allocate and returns bitmap for IRA. */
679 bitmap
680 ira_allocate_bitmap (void)
682 return BITMAP_ALLOC (&ira_bitmap_obstack);
685 /* Free bitmap B allocated for IRA. */
686 void
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
689 /* do nothing */
694 /* Output information about allocation of all allocnos (except for
695 caps) into file F. */
696 void
697 ira_print_disposition (FILE *f)
699 int i, n, max_regno;
700 ira_allocno_t a;
701 basic_block bb;
703 fprintf (f, "Disposition:");
704 max_regno = max_reg_num ();
705 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706 for (a = ira_regno_allocno_map[i];
707 a != NULL;
708 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
710 if (n % 4 == 0)
711 fprintf (f, "\n");
712 n++;
713 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
714 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
715 fprintf (f, "b%-3d", bb->index);
716 else
717 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
718 if (ALLOCNO_HARD_REGNO (a) >= 0)
719 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
720 else
721 fprintf (f, " mem");
723 fprintf (f, "\n");
726 /* Outputs information about allocation of all allocnos into
727 stderr. */
728 void
729 ira_debug_disposition (void)
731 ira_print_disposition (stderr);
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737 register class containing stack registers or NO_REGS if there are
738 no stack registers. To find this class, we iterate through all
739 register pressure classes and choose the first register pressure
740 class containing all the stack registers and having the biggest
741 size. */
742 static void
743 setup_stack_reg_pressure_class (void)
745 ira_stack_reg_pressure_class = NO_REGS;
746 #ifdef STACK_REGS
748 int i, best, size;
749 enum reg_class cl;
750 HARD_REG_SET temp_hard_regset2;
752 CLEAR_HARD_REG_SET (temp_hard_regset);
753 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
754 SET_HARD_REG_BIT (temp_hard_regset, i);
755 best = 0;
756 for (i = 0; i < ira_pressure_classes_num; i++)
758 cl = ira_pressure_classes[i];
759 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
760 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
761 size = hard_reg_set_size (temp_hard_regset2);
762 if (best < size)
764 best = size;
765 ira_stack_reg_pressure_class = cl;
769 #endif
772 /* Find pressure classes which are register classes for which we
773 calculate register pressure in IRA, register pressure sensitive
774 insn scheduling, and register pressure sensitive loop invariant
775 motion.
777 To make register pressure calculation easy, we always use
778 non-intersected register pressure classes. A move of hard
779 registers from one register pressure class is not more expensive
780 than load and store of the hard registers. Most likely an allocno
781 class will be a subset of a register pressure class and in many
782 cases a register pressure class. That makes usage of register
783 pressure classes a good approximation to find a high register
784 pressure. */
785 static void
786 setup_pressure_classes (void)
788 int cost, i, n, curr;
789 int cl, cl2;
790 enum reg_class pressure_classes[N_REG_CLASSES];
791 int m;
792 HARD_REG_SET temp_hard_regset2;
793 bool insert_p;
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
814 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 AND_COMPL_HARD_REG_SET (temp_hard_regset,
817 ira_prohibited_class_mode_regs[cl][m]);
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
826 if (m >= NUM_MACHINE_MODES)
827 continue;
829 curr = 0;
830 insert_p = true;
831 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
832 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
833 /* Remove so far added pressure classes which are subset of the
834 current candidate class. Prefer GENERAL_REGS as a pressure
835 register class to another class containing the same
836 allocatable hard registers. We do this because machine
837 dependent cost hooks might give wrong costs for the latter
838 class but always give the right cost for the former class
839 (GENERAL_REGS). */
840 for (i = 0; i < n; i++)
842 cl2 = pressure_classes[i];
843 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
844 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
845 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
846 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
847 || cl2 == (int) GENERAL_REGS))
849 pressure_classes[curr++] = (enum reg_class) cl2;
850 insert_p = false;
851 continue;
853 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
854 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
855 || cl == (int) GENERAL_REGS))
856 continue;
857 if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
858 insert_p = false;
859 pressure_classes[curr++] = (enum reg_class) cl2;
861 /* If the current candidate is a subset of a so far added
862 pressure class, don't add it to the list of the pressure
863 classes. */
864 if (insert_p)
865 pressure_classes[curr++] = (enum reg_class) cl;
866 n = curr;
868 #ifdef ENABLE_IRA_CHECKING
870 HARD_REG_SET ignore_hard_regs;
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
888 IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
889 continue;
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
895 if (i < n)
896 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have alocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
904 AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
915 setup_stack_reg_pressure_class ();
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
925 int i, cl, cl2, m;
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We can not use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
944 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
949 if (m < NUM_MACHINE_MODES)
950 break;
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
960 Target may have many subtargets and not all target hard regiters can
961 be used for allocation, e.g. x86 port in 32-bit mode can not use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
996 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
997 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
998 for (j = 0; j < n; j++)
1000 cl = classes[j];
1001 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1002 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1003 no_unit_alloc_regs);
1004 if (hard_reg_set_equal_p (temp_hard_regset,
1005 temp_hard_regset2))
1006 break;
1008 if (j >= n)
1009 classes[n++] = (enum reg_class) i;
1010 else if (i == GENERAL_REGS)
1011 /* Prefer general regs. For i386 example, it means that
1012 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1013 (all of them consists of the same available hard
1014 registers). */
1015 classes[j] = (enum reg_class) i;
1017 classes[n] = LIM_REG_CLASSES;
1019 /* Set up classes which can be used for allocnos as classes
1020 conatining non-empty unique sets of allocatable hard
1021 registers. */
1022 ira_allocno_classes_num = 0;
1023 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1024 if (ira_class_hard_regs_num[cl] > 0)
1025 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1026 ira_important_classes_num = 0;
1027 /* Add non-allocno classes containing to non-empty set of
1028 allocatable hard regs. */
1029 for (cl = 0; cl < N_REG_CLASSES; cl++)
1030 if (ira_class_hard_regs_num[cl] > 0)
1032 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1033 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1034 set_p = false;
1035 for (j = 0; j < ira_allocno_classes_num; j++)
1037 COPY_HARD_REG_SET (temp_hard_regset2,
1038 reg_class_contents[ira_allocno_classes[j]]);
1039 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1040 if ((enum reg_class) cl == ira_allocno_classes[j])
1041 break;
1042 else if (hard_reg_set_subset_p (temp_hard_regset,
1043 temp_hard_regset2))
1044 set_p = true;
1046 if (set_p && j >= ira_allocno_classes_num)
1047 ira_important_classes[ira_important_classes_num++]
1048 = (enum reg_class) cl;
1050 /* Now add allocno classes to the important classes. */
1051 for (j = 0; j < ira_allocno_classes_num; j++)
1052 ira_important_classes[ira_important_classes_num++]
1053 = ira_allocno_classes[j];
1054 for (cl = 0; cl < N_REG_CLASSES; cl++)
1056 ira_reg_allocno_class_p[cl] = false;
1057 ira_reg_pressure_class_p[cl] = false;
1059 for (j = 0; j < ira_allocno_classes_num; j++)
1060 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1061 setup_pressure_classes ();
1062 setup_uniform_class_p ();
1065 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1066 given by array CLASSES of length CLASSES_NUM. The function is used
1067 make translation any reg class to an allocno class or to an
1068 pressure class. This translation is necessary for some
1069 calculations when we can use only allocno or pressure classes and
1070 such translation represents an approximate representation of all
1071 classes.
1073 The translation in case when allocatable hard register set of a
1074 given class is subset of allocatable hard register set of a class
1075 in CLASSES is pretty simple. We use smallest classes from CLASSES
1076 containing a given class. If allocatable hard register set of a
1077 given class is not a subset of any corresponding set of a class
1078 from CLASSES, we use the cheapest (with load/store point of view)
1079 class from CLASSES whose set intersects with given class set */
1080 static void
1081 setup_class_translate_array (enum reg_class *class_translate,
1082 int classes_num, enum reg_class *classes)
1084 int cl, mode;
1085 enum reg_class aclass, best_class, *cl_ptr;
1086 int i, cost, min_cost, best_cost;
1088 for (cl = 0; cl < N_REG_CLASSES; cl++)
1089 class_translate[cl] = NO_REGS;
1091 for (i = 0; i < classes_num; i++)
1093 aclass = classes[i];
1094 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1095 (cl = *cl_ptr) != LIM_REG_CLASSES;
1096 cl_ptr++)
1097 if (class_translate[cl] == NO_REGS)
1098 class_translate[cl] = aclass;
1099 class_translate[aclass] = aclass;
1101 /* For classes which are not fully covered by one of given classes
1102 (in other words covered by more one given class), use the
1103 cheapest class. */
1104 for (cl = 0; cl < N_REG_CLASSES; cl++)
1106 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1107 continue;
1108 best_class = NO_REGS;
1109 best_cost = INT_MAX;
1110 for (i = 0; i < classes_num; i++)
1112 aclass = classes[i];
1113 COPY_HARD_REG_SET (temp_hard_regset,
1114 reg_class_contents[aclass]);
1115 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1116 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1117 if (! hard_reg_set_empty_p (temp_hard_regset))
1119 min_cost = INT_MAX;
1120 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1122 cost = (ira_memory_move_cost[mode][aclass][0]
1123 + ira_memory_move_cost[mode][aclass][1]);
1124 if (min_cost > cost)
1125 min_cost = cost;
1127 if (best_class == NO_REGS || best_cost > min_cost)
1129 best_class = aclass;
1130 best_cost = min_cost;
1134 class_translate[cl] = best_class;
1138 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1139 IRA_PRESSURE_CLASS_TRANSLATE. */
1140 static void
1141 setup_class_translate (void)
1143 setup_class_translate_array (ira_allocno_class_translate,
1144 ira_allocno_classes_num, ira_allocno_classes);
1145 setup_class_translate_array (ira_pressure_class_translate,
1146 ira_pressure_classes_num, ira_pressure_classes);
1149 /* Order numbers of allocno classes in original target allocno class
1150 array, -1 for non-allocno classes. */
1151 static int allocno_class_order[N_REG_CLASSES];
1153 /* The function used to sort the important classes. */
1154 static int
1155 comp_reg_classes_func (const void *v1p, const void *v2p)
1157 enum reg_class cl1 = *(const enum reg_class *) v1p;
1158 enum reg_class cl2 = *(const enum reg_class *) v2p;
1159 enum reg_class tcl1, tcl2;
1160 int diff;
1162 tcl1 = ira_allocno_class_translate[cl1];
1163 tcl2 = ira_allocno_class_translate[cl2];
1164 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1165 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1166 return diff;
1167 return (int) cl1 - (int) cl2;
1170 /* For correct work of function setup_reg_class_relation we need to
1171 reorder important classes according to the order of their allocno
1172 classes. It places important classes containing the same
1173 allocatable hard register set adjacent to each other and allocno
1174 class with the allocatable hard register set right after the other
1175 important classes with the same set.
1177 In example from comments of function
1178 setup_allocno_and_important_classes, it places LEGACY_REGS and
1179 GENERAL_REGS close to each other and GENERAL_REGS is after
1180 LEGACY_REGS. */
1181 static void
1182 reorder_important_classes (void)
1184 int i;
1186 for (i = 0; i < N_REG_CLASSES; i++)
1187 allocno_class_order[i] = -1;
1188 for (i = 0; i < ira_allocno_classes_num; i++)
1189 allocno_class_order[ira_allocno_classes[i]] = i;
1190 qsort (ira_important_classes, ira_important_classes_num,
1191 sizeof (enum reg_class), comp_reg_classes_func);
1192 for (i = 0; i < ira_important_classes_num; i++)
1193 ira_important_class_nums[ira_important_classes[i]] = i;
1196 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1197 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1198 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1199 please see corresponding comments in ira-int.h. */
1200 static void
1201 setup_reg_class_relations (void)
1203 int i, cl1, cl2, cl3;
1204 HARD_REG_SET intersection_set, union_set, temp_set2;
1205 bool important_class_p[N_REG_CLASSES];
1207 memset (important_class_p, 0, sizeof (important_class_p));
1208 for (i = 0; i < ira_important_classes_num; i++)
1209 important_class_p[ira_important_classes[i]] = true;
1210 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1212 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1213 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1215 ira_reg_classes_intersect_p[cl1][cl2] = false;
1216 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1217 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1218 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1219 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1220 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1221 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1222 if (hard_reg_set_empty_p (temp_hard_regset)
1223 && hard_reg_set_empty_p (temp_set2))
1225 /* The both classes have no allocatable hard registers
1226 -- take all class hard registers into account and use
1227 reg_class_subunion and reg_class_superunion. */
1228 for (i = 0;; i++)
1230 cl3 = reg_class_subclasses[cl1][i];
1231 if (cl3 == LIM_REG_CLASSES)
1232 break;
1233 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1234 (enum reg_class) cl3))
1235 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1237 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1238 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1239 continue;
1241 ira_reg_classes_intersect_p[cl1][cl2]
1242 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1243 if (important_class_p[cl1] && important_class_p[cl2]
1244 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1246 /* CL1 and CL2 are important classes and CL1 allocatable
1247 hard register set is inside of CL2 allocatable hard
1248 registers -- make CL1 a superset of CL2. */
1249 enum reg_class *p;
1251 p = &ira_reg_class_super_classes[cl1][0];
1252 while (*p != LIM_REG_CLASSES)
1253 p++;
1254 *p++ = (enum reg_class) cl2;
1255 *p = LIM_REG_CLASSES;
1257 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1258 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1259 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1260 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1261 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1262 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1263 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1264 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1265 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1267 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1268 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1269 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1271 /* CL3 allocatable hard register set is inside of
1272 intersection of allocatable hard register sets
1273 of CL1 and CL2. */
1274 if (important_class_p[cl3])
1276 COPY_HARD_REG_SET
1277 (temp_set2,
1278 reg_class_contents
1279 [(int) ira_reg_class_intersect[cl1][cl2]]);
1280 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1281 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1282 /* If the allocatable hard register sets are
1283 the same, prefer GENERAL_REGS or the
1284 smallest class for debugging
1285 purposes. */
1286 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1287 && (cl3 == GENERAL_REGS
1288 || ((ira_reg_class_intersect[cl1][cl2]
1289 != GENERAL_REGS)
1290 && hard_reg_set_subset_p
1291 (reg_class_contents[cl3],
1292 reg_class_contents
1293 [(int)
1294 ira_reg_class_intersect[cl1][cl2]])))))
1295 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1297 COPY_HARD_REG_SET
1298 (temp_set2,
1299 reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1300 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1301 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1302 /* Ignore unavailable hard registers and prefer
1303 smallest class for debugging purposes. */
1304 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1305 && hard_reg_set_subset_p
1306 (reg_class_contents[cl3],
1307 reg_class_contents
1308 [(int) ira_reg_class_subset[cl1][cl2]])))
1309 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1311 if (important_class_p[cl3]
1312 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1314 /* CL3 allocatbale hard register set is inside of
1315 union of allocatable hard register sets of CL1
1316 and CL2. */
1317 COPY_HARD_REG_SET
1318 (temp_set2,
1319 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1320 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1321 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1322 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1324 && (! hard_reg_set_equal_p (temp_set2,
1325 temp_hard_regset)
1326 || cl3 == GENERAL_REGS
1327 /* If the allocatable hard register sets are the
1328 same, prefer GENERAL_REGS or the smallest
1329 class for debugging purposes. */
1330 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1331 && hard_reg_set_subset_p
1332 (reg_class_contents[cl3],
1333 reg_class_contents
1334 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1335 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1337 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1339 /* CL3 allocatable hard register set contains union
1340 of allocatable hard register sets of CL1 and
1341 CL2. */
1342 COPY_HARD_REG_SET
1343 (temp_set2,
1344 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1345 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1346 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1347 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1349 && (! hard_reg_set_equal_p (temp_set2,
1350 temp_hard_regset)
1351 || cl3 == GENERAL_REGS
1352 /* If the allocatable hard register sets are the
1353 same, prefer GENERAL_REGS or the smallest
1354 class for debugging purposes. */
1355 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1356 && hard_reg_set_subset_p
1357 (reg_class_contents[cl3],
1358 reg_class_contents
1359 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1360 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1367 /* Output all unifrom and important classes into file F. */
1368 static void
1369 print_unform_and_important_classes (FILE *f)
1371 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1372 int i, cl;
1374 fprintf (f, "Uniform classes:\n");
1375 for (cl = 0; cl < N_REG_CLASSES; cl++)
1376 if (ira_uniform_class_p[cl])
1377 fprintf (f, " %s", reg_class_names[cl]);
1378 fprintf (f, "\nImportant classes:\n");
1379 for (i = 0; i < ira_important_classes_num; i++)
1380 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1381 fprintf (f, "\n");
1384 /* Output all possible allocno or pressure classes and their
1385 translation map into file F. */
1386 static void
1387 print_translated_classes (FILE *f, bool pressure_p)
1389 int classes_num = (pressure_p
1390 ? ira_pressure_classes_num : ira_allocno_classes_num);
1391 enum reg_class *classes = (pressure_p
1392 ? ira_pressure_classes : ira_allocno_classes);
1393 enum reg_class *class_translate = (pressure_p
1394 ? ira_pressure_class_translate
1395 : ira_allocno_class_translate);
1396 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1397 int i;
1399 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1400 for (i = 0; i < classes_num; i++)
1401 fprintf (f, " %s", reg_class_names[classes[i]]);
1402 fprintf (f, "\nClass translation:\n");
1403 for (i = 0; i < N_REG_CLASSES; i++)
1404 fprintf (f, " %s -> %s\n", reg_class_names[i],
1405 reg_class_names[class_translate[i]]);
1408 /* Output all possible allocno and translation classes and the
1409 translation maps into stderr. */
1410 void
1411 ira_debug_allocno_classes (void)
1413 print_unform_and_important_classes (stderr);
1414 print_translated_classes (stderr, false);
1415 print_translated_classes (stderr, true);
1418 /* Set up different arrays concerning class subsets, allocno and
1419 important classes. */
1420 static void
1421 find_reg_classes (void)
1423 setup_allocno_and_important_classes ();
1424 setup_class_translate ();
1425 reorder_important_classes ();
1426 setup_reg_class_relations ();
1431 /* Set up the array above. */
1432 static void
1433 setup_hard_regno_aclass (void)
1435 int i;
1437 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1439 #if 1
1440 ira_hard_regno_allocno_class[i]
1441 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1442 ? NO_REGS
1443 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1444 #else
1445 int j;
1446 enum reg_class cl;
1447 ira_hard_regno_allocno_class[i] = NO_REGS;
1448 for (j = 0; j < ira_allocno_classes_num; j++)
1450 cl = ira_allocno_classes[j];
1451 if (ira_class_hard_reg_index[cl][i] >= 0)
1453 ira_hard_regno_allocno_class[i] = cl;
1454 break;
1457 #endif
1463 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1464 static void
1465 setup_reg_class_nregs (void)
1467 int i, cl, cl2, m;
1469 for (m = 0; m < MAX_MACHINE_MODE; m++)
1471 for (cl = 0; cl < N_REG_CLASSES; cl++)
1472 ira_reg_class_max_nregs[cl][m]
1473 = ira_reg_class_min_nregs[cl][m]
1474 = targetm.class_max_nregs ((reg_class_t) cl, (enum machine_mode) m);
1475 for (cl = 0; cl < N_REG_CLASSES; cl++)
1476 for (i = 0;
1477 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1478 i++)
1479 if (ira_reg_class_min_nregs[cl2][m]
1480 < ira_reg_class_min_nregs[cl][m])
1481 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1487 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1488 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1489 static void
1490 setup_prohibited_class_mode_regs (void)
1492 int j, k, hard_regno, cl, last_hard_regno, count;
1494 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1496 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1497 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1498 for (j = 0; j < NUM_MACHINE_MODES; j++)
1500 count = 0;
1501 last_hard_regno = -1;
1502 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1503 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1505 hard_regno = ira_class_hard_regs[cl][k];
1506 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1507 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1508 hard_regno);
1509 else if (in_hard_reg_set_p (temp_hard_regset,
1510 (enum machine_mode) j, hard_regno))
1512 last_hard_regno = hard_regno;
1513 count++;
1516 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1521 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1522 spanning from one register pressure class to another one. It is
1523 called after defining the pressure classes. */
1524 static void
1525 clarify_prohibited_class_mode_regs (void)
1527 int j, k, hard_regno, cl, pclass, nregs;
1529 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1530 for (j = 0; j < NUM_MACHINE_MODES; j++)
1532 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1533 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1535 hard_regno = ira_class_hard_regs[cl][k];
1536 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1537 continue;
1538 nregs = hard_regno_nregs[hard_regno][j];
1539 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1541 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1542 hard_regno);
1543 continue;
1545 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1546 for (nregs-- ;nregs >= 0; nregs--)
1547 if (((enum reg_class) pclass
1548 != ira_pressure_class_translate[REGNO_REG_CLASS
1549 (hard_regno + nregs)]))
1551 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1552 hard_regno);
1553 break;
1555 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1556 hard_regno))
1557 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1558 (enum machine_mode) j, hard_regno);
1563 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1564 and IRA_MAY_MOVE_OUT_COST for MODE. */
1565 void
1566 ira_init_register_move_cost (enum machine_mode mode)
1568 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1569 bool all_match = true;
1570 unsigned int cl1, cl2;
1572 ira_assert (ira_register_move_cost[mode] == NULL
1573 && ira_may_move_in_cost[mode] == NULL
1574 && ira_may_move_out_cost[mode] == NULL);
1575 ira_assert (have_regs_of_mode[mode]);
1576 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1577 if (contains_reg_of_mode[cl1][mode])
1578 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1580 int cost;
1581 if (!contains_reg_of_mode[cl2][mode])
1582 cost = 65535;
1583 else
1585 cost = register_move_cost (mode, (enum reg_class) cl1,
1586 (enum reg_class) cl2);
1587 ira_assert (cost < 65535);
1589 all_match &= (last_move_cost[cl1][cl2] == cost);
1590 last_move_cost[cl1][cl2] = cost;
1592 if (all_match && last_mode_for_init_move_cost != -1)
1594 ira_register_move_cost[mode]
1595 = ira_register_move_cost[last_mode_for_init_move_cost];
1596 ira_may_move_in_cost[mode]
1597 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1598 ira_may_move_out_cost[mode]
1599 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1600 return;
1602 last_mode_for_init_move_cost = mode;
1603 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1604 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1605 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1606 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1607 if (contains_reg_of_mode[cl1][mode])
1608 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1610 int cost;
1611 enum reg_class *p1, *p2;
1613 if (last_move_cost[cl1][cl2] == 65535)
1615 ira_register_move_cost[mode][cl1][cl2] = 65535;
1616 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1617 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1619 else
1621 cost = last_move_cost[cl1][cl2];
1623 for (p2 = &reg_class_subclasses[cl2][0];
1624 *p2 != LIM_REG_CLASSES; p2++)
1625 if (ira_class_hard_regs_num[*p2] > 0
1626 && (ira_reg_class_max_nregs[*p2][mode]
1627 <= ira_class_hard_regs_num[*p2]))
1628 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1630 for (p1 = &reg_class_subclasses[cl1][0];
1631 *p1 != LIM_REG_CLASSES; p1++)
1632 if (ira_class_hard_regs_num[*p1] > 0
1633 && (ira_reg_class_max_nregs[*p1][mode]
1634 <= ira_class_hard_regs_num[*p1]))
1635 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1637 ira_assert (cost <= 65535);
1638 ira_register_move_cost[mode][cl1][cl2] = cost;
1640 if (ira_class_subset_p[cl1][cl2])
1641 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1642 else
1643 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1645 if (ira_class_subset_p[cl2][cl1])
1646 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1647 else
1648 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1651 else
1652 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1654 ira_register_move_cost[mode][cl1][cl2] = 65535;
1655 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1656 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1661 /* This is called once during compiler work. It sets up
1662 different arrays whose values don't depend on the compiled
1663 function. */
1664 void
1665 ira_init_once (void)
1667 ira_init_costs_once ();
1668 lra_init_once ();
1671 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1672 ira_may_move_out_cost for each mode. */
1673 static void
1674 free_register_move_costs (void)
1676 int mode, i;
1678 /* Reset move_cost and friends, making sure we only free shared
1679 table entries once. */
1680 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1681 if (ira_register_move_cost[mode])
1683 for (i = 0;
1684 i < mode && (ira_register_move_cost[i]
1685 != ira_register_move_cost[mode]);
1686 i++)
1688 if (i == mode)
1690 free (ira_register_move_cost[mode]);
1691 free (ira_may_move_in_cost[mode]);
1692 free (ira_may_move_out_cost[mode]);
1695 memset (ira_register_move_cost, 0, sizeof ira_register_move_cost);
1696 memset (ira_may_move_in_cost, 0, sizeof ira_may_move_in_cost);
1697 memset (ira_may_move_out_cost, 0, sizeof ira_may_move_out_cost);
1698 last_mode_for_init_move_cost = -1;
1701 /* This is called every time when register related information is
1702 changed. */
1703 void
1704 ira_init (void)
1706 free_register_move_costs ();
1707 setup_reg_mode_hard_regset ();
1708 setup_alloc_regs (flag_omit_frame_pointer != 0);
1709 setup_class_subset_and_memory_move_costs ();
1710 setup_reg_class_nregs ();
1711 setup_prohibited_class_mode_regs ();
1712 find_reg_classes ();
1713 clarify_prohibited_class_mode_regs ();
1714 setup_hard_regno_aclass ();
1715 ira_init_costs ();
1716 lra_init ();
1719 /* Function called once at the end of compiler work. */
1720 void
1721 ira_finish_once (void)
1723 ira_finish_costs_once ();
1724 free_register_move_costs ();
1725 lra_finish_once ();
1729 #define ira_prohibited_mode_move_regs_initialized_p \
1730 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1732 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1733 static void
1734 setup_prohibited_mode_move_regs (void)
1736 int i, j;
1737 rtx test_reg1, test_reg2, move_pat, move_insn;
1739 if (ira_prohibited_mode_move_regs_initialized_p)
1740 return;
1741 ira_prohibited_mode_move_regs_initialized_p = true;
1742 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1743 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1744 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1745 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1746 for (i = 0; i < NUM_MACHINE_MODES; i++)
1748 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1749 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1751 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1752 continue;
1753 SET_REGNO_RAW (test_reg1, j);
1754 PUT_MODE (test_reg1, (enum machine_mode) i);
1755 SET_REGNO_RAW (test_reg2, j);
1756 PUT_MODE (test_reg2, (enum machine_mode) i);
1757 INSN_CODE (move_insn) = -1;
1758 recog_memoized (move_insn);
1759 if (INSN_CODE (move_insn) < 0)
1760 continue;
1761 extract_insn (move_insn);
1762 if (! constrain_operands (1))
1763 continue;
1764 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1771 /* Return TRUE if the operand constraint STR is commutative. */
1772 static bool
1773 commutative_constraint_p (const char *str)
1775 int curr_alt, c;
1776 bool ignore_p;
1778 for (ignore_p = false, curr_alt = 0;;)
1780 c = *str;
1781 if (c == '\0')
1782 break;
1783 str += CONSTRAINT_LEN (c, str);
1784 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
1785 ignore_p = true;
1786 else if (c == ',')
1788 curr_alt++;
1789 ignore_p = false;
1791 else if (! ignore_p)
1793 /* Usually `%' is the first constraint character but the
1794 documentation does not require this. */
1795 if (c == '%')
1796 return true;
1799 return false;
1802 /* Setup possible alternatives in ALTS for INSN. */
1803 void
1804 ira_setup_alts (rtx insn, HARD_REG_SET &alts)
1806 /* MAP nalt * nop -> start of constraints for given operand and
1807 alternative */
1808 static vec<const char *> insn_constraints;
1809 int nop, nalt;
1810 bool curr_swapped;
1811 const char *p;
1812 rtx op;
1813 int commutative = -1;
1815 extract_insn (insn);
1816 CLEAR_HARD_REG_SET (alts);
1817 insn_constraints.release ();
1818 insn_constraints.safe_grow_cleared (recog_data.n_operands
1819 * recog_data.n_alternatives + 1);
1820 /* Check that the hard reg set is enough for holding all
1821 alternatives. It is hard to imagine the situation when the
1822 assertion is wrong. */
1823 ira_assert (recog_data.n_alternatives
1824 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1825 FIRST_PSEUDO_REGISTER));
1826 for (curr_swapped = false;; curr_swapped = true)
1828 /* Calculate some data common for all alternatives to speed up the
1829 function. */
1830 for (nop = 0; nop < recog_data.n_operands; nop++)
1832 for (nalt = 0, p = recog_data.constraints[nop];
1833 nalt < recog_data.n_alternatives;
1834 nalt++)
1836 insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1837 while (*p && *p != ',')
1838 p++;
1839 if (*p)
1840 p++;
1843 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1845 if (! recog_data.alternative_enabled_p[nalt] || TEST_HARD_REG_BIT (alts, nalt))
1846 continue;
1848 for (nop = 0; nop < recog_data.n_operands; nop++)
1850 int c, len;
1852 op = recog_data.operand[nop];
1853 p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1854 if (*p == 0 || *p == ',')
1855 continue;
1858 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1860 case '#':
1861 case ',':
1862 c = '\0';
1863 case '\0':
1864 len = 0;
1865 break;
1867 case '?': case '!': case '*': case '=': case '+':
1868 break;
1870 case '%':
1871 /* We only support one commutative marker, the
1872 first one. We already set commutative
1873 above. */
1874 if (commutative < 0)
1875 commutative = nop;
1876 break;
1878 case '&':
1879 break;
1881 case '0': case '1': case '2': case '3': case '4':
1882 case '5': case '6': case '7': case '8': case '9':
1883 goto op_success;
1884 break;
1886 case 'p':
1887 case 'g':
1888 case 'X':
1889 case TARGET_MEM_CONSTRAINT:
1890 goto op_success;
1891 break;
1893 case '<':
1894 if (MEM_P (op)
1895 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1896 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1897 goto op_success;
1898 break;
1900 case '>':
1901 if (MEM_P (op)
1902 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1903 || GET_CODE (XEXP (op, 0)) == POST_INC))
1904 goto op_success;
1905 break;
1907 case 'E':
1908 case 'F':
1909 if (CONST_DOUBLE_AS_FLOAT_P (op)
1910 || (GET_CODE (op) == CONST_VECTOR
1911 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1912 goto op_success;
1913 break;
1915 case 'G':
1916 case 'H':
1917 if (CONST_DOUBLE_AS_FLOAT_P (op)
1918 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
1919 goto op_success;
1920 break;
1922 case 's':
1923 if (CONST_SCALAR_INT_P (op))
1924 break;
1925 case 'i':
1926 if (CONSTANT_P (op))
1927 goto op_success;
1928 break;
1930 case 'n':
1931 if (CONST_SCALAR_INT_P (op))
1932 goto op_success;
1933 break;
1935 case 'I':
1936 case 'J':
1937 case 'K':
1938 case 'L':
1939 case 'M':
1940 case 'N':
1941 case 'O':
1942 case 'P':
1943 if (CONST_INT_P (op)
1944 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
1945 goto op_success;
1946 break;
1948 case 'V':
1949 if (MEM_P (op) && ! offsettable_memref_p (op))
1950 goto op_success;
1951 break;
1953 case 'o':
1954 goto op_success;
1955 break;
1957 default:
1959 enum reg_class cl;
1961 cl = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
1962 if (cl != NO_REGS)
1963 goto op_success;
1964 #ifdef EXTRA_CONSTRAINT_STR
1965 else if (EXTRA_CONSTRAINT_STR (op, c, p))
1966 goto op_success;
1967 else if (EXTRA_MEMORY_CONSTRAINT (c, p))
1968 goto op_success;
1969 else if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1970 goto op_success;
1971 #endif
1972 break;
1975 while (p += len, c);
1976 break;
1977 op_success:
1980 if (nop >= recog_data.n_operands)
1981 SET_HARD_REG_BIT (alts, nalt);
1983 if (commutative < 0)
1984 break;
1985 if (curr_swapped)
1986 break;
1987 op = recog_data.operand[commutative];
1988 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1989 recog_data.operand[commutative + 1] = op;
1994 /* Return the number of the output non-early clobber operand which
1995 should be the same in any case as operand with number OP_NUM (or
1996 negative value if there is no such operand). The function takes
1997 only really possible alternatives into consideration. */
1999 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
2001 int curr_alt, c, original, dup;
2002 bool ignore_p, use_commut_op_p;
2003 const char *str;
2004 #ifdef EXTRA_CONSTRAINT_STR
2005 rtx op;
2006 #endif
2008 if (op_num < 0 || recog_data.n_alternatives == 0)
2009 return -1;
2010 use_commut_op_p = false;
2011 str = recog_data.constraints[op_num];
2012 for (;;)
2014 #ifdef EXTRA_CONSTRAINT_STR
2015 op = recog_data.operand[op_num];
2016 #endif
2018 for (ignore_p = false, original = -1, curr_alt = 0;;)
2020 c = *str;
2021 if (c == '\0')
2022 break;
2023 if (c == '#' || !TEST_HARD_REG_BIT (alts, curr_alt))
2024 ignore_p = true;
2025 else if (c == ',')
2027 curr_alt++;
2028 ignore_p = false;
2030 else if (! ignore_p)
2031 switch (c)
2033 /* We should find duplications only for input operands. */
2034 case '=':
2035 case '+':
2036 goto fail;
2037 case 'X':
2038 case 'p':
2039 case 'g':
2040 goto fail;
2041 case 'r':
2042 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
2043 case 'h': case 'j': case 'k': case 'l':
2044 case 'q': case 't': case 'u':
2045 case 'v': case 'w': case 'x': case 'y': case 'z':
2046 case 'A': case 'B': case 'C': case 'D':
2047 case 'Q': case 'R': case 'S': case 'T': case 'U':
2048 case 'W': case 'Y': case 'Z':
2050 enum reg_class cl;
2052 cl = (c == 'r'
2053 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, str));
2054 if (cl != NO_REGS)
2056 if (! targetm.class_likely_spilled_p (cl))
2057 goto fail;
2059 #ifdef EXTRA_CONSTRAINT_STR
2060 else if (EXTRA_CONSTRAINT_STR (op, c, str))
2061 goto fail;
2062 #endif
2063 break;
2066 case '0': case '1': case '2': case '3': case '4':
2067 case '5': case '6': case '7': case '8': case '9':
2068 if (original != -1 && original != c)
2069 goto fail;
2070 original = c;
2071 break;
2073 str += CONSTRAINT_LEN (c, str);
2075 if (original == -1)
2076 goto fail;
2077 dup = -1;
2078 for (ignore_p = false, str = recog_data.constraints[original - '0'];
2079 *str != 0;
2080 str++)
2081 if (ignore_p)
2083 if (*str == ',')
2084 ignore_p = false;
2086 else if (*str == '#')
2087 ignore_p = true;
2088 else if (! ignore_p)
2090 if (*str == '=')
2091 dup = original - '0';
2092 /* It is better ignore an alternative with early clobber. */
2093 else if (*str == '&')
2094 goto fail;
2096 if (dup >= 0)
2097 return dup;
2098 fail:
2099 if (use_commut_op_p)
2100 break;
2101 use_commut_op_p = true;
2102 if (commutative_constraint_p (recog_data.constraints[op_num]))
2103 str = recog_data.constraints[op_num + 1];
2104 else if (op_num > 0 && commutative_constraint_p (recog_data.constraints
2105 [op_num - 1]))
2106 str = recog_data.constraints[op_num - 1];
2107 else
2108 break;
2110 return -1;
2115 /* Search forward to see if the source register of a copy insn dies
2116 before either it or the destination register is modified, but don't
2117 scan past the end of the basic block. If so, we can replace the
2118 source with the destination and let the source die in the copy
2119 insn.
2121 This will reduce the number of registers live in that range and may
2122 enable the destination and the source coalescing, thus often saving
2123 one register in addition to a register-register copy. */
2125 static void
2126 decrease_live_ranges_number (void)
2128 basic_block bb;
2129 rtx insn, set, src, dest, dest_death, p, q, note;
2130 int sregno, dregno;
2132 if (! flag_expensive_optimizations)
2133 return;
2135 if (ira_dump_file)
2136 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2138 FOR_EACH_BB (bb)
2139 FOR_BB_INSNS (bb, insn)
2141 set = single_set (insn);
2142 if (! set)
2143 continue;
2144 src = SET_SRC (set);
2145 dest = SET_DEST (set);
2146 if (! REG_P (src) || ! REG_P (dest)
2147 || find_reg_note (insn, REG_DEAD, src))
2148 continue;
2149 sregno = REGNO (src);
2150 dregno = REGNO (dest);
2152 /* We don't want to mess with hard regs if register classes
2153 are small. */
2154 if (sregno == dregno
2155 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2156 && (sregno < FIRST_PSEUDO_REGISTER
2157 || dregno < FIRST_PSEUDO_REGISTER))
2158 /* We don't see all updates to SP if they are in an
2159 auto-inc memory reference, so we must disallow this
2160 optimization on them. */
2161 || sregno == STACK_POINTER_REGNUM
2162 || dregno == STACK_POINTER_REGNUM)
2163 continue;
2165 dest_death = NULL_RTX;
2167 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2169 if (! INSN_P (p))
2170 continue;
2171 if (BLOCK_FOR_INSN (p) != bb)
2172 break;
2174 if (reg_set_p (src, p) || reg_set_p (dest, p)
2175 /* If SRC is an asm-declared register, it must not be
2176 replaced in any asm. Unfortunately, the REG_EXPR
2177 tree for the asm variable may be absent in the SRC
2178 rtx, so we can't check the actual register
2179 declaration easily (the asm operand will have it,
2180 though). To avoid complicating the test for a rare
2181 case, we just don't perform register replacement
2182 for a hard reg mentioned in an asm. */
2183 || (sregno < FIRST_PSEUDO_REGISTER
2184 && asm_noperands (PATTERN (p)) >= 0
2185 && reg_overlap_mentioned_p (src, PATTERN (p)))
2186 /* Don't change hard registers used by a call. */
2187 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2188 && find_reg_fusage (p, USE, src))
2189 /* Don't change a USE of a register. */
2190 || (GET_CODE (PATTERN (p)) == USE
2191 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2192 break;
2194 /* See if all of SRC dies in P. This test is slightly
2195 more conservative than it needs to be. */
2196 if ((note = find_regno_note (p, REG_DEAD, sregno))
2197 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2199 int failed = 0;
2201 /* We can do the optimization. Scan forward from INSN
2202 again, replacing regs as we go. Set FAILED if a
2203 replacement can't be done. In that case, we can't
2204 move the death note for SRC. This should be
2205 rare. */
2207 /* Set to stop at next insn. */
2208 for (q = next_real_insn (insn);
2209 q != next_real_insn (p);
2210 q = next_real_insn (q))
2212 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2214 /* If SRC is a hard register, we might miss
2215 some overlapping registers with
2216 validate_replace_rtx, so we would have to
2217 undo it. We can't if DEST is present in
2218 the insn, so fail in that combination of
2219 cases. */
2220 if (sregno < FIRST_PSEUDO_REGISTER
2221 && reg_mentioned_p (dest, PATTERN (q)))
2222 failed = 1;
2224 /* Attempt to replace all uses. */
2225 else if (!validate_replace_rtx (src, dest, q))
2226 failed = 1;
2228 /* If this succeeded, but some part of the
2229 register is still present, undo the
2230 replacement. */
2231 else if (sregno < FIRST_PSEUDO_REGISTER
2232 && reg_overlap_mentioned_p (src, PATTERN (q)))
2234 validate_replace_rtx (dest, src, q);
2235 failed = 1;
2239 /* If DEST dies here, remove the death note and
2240 save it for later. Make sure ALL of DEST dies
2241 here; again, this is overly conservative. */
2242 if (! dest_death
2243 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2245 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2246 remove_note (q, dest_death);
2247 else
2249 failed = 1;
2250 dest_death = 0;
2255 if (! failed)
2257 /* Move death note of SRC from P to INSN. */
2258 remove_note (p, note);
2259 XEXP (note, 1) = REG_NOTES (insn);
2260 REG_NOTES (insn) = note;
2263 /* DEST is also dead if INSN has a REG_UNUSED note for
2264 DEST. */
2265 if (! dest_death
2266 && (dest_death
2267 = find_regno_note (insn, REG_UNUSED, dregno)))
2269 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2270 remove_note (insn, dest_death);
2273 /* Put death note of DEST on P if we saw it die. */
2274 if (dest_death)
2276 XEXP (dest_death, 1) = REG_NOTES (p);
2277 REG_NOTES (p) = dest_death;
2279 break;
2282 /* If SRC is a hard register which is set or killed in
2283 some other way, we can't do this optimization. */
2284 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2285 break;
2292 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2293 static bool
2294 ira_bad_reload_regno_1 (int regno, rtx x)
2296 int x_regno, n, i;
2297 ira_allocno_t a;
2298 enum reg_class pref;
2300 /* We only deal with pseudo regs. */
2301 if (! x || GET_CODE (x) != REG)
2302 return false;
2304 x_regno = REGNO (x);
2305 if (x_regno < FIRST_PSEUDO_REGISTER)
2306 return false;
2308 /* If the pseudo prefers REGNO explicitly, then do not consider
2309 REGNO a bad spill choice. */
2310 pref = reg_preferred_class (x_regno);
2311 if (reg_class_size[pref] == 1)
2312 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2314 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2315 poor choice for a reload regno. */
2316 a = ira_regno_allocno_map[x_regno];
2317 n = ALLOCNO_NUM_OBJECTS (a);
2318 for (i = 0; i < n; i++)
2320 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2321 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2322 return true;
2324 return false;
2327 /* Return nonzero if REGNO is a particularly bad choice for reloading
2328 IN or OUT. */
2329 bool
2330 ira_bad_reload_regno (int regno, rtx in, rtx out)
2332 return (ira_bad_reload_regno_1 (regno, in)
2333 || ira_bad_reload_regno_1 (regno, out));
2336 /* Return TRUE if *LOC contains an asm. */
2337 static int
2338 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
2340 if ( !*loc)
2341 return FALSE;
2342 if (GET_CODE (*loc) == ASM_OPERANDS)
2343 return TRUE;
2344 return FALSE;
2348 /* Return TRUE if INSN contains an ASM. */
2349 static bool
2350 insn_contains_asm (rtx insn)
2352 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
2355 /* Add register clobbers from asm statements. */
2356 static void
2357 compute_regs_asm_clobbered (void)
2359 basic_block bb;
2361 FOR_EACH_BB (bb)
2363 rtx insn;
2364 FOR_BB_INSNS_REVERSE (bb, insn)
2366 df_ref *def_rec;
2368 if (insn_contains_asm (insn))
2369 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
2371 df_ref def = *def_rec;
2372 unsigned int dregno = DF_REF_REGNO (def);
2373 if (HARD_REGISTER_NUM_P (dregno))
2374 add_to_hard_reg_set (&crtl->asm_clobbers,
2375 GET_MODE (DF_REF_REAL_REG (def)),
2376 dregno);
2383 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE.
2384 If the function is called from IRA (not from the insn scheduler or
2385 RTL loop invariant motion), FROM_IRA_P is true. */
2386 void
2387 ira_setup_eliminable_regset (bool from_ira_p)
2389 #ifdef ELIMINABLE_REGS
2390 int i;
2391 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2392 #endif
2393 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2394 sp for alloca. So we can't eliminate the frame pointer in that
2395 case. At some point, we should improve this by emitting the
2396 sp-adjusting insns for this case. */
2397 frame_pointer_needed
2398 = (! flag_omit_frame_pointer
2399 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2400 /* We need the frame pointer to catch stack overflow exceptions
2401 if the stack pointer is moving. */
2402 || (flag_stack_check && STACK_CHECK_MOVING_SP)
2403 || crtl->accesses_prior_frames
2404 || crtl->stack_realign_needed
2405 /* We need a frame pointer for all Cilk Plus functions that use
2406 Cilk keywords. */
2407 || (flag_enable_cilkplus && cfun->is_cilk_function)
2408 || targetm.frame_pointer_required ());
2410 if (from_ira_p && ira_use_lra_p)
2411 /* It can change FRAME_POINTER_NEEDED. We call it only from IRA
2412 because it is expensive. */
2413 lra_init_elimination ();
2415 if (frame_pointer_needed)
2416 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2418 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2419 CLEAR_HARD_REG_SET (eliminable_regset);
2421 compute_regs_asm_clobbered ();
2423 /* Build the regset of all eliminable registers and show we can't
2424 use those that we already know won't be eliminated. */
2425 #ifdef ELIMINABLE_REGS
2426 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2428 bool cannot_elim
2429 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2430 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2432 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2434 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2436 if (cannot_elim)
2437 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2439 else if (cannot_elim)
2440 error ("%s cannot be used in asm here",
2441 reg_names[eliminables[i].from]);
2442 else
2443 df_set_regs_ever_live (eliminables[i].from, true);
2445 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2446 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2448 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2449 if (frame_pointer_needed)
2450 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2452 else if (frame_pointer_needed)
2453 error ("%s cannot be used in asm here",
2454 reg_names[HARD_FRAME_POINTER_REGNUM]);
2455 else
2456 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2457 #endif
2459 #else
2460 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2462 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2463 if (frame_pointer_needed)
2464 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2466 else if (frame_pointer_needed)
2467 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2468 else
2469 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2470 #endif
2475 /* Vector of substitutions of register numbers,
2476 used to map pseudo regs into hardware regs.
2477 This is set up as a result of register allocation.
2478 Element N is the hard reg assigned to pseudo reg N,
2479 or is -1 if no hard reg was assigned.
2480 If N is a hard reg number, element N is N. */
2481 short *reg_renumber;
2483 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2484 the allocation found by IRA. */
2485 static void
2486 setup_reg_renumber (void)
2488 int regno, hard_regno;
2489 ira_allocno_t a;
2490 ira_allocno_iterator ai;
2492 caller_save_needed = 0;
2493 FOR_EACH_ALLOCNO (a, ai)
2495 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2496 continue;
2497 /* There are no caps at this point. */
2498 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2499 if (! ALLOCNO_ASSIGNED_P (a))
2500 /* It can happen if A is not referenced but partially anticipated
2501 somewhere in a region. */
2502 ALLOCNO_ASSIGNED_P (a) = true;
2503 ira_free_allocno_updated_costs (a);
2504 hard_regno = ALLOCNO_HARD_REGNO (a);
2505 regno = ALLOCNO_REGNO (a);
2506 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2507 if (hard_regno >= 0)
2509 int i, nwords;
2510 enum reg_class pclass;
2511 ira_object_t obj;
2513 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2514 nwords = ALLOCNO_NUM_OBJECTS (a);
2515 for (i = 0; i < nwords; i++)
2517 obj = ALLOCNO_OBJECT (a, i);
2518 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2519 reg_class_contents[pclass]);
2521 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2522 && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2523 call_used_reg_set))
2525 ira_assert (!optimize || flag_caller_saves
2526 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2527 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2528 || regno >= ira_reg_equiv_len
2529 || ira_equiv_no_lvalue_p (regno));
2530 caller_save_needed = 1;
2536 /* Set up allocno assignment flags for further allocation
2537 improvements. */
2538 static void
2539 setup_allocno_assignment_flags (void)
2541 int hard_regno;
2542 ira_allocno_t a;
2543 ira_allocno_iterator ai;
2545 FOR_EACH_ALLOCNO (a, ai)
2547 if (! ALLOCNO_ASSIGNED_P (a))
2548 /* It can happen if A is not referenced but partially anticipated
2549 somewhere in a region. */
2550 ira_free_allocno_updated_costs (a);
2551 hard_regno = ALLOCNO_HARD_REGNO (a);
2552 /* Don't assign hard registers to allocnos which are destination
2553 of removed store at the end of loop. It has no sense to keep
2554 the same value in different hard registers. It is also
2555 impossible to assign hard registers correctly to such
2556 allocnos because the cost info and info about intersected
2557 calls are incorrect for them. */
2558 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2559 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2560 || (ALLOCNO_MEMORY_COST (a)
2561 - ALLOCNO_CLASS_COST (a)) < 0);
2562 ira_assert
2563 (hard_regno < 0
2564 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2565 reg_class_contents[ALLOCNO_CLASS (a)]));
2569 /* Evaluate overall allocation cost and the costs for using hard
2570 registers and memory for allocnos. */
2571 static void
2572 calculate_allocation_cost (void)
2574 int hard_regno, cost;
2575 ira_allocno_t a;
2576 ira_allocno_iterator ai;
2578 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2579 FOR_EACH_ALLOCNO (a, ai)
2581 hard_regno = ALLOCNO_HARD_REGNO (a);
2582 ira_assert (hard_regno < 0
2583 || (ira_hard_reg_in_set_p
2584 (hard_regno, ALLOCNO_MODE (a),
2585 reg_class_contents[ALLOCNO_CLASS (a)])));
2586 if (hard_regno < 0)
2588 cost = ALLOCNO_MEMORY_COST (a);
2589 ira_mem_cost += cost;
2591 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2593 cost = (ALLOCNO_HARD_REG_COSTS (a)
2594 [ira_class_hard_reg_index
2595 [ALLOCNO_CLASS (a)][hard_regno]]);
2596 ira_reg_cost += cost;
2598 else
2600 cost = ALLOCNO_CLASS_COST (a);
2601 ira_reg_cost += cost;
2603 ira_overall_cost += cost;
2606 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2608 fprintf (ira_dump_file,
2609 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2610 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2611 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2612 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2613 ira_move_loops_num, ira_additional_jumps_num);
2618 #ifdef ENABLE_IRA_CHECKING
2619 /* Check the correctness of the allocation. We do need this because
2620 of complicated code to transform more one region internal
2621 representation into one region representation. */
2622 static void
2623 check_allocation (void)
2625 ira_allocno_t a;
2626 int hard_regno, nregs, conflict_nregs;
2627 ira_allocno_iterator ai;
2629 FOR_EACH_ALLOCNO (a, ai)
2631 int n = ALLOCNO_NUM_OBJECTS (a);
2632 int i;
2634 if (ALLOCNO_CAP_MEMBER (a) != NULL
2635 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2636 continue;
2637 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2638 if (nregs == 1)
2639 /* We allocated a single hard register. */
2640 n = 1;
2641 else if (n > 1)
2642 /* We allocated multiple hard registers, and we will test
2643 conflicts in a granularity of single hard regs. */
2644 nregs = 1;
2646 for (i = 0; i < n; i++)
2648 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2649 ira_object_t conflict_obj;
2650 ira_object_conflict_iterator oci;
2651 int this_regno = hard_regno;
2652 if (n > 1)
2654 if (REG_WORDS_BIG_ENDIAN)
2655 this_regno += n - i - 1;
2656 else
2657 this_regno += i;
2659 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2661 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2662 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2663 if (conflict_hard_regno < 0)
2664 continue;
2666 conflict_nregs
2667 = (hard_regno_nregs
2668 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2670 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2671 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2673 if (REG_WORDS_BIG_ENDIAN)
2674 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2675 - OBJECT_SUBWORD (conflict_obj) - 1);
2676 else
2677 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2678 conflict_nregs = 1;
2681 if ((conflict_hard_regno <= this_regno
2682 && this_regno < conflict_hard_regno + conflict_nregs)
2683 || (this_regno <= conflict_hard_regno
2684 && conflict_hard_regno < this_regno + nregs))
2686 fprintf (stderr, "bad allocation for %d and %d\n",
2687 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2688 gcc_unreachable ();
2694 #endif
2696 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2697 be already calculated. */
2698 static void
2699 setup_reg_equiv_init (void)
2701 int i;
2702 int max_regno = max_reg_num ();
2704 for (i = 0; i < max_regno; i++)
2705 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2708 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2709 are insns which were generated for such movement. It is assumed
2710 that FROM_REGNO and TO_REGNO always have the same value at the
2711 point of any move containing such registers. This function is used
2712 to update equiv info for register shuffles on the region borders
2713 and for caller save/restore insns. */
2714 void
2715 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx insns)
2717 rtx insn, x, note;
2719 if (! ira_reg_equiv[from_regno].defined_p
2720 && (! ira_reg_equiv[to_regno].defined_p
2721 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2722 && ! MEM_READONLY_P (x))))
2723 return;
2724 insn = insns;
2725 if (NEXT_INSN (insn) != NULL_RTX)
2727 if (! ira_reg_equiv[to_regno].defined_p)
2729 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2730 return;
2732 ira_reg_equiv[to_regno].defined_p = false;
2733 ira_reg_equiv[to_regno].memory
2734 = ira_reg_equiv[to_regno].constant
2735 = ira_reg_equiv[to_regno].invariant
2736 = ira_reg_equiv[to_regno].init_insns = NULL_RTX;
2737 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2738 fprintf (ira_dump_file,
2739 " Invalidating equiv info for reg %d\n", to_regno);
2740 return;
2742 /* It is possible that FROM_REGNO still has no equivalence because
2743 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2744 insn was not processed yet. */
2745 if (ira_reg_equiv[from_regno].defined_p)
2747 ira_reg_equiv[to_regno].defined_p = true;
2748 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2750 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2751 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2752 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2753 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2754 ira_reg_equiv[to_regno].memory = x;
2755 if (! MEM_READONLY_P (x))
2756 /* We don't add the insn to insn init list because memory
2757 equivalence is just to say what memory is better to use
2758 when the pseudo is spilled. */
2759 return;
2761 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2763 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2764 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2765 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2766 ira_reg_equiv[to_regno].constant = x;
2768 else
2770 x = ira_reg_equiv[from_regno].invariant;
2771 ira_assert (x != NULL_RTX);
2772 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2773 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2774 ira_reg_equiv[to_regno].invariant = x;
2776 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2778 note = set_unique_reg_note (insn, REG_EQUIV, x);
2779 gcc_assert (note != NULL_RTX);
2780 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2782 fprintf (ira_dump_file,
2783 " Adding equiv note to insn %u for reg %d ",
2784 INSN_UID (insn), to_regno);
2785 dump_value_slim (ira_dump_file, x, 1);
2786 fprintf (ira_dump_file, "\n");
2790 ira_reg_equiv[to_regno].init_insns
2791 = gen_rtx_INSN_LIST (VOIDmode, insn,
2792 ira_reg_equiv[to_regno].init_insns);
2793 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2794 fprintf (ira_dump_file,
2795 " Adding equiv init move insn %u to reg %d\n",
2796 INSN_UID (insn), to_regno);
2799 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2800 by IRA. */
2801 static void
2802 fix_reg_equiv_init (void)
2804 int max_regno = max_reg_num ();
2805 int i, new_regno, max;
2806 rtx x, prev, next, insn, set;
2808 if (max_regno_before_ira < max_regno)
2810 max = vec_safe_length (reg_equivs);
2811 grow_reg_equivs ();
2812 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2813 for (prev = NULL_RTX, x = reg_equiv_init (i);
2814 x != NULL_RTX;
2815 x = next)
2817 next = XEXP (x, 1);
2818 insn = XEXP (x, 0);
2819 set = single_set (insn);
2820 ira_assert (set != NULL_RTX
2821 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2822 if (REG_P (SET_DEST (set))
2823 && ((int) REGNO (SET_DEST (set)) == i
2824 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2825 new_regno = REGNO (SET_DEST (set));
2826 else if (REG_P (SET_SRC (set))
2827 && ((int) REGNO (SET_SRC (set)) == i
2828 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2829 new_regno = REGNO (SET_SRC (set));
2830 else
2831 gcc_unreachable ();
2832 if (new_regno == i)
2833 prev = x;
2834 else
2836 /* Remove the wrong list element. */
2837 if (prev == NULL_RTX)
2838 reg_equiv_init (i) = next;
2839 else
2840 XEXP (prev, 1) = next;
2841 XEXP (x, 1) = reg_equiv_init (new_regno);
2842 reg_equiv_init (new_regno) = x;
2848 #ifdef ENABLE_IRA_CHECKING
2849 /* Print redundant memory-memory copies. */
2850 static void
2851 print_redundant_copies (void)
2853 int hard_regno;
2854 ira_allocno_t a;
2855 ira_copy_t cp, next_cp;
2856 ira_allocno_iterator ai;
2858 FOR_EACH_ALLOCNO (a, ai)
2860 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2861 /* It is a cap. */
2862 continue;
2863 hard_regno = ALLOCNO_HARD_REGNO (a);
2864 if (hard_regno >= 0)
2865 continue;
2866 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2867 if (cp->first == a)
2868 next_cp = cp->next_first_allocno_copy;
2869 else
2871 next_cp = cp->next_second_allocno_copy;
2872 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2873 && cp->insn != NULL_RTX
2874 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2875 fprintf (ira_dump_file,
2876 " Redundant move from %d(freq %d):%d\n",
2877 INSN_UID (cp->insn), cp->freq, hard_regno);
2881 #endif
2883 /* Setup preferred and alternative classes for new pseudo-registers
2884 created by IRA starting with START. */
2885 static void
2886 setup_preferred_alternate_classes_for_new_pseudos (int start)
2888 int i, old_regno;
2889 int max_regno = max_reg_num ();
2891 for (i = start; i < max_regno; i++)
2893 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2894 ira_assert (i != old_regno);
2895 setup_reg_classes (i, reg_preferred_class (old_regno),
2896 reg_alternate_class (old_regno),
2897 reg_allocno_class (old_regno));
2898 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2899 fprintf (ira_dump_file,
2900 " New r%d: setting preferred %s, alternative %s\n",
2901 i, reg_class_names[reg_preferred_class (old_regno)],
2902 reg_class_names[reg_alternate_class (old_regno)]);
2907 /* The number of entries allocated in teg_info. */
2908 static int allocated_reg_info_size;
2910 /* Regional allocation can create new pseudo-registers. This function
2911 expands some arrays for pseudo-registers. */
2912 static void
2913 expand_reg_info (void)
2915 int i;
2916 int size = max_reg_num ();
2918 resize_reg_info ();
2919 for (i = allocated_reg_info_size; i < size; i++)
2920 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2921 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2922 allocated_reg_info_size = size;
2925 /* Return TRUE if there is too high register pressure in the function.
2926 It is used to decide when stack slot sharing is worth to do. */
2927 static bool
2928 too_high_register_pressure_p (void)
2930 int i;
2931 enum reg_class pclass;
2933 for (i = 0; i < ira_pressure_classes_num; i++)
2935 pclass = ira_pressure_classes[i];
2936 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2937 return true;
2939 return false;
2944 /* Indicate that hard register number FROM was eliminated and replaced with
2945 an offset from hard register number TO. The status of hard registers live
2946 at the start of a basic block is updated by replacing a use of FROM with
2947 a use of TO. */
2949 void
2950 mark_elimination (int from, int to)
2952 basic_block bb;
2953 bitmap r;
2955 FOR_EACH_BB (bb)
2957 r = DF_LR_IN (bb);
2958 if (bitmap_bit_p (r, from))
2960 bitmap_clear_bit (r, from);
2961 bitmap_set_bit (r, to);
2963 if (! df_live)
2964 continue;
2965 r = DF_LIVE_IN (bb);
2966 if (bitmap_bit_p (r, from))
2968 bitmap_clear_bit (r, from);
2969 bitmap_set_bit (r, to);
2976 /* The length of the following array. */
2977 int ira_reg_equiv_len;
2979 /* Info about equiv. info for each register. */
2980 struct ira_reg_equiv *ira_reg_equiv;
2982 /* Expand ira_reg_equiv if necessary. */
2983 void
2984 ira_expand_reg_equiv (void)
2986 int old = ira_reg_equiv_len;
2988 if (ira_reg_equiv_len > max_reg_num ())
2989 return;
2990 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2991 ira_reg_equiv
2992 = (struct ira_reg_equiv *) xrealloc (ira_reg_equiv,
2993 ira_reg_equiv_len
2994 * sizeof (struct ira_reg_equiv));
2995 gcc_assert (old < ira_reg_equiv_len);
2996 memset (ira_reg_equiv + old, 0,
2997 sizeof (struct ira_reg_equiv) * (ira_reg_equiv_len - old));
3000 static void
3001 init_reg_equiv (void)
3003 ira_reg_equiv_len = 0;
3004 ira_reg_equiv = NULL;
3005 ira_expand_reg_equiv ();
3008 static void
3009 finish_reg_equiv (void)
3011 free (ira_reg_equiv);
3016 struct equivalence
3018 /* Set when a REG_EQUIV note is found or created. Use to
3019 keep track of what memory accesses might be created later,
3020 e.g. by reload. */
3021 rtx replacement;
3022 rtx *src_p;
3023 /* The list of each instruction which initializes this register. */
3024 rtx init_insns;
3025 /* Loop depth is used to recognize equivalences which appear
3026 to be present within the same loop (or in an inner loop). */
3027 int loop_depth;
3028 /* Nonzero if this had a preexisting REG_EQUIV note. */
3029 int is_arg_equivalence;
3030 /* Set when an attempt should be made to replace a register
3031 with the associated src_p entry. */
3032 char replace;
3035 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
3036 structure for that register. */
3037 static struct equivalence *reg_equiv;
3039 /* Used for communication between the following two functions: contains
3040 a MEM that we wish to ensure remains unchanged. */
3041 static rtx equiv_mem;
3043 /* Set nonzero if EQUIV_MEM is modified. */
3044 static int equiv_mem_modified;
3046 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
3047 Called via note_stores. */
3048 static void
3049 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
3050 void *data ATTRIBUTE_UNUSED)
3052 if ((REG_P (dest)
3053 && reg_overlap_mentioned_p (dest, equiv_mem))
3054 || (MEM_P (dest)
3055 && anti_dependence (equiv_mem, dest)))
3056 equiv_mem_modified = 1;
3059 /* Verify that no store between START and the death of REG invalidates
3060 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
3061 by storing into an overlapping memory location, or with a non-const
3062 CALL_INSN.
3064 Return 1 if MEMREF remains valid. */
3065 static int
3066 validate_equiv_mem (rtx start, rtx reg, rtx memref)
3068 rtx insn;
3069 rtx note;
3071 equiv_mem = memref;
3072 equiv_mem_modified = 0;
3074 /* If the memory reference has side effects or is volatile, it isn't a
3075 valid equivalence. */
3076 if (side_effects_p (memref))
3077 return 0;
3079 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
3081 if (! INSN_P (insn))
3082 continue;
3084 if (find_reg_note (insn, REG_DEAD, reg))
3085 return 1;
3087 /* This used to ignore readonly memory and const/pure calls. The problem
3088 is the equivalent form may reference a pseudo which gets assigned a
3089 call clobbered hard reg. When we later replace REG with its
3090 equivalent form, the value in the call-clobbered reg has been
3091 changed and all hell breaks loose. */
3092 if (CALL_P (insn))
3093 return 0;
3095 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
3097 /* If a register mentioned in MEMREF is modified via an
3098 auto-increment, we lose the equivalence. Do the same if one
3099 dies; although we could extend the life, it doesn't seem worth
3100 the trouble. */
3102 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3103 if ((REG_NOTE_KIND (note) == REG_INC
3104 || REG_NOTE_KIND (note) == REG_DEAD)
3105 && REG_P (XEXP (note, 0))
3106 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3107 return 0;
3110 return 0;
3113 /* Returns zero if X is known to be invariant. */
3114 static int
3115 equiv_init_varies_p (rtx x)
3117 RTX_CODE code = GET_CODE (x);
3118 int i;
3119 const char *fmt;
3121 switch (code)
3123 case MEM:
3124 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3126 case CONST:
3127 CASE_CONST_ANY:
3128 case SYMBOL_REF:
3129 case LABEL_REF:
3130 return 0;
3132 case REG:
3133 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3135 case ASM_OPERANDS:
3136 if (MEM_VOLATILE_P (x))
3137 return 1;
3139 /* Fall through. */
3141 default:
3142 break;
3145 fmt = GET_RTX_FORMAT (code);
3146 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3147 if (fmt[i] == 'e')
3149 if (equiv_init_varies_p (XEXP (x, i)))
3150 return 1;
3152 else if (fmt[i] == 'E')
3154 int j;
3155 for (j = 0; j < XVECLEN (x, i); j++)
3156 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3157 return 1;
3160 return 0;
3163 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3164 X is only movable if the registers it uses have equivalent initializations
3165 which appear to be within the same loop (or in an inner loop) and movable
3166 or if they are not candidates for local_alloc and don't vary. */
3167 static int
3168 equiv_init_movable_p (rtx x, int regno)
3170 int i, j;
3171 const char *fmt;
3172 enum rtx_code code = GET_CODE (x);
3174 switch (code)
3176 case SET:
3177 return equiv_init_movable_p (SET_SRC (x), regno);
3179 case CC0:
3180 case CLOBBER:
3181 return 0;
3183 case PRE_INC:
3184 case PRE_DEC:
3185 case POST_INC:
3186 case POST_DEC:
3187 case PRE_MODIFY:
3188 case POST_MODIFY:
3189 return 0;
3191 case REG:
3192 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3193 && reg_equiv[REGNO (x)].replace)
3194 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3195 && ! rtx_varies_p (x, 0)));
3197 case UNSPEC_VOLATILE:
3198 return 0;
3200 case ASM_OPERANDS:
3201 if (MEM_VOLATILE_P (x))
3202 return 0;
3204 /* Fall through. */
3206 default:
3207 break;
3210 fmt = GET_RTX_FORMAT (code);
3211 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3212 switch (fmt[i])
3214 case 'e':
3215 if (! equiv_init_movable_p (XEXP (x, i), regno))
3216 return 0;
3217 break;
3218 case 'E':
3219 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3220 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3221 return 0;
3222 break;
3225 return 1;
3228 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3229 true. */
3230 static int
3231 contains_replace_regs (rtx x)
3233 int i, j;
3234 const char *fmt;
3235 enum rtx_code code = GET_CODE (x);
3237 switch (code)
3239 case CONST:
3240 case LABEL_REF:
3241 case SYMBOL_REF:
3242 CASE_CONST_ANY:
3243 case PC:
3244 case CC0:
3245 case HIGH:
3246 return 0;
3248 case REG:
3249 return reg_equiv[REGNO (x)].replace;
3251 default:
3252 break;
3255 fmt = GET_RTX_FORMAT (code);
3256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3257 switch (fmt[i])
3259 case 'e':
3260 if (contains_replace_regs (XEXP (x, i)))
3261 return 1;
3262 break;
3263 case 'E':
3264 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3265 if (contains_replace_regs (XVECEXP (x, i, j)))
3266 return 1;
3267 break;
3270 return 0;
3273 /* TRUE if X references a memory location that would be affected by a store
3274 to MEMREF. */
3275 static int
3276 memref_referenced_p (rtx memref, rtx x)
3278 int i, j;
3279 const char *fmt;
3280 enum rtx_code code = GET_CODE (x);
3282 switch (code)
3284 case CONST:
3285 case LABEL_REF:
3286 case SYMBOL_REF:
3287 CASE_CONST_ANY:
3288 case PC:
3289 case CC0:
3290 case HIGH:
3291 case LO_SUM:
3292 return 0;
3294 case REG:
3295 return (reg_equiv[REGNO (x)].replacement
3296 && memref_referenced_p (memref,
3297 reg_equiv[REGNO (x)].replacement));
3299 case MEM:
3300 if (true_dependence (memref, VOIDmode, x))
3301 return 1;
3302 break;
3304 case SET:
3305 /* If we are setting a MEM, it doesn't count (its address does), but any
3306 other SET_DEST that has a MEM in it is referencing the MEM. */
3307 if (MEM_P (SET_DEST (x)))
3309 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3310 return 1;
3312 else if (memref_referenced_p (memref, SET_DEST (x)))
3313 return 1;
3315 return memref_referenced_p (memref, SET_SRC (x));
3317 default:
3318 break;
3321 fmt = GET_RTX_FORMAT (code);
3322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3323 switch (fmt[i])
3325 case 'e':
3326 if (memref_referenced_p (memref, XEXP (x, i)))
3327 return 1;
3328 break;
3329 case 'E':
3330 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3331 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3332 return 1;
3333 break;
3336 return 0;
3339 /* TRUE if some insn in the range (START, END] references a memory location
3340 that would be affected by a store to MEMREF. */
3341 static int
3342 memref_used_between_p (rtx memref, rtx start, rtx end)
3344 rtx insn;
3346 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3347 insn = NEXT_INSN (insn))
3349 if (!NONDEBUG_INSN_P (insn))
3350 continue;
3352 if (memref_referenced_p (memref, PATTERN (insn)))
3353 return 1;
3355 /* Nonconst functions may access memory. */
3356 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3357 return 1;
3360 return 0;
3363 /* Mark REG as having no known equivalence.
3364 Some instructions might have been processed before and furnished
3365 with REG_EQUIV notes for this register; these notes will have to be
3366 removed.
3367 STORE is the piece of RTL that does the non-constant / conflicting
3368 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3369 but needs to be there because this function is called from note_stores. */
3370 static void
3371 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3372 void *data ATTRIBUTE_UNUSED)
3374 int regno;
3375 rtx list;
3377 if (!REG_P (reg))
3378 return;
3379 regno = REGNO (reg);
3380 list = reg_equiv[regno].init_insns;
3381 if (list == const0_rtx)
3382 return;
3383 reg_equiv[regno].init_insns = const0_rtx;
3384 reg_equiv[regno].replacement = NULL_RTX;
3385 /* This doesn't matter for equivalences made for argument registers, we
3386 should keep their initialization insns. */
3387 if (reg_equiv[regno].is_arg_equivalence)
3388 return;
3389 ira_reg_equiv[regno].defined_p = false;
3390 ira_reg_equiv[regno].init_insns = NULL_RTX;
3391 for (; list; list = XEXP (list, 1))
3393 rtx insn = XEXP (list, 0);
3394 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3398 /* Check whether the SUBREG is a paradoxical subreg and set the result
3399 in PDX_SUBREGS. */
3401 static int
3402 set_paradoxical_subreg (rtx *subreg, void *pdx_subregs)
3404 rtx reg;
3406 if ((*subreg) == NULL_RTX)
3407 return 1;
3408 if (GET_CODE (*subreg) != SUBREG)
3409 return 0;
3410 reg = SUBREG_REG (*subreg);
3411 if (!REG_P (reg))
3412 return 0;
3414 if (paradoxical_subreg_p (*subreg))
3415 ((bool *)pdx_subregs)[REGNO (reg)] = true;
3417 return 0;
3420 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3421 equivalent replacement. */
3423 static rtx
3424 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3426 if (REG_P (loc))
3428 bitmap cleared_regs = (bitmap) data;
3429 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3430 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
3431 NULL_RTX, adjust_cleared_regs, data);
3433 return NULL_RTX;
3436 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
3437 static int recorded_label_ref;
3439 /* Find registers that are equivalent to a single value throughout the
3440 compilation (either because they can be referenced in memory or are
3441 set once from a single constant). Lower their priority for a
3442 register.
3444 If such a register is only referenced once, try substituting its
3445 value into the using insn. If it succeeds, we can eliminate the
3446 register completely.
3448 Initialize init_insns in ira_reg_equiv array.
3450 Return non-zero if jump label rebuilding should be done. */
3451 static int
3452 update_equiv_regs (void)
3454 rtx insn;
3455 basic_block bb;
3456 int loop_depth;
3457 bitmap cleared_regs;
3458 bool *pdx_subregs;
3460 /* We need to keep track of whether or not we recorded a LABEL_REF so
3461 that we know if the jump optimizer needs to be rerun. */
3462 recorded_label_ref = 0;
3464 /* Use pdx_subregs to show whether a reg is used in a paradoxical
3465 subreg. */
3466 pdx_subregs = XCNEWVEC (bool, max_regno);
3468 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3469 grow_reg_equivs ();
3471 init_alias_analysis ();
3473 /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3474 paradoxical subreg. Don't set such reg sequivalent to a mem,
3475 because lra will not substitute such equiv memory in order to
3476 prevent access beyond allocated memory for paradoxical memory subreg. */
3477 FOR_EACH_BB (bb)
3478 FOR_BB_INSNS (bb, insn)
3479 if (NONDEBUG_INSN_P (insn))
3480 for_each_rtx (&insn, set_paradoxical_subreg, (void *) pdx_subregs);
3482 /* Scan the insns and find which registers have equivalences. Do this
3483 in a separate scan of the insns because (due to -fcse-follow-jumps)
3484 a register can be set below its use. */
3485 FOR_EACH_BB (bb)
3487 loop_depth = bb_loop_depth (bb);
3489 for (insn = BB_HEAD (bb);
3490 insn != NEXT_INSN (BB_END (bb));
3491 insn = NEXT_INSN (insn))
3493 rtx note;
3494 rtx set;
3495 rtx dest, src;
3496 int regno;
3498 if (! INSN_P (insn))
3499 continue;
3501 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3502 if (REG_NOTE_KIND (note) == REG_INC)
3503 no_equiv (XEXP (note, 0), note, NULL);
3505 set = single_set (insn);
3507 /* If this insn contains more (or less) than a single SET,
3508 only mark all destinations as having no known equivalence. */
3509 if (set == 0)
3511 note_stores (PATTERN (insn), no_equiv, NULL);
3512 continue;
3514 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3516 int i;
3518 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3520 rtx part = XVECEXP (PATTERN (insn), 0, i);
3521 if (part != set)
3522 note_stores (part, no_equiv, NULL);
3526 dest = SET_DEST (set);
3527 src = SET_SRC (set);
3529 /* See if this is setting up the equivalence between an argument
3530 register and its stack slot. */
3531 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3532 if (note)
3534 gcc_assert (REG_P (dest));
3535 regno = REGNO (dest);
3537 /* Note that we don't want to clear init_insns in
3538 ira_reg_equiv even if there are multiple sets of this
3539 register. */
3540 reg_equiv[regno].is_arg_equivalence = 1;
3542 /* The insn result can have equivalence memory although
3543 the equivalence is not set up by the insn. We add
3544 this insn to init insns as it is a flag for now that
3545 regno has an equivalence. We will remove the insn
3546 from init insn list later. */
3547 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3548 ira_reg_equiv[regno].init_insns
3549 = gen_rtx_INSN_LIST (VOIDmode, insn,
3550 ira_reg_equiv[regno].init_insns);
3552 /* Continue normally in case this is a candidate for
3553 replacements. */
3556 if (!optimize)
3557 continue;
3559 /* We only handle the case of a pseudo register being set
3560 once, or always to the same value. */
3561 /* ??? The mn10200 port breaks if we add equivalences for
3562 values that need an ADDRESS_REGS register and set them equivalent
3563 to a MEM of a pseudo. The actual problem is in the over-conservative
3564 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3565 calculate_needs, but we traditionally work around this problem
3566 here by rejecting equivalences when the destination is in a register
3567 that's likely spilled. This is fragile, of course, since the
3568 preferred class of a pseudo depends on all instructions that set
3569 or use it. */
3571 if (!REG_P (dest)
3572 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3573 || reg_equiv[regno].init_insns == const0_rtx
3574 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3575 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3577 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3578 also set somewhere else to a constant. */
3579 note_stores (set, no_equiv, NULL);
3580 continue;
3583 /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem. */
3584 if (MEM_P (src) && pdx_subregs[regno])
3586 note_stores (set, no_equiv, NULL);
3587 continue;
3590 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3592 /* cse sometimes generates function invariants, but doesn't put a
3593 REG_EQUAL note on the insn. Since this note would be redundant,
3594 there's no point creating it earlier than here. */
3595 if (! note && ! rtx_varies_p (src, 0))
3596 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3598 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3599 since it represents a function call */
3600 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3601 note = NULL_RTX;
3603 if (DF_REG_DEF_COUNT (regno) != 1
3604 && (! note
3605 || rtx_varies_p (XEXP (note, 0), 0)
3606 || (reg_equiv[regno].replacement
3607 && ! rtx_equal_p (XEXP (note, 0),
3608 reg_equiv[regno].replacement))))
3610 no_equiv (dest, set, NULL);
3611 continue;
3613 /* Record this insn as initializing this register. */
3614 reg_equiv[regno].init_insns
3615 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3617 /* If this register is known to be equal to a constant, record that
3618 it is always equivalent to the constant. */
3619 if (DF_REG_DEF_COUNT (regno) == 1
3620 && note && ! rtx_varies_p (XEXP (note, 0), 0))
3622 rtx note_value = XEXP (note, 0);
3623 remove_note (insn, note);
3624 set_unique_reg_note (insn, REG_EQUIV, note_value);
3627 /* If this insn introduces a "constant" register, decrease the priority
3628 of that register. Record this insn if the register is only used once
3629 more and the equivalence value is the same as our source.
3631 The latter condition is checked for two reasons: First, it is an
3632 indication that it may be more efficient to actually emit the insn
3633 as written (if no registers are available, reload will substitute
3634 the equivalence). Secondly, it avoids problems with any registers
3635 dying in this insn whose death notes would be missed.
3637 If we don't have a REG_EQUIV note, see if this insn is loading
3638 a register used only in one basic block from a MEM. If so, and the
3639 MEM remains unchanged for the life of the register, add a REG_EQUIV
3640 note. */
3642 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3644 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3645 && MEM_P (SET_SRC (set))
3646 && validate_equiv_mem (insn, dest, SET_SRC (set)))
3647 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3649 if (note)
3651 int regno = REGNO (dest);
3652 rtx x = XEXP (note, 0);
3654 /* If we haven't done so, record for reload that this is an
3655 equivalencing insn. */
3656 if (!reg_equiv[regno].is_arg_equivalence)
3657 ira_reg_equiv[regno].init_insns
3658 = gen_rtx_INSN_LIST (VOIDmode, insn,
3659 ira_reg_equiv[regno].init_insns);
3661 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
3662 We might end up substituting the LABEL_REF for uses of the
3663 pseudo here or later. That kind of transformation may turn an
3664 indirect jump into a direct jump, in which case we must rerun the
3665 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
3666 if (GET_CODE (x) == LABEL_REF
3667 || (GET_CODE (x) == CONST
3668 && GET_CODE (XEXP (x, 0)) == PLUS
3669 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
3670 recorded_label_ref = 1;
3672 reg_equiv[regno].replacement = x;
3673 reg_equiv[regno].src_p = &SET_SRC (set);
3674 reg_equiv[regno].loop_depth = loop_depth;
3676 /* Don't mess with things live during setjmp. */
3677 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3679 /* Note that the statement below does not affect the priority
3680 in local-alloc! */
3681 REG_LIVE_LENGTH (regno) *= 2;
3683 /* If the register is referenced exactly twice, meaning it is
3684 set once and used once, indicate that the reference may be
3685 replaced by the equivalence we computed above. Do this
3686 even if the register is only used in one block so that
3687 dependencies can be handled where the last register is
3688 used in a different block (i.e. HIGH / LO_SUM sequences)
3689 and to reduce the number of registers alive across
3690 calls. */
3692 if (REG_N_REFS (regno) == 2
3693 && (rtx_equal_p (x, src)
3694 || ! equiv_init_varies_p (src))
3695 && NONJUMP_INSN_P (insn)
3696 && equiv_init_movable_p (PATTERN (insn), regno))
3697 reg_equiv[regno].replace = 1;
3703 if (!optimize)
3704 goto out;
3706 /* A second pass, to gather additional equivalences with memory. This needs
3707 to be done after we know which registers we are going to replace. */
3709 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3711 rtx set, src, dest;
3712 unsigned regno;
3714 if (! INSN_P (insn))
3715 continue;
3717 set = single_set (insn);
3718 if (! set)
3719 continue;
3721 dest = SET_DEST (set);
3722 src = SET_SRC (set);
3724 /* If this sets a MEM to the contents of a REG that is only used
3725 in a single basic block, see if the register is always equivalent
3726 to that memory location and if moving the store from INSN to the
3727 insn that set REG is safe. If so, put a REG_EQUIV note on the
3728 initializing insn.
3730 Don't add a REG_EQUIV note if the insn already has one. The existing
3731 REG_EQUIV is likely more useful than the one we are adding.
3733 If one of the regs in the address has reg_equiv[REGNO].replace set,
3734 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
3735 optimization may move the set of this register immediately before
3736 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3737 the mention in the REG_EQUIV note would be to an uninitialized
3738 pseudo. */
3740 if (MEM_P (dest) && REG_P (src)
3741 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3742 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3743 && DF_REG_DEF_COUNT (regno) == 1
3744 && reg_equiv[regno].init_insns != 0
3745 && reg_equiv[regno].init_insns != const0_rtx
3746 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3747 REG_EQUIV, NULL_RTX)
3748 && ! contains_replace_regs (XEXP (dest, 0))
3749 && ! pdx_subregs[regno])
3751 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
3752 if (validate_equiv_mem (init_insn, src, dest)
3753 && ! memref_used_between_p (dest, init_insn, insn)
3754 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3755 multiple sets. */
3756 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3758 /* This insn makes the equivalence, not the one initializing
3759 the register. */
3760 ira_reg_equiv[regno].init_insns
3761 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3762 df_notes_rescan (init_insn);
3767 cleared_regs = BITMAP_ALLOC (NULL);
3768 /* Now scan all regs killed in an insn to see if any of them are
3769 registers only used that once. If so, see if we can replace the
3770 reference with the equivalent form. If we can, delete the
3771 initializing reference and this register will go away. If we
3772 can't replace the reference, and the initializing reference is
3773 within the same loop (or in an inner loop), then move the register
3774 initialization just before the use, so that they are in the same
3775 basic block. */
3776 FOR_EACH_BB_REVERSE (bb)
3778 loop_depth = bb_loop_depth (bb);
3779 for (insn = BB_END (bb);
3780 insn != PREV_INSN (BB_HEAD (bb));
3781 insn = PREV_INSN (insn))
3783 rtx link;
3785 if (! INSN_P (insn))
3786 continue;
3788 /* Don't substitute into a non-local goto, this confuses CFG. */
3789 if (JUMP_P (insn)
3790 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3791 continue;
3793 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3795 if (REG_NOTE_KIND (link) == REG_DEAD
3796 /* Make sure this insn still refers to the register. */
3797 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3799 int regno = REGNO (XEXP (link, 0));
3800 rtx equiv_insn;
3802 if (! reg_equiv[regno].replace
3803 || reg_equiv[regno].loop_depth < loop_depth
3804 /* There is no sense to move insns if live range
3805 shrinkage or register pressure-sensitive
3806 scheduling were done because it will not
3807 improve allocation but worsen insn schedule
3808 with a big probability. */
3809 || flag_live_range_shrinkage
3810 || (flag_sched_pressure && flag_schedule_insns))
3811 continue;
3813 /* reg_equiv[REGNO].replace gets set only when
3814 REG_N_REFS[REGNO] is 2, i.e. the register is set
3815 once and used once. (If it were only set, but
3816 not used, flow would have deleted the setting
3817 insns.) Hence there can only be one insn in
3818 reg_equiv[REGNO].init_insns. */
3819 gcc_assert (reg_equiv[regno].init_insns
3820 && !XEXP (reg_equiv[regno].init_insns, 1));
3821 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3823 /* We may not move instructions that can throw, since
3824 that changes basic block boundaries and we are not
3825 prepared to adjust the CFG to match. */
3826 if (can_throw_internal (equiv_insn))
3827 continue;
3829 if (asm_noperands (PATTERN (equiv_insn)) < 0
3830 && validate_replace_rtx (regno_reg_rtx[regno],
3831 *(reg_equiv[regno].src_p), insn))
3833 rtx equiv_link;
3834 rtx last_link;
3835 rtx note;
3837 /* Find the last note. */
3838 for (last_link = link; XEXP (last_link, 1);
3839 last_link = XEXP (last_link, 1))
3842 /* Append the REG_DEAD notes from equiv_insn. */
3843 equiv_link = REG_NOTES (equiv_insn);
3844 while (equiv_link)
3846 note = equiv_link;
3847 equiv_link = XEXP (equiv_link, 1);
3848 if (REG_NOTE_KIND (note) == REG_DEAD)
3850 remove_note (equiv_insn, note);
3851 XEXP (last_link, 1) = note;
3852 XEXP (note, 1) = NULL_RTX;
3853 last_link = note;
3857 remove_death (regno, insn);
3858 SET_REG_N_REFS (regno, 0);
3859 REG_FREQ (regno) = 0;
3860 delete_insn (equiv_insn);
3862 reg_equiv[regno].init_insns
3863 = XEXP (reg_equiv[regno].init_insns, 1);
3865 ira_reg_equiv[regno].init_insns = NULL_RTX;
3866 bitmap_set_bit (cleared_regs, regno);
3868 /* Move the initialization of the register to just before
3869 INSN. Update the flow information. */
3870 else if (prev_nondebug_insn (insn) != equiv_insn)
3872 rtx new_insn;
3874 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3875 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3876 REG_NOTES (equiv_insn) = 0;
3877 /* Rescan it to process the notes. */
3878 df_insn_rescan (new_insn);
3880 /* Make sure this insn is recognized before
3881 reload begins, otherwise
3882 eliminate_regs_in_insn will die. */
3883 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3885 delete_insn (equiv_insn);
3887 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3889 REG_BASIC_BLOCK (regno) = bb->index;
3890 REG_N_CALLS_CROSSED (regno) = 0;
3891 REG_FREQ_CALLS_CROSSED (regno) = 0;
3892 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3893 REG_LIVE_LENGTH (regno) = 2;
3895 if (insn == BB_HEAD (bb))
3896 BB_HEAD (bb) = PREV_INSN (insn);
3898 ira_reg_equiv[regno].init_insns
3899 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3900 bitmap_set_bit (cleared_regs, regno);
3907 if (!bitmap_empty_p (cleared_regs))
3909 FOR_EACH_BB (bb)
3911 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3912 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3913 if (! df_live)
3914 continue;
3915 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3916 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3919 /* Last pass - adjust debug insns referencing cleared regs. */
3920 if (MAY_HAVE_DEBUG_INSNS)
3921 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3922 if (DEBUG_INSN_P (insn))
3924 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3925 INSN_VAR_LOCATION_LOC (insn)
3926 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3927 adjust_cleared_regs,
3928 (void *) cleared_regs);
3929 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3930 df_insn_rescan (insn);
3934 BITMAP_FREE (cleared_regs);
3936 out:
3937 /* Clean up. */
3939 end_alias_analysis ();
3940 free (reg_equiv);
3941 free (pdx_subregs);
3942 return recorded_label_ref;
3947 /* Set up fields memory, constant, and invariant from init_insns in
3948 the structures of array ira_reg_equiv. */
3949 static void
3950 setup_reg_equiv (void)
3952 int i;
3953 rtx elem, prev_elem, next_elem, insn, set, x;
3955 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3956 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3957 elem;
3958 prev_elem = elem, elem = next_elem)
3960 next_elem = XEXP (elem, 1);
3961 insn = XEXP (elem, 0);
3962 set = single_set (insn);
3964 /* Init insns can set up equivalence when the reg is a destination or
3965 a source (in this case the destination is memory). */
3966 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3968 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3970 x = XEXP (x, 0);
3971 if (REG_P (SET_DEST (set))
3972 && REGNO (SET_DEST (set)) == (unsigned int) i
3973 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3975 /* This insn reporting the equivalence but
3976 actually not setting it. Remove it from the
3977 list. */
3978 if (prev_elem == NULL)
3979 ira_reg_equiv[i].init_insns = next_elem;
3980 else
3981 XEXP (prev_elem, 1) = next_elem;
3982 elem = prev_elem;
3985 else if (REG_P (SET_DEST (set))
3986 && REGNO (SET_DEST (set)) == (unsigned int) i)
3987 x = SET_SRC (set);
3988 else
3990 gcc_assert (REG_P (SET_SRC (set))
3991 && REGNO (SET_SRC (set)) == (unsigned int) i);
3992 x = SET_DEST (set);
3994 if (! function_invariant_p (x)
3995 || ! flag_pic
3996 /* A function invariant is often CONSTANT_P but may
3997 include a register. We promise to only pass
3998 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
3999 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4001 /* It can happen that a REG_EQUIV note contains a MEM
4002 that is not a legitimate memory operand. As later
4003 stages of reload assume that all addresses found in
4004 the lra_regno_equiv_* arrays were originally
4005 legitimate, we ignore such REG_EQUIV notes. */
4006 if (memory_operand (x, VOIDmode))
4008 ira_reg_equiv[i].defined_p = true;
4009 ira_reg_equiv[i].memory = x;
4010 continue;
4012 else if (function_invariant_p (x))
4014 enum machine_mode mode;
4016 mode = GET_MODE (SET_DEST (set));
4017 if (GET_CODE (x) == PLUS
4018 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4019 /* This is PLUS of frame pointer and a constant,
4020 or fp, or argp. */
4021 ira_reg_equiv[i].invariant = x;
4022 else if (targetm.legitimate_constant_p (mode, x))
4023 ira_reg_equiv[i].constant = x;
4024 else
4026 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4027 if (ira_reg_equiv[i].memory == NULL_RTX)
4029 ira_reg_equiv[i].defined_p = false;
4030 ira_reg_equiv[i].init_insns = NULL_RTX;
4031 break;
4034 ira_reg_equiv[i].defined_p = true;
4035 continue;
4039 ira_reg_equiv[i].defined_p = false;
4040 ira_reg_equiv[i].init_insns = NULL_RTX;
4041 break;
4047 /* Print chain C to FILE. */
4048 static void
4049 print_insn_chain (FILE *file, struct insn_chain *c)
4051 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4052 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4053 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4057 /* Print all reload_insn_chains to FILE. */
4058 static void
4059 print_insn_chains (FILE *file)
4061 struct insn_chain *c;
4062 for (c = reload_insn_chain; c ; c = c->next)
4063 print_insn_chain (file, c);
4066 /* Return true if pseudo REGNO should be added to set live_throughout
4067 or dead_or_set of the insn chains for reload consideration. */
4068 static bool
4069 pseudo_for_reload_consideration_p (int regno)
4071 /* Consider spilled pseudos too for IRA because they still have a
4072 chance to get hard-registers in the reload when IRA is used. */
4073 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4076 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4077 REG to the number of nregs, and INIT_VALUE to get the
4078 initialization. ALLOCNUM need not be the regno of REG. */
4079 static void
4080 init_live_subregs (bool init_value, sbitmap *live_subregs,
4081 bitmap live_subregs_used, int allocnum, rtx reg)
4083 unsigned int regno = REGNO (SUBREG_REG (reg));
4084 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4086 gcc_assert (size > 0);
4088 /* Been there, done that. */
4089 if (bitmap_bit_p (live_subregs_used, allocnum))
4090 return;
4092 /* Create a new one. */
4093 if (live_subregs[allocnum] == NULL)
4094 live_subregs[allocnum] = sbitmap_alloc (size);
4096 /* If the entire reg was live before blasting into subregs, we need
4097 to init all of the subregs to ones else init to 0. */
4098 if (init_value)
4099 bitmap_ones (live_subregs[allocnum]);
4100 else
4101 bitmap_clear (live_subregs[allocnum]);
4103 bitmap_set_bit (live_subregs_used, allocnum);
4106 /* Walk the insns of the current function and build reload_insn_chain,
4107 and record register life information. */
4108 static void
4109 build_insn_chain (void)
4111 unsigned int i;
4112 struct insn_chain **p = &reload_insn_chain;
4113 basic_block bb;
4114 struct insn_chain *c = NULL;
4115 struct insn_chain *next = NULL;
4116 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4117 bitmap elim_regset = BITMAP_ALLOC (NULL);
4118 /* live_subregs is a vector used to keep accurate information about
4119 which hardregs are live in multiword pseudos. live_subregs and
4120 live_subregs_used are indexed by pseudo number. The live_subreg
4121 entry for a particular pseudo is only used if the corresponding
4122 element is non zero in live_subregs_used. The sbitmap size of
4123 live_subreg[allocno] is number of bytes that the pseudo can
4124 occupy. */
4125 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4126 bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4128 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4129 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4130 bitmap_set_bit (elim_regset, i);
4131 FOR_EACH_BB_REVERSE (bb)
4133 bitmap_iterator bi;
4134 rtx insn;
4136 CLEAR_REG_SET (live_relevant_regs);
4137 bitmap_clear (live_subregs_used);
4139 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4141 if (i >= FIRST_PSEUDO_REGISTER)
4142 break;
4143 bitmap_set_bit (live_relevant_regs, i);
4146 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4147 FIRST_PSEUDO_REGISTER, i, bi)
4149 if (pseudo_for_reload_consideration_p (i))
4150 bitmap_set_bit (live_relevant_regs, i);
4153 FOR_BB_INSNS_REVERSE (bb, insn)
4155 if (!NOTE_P (insn) && !BARRIER_P (insn))
4157 unsigned int uid = INSN_UID (insn);
4158 df_ref *def_rec;
4159 df_ref *use_rec;
4161 c = new_insn_chain ();
4162 c->next = next;
4163 next = c;
4164 *p = c;
4165 p = &c->prev;
4167 c->insn = insn;
4168 c->block = bb->index;
4170 if (NONDEBUG_INSN_P (insn))
4171 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4173 df_ref def = *def_rec;
4174 unsigned int regno = DF_REF_REGNO (def);
4176 /* Ignore may clobbers because these are generated
4177 from calls. However, every other kind of def is
4178 added to dead_or_set. */
4179 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4181 if (regno < FIRST_PSEUDO_REGISTER)
4183 if (!fixed_regs[regno])
4184 bitmap_set_bit (&c->dead_or_set, regno);
4186 else if (pseudo_for_reload_consideration_p (regno))
4187 bitmap_set_bit (&c->dead_or_set, regno);
4190 if ((regno < FIRST_PSEUDO_REGISTER
4191 || reg_renumber[regno] >= 0
4192 || ira_conflicts_p)
4193 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4195 rtx reg = DF_REF_REG (def);
4197 /* We can model subregs, but not if they are
4198 wrapped in ZERO_EXTRACTS. */
4199 if (GET_CODE (reg) == SUBREG
4200 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4202 unsigned int start = SUBREG_BYTE (reg);
4203 unsigned int last = start
4204 + GET_MODE_SIZE (GET_MODE (reg));
4206 init_live_subregs
4207 (bitmap_bit_p (live_relevant_regs, regno),
4208 live_subregs, live_subregs_used, regno, reg);
4210 if (!DF_REF_FLAGS_IS_SET
4211 (def, DF_REF_STRICT_LOW_PART))
4213 /* Expand the range to cover entire words.
4214 Bytes added here are "don't care". */
4215 start
4216 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4217 last = ((last + UNITS_PER_WORD - 1)
4218 / UNITS_PER_WORD * UNITS_PER_WORD);
4221 /* Ignore the paradoxical bits. */
4222 if (last > SBITMAP_SIZE (live_subregs[regno]))
4223 last = SBITMAP_SIZE (live_subregs[regno]);
4225 while (start < last)
4227 bitmap_clear_bit (live_subregs[regno], start);
4228 start++;
4231 if (bitmap_empty_p (live_subregs[regno]))
4233 bitmap_clear_bit (live_subregs_used, regno);
4234 bitmap_clear_bit (live_relevant_regs, regno);
4236 else
4237 /* Set live_relevant_regs here because
4238 that bit has to be true to get us to
4239 look at the live_subregs fields. */
4240 bitmap_set_bit (live_relevant_regs, regno);
4242 else
4244 /* DF_REF_PARTIAL is generated for
4245 subregs, STRICT_LOW_PART, and
4246 ZERO_EXTRACT. We handle the subreg
4247 case above so here we have to keep from
4248 modeling the def as a killing def. */
4249 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4251 bitmap_clear_bit (live_subregs_used, regno);
4252 bitmap_clear_bit (live_relevant_regs, regno);
4258 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4259 bitmap_copy (&c->live_throughout, live_relevant_regs);
4261 if (NONDEBUG_INSN_P (insn))
4262 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
4264 df_ref use = *use_rec;
4265 unsigned int regno = DF_REF_REGNO (use);
4266 rtx reg = DF_REF_REG (use);
4268 /* DF_REF_READ_WRITE on a use means that this use
4269 is fabricated from a def that is a partial set
4270 to a multiword reg. Here, we only model the
4271 subreg case that is not wrapped in ZERO_EXTRACT
4272 precisely so we do not need to look at the
4273 fabricated use. */
4274 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4275 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4276 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4277 continue;
4279 /* Add the last use of each var to dead_or_set. */
4280 if (!bitmap_bit_p (live_relevant_regs, regno))
4282 if (regno < FIRST_PSEUDO_REGISTER)
4284 if (!fixed_regs[regno])
4285 bitmap_set_bit (&c->dead_or_set, regno);
4287 else if (pseudo_for_reload_consideration_p (regno))
4288 bitmap_set_bit (&c->dead_or_set, regno);
4291 if (regno < FIRST_PSEUDO_REGISTER
4292 || pseudo_for_reload_consideration_p (regno))
4294 if (GET_CODE (reg) == SUBREG
4295 && !DF_REF_FLAGS_IS_SET (use,
4296 DF_REF_SIGN_EXTRACT
4297 | DF_REF_ZERO_EXTRACT))
4299 unsigned int start = SUBREG_BYTE (reg);
4300 unsigned int last = start
4301 + GET_MODE_SIZE (GET_MODE (reg));
4303 init_live_subregs
4304 (bitmap_bit_p (live_relevant_regs, regno),
4305 live_subregs, live_subregs_used, regno, reg);
4307 /* Ignore the paradoxical bits. */
4308 if (last > SBITMAP_SIZE (live_subregs[regno]))
4309 last = SBITMAP_SIZE (live_subregs[regno]);
4311 while (start < last)
4313 bitmap_set_bit (live_subregs[regno], start);
4314 start++;
4317 else
4318 /* Resetting the live_subregs_used is
4319 effectively saying do not use the subregs
4320 because we are reading the whole
4321 pseudo. */
4322 bitmap_clear_bit (live_subregs_used, regno);
4323 bitmap_set_bit (live_relevant_regs, regno);
4329 /* FIXME!! The following code is a disaster. Reload needs to see the
4330 labels and jump tables that are just hanging out in between
4331 the basic blocks. See pr33676. */
4332 insn = BB_HEAD (bb);
4334 /* Skip over the barriers and cruft. */
4335 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4336 || BLOCK_FOR_INSN (insn) == bb))
4337 insn = PREV_INSN (insn);
4339 /* While we add anything except barriers and notes, the focus is
4340 to get the labels and jump tables into the
4341 reload_insn_chain. */
4342 while (insn)
4344 if (!NOTE_P (insn) && !BARRIER_P (insn))
4346 if (BLOCK_FOR_INSN (insn))
4347 break;
4349 c = new_insn_chain ();
4350 c->next = next;
4351 next = c;
4352 *p = c;
4353 p = &c->prev;
4355 /* The block makes no sense here, but it is what the old
4356 code did. */
4357 c->block = bb->index;
4358 c->insn = insn;
4359 bitmap_copy (&c->live_throughout, live_relevant_regs);
4361 insn = PREV_INSN (insn);
4365 reload_insn_chain = c;
4366 *p = NULL;
4368 for (i = 0; i < (unsigned int) max_regno; i++)
4369 if (live_subregs[i] != NULL)
4370 sbitmap_free (live_subregs[i]);
4371 free (live_subregs);
4372 BITMAP_FREE (live_subregs_used);
4373 BITMAP_FREE (live_relevant_regs);
4374 BITMAP_FREE (elim_regset);
4376 if (dump_file)
4377 print_insn_chains (dump_file);
4380 /* Examine the rtx found in *LOC, which is read or written to as determined
4381 by TYPE. Return false if we find a reason why an insn containing this
4382 rtx should not be moved (such as accesses to non-constant memory), true
4383 otherwise. */
4384 static bool
4385 rtx_moveable_p (rtx *loc, enum op_type type)
4387 const char *fmt;
4388 rtx x = *loc;
4389 enum rtx_code code = GET_CODE (x);
4390 int i, j;
4392 code = GET_CODE (x);
4393 switch (code)
4395 case CONST:
4396 CASE_CONST_ANY:
4397 case SYMBOL_REF:
4398 case LABEL_REF:
4399 return true;
4401 case PC:
4402 return type == OP_IN;
4404 case CC0:
4405 return false;
4407 case REG:
4408 if (x == frame_pointer_rtx)
4409 return true;
4410 if (HARD_REGISTER_P (x))
4411 return false;
4413 return true;
4415 case MEM:
4416 if (type == OP_IN && MEM_READONLY_P (x))
4417 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4418 return false;
4420 case SET:
4421 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4422 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4424 case STRICT_LOW_PART:
4425 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4427 case ZERO_EXTRACT:
4428 case SIGN_EXTRACT:
4429 return (rtx_moveable_p (&XEXP (x, 0), type)
4430 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4431 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4433 case CLOBBER:
4434 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4436 default:
4437 break;
4440 fmt = GET_RTX_FORMAT (code);
4441 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4443 if (fmt[i] == 'e')
4445 if (!rtx_moveable_p (&XEXP (x, i), type))
4446 return false;
4448 else if (fmt[i] == 'E')
4449 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4451 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4452 return false;
4455 return true;
4458 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4459 to give dominance relationships between two insns I1 and I2. */
4460 static bool
4461 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4463 basic_block bb1 = BLOCK_FOR_INSN (i1);
4464 basic_block bb2 = BLOCK_FOR_INSN (i2);
4466 if (bb1 == bb2)
4467 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4468 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4471 /* Record the range of register numbers added by find_moveable_pseudos. */
4472 int first_moveable_pseudo, last_moveable_pseudo;
4474 /* These two vectors hold data for every register added by
4475 find_movable_pseudos, with index 0 holding data for the
4476 first_moveable_pseudo. */
4477 /* The original home register. */
4478 static vec<rtx> pseudo_replaced_reg;
4480 /* Look for instances where we have an instruction that is known to increase
4481 register pressure, and whose result is not used immediately. If it is
4482 possible to move the instruction downwards to just before its first use,
4483 split its lifetime into two ranges. We create a new pseudo to compute the
4484 value, and emit a move instruction just before the first use. If, after
4485 register allocation, the new pseudo remains unallocated, the function
4486 move_unallocated_pseudos then deletes the move instruction and places
4487 the computation just before the first use.
4489 Such a move is safe and profitable if all the input registers remain live
4490 and unchanged between the original computation and its first use. In such
4491 a situation, the computation is known to increase register pressure, and
4492 moving it is known to at least not worsen it.
4494 We restrict moves to only those cases where a register remains unallocated,
4495 in order to avoid interfering too much with the instruction schedule. As
4496 an exception, we may move insns which only modify their input register
4497 (typically induction variables), as this increases the freedom for our
4498 intended transformation, and does not limit the second instruction
4499 scheduler pass. */
4501 static void
4502 find_moveable_pseudos (void)
4504 unsigned i;
4505 int max_regs = max_reg_num ();
4506 int max_uid = get_max_uid ();
4507 basic_block bb;
4508 int *uid_luid = XNEWVEC (int, max_uid);
4509 rtx *closest_uses = XNEWVEC (rtx, max_regs);
4510 /* A set of registers which are live but not modified throughout a block. */
4511 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head, last_basic_block);
4512 /* A set of registers which only exist in a given basic block. */
4513 bitmap_head *bb_local = XNEWVEC (bitmap_head, last_basic_block);
4514 /* A set of registers which are set once, in an instruction that can be
4515 moved freely downwards, but are otherwise transparent to a block. */
4516 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head, last_basic_block);
4517 bitmap_head live, used, set, interesting, unusable_as_input;
4518 bitmap_iterator bi;
4519 bitmap_initialize (&interesting, 0);
4521 first_moveable_pseudo = max_regs;
4522 pseudo_replaced_reg.release ();
4523 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4525 i = 0;
4526 bitmap_initialize (&live, 0);
4527 bitmap_initialize (&used, 0);
4528 bitmap_initialize (&set, 0);
4529 bitmap_initialize (&unusable_as_input, 0);
4530 FOR_EACH_BB (bb)
4532 rtx insn;
4533 bitmap transp = bb_transp_live + bb->index;
4534 bitmap moveable = bb_moveable_reg_sets + bb->index;
4535 bitmap local = bb_local + bb->index;
4537 bitmap_initialize (local, 0);
4538 bitmap_initialize (transp, 0);
4539 bitmap_initialize (moveable, 0);
4540 bitmap_copy (&live, df_get_live_out (bb));
4541 bitmap_and_into (&live, df_get_live_in (bb));
4542 bitmap_copy (transp, &live);
4543 bitmap_clear (moveable);
4544 bitmap_clear (&live);
4545 bitmap_clear (&used);
4546 bitmap_clear (&set);
4547 FOR_BB_INSNS (bb, insn)
4548 if (NONDEBUG_INSN_P (insn))
4550 df_ref *u_rec, *d_rec;
4552 uid_luid[INSN_UID (insn)] = i++;
4554 u_rec = DF_INSN_USES (insn);
4555 d_rec = DF_INSN_DEFS (insn);
4556 if (d_rec[0] != NULL && d_rec[1] == NULL
4557 && u_rec[0] != NULL && u_rec[1] == NULL
4558 && DF_REF_REGNO (*u_rec) == DF_REF_REGNO (*d_rec)
4559 && !bitmap_bit_p (&set, DF_REF_REGNO (*u_rec))
4560 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4562 unsigned regno = DF_REF_REGNO (*u_rec);
4563 bitmap_set_bit (moveable, regno);
4564 bitmap_set_bit (&set, regno);
4565 bitmap_set_bit (&used, regno);
4566 bitmap_clear_bit (transp, regno);
4567 continue;
4569 while (*u_rec)
4571 unsigned regno = DF_REF_REGNO (*u_rec);
4572 bitmap_set_bit (&used, regno);
4573 if (bitmap_clear_bit (moveable, regno))
4574 bitmap_clear_bit (transp, regno);
4575 u_rec++;
4578 while (*d_rec)
4580 unsigned regno = DF_REF_REGNO (*d_rec);
4581 bitmap_set_bit (&set, regno);
4582 bitmap_clear_bit (transp, regno);
4583 bitmap_clear_bit (moveable, regno);
4584 d_rec++;
4589 bitmap_clear (&live);
4590 bitmap_clear (&used);
4591 bitmap_clear (&set);
4593 FOR_EACH_BB (bb)
4595 bitmap local = bb_local + bb->index;
4596 rtx insn;
4598 FOR_BB_INSNS (bb, insn)
4599 if (NONDEBUG_INSN_P (insn))
4601 rtx def_insn, closest_use, note;
4602 df_ref *def_rec, def, use;
4603 unsigned regno;
4604 bool all_dominated, all_local;
4605 enum machine_mode mode;
4607 def_rec = DF_INSN_DEFS (insn);
4608 /* There must be exactly one def in this insn. */
4609 def = *def_rec;
4610 if (!def || def_rec[1] || !single_set (insn))
4611 continue;
4612 /* This must be the only definition of the reg. We also limit
4613 which modes we deal with so that we can assume we can generate
4614 move instructions. */
4615 regno = DF_REF_REGNO (def);
4616 mode = GET_MODE (DF_REF_REG (def));
4617 if (DF_REG_DEF_COUNT (regno) != 1
4618 || !DF_REF_INSN_INFO (def)
4619 || HARD_REGISTER_NUM_P (regno)
4620 || DF_REG_EQ_USE_COUNT (regno) > 0
4621 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4622 continue;
4623 def_insn = DF_REF_INSN (def);
4625 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4626 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4627 break;
4629 if (note)
4631 if (dump_file)
4632 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4633 regno);
4634 bitmap_set_bit (&unusable_as_input, regno);
4635 continue;
4638 use = DF_REG_USE_CHAIN (regno);
4639 all_dominated = true;
4640 all_local = true;
4641 closest_use = NULL_RTX;
4642 for (; use; use = DF_REF_NEXT_REG (use))
4644 rtx insn;
4645 if (!DF_REF_INSN_INFO (use))
4647 all_dominated = false;
4648 all_local = false;
4649 break;
4651 insn = DF_REF_INSN (use);
4652 if (DEBUG_INSN_P (insn))
4653 continue;
4654 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4655 all_local = false;
4656 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4657 all_dominated = false;
4658 if (closest_use != insn && closest_use != const0_rtx)
4660 if (closest_use == NULL_RTX)
4661 closest_use = insn;
4662 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4663 closest_use = insn;
4664 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4665 closest_use = const0_rtx;
4668 if (!all_dominated)
4670 if (dump_file)
4671 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4672 regno);
4673 continue;
4675 if (all_local)
4676 bitmap_set_bit (local, regno);
4677 if (closest_use == const0_rtx || closest_use == NULL
4678 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4680 if (dump_file)
4681 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4682 closest_use == const0_rtx || closest_use == NULL
4683 ? " (no unique first use)" : "");
4684 continue;
4686 #ifdef HAVE_cc0
4687 if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4689 if (dump_file)
4690 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4691 regno);
4692 continue;
4694 #endif
4695 bitmap_set_bit (&interesting, regno);
4696 closest_uses[regno] = closest_use;
4698 if (dump_file && (all_local || all_dominated))
4700 fprintf (dump_file, "Reg %u:", regno);
4701 if (all_local)
4702 fprintf (dump_file, " local to bb %d", bb->index);
4703 if (all_dominated)
4704 fprintf (dump_file, " def dominates all uses");
4705 if (closest_use != const0_rtx)
4706 fprintf (dump_file, " has unique first use");
4707 fputs ("\n", dump_file);
4712 EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4714 df_ref def = DF_REG_DEF_CHAIN (i);
4715 rtx def_insn = DF_REF_INSN (def);
4716 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4717 bitmap def_bb_local = bb_local + def_block->index;
4718 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4719 bitmap def_bb_transp = bb_transp_live + def_block->index;
4720 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4721 rtx use_insn = closest_uses[i];
4722 df_ref *def_insn_use_rec = DF_INSN_USES (def_insn);
4723 bool all_ok = true;
4724 bool all_transp = true;
4726 if (!REG_P (DF_REF_REG (def)))
4727 continue;
4729 if (!local_to_bb_p)
4731 if (dump_file)
4732 fprintf (dump_file, "Reg %u not local to one basic block\n",
4734 continue;
4736 if (reg_equiv_init (i) != NULL_RTX)
4738 if (dump_file)
4739 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4741 continue;
4743 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4745 if (dump_file)
4746 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4747 INSN_UID (def_insn), i);
4748 continue;
4750 if (dump_file)
4751 fprintf (dump_file, "Examining insn %d, def for %d\n",
4752 INSN_UID (def_insn), i);
4753 while (*def_insn_use_rec != NULL)
4755 df_ref use = *def_insn_use_rec;
4756 unsigned regno = DF_REF_REGNO (use);
4757 if (bitmap_bit_p (&unusable_as_input, regno))
4759 all_ok = false;
4760 if (dump_file)
4761 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4762 break;
4764 if (!bitmap_bit_p (def_bb_transp, regno))
4766 if (bitmap_bit_p (def_bb_moveable, regno)
4767 && !control_flow_insn_p (use_insn)
4768 #ifdef HAVE_cc0
4769 && !sets_cc0_p (use_insn)
4770 #endif
4773 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4775 rtx x = NEXT_INSN (def_insn);
4776 while (!modified_in_p (DF_REF_REG (use), x))
4778 gcc_assert (x != use_insn);
4779 x = NEXT_INSN (x);
4781 if (dump_file)
4782 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4783 regno, INSN_UID (x));
4784 emit_insn_after (PATTERN (x), use_insn);
4785 set_insn_deleted (x);
4787 else
4789 if (dump_file)
4790 fprintf (dump_file, " input reg %u modified between def and use\n",
4791 regno);
4792 all_transp = false;
4795 else
4796 all_transp = false;
4799 def_insn_use_rec++;
4801 if (!all_ok)
4802 continue;
4803 if (!dbg_cnt (ira_move))
4804 break;
4805 if (dump_file)
4806 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4808 if (all_transp)
4810 rtx def_reg = DF_REF_REG (def);
4811 rtx newreg = ira_create_new_reg (def_reg);
4812 if (validate_change (def_insn, DF_REF_LOC (def), newreg, 0))
4814 unsigned nregno = REGNO (newreg);
4815 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4816 nregno -= max_regs;
4817 pseudo_replaced_reg[nregno] = def_reg;
4822 FOR_EACH_BB (bb)
4824 bitmap_clear (bb_local + bb->index);
4825 bitmap_clear (bb_transp_live + bb->index);
4826 bitmap_clear (bb_moveable_reg_sets + bb->index);
4828 bitmap_clear (&interesting);
4829 bitmap_clear (&unusable_as_input);
4830 free (uid_luid);
4831 free (closest_uses);
4832 free (bb_local);
4833 free (bb_transp_live);
4834 free (bb_moveable_reg_sets);
4836 last_moveable_pseudo = max_reg_num ();
4840 /* If insn is interesting for parameter range-splitting shring-wrapping
4841 preparation, i.e. it is a single set from a hard register to a pseudo, which
4842 is live at CALL_DOM, return the destination. Otherwise return NULL. */
4844 static rtx
4845 interesting_dest_for_shprep (rtx insn, basic_block call_dom)
4847 rtx set = single_set (insn);
4848 if (!set)
4849 return NULL;
4850 rtx src = SET_SRC (set);
4851 rtx dest = SET_DEST (set);
4852 if (!REG_P (src) || !HARD_REGISTER_P (src)
4853 || !REG_P (dest) || HARD_REGISTER_P (dest)
4854 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4855 return NULL;
4856 return dest;
4859 /* Split live ranges of pseudos that are loaded from hard registers in the
4860 first BB in a BB that dominates all non-sibling call if such a BB can be
4861 found and is not in a loop. Return true if the function has made any
4862 changes. */
4864 static bool
4865 split_live_ranges_for_shrink_wrap (void)
4867 basic_block bb, call_dom = NULL;
4868 basic_block first = single_succ (ENTRY_BLOCK_PTR);
4869 rtx insn, last_interesting_insn = NULL;
4870 bitmap_head need_new, reachable;
4871 vec<basic_block> queue;
4873 if (!flag_shrink_wrap)
4874 return false;
4876 bitmap_initialize (&need_new, 0);
4877 bitmap_initialize (&reachable, 0);
4878 queue.create (n_basic_blocks_for_fn (cfun));
4880 FOR_EACH_BB (bb)
4881 FOR_BB_INSNS (bb, insn)
4882 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4884 if (bb == first)
4886 bitmap_clear (&need_new);
4887 bitmap_clear (&reachable);
4888 queue.release ();
4889 return false;
4892 bitmap_set_bit (&need_new, bb->index);
4893 bitmap_set_bit (&reachable, bb->index);
4894 queue.quick_push (bb);
4895 break;
4898 if (queue.is_empty ())
4900 bitmap_clear (&need_new);
4901 bitmap_clear (&reachable);
4902 queue.release ();
4903 return false;
4906 while (!queue.is_empty ())
4908 edge e;
4909 edge_iterator ei;
4911 bb = queue.pop ();
4912 FOR_EACH_EDGE (e, ei, bb->succs)
4913 if (e->dest != EXIT_BLOCK_PTR
4914 && bitmap_set_bit (&reachable, e->dest->index))
4915 queue.quick_push (e->dest);
4917 queue.release ();
4919 FOR_BB_INSNS (first, insn)
4921 rtx dest = interesting_dest_for_shprep (insn, NULL);
4922 if (!dest)
4923 continue;
4925 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4927 bitmap_clear (&need_new);
4928 bitmap_clear (&reachable);
4929 return false;
4932 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4933 use;
4934 use = DF_REF_NEXT_REG (use))
4936 if (NONDEBUG_INSN_P (DF_REF_INSN (use))
4937 && GET_CODE (DF_REF_REG (use)) == SUBREG)
4939 /* This is necessary to avoid hitting an assert at
4940 postreload.c:2294 in libstc++ testcases on x86_64-linux. I'm
4941 not really sure what the probblem actually is there. */
4942 bitmap_clear (&need_new);
4943 bitmap_clear (&reachable);
4944 return false;
4947 int ubbi = DF_REF_BB (use)->index;
4948 if (bitmap_bit_p (&reachable, ubbi))
4949 bitmap_set_bit (&need_new, ubbi);
4951 last_interesting_insn = insn;
4954 bitmap_clear (&reachable);
4955 if (!last_interesting_insn)
4957 bitmap_clear (&need_new);
4958 return false;
4961 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4962 bitmap_clear (&need_new);
4963 if (call_dom == first)
4964 return false;
4966 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4967 while (bb_loop_depth (call_dom) > 0)
4968 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4969 loop_optimizer_finalize ();
4971 if (call_dom == first)
4972 return false;
4974 calculate_dominance_info (CDI_POST_DOMINATORS);
4975 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4977 free_dominance_info (CDI_POST_DOMINATORS);
4978 return false;
4980 free_dominance_info (CDI_POST_DOMINATORS);
4982 if (dump_file)
4983 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4984 call_dom->index);
4986 bool ret = false;
4987 FOR_BB_INSNS (first, insn)
4989 rtx dest = interesting_dest_for_shprep (insn, call_dom);
4990 if (!dest)
4991 continue;
4993 rtx newreg = NULL_RTX;
4994 df_ref use, next;
4995 for (use = DF_REG_USE_CHAIN (REGNO(dest)); use; use = next)
4997 rtx uin = DF_REF_INSN (use);
4998 next = DF_REF_NEXT_REG (use);
5000 basic_block ubb = BLOCK_FOR_INSN (uin);
5001 if (ubb == call_dom
5002 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5004 if (!newreg)
5005 newreg = ira_create_new_reg (dest);
5006 validate_change (uin, DF_REF_LOC (use), newreg, true);
5010 if (newreg)
5012 rtx new_move = gen_move_insn (newreg, dest);
5013 emit_insn_after (new_move, bb_note (call_dom));
5014 if (dump_file)
5016 fprintf (dump_file, "Split live-range of register ");
5017 print_rtl_single (dump_file, dest);
5019 ret = true;
5022 if (insn == last_interesting_insn)
5023 break;
5025 apply_change_group ();
5026 return ret;
5029 /* Perform the second half of the transformation started in
5030 find_moveable_pseudos. We look for instances where the newly introduced
5031 pseudo remains unallocated, and remove it by moving the definition to
5032 just before its use, replacing the move instruction generated by
5033 find_moveable_pseudos. */
5034 static void
5035 move_unallocated_pseudos (void)
5037 int i;
5038 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5039 if (reg_renumber[i] < 0)
5041 int idx = i - first_moveable_pseudo;
5042 rtx other_reg = pseudo_replaced_reg[idx];
5043 rtx def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5044 /* The use must follow all definitions of OTHER_REG, so we can
5045 insert the new definition immediately after any of them. */
5046 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5047 rtx move_insn = DF_REF_INSN (other_def);
5048 rtx newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5049 rtx set;
5050 int success;
5052 if (dump_file)
5053 fprintf (dump_file, "moving def of %d (insn %d now) ",
5054 REGNO (other_reg), INSN_UID (def_insn));
5056 delete_insn (move_insn);
5057 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5058 delete_insn (DF_REF_INSN (other_def));
5059 delete_insn (def_insn);
5061 set = single_set (newinsn);
5062 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5063 gcc_assert (success);
5064 if (dump_file)
5065 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5066 INSN_UID (newinsn), i);
5067 SET_REG_N_REFS (i, 0);
5071 /* If the backend knows where to allocate pseudos for hard
5072 register initial values, register these allocations now. */
5073 static void
5074 allocate_initial_values (void)
5076 if (targetm.allocate_initial_value)
5078 rtx hreg, preg, x;
5079 int i, regno;
5081 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5083 if (! initial_value_entry (i, &hreg, &preg))
5084 break;
5086 x = targetm.allocate_initial_value (hreg);
5087 regno = REGNO (preg);
5088 if (x && REG_N_SETS (regno) <= 1)
5090 if (MEM_P (x))
5091 reg_equiv_memory_loc (regno) = x;
5092 else
5094 basic_block bb;
5095 int new_regno;
5097 gcc_assert (REG_P (x));
5098 new_regno = REGNO (x);
5099 reg_renumber[regno] = new_regno;
5100 /* Poke the regno right into regno_reg_rtx so that even
5101 fixed regs are accepted. */
5102 SET_REGNO (preg, new_regno);
5103 /* Update global register liveness information. */
5104 FOR_EACH_BB (bb)
5106 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5107 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5108 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5109 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5115 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5116 &hreg, &preg));
5121 /* True when we use LRA instead of reload pass for the current
5122 function. */
5123 bool ira_use_lra_p;
5125 /* True if we have allocno conflicts. It is false for non-optimized
5126 mode or when the conflict table is too big. */
5127 bool ira_conflicts_p;
5129 /* Saved between IRA and reload. */
5130 static int saved_flag_ira_share_spill_slots;
5132 /* This is the main entry of IRA. */
5133 static void
5134 ira (FILE *f)
5136 bool loops_p;
5137 int ira_max_point_before_emit;
5138 int rebuild_p;
5139 bool saved_flag_caller_saves = flag_caller_saves;
5140 enum ira_region saved_flag_ira_region = flag_ira_region;
5142 ira_conflicts_p = optimize > 0;
5144 ira_use_lra_p = targetm.lra_p ();
5145 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5146 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5147 use simplified and faster algorithms in LRA. */
5148 lra_simple_p
5149 = (ira_use_lra_p && max_reg_num () >= (1 << 26) / last_basic_block);
5150 if (lra_simple_p)
5152 /* It permits to skip live range splitting in LRA. */
5153 flag_caller_saves = false;
5154 /* There is no sense to do regional allocation when we use
5155 simplified LRA. */
5156 flag_ira_region = IRA_REGION_ONE;
5157 ira_conflicts_p = false;
5160 #ifndef IRA_NO_OBSTACK
5161 gcc_obstack_init (&ira_obstack);
5162 #endif
5163 bitmap_obstack_initialize (&ira_bitmap_obstack);
5165 if (flag_caller_saves)
5166 init_caller_save ();
5168 if (flag_ira_verbose < 10)
5170 internal_flag_ira_verbose = flag_ira_verbose;
5171 ira_dump_file = f;
5173 else
5175 internal_flag_ira_verbose = flag_ira_verbose - 10;
5176 ira_dump_file = stderr;
5179 setup_prohibited_mode_move_regs ();
5180 decrease_live_ranges_number ();
5181 df_note_add_problem ();
5183 /* DF_LIVE can't be used in the register allocator, too many other
5184 parts of the compiler depend on using the "classic" liveness
5185 interpretation of the DF_LR problem. See PR38711.
5186 Remove the problem, so that we don't spend time updating it in
5187 any of the df_analyze() calls during IRA/LRA. */
5188 if (optimize > 1)
5189 df_remove_problem (df_live);
5190 gcc_checking_assert (df_live == NULL);
5192 #ifdef ENABLE_CHECKING
5193 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5194 #endif
5195 df_analyze ();
5197 df_clear_flags (DF_NO_INSN_RESCAN);
5198 regstat_init_n_sets_and_refs ();
5199 regstat_compute_ri ();
5201 /* If we are not optimizing, then this is the only place before
5202 register allocation where dataflow is done. And that is needed
5203 to generate these warnings. */
5204 if (warn_clobbered)
5205 generate_setjmp_warnings ();
5207 /* Determine if the current function is a leaf before running IRA
5208 since this can impact optimizations done by the prologue and
5209 epilogue thus changing register elimination offsets. */
5210 crtl->is_leaf = leaf_function_p ();
5212 if (resize_reg_info () && flag_ira_loop_pressure)
5213 ira_set_pseudo_classes (true, ira_dump_file);
5215 init_reg_equiv ();
5216 rebuild_p = update_equiv_regs ();
5217 setup_reg_equiv ();
5218 setup_reg_equiv_init ();
5220 if (optimize && rebuild_p)
5222 timevar_push (TV_JUMP);
5223 rebuild_jump_labels (get_insns ());
5224 if (purge_all_dead_edges ())
5225 delete_unreachable_blocks ();
5226 timevar_pop (TV_JUMP);
5229 allocated_reg_info_size = max_reg_num ();
5231 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5232 df_analyze ();
5234 /* It is not worth to do such improvement when we use a simple
5235 allocation because of -O0 usage or because the function is too
5236 big. */
5237 if (ira_conflicts_p)
5239 df_analyze ();
5240 calculate_dominance_info (CDI_DOMINATORS);
5242 find_moveable_pseudos ();
5243 if (split_live_ranges_for_shrink_wrap ())
5244 df_analyze ();
5246 fix_reg_equiv_init ();
5247 expand_reg_info ();
5248 regstat_free_n_sets_and_refs ();
5249 regstat_free_ri ();
5250 regstat_init_n_sets_and_refs ();
5251 regstat_compute_ri ();
5252 free_dominance_info (CDI_DOMINATORS);
5255 max_regno_before_ira = max_reg_num ();
5256 ira_setup_eliminable_regset (true);
5258 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5259 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5260 ira_move_loops_num = ira_additional_jumps_num = 0;
5262 ira_assert (current_loops == NULL);
5263 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5264 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5266 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5267 fprintf (ira_dump_file, "Building IRA IR\n");
5268 loops_p = ira_build ();
5270 ira_assert (ira_conflicts_p || !loops_p);
5272 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5273 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5274 /* It is just wasting compiler's time to pack spilled pseudos into
5275 stack slots in this case -- prohibit it. We also do this if
5276 there is setjmp call because a variable not modified between
5277 setjmp and longjmp the compiler is required to preserve its
5278 value and sharing slots does not guarantee it. */
5279 flag_ira_share_spill_slots = FALSE;
5281 ira_color ();
5283 ira_max_point_before_emit = ira_max_point;
5285 ira_initiate_emit_data ();
5287 ira_emit (loops_p);
5289 max_regno = max_reg_num ();
5290 if (ira_conflicts_p)
5292 if (! loops_p)
5294 if (! ira_use_lra_p)
5295 ira_initiate_assign ();
5297 else
5299 expand_reg_info ();
5301 if (ira_use_lra_p)
5303 ira_allocno_t a;
5304 ira_allocno_iterator ai;
5306 FOR_EACH_ALLOCNO (a, ai)
5307 ALLOCNO_REGNO (a) = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5309 else
5311 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5312 fprintf (ira_dump_file, "Flattening IR\n");
5313 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5315 /* New insns were generated: add notes and recalculate live
5316 info. */
5317 df_analyze ();
5319 /* ??? Rebuild the loop tree, but why? Does the loop tree
5320 change if new insns were generated? Can that be handled
5321 by updating the loop tree incrementally? */
5322 loop_optimizer_finalize ();
5323 free_dominance_info (CDI_DOMINATORS);
5324 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5325 | LOOPS_HAVE_RECORDED_EXITS);
5327 if (! ira_use_lra_p)
5329 setup_allocno_assignment_flags ();
5330 ira_initiate_assign ();
5331 ira_reassign_conflict_allocnos (max_regno);
5336 ira_finish_emit_data ();
5338 setup_reg_renumber ();
5340 calculate_allocation_cost ();
5342 #ifdef ENABLE_IRA_CHECKING
5343 if (ira_conflicts_p)
5344 check_allocation ();
5345 #endif
5347 if (max_regno != max_regno_before_ira)
5349 regstat_free_n_sets_and_refs ();
5350 regstat_free_ri ();
5351 regstat_init_n_sets_and_refs ();
5352 regstat_compute_ri ();
5355 overall_cost_before = ira_overall_cost;
5356 if (! ira_conflicts_p)
5357 grow_reg_equivs ();
5358 else
5360 fix_reg_equiv_init ();
5362 #ifdef ENABLE_IRA_CHECKING
5363 print_redundant_copies ();
5364 #endif
5366 ira_spilled_reg_stack_slots_num = 0;
5367 ira_spilled_reg_stack_slots
5368 = ((struct ira_spilled_reg_stack_slot *)
5369 ira_allocate (max_regno
5370 * sizeof (struct ira_spilled_reg_stack_slot)));
5371 memset (ira_spilled_reg_stack_slots, 0,
5372 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5374 allocate_initial_values ();
5376 /* See comment for find_moveable_pseudos call. */
5377 if (ira_conflicts_p)
5378 move_unallocated_pseudos ();
5380 /* Restore original values. */
5381 if (lra_simple_p)
5383 flag_caller_saves = saved_flag_caller_saves;
5384 flag_ira_region = saved_flag_ira_region;
5388 static void
5389 do_reload (void)
5391 basic_block bb;
5392 bool need_dce;
5394 if (flag_ira_verbose < 10)
5395 ira_dump_file = dump_file;
5397 timevar_push (TV_RELOAD);
5398 if (ira_use_lra_p)
5400 if (current_loops != NULL)
5402 loop_optimizer_finalize ();
5403 free_dominance_info (CDI_DOMINATORS);
5405 FOR_ALL_BB (bb)
5406 bb->loop_father = NULL;
5407 current_loops = NULL;
5409 if (ira_conflicts_p)
5410 ira_free (ira_spilled_reg_stack_slots);
5412 ira_destroy ();
5414 lra (ira_dump_file);
5415 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5416 LRA. */
5417 vec_free (reg_equivs);
5418 reg_equivs = NULL;
5419 need_dce = false;
5421 else
5423 df_set_flags (DF_NO_INSN_RESCAN);
5424 build_insn_chain ();
5426 need_dce = reload (get_insns (), ira_conflicts_p);
5430 timevar_pop (TV_RELOAD);
5432 timevar_push (TV_IRA);
5434 if (ira_conflicts_p && ! ira_use_lra_p)
5436 ira_free (ira_spilled_reg_stack_slots);
5437 ira_finish_assign ();
5440 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5441 && overall_cost_before != ira_overall_cost)
5442 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
5444 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5446 if (! ira_use_lra_p)
5448 ira_destroy ();
5449 if (current_loops != NULL)
5451 loop_optimizer_finalize ();
5452 free_dominance_info (CDI_DOMINATORS);
5454 FOR_ALL_BB (bb)
5455 bb->loop_father = NULL;
5456 current_loops = NULL;
5458 regstat_free_ri ();
5459 regstat_free_n_sets_and_refs ();
5462 if (optimize)
5463 cleanup_cfg (CLEANUP_EXPENSIVE);
5465 finish_reg_equiv ();
5467 bitmap_obstack_release (&ira_bitmap_obstack);
5468 #ifndef IRA_NO_OBSTACK
5469 obstack_free (&ira_obstack, NULL);
5470 #endif
5472 /* The code after the reload has changed so much that at this point
5473 we might as well just rescan everything. Note that
5474 df_rescan_all_insns is not going to help here because it does not
5475 touch the artificial uses and defs. */
5476 df_finish_pass (true);
5477 df_scan_alloc (NULL);
5478 df_scan_blocks ();
5480 if (optimize > 1)
5482 df_live_add_problem ();
5483 df_live_set_all_dirty ();
5486 if (optimize)
5487 df_analyze ();
5489 if (need_dce && optimize)
5490 run_fast_dce ();
5492 timevar_pop (TV_IRA);
5495 /* Run the integrated register allocator. */
5496 static unsigned int
5497 rest_of_handle_ira (void)
5499 ira (dump_file);
5500 return 0;
5503 namespace {
5505 const pass_data pass_data_ira =
5507 RTL_PASS, /* type */
5508 "ira", /* name */
5509 OPTGROUP_NONE, /* optinfo_flags */
5510 false, /* has_gate */
5511 true, /* has_execute */
5512 TV_IRA, /* tv_id */
5513 0, /* properties_required */
5514 0, /* properties_provided */
5515 0, /* properties_destroyed */
5516 0, /* todo_flags_start */
5517 TODO_do_not_ggc_collect, /* todo_flags_finish */
5520 class pass_ira : public rtl_opt_pass
5522 public:
5523 pass_ira (gcc::context *ctxt)
5524 : rtl_opt_pass (pass_data_ira, ctxt)
5527 /* opt_pass methods: */
5528 unsigned int execute () { return rest_of_handle_ira (); }
5530 }; // class pass_ira
5532 } // anon namespace
5534 rtl_opt_pass *
5535 make_pass_ira (gcc::context *ctxt)
5537 return new pass_ira (ctxt);
5540 static unsigned int
5541 rest_of_handle_reload (void)
5543 do_reload ();
5544 return 0;
5547 namespace {
5549 const pass_data pass_data_reload =
5551 RTL_PASS, /* type */
5552 "reload", /* name */
5553 OPTGROUP_NONE, /* optinfo_flags */
5554 false, /* has_gate */
5555 true, /* has_execute */
5556 TV_RELOAD, /* tv_id */
5557 0, /* properties_required */
5558 0, /* properties_provided */
5559 0, /* properties_destroyed */
5560 0, /* todo_flags_start */
5561 0, /* todo_flags_finish */
5564 class pass_reload : public rtl_opt_pass
5566 public:
5567 pass_reload (gcc::context *ctxt)
5568 : rtl_opt_pass (pass_data_reload, ctxt)
5571 /* opt_pass methods: */
5572 unsigned int execute () { return rest_of_handle_reload (); }
5574 }; // class pass_reload
5576 } // anon namespace
5578 rtl_opt_pass *
5579 make_pass_reload (gcc::context *ctxt)
5581 return new pass_reload (ctxt);