1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2013 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
31 #include "insn-config.h"
35 #include "langhooks.h"
40 struct target_expmed default_target_expmed
;
42 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
45 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
46 unsigned HOST_WIDE_INT
,
47 unsigned HOST_WIDE_INT
,
48 unsigned HOST_WIDE_INT
,
50 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
51 unsigned HOST_WIDE_INT
,
52 unsigned HOST_WIDE_INT
,
53 unsigned HOST_WIDE_INT
,
55 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
56 unsigned HOST_WIDE_INT
,
57 unsigned HOST_WIDE_INT
, rtx
, int);
58 static rtx
mask_rtx (enum machine_mode
, int, int, int);
59 static rtx
lshift_value (enum machine_mode
, unsigned HOST_WIDE_INT
, int);
60 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
61 unsigned HOST_WIDE_INT
, int);
62 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
63 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
64 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
66 /* Test whether a value is zero of a power of two. */
67 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
68 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
70 struct init_expmed_rtl
78 struct rtx_def sdiv_32
;
79 struct rtx_def smod_32
;
80 struct rtx_def wide_mult
;
81 struct rtx_def wide_lshr
;
82 struct rtx_def wide_trunc
;
84 struct rtx_def shift_mult
;
85 struct rtx_def shift_add
;
86 struct rtx_def shift_sub0
;
87 struct rtx_def shift_sub1
;
91 rtx pow2
[MAX_BITS_PER_WORD
];
92 rtx cint
[MAX_BITS_PER_WORD
];
96 init_expmed_one_conv (struct init_expmed_rtl
*all
, enum machine_mode to_mode
,
97 enum machine_mode from_mode
, bool speed
)
99 int to_size
, from_size
;
102 /* We're given no information about the true size of a partial integer,
103 only the size of the "full" integer it requires for storage. For
104 comparison purposes here, reduce the bit size by one in that case. */
105 to_size
= (GET_MODE_BITSIZE (to_mode
)
106 - (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
));
107 from_size
= (GET_MODE_BITSIZE (from_mode
)
108 - (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
));
110 /* Assume cost of zero-extend and sign-extend is the same. */
111 which
= (to_size
< from_size
? &all
->trunc
: &all
->zext
);
113 PUT_MODE (&all
->reg
, from_mode
);
114 set_convert_cost (to_mode
, from_mode
, speed
, set_src_cost (which
, speed
));
118 init_expmed_one_mode (struct init_expmed_rtl
*all
,
119 enum machine_mode mode
, int speed
)
121 int m
, n
, mode_bitsize
;
122 enum machine_mode mode_from
;
124 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
126 PUT_MODE (&all
->reg
, mode
);
127 PUT_MODE (&all
->plus
, mode
);
128 PUT_MODE (&all
->neg
, mode
);
129 PUT_MODE (&all
->mult
, mode
);
130 PUT_MODE (&all
->sdiv
, mode
);
131 PUT_MODE (&all
->udiv
, mode
);
132 PUT_MODE (&all
->sdiv_32
, mode
);
133 PUT_MODE (&all
->smod_32
, mode
);
134 PUT_MODE (&all
->wide_trunc
, mode
);
135 PUT_MODE (&all
->shift
, mode
);
136 PUT_MODE (&all
->shift_mult
, mode
);
137 PUT_MODE (&all
->shift_add
, mode
);
138 PUT_MODE (&all
->shift_sub0
, mode
);
139 PUT_MODE (&all
->shift_sub1
, mode
);
140 PUT_MODE (&all
->zext
, mode
);
141 PUT_MODE (&all
->trunc
, mode
);
143 set_add_cost (speed
, mode
, set_src_cost (&all
->plus
, speed
));
144 set_neg_cost (speed
, mode
, set_src_cost (&all
->neg
, speed
));
145 set_mul_cost (speed
, mode
, set_src_cost (&all
->mult
, speed
));
146 set_sdiv_cost (speed
, mode
, set_src_cost (&all
->sdiv
, speed
));
147 set_udiv_cost (speed
, mode
, set_src_cost (&all
->udiv
, speed
));
149 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (&all
->sdiv_32
, speed
)
150 <= 2 * add_cost (speed
, mode
)));
151 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (&all
->smod_32
, speed
)
152 <= 4 * add_cost (speed
, mode
)));
154 set_shift_cost (speed
, mode
, 0, 0);
156 int cost
= add_cost (speed
, mode
);
157 set_shiftadd_cost (speed
, mode
, 0, cost
);
158 set_shiftsub0_cost (speed
, mode
, 0, cost
);
159 set_shiftsub1_cost (speed
, mode
, 0, cost
);
162 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
163 for (m
= 1; m
< n
; m
++)
165 XEXP (&all
->shift
, 1) = all
->cint
[m
];
166 XEXP (&all
->shift_mult
, 1) = all
->pow2
[m
];
168 set_shift_cost (speed
, mode
, m
, set_src_cost (&all
->shift
, speed
));
169 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (&all
->shift_add
, speed
));
170 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (&all
->shift_sub0
, speed
));
171 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (&all
->shift_sub1
, speed
));
174 if (SCALAR_INT_MODE_P (mode
))
176 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
177 mode_from
= (enum machine_mode
)(mode_from
+ 1))
178 init_expmed_one_conv (all
, mode
, mode_from
, speed
);
180 if (GET_MODE_CLASS (mode
) == MODE_INT
)
182 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
183 if (wider_mode
!= VOIDmode
)
185 PUT_MODE (&all
->zext
, wider_mode
);
186 PUT_MODE (&all
->wide_mult
, wider_mode
);
187 PUT_MODE (&all
->wide_lshr
, wider_mode
);
188 XEXP (&all
->wide_lshr
, 1) = GEN_INT (mode_bitsize
);
190 set_mul_widen_cost (speed
, wider_mode
,
191 set_src_cost (&all
->wide_mult
, speed
));
192 set_mul_highpart_cost (speed
, mode
,
193 set_src_cost (&all
->wide_trunc
, speed
));
201 struct init_expmed_rtl all
;
202 enum machine_mode mode
;
205 memset (&all
, 0, sizeof all
);
206 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
208 all
.pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
209 all
.cint
[m
] = GEN_INT (m
);
212 PUT_CODE (&all
.reg
, REG
);
213 /* Avoid using hard regs in ways which may be unsupported. */
214 SET_REGNO (&all
.reg
, LAST_VIRTUAL_REGISTER
+ 1);
216 PUT_CODE (&all
.plus
, PLUS
);
217 XEXP (&all
.plus
, 0) = &all
.reg
;
218 XEXP (&all
.plus
, 1) = &all
.reg
;
220 PUT_CODE (&all
.neg
, NEG
);
221 XEXP (&all
.neg
, 0) = &all
.reg
;
223 PUT_CODE (&all
.mult
, MULT
);
224 XEXP (&all
.mult
, 0) = &all
.reg
;
225 XEXP (&all
.mult
, 1) = &all
.reg
;
227 PUT_CODE (&all
.sdiv
, DIV
);
228 XEXP (&all
.sdiv
, 0) = &all
.reg
;
229 XEXP (&all
.sdiv
, 1) = &all
.reg
;
231 PUT_CODE (&all
.udiv
, UDIV
);
232 XEXP (&all
.udiv
, 0) = &all
.reg
;
233 XEXP (&all
.udiv
, 1) = &all
.reg
;
235 PUT_CODE (&all
.sdiv_32
, DIV
);
236 XEXP (&all
.sdiv_32
, 0) = &all
.reg
;
237 XEXP (&all
.sdiv_32
, 1) = 32 < MAX_BITS_PER_WORD
? all
.cint
[32] : GEN_INT (32);
239 PUT_CODE (&all
.smod_32
, MOD
);
240 XEXP (&all
.smod_32
, 0) = &all
.reg
;
241 XEXP (&all
.smod_32
, 1) = XEXP (&all
.sdiv_32
, 1);
243 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
244 XEXP (&all
.zext
, 0) = &all
.reg
;
246 PUT_CODE (&all
.wide_mult
, MULT
);
247 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
248 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
250 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
251 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
253 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
254 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
256 PUT_CODE (&all
.shift
, ASHIFT
);
257 XEXP (&all
.shift
, 0) = &all
.reg
;
259 PUT_CODE (&all
.shift_mult
, MULT
);
260 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
262 PUT_CODE (&all
.shift_add
, PLUS
);
263 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
264 XEXP (&all
.shift_add
, 1) = &all
.reg
;
266 PUT_CODE (&all
.shift_sub0
, MINUS
);
267 XEXP (&all
.shift_sub0
, 0) = &all
.shift_mult
;
268 XEXP (&all
.shift_sub0
, 1) = &all
.reg
;
270 PUT_CODE (&all
.shift_sub1
, MINUS
);
271 XEXP (&all
.shift_sub1
, 0) = &all
.reg
;
272 XEXP (&all
.shift_sub1
, 1) = &all
.shift_mult
;
274 PUT_CODE (&all
.trunc
, TRUNCATE
);
275 XEXP (&all
.trunc
, 0) = &all
.reg
;
277 for (speed
= 0; speed
< 2; speed
++)
279 crtl
->maybe_hot_insn_p
= speed
;
280 set_zero_cost (speed
, set_src_cost (const0_rtx
, speed
));
282 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
283 mode
= (enum machine_mode
)(mode
+ 1))
284 init_expmed_one_mode (&all
, mode
, speed
);
286 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
287 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
288 mode
= (enum machine_mode
)(mode
+ 1))
289 init_expmed_one_mode (&all
, mode
, speed
);
291 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
292 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
293 mode
= (enum machine_mode
)(mode
+ 1))
294 init_expmed_one_mode (&all
, mode
, speed
);
297 if (alg_hash_used_p ())
299 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
300 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
303 set_alg_hash_used_p (true);
304 default_rtl_profile ();
307 /* Return an rtx representing minus the value of X.
308 MODE is the intended mode of the result,
309 useful if X is a CONST_INT. */
312 negate_rtx (enum machine_mode mode
, rtx x
)
314 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
317 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
322 /* Adjust bitfield memory MEM so that it points to the first unit of mode
323 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
324 If MODE is BLKmode, return a reference to every byte in the bitfield.
325 Set *NEW_BITNUM to the bit position of the field within the new memory. */
328 narrow_bit_field_mem (rtx mem
, enum machine_mode mode
,
329 unsigned HOST_WIDE_INT bitsize
,
330 unsigned HOST_WIDE_INT bitnum
,
331 unsigned HOST_WIDE_INT
*new_bitnum
)
335 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
336 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
337 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
339 return adjust_bitfield_address_size (mem
, mode
, offset
, size
);
343 unsigned int unit
= GET_MODE_BITSIZE (mode
);
344 *new_bitnum
= bitnum
% unit
;
345 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
346 return adjust_bitfield_address (mem
, mode
, offset
);
350 /* The caller wants to perform insertion or extraction PATTERN on a
351 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
352 BITREGION_START and BITREGION_END are as for store_bit_field
353 and FIELDMODE is the natural mode of the field.
355 Search for a mode that is compatible with the memory access
356 restrictions and (where applicable) with a register insertion or
357 extraction. Return the new memory on success, storing the adjusted
358 bit position in *NEW_BITNUM. Return null otherwise. */
361 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
362 rtx op0
, HOST_WIDE_INT bitsize
,
363 HOST_WIDE_INT bitnum
,
364 unsigned HOST_WIDE_INT bitregion_start
,
365 unsigned HOST_WIDE_INT bitregion_end
,
366 enum machine_mode fieldmode
,
367 unsigned HOST_WIDE_INT
*new_bitnum
)
369 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
370 bitregion_end
, MEM_ALIGN (op0
),
371 MEM_VOLATILE_P (op0
));
372 enum machine_mode best_mode
;
373 if (iter
.next_mode (&best_mode
))
375 /* We can use a memory in BEST_MODE. See whether this is true for
376 any wider modes. All other things being equal, we prefer to
377 use the widest mode possible because it tends to expose more
378 CSE opportunities. */
379 if (!iter
.prefer_smaller_modes ())
381 /* Limit the search to the mode required by the corresponding
382 register insertion or extraction instruction, if any. */
383 enum machine_mode limit_mode
= word_mode
;
384 extraction_insn insn
;
385 if (get_best_reg_extraction_insn (&insn
, pattern
,
386 GET_MODE_BITSIZE (best_mode
),
388 limit_mode
= insn
.field_mode
;
390 enum machine_mode wider_mode
;
391 while (iter
.next_mode (&wider_mode
)
392 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
393 best_mode
= wider_mode
;
395 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
401 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
402 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
403 offset is then BITNUM / BITS_PER_UNIT. */
406 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum
,
407 unsigned HOST_WIDE_INT bitsize
,
408 enum machine_mode struct_mode
)
410 if (BYTES_BIG_ENDIAN
)
411 return (bitnum
% BITS_PER_UNIT
== 0
412 && (bitnum
+ bitsize
== GET_MODE_BITSIZE (struct_mode
)
413 || (bitnum
+ bitsize
) % BITS_PER_WORD
== 0));
415 return bitnum
% BITS_PER_WORD
== 0;
418 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
419 bit number BITNUM can be treated as a simple value of mode MODE. */
422 simple_mem_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
423 unsigned HOST_WIDE_INT bitnum
, enum machine_mode mode
)
426 && bitnum
% BITS_PER_UNIT
== 0
427 && bitsize
== GET_MODE_BITSIZE (mode
)
428 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
429 || (bitnum
% GET_MODE_ALIGNMENT (mode
) == 0
430 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
433 /* Try to use instruction INSV to store VALUE into a field of OP0.
434 BITSIZE and BITNUM are as for store_bit_field. */
437 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
438 unsigned HOST_WIDE_INT bitsize
,
439 unsigned HOST_WIDE_INT bitnum
, rtx value
)
441 struct expand_operand ops
[4];
444 rtx last
= get_last_insn ();
445 bool copy_back
= false;
447 enum machine_mode op_mode
= insv
->field_mode
;
448 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
449 if (bitsize
== 0 || bitsize
> unit
)
453 /* Get a reference to the first byte of the field. */
454 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
458 /* Convert from counting within OP0 to counting in OP_MODE. */
459 if (BYTES_BIG_ENDIAN
)
460 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
462 /* If xop0 is a register, we need it in OP_MODE
463 to make it acceptable to the format of insv. */
464 if (GET_CODE (xop0
) == SUBREG
)
465 /* We can't just change the mode, because this might clobber op0,
466 and we will need the original value of op0 if insv fails. */
467 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
468 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
469 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
472 /* If the destination is a paradoxical subreg such that we need a
473 truncate to the inner mode, perform the insertion on a temporary and
474 truncate the result to the original destination. Note that we can't
475 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
476 X) 0)) is (reg:N X). */
477 if (GET_CODE (xop0
) == SUBREG
478 && REG_P (SUBREG_REG (xop0
))
479 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
482 rtx tem
= gen_reg_rtx (op_mode
);
483 emit_move_insn (tem
, xop0
);
488 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
489 "backwards" from the size of the unit we are inserting into.
490 Otherwise, we count bits from the most significant on a
491 BYTES/BITS_BIG_ENDIAN machine. */
493 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
494 bitnum
= unit
- bitsize
- bitnum
;
496 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
498 if (GET_MODE (value
) != op_mode
)
500 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
502 /* Optimization: Don't bother really extending VALUE
503 if it has all the bits we will actually use. However,
504 if we must narrow it, be sure we do it correctly. */
506 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
510 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
512 tmp
= simplify_gen_subreg (op_mode
,
513 force_reg (GET_MODE (value
),
515 GET_MODE (value
), 0);
519 value1
= gen_lowpart (op_mode
, value1
);
521 else if (CONST_INT_P (value
))
522 value1
= gen_int_mode (INTVAL (value
), op_mode
);
524 /* Parse phase is supposed to make VALUE's data type
525 match that of the component reference, which is a type
526 at least as wide as the field; so VALUE should have
527 a mode that corresponds to that type. */
528 gcc_assert (CONSTANT_P (value
));
531 create_fixed_operand (&ops
[0], xop0
);
532 create_integer_operand (&ops
[1], bitsize
);
533 create_integer_operand (&ops
[2], bitnum
);
534 create_input_operand (&ops
[3], value1
, op_mode
);
535 if (maybe_expand_insn (insv
->icode
, 4, ops
))
538 convert_move (op0
, xop0
, true);
541 delete_insns_since (last
);
545 /* A subroutine of store_bit_field, with the same arguments. Return true
546 if the operation could be implemented.
548 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
549 no other way of implementing the operation. If FALLBACK_P is false,
550 return false instead. */
553 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
554 unsigned HOST_WIDE_INT bitnum
,
555 unsigned HOST_WIDE_INT bitregion_start
,
556 unsigned HOST_WIDE_INT bitregion_end
,
557 enum machine_mode fieldmode
,
558 rtx value
, bool fallback_p
)
563 while (GET_CODE (op0
) == SUBREG
)
565 /* The following line once was done only if WORDS_BIG_ENDIAN,
566 but I think that is a mistake. WORDS_BIG_ENDIAN is
567 meaningful at a much higher level; when structures are copied
568 between memory and regs, the higher-numbered regs
569 always get higher addresses. */
570 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
571 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
574 /* Paradoxical subregs need special handling on big endian machines. */
575 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
577 int difference
= inner_mode_size
- outer_mode_size
;
579 if (WORDS_BIG_ENDIAN
)
580 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
581 if (BYTES_BIG_ENDIAN
)
582 byte_offset
+= difference
% UNITS_PER_WORD
;
585 byte_offset
= SUBREG_BYTE (op0
);
587 bitnum
+= byte_offset
* BITS_PER_UNIT
;
588 op0
= SUBREG_REG (op0
);
591 /* No action is needed if the target is a register and if the field
592 lies completely outside that register. This can occur if the source
593 code contains an out-of-bounds access to a small array. */
594 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
597 /* Use vec_set patterns for inserting parts of vectors whenever
599 if (VECTOR_MODE_P (GET_MODE (op0
))
601 && optab_handler (vec_set_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
602 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
603 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
604 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
606 struct expand_operand ops
[3];
607 enum machine_mode outermode
= GET_MODE (op0
);
608 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
609 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
610 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
612 create_fixed_operand (&ops
[0], op0
);
613 create_input_operand (&ops
[1], value
, innermode
);
614 create_integer_operand (&ops
[2], pos
);
615 if (maybe_expand_insn (icode
, 3, ops
))
619 /* If the target is a register, overwriting the entire object, or storing
620 a full-word or multi-word field can be done with just a SUBREG. */
622 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
623 && ((bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)) && bitnum
== 0)
624 || (bitsize
% BITS_PER_WORD
== 0 && bitnum
% BITS_PER_WORD
== 0)))
626 /* Use the subreg machinery either to narrow OP0 to the required
627 words or to cope with mode punning between equal-sized modes.
628 In the latter case, use subreg on the rhs side, not lhs. */
631 if (bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
633 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
636 emit_move_insn (op0
, sub
);
642 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
643 bitnum
/ BITS_PER_UNIT
);
646 emit_move_insn (sub
, value
);
652 /* If the target is memory, storing any naturally aligned field can be
653 done with a simple store. For targets that support fast unaligned
654 memory, any naturally sized, unit aligned field can be done directly. */
655 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
))
657 op0
= adjust_bitfield_address (op0
, fieldmode
, bitnum
/ BITS_PER_UNIT
);
658 emit_move_insn (op0
, value
);
662 /* Make sure we are playing with integral modes. Pun with subregs
663 if we aren't. This must come after the entire register case above,
664 since that case is valid for any mode. The following cases are only
665 valid for integral modes. */
667 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
668 if (imode
!= GET_MODE (op0
))
671 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
674 gcc_assert (imode
!= BLKmode
);
675 op0
= gen_lowpart (imode
, op0
);
680 /* Storing an lsb-aligned field in a register
681 can be done with a movstrict instruction. */
684 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
685 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
686 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
688 struct expand_operand ops
[2];
689 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
691 unsigned HOST_WIDE_INT subreg_off
;
693 if (GET_CODE (arg0
) == SUBREG
)
695 /* Else we've got some float mode source being extracted into
696 a different float mode destination -- this combination of
697 subregs results in Severe Tire Damage. */
698 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
699 || GET_MODE_CLASS (fieldmode
) == MODE_INT
700 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
701 arg0
= SUBREG_REG (arg0
);
704 subreg_off
= bitnum
/ BITS_PER_UNIT
;
705 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
707 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
709 create_fixed_operand (&ops
[0], arg0
);
710 /* Shrink the source operand to FIELDMODE. */
711 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
712 if (maybe_expand_insn (icode
, 2, ops
))
717 /* Handle fields bigger than a word. */
719 if (bitsize
> BITS_PER_WORD
)
721 /* Here we transfer the words of the field
722 in the order least significant first.
723 This is because the most significant word is the one which may
725 However, only do that if the value is not BLKmode. */
727 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
728 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
732 /* This is the mode we must force value to, so that there will be enough
733 subwords to extract. Note that fieldmode will often (always?) be
734 VOIDmode, because that is what store_field uses to indicate that this
735 is a bit field, but passing VOIDmode to operand_subword_force
737 fieldmode
= GET_MODE (value
);
738 if (fieldmode
== VOIDmode
)
739 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
741 last
= get_last_insn ();
742 for (i
= 0; i
< nwords
; i
++)
744 /* If I is 0, use the low-order word in both field and target;
745 if I is 1, use the next to lowest word; and so on. */
746 unsigned int wordnum
= (backwards
747 ? GET_MODE_SIZE (fieldmode
) / UNITS_PER_WORD
750 unsigned int bit_offset
= (backwards
751 ? MAX ((int) bitsize
- ((int) i
+ 1)
754 : (int) i
* BITS_PER_WORD
);
755 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
756 unsigned HOST_WIDE_INT new_bitsize
=
757 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
759 /* If the remaining chunk doesn't have full wordsize we have
760 to make sure that for big endian machines the higher order
762 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
763 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
765 GEN_INT (BITS_PER_WORD
770 if (!store_bit_field_1 (op0
, new_bitsize
,
772 bitregion_start
, bitregion_end
,
774 value_word
, fallback_p
))
776 delete_insns_since (last
);
783 /* If VALUE has a floating-point or complex mode, access it as an
784 integer of the corresponding size. This can occur on a machine
785 with 64 bit registers that uses SFmode for float. It can also
786 occur for unaligned float or complex fields. */
788 if (GET_MODE (value
) != VOIDmode
789 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
790 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
792 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
793 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
796 /* If OP0 is a multi-word register, narrow it to the affected word.
797 If the region spans two words, defer to store_split_bit_field. */
798 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
800 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
801 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
803 bitnum
%= BITS_PER_WORD
;
804 if (bitnum
+ bitsize
> BITS_PER_WORD
)
809 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
810 bitregion_end
, value
);
815 /* From here on we can assume that the field to be stored in fits
816 within a word. If the destination is a register, it too fits
819 extraction_insn insv
;
821 && get_best_reg_extraction_insn (&insv
, EP_insv
,
822 GET_MODE_BITSIZE (GET_MODE (op0
)),
824 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
827 /* If OP0 is a memory, try copying it to a register and seeing if a
828 cheap register alternative is available. */
831 /* Do not use unaligned memory insvs for volatile bitfields when
832 -fstrict-volatile-bitfields is in effect. */
833 if (!(MEM_VOLATILE_P (op0
)
834 && flag_strict_volatile_bitfields
> 0)
835 && get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
837 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
840 rtx last
= get_last_insn ();
842 /* Try loading part of OP0 into a register, inserting the bitfield
843 into that, and then copying the result back to OP0. */
844 unsigned HOST_WIDE_INT bitpos
;
845 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
846 bitregion_start
, bitregion_end
,
850 rtx tempreg
= copy_to_reg (xop0
);
851 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
852 bitregion_start
, bitregion_end
,
853 fieldmode
, orig_value
, false))
855 emit_move_insn (xop0
, tempreg
);
858 delete_insns_since (last
);
865 store_fixed_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
866 bitregion_end
, value
);
870 /* Generate code to store value from rtx VALUE
871 into a bit-field within structure STR_RTX
872 containing BITSIZE bits starting at bit BITNUM.
874 BITREGION_START is bitpos of the first bitfield in this region.
875 BITREGION_END is the bitpos of the ending bitfield in this region.
876 These two fields are 0, if the C++ memory model does not apply,
877 or we are not interested in keeping track of bitfield regions.
879 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
882 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
883 unsigned HOST_WIDE_INT bitnum
,
884 unsigned HOST_WIDE_INT bitregion_start
,
885 unsigned HOST_WIDE_INT bitregion_end
,
886 enum machine_mode fieldmode
,
889 /* Under the C++0x memory model, we must not touch bits outside the
890 bit region. Adjust the address to start at the beginning of the
892 if (MEM_P (str_rtx
) && bitregion_start
> 0)
894 enum machine_mode bestmode
;
895 HOST_WIDE_INT offset
, size
;
897 gcc_assert ((bitregion_start
% BITS_PER_UNIT
) == 0);
899 offset
= bitregion_start
/ BITS_PER_UNIT
;
900 bitnum
-= bitregion_start
;
901 size
= (bitnum
+ bitsize
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
902 bitregion_end
-= bitregion_start
;
904 bestmode
= get_best_mode (bitsize
, bitnum
,
905 bitregion_start
, bitregion_end
,
906 MEM_ALIGN (str_rtx
), VOIDmode
,
907 MEM_VOLATILE_P (str_rtx
));
908 str_rtx
= adjust_bitfield_address_size (str_rtx
, bestmode
, offset
, size
);
911 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
912 bitregion_start
, bitregion_end
,
913 fieldmode
, value
, true))
917 /* Use shifts and boolean operations to store VALUE into a bit field of
918 width BITSIZE in OP0, starting at bit BITNUM. */
921 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
922 unsigned HOST_WIDE_INT bitnum
,
923 unsigned HOST_WIDE_INT bitregion_start
,
924 unsigned HOST_WIDE_INT bitregion_end
,
927 enum machine_mode mode
;
932 /* There is a case not handled here:
933 a structure with a known alignment of just a halfword
934 and a field split across two aligned halfwords within the structure.
935 Or likewise a structure with a known alignment of just a byte
936 and a field split across two bytes.
937 Such cases are not supposed to be able to occur. */
941 unsigned HOST_WIDE_INT maxbits
= MAX_FIXED_MODE_SIZE
;
944 maxbits
= bitregion_end
- bitregion_start
+ 1;
946 /* Get the proper mode to use for this field. We want a mode that
947 includes the entire field. If such a mode would be larger than
948 a word, we won't be doing the extraction the normal way.
949 We don't want a mode bigger than the destination. */
951 mode
= GET_MODE (op0
);
952 if (GET_MODE_BITSIZE (mode
) == 0
953 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
956 if (MEM_VOLATILE_P (op0
)
957 && GET_MODE_BITSIZE (GET_MODE (op0
)) > 0
958 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= maxbits
959 && flag_strict_volatile_bitfields
> 0)
960 mode
= GET_MODE (op0
);
962 mode
= get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
963 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
965 if (mode
== VOIDmode
)
967 /* The only way this should occur is if the field spans word
969 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
970 bitregion_end
, value
);
974 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
977 mode
= GET_MODE (op0
);
978 gcc_assert (SCALAR_INT_MODE_P (mode
));
980 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
981 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
983 if (BYTES_BIG_ENDIAN
)
984 /* BITNUM is the distance between our msb
985 and that of the containing datum.
986 Convert it to the distance from the lsb. */
987 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
989 /* Now BITNUM is always the distance between our lsb
992 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
993 we must first convert its mode to MODE. */
995 if (CONST_INT_P (value
))
997 HOST_WIDE_INT v
= INTVAL (value
);
999 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1000 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
1004 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1005 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
1006 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
1009 value
= lshift_value (mode
, v
, bitnum
);
1013 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
1014 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1016 if (GET_MODE (value
) != mode
)
1017 value
= convert_to_mode (mode
, value
, 1);
1020 value
= expand_binop (mode
, and_optab
, value
,
1021 mask_rtx (mode
, 0, bitsize
, 0),
1022 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1024 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1025 bitnum
, NULL_RTX
, 1);
1028 /* Now clear the chosen bits in OP0,
1029 except that if VALUE is -1 we need not bother. */
1030 /* We keep the intermediates in registers to allow CSE to combine
1031 consecutive bitfield assignments. */
1033 temp
= force_reg (mode
, op0
);
1037 temp
= expand_binop (mode
, and_optab
, temp
,
1038 mask_rtx (mode
, bitnum
, bitsize
, 1),
1039 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1040 temp
= force_reg (mode
, temp
);
1043 /* Now logical-or VALUE into OP0, unless it is zero. */
1047 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1048 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1049 temp
= force_reg (mode
, temp
);
1054 op0
= copy_rtx (op0
);
1055 emit_move_insn (op0
, temp
);
1059 /* Store a bit field that is split across multiple accessible memory objects.
1061 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1062 BITSIZE is the field width; BITPOS the position of its first bit
1064 VALUE is the value to store.
1066 This does not yet handle fields wider than BITS_PER_WORD. */
1069 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1070 unsigned HOST_WIDE_INT bitpos
,
1071 unsigned HOST_WIDE_INT bitregion_start
,
1072 unsigned HOST_WIDE_INT bitregion_end
,
1076 unsigned int bitsdone
= 0;
1078 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1080 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1081 unit
= BITS_PER_WORD
;
1083 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1085 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1086 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1087 that VALUE might be a floating-point constant. */
1088 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1090 rtx word
= gen_lowpart_common (word_mode
, value
);
1092 if (word
&& (value
!= word
))
1095 value
= gen_lowpart_common (word_mode
,
1096 force_reg (GET_MODE (value
) != VOIDmode
1098 : word_mode
, value
));
1101 while (bitsdone
< bitsize
)
1103 unsigned HOST_WIDE_INT thissize
;
1105 unsigned HOST_WIDE_INT thispos
;
1106 unsigned HOST_WIDE_INT offset
;
1108 offset
= (bitpos
+ bitsdone
) / unit
;
1109 thispos
= (bitpos
+ bitsdone
) % unit
;
1111 /* When region of bytes we can touch is restricted, decrease
1112 UNIT close to the end of the region as needed. If op0 is a REG
1113 or SUBREG of REG, don't do this, as there can't be data races
1114 on a register and we can expand shorter code in some cases. */
1116 && unit
> BITS_PER_UNIT
1117 && bitpos
+ bitsdone
- thispos
+ unit
> bitregion_end
+ 1
1119 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1125 /* THISSIZE must not overrun a word boundary. Otherwise,
1126 store_fixed_bit_field will call us again, and we will mutually
1128 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1129 thissize
= MIN (thissize
, unit
- thispos
);
1131 if (BYTES_BIG_ENDIAN
)
1133 /* Fetch successively less significant portions. */
1134 if (CONST_INT_P (value
))
1135 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1136 >> (bitsize
- bitsdone
- thissize
))
1137 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1140 int total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1141 /* The args are chosen so that the last part includes the
1142 lsb. Give extract_bit_field the value it needs (with
1143 endianness compensation) to fetch the piece we want. */
1144 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1145 total_bits
- bitsize
+ bitsdone
,
1151 /* Fetch successively more significant portions. */
1152 if (CONST_INT_P (value
))
1153 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1155 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1157 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1158 bitsdone
, NULL_RTX
, 1);
1161 /* If OP0 is a register, then handle OFFSET here.
1163 When handling multiword bitfields, extract_bit_field may pass
1164 down a word_mode SUBREG of a larger REG for a bitfield that actually
1165 crosses a word boundary. Thus, for a SUBREG, we must find
1166 the current word starting from the base register. */
1167 if (GET_CODE (op0
) == SUBREG
)
1169 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
)
1170 + (offset
* unit
/ BITS_PER_WORD
);
1171 enum machine_mode sub_mode
= GET_MODE (SUBREG_REG (op0
));
1172 if (sub_mode
!= BLKmode
&& GET_MODE_SIZE (sub_mode
) < UNITS_PER_WORD
)
1173 word
= word_offset
? const0_rtx
: op0
;
1175 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1176 GET_MODE (SUBREG_REG (op0
)));
1177 offset
&= BITS_PER_WORD
/ unit
- 1;
1179 else if (REG_P (op0
))
1181 enum machine_mode op0_mode
= GET_MODE (op0
);
1182 if (op0_mode
!= BLKmode
&& GET_MODE_SIZE (op0_mode
) < UNITS_PER_WORD
)
1183 word
= offset
? const0_rtx
: op0
;
1185 word
= operand_subword_force (op0
, offset
* unit
/ BITS_PER_WORD
,
1187 offset
&= BITS_PER_WORD
/ unit
- 1;
1192 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1193 it is just an out-of-bounds access. Ignore it. */
1194 if (word
!= const0_rtx
)
1195 store_fixed_bit_field (word
, thissize
, offset
* unit
+ thispos
,
1196 bitregion_start
, bitregion_end
, part
);
1197 bitsdone
+= thissize
;
1201 /* A subroutine of extract_bit_field_1 that converts return value X
1202 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1203 to extract_bit_field. */
1206 convert_extracted_bit_field (rtx x
, enum machine_mode mode
,
1207 enum machine_mode tmode
, bool unsignedp
)
1209 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1212 /* If the x mode is not a scalar integral, first convert to the
1213 integer mode of that size and then access it as a floating-point
1214 value via a SUBREG. */
1215 if (!SCALAR_INT_MODE_P (tmode
))
1217 enum machine_mode smode
;
1219 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1220 x
= convert_to_mode (smode
, x
, unsignedp
);
1221 x
= force_reg (smode
, x
);
1222 return gen_lowpart (tmode
, x
);
1225 return convert_to_mode (tmode
, x
, unsignedp
);
1228 /* Try to use an ext(z)v pattern to extract a field from OP0.
1229 Return the extracted value on success, otherwise return null.
1230 EXT_MODE is the mode of the extraction and the other arguments
1231 are as for extract_bit_field. */
1234 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1235 unsigned HOST_WIDE_INT bitsize
,
1236 unsigned HOST_WIDE_INT bitnum
,
1237 int unsignedp
, rtx target
,
1238 enum machine_mode mode
, enum machine_mode tmode
)
1240 struct expand_operand ops
[4];
1241 rtx spec_target
= target
;
1242 rtx spec_target_subreg
= 0;
1243 enum machine_mode ext_mode
= extv
->field_mode
;
1244 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1246 if (bitsize
== 0 || unit
< bitsize
)
1250 /* Get a reference to the first byte of the field. */
1251 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1255 /* Convert from counting within OP0 to counting in EXT_MODE. */
1256 if (BYTES_BIG_ENDIAN
)
1257 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1259 /* If op0 is a register, we need it in EXT_MODE to make it
1260 acceptable to the format of ext(z)v. */
1261 if (GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1263 if (REG_P (op0
) && GET_MODE (op0
) != ext_mode
)
1264 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1267 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1268 "backwards" from the size of the unit we are extracting from.
1269 Otherwise, we count bits from the most significant on a
1270 BYTES/BITS_BIG_ENDIAN machine. */
1272 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1273 bitnum
= unit
- bitsize
- bitnum
;
1276 target
= spec_target
= gen_reg_rtx (tmode
);
1278 if (GET_MODE (target
) != ext_mode
)
1280 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1281 between the mode of the extraction (word_mode) and the target
1282 mode. Instead, create a temporary and use convert_move to set
1285 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1287 target
= gen_lowpart (ext_mode
, target
);
1288 if (GET_MODE_PRECISION (ext_mode
)
1289 > GET_MODE_PRECISION (GET_MODE (spec_target
)))
1290 spec_target_subreg
= target
;
1293 target
= gen_reg_rtx (ext_mode
);
1296 create_output_operand (&ops
[0], target
, ext_mode
);
1297 create_fixed_operand (&ops
[1], op0
);
1298 create_integer_operand (&ops
[2], bitsize
);
1299 create_integer_operand (&ops
[3], bitnum
);
1300 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1302 target
= ops
[0].value
;
1303 if (target
== spec_target
)
1305 if (target
== spec_target_subreg
)
1307 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1312 /* A subroutine of extract_bit_field, with the same arguments.
1313 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1314 if we can find no other means of implementing the operation.
1315 if FALLBACK_P is false, return NULL instead. */
1318 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1319 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1320 enum machine_mode mode
, enum machine_mode tmode
,
1324 enum machine_mode int_mode
;
1325 enum machine_mode mode1
;
1327 if (tmode
== VOIDmode
)
1330 while (GET_CODE (op0
) == SUBREG
)
1332 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1333 op0
= SUBREG_REG (op0
);
1336 /* If we have an out-of-bounds access to a register, just return an
1337 uninitialized register of the required mode. This can occur if the
1338 source code contains an out-of-bounds access to a small array. */
1339 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1340 return gen_reg_rtx (tmode
);
1343 && mode
== GET_MODE (op0
)
1345 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1347 /* We're trying to extract a full register from itself. */
1351 /* See if we can get a better vector mode before extracting. */
1352 if (VECTOR_MODE_P (GET_MODE (op0
))
1354 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1356 enum machine_mode new_mode
;
1358 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1359 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1360 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1361 new_mode
= MIN_MODE_VECTOR_FRACT
;
1362 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1363 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1364 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1365 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1366 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1367 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1369 new_mode
= MIN_MODE_VECTOR_INT
;
1371 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1372 if (GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1373 && targetm
.vector_mode_supported_p (new_mode
))
1375 if (new_mode
!= VOIDmode
)
1376 op0
= gen_lowpart (new_mode
, op0
);
1379 /* Use vec_extract patterns for extracting parts of vectors whenever
1381 if (VECTOR_MODE_P (GET_MODE (op0
))
1383 && optab_handler (vec_extract_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
1384 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1385 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1387 struct expand_operand ops
[3];
1388 enum machine_mode outermode
= GET_MODE (op0
);
1389 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1390 enum insn_code icode
= optab_handler (vec_extract_optab
, outermode
);
1391 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1393 create_output_operand (&ops
[0], target
, innermode
);
1394 create_input_operand (&ops
[1], op0
, outermode
);
1395 create_integer_operand (&ops
[2], pos
);
1396 if (maybe_expand_insn (icode
, 3, ops
))
1398 target
= ops
[0].value
;
1399 if (GET_MODE (target
) != mode
)
1400 return gen_lowpart (tmode
, target
);
1405 /* Make sure we are playing with integral modes. Pun with subregs
1408 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1409 if (imode
!= GET_MODE (op0
))
1412 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
1413 else if (imode
!= BLKmode
)
1415 op0
= gen_lowpart (imode
, op0
);
1417 /* If we got a SUBREG, force it into a register since we
1418 aren't going to be able to do another SUBREG on it. */
1419 if (GET_CODE (op0
) == SUBREG
)
1420 op0
= force_reg (imode
, op0
);
1422 else if (REG_P (op0
))
1425 imode
= smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0
)),
1427 reg
= gen_reg_rtx (imode
);
1428 subreg
= gen_lowpart_SUBREG (GET_MODE (op0
), reg
);
1429 emit_move_insn (subreg
, op0
);
1431 bitnum
+= SUBREG_BYTE (subreg
) * BITS_PER_UNIT
;
1435 HOST_WIDE_INT size
= GET_MODE_SIZE (GET_MODE (op0
));
1436 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1437 emit_move_insn (mem
, op0
);
1438 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1443 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1444 If that's wrong, the solution is to test for it and set TARGET to 0
1447 /* If the bitfield is volatile, we need to make sure the access
1448 remains on a type-aligned boundary. */
1449 if (GET_CODE (op0
) == MEM
1450 && MEM_VOLATILE_P (op0
)
1451 && GET_MODE_BITSIZE (GET_MODE (op0
)) > 0
1452 && flag_strict_volatile_bitfields
> 0)
1453 goto no_subreg_mode_swap
;
1455 /* Only scalar integer modes can be converted via subregs. There is an
1456 additional problem for FP modes here in that they can have a precision
1457 which is different from the size. mode_for_size uses precision, but
1458 we want a mode based on the size, so we must avoid calling it for FP
1461 if (SCALAR_INT_MODE_P (tmode
))
1463 enum machine_mode try_mode
= mode_for_size (bitsize
,
1464 GET_MODE_CLASS (tmode
), 0);
1465 if (try_mode
!= BLKmode
)
1468 gcc_assert (mode1
!= BLKmode
);
1470 /* Extraction of a full MODE1 value can be done with a subreg as long
1471 as the least significant bit of the value is the least significant
1472 bit of either OP0 or a word of OP0. */
1474 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1475 && bitsize
== GET_MODE_BITSIZE (mode1
)
1476 && TRULY_NOOP_TRUNCATION_MODES_P (mode1
, GET_MODE (op0
)))
1478 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1479 bitnum
/ BITS_PER_UNIT
);
1481 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1484 /* Extraction of a full MODE1 value can be done with a load as long as
1485 the field is on a byte boundary and is sufficiently aligned. */
1486 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
))
1488 op0
= adjust_bitfield_address (op0
, mode1
, bitnum
/ BITS_PER_UNIT
);
1489 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1492 no_subreg_mode_swap
:
1494 /* Handle fields bigger than a word. */
1496 if (bitsize
> BITS_PER_WORD
)
1498 /* Here we transfer the words of the field
1499 in the order least significant first.
1500 This is because the most significant word is the one which may
1501 be less than full. */
1503 unsigned int backwards
= WORDS_BIG_ENDIAN
;
1504 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1508 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1509 target
= gen_reg_rtx (mode
);
1511 /* Indicate for flow that the entire target reg is being set. */
1512 emit_clobber (target
);
1514 last
= get_last_insn ();
1515 for (i
= 0; i
< nwords
; i
++)
1517 /* If I is 0, use the low-order word in both field and target;
1518 if I is 1, use the next to lowest word; and so on. */
1519 /* Word number in TARGET to use. */
1520 unsigned int wordnum
1522 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1524 /* Offset from start of field in OP0. */
1525 unsigned int bit_offset
= (backwards
1526 ? MAX ((int) bitsize
- ((int) i
+ 1)
1529 : (int) i
* BITS_PER_WORD
);
1530 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1532 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1533 bitsize
- i
* BITS_PER_WORD
),
1534 bitnum
+ bit_offset
, 1, target_part
,
1535 mode
, word_mode
, fallback_p
);
1537 gcc_assert (target_part
);
1540 delete_insns_since (last
);
1544 if (result_part
!= target_part
)
1545 emit_move_insn (target_part
, result_part
);
1550 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1551 need to be zero'd out. */
1552 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1554 unsigned int i
, total_words
;
1556 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1557 for (i
= nwords
; i
< total_words
; i
++)
1559 (operand_subword (target
,
1560 backwards
? total_words
- i
- 1 : i
,
1567 /* Signed bit field: sign-extend with two arithmetic shifts. */
1568 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1569 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1570 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1571 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1574 /* If OP0 is a multi-word register, narrow it to the affected word.
1575 If the region spans two words, defer to extract_split_bit_field. */
1576 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1578 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
1579 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1580 bitnum
%= BITS_PER_WORD
;
1581 if (bitnum
+ bitsize
> BITS_PER_WORD
)
1585 target
= extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1586 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1590 /* From here on we know the desired field is smaller than a word.
1591 If OP0 is a register, it too fits within a word. */
1592 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1593 extraction_insn extv
;
1595 /* ??? We could limit the structure size to the part of OP0 that
1596 contains the field, with appropriate checks for endianness
1597 and TRULY_NOOP_TRUNCATION. */
1598 && get_best_reg_extraction_insn (&extv
, pattern
,
1599 GET_MODE_BITSIZE (GET_MODE (op0
)),
1602 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
, bitnum
,
1603 unsignedp
, target
, mode
,
1609 /* If OP0 is a memory, try copying it to a register and seeing if a
1610 cheap register alternative is available. */
1613 /* Do not use extv/extzv for volatile bitfields when
1614 -fstrict-volatile-bitfields is in effect. */
1615 if (!(MEM_VOLATILE_P (op0
) && flag_strict_volatile_bitfields
> 0)
1616 && get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1619 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
,
1627 rtx last
= get_last_insn ();
1629 /* Try loading part of OP0 into a register and extracting the
1630 bitfield from that. */
1631 unsigned HOST_WIDE_INT bitpos
;
1632 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1633 0, 0, tmode
, &bitpos
);
1636 xop0
= copy_to_reg (xop0
);
1637 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1639 mode
, tmode
, false);
1642 delete_insns_since (last
);
1649 /* Find a correspondingly-sized integer field, so we can apply
1650 shifts and masks to it. */
1651 int_mode
= int_mode_for_mode (tmode
);
1652 if (int_mode
== BLKmode
)
1653 int_mode
= int_mode_for_mode (mode
);
1654 /* Should probably push op0 out to memory and then do a load. */
1655 gcc_assert (int_mode
!= BLKmode
);
1657 target
= extract_fixed_bit_field (int_mode
, op0
, bitsize
, bitnum
,
1659 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1662 /* Generate code to extract a byte-field from STR_RTX
1663 containing BITSIZE bits, starting at BITNUM,
1664 and put it in TARGET if possible (if TARGET is nonzero).
1665 Regardless of TARGET, we return the rtx for where the value is placed.
1667 STR_RTX is the structure containing the byte (a REG or MEM).
1668 UNSIGNEDP is nonzero if this is an unsigned bit field.
1669 MODE is the natural mode of the field value once extracted.
1670 TMODE is the mode the caller would like the value to have;
1671 but the value may be returned with type MODE instead.
1673 If a TARGET is specified and we can store in it at no extra cost,
1674 we do so, and return TARGET.
1675 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1676 if they are equally easy. */
1679 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1680 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1681 enum machine_mode mode
, enum machine_mode tmode
)
1683 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1684 target
, mode
, tmode
, true);
1687 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1688 from bit BITNUM of OP0.
1690 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1691 If TARGET is nonzero, attempts to store the value there
1692 and return TARGET, but this is not guaranteed.
1693 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1696 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1697 unsigned HOST_WIDE_INT bitsize
,
1698 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1701 enum machine_mode mode
;
1705 /* Get the proper mode to use for this field. We want a mode that
1706 includes the entire field. If such a mode would be larger than
1707 a word, we won't be doing the extraction the normal way. */
1709 if (MEM_VOLATILE_P (op0
)
1710 && flag_strict_volatile_bitfields
> 0)
1712 if (GET_MODE_BITSIZE (GET_MODE (op0
)) > 0)
1713 mode
= GET_MODE (op0
);
1714 else if (target
&& GET_MODE_BITSIZE (GET_MODE (target
)) > 0)
1715 mode
= GET_MODE (target
);
1720 mode
= get_best_mode (bitsize
, bitnum
, 0, 0,
1721 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1723 if (mode
== VOIDmode
)
1724 /* The only way this should occur is if the field spans word
1726 return extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1728 unsigned int total_bits
= GET_MODE_BITSIZE (mode
);
1729 HOST_WIDE_INT bit_offset
= bitnum
- bitnum
% total_bits
;
1731 /* If we're accessing a volatile MEM, we can't apply BIT_OFFSET
1732 if it results in a multi-word access where we otherwise wouldn't
1733 have one. So, check for that case here. */
1735 && MEM_VOLATILE_P (op0
)
1736 && flag_strict_volatile_bitfields
> 0
1737 && bitnum
% BITS_PER_UNIT
+ bitsize
<= total_bits
1738 && bitnum
% GET_MODE_BITSIZE (mode
) + bitsize
> total_bits
)
1740 /* If the target doesn't support unaligned access, give up and
1741 split the access into two. */
1742 if (STRICT_ALIGNMENT
)
1743 return extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1744 bit_offset
= bitnum
- bitnum
% BITS_PER_UNIT
;
1746 op0
= adjust_bitfield_address (op0
, mode
, bit_offset
/ BITS_PER_UNIT
);
1747 bitnum
-= bit_offset
;
1750 mode
= GET_MODE (op0
);
1751 gcc_assert (SCALAR_INT_MODE_P (mode
));
1753 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1754 for invalid input, such as extract equivalent of f5 from
1755 gcc.dg/pr48335-2.c. */
1757 if (BYTES_BIG_ENDIAN
)
1758 /* BITNUM is the distance between our msb and that of OP0.
1759 Convert it to the distance from the lsb. */
1760 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1762 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1763 We have reduced the big-endian case to the little-endian case. */
1769 /* If the field does not already start at the lsb,
1770 shift it so it does. */
1771 /* Maybe propagate the target for the shift. */
1772 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1775 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
1777 /* Convert the value to the desired mode. */
1779 op0
= convert_to_mode (tmode
, op0
, 1);
1781 /* Unless the msb of the field used to be the msb when we shifted,
1782 mask out the upper bits. */
1784 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
1785 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1786 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1787 target
, 1, OPTAB_LIB_WIDEN
);
1791 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1792 then arithmetic-shift its lsb to the lsb of the word. */
1793 op0
= force_reg (mode
, op0
);
1795 /* Find the narrowest integer mode that contains the field. */
1797 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1798 mode
= GET_MODE_WIDER_MODE (mode
))
1799 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitnum
)
1801 op0
= convert_to_mode (mode
, op0
, 0);
1808 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
1810 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
1811 /* Maybe propagate the target for the shift. */
1812 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1813 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1816 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1817 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1821 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1822 complement of that if COMPLEMENT. The mask is truncated if
1823 necessary to the width of mode MODE. The mask is zero-extended if
1824 BITSIZE+BITPOS is too small for MODE. */
1827 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1831 mask
= double_int::mask (bitsize
);
1832 mask
= mask
.llshift (bitpos
, HOST_BITS_PER_DOUBLE_INT
);
1837 return immed_double_int_const (mask
, mode
);
1840 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1844 lshift_value (enum machine_mode mode
, unsigned HOST_WIDE_INT value
,
1849 val
= double_int::from_uhwi (value
);
1850 val
= val
.llshift (bitpos
, HOST_BITS_PER_DOUBLE_INT
);
1852 return immed_double_int_const (val
, mode
);
1855 /* Extract a bit field that is split across two words
1856 and return an RTX for the result.
1858 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1859 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1860 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1863 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1864 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1867 unsigned int bitsdone
= 0;
1868 rtx result
= NULL_RTX
;
1871 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1873 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1874 unit
= BITS_PER_WORD
;
1876 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1878 while (bitsdone
< bitsize
)
1880 unsigned HOST_WIDE_INT thissize
;
1882 unsigned HOST_WIDE_INT thispos
;
1883 unsigned HOST_WIDE_INT offset
;
1885 offset
= (bitpos
+ bitsdone
) / unit
;
1886 thispos
= (bitpos
+ bitsdone
) % unit
;
1888 /* THISSIZE must not overrun a word boundary. Otherwise,
1889 extract_fixed_bit_field will call us again, and we will mutually
1891 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1892 thissize
= MIN (thissize
, unit
- thispos
);
1894 /* If OP0 is a register, then handle OFFSET here.
1896 When handling multiword bitfields, extract_bit_field may pass
1897 down a word_mode SUBREG of a larger REG for a bitfield that actually
1898 crosses a word boundary. Thus, for a SUBREG, we must find
1899 the current word starting from the base register. */
1900 if (GET_CODE (op0
) == SUBREG
)
1902 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1903 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1904 GET_MODE (SUBREG_REG (op0
)));
1907 else if (REG_P (op0
))
1909 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1915 /* Extract the parts in bit-counting order,
1916 whose meaning is determined by BYTES_PER_UNIT.
1917 OFFSET is in UNITs, and UNIT is in bits. */
1918 part
= extract_fixed_bit_field (word_mode
, word
, thissize
,
1919 offset
* unit
+ thispos
, 0, 1);
1920 bitsdone
+= thissize
;
1922 /* Shift this part into place for the result. */
1923 if (BYTES_BIG_ENDIAN
)
1925 if (bitsize
!= bitsdone
)
1926 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1927 bitsize
- bitsdone
, 0, 1);
1931 if (bitsdone
!= thissize
)
1932 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1933 bitsdone
- thissize
, 0, 1);
1939 /* Combine the parts with bitwise or. This works
1940 because we extracted each part as an unsigned bit field. */
1941 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
1947 /* Unsigned bit field: we are done. */
1950 /* Signed bit field: sign-extend with two arithmetic shifts. */
1951 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
1952 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
1953 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
1954 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
1957 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1958 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1959 MODE, fill the upper bits with zeros. Fail if the layout of either
1960 mode is unknown (as for CC modes) or if the extraction would involve
1961 unprofitable mode punning. Return the value on success, otherwise
1964 This is different from gen_lowpart* in these respects:
1966 - the returned value must always be considered an rvalue
1968 - when MODE is wider than SRC_MODE, the extraction involves
1971 - when MODE is smaller than SRC_MODE, the extraction involves
1972 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1974 In other words, this routine performs a computation, whereas the
1975 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1979 extract_low_bits (enum machine_mode mode
, enum machine_mode src_mode
, rtx src
)
1981 enum machine_mode int_mode
, src_int_mode
;
1983 if (mode
== src_mode
)
1986 if (CONSTANT_P (src
))
1988 /* simplify_gen_subreg can't be used here, as if simplify_subreg
1989 fails, it will happily create (subreg (symbol_ref)) or similar
1991 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
1992 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
1996 if (GET_MODE (src
) == VOIDmode
1997 || !validate_subreg (mode
, src_mode
, src
, byte
))
2000 src
= force_reg (GET_MODE (src
), src
);
2001 return gen_rtx_SUBREG (mode
, src
, byte
);
2004 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2007 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2008 && MODES_TIEABLE_P (mode
, src_mode
))
2010 rtx x
= gen_lowpart_common (mode
, src
);
2015 src_int_mode
= int_mode_for_mode (src_mode
);
2016 int_mode
= int_mode_for_mode (mode
);
2017 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2020 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2022 if (!MODES_TIEABLE_P (int_mode
, mode
))
2025 src
= gen_lowpart (src_int_mode
, src
);
2026 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2027 src
= gen_lowpart (mode
, src
);
2031 /* Add INC into TARGET. */
2034 expand_inc (rtx target
, rtx inc
)
2036 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2038 target
, 0, OPTAB_LIB_WIDEN
);
2039 if (value
!= target
)
2040 emit_move_insn (target
, value
);
2043 /* Subtract DEC from TARGET. */
2046 expand_dec (rtx target
, rtx dec
)
2048 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2050 target
, 0, OPTAB_LIB_WIDEN
);
2051 if (value
!= target
)
2052 emit_move_insn (target
, value
);
2055 /* Output a shift instruction for expression code CODE,
2056 with SHIFTED being the rtx for the value to shift,
2057 and AMOUNT the rtx for the amount to shift by.
2058 Store the result in the rtx TARGET, if that is convenient.
2059 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2060 Return the rtx for where the value is. */
2063 expand_shift_1 (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2064 rtx amount
, rtx target
, int unsignedp
)
2067 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2068 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2069 optab lshift_optab
= ashl_optab
;
2070 optab rshift_arith_optab
= ashr_optab
;
2071 optab rshift_uns_optab
= lshr_optab
;
2072 optab lrotate_optab
= rotl_optab
;
2073 optab rrotate_optab
= rotr_optab
;
2074 enum machine_mode op1_mode
;
2076 bool speed
= optimize_insn_for_speed_p ();
2079 op1_mode
= GET_MODE (op1
);
2081 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2082 shift amount is a vector, use the vector/vector shift patterns. */
2083 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2085 lshift_optab
= vashl_optab
;
2086 rshift_arith_optab
= vashr_optab
;
2087 rshift_uns_optab
= vlshr_optab
;
2088 lrotate_optab
= vrotl_optab
;
2089 rrotate_optab
= vrotr_optab
;
2092 /* Previously detected shift-counts computed by NEGATE_EXPR
2093 and shifted in the other direction; but that does not work
2096 if (SHIFT_COUNT_TRUNCATED
)
2098 if (CONST_INT_P (op1
)
2099 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2100 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2101 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2102 % GET_MODE_BITSIZE (mode
));
2103 else if (GET_CODE (op1
) == SUBREG
2104 && subreg_lowpart_p (op1
)
2105 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2106 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2107 op1
= SUBREG_REG (op1
);
2110 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2111 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2112 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2115 && CONST_INT_P (op1
)
2116 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (mode
) / 2 + left
,
2117 GET_MODE_BITSIZE (mode
) - 1))
2119 op1
= GEN_INT (GET_MODE_BITSIZE (mode
) - INTVAL (op1
));
2121 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2124 if (op1
== const0_rtx
)
2127 /* Check whether its cheaper to implement a left shift by a constant
2128 bit count by a sequence of additions. */
2129 if (code
== LSHIFT_EXPR
2130 && CONST_INT_P (op1
)
2132 && INTVAL (op1
) < GET_MODE_PRECISION (mode
)
2133 && INTVAL (op1
) < MAX_BITS_PER_WORD
2134 && (shift_cost (speed
, mode
, INTVAL (op1
))
2135 > INTVAL (op1
) * add_cost (speed
, mode
))
2136 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2139 for (i
= 0; i
< INTVAL (op1
); i
++)
2141 temp
= force_reg (mode
, shifted
);
2142 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2143 unsignedp
, OPTAB_LIB_WIDEN
);
2148 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2150 enum optab_methods methods
;
2153 methods
= OPTAB_DIRECT
;
2154 else if (attempt
== 1)
2155 methods
= OPTAB_WIDEN
;
2157 methods
= OPTAB_LIB_WIDEN
;
2161 /* Widening does not work for rotation. */
2162 if (methods
== OPTAB_WIDEN
)
2164 else if (methods
== OPTAB_LIB_WIDEN
)
2166 /* If we have been unable to open-code this by a rotation,
2167 do it as the IOR of two shifts. I.e., to rotate A
2169 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2170 where C is the bitsize of A.
2172 It is theoretically possible that the target machine might
2173 not be able to perform either shift and hence we would
2174 be making two libcalls rather than just the one for the
2175 shift (similarly if IOR could not be done). We will allow
2176 this extremely unlikely lossage to avoid complicating the
2179 rtx subtarget
= target
== shifted
? 0 : target
;
2180 rtx new_amount
, other_amount
;
2184 if (op1
== const0_rtx
)
2186 else if (CONST_INT_P (op1
))
2187 other_amount
= GEN_INT (GET_MODE_BITSIZE (mode
)
2192 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2193 op1
, GET_MODE (op1
));
2194 HOST_WIDE_INT mask
= GET_MODE_PRECISION (mode
) - 1;
2196 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2197 gen_int_mode (mask
, GET_MODE (op1
)));
2200 shifted
= force_reg (mode
, shifted
);
2202 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2203 mode
, shifted
, new_amount
, 0, 1);
2204 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2205 mode
, shifted
, other_amount
,
2207 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2208 unsignedp
, methods
);
2211 temp
= expand_binop (mode
,
2212 left
? lrotate_optab
: rrotate_optab
,
2213 shifted
, op1
, target
, unsignedp
, methods
);
2216 temp
= expand_binop (mode
,
2217 left
? lshift_optab
: rshift_uns_optab
,
2218 shifted
, op1
, target
, unsignedp
, methods
);
2220 /* Do arithmetic shifts.
2221 Also, if we are going to widen the operand, we can just as well
2222 use an arithmetic right-shift instead of a logical one. */
2223 if (temp
== 0 && ! rotate
2224 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2226 enum optab_methods methods1
= methods
;
2228 /* If trying to widen a log shift to an arithmetic shift,
2229 don't accept an arithmetic shift of the same size. */
2231 methods1
= OPTAB_MUST_WIDEN
;
2233 /* Arithmetic shift */
2235 temp
= expand_binop (mode
,
2236 left
? lshift_optab
: rshift_arith_optab
,
2237 shifted
, op1
, target
, unsignedp
, methods1
);
2240 /* We used to try extzv here for logical right shifts, but that was
2241 only useful for one machine, the VAX, and caused poor code
2242 generation there for lshrdi3, so the code was deleted and a
2243 define_expand for lshrsi3 was added to vax.md. */
2250 /* Output a shift instruction for expression code CODE,
2251 with SHIFTED being the rtx for the value to shift,
2252 and AMOUNT the amount to shift by.
2253 Store the result in the rtx TARGET, if that is convenient.
2254 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2255 Return the rtx for where the value is. */
2258 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2259 int amount
, rtx target
, int unsignedp
)
2261 return expand_shift_1 (code
, mode
,
2262 shifted
, GEN_INT (amount
), target
, unsignedp
);
2265 /* Output a shift instruction for expression code CODE,
2266 with SHIFTED being the rtx for the value to shift,
2267 and AMOUNT the tree for the amount to shift by.
2268 Store the result in the rtx TARGET, if that is convenient.
2269 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2270 Return the rtx for where the value is. */
2273 expand_variable_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2274 tree amount
, rtx target
, int unsignedp
)
2276 return expand_shift_1 (code
, mode
,
2277 shifted
, expand_normal (amount
), target
, unsignedp
);
2281 /* Indicates the type of fixup needed after a constant multiplication.
2282 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2283 the result should be negated, and ADD_VARIANT means that the
2284 multiplicand should be added to the result. */
2285 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2287 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2288 const struct mult_cost
*, enum machine_mode mode
);
2289 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2290 struct algorithm
*, enum mult_variant
*, int);
2291 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2292 const struct algorithm
*, enum mult_variant
);
2293 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2294 static rtx
extract_high_half (enum machine_mode
, rtx
);
2295 static rtx
expmed_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2296 static rtx
expmed_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2298 /* Compute and return the best algorithm for multiplying by T.
2299 The algorithm must cost less than cost_limit
2300 If retval.cost >= COST_LIMIT, no algorithm was found and all
2301 other field of the returned struct are undefined.
2302 MODE is the machine mode of the multiplication. */
2305 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2306 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2309 struct algorithm
*alg_in
, *best_alg
;
2310 struct mult_cost best_cost
;
2311 struct mult_cost new_limit
;
2312 int op_cost
, op_latency
;
2313 unsigned HOST_WIDE_INT orig_t
= t
;
2314 unsigned HOST_WIDE_INT q
;
2315 int maxm
, hash_index
;
2316 bool cache_hit
= false;
2317 enum alg_code cache_alg
= alg_zero
;
2318 bool speed
= optimize_insn_for_speed_p ();
2319 enum machine_mode imode
;
2320 struct alg_hash_entry
*entry_ptr
;
2322 /* Indicate that no algorithm is yet found. If no algorithm
2323 is found, this value will be returned and indicate failure. */
2324 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2325 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2327 if (cost_limit
->cost
< 0
2328 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2331 /* Be prepared for vector modes. */
2332 imode
= GET_MODE_INNER (mode
);
2333 if (imode
== VOIDmode
)
2336 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2338 /* Restrict the bits of "t" to the multiplication's mode. */
2339 t
&= GET_MODE_MASK (imode
);
2341 /* t == 1 can be done in zero cost. */
2345 alg_out
->cost
.cost
= 0;
2346 alg_out
->cost
.latency
= 0;
2347 alg_out
->op
[0] = alg_m
;
2351 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2355 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2360 alg_out
->cost
.cost
= zero_cost (speed
);
2361 alg_out
->cost
.latency
= zero_cost (speed
);
2362 alg_out
->op
[0] = alg_zero
;
2367 /* We'll be needing a couple extra algorithm structures now. */
2369 alg_in
= XALLOCA (struct algorithm
);
2370 best_alg
= XALLOCA (struct algorithm
);
2371 best_cost
= *cost_limit
;
2373 /* Compute the hash index. */
2374 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2376 /* See if we already know what to do for T. */
2377 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2378 if (entry_ptr
->t
== t
2379 && entry_ptr
->mode
== mode
2380 && entry_ptr
->mode
== mode
2381 && entry_ptr
->speed
== speed
2382 && entry_ptr
->alg
!= alg_unknown
)
2384 cache_alg
= entry_ptr
->alg
;
2386 if (cache_alg
== alg_impossible
)
2388 /* The cache tells us that it's impossible to synthesize
2389 multiplication by T within entry_ptr->cost. */
2390 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2391 /* COST_LIMIT is at least as restrictive as the one
2392 recorded in the hash table, in which case we have no
2393 hope of synthesizing a multiplication. Just
2397 /* If we get here, COST_LIMIT is less restrictive than the
2398 one recorded in the hash table, so we may be able to
2399 synthesize a multiplication. Proceed as if we didn't
2400 have the cache entry. */
2404 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2405 /* The cached algorithm shows that this multiplication
2406 requires more cost than COST_LIMIT. Just return. This
2407 way, we don't clobber this cache entry with
2408 alg_impossible but retain useful information. */
2420 goto do_alg_addsub_t_m2
;
2422 case alg_add_factor
:
2423 case alg_sub_factor
:
2424 goto do_alg_addsub_factor
;
2427 goto do_alg_add_t2_m
;
2430 goto do_alg_sub_t2_m
;
2438 /* If we have a group of zero bits at the low-order part of T, try
2439 multiplying by the remaining bits and then doing a shift. */
2444 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2448 /* The function expand_shift will choose between a shift and
2449 a sequence of additions, so the observed cost is given as
2450 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2451 op_cost
= m
* add_cost (speed
, mode
);
2452 if (shift_cost (speed
, mode
, m
) < op_cost
)
2453 op_cost
= shift_cost (speed
, mode
, m
);
2454 new_limit
.cost
= best_cost
.cost
- op_cost
;
2455 new_limit
.latency
= best_cost
.latency
- op_cost
;
2456 synth_mult (alg_in
, q
, &new_limit
, mode
);
2458 alg_in
->cost
.cost
+= op_cost
;
2459 alg_in
->cost
.latency
+= op_cost
;
2460 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2462 struct algorithm
*x
;
2463 best_cost
= alg_in
->cost
;
2464 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2465 best_alg
->log
[best_alg
->ops
] = m
;
2466 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2469 /* See if treating ORIG_T as a signed number yields a better
2470 sequence. Try this sequence only for a negative ORIG_T
2471 as it would be useless for a non-negative ORIG_T. */
2472 if ((HOST_WIDE_INT
) orig_t
< 0)
2474 /* Shift ORIG_T as follows because a right shift of a
2475 negative-valued signed type is implementation
2477 q
= ~(~orig_t
>> m
);
2478 /* The function expand_shift will choose between a shift
2479 and a sequence of additions, so the observed cost is
2480 given as MIN (m * add_cost(speed, mode),
2481 shift_cost(speed, mode, m)). */
2482 op_cost
= m
* add_cost (speed
, mode
);
2483 if (shift_cost (speed
, mode
, m
) < op_cost
)
2484 op_cost
= shift_cost (speed
, mode
, m
);
2485 new_limit
.cost
= best_cost
.cost
- op_cost
;
2486 new_limit
.latency
= best_cost
.latency
- op_cost
;
2487 synth_mult (alg_in
, q
, &new_limit
, mode
);
2489 alg_in
->cost
.cost
+= op_cost
;
2490 alg_in
->cost
.latency
+= op_cost
;
2491 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2493 struct algorithm
*x
;
2494 best_cost
= alg_in
->cost
;
2495 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2496 best_alg
->log
[best_alg
->ops
] = m
;
2497 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2505 /* If we have an odd number, add or subtract one. */
2508 unsigned HOST_WIDE_INT w
;
2511 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2513 /* If T was -1, then W will be zero after the loop. This is another
2514 case where T ends with ...111. Handling this with (T + 1) and
2515 subtract 1 produces slightly better code and results in algorithm
2516 selection much faster than treating it like the ...0111 case
2520 /* Reject the case where t is 3.
2521 Thus we prefer addition in that case. */
2524 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2526 op_cost
= add_cost (speed
, mode
);
2527 new_limit
.cost
= best_cost
.cost
- op_cost
;
2528 new_limit
.latency
= best_cost
.latency
- op_cost
;
2529 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2531 alg_in
->cost
.cost
+= op_cost
;
2532 alg_in
->cost
.latency
+= op_cost
;
2533 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2535 struct algorithm
*x
;
2536 best_cost
= alg_in
->cost
;
2537 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2538 best_alg
->log
[best_alg
->ops
] = 0;
2539 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2544 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2546 op_cost
= add_cost (speed
, mode
);
2547 new_limit
.cost
= best_cost
.cost
- op_cost
;
2548 new_limit
.latency
= best_cost
.latency
- op_cost
;
2549 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2551 alg_in
->cost
.cost
+= op_cost
;
2552 alg_in
->cost
.latency
+= op_cost
;
2553 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2555 struct algorithm
*x
;
2556 best_cost
= alg_in
->cost
;
2557 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2558 best_alg
->log
[best_alg
->ops
] = 0;
2559 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2563 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2564 quickly with a - a * n for some appropriate constant n. */
2565 m
= exact_log2 (-orig_t
+ 1);
2566 if (m
>= 0 && m
< maxm
)
2568 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2569 new_limit
.cost
= best_cost
.cost
- op_cost
;
2570 new_limit
.latency
= best_cost
.latency
- op_cost
;
2571 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2574 alg_in
->cost
.cost
+= op_cost
;
2575 alg_in
->cost
.latency
+= op_cost
;
2576 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2578 struct algorithm
*x
;
2579 best_cost
= alg_in
->cost
;
2580 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2581 best_alg
->log
[best_alg
->ops
] = m
;
2582 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2590 /* Look for factors of t of the form
2591 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2592 If we find such a factor, we can multiply by t using an algorithm that
2593 multiplies by q, shift the result by m and add/subtract it to itself.
2595 We search for large factors first and loop down, even if large factors
2596 are less probable than small; if we find a large factor we will find a
2597 good sequence quickly, and therefore be able to prune (by decreasing
2598 COST_LIMIT) the search. */
2600 do_alg_addsub_factor
:
2601 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2603 unsigned HOST_WIDE_INT d
;
2605 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2606 if (t
% d
== 0 && t
> d
&& m
< maxm
2607 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2609 /* If the target has a cheap shift-and-add instruction use
2610 that in preference to a shift insn followed by an add insn.
2611 Assume that the shift-and-add is "atomic" with a latency
2612 equal to its cost, otherwise assume that on superscalar
2613 hardware the shift may be executed concurrently with the
2614 earlier steps in the algorithm. */
2615 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2616 if (shiftadd_cost (speed
, mode
, m
) < op_cost
)
2618 op_cost
= shiftadd_cost (speed
, mode
, m
);
2619 op_latency
= op_cost
;
2622 op_latency
= add_cost (speed
, mode
);
2624 new_limit
.cost
= best_cost
.cost
- op_cost
;
2625 new_limit
.latency
= best_cost
.latency
- op_latency
;
2626 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2628 alg_in
->cost
.cost
+= op_cost
;
2629 alg_in
->cost
.latency
+= op_latency
;
2630 if (alg_in
->cost
.latency
< op_cost
)
2631 alg_in
->cost
.latency
= op_cost
;
2632 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2634 struct algorithm
*x
;
2635 best_cost
= alg_in
->cost
;
2636 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2637 best_alg
->log
[best_alg
->ops
] = m
;
2638 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2640 /* Other factors will have been taken care of in the recursion. */
2644 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2645 if (t
% d
== 0 && t
> d
&& m
< maxm
2646 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2648 /* If the target has a cheap shift-and-subtract insn use
2649 that in preference to a shift insn followed by a sub insn.
2650 Assume that the shift-and-sub is "atomic" with a latency
2651 equal to it's cost, otherwise assume that on superscalar
2652 hardware the shift may be executed concurrently with the
2653 earlier steps in the algorithm. */
2654 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2655 if (shiftsub0_cost (speed
, mode
, m
) < op_cost
)
2657 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2658 op_latency
= op_cost
;
2661 op_latency
= add_cost (speed
, mode
);
2663 new_limit
.cost
= best_cost
.cost
- op_cost
;
2664 new_limit
.latency
= best_cost
.latency
- op_latency
;
2665 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2667 alg_in
->cost
.cost
+= op_cost
;
2668 alg_in
->cost
.latency
+= op_latency
;
2669 if (alg_in
->cost
.latency
< op_cost
)
2670 alg_in
->cost
.latency
= op_cost
;
2671 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2673 struct algorithm
*x
;
2674 best_cost
= alg_in
->cost
;
2675 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2676 best_alg
->log
[best_alg
->ops
] = m
;
2677 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2685 /* Try shift-and-add (load effective address) instructions,
2686 i.e. do a*3, a*5, a*9. */
2693 if (m
>= 0 && m
< maxm
)
2695 op_cost
= shiftadd_cost (speed
, mode
, m
);
2696 new_limit
.cost
= best_cost
.cost
- op_cost
;
2697 new_limit
.latency
= best_cost
.latency
- op_cost
;
2698 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2700 alg_in
->cost
.cost
+= op_cost
;
2701 alg_in
->cost
.latency
+= op_cost
;
2702 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2704 struct algorithm
*x
;
2705 best_cost
= alg_in
->cost
;
2706 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2707 best_alg
->log
[best_alg
->ops
] = m
;
2708 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2718 if (m
>= 0 && m
< maxm
)
2720 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2721 new_limit
.cost
= best_cost
.cost
- op_cost
;
2722 new_limit
.latency
= best_cost
.latency
- op_cost
;
2723 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2725 alg_in
->cost
.cost
+= op_cost
;
2726 alg_in
->cost
.latency
+= op_cost
;
2727 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2729 struct algorithm
*x
;
2730 best_cost
= alg_in
->cost
;
2731 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2732 best_alg
->log
[best_alg
->ops
] = m
;
2733 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2741 /* If best_cost has not decreased, we have not found any algorithm. */
2742 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2744 /* We failed to find an algorithm. Record alg_impossible for
2745 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2746 we are asked to find an algorithm for T within the same or
2747 lower COST_LIMIT, we can immediately return to the
2750 entry_ptr
->mode
= mode
;
2751 entry_ptr
->speed
= speed
;
2752 entry_ptr
->alg
= alg_impossible
;
2753 entry_ptr
->cost
= *cost_limit
;
2757 /* Cache the result. */
2761 entry_ptr
->mode
= mode
;
2762 entry_ptr
->speed
= speed
;
2763 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
2764 entry_ptr
->cost
.cost
= best_cost
.cost
;
2765 entry_ptr
->cost
.latency
= best_cost
.latency
;
2768 /* If we are getting a too long sequence for `struct algorithm'
2769 to record, make this search fail. */
2770 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2773 /* Copy the algorithm from temporary space to the space at alg_out.
2774 We avoid using structure assignment because the majority of
2775 best_alg is normally undefined, and this is a critical function. */
2776 alg_out
->ops
= best_alg
->ops
+ 1;
2777 alg_out
->cost
= best_cost
;
2778 memcpy (alg_out
->op
, best_alg
->op
,
2779 alg_out
->ops
* sizeof *alg_out
->op
);
2780 memcpy (alg_out
->log
, best_alg
->log
,
2781 alg_out
->ops
* sizeof *alg_out
->log
);
2784 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2785 Try three variations:
2787 - a shift/add sequence based on VAL itself
2788 - a shift/add sequence based on -VAL, followed by a negation
2789 - a shift/add sequence based on VAL - 1, followed by an addition.
2791 Return true if the cheapest of these cost less than MULT_COST,
2792 describing the algorithm in *ALG and final fixup in *VARIANT. */
2795 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2796 struct algorithm
*alg
, enum mult_variant
*variant
,
2799 struct algorithm alg2
;
2800 struct mult_cost limit
;
2802 bool speed
= optimize_insn_for_speed_p ();
2804 /* Fail quickly for impossible bounds. */
2808 /* Ensure that mult_cost provides a reasonable upper bound.
2809 Any constant multiplication can be performed with less
2810 than 2 * bits additions. */
2811 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
2812 if (mult_cost
> op_cost
)
2813 mult_cost
= op_cost
;
2815 *variant
= basic_variant
;
2816 limit
.cost
= mult_cost
;
2817 limit
.latency
= mult_cost
;
2818 synth_mult (alg
, val
, &limit
, mode
);
2820 /* This works only if the inverted value actually fits in an
2822 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
2824 op_cost
= neg_cost (speed
, mode
);
2825 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2827 limit
.cost
= alg
->cost
.cost
- op_cost
;
2828 limit
.latency
= alg
->cost
.latency
- op_cost
;
2832 limit
.cost
= mult_cost
- op_cost
;
2833 limit
.latency
= mult_cost
- op_cost
;
2836 synth_mult (&alg2
, -val
, &limit
, mode
);
2837 alg2
.cost
.cost
+= op_cost
;
2838 alg2
.cost
.latency
+= op_cost
;
2839 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2840 *alg
= alg2
, *variant
= negate_variant
;
2843 /* This proves very useful for division-by-constant. */
2844 op_cost
= add_cost (speed
, mode
);
2845 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2847 limit
.cost
= alg
->cost
.cost
- op_cost
;
2848 limit
.latency
= alg
->cost
.latency
- op_cost
;
2852 limit
.cost
= mult_cost
- op_cost
;
2853 limit
.latency
= mult_cost
- op_cost
;
2856 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2857 alg2
.cost
.cost
+= op_cost
;
2858 alg2
.cost
.latency
+= op_cost
;
2859 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2860 *alg
= alg2
, *variant
= add_variant
;
2862 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2865 /* A subroutine of expand_mult, used for constant multiplications.
2866 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2867 convenient. Use the shift/add sequence described by ALG and apply
2868 the final fixup specified by VARIANT. */
2871 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2872 rtx target
, const struct algorithm
*alg
,
2873 enum mult_variant variant
)
2875 HOST_WIDE_INT val_so_far
;
2876 rtx insn
, accum
, tem
;
2878 enum machine_mode nmode
;
2880 /* Avoid referencing memory over and over and invalid sharing
2882 op0
= force_reg (mode
, op0
);
2884 /* ACCUM starts out either as OP0 or as a zero, depending on
2885 the first operation. */
2887 if (alg
->op
[0] == alg_zero
)
2889 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
2892 else if (alg
->op
[0] == alg_m
)
2894 accum
= copy_to_mode_reg (mode
, op0
);
2900 for (opno
= 1; opno
< alg
->ops
; opno
++)
2902 int log
= alg
->log
[opno
];
2903 rtx shift_subtarget
= optimize
? 0 : accum
;
2905 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2908 rtx accum_target
= optimize
? 0 : accum
;
2911 switch (alg
->op
[opno
])
2914 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
2915 /* REG_EQUAL note will be attached to the following insn. */
2916 emit_move_insn (accum
, tem
);
2921 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
2922 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2923 add_target
? add_target
: accum_target
);
2924 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
2928 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
2929 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
2930 add_target
? add_target
: accum_target
);
2931 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
2935 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2936 log
, shift_subtarget
, 0);
2937 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
2938 add_target
? add_target
: accum_target
);
2939 val_so_far
= (val_so_far
<< log
) + 1;
2943 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2944 log
, shift_subtarget
, 0);
2945 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
2946 add_target
? add_target
: accum_target
);
2947 val_so_far
= (val_so_far
<< log
) - 1;
2950 case alg_add_factor
:
2951 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
2952 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2953 add_target
? add_target
: accum_target
);
2954 val_so_far
+= val_so_far
<< log
;
2957 case alg_sub_factor
:
2958 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
2959 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
2961 ? add_target
: (optimize
? 0 : tem
)));
2962 val_so_far
= (val_so_far
<< log
) - val_so_far
;
2969 if (SCALAR_INT_MODE_P (mode
))
2971 /* Write a REG_EQUAL note on the last insn so that we can cse
2972 multiplication sequences. Note that if ACCUM is a SUBREG,
2973 we've set the inner register and must properly indicate that. */
2974 tem
= op0
, nmode
= mode
;
2975 accum_inner
= accum
;
2976 if (GET_CODE (accum
) == SUBREG
)
2978 accum_inner
= SUBREG_REG (accum
);
2979 nmode
= GET_MODE (accum_inner
);
2980 tem
= gen_lowpart (nmode
, op0
);
2983 insn
= get_last_insn ();
2984 set_dst_reg_note (insn
, REG_EQUAL
,
2985 gen_rtx_MULT (nmode
, tem
,
2986 gen_int_mode (val_so_far
, nmode
)),
2991 if (variant
== negate_variant
)
2993 val_so_far
= -val_so_far
;
2994 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
2996 else if (variant
== add_variant
)
2998 val_so_far
= val_so_far
+ 1;
2999 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3002 /* Compare only the bits of val and val_so_far that are significant
3003 in the result mode, to avoid sign-/zero-extension confusion. */
3004 nmode
= GET_MODE_INNER (mode
);
3005 if (nmode
== VOIDmode
)
3007 val
&= GET_MODE_MASK (nmode
);
3008 val_so_far
&= GET_MODE_MASK (nmode
);
3009 gcc_assert (val
== val_so_far
);
3014 /* Perform a multiplication and return an rtx for the result.
3015 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3016 TARGET is a suggestion for where to store the result (an rtx).
3018 We check specially for a constant integer as OP1.
3019 If you want this check for OP0 as well, then before calling
3020 you should swap the two operands if OP0 would be constant. */
3023 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3026 enum mult_variant variant
;
3027 struct algorithm algorithm
;
3030 bool speed
= optimize_insn_for_speed_p ();
3031 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3033 if (CONSTANT_P (op0
))
3040 /* For vectors, there are several simplifications that can be made if
3041 all elements of the vector constant are identical. */
3043 if (GET_CODE (op1
) == CONST_VECTOR
)
3045 int i
, n
= CONST_VECTOR_NUNITS (op1
);
3046 scalar_op1
= CONST_VECTOR_ELT (op1
, 0);
3047 for (i
= 1; i
< n
; ++i
)
3048 if (!rtx_equal_p (scalar_op1
, CONST_VECTOR_ELT (op1
, i
)))
3052 if (INTEGRAL_MODE_P (mode
))
3055 HOST_WIDE_INT coeff
;
3059 if (op1
== CONST0_RTX (mode
))
3061 if (op1
== CONST1_RTX (mode
))
3063 if (op1
== CONSTM1_RTX (mode
))
3064 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3070 /* These are the operations that are potentially turned into
3071 a sequence of shifts and additions. */
3072 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3074 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3075 less than or equal in size to `unsigned int' this doesn't matter.
3076 If the mode is larger than `unsigned int', then synth_mult works
3077 only if the constant value exactly fits in an `unsigned int' without
3078 any truncation. This means that multiplying by negative values does
3079 not work; results are off by 2^32 on a 32 bit machine. */
3081 if (CONST_INT_P (scalar_op1
))
3083 coeff
= INTVAL (scalar_op1
);
3086 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3088 /* If we are multiplying in DImode, it may still be a win
3089 to try to work with shifts and adds. */
3090 if (CONST_DOUBLE_HIGH (scalar_op1
) == 0
3091 && (CONST_DOUBLE_LOW (scalar_op1
) > 0
3092 || (CONST_DOUBLE_LOW (scalar_op1
) < 0
3093 && EXACT_POWER_OF_2_OR_ZERO_P
3094 (CONST_DOUBLE_LOW (scalar_op1
)))))
3096 coeff
= CONST_DOUBLE_LOW (scalar_op1
);
3099 else if (CONST_DOUBLE_LOW (scalar_op1
) == 0)
3101 coeff
= CONST_DOUBLE_HIGH (scalar_op1
);
3102 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3104 int shift
= floor_log2 (coeff
) + HOST_BITS_PER_WIDE_INT
;
3105 if (shift
< HOST_BITS_PER_DOUBLE_INT
- 1
3106 || mode_bitsize
<= HOST_BITS_PER_DOUBLE_INT
)
3107 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3108 shift
, target
, unsignedp
);
3118 /* We used to test optimize here, on the grounds that it's better to
3119 produce a smaller program when -O is not used. But this causes
3120 such a terrible slowdown sometimes that it seems better to always
3123 /* Special case powers of two. */
3124 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3125 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3126 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3127 floor_log2 (coeff
), target
, unsignedp
);
3129 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3131 /* Attempt to handle multiplication of DImode values by negative
3132 coefficients, by performing the multiplication by a positive
3133 multiplier and then inverting the result. */
3134 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3136 /* Its safe to use -coeff even for INT_MIN, as the
3137 result is interpreted as an unsigned coefficient.
3138 Exclude cost of op0 from max_cost to match the cost
3139 calculation of the synth_mult. */
3140 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3141 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), speed
)
3142 - neg_cost (speed
, mode
));
3146 /* Special case powers of two. */
3147 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3149 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3150 floor_log2 (coeff
), target
, unsignedp
);
3151 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3154 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3157 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3158 &algorithm
, variant
);
3159 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3164 /* Exclude cost of op0 from max_cost to match the cost
3165 calculation of the synth_mult. */
3166 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), speed
);
3167 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3168 return expand_mult_const (mode
, op0
, coeff
, target
,
3169 &algorithm
, variant
);
3173 /* Expand x*2.0 as x+x. */
3174 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
))
3177 REAL_VALUE_FROM_CONST_DOUBLE (d
, scalar_op1
);
3179 if (REAL_VALUES_EQUAL (d
, dconst2
))
3181 op0
= force_reg (GET_MODE (op0
), op0
);
3182 return expand_binop (mode
, add_optab
, op0
, op0
,
3183 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3188 /* This used to use umul_optab if unsigned, but for non-widening multiply
3189 there is no difference between signed and unsigned. */
3190 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3191 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3196 /* Return a cost estimate for multiplying a register by the given
3197 COEFFicient in the given MODE and SPEED. */
3200 mult_by_coeff_cost (HOST_WIDE_INT coeff
, enum machine_mode mode
, bool speed
)
3203 struct algorithm algorithm
;
3204 enum mult_variant variant
;
3206 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3207 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
), speed
);
3208 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3209 return algorithm
.cost
.cost
;
3214 /* Perform a widening multiplication and return an rtx for the result.
3215 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3216 TARGET is a suggestion for where to store the result (an rtx).
3217 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3218 or smul_widen_optab.
3220 We check specially for a constant integer as OP1, comparing the
3221 cost of a widening multiply against the cost of a sequence of shifts
3225 expand_widening_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3226 int unsignedp
, optab this_optab
)
3228 bool speed
= optimize_insn_for_speed_p ();
3231 if (CONST_INT_P (op1
)
3232 && GET_MODE (op0
) != VOIDmode
3233 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3234 this_optab
== umul_widen_optab
))
3235 && CONST_INT_P (cop1
)
3236 && (INTVAL (cop1
) >= 0
3237 || HWI_COMPUTABLE_MODE_P (mode
)))
3239 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3241 enum mult_variant variant
;
3242 struct algorithm algorithm
;
3244 /* Special case powers of two. */
3245 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3247 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3248 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3249 floor_log2 (coeff
), target
, unsignedp
);
3252 /* Exclude cost of op0 from max_cost to match the cost
3253 calculation of the synth_mult. */
3254 max_cost
= mul_widen_cost (speed
, mode
);
3255 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3258 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3259 return expand_mult_const (mode
, op0
, coeff
, target
,
3260 &algorithm
, variant
);
3263 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3264 unsignedp
, OPTAB_LIB_WIDEN
);
3267 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3268 replace division by D, and put the least significant N bits of the result
3269 in *MULTIPLIER_PTR and return the most significant bit.
3271 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3272 needed precision is in PRECISION (should be <= N).
3274 PRECISION should be as small as possible so this function can choose
3275 multiplier more freely.
3277 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3278 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3280 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3281 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3283 unsigned HOST_WIDE_INT
3284 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3285 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3286 int *post_shift_ptr
, int *lgup_ptr
)
3288 double_int mhigh
, mlow
;
3289 int lgup
, post_shift
;
3292 /* lgup = ceil(log2(divisor)); */
3293 lgup
= ceil_log2 (d
);
3295 gcc_assert (lgup
<= n
);
3298 pow2
= n
+ lgup
- precision
;
3300 /* We could handle this with some effort, but this case is much
3301 better handled directly with a scc insn, so rely on caller using
3303 gcc_assert (pow
!= HOST_BITS_PER_DOUBLE_INT
);
3305 /* mlow = 2^(N + lgup)/d */
3306 double_int val
= double_int_zero
.set_bit (pow
);
3307 mlow
= val
.div (double_int::from_uhwi (d
), true, TRUNC_DIV_EXPR
);
3309 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3310 val
|= double_int_zero
.set_bit (pow2
);
3311 mhigh
= val
.div (double_int::from_uhwi (d
), true, TRUNC_DIV_EXPR
);
3313 gcc_assert (!mhigh
.high
|| val
.high
- d
< d
);
3314 gcc_assert (mhigh
.high
<= 1 && mlow
.high
<= 1);
3315 /* Assert that mlow < mhigh. */
3316 gcc_assert (mlow
.ult (mhigh
));
3318 /* If precision == N, then mlow, mhigh exceed 2^N
3319 (but they do not exceed 2^(N+1)). */
3321 /* Reduce to lowest terms. */
3322 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3324 int shft
= HOST_BITS_PER_WIDE_INT
- 1;
3325 unsigned HOST_WIDE_INT ml_lo
= (mlow
.high
<< shft
) | (mlow
.low
>> 1);
3326 unsigned HOST_WIDE_INT mh_lo
= (mhigh
.high
<< shft
) | (mhigh
.low
>> 1);
3330 mlow
= double_int::from_uhwi (ml_lo
);
3331 mhigh
= double_int::from_uhwi (mh_lo
);
3334 *post_shift_ptr
= post_shift
;
3336 if (n
< HOST_BITS_PER_WIDE_INT
)
3338 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3339 *multiplier_ptr
= mhigh
.low
& mask
;
3340 return mhigh
.low
>= mask
;
3344 *multiplier_ptr
= mhigh
.low
;
3349 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3350 congruent to 1 (mod 2**N). */
3352 static unsigned HOST_WIDE_INT
3353 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3355 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3357 /* The algorithm notes that the choice y = x satisfies
3358 x*y == 1 mod 2^3, since x is assumed odd.
3359 Each iteration doubles the number of bits of significance in y. */
3361 unsigned HOST_WIDE_INT mask
;
3362 unsigned HOST_WIDE_INT y
= x
;
3365 mask
= (n
== HOST_BITS_PER_WIDE_INT
3366 ? ~(unsigned HOST_WIDE_INT
) 0
3367 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3371 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3377 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3378 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3379 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3380 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3383 The result is put in TARGET if that is convenient.
3385 MODE is the mode of operation. */
3388 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3389 rtx op1
, rtx target
, int unsignedp
)
3392 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3394 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3395 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3396 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3398 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3401 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3402 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3403 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3404 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3410 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3413 extract_high_half (enum machine_mode mode
, rtx op
)
3415 enum machine_mode wider_mode
;
3417 if (mode
== word_mode
)
3418 return gen_highpart (mode
, op
);
3420 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3422 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3423 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3424 GET_MODE_BITSIZE (mode
), 0, 1);
3425 return convert_modes (mode
, wider_mode
, op
, 0);
3428 /* Like expmed_mult_highpart, but only consider using a multiplication
3429 optab. OP1 is an rtx for the constant operand. */
3432 expmed_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3433 rtx target
, int unsignedp
, int max_cost
)
3435 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3436 enum machine_mode wider_mode
;
3440 bool speed
= optimize_insn_for_speed_p ();
3442 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3444 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3445 size
= GET_MODE_BITSIZE (mode
);
3447 /* Firstly, try using a multiplication insn that only generates the needed
3448 high part of the product, and in the sign flavor of unsignedp. */
3449 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3451 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3452 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3453 unsignedp
, OPTAB_DIRECT
);
3458 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3459 Need to adjust the result after the multiplication. */
3460 if (size
- 1 < BITS_PER_WORD
3461 && (mul_highpart_cost (speed
, mode
)
3462 + 2 * shift_cost (speed
, mode
, size
-1)
3463 + 4 * add_cost (speed
, mode
) < max_cost
))
3465 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3466 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3467 unsignedp
, OPTAB_DIRECT
);
3469 /* We used the wrong signedness. Adjust the result. */
3470 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3474 /* Try widening multiplication. */
3475 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3476 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3477 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3479 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3480 unsignedp
, OPTAB_WIDEN
);
3482 return extract_high_half (mode
, tem
);
3485 /* Try widening the mode and perform a non-widening multiplication. */
3486 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3487 && size
- 1 < BITS_PER_WORD
3488 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3491 rtx insns
, wop0
, wop1
;
3493 /* We need to widen the operands, for example to ensure the
3494 constant multiplier is correctly sign or zero extended.
3495 Use a sequence to clean-up any instructions emitted by
3496 the conversions if things don't work out. */
3498 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3499 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3500 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3501 unsignedp
, OPTAB_WIDEN
);
3502 insns
= get_insns ();
3508 return extract_high_half (mode
, tem
);
3512 /* Try widening multiplication of opposite signedness, and adjust. */
3513 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3514 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3515 && size
- 1 < BITS_PER_WORD
3516 && (mul_widen_cost (speed
, wider_mode
)
3517 + 2 * shift_cost (speed
, mode
, size
-1)
3518 + 4 * add_cost (speed
, mode
) < max_cost
))
3520 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3521 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3524 tem
= extract_high_half (mode
, tem
);
3525 /* We used the wrong signedness. Adjust the result. */
3526 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3534 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3535 putting the high half of the result in TARGET if that is convenient,
3536 and return where the result is. If the operation can not be performed,
3539 MODE is the mode of operation and result.
3541 UNSIGNEDP nonzero means unsigned multiply.
3543 MAX_COST is the total allowed cost for the expanded RTL. */
3546 expmed_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3547 rtx target
, int unsignedp
, int max_cost
)
3549 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3550 unsigned HOST_WIDE_INT cnst1
;
3552 bool sign_adjust
= false;
3553 enum mult_variant variant
;
3554 struct algorithm alg
;
3556 bool speed
= optimize_insn_for_speed_p ();
3558 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3559 /* We can't support modes wider than HOST_BITS_PER_INT. */
3560 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3562 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3564 /* We can't optimize modes wider than BITS_PER_WORD.
3565 ??? We might be able to perform double-word arithmetic if
3566 mode == word_mode, however all the cost calculations in
3567 synth_mult etc. assume single-word operations. */
3568 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3569 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3570 unsignedp
, max_cost
);
3572 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3574 /* Check whether we try to multiply by a negative constant. */
3575 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3578 extra_cost
+= add_cost (speed
, mode
);
3581 /* See whether shift/add multiplication is cheap enough. */
3582 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3583 max_cost
- extra_cost
))
3585 /* See whether the specialized multiplication optabs are
3586 cheaper than the shift/add version. */
3587 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3588 alg
.cost
.cost
+ extra_cost
);
3592 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3593 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3594 tem
= extract_high_half (mode
, tem
);
3596 /* Adjust result for signedness. */
3598 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3602 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3603 unsignedp
, max_cost
);
3607 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3610 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3612 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3613 rtx result
, temp
, shift
, label
;
3616 logd
= floor_log2 (d
);
3617 result
= gen_reg_rtx (mode
);
3619 /* Avoid conditional branches when they're expensive. */
3620 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3621 && optimize_insn_for_speed_p ())
3623 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3627 signmask
= force_reg (mode
, signmask
);
3628 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3629 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3631 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3632 which instruction sequence to use. If logical right shifts
3633 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3634 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3636 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3637 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3638 || (set_src_cost (temp
, optimize_insn_for_speed_p ())
3639 > COSTS_N_INSNS (2)))
3641 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3642 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3643 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3644 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3645 temp
= expand_binop (mode
, and_optab
, temp
,
3646 gen_int_mode (masklow
, mode
),
3647 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3648 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3649 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3650 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3651 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3655 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3656 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3657 signmask
= force_reg (mode
, signmask
);
3659 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3660 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3661 temp
= expand_binop (mode
, and_optab
, temp
,
3662 gen_int_mode (masklow
, mode
),
3663 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3664 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3665 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3671 /* Mask contains the mode's signbit and the significant bits of the
3672 modulus. By including the signbit in the operation, many targets
3673 can avoid an explicit compare operation in the following comparison
3676 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3677 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3679 masklow
|= HOST_WIDE_INT_M1U
<< (GET_MODE_BITSIZE (mode
) - 1);
3683 maskhigh
= HOST_WIDE_INT_M1U
3684 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3686 temp
= expand_binop (mode
, and_optab
, op0
,
3687 immed_double_const (masklow
, maskhigh
, mode
),
3688 result
, 1, OPTAB_LIB_WIDEN
);
3690 emit_move_insn (result
, temp
);
3692 label
= gen_label_rtx ();
3693 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3695 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3696 0, OPTAB_LIB_WIDEN
);
3697 masklow
= HOST_WIDE_INT_M1U
<< logd
;
3699 temp
= expand_binop (mode
, ior_optab
, temp
,
3700 immed_double_const (masklow
, maskhigh
, mode
),
3701 result
, 1, OPTAB_LIB_WIDEN
);
3702 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3703 0, OPTAB_LIB_WIDEN
);
3705 emit_move_insn (result
, temp
);
3710 /* Expand signed division of OP0 by a power of two D in mode MODE.
3711 This routine is only called for positive values of D. */
3714 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3719 logd
= floor_log2 (d
);
3722 && BRANCH_COST (optimize_insn_for_speed_p (),
3725 temp
= gen_reg_rtx (mode
);
3726 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3727 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3728 0, OPTAB_LIB_WIDEN
);
3729 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3732 #ifdef HAVE_conditional_move
3733 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3738 /* ??? emit_conditional_move forces a stack adjustment via
3739 compare_from_rtx so, if the sequence is discarded, it will
3740 be lost. Do it now instead. */
3741 do_pending_stack_adjust ();
3744 temp2
= copy_to_mode_reg (mode
, op0
);
3745 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
3746 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3747 temp
= force_reg (mode
, temp
);
3749 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3750 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3751 mode
, temp
, temp2
, mode
, 0);
3754 rtx seq
= get_insns ();
3757 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
3763 if (BRANCH_COST (optimize_insn_for_speed_p (),
3766 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3768 temp
= gen_reg_rtx (mode
);
3769 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3770 if (shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
3771 > COSTS_N_INSNS (1))
3772 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
3773 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3775 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3776 ushift
, NULL_RTX
, 1);
3777 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3778 0, OPTAB_LIB_WIDEN
);
3779 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3782 label
= gen_label_rtx ();
3783 temp
= copy_to_mode_reg (mode
, op0
);
3784 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3785 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
3787 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3790 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3791 if that is convenient, and returning where the result is.
3792 You may request either the quotient or the remainder as the result;
3793 specify REM_FLAG nonzero to get the remainder.
3795 CODE is the expression code for which kind of division this is;
3796 it controls how rounding is done. MODE is the machine mode to use.
3797 UNSIGNEDP nonzero means do unsigned division. */
3799 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3800 and then correct it by or'ing in missing high bits
3801 if result of ANDI is nonzero.
3802 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3803 This could optimize to a bfexts instruction.
3804 But C doesn't use these operations, so their optimizations are
3806 /* ??? For modulo, we don't actually need the highpart of the first product,
3807 the low part will do nicely. And for small divisors, the second multiply
3808 can also be a low-part only multiply or even be completely left out.
3809 E.g. to calculate the remainder of a division by 3 with a 32 bit
3810 multiply, multiply with 0x55555556 and extract the upper two bits;
3811 the result is exact for inputs up to 0x1fffffff.
3812 The input range can be reduced by using cross-sum rules.
3813 For odd divisors >= 3, the following table gives right shift counts
3814 so that if a number is shifted by an integer multiple of the given
3815 amount, the remainder stays the same:
3816 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3817 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3818 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3819 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3820 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3822 Cross-sum rules for even numbers can be derived by leaving as many bits
3823 to the right alone as the divisor has zeros to the right.
3824 E.g. if x is an unsigned 32 bit number:
3825 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3829 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3830 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3832 enum machine_mode compute_mode
;
3834 rtx quotient
= 0, remainder
= 0;
3838 optab optab1
, optab2
;
3839 int op1_is_constant
, op1_is_pow2
= 0;
3840 int max_cost
, extra_cost
;
3841 static HOST_WIDE_INT last_div_const
= 0;
3842 bool speed
= optimize_insn_for_speed_p ();
3844 op1_is_constant
= CONST_INT_P (op1
);
3845 if (op1_is_constant
)
3847 unsigned HOST_WIDE_INT ext_op1
= UINTVAL (op1
);
3849 ext_op1
&= GET_MODE_MASK (mode
);
3850 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3851 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3855 This is the structure of expand_divmod:
3857 First comes code to fix up the operands so we can perform the operations
3858 correctly and efficiently.
3860 Second comes a switch statement with code specific for each rounding mode.
3861 For some special operands this code emits all RTL for the desired
3862 operation, for other cases, it generates only a quotient and stores it in
3863 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3864 to indicate that it has not done anything.
3866 Last comes code that finishes the operation. If QUOTIENT is set and
3867 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3868 QUOTIENT is not set, it is computed using trunc rounding.
3870 We try to generate special code for division and remainder when OP1 is a
3871 constant. If |OP1| = 2**n we can use shifts and some other fast
3872 operations. For other values of OP1, we compute a carefully selected
3873 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3876 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3877 half of the product. Different strategies for generating the product are
3878 implemented in expmed_mult_highpart.
3880 If what we actually want is the remainder, we generate that by another
3881 by-constant multiplication and a subtraction. */
3883 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3884 code below will malfunction if we are, so check here and handle
3885 the special case if so. */
3886 if (op1
== const1_rtx
)
3887 return rem_flag
? const0_rtx
: op0
;
3889 /* When dividing by -1, we could get an overflow.
3890 negv_optab can handle overflows. */
3891 if (! unsignedp
&& op1
== constm1_rtx
)
3895 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
3896 ? negv_optab
: neg_optab
, op0
, target
, 0);
3900 /* Don't use the function value register as a target
3901 since we have to read it as well as write it,
3902 and function-inlining gets confused by this. */
3903 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3904 /* Don't clobber an operand while doing a multi-step calculation. */
3905 || ((rem_flag
|| op1_is_constant
)
3906 && (reg_mentioned_p (target
, op0
)
3907 || (MEM_P (op0
) && MEM_P (target
))))
3908 || reg_mentioned_p (target
, op1
)
3909 || (MEM_P (op1
) && MEM_P (target
))))
3912 /* Get the mode in which to perform this computation. Normally it will
3913 be MODE, but sometimes we can't do the desired operation in MODE.
3914 If so, pick a wider mode in which we can do the operation. Convert
3915 to that mode at the start to avoid repeated conversions.
3917 First see what operations we need. These depend on the expression
3918 we are evaluating. (We assume that divxx3 insns exist under the
3919 same conditions that modxx3 insns and that these insns don't normally
3920 fail. If these assumptions are not correct, we may generate less
3921 efficient code in some cases.)
3923 Then see if we find a mode in which we can open-code that operation
3924 (either a division, modulus, or shift). Finally, check for the smallest
3925 mode for which we can do the operation with a library call. */
3927 /* We might want to refine this now that we have division-by-constant
3928 optimization. Since expmed_mult_highpart tries so many variants, it is
3929 not straightforward to generalize this. Maybe we should make an array
3930 of possible modes in init_expmed? Save this for GCC 2.7. */
3932 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3933 ? (unsignedp
? lshr_optab
: ashr_optab
)
3934 : (unsignedp
? udiv_optab
: sdiv_optab
));
3935 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3937 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3939 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3940 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3941 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
3942 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
3945 if (compute_mode
== VOIDmode
)
3946 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3947 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3948 if (optab_libfunc (optab1
, compute_mode
)
3949 || optab_libfunc (optab2
, compute_mode
))
3952 /* If we still couldn't find a mode, use MODE, but expand_binop will
3954 if (compute_mode
== VOIDmode
)
3955 compute_mode
= mode
;
3957 if (target
&& GET_MODE (target
) == compute_mode
)
3960 tquotient
= gen_reg_rtx (compute_mode
);
3962 size
= GET_MODE_BITSIZE (compute_mode
);
3964 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3965 (mode), and thereby get better code when OP1 is a constant. Do that
3966 later. It will require going over all usages of SIZE below. */
3967 size
= GET_MODE_BITSIZE (mode
);
3970 /* Only deduct something for a REM if the last divide done was
3971 for a different constant. Then set the constant of the last
3973 max_cost
= (unsignedp
3974 ? udiv_cost (speed
, compute_mode
)
3975 : sdiv_cost (speed
, compute_mode
));
3976 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
3977 && INTVAL (op1
) == last_div_const
))
3978 max_cost
-= (mul_cost (speed
, compute_mode
)
3979 + add_cost (speed
, compute_mode
));
3981 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
3983 /* Now convert to the best mode to use. */
3984 if (compute_mode
!= mode
)
3986 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
3987 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
3989 /* convert_modes may have placed op1 into a register, so we
3990 must recompute the following. */
3991 op1_is_constant
= CONST_INT_P (op1
);
3992 op1_is_pow2
= (op1_is_constant
3993 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
3995 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1
))))));
3998 /* If one of the operands is a volatile MEM, copy it into a register. */
4000 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4001 op0
= force_reg (compute_mode
, op0
);
4002 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4003 op1
= force_reg (compute_mode
, op1
);
4005 /* If we need the remainder or if OP1 is constant, we need to
4006 put OP0 in a register in case it has any queued subexpressions. */
4007 if (rem_flag
|| op1_is_constant
)
4008 op0
= force_reg (compute_mode
, op0
);
4010 last
= get_last_insn ();
4012 /* Promote floor rounding to trunc rounding for unsigned operations. */
4015 if (code
== FLOOR_DIV_EXPR
)
4016 code
= TRUNC_DIV_EXPR
;
4017 if (code
== FLOOR_MOD_EXPR
)
4018 code
= TRUNC_MOD_EXPR
;
4019 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4020 code
= TRUNC_DIV_EXPR
;
4023 if (op1
!= const0_rtx
)
4026 case TRUNC_MOD_EXPR
:
4027 case TRUNC_DIV_EXPR
:
4028 if (op1_is_constant
)
4032 unsigned HOST_WIDE_INT mh
, ml
;
4033 int pre_shift
, post_shift
;
4035 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
4036 & GET_MODE_MASK (compute_mode
));
4038 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4040 pre_shift
= floor_log2 (d
);
4043 unsigned HOST_WIDE_INT mask
4044 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4046 = expand_binop (compute_mode
, and_optab
, op0
,
4047 gen_int_mode (mask
, compute_mode
),
4051 return gen_lowpart (mode
, remainder
);
4053 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4054 pre_shift
, tquotient
, 1);
4056 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4058 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
4060 /* Most significant bit of divisor is set; emit an scc
4062 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4063 compute_mode
, 1, 1);
4067 /* Find a suitable multiplier and right shift count
4068 instead of multiplying with D. */
4070 mh
= choose_multiplier (d
, size
, size
,
4071 &ml
, &post_shift
, &dummy
);
4073 /* If the suggested multiplier is more than SIZE bits,
4074 we can do better for even divisors, using an
4075 initial right shift. */
4076 if (mh
!= 0 && (d
& 1) == 0)
4078 pre_shift
= floor_log2 (d
& -d
);
4079 mh
= choose_multiplier (d
>> pre_shift
, size
,
4081 &ml
, &post_shift
, &dummy
);
4091 if (post_shift
- 1 >= BITS_PER_WORD
)
4095 = (shift_cost (speed
, compute_mode
, post_shift
- 1)
4096 + shift_cost (speed
, compute_mode
, 1)
4097 + 2 * add_cost (speed
, compute_mode
));
4098 t1
= expmed_mult_highpart
4100 gen_int_mode (ml
, compute_mode
),
4101 NULL_RTX
, 1, max_cost
- extra_cost
);
4104 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4107 t3
= expand_shift (RSHIFT_EXPR
, compute_mode
,
4108 t2
, 1, NULL_RTX
, 1);
4109 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4112 quotient
= expand_shift
4113 (RSHIFT_EXPR
, compute_mode
, t4
,
4114 post_shift
- 1, tquotient
, 1);
4120 if (pre_shift
>= BITS_PER_WORD
4121 || post_shift
>= BITS_PER_WORD
)
4125 (RSHIFT_EXPR
, compute_mode
, op0
,
4126 pre_shift
, NULL_RTX
, 1);
4128 = (shift_cost (speed
, compute_mode
, pre_shift
)
4129 + shift_cost (speed
, compute_mode
, post_shift
));
4130 t2
= expmed_mult_highpart
4132 gen_int_mode (ml
, compute_mode
),
4133 NULL_RTX
, 1, max_cost
- extra_cost
);
4136 quotient
= expand_shift
4137 (RSHIFT_EXPR
, compute_mode
, t2
,
4138 post_shift
, tquotient
, 1);
4142 else /* Too wide mode to use tricky code */
4145 insn
= get_last_insn ();
4147 set_dst_reg_note (insn
, REG_EQUAL
,
4148 gen_rtx_UDIV (compute_mode
, op0
, op1
),
4151 else /* TRUNC_DIV, signed */
4153 unsigned HOST_WIDE_INT ml
;
4154 int lgup
, post_shift
;
4156 HOST_WIDE_INT d
= INTVAL (op1
);
4157 unsigned HOST_WIDE_INT abs_d
;
4159 /* Since d might be INT_MIN, we have to cast to
4160 unsigned HOST_WIDE_INT before negating to avoid
4161 undefined signed overflow. */
4163 ? (unsigned HOST_WIDE_INT
) d
4164 : - (unsigned HOST_WIDE_INT
) d
);
4166 /* n rem d = n rem -d */
4167 if (rem_flag
&& d
< 0)
4170 op1
= gen_int_mode (abs_d
, compute_mode
);
4176 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4178 else if (HOST_BITS_PER_WIDE_INT
>= size
4179 && abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4181 /* This case is not handled correctly below. */
4182 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4183 compute_mode
, 1, 1);
4187 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4189 ? smod_pow2_cheap (speed
, compute_mode
)
4190 : sdiv_pow2_cheap (speed
, compute_mode
))
4191 /* We assume that cheap metric is true if the
4192 optab has an expander for this mode. */
4193 && ((optab_handler ((rem_flag
? smod_optab
4196 != CODE_FOR_nothing
)
4197 || (optab_handler (sdivmod_optab
,
4199 != CODE_FOR_nothing
)))
4201 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4205 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4207 return gen_lowpart (mode
, remainder
);
4210 if (sdiv_pow2_cheap (speed
, compute_mode
)
4211 && ((optab_handler (sdiv_optab
, compute_mode
)
4212 != CODE_FOR_nothing
)
4213 || (optab_handler (sdivmod_optab
, compute_mode
)
4214 != CODE_FOR_nothing
)))
4215 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4217 gen_int_mode (abs_d
,
4221 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4223 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4224 negate the quotient. */
4227 insn
= get_last_insn ();
4229 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4230 << (HOST_BITS_PER_WIDE_INT
- 1)))
4231 set_dst_reg_note (insn
, REG_EQUAL
,
4232 gen_rtx_DIV (compute_mode
, op0
,
4238 quotient
= expand_unop (compute_mode
, neg_optab
,
4239 quotient
, quotient
, 0);
4242 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4244 choose_multiplier (abs_d
, size
, size
- 1,
4245 &ml
, &post_shift
, &lgup
);
4246 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4250 if (post_shift
>= BITS_PER_WORD
4251 || size
- 1 >= BITS_PER_WORD
)
4254 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4255 + shift_cost (speed
, compute_mode
, size
- 1)
4256 + add_cost (speed
, compute_mode
));
4257 t1
= expmed_mult_highpart
4258 (compute_mode
, op0
, gen_int_mode (ml
, compute_mode
),
4259 NULL_RTX
, 0, max_cost
- extra_cost
);
4263 (RSHIFT_EXPR
, compute_mode
, t1
,
4264 post_shift
, NULL_RTX
, 0);
4266 (RSHIFT_EXPR
, compute_mode
, op0
,
4267 size
- 1, NULL_RTX
, 0);
4270 = force_operand (gen_rtx_MINUS (compute_mode
,
4275 = force_operand (gen_rtx_MINUS (compute_mode
,
4283 if (post_shift
>= BITS_PER_WORD
4284 || size
- 1 >= BITS_PER_WORD
)
4287 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4288 mlr
= gen_int_mode (ml
, compute_mode
);
4289 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4290 + shift_cost (speed
, compute_mode
, size
- 1)
4291 + 2 * add_cost (speed
, compute_mode
));
4292 t1
= expmed_mult_highpart (compute_mode
, op0
, mlr
,
4294 max_cost
- extra_cost
);
4297 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4301 (RSHIFT_EXPR
, compute_mode
, t2
,
4302 post_shift
, NULL_RTX
, 0);
4304 (RSHIFT_EXPR
, compute_mode
, op0
,
4305 size
- 1, NULL_RTX
, 0);
4308 = force_operand (gen_rtx_MINUS (compute_mode
,
4313 = force_operand (gen_rtx_MINUS (compute_mode
,
4318 else /* Too wide mode to use tricky code */
4321 insn
= get_last_insn ();
4323 set_dst_reg_note (insn
, REG_EQUAL
,
4324 gen_rtx_DIV (compute_mode
, op0
, op1
),
4330 delete_insns_since (last
);
4333 case FLOOR_DIV_EXPR
:
4334 case FLOOR_MOD_EXPR
:
4335 /* We will come here only for signed operations. */
4336 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4338 unsigned HOST_WIDE_INT mh
, ml
;
4339 int pre_shift
, lgup
, post_shift
;
4340 HOST_WIDE_INT d
= INTVAL (op1
);
4344 /* We could just as easily deal with negative constants here,
4345 but it does not seem worth the trouble for GCC 2.6. */
4346 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4348 pre_shift
= floor_log2 (d
);
4351 unsigned HOST_WIDE_INT mask
4352 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4353 remainder
= expand_binop
4354 (compute_mode
, and_optab
, op0
,
4355 gen_int_mode (mask
, compute_mode
),
4356 remainder
, 0, OPTAB_LIB_WIDEN
);
4358 return gen_lowpart (mode
, remainder
);
4360 quotient
= expand_shift
4361 (RSHIFT_EXPR
, compute_mode
, op0
,
4362 pre_shift
, tquotient
, 0);
4368 mh
= choose_multiplier (d
, size
, size
- 1,
4369 &ml
, &post_shift
, &lgup
);
4372 if (post_shift
< BITS_PER_WORD
4373 && size
- 1 < BITS_PER_WORD
)
4376 (RSHIFT_EXPR
, compute_mode
, op0
,
4377 size
- 1, NULL_RTX
, 0);
4378 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4379 NULL_RTX
, 0, OPTAB_WIDEN
);
4380 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4381 + shift_cost (speed
, compute_mode
, size
- 1)
4382 + 2 * add_cost (speed
, compute_mode
));
4383 t3
= expmed_mult_highpart
4384 (compute_mode
, t2
, gen_int_mode (ml
, compute_mode
),
4385 NULL_RTX
, 1, max_cost
- extra_cost
);
4389 (RSHIFT_EXPR
, compute_mode
, t3
,
4390 post_shift
, NULL_RTX
, 1);
4391 quotient
= expand_binop (compute_mode
, xor_optab
,
4392 t4
, t1
, tquotient
, 0,
4400 rtx nsign
, t1
, t2
, t3
, t4
;
4401 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4402 op0
, constm1_rtx
), NULL_RTX
);
4403 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4405 nsign
= expand_shift
4406 (RSHIFT_EXPR
, compute_mode
, t2
,
4407 size
- 1, NULL_RTX
, 0);
4408 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4410 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4415 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4417 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4426 delete_insns_since (last
);
4428 /* Try using an instruction that produces both the quotient and
4429 remainder, using truncation. We can easily compensate the quotient
4430 or remainder to get floor rounding, once we have the remainder.
4431 Notice that we compute also the final remainder value here,
4432 and return the result right away. */
4433 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4434 target
= gen_reg_rtx (compute_mode
);
4439 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4440 quotient
= gen_reg_rtx (compute_mode
);
4445 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4446 remainder
= gen_reg_rtx (compute_mode
);
4449 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4450 quotient
, remainder
, 0))
4452 /* This could be computed with a branch-less sequence.
4453 Save that for later. */
4455 rtx label
= gen_label_rtx ();
4456 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4457 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4458 NULL_RTX
, 0, OPTAB_WIDEN
);
4459 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4460 expand_dec (quotient
, const1_rtx
);
4461 expand_inc (remainder
, op1
);
4463 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4466 /* No luck with division elimination or divmod. Have to do it
4467 by conditionally adjusting op0 *and* the result. */
4469 rtx label1
, label2
, label3
, label4
, label5
;
4473 quotient
= gen_reg_rtx (compute_mode
);
4474 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4475 label1
= gen_label_rtx ();
4476 label2
= gen_label_rtx ();
4477 label3
= gen_label_rtx ();
4478 label4
= gen_label_rtx ();
4479 label5
= gen_label_rtx ();
4480 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4481 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4482 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4483 quotient
, 0, OPTAB_LIB_WIDEN
);
4484 if (tem
!= quotient
)
4485 emit_move_insn (quotient
, tem
);
4486 emit_jump_insn (gen_jump (label5
));
4488 emit_label (label1
);
4489 expand_inc (adjusted_op0
, const1_rtx
);
4490 emit_jump_insn (gen_jump (label4
));
4492 emit_label (label2
);
4493 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4494 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4495 quotient
, 0, OPTAB_LIB_WIDEN
);
4496 if (tem
!= quotient
)
4497 emit_move_insn (quotient
, tem
);
4498 emit_jump_insn (gen_jump (label5
));
4500 emit_label (label3
);
4501 expand_dec (adjusted_op0
, const1_rtx
);
4502 emit_label (label4
);
4503 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4504 quotient
, 0, OPTAB_LIB_WIDEN
);
4505 if (tem
!= quotient
)
4506 emit_move_insn (quotient
, tem
);
4507 expand_dec (quotient
, const1_rtx
);
4508 emit_label (label5
);
4516 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4519 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4520 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4521 floor_log2 (d
), tquotient
, 1);
4522 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4523 gen_int_mode (d
- 1, compute_mode
),
4524 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4525 t3
= gen_reg_rtx (compute_mode
);
4526 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4527 compute_mode
, 1, 1);
4531 lab
= gen_label_rtx ();
4532 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4533 expand_inc (t1
, const1_rtx
);
4538 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4544 /* Try using an instruction that produces both the quotient and
4545 remainder, using truncation. We can easily compensate the
4546 quotient or remainder to get ceiling rounding, once we have the
4547 remainder. Notice that we compute also the final remainder
4548 value here, and return the result right away. */
4549 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4550 target
= gen_reg_rtx (compute_mode
);
4554 remainder
= (REG_P (target
)
4555 ? target
: gen_reg_rtx (compute_mode
));
4556 quotient
= gen_reg_rtx (compute_mode
);
4560 quotient
= (REG_P (target
)
4561 ? target
: gen_reg_rtx (compute_mode
));
4562 remainder
= gen_reg_rtx (compute_mode
);
4565 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4568 /* This could be computed with a branch-less sequence.
4569 Save that for later. */
4570 rtx label
= gen_label_rtx ();
4571 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4572 compute_mode
, label
);
4573 expand_inc (quotient
, const1_rtx
);
4574 expand_dec (remainder
, op1
);
4576 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4579 /* No luck with division elimination or divmod. Have to do it
4580 by conditionally adjusting op0 *and* the result. */
4583 rtx adjusted_op0
, tem
;
4585 quotient
= gen_reg_rtx (compute_mode
);
4586 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4587 label1
= gen_label_rtx ();
4588 label2
= gen_label_rtx ();
4589 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4590 compute_mode
, label1
);
4591 emit_move_insn (quotient
, const0_rtx
);
4592 emit_jump_insn (gen_jump (label2
));
4594 emit_label (label1
);
4595 expand_dec (adjusted_op0
, const1_rtx
);
4596 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4597 quotient
, 1, OPTAB_LIB_WIDEN
);
4598 if (tem
!= quotient
)
4599 emit_move_insn (quotient
, tem
);
4600 expand_inc (quotient
, const1_rtx
);
4601 emit_label (label2
);
4606 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4607 && INTVAL (op1
) >= 0)
4609 /* This is extremely similar to the code for the unsigned case
4610 above. For 2.7 we should merge these variants, but for
4611 2.6.1 I don't want to touch the code for unsigned since that
4612 get used in C. The signed case will only be used by other
4616 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4617 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4618 floor_log2 (d
), tquotient
, 0);
4619 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4620 gen_int_mode (d
- 1, compute_mode
),
4621 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4622 t3
= gen_reg_rtx (compute_mode
);
4623 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4624 compute_mode
, 1, 1);
4628 lab
= gen_label_rtx ();
4629 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4630 expand_inc (t1
, const1_rtx
);
4635 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4641 /* Try using an instruction that produces both the quotient and
4642 remainder, using truncation. We can easily compensate the
4643 quotient or remainder to get ceiling rounding, once we have the
4644 remainder. Notice that we compute also the final remainder
4645 value here, and return the result right away. */
4646 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4647 target
= gen_reg_rtx (compute_mode
);
4650 remainder
= (REG_P (target
)
4651 ? target
: gen_reg_rtx (compute_mode
));
4652 quotient
= gen_reg_rtx (compute_mode
);
4656 quotient
= (REG_P (target
)
4657 ? target
: gen_reg_rtx (compute_mode
));
4658 remainder
= gen_reg_rtx (compute_mode
);
4661 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4664 /* This could be computed with a branch-less sequence.
4665 Save that for later. */
4667 rtx label
= gen_label_rtx ();
4668 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4669 compute_mode
, label
);
4670 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4671 NULL_RTX
, 0, OPTAB_WIDEN
);
4672 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4673 expand_inc (quotient
, const1_rtx
);
4674 expand_dec (remainder
, op1
);
4676 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4679 /* No luck with division elimination or divmod. Have to do it
4680 by conditionally adjusting op0 *and* the result. */
4682 rtx label1
, label2
, label3
, label4
, label5
;
4686 quotient
= gen_reg_rtx (compute_mode
);
4687 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4688 label1
= gen_label_rtx ();
4689 label2
= gen_label_rtx ();
4690 label3
= gen_label_rtx ();
4691 label4
= gen_label_rtx ();
4692 label5
= gen_label_rtx ();
4693 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4694 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4695 compute_mode
, label1
);
4696 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4697 quotient
, 0, OPTAB_LIB_WIDEN
);
4698 if (tem
!= quotient
)
4699 emit_move_insn (quotient
, tem
);
4700 emit_jump_insn (gen_jump (label5
));
4702 emit_label (label1
);
4703 expand_dec (adjusted_op0
, const1_rtx
);
4704 emit_jump_insn (gen_jump (label4
));
4706 emit_label (label2
);
4707 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4708 compute_mode
, label3
);
4709 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4710 quotient
, 0, OPTAB_LIB_WIDEN
);
4711 if (tem
!= quotient
)
4712 emit_move_insn (quotient
, tem
);
4713 emit_jump_insn (gen_jump (label5
));
4715 emit_label (label3
);
4716 expand_inc (adjusted_op0
, const1_rtx
);
4717 emit_label (label4
);
4718 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4719 quotient
, 0, OPTAB_LIB_WIDEN
);
4720 if (tem
!= quotient
)
4721 emit_move_insn (quotient
, tem
);
4722 expand_inc (quotient
, const1_rtx
);
4723 emit_label (label5
);
4728 case EXACT_DIV_EXPR
:
4729 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4731 HOST_WIDE_INT d
= INTVAL (op1
);
4732 unsigned HOST_WIDE_INT ml
;
4736 pre_shift
= floor_log2 (d
& -d
);
4737 ml
= invert_mod2n (d
>> pre_shift
, size
);
4738 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4739 pre_shift
, NULL_RTX
, unsignedp
);
4740 quotient
= expand_mult (compute_mode
, t1
,
4741 gen_int_mode (ml
, compute_mode
),
4744 insn
= get_last_insn ();
4745 set_dst_reg_note (insn
, REG_EQUAL
,
4746 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4747 compute_mode
, op0
, op1
),
4752 case ROUND_DIV_EXPR
:
4753 case ROUND_MOD_EXPR
:
4758 label
= gen_label_rtx ();
4759 quotient
= gen_reg_rtx (compute_mode
);
4760 remainder
= gen_reg_rtx (compute_mode
);
4761 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4764 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4765 quotient
, 1, OPTAB_LIB_WIDEN
);
4766 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4767 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4768 remainder
, 1, OPTAB_LIB_WIDEN
);
4770 tem
= plus_constant (compute_mode
, op1
, -1);
4771 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
, 1, NULL_RTX
, 1);
4772 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4773 expand_inc (quotient
, const1_rtx
);
4774 expand_dec (remainder
, op1
);
4779 rtx abs_rem
, abs_op1
, tem
, mask
;
4781 label
= gen_label_rtx ();
4782 quotient
= gen_reg_rtx (compute_mode
);
4783 remainder
= gen_reg_rtx (compute_mode
);
4784 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4787 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4788 quotient
, 0, OPTAB_LIB_WIDEN
);
4789 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4790 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4791 remainder
, 0, OPTAB_LIB_WIDEN
);
4793 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4794 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4795 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4797 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4798 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4799 NULL_RTX
, 0, OPTAB_WIDEN
);
4800 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4801 size
- 1, NULL_RTX
, 0);
4802 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4803 NULL_RTX
, 0, OPTAB_WIDEN
);
4804 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4805 NULL_RTX
, 0, OPTAB_WIDEN
);
4806 expand_inc (quotient
, tem
);
4807 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4808 NULL_RTX
, 0, OPTAB_WIDEN
);
4809 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4810 NULL_RTX
, 0, OPTAB_WIDEN
);
4811 expand_dec (remainder
, tem
);
4814 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4822 if (target
&& GET_MODE (target
) != compute_mode
)
4827 /* Try to produce the remainder without producing the quotient.
4828 If we seem to have a divmod pattern that does not require widening,
4829 don't try widening here. We should really have a WIDEN argument
4830 to expand_twoval_binop, since what we'd really like to do here is
4831 1) try a mod insn in compute_mode
4832 2) try a divmod insn in compute_mode
4833 3) try a div insn in compute_mode and multiply-subtract to get
4835 4) try the same things with widening allowed. */
4837 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4840 ((optab_handler (optab2
, compute_mode
)
4841 != CODE_FOR_nothing
)
4842 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4845 /* No luck there. Can we do remainder and divide at once
4846 without a library call? */
4847 remainder
= gen_reg_rtx (compute_mode
);
4848 if (! expand_twoval_binop ((unsignedp
4852 NULL_RTX
, remainder
, unsignedp
))
4857 return gen_lowpart (mode
, remainder
);
4860 /* Produce the quotient. Try a quotient insn, but not a library call.
4861 If we have a divmod in this mode, use it in preference to widening
4862 the div (for this test we assume it will not fail). Note that optab2
4863 is set to the one of the two optabs that the call below will use. */
4865 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4866 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4868 ((optab_handler (optab2
, compute_mode
)
4869 != CODE_FOR_nothing
)
4870 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4874 /* No luck there. Try a quotient-and-remainder insn,
4875 keeping the quotient alone. */
4876 quotient
= gen_reg_rtx (compute_mode
);
4877 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4879 quotient
, NULL_RTX
, unsignedp
))
4883 /* Still no luck. If we are not computing the remainder,
4884 use a library call for the quotient. */
4885 quotient
= sign_expand_binop (compute_mode
,
4886 udiv_optab
, sdiv_optab
,
4888 unsignedp
, OPTAB_LIB_WIDEN
);
4895 if (target
&& GET_MODE (target
) != compute_mode
)
4900 /* No divide instruction either. Use library for remainder. */
4901 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4903 unsignedp
, OPTAB_LIB_WIDEN
);
4904 /* No remainder function. Try a quotient-and-remainder
4905 function, keeping the remainder. */
4908 remainder
= gen_reg_rtx (compute_mode
);
4909 if (!expand_twoval_binop_libfunc
4910 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4912 NULL_RTX
, remainder
,
4913 unsignedp
? UMOD
: MOD
))
4914 remainder
= NULL_RTX
;
4919 /* We divided. Now finish doing X - Y * (X / Y). */
4920 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4921 NULL_RTX
, unsignedp
);
4922 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4923 remainder
, target
, unsignedp
,
4928 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4931 /* Return a tree node with data type TYPE, describing the value of X.
4932 Usually this is an VAR_DECL, if there is no obvious better choice.
4933 X may be an expression, however we only support those expressions
4934 generated by loop.c. */
4937 make_tree (tree type
, rtx x
)
4941 switch (GET_CODE (x
))
4945 HOST_WIDE_INT hi
= 0;
4948 && !(TYPE_UNSIGNED (type
)
4949 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
4950 < HOST_BITS_PER_WIDE_INT
)))
4953 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
4959 if (GET_MODE (x
) == VOIDmode
)
4960 t
= build_int_cst_wide (type
,
4961 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
4966 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
4967 t
= build_real (type
, d
);
4974 int units
= CONST_VECTOR_NUNITS (x
);
4975 tree itype
= TREE_TYPE (type
);
4979 /* Build a tree with vector elements. */
4980 elts
= XALLOCAVEC (tree
, units
);
4981 for (i
= units
- 1; i
>= 0; --i
)
4983 rtx elt
= CONST_VECTOR_ELT (x
, i
);
4984 elts
[i
] = make_tree (itype
, elt
);
4987 return build_vector (type
, elts
);
4991 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4992 make_tree (type
, XEXP (x
, 1)));
4995 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4996 make_tree (type
, XEXP (x
, 1)));
4999 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5002 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5003 make_tree (type
, XEXP (x
, 1)));
5006 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5007 make_tree (type
, XEXP (x
, 1)));
5010 t
= unsigned_type_for (type
);
5011 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5012 make_tree (t
, XEXP (x
, 0)),
5013 make_tree (type
, XEXP (x
, 1))));
5016 t
= signed_type_for (type
);
5017 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5018 make_tree (t
, XEXP (x
, 0)),
5019 make_tree (type
, XEXP (x
, 1))));
5022 if (TREE_CODE (type
) != REAL_TYPE
)
5023 t
= signed_type_for (type
);
5027 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5028 make_tree (t
, XEXP (x
, 0)),
5029 make_tree (t
, XEXP (x
, 1))));
5031 t
= unsigned_type_for (type
);
5032 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5033 make_tree (t
, XEXP (x
, 0)),
5034 make_tree (t
, XEXP (x
, 1))));
5038 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5039 GET_CODE (x
) == ZERO_EXTEND
);
5040 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5043 return make_tree (type
, XEXP (x
, 0));
5046 t
= SYMBOL_REF_DECL (x
);
5048 return fold_convert (type
, build_fold_addr_expr (t
));
5049 /* else fall through. */
5052 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5054 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5055 address mode to pointer mode. */
5056 if (POINTER_TYPE_P (type
))
5057 x
= convert_memory_address_addr_space
5058 (TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5060 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5061 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5062 t
->decl_with_rtl
.rtl
= x
;
5068 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5069 and returning TARGET.
5071 If TARGET is 0, a pseudo-register or constant is returned. */
5074 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5078 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5079 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5081 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5085 else if (tem
!= target
)
5086 emit_move_insn (target
, tem
);
5090 /* Helper function for emit_store_flag. */
5092 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5093 enum machine_mode mode
, enum machine_mode compare_mode
,
5094 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5095 enum machine_mode target_mode
)
5097 struct expand_operand ops
[4];
5098 rtx op0
, last
, comparison
, subtarget
;
5099 enum machine_mode result_mode
= targetm
.cstore_mode (icode
);
5101 last
= get_last_insn ();
5102 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5103 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5106 delete_insns_since (last
);
5110 if (target_mode
== VOIDmode
)
5111 target_mode
= result_mode
;
5113 target
= gen_reg_rtx (target_mode
);
5115 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5117 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5118 create_fixed_operand (&ops
[1], comparison
);
5119 create_fixed_operand (&ops
[2], x
);
5120 create_fixed_operand (&ops
[3], y
);
5121 if (!maybe_expand_insn (icode
, 4, ops
))
5123 delete_insns_since (last
);
5126 subtarget
= ops
[0].value
;
5128 /* If we are converting to a wider mode, first convert to
5129 TARGET_MODE, then normalize. This produces better combining
5130 opportunities on machines that have a SIGN_EXTRACT when we are
5131 testing a single bit. This mostly benefits the 68k.
5133 If STORE_FLAG_VALUE does not have the sign bit set when
5134 interpreted in MODE, we can do this conversion as unsigned, which
5135 is usually more efficient. */
5136 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (result_mode
))
5138 convert_move (target
, subtarget
,
5139 val_signbit_known_clear_p (result_mode
,
5142 result_mode
= target_mode
;
5147 /* If we want to keep subexpressions around, don't reuse our last
5152 /* Now normalize to the proper value in MODE. Sometimes we don't
5153 have to do anything. */
5154 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5156 /* STORE_FLAG_VALUE might be the most negative number, so write
5157 the comparison this way to avoid a compiler-time warning. */
5158 else if (- normalizep
== STORE_FLAG_VALUE
)
5159 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5161 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5162 it hard to use a value of just the sign bit due to ANSI integer
5163 constant typing rules. */
5164 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5165 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5166 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5170 gcc_assert (STORE_FLAG_VALUE
& 1);
5172 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5173 if (normalizep
== -1)
5174 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5177 /* If we were converting to a smaller mode, do the conversion now. */
5178 if (target_mode
!= result_mode
)
5180 convert_move (target
, op0
, 0);
5188 /* A subroutine of emit_store_flag only including "tricks" that do not
5189 need a recursive call. These are kept separate to avoid infinite
5193 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5194 enum machine_mode mode
, int unsignedp
, int normalizep
,
5195 enum machine_mode target_mode
)
5198 enum insn_code icode
;
5199 enum machine_mode compare_mode
;
5200 enum mode_class mclass
;
5201 enum rtx_code scode
;
5205 code
= unsigned_condition (code
);
5206 scode
= swap_condition (code
);
5208 /* If one operand is constant, make it the second one. Only do this
5209 if the other operand is not constant as well. */
5211 if (swap_commutative_operands_p (op0
, op1
))
5216 code
= swap_condition (code
);
5219 if (mode
== VOIDmode
)
5220 mode
= GET_MODE (op0
);
5222 /* For some comparisons with 1 and -1, we can convert this to
5223 comparisons with zero. This will often produce more opportunities for
5224 store-flag insns. */
5229 if (op1
== const1_rtx
)
5230 op1
= const0_rtx
, code
= LE
;
5233 if (op1
== constm1_rtx
)
5234 op1
= const0_rtx
, code
= LT
;
5237 if (op1
== const1_rtx
)
5238 op1
= const0_rtx
, code
= GT
;
5241 if (op1
== constm1_rtx
)
5242 op1
= const0_rtx
, code
= GE
;
5245 if (op1
== const1_rtx
)
5246 op1
= const0_rtx
, code
= NE
;
5249 if (op1
== const1_rtx
)
5250 op1
= const0_rtx
, code
= EQ
;
5256 /* If we are comparing a double-word integer with zero or -1, we can
5257 convert the comparison into one involving a single word. */
5258 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5259 && GET_MODE_CLASS (mode
) == MODE_INT
5260 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5262 if ((code
== EQ
|| code
== NE
)
5263 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5267 /* Do a logical OR or AND of the two words and compare the
5269 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5270 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5271 tem
= expand_binop (word_mode
,
5272 op1
== const0_rtx
? ior_optab
: and_optab
,
5273 op00
, op01
, NULL_RTX
, unsignedp
,
5277 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5278 unsignedp
, normalizep
);
5280 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5284 /* If testing the sign bit, can just test on high word. */
5285 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5286 subreg_highpart_offset (word_mode
,
5288 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5289 unsignedp
, normalizep
);
5296 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5299 target
= gen_reg_rtx (target_mode
);
5301 convert_move (target
, tem
,
5302 !val_signbit_known_set_p (word_mode
,
5303 (normalizep
? normalizep
5304 : STORE_FLAG_VALUE
)));
5309 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5310 complement of A (for GE) and shifting the sign bit to the low bit. */
5311 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5312 && GET_MODE_CLASS (mode
) == MODE_INT
5313 && (normalizep
|| STORE_FLAG_VALUE
== 1
5314 || val_signbit_p (mode
, STORE_FLAG_VALUE
)))
5321 /* If the result is to be wider than OP0, it is best to convert it
5322 first. If it is to be narrower, it is *incorrect* to convert it
5324 else if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5326 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5330 if (target_mode
!= mode
)
5334 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5335 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5336 ? 0 : subtarget
), 0);
5338 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5339 /* If we are supposed to produce a 0/1 value, we want to do
5340 a logical shift from the sign bit to the low-order bit; for
5341 a -1/0 value, we do an arithmetic shift. */
5342 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5343 GET_MODE_BITSIZE (mode
) - 1,
5344 subtarget
, normalizep
!= -1);
5346 if (mode
!= target_mode
)
5347 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5352 mclass
= GET_MODE_CLASS (mode
);
5353 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5354 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5356 enum machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5357 icode
= optab_handler (cstore_optab
, optab_mode
);
5358 if (icode
!= CODE_FOR_nothing
)
5360 do_pending_stack_adjust ();
5361 tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5362 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5366 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5368 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5369 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5380 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5381 and storing in TARGET. Normally return TARGET.
5382 Return 0 if that cannot be done.
5384 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5385 it is VOIDmode, they cannot both be CONST_INT.
5387 UNSIGNEDP is for the case where we have to widen the operands
5388 to perform the operation. It says to use zero-extension.
5390 NORMALIZEP is 1 if we should convert the result to be either zero
5391 or one. Normalize is -1 if we should convert the result to be
5392 either zero or -1. If NORMALIZEP is zero, the result will be left
5393 "raw" out of the scc insn. */
5396 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5397 enum machine_mode mode
, int unsignedp
, int normalizep
)
5399 enum machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5400 enum rtx_code rcode
;
5402 rtx tem
, last
, trueval
;
5404 /* If we compare constants, we shouldn't use a store-flag operation,
5405 but a constant load. We can get there via the vanilla route that
5406 usually generates a compare-branch sequence, but will in this case
5407 fold the comparison to a constant, and thus elide the branch. */
5408 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5411 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5416 /* If we reached here, we can't do this with a scc insn, however there
5417 are some comparisons that can be done in other ways. Don't do any
5418 of these cases if branches are very cheap. */
5419 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5422 /* See what we need to return. We can only return a 1, -1, or the
5425 if (normalizep
== 0)
5427 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5428 normalizep
= STORE_FLAG_VALUE
;
5430 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5436 last
= get_last_insn ();
5438 /* If optimizing, use different pseudo registers for each insn, instead
5439 of reusing the same pseudo. This leads to better CSE, but slows
5440 down the compiler, since there are more pseudos */
5441 subtarget
= (!optimize
5442 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5443 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5445 /* For floating-point comparisons, try the reverse comparison or try
5446 changing the "orderedness" of the comparison. */
5447 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5449 enum rtx_code first_code
;
5452 rcode
= reverse_condition_maybe_unordered (code
);
5453 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5454 && (code
== ORDERED
|| code
== UNORDERED
5455 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5456 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5458 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5459 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5461 /* For the reverse comparison, use either an addition or a XOR. */
5463 && rtx_cost (GEN_INT (normalizep
), PLUS
, 1,
5464 optimize_insn_for_speed_p ()) == 0)
5466 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5467 STORE_FLAG_VALUE
, target_mode
);
5469 return expand_binop (target_mode
, add_optab
, tem
,
5470 gen_int_mode (normalizep
, target_mode
),
5471 target
, 0, OPTAB_WIDEN
);
5474 && rtx_cost (trueval
, XOR
, 1,
5475 optimize_insn_for_speed_p ()) == 0)
5477 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5478 normalizep
, target_mode
);
5480 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5481 target
, INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5485 delete_insns_since (last
);
5487 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5488 if (code
== ORDERED
|| code
== UNORDERED
)
5491 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5493 /* If there are no NaNs, the first comparison should always fall through.
5494 Effectively change the comparison to the other one. */
5495 if (!HONOR_NANS (mode
))
5497 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5498 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5502 #ifdef HAVE_conditional_move
5503 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5504 conditional move. */
5505 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5506 normalizep
, target_mode
);
5511 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5512 tem
, const0_rtx
, GET_MODE (tem
), 0);
5514 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5515 trueval
, tem
, GET_MODE (tem
), 0);
5518 delete_insns_since (last
);
5525 /* The remaining tricks only apply to integer comparisons. */
5527 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5530 /* If this is an equality comparison of integers, we can try to exclusive-or
5531 (or subtract) the two operands and use a recursive call to try the
5532 comparison with zero. Don't do any of these cases if branches are
5535 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5537 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5541 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5544 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5545 mode
, unsignedp
, normalizep
);
5549 delete_insns_since (last
);
5552 /* For integer comparisons, try the reverse comparison. However, for
5553 small X and if we'd have anyway to extend, implementing "X != 0"
5554 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5555 rcode
= reverse_condition (code
);
5556 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5557 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5559 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5560 && op1
== const0_rtx
))
5562 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5563 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5565 /* Again, for the reverse comparison, use either an addition or a XOR. */
5567 && rtx_cost (GEN_INT (normalizep
), PLUS
, 1,
5568 optimize_insn_for_speed_p ()) == 0)
5570 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5571 STORE_FLAG_VALUE
, target_mode
);
5573 tem
= expand_binop (target_mode
, add_optab
, tem
,
5574 gen_int_mode (normalizep
, target_mode
),
5575 target
, 0, OPTAB_WIDEN
);
5578 && rtx_cost (trueval
, XOR
, 1,
5579 optimize_insn_for_speed_p ()) == 0)
5581 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5582 normalizep
, target_mode
);
5584 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5585 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5590 delete_insns_since (last
);
5593 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5594 the constant zero. Reject all other comparisons at this point. Only
5595 do LE and GT if branches are expensive since they are expensive on
5596 2-operand machines. */
5598 if (op1
!= const0_rtx
5599 || (code
!= EQ
&& code
!= NE
5600 && (BRANCH_COST (optimize_insn_for_speed_p (),
5601 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5604 /* Try to put the result of the comparison in the sign bit. Assume we can't
5605 do the necessary operation below. */
5609 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5610 the sign bit set. */
5614 /* This is destructive, so SUBTARGET can't be OP0. */
5615 if (rtx_equal_p (subtarget
, op0
))
5618 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5621 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5625 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5626 number of bits in the mode of OP0, minus one. */
5630 if (rtx_equal_p (subtarget
, op0
))
5633 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5634 GET_MODE_BITSIZE (mode
) - 1,
5636 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5640 if (code
== EQ
|| code
== NE
)
5642 /* For EQ or NE, one way to do the comparison is to apply an operation
5643 that converts the operand into a positive number if it is nonzero
5644 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5645 for NE we negate. This puts the result in the sign bit. Then we
5646 normalize with a shift, if needed.
5648 Two operations that can do the above actions are ABS and FFS, so try
5649 them. If that doesn't work, and MODE is smaller than a full word,
5650 we can use zero-extension to the wider mode (an unsigned conversion)
5651 as the operation. */
5653 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5654 that is compensated by the subsequent overflow when subtracting
5657 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5658 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5659 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5660 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5661 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5663 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5670 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5673 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5676 /* If we couldn't do it that way, for NE we can "or" the two's complement
5677 of the value with itself. For EQ, we take the one's complement of
5678 that "or", which is an extra insn, so we only handle EQ if branches
5683 || BRANCH_COST (optimize_insn_for_speed_p (),
5686 if (rtx_equal_p (subtarget
, op0
))
5689 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5690 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5693 if (tem
&& code
== EQ
)
5694 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5698 if (tem
&& normalizep
)
5699 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5700 GET_MODE_BITSIZE (mode
) - 1,
5701 subtarget
, normalizep
== 1);
5707 else if (GET_MODE (tem
) != target_mode
)
5709 convert_move (target
, tem
, 0);
5712 else if (!subtarget
)
5714 emit_move_insn (target
, tem
);
5719 delete_insns_since (last
);
5724 /* Like emit_store_flag, but always succeeds. */
5727 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5728 enum machine_mode mode
, int unsignedp
, int normalizep
)
5731 rtx trueval
, falseval
;
5733 /* First see if emit_store_flag can do the job. */
5734 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5739 target
= gen_reg_rtx (word_mode
);
5741 /* If this failed, we have to do this with set/compare/jump/set code.
5742 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5743 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
5745 && GET_MODE_CLASS (mode
) == MODE_INT
5748 && op1
== const0_rtx
)
5750 label
= gen_label_rtx ();
5751 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
,
5752 mode
, NULL_RTX
, NULL_RTX
, label
, -1);
5753 emit_move_insn (target
, trueval
);
5759 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5760 target
= gen_reg_rtx (GET_MODE (target
));
5762 /* Jump in the right direction if the target cannot implement CODE
5763 but can jump on its reverse condition. */
5764 falseval
= const0_rtx
;
5765 if (! can_compare_p (code
, mode
, ccp_jump
)
5766 && (! FLOAT_MODE_P (mode
)
5767 || code
== ORDERED
|| code
== UNORDERED
5768 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5769 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5771 enum rtx_code rcode
;
5772 if (FLOAT_MODE_P (mode
))
5773 rcode
= reverse_condition_maybe_unordered (code
);
5775 rcode
= reverse_condition (code
);
5777 /* Canonicalize to UNORDERED for the libcall. */
5778 if (can_compare_p (rcode
, mode
, ccp_jump
)
5779 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
5782 trueval
= const0_rtx
;
5787 emit_move_insn (target
, trueval
);
5788 label
= gen_label_rtx ();
5789 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5790 NULL_RTX
, label
, -1);
5792 emit_move_insn (target
, falseval
);
5798 /* Perform possibly multi-word comparison and conditional jump to LABEL
5799 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5800 now a thin wrapper around do_compare_rtx_and_jump. */
5803 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5806 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5807 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
,
5808 NULL_RTX
, NULL_RTX
, label
, -1);