1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
39 #include "langhooks.h"
41 #include "common/common-target.h"
44 static rtx
break_out_memory_refs (rtx
);
47 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 trunc_int_for_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
52 int width
= GET_MODE_PRECISION (mode
);
54 /* You want to truncate to a _what_? */
55 gcc_assert (SCALAR_INT_MODE_P (mode
));
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 return c
& 1 ? STORE_FLAG_VALUE
: 0;
61 /* Sign-extend for the requested mode. */
63 if (width
< HOST_BITS_PER_WIDE_INT
)
65 HOST_WIDE_INT sign
= 1;
75 /* Return an rtx for the sum of X and the integer C, given that X has
79 plus_constant (enum machine_mode mode
, rtx x
, HOST_WIDE_INT c
)
86 gcc_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
99 if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
101 double_int di_x
= double_int::from_shwi (INTVAL (x
));
102 double_int di_c
= double_int::from_shwi (c
);
105 double_int v
= di_x
.add_with_sign (di_c
, false, &overflow
);
109 return immed_double_int_const (v
, mode
);
112 return gen_int_mode (INTVAL (x
) + c
, mode
);
116 double_int di_x
= double_int::from_pair (CONST_DOUBLE_HIGH (x
),
117 CONST_DOUBLE_LOW (x
));
118 double_int di_c
= double_int::from_shwi (c
);
121 double_int v
= di_x
.add_with_sign (di_c
, false, &overflow
);
123 /* Sorry, we have no way to represent overflows this wide.
124 To fix, add constant support wider than CONST_DOUBLE. */
125 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_DOUBLE_INT
);
127 return immed_double_int_const (v
, mode
);
131 /* If this is a reference to the constant pool, try replacing it with
132 a reference to a new constant. If the resulting address isn't
133 valid, don't return it because we have no way to validize it. */
134 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
135 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
137 tem
= plus_constant (mode
, get_pool_constant (XEXP (x
, 0)), c
);
138 tem
= force_const_mem (GET_MODE (x
), tem
);
139 if (memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
145 /* If adding to something entirely constant, set a flag
146 so that we can add a CONST around the result. */
157 /* The interesting case is adding the integer to a sum. Look
158 for constant term in the sum and combine with C. For an
159 integer constant term or a constant term that is not an
160 explicit integer, we combine or group them together anyway.
162 We may not immediately return from the recursive call here, lest
163 all_constant gets lost. */
165 if (CONSTANT_P (XEXP (x
, 1)))
167 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0),
168 plus_constant (mode
, XEXP (x
, 1), c
));
171 else if (find_constant_term_loc (&y
))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy
= copy_rtx (x
);
176 rtx
*const_loc
= find_constant_term_loc (©
);
178 *const_loc
= plus_constant (mode
, *const_loc
, c
);
189 x
= gen_rtx_PLUS (mode
, x
, gen_int_mode (c
, mode
));
191 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
193 else if (all_constant
)
194 return gen_rtx_CONST (mode
, x
);
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x
, rtx
*constptr
)
210 if (GET_CODE (x
) != PLUS
)
213 /* First handle constants appearing at this level explicitly. */
214 if (CONST_INT_P (XEXP (x
, 1))
215 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
217 && CONST_INT_P (tem
))
220 return eliminate_constant_term (XEXP (x
, 0), constptr
);
224 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
225 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
226 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
227 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
229 && CONST_INT_P (tem
))
232 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
238 /* Returns a tree for the size of EXP in bytes. */
241 tree_expr_size (const_tree exp
)
244 && DECL_SIZE_UNIT (exp
) != 0)
245 return DECL_SIZE_UNIT (exp
);
247 return size_in_bytes (TREE_TYPE (exp
));
250 /* Return an rtx for the size in bytes of the value of EXP. */
257 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
258 size
= TREE_OPERAND (exp
, 1);
261 size
= tree_expr_size (exp
);
263 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
266 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
269 /* Return a wide integer for the size in bytes of the value of EXP, or -1
270 if the size can vary or is larger than an integer. */
273 int_expr_size (tree exp
)
277 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
278 size
= TREE_OPERAND (exp
, 1);
281 size
= tree_expr_size (exp
);
285 if (size
== 0 || !tree_fits_shwi_p (size
))
288 return tree_to_shwi (size
);
291 /* Return a copy of X in which all memory references
292 and all constants that involve symbol refs
293 have been replaced with new temporary registers.
294 Also emit code to load the memory locations and constants
295 into those registers.
297 If X contains no such constants or memory references,
298 X itself (not a copy) is returned.
300 If a constant is found in the address that is not a legitimate constant
301 in an insn, it is left alone in the hope that it might be valid in the
304 X may contain no arithmetic except addition, subtraction and multiplication.
305 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
308 break_out_memory_refs (rtx x
)
311 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
312 && GET_MODE (x
) != VOIDmode
))
313 x
= force_reg (GET_MODE (x
), x
);
314 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
315 || GET_CODE (x
) == MULT
)
317 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
318 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
320 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
321 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
327 /* Given X, a memory address in address space AS' pointer mode, convert it to
328 an address in the address space's address mode, or vice versa (TO_MODE says
329 which way). We take advantage of the fact that pointers are not allowed to
330 overflow by commuting arithmetic operations over conversions so that address
331 arithmetic insns can be used. */
334 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED
,
335 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
)
337 #ifndef POINTERS_EXTEND_UNSIGNED
338 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
340 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
341 enum machine_mode pointer_mode
, address_mode
, from_mode
;
345 /* If X already has the right mode, just return it. */
346 if (GET_MODE (x
) == to_mode
)
349 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
350 address_mode
= targetm
.addr_space
.address_mode (as
);
351 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
353 /* Here we handle some special cases. If none of them apply, fall through
354 to the default case. */
355 switch (GET_CODE (x
))
357 CASE_CONST_SCALAR_INT
:
358 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
360 else if (POINTERS_EXTEND_UNSIGNED
< 0)
362 else if (POINTERS_EXTEND_UNSIGNED
> 0)
366 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
372 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
373 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
374 return SUBREG_REG (x
);
378 temp
= gen_rtx_LABEL_REF (to_mode
, XEXP (x
, 0));
379 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
384 temp
= shallow_copy_rtx (x
);
385 PUT_MODE (temp
, to_mode
);
390 return gen_rtx_CONST (to_mode
,
391 convert_memory_address_addr_space
392 (to_mode
, XEXP (x
, 0), as
));
397 /* FIXME: For addition, we used to permute the conversion and
398 addition operation only if one operand is a constant and
399 converting the constant does not change it or if one operand
400 is a constant and we are using a ptr_extend instruction
401 (POINTERS_EXTEND_UNSIGNED < 0) even if the resulting address
402 may overflow/underflow. We relax the condition to include
403 zero-extend (POINTERS_EXTEND_UNSIGNED > 0) since the other
404 parts of the compiler depend on it. See PR 49721.
406 We can always safely permute them if we are making the address
408 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
409 || (GET_CODE (x
) == PLUS
410 && CONST_INT_P (XEXP (x
, 1))
411 && (POINTERS_EXTEND_UNSIGNED
!= 0
412 || XEXP (x
, 1) == convert_memory_address_addr_space
413 (to_mode
, XEXP (x
, 1), as
))))
414 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
415 convert_memory_address_addr_space
416 (to_mode
, XEXP (x
, 0), as
),
424 return convert_modes (to_mode
, from_mode
,
425 x
, POINTERS_EXTEND_UNSIGNED
);
426 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
429 /* Return something equivalent to X but valid as a memory address for something
430 of mode MODE in the named address space AS. When X is not itself valid,
431 this works by copying X or subexpressions of it into registers. */
434 memory_address_addr_space (enum machine_mode mode
, rtx x
, addr_space_t as
)
437 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
439 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
441 /* By passing constant addresses through registers
442 we get a chance to cse them. */
443 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
444 x
= force_reg (address_mode
, x
);
446 /* We get better cse by rejecting indirect addressing at this stage.
447 Let the combiner create indirect addresses where appropriate.
448 For now, generate the code so that the subexpressions useful to share
449 are visible. But not if cse won't be done! */
452 if (! cse_not_expected
&& !REG_P (x
))
453 x
= break_out_memory_refs (x
);
455 /* At this point, any valid address is accepted. */
456 if (memory_address_addr_space_p (mode
, x
, as
))
459 /* If it was valid before but breaking out memory refs invalidated it,
460 use it the old way. */
461 if (memory_address_addr_space_p (mode
, oldx
, as
))
467 /* Perform machine-dependent transformations on X
468 in certain cases. This is not necessary since the code
469 below can handle all possible cases, but machine-dependent
470 transformations can make better code. */
473 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
474 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
478 /* PLUS and MULT can appear in special ways
479 as the result of attempts to make an address usable for indexing.
480 Usually they are dealt with by calling force_operand, below.
481 But a sum containing constant terms is special
482 if removing them makes the sum a valid address:
483 then we generate that address in a register
484 and index off of it. We do this because it often makes
485 shorter code, and because the addresses thus generated
486 in registers often become common subexpressions. */
487 if (GET_CODE (x
) == PLUS
)
489 rtx constant_term
= const0_rtx
;
490 rtx y
= eliminate_constant_term (x
, &constant_term
);
491 if (constant_term
== const0_rtx
492 || ! memory_address_addr_space_p (mode
, y
, as
))
493 x
= force_operand (x
, NULL_RTX
);
496 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
497 if (! memory_address_addr_space_p (mode
, y
, as
))
498 x
= force_operand (x
, NULL_RTX
);
504 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
505 x
= force_operand (x
, NULL_RTX
);
507 /* If we have a register that's an invalid address,
508 it must be a hard reg of the wrong class. Copy it to a pseudo. */
512 /* Last resort: copy the value to a register, since
513 the register is a valid address. */
515 x
= force_reg (address_mode
, x
);
520 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
521 /* If we didn't change the address, we are done. Otherwise, mark
522 a reg as a pointer if we have REG or REG + CONST_INT. */
526 mark_reg_pointer (x
, BITS_PER_UNIT
);
527 else if (GET_CODE (x
) == PLUS
528 && REG_P (XEXP (x
, 0))
529 && CONST_INT_P (XEXP (x
, 1)))
530 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
532 /* OLDX may have been the address on a temporary. Update the address
533 to indicate that X is now used. */
534 update_temp_slot_address (oldx
, x
);
539 /* Convert a mem ref into one with a valid memory address.
540 Pass through anything else unchanged. */
543 validize_mem (rtx ref
)
547 ref
= use_anchored_address (ref
);
548 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
549 MEM_ADDR_SPACE (ref
)))
552 /* Don't alter REF itself, since that is probably a stack slot. */
553 return replace_equiv_address (ref
, XEXP (ref
, 0));
556 /* If X is a memory reference to a member of an object block, try rewriting
557 it to use an anchor instead. Return the new memory reference on success
558 and the old one on failure. */
561 use_anchored_address (rtx x
)
564 HOST_WIDE_INT offset
;
565 enum machine_mode mode
;
567 if (!flag_section_anchors
)
573 /* Split the address into a base and offset. */
576 if (GET_CODE (base
) == CONST
577 && GET_CODE (XEXP (base
, 0)) == PLUS
578 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
580 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
581 base
= XEXP (XEXP (base
, 0), 0);
584 /* Check whether BASE is suitable for anchors. */
585 if (GET_CODE (base
) != SYMBOL_REF
586 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
587 || SYMBOL_REF_ANCHOR_P (base
)
588 || SYMBOL_REF_BLOCK (base
) == NULL
589 || !targetm
.use_anchors_for_symbol_p (base
))
592 /* Decide where BASE is going to be. */
593 place_block_symbol (base
);
595 /* Get the anchor we need to use. */
596 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
597 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
598 SYMBOL_REF_TLS_MODEL (base
));
600 /* Work out the offset from the anchor. */
601 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
603 /* If we're going to run a CSE pass, force the anchor into a register.
604 We will then be able to reuse registers for several accesses, if the
605 target costs say that that's worthwhile. */
606 mode
= GET_MODE (base
);
607 if (!cse_not_expected
)
608 base
= force_reg (mode
, base
);
610 return replace_equiv_address (x
, plus_constant (mode
, base
, offset
));
613 /* Copy the value or contents of X to a new temp reg and return that reg. */
618 rtx temp
= gen_reg_rtx (GET_MODE (x
));
620 /* If not an operand, must be an address with PLUS and MULT so
621 do the computation. */
622 if (! general_operand (x
, VOIDmode
))
623 x
= force_operand (x
, temp
);
626 emit_move_insn (temp
, x
);
631 /* Like copy_to_reg but always give the new register mode Pmode
632 in case X is a constant. */
635 copy_addr_to_reg (rtx x
)
637 return copy_to_mode_reg (Pmode
, x
);
640 /* Like copy_to_reg but always give the new register mode MODE
641 in case X is a constant. */
644 copy_to_mode_reg (enum machine_mode mode
, rtx x
)
646 rtx temp
= gen_reg_rtx (mode
);
648 /* If not an operand, must be an address with PLUS and MULT so
649 do the computation. */
650 if (! general_operand (x
, VOIDmode
))
651 x
= force_operand (x
, temp
);
653 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
655 emit_move_insn (temp
, x
);
659 /* Load X into a register if it is not already one.
660 Use mode MODE for the register.
661 X should be valid for mode MODE, but it may be a constant which
662 is valid for all integer modes; that's why caller must specify MODE.
664 The caller must not alter the value in the register we return,
665 since we mark it as a "constant" register. */
668 force_reg (enum machine_mode mode
, rtx x
)
675 if (general_operand (x
, mode
))
677 temp
= gen_reg_rtx (mode
);
678 insn
= emit_move_insn (temp
, x
);
682 temp
= force_operand (x
, NULL_RTX
);
684 insn
= get_last_insn ();
687 rtx temp2
= gen_reg_rtx (mode
);
688 insn
= emit_move_insn (temp2
, temp
);
693 /* Let optimizers know that TEMP's value never changes
694 and that X can be substituted for it. Don't get confused
695 if INSN set something else (such as a SUBREG of TEMP). */
697 && (set
= single_set (insn
)) != 0
698 && SET_DEST (set
) == temp
699 && ! rtx_equal_p (x
, SET_SRC (set
)))
700 set_unique_reg_note (insn
, REG_EQUAL
, x
);
702 /* Let optimizers know that TEMP is a pointer, and if so, the
703 known alignment of that pointer. */
706 if (GET_CODE (x
) == SYMBOL_REF
)
708 align
= BITS_PER_UNIT
;
709 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
710 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
712 else if (GET_CODE (x
) == LABEL_REF
)
713 align
= BITS_PER_UNIT
;
714 else if (GET_CODE (x
) == CONST
715 && GET_CODE (XEXP (x
, 0)) == PLUS
716 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
717 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
719 rtx s
= XEXP (XEXP (x
, 0), 0);
720 rtx c
= XEXP (XEXP (x
, 0), 1);
724 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
725 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
731 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
732 align
= MIN (sa
, ca
);
736 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
737 mark_reg_pointer (temp
, align
);
743 /* If X is a memory ref, copy its contents to a new temp reg and return
744 that reg. Otherwise, return X. */
747 force_not_mem (rtx x
)
751 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
754 temp
= gen_reg_rtx (GET_MODE (x
));
757 REG_POINTER (temp
) = 1;
759 emit_move_insn (temp
, x
);
763 /* Copy X to TARGET (if it's nonzero and a reg)
764 or to a new temp reg and return that reg.
765 MODE is the mode to use for X in case it is a constant. */
768 copy_to_suggested_reg (rtx x
, rtx target
, enum machine_mode mode
)
772 if (target
&& REG_P (target
))
775 temp
= gen_reg_rtx (mode
);
777 emit_move_insn (temp
, x
);
781 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
782 PUNSIGNEDP points to the signedness of the type and may be adjusted
783 to show what signedness to use on extension operations.
785 FOR_RETURN is nonzero if the caller is promoting the return value
786 of FNDECL, else it is for promoting args. */
789 promote_function_mode (const_tree type
, enum machine_mode mode
, int *punsignedp
,
790 const_tree funtype
, int for_return
)
792 /* Called without a type node for a libcall. */
793 if (type
== NULL_TREE
)
795 if (INTEGRAL_MODE_P (mode
))
796 return targetm
.calls
.promote_function_mode (NULL_TREE
, mode
,
803 switch (TREE_CODE (type
))
805 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
806 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
807 case POINTER_TYPE
: case REFERENCE_TYPE
:
808 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
815 /* Return the mode to use to store a scalar of TYPE and MODE.
816 PUNSIGNEDP points to the signedness of the type and may be adjusted
817 to show what signedness to use on extension operations. */
820 promote_mode (const_tree type ATTRIBUTE_UNUSED
, enum machine_mode mode
,
821 int *punsignedp ATTRIBUTE_UNUSED
)
828 /* For libcalls this is invoked without TYPE from the backends
829 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
831 if (type
== NULL_TREE
)
834 /* FIXME: this is the same logic that was there until GCC 4.4, but we
835 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
836 is not defined. The affected targets are M32C, S390, SPARC. */
838 code
= TREE_CODE (type
);
839 unsignedp
= *punsignedp
;
843 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
844 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
845 PROMOTE_MODE (mode
, unsignedp
, type
);
846 *punsignedp
= unsignedp
;
850 #ifdef POINTERS_EXTEND_UNSIGNED
853 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
854 return targetm
.addr_space
.address_mode
855 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
868 /* Use one of promote_mode or promote_function_mode to find the promoted
869 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
870 of DECL after promotion. */
873 promote_decl_mode (const_tree decl
, int *punsignedp
)
875 tree type
= TREE_TYPE (decl
);
876 int unsignedp
= TYPE_UNSIGNED (type
);
877 enum machine_mode mode
= DECL_MODE (decl
);
878 enum machine_mode pmode
;
880 if (TREE_CODE (decl
) == RESULT_DECL
881 || TREE_CODE (decl
) == PARM_DECL
)
882 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
883 TREE_TYPE (current_function_decl
), 2);
885 pmode
= promote_mode (type
, mode
, &unsignedp
);
888 *punsignedp
= unsignedp
;
893 /* Controls the behaviour of {anti_,}adjust_stack. */
894 static bool suppress_reg_args_size
;
896 /* A helper for adjust_stack and anti_adjust_stack. */
899 adjust_stack_1 (rtx adjust
, bool anti_p
)
903 #ifndef STACK_GROWS_DOWNWARD
904 /* Hereafter anti_p means subtract_p. */
908 temp
= expand_binop (Pmode
,
909 anti_p
? sub_optab
: add_optab
,
910 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
913 if (temp
!= stack_pointer_rtx
)
914 insn
= emit_move_insn (stack_pointer_rtx
, temp
);
917 insn
= get_last_insn ();
918 temp
= single_set (insn
);
919 gcc_assert (temp
!= NULL
&& SET_DEST (temp
) == stack_pointer_rtx
);
922 if (!suppress_reg_args_size
)
923 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
926 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
927 This pops when ADJUST is positive. ADJUST need not be constant. */
930 adjust_stack (rtx adjust
)
932 if (adjust
== const0_rtx
)
935 /* We expect all variable sized adjustments to be multiple of
936 PREFERRED_STACK_BOUNDARY. */
937 if (CONST_INT_P (adjust
))
938 stack_pointer_delta
-= INTVAL (adjust
);
940 adjust_stack_1 (adjust
, false);
943 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
944 This pushes when ADJUST is positive. ADJUST need not be constant. */
947 anti_adjust_stack (rtx adjust
)
949 if (adjust
== const0_rtx
)
952 /* We expect all variable sized adjustments to be multiple of
953 PREFERRED_STACK_BOUNDARY. */
954 if (CONST_INT_P (adjust
))
955 stack_pointer_delta
+= INTVAL (adjust
);
957 adjust_stack_1 (adjust
, true);
960 /* Round the size of a block to be pushed up to the boundary required
961 by this machine. SIZE is the desired size, which need not be constant. */
964 round_push (rtx size
)
966 rtx align_rtx
, alignm1_rtx
;
968 if (!SUPPORTS_STACK_ALIGNMENT
969 || crtl
->preferred_stack_boundary
== MAX_SUPPORTED_STACK_ALIGNMENT
)
971 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
976 if (CONST_INT_P (size
))
978 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
980 if (INTVAL (size
) != new_size
)
981 size
= GEN_INT (new_size
);
985 align_rtx
= GEN_INT (align
);
986 alignm1_rtx
= GEN_INT (align
- 1);
990 /* If crtl->preferred_stack_boundary might still grow, use
991 virtual_preferred_stack_boundary_rtx instead. This will be
992 substituted by the right value in vregs pass and optimized
994 align_rtx
= virtual_preferred_stack_boundary_rtx
;
995 alignm1_rtx
= force_operand (plus_constant (Pmode
, align_rtx
, -1),
999 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1000 but we know it can't. So add ourselves and then do
1002 size
= expand_binop (Pmode
, add_optab
, size
, alignm1_rtx
,
1003 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1004 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, align_rtx
,
1006 size
= expand_mult (Pmode
, size
, align_rtx
, NULL_RTX
, 1);
1011 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1012 to a previously-created save area. If no save area has been allocated,
1013 this function will allocate one. If a save area is specified, it
1014 must be of the proper mode. */
1017 emit_stack_save (enum save_level save_level
, rtx
*psave
)
1020 /* The default is that we use a move insn and save in a Pmode object. */
1021 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
1022 enum machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1024 /* See if this machine has anything special to do for this kind of save. */
1027 #ifdef HAVE_save_stack_block
1029 if (HAVE_save_stack_block
)
1030 fcn
= gen_save_stack_block
;
1033 #ifdef HAVE_save_stack_function
1035 if (HAVE_save_stack_function
)
1036 fcn
= gen_save_stack_function
;
1039 #ifdef HAVE_save_stack_nonlocal
1041 if (HAVE_save_stack_nonlocal
)
1042 fcn
= gen_save_stack_nonlocal
;
1049 /* If there is no save area and we have to allocate one, do so. Otherwise
1050 verify the save area is the proper mode. */
1054 if (mode
!= VOIDmode
)
1056 if (save_level
== SAVE_NONLOCAL
)
1057 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1059 *psave
= sa
= gen_reg_rtx (mode
);
1063 do_pending_stack_adjust ();
1065 sa
= validize_mem (sa
);
1066 emit_insn (fcn (sa
, stack_pointer_rtx
));
1069 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1070 area made by emit_stack_save. If it is zero, we have nothing to do. */
1073 emit_stack_restore (enum save_level save_level
, rtx sa
)
1075 /* The default is that we use a move insn. */
1076 rtx (*fcn
) (rtx
, rtx
) = gen_move_insn
;
1078 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1079 STACK_POINTER and HARD_FRAME_POINTER.
1080 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1081 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1082 aligned variables, which is reflected in ix86_can_eliminate.
1083 We normally still have the realigned STACK_POINTER that we can use.
1084 But if there is a stack restore still present at reload, it can trigger
1085 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1086 FRAME_POINTER into a hard reg.
1087 To prevent this situation, we force need_drap if we emit a stack
1089 if (SUPPORTS_STACK_ALIGNMENT
)
1090 crtl
->need_drap
= true;
1092 /* See if this machine has anything special to do for this kind of save. */
1095 #ifdef HAVE_restore_stack_block
1097 if (HAVE_restore_stack_block
)
1098 fcn
= gen_restore_stack_block
;
1101 #ifdef HAVE_restore_stack_function
1103 if (HAVE_restore_stack_function
)
1104 fcn
= gen_restore_stack_function
;
1107 #ifdef HAVE_restore_stack_nonlocal
1109 if (HAVE_restore_stack_nonlocal
)
1110 fcn
= gen_restore_stack_nonlocal
;
1119 sa
= validize_mem (sa
);
1120 /* These clobbers prevent the scheduler from moving
1121 references to variable arrays below the code
1122 that deletes (pops) the arrays. */
1123 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1124 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1127 discard_pending_stack_adjust ();
1129 emit_insn (fcn (stack_pointer_rtx
, sa
));
1132 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1133 function. This function should be called whenever we allocate or
1134 deallocate dynamic stack space. */
1137 update_nonlocal_goto_save_area (void)
1142 /* The nonlocal_goto_save_area object is an array of N pointers. The
1143 first one is used for the frame pointer save; the rest are sized by
1144 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1145 of the stack save area slots. */
1146 t_save
= build4 (ARRAY_REF
,
1147 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
1148 cfun
->nonlocal_goto_save_area
,
1149 integer_one_node
, NULL_TREE
, NULL_TREE
);
1150 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1152 emit_stack_save (SAVE_NONLOCAL
, &r_save
);
1155 /* Return an rtx representing the address of an area of memory dynamically
1156 pushed on the stack.
1158 Any required stack pointer alignment is preserved.
1160 SIZE is an rtx representing the size of the area.
1162 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1163 parameter may be zero. If so, a proper value will be extracted
1164 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1166 REQUIRED_ALIGN is the alignment (in bits) required for the region
1169 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1170 stack space allocated by the generated code cannot be added with itself
1171 in the course of the execution of the function. It is always safe to
1172 pass FALSE here and the following criterion is sufficient in order to
1173 pass TRUE: every path in the CFG that starts at the allocation point and
1174 loops to it executes the associated deallocation code. */
1177 allocate_dynamic_stack_space (rtx size
, unsigned size_align
,
1178 unsigned required_align
, bool cannot_accumulate
)
1180 HOST_WIDE_INT stack_usage_size
= -1;
1181 rtx final_label
, final_target
, target
;
1182 unsigned extra_align
= 0;
1185 /* If we're asking for zero bytes, it doesn't matter what we point
1186 to since we can't dereference it. But return a reasonable
1188 if (size
== const0_rtx
)
1189 return virtual_stack_dynamic_rtx
;
1191 /* Otherwise, show we're calling alloca or equivalent. */
1192 cfun
->calls_alloca
= 1;
1194 /* If stack usage info is requested, look into the size we are passed.
1195 We need to do so this early to avoid the obfuscation that may be
1196 introduced later by the various alignment operations. */
1197 if (flag_stack_usage_info
)
1199 if (CONST_INT_P (size
))
1200 stack_usage_size
= INTVAL (size
);
1201 else if (REG_P (size
))
1203 /* Look into the last emitted insn and see if we can deduce
1204 something for the register. */
1205 rtx insn
, set
, note
;
1206 insn
= get_last_insn ();
1207 if ((set
= single_set (insn
)) && rtx_equal_p (SET_DEST (set
), size
))
1209 if (CONST_INT_P (SET_SRC (set
)))
1210 stack_usage_size
= INTVAL (SET_SRC (set
));
1211 else if ((note
= find_reg_equal_equiv_note (insn
))
1212 && CONST_INT_P (XEXP (note
, 0)))
1213 stack_usage_size
= INTVAL (XEXP (note
, 0));
1217 /* If the size is not constant, we can't say anything. */
1218 if (stack_usage_size
== -1)
1220 current_function_has_unbounded_dynamic_stack_size
= 1;
1221 stack_usage_size
= 0;
1225 /* Ensure the size is in the proper mode. */
1226 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1227 size
= convert_to_mode (Pmode
, size
, 1);
1229 /* Adjust SIZE_ALIGN, if needed. */
1230 if (CONST_INT_P (size
))
1232 unsigned HOST_WIDE_INT lsb
;
1234 lsb
= INTVAL (size
);
1237 /* Watch out for overflow truncating to "unsigned". */
1238 if (lsb
> UINT_MAX
/ BITS_PER_UNIT
)
1239 size_align
= 1u << (HOST_BITS_PER_INT
- 1);
1241 size_align
= (unsigned)lsb
* BITS_PER_UNIT
;
1243 else if (size_align
< BITS_PER_UNIT
)
1244 size_align
= BITS_PER_UNIT
;
1246 /* We can't attempt to minimize alignment necessary, because we don't
1247 know the final value of preferred_stack_boundary yet while executing
1249 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1250 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1252 /* We will need to ensure that the address we return is aligned to
1253 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1254 always know its final value at this point in the compilation (it
1255 might depend on the size of the outgoing parameter lists, for
1256 example), so we must align the value to be returned in that case.
1257 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1258 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1259 We must also do an alignment operation on the returned value if
1260 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1262 If we have to align, we must leave space in SIZE for the hole
1263 that might result from the alignment operation. */
1265 must_align
= (crtl
->preferred_stack_boundary
< required_align
);
1268 if (required_align
> PREFERRED_STACK_BOUNDARY
)
1269 extra_align
= PREFERRED_STACK_BOUNDARY
;
1270 else if (required_align
> STACK_BOUNDARY
)
1271 extra_align
= STACK_BOUNDARY
;
1273 extra_align
= BITS_PER_UNIT
;
1276 /* ??? STACK_POINTER_OFFSET is always defined now. */
1277 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1279 extra_align
= BITS_PER_UNIT
;
1284 unsigned extra
= (required_align
- extra_align
) / BITS_PER_UNIT
;
1286 size
= plus_constant (Pmode
, size
, extra
);
1287 size
= force_operand (size
, NULL_RTX
);
1289 if (flag_stack_usage_info
)
1290 stack_usage_size
+= extra
;
1292 if (extra
&& size_align
> extra_align
)
1293 size_align
= extra_align
;
1296 /* Round the size to a multiple of the required stack alignment.
1297 Since the stack if presumed to be rounded before this allocation,
1298 this will maintain the required alignment.
1300 If the stack grows downward, we could save an insn by subtracting
1301 SIZE from the stack pointer and then aligning the stack pointer.
1302 The problem with this is that the stack pointer may be unaligned
1303 between the execution of the subtraction and alignment insns and
1304 some machines do not allow this. Even on those that do, some
1305 signal handlers malfunction if a signal should occur between those
1306 insns. Since this is an extremely rare event, we have no reliable
1307 way of knowing which systems have this problem. So we avoid even
1308 momentarily mis-aligning the stack. */
1309 if (size_align
% MAX_SUPPORTED_STACK_ALIGNMENT
!= 0)
1311 size
= round_push (size
);
1313 if (flag_stack_usage_info
)
1315 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
1316 stack_usage_size
= (stack_usage_size
+ align
- 1) / align
* align
;
1320 target
= gen_reg_rtx (Pmode
);
1322 /* The size is supposed to be fully adjusted at this point so record it
1323 if stack usage info is requested. */
1324 if (flag_stack_usage_info
)
1326 current_function_dynamic_stack_size
+= stack_usage_size
;
1328 /* ??? This is gross but the only safe stance in the absence
1329 of stack usage oriented flow analysis. */
1330 if (!cannot_accumulate
)
1331 current_function_has_unbounded_dynamic_stack_size
= 1;
1334 final_label
= NULL_RTX
;
1335 final_target
= NULL_RTX
;
1337 /* If we are splitting the stack, we need to ask the backend whether
1338 there is enough room on the current stack. If there isn't, or if
1339 the backend doesn't know how to tell is, then we need to call a
1340 function to allocate memory in some other way. This memory will
1341 be released when we release the current stack segment. The
1342 effect is that stack allocation becomes less efficient, but at
1343 least it doesn't cause a stack overflow. */
1344 if (flag_split_stack
)
1346 rtx available_label
, ask
, space
, func
;
1348 available_label
= NULL_RTX
;
1350 #ifdef HAVE_split_stack_space_check
1351 if (HAVE_split_stack_space_check
)
1353 available_label
= gen_label_rtx ();
1355 /* This instruction will branch to AVAILABLE_LABEL if there
1356 are SIZE bytes available on the stack. */
1357 emit_insn (gen_split_stack_space_check (size
, available_label
));
1361 /* The __morestack_allocate_stack_space function will allocate
1362 memory using malloc. If the alignment of the memory returned
1363 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1364 make sure we allocate enough space. */
1365 if (MALLOC_ABI_ALIGNMENT
>= required_align
)
1369 ask
= expand_binop (Pmode
, add_optab
, size
,
1370 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1372 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1376 func
= init_one_libfunc ("__morestack_allocate_stack_space");
1378 space
= emit_library_call_value (func
, target
, LCT_NORMAL
, Pmode
,
1381 if (available_label
== NULL_RTX
)
1384 final_target
= gen_reg_rtx (Pmode
);
1386 emit_move_insn (final_target
, space
);
1388 final_label
= gen_label_rtx ();
1389 emit_jump (final_label
);
1391 emit_label (available_label
);
1394 do_pending_stack_adjust ();
1396 /* We ought to be called always on the toplevel and stack ought to be aligned
1398 gcc_assert (!(stack_pointer_delta
1399 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1401 /* If needed, check that we have the required amount of stack. Take into
1402 account what has already been checked. */
1403 if (STACK_CHECK_MOVING_SP
)
1405 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1406 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1408 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1409 probe_stack_range (STACK_CHECK_PROTECT
, size
);
1411 /* Don't let anti_adjust_stack emit notes. */
1412 suppress_reg_args_size
= true;
1414 /* Perform the required allocation from the stack. Some systems do
1415 this differently than simply incrementing/decrementing from the
1416 stack pointer, such as acquiring the space by calling malloc(). */
1417 #ifdef HAVE_allocate_stack
1418 if (HAVE_allocate_stack
)
1420 struct expand_operand ops
[2];
1421 /* We don't have to check against the predicate for operand 0 since
1422 TARGET is known to be a pseudo of the proper mode, which must
1423 be valid for the operand. */
1424 create_fixed_operand (&ops
[0], target
);
1425 create_convert_operand_to (&ops
[1], size
, STACK_SIZE_MODE
, true);
1426 expand_insn (CODE_FOR_allocate_stack
, 2, ops
);
1431 int saved_stack_pointer_delta
;
1433 #ifndef STACK_GROWS_DOWNWARD
1434 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1437 /* Check stack bounds if necessary. */
1438 if (crtl
->limit_stack
)
1441 rtx space_available
= gen_label_rtx ();
1442 #ifdef STACK_GROWS_DOWNWARD
1443 available
= expand_binop (Pmode
, sub_optab
,
1444 stack_pointer_rtx
, stack_limit_rtx
,
1445 NULL_RTX
, 1, OPTAB_WIDEN
);
1447 available
= expand_binop (Pmode
, sub_optab
,
1448 stack_limit_rtx
, stack_pointer_rtx
,
1449 NULL_RTX
, 1, OPTAB_WIDEN
);
1451 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1455 emit_insn (gen_trap ());
1458 error ("stack limits not supported on this target");
1460 emit_label (space_available
);
1463 saved_stack_pointer_delta
= stack_pointer_delta
;
1465 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1466 anti_adjust_stack_and_probe (size
, false);
1468 anti_adjust_stack (size
);
1470 /* Even if size is constant, don't modify stack_pointer_delta.
1471 The constant size alloca should preserve
1472 crtl->preferred_stack_boundary alignment. */
1473 stack_pointer_delta
= saved_stack_pointer_delta
;
1475 #ifdef STACK_GROWS_DOWNWARD
1476 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1480 suppress_reg_args_size
= false;
1482 /* Finish up the split stack handling. */
1483 if (final_label
!= NULL_RTX
)
1485 gcc_assert (flag_split_stack
);
1486 emit_move_insn (final_target
, target
);
1487 emit_label (final_label
);
1488 target
= final_target
;
1493 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1494 but we know it can't. So add ourselves and then do
1496 target
= expand_binop (Pmode
, add_optab
, target
,
1497 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1499 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1500 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1501 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1504 target
= expand_mult (Pmode
, target
,
1505 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1510 /* Now that we've committed to a return value, mark its alignment. */
1511 mark_reg_pointer (target
, required_align
);
1513 /* Record the new stack level for nonlocal gotos. */
1514 if (cfun
->nonlocal_goto_save_area
!= 0)
1515 update_nonlocal_goto_save_area ();
1520 /* A front end may want to override GCC's stack checking by providing a
1521 run-time routine to call to check the stack, so provide a mechanism for
1522 calling that routine. */
1524 static GTY(()) rtx stack_check_libfunc
;
1527 set_stack_check_libfunc (const char *libfunc_name
)
1529 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1530 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1533 /* Emit one stack probe at ADDRESS, an address within the stack. */
1536 emit_stack_probe (rtx address
)
1538 #ifdef HAVE_probe_stack_address
1539 if (HAVE_probe_stack_address
)
1540 emit_insn (gen_probe_stack_address (address
));
1544 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1546 MEM_VOLATILE_P (memref
) = 1;
1548 /* See if we have an insn to probe the stack. */
1549 #ifdef HAVE_probe_stack
1550 if (HAVE_probe_stack
)
1551 emit_insn (gen_probe_stack (memref
));
1554 emit_move_insn (memref
, const0_rtx
);
1558 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1559 FIRST is a constant and size is a Pmode RTX. These are offsets from
1560 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1561 or subtract them from the stack pointer. */
1563 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1565 #ifdef STACK_GROWS_DOWNWARD
1566 #define STACK_GROW_OP MINUS
1567 #define STACK_GROW_OPTAB sub_optab
1568 #define STACK_GROW_OFF(off) -(off)
1570 #define STACK_GROW_OP PLUS
1571 #define STACK_GROW_OPTAB add_optab
1572 #define STACK_GROW_OFF(off) (off)
1576 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1578 /* First ensure SIZE is Pmode. */
1579 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1580 size
= convert_to_mode (Pmode
, size
, 1);
1582 /* Next see if we have a function to check the stack. */
1583 if (stack_check_libfunc
)
1585 rtx addr
= memory_address (Pmode
,
1586 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1588 plus_constant (Pmode
,
1590 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1594 /* Next see if we have an insn to check the stack. */
1595 #ifdef HAVE_check_stack
1596 else if (HAVE_check_stack
)
1598 struct expand_operand ops
[1];
1599 rtx addr
= memory_address (Pmode
,
1600 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1602 plus_constant (Pmode
,
1605 create_input_operand (&ops
[0], addr
, Pmode
);
1606 success
= maybe_expand_insn (CODE_FOR_check_stack
, 1, ops
);
1607 gcc_assert (success
);
1611 /* Otherwise we have to generate explicit probes. If we have a constant
1612 small number of them to generate, that's the easy case. */
1613 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1615 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1618 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1619 it exceeds SIZE. If only one probe is needed, this will not
1620 generate any code. Then probe at FIRST + SIZE. */
1621 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1623 addr
= memory_address (Pmode
,
1624 plus_constant (Pmode
, stack_pointer_rtx
,
1625 STACK_GROW_OFF (first
+ i
)));
1626 emit_stack_probe (addr
);
1629 addr
= memory_address (Pmode
,
1630 plus_constant (Pmode
, stack_pointer_rtx
,
1631 STACK_GROW_OFF (first
+ isize
)));
1632 emit_stack_probe (addr
);
1635 /* In the variable case, do the same as above, but in a loop. Note that we
1636 must be extra careful with variables wrapping around because we might be
1637 at the very top (or the very bottom) of the address space and we have to
1638 be able to handle this case properly; in particular, we use an equality
1639 test for the loop condition. */
1642 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1643 rtx loop_lab
= gen_label_rtx ();
1644 rtx end_lab
= gen_label_rtx ();
1647 /* Step 1: round SIZE to the previous multiple of the interval. */
1649 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1651 = simplify_gen_binary (AND
, Pmode
, size
,
1652 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1653 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1656 /* Step 2: compute initial and final value of the loop counter. */
1658 /* TEST_ADDR = SP + FIRST. */
1659 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1661 gen_int_mode (first
, Pmode
)),
1664 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1665 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1667 rounded_size_op
), NULL_RTX
);
1672 while (TEST_ADDR != LAST_ADDR)
1674 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1678 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1679 until it is equal to ROUNDED_SIZE. */
1681 emit_label (loop_lab
);
1683 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1684 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1687 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1688 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1689 gen_int_mode (PROBE_INTERVAL
, Pmode
), test_addr
,
1692 gcc_assert (temp
== test_addr
);
1694 /* Probe at TEST_ADDR. */
1695 emit_stack_probe (test_addr
);
1697 emit_jump (loop_lab
);
1699 emit_label (end_lab
);
1702 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1703 that SIZE is equal to ROUNDED_SIZE. */
1705 /* TEMP = SIZE - ROUNDED_SIZE. */
1706 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1707 if (temp
!= const0_rtx
)
1711 if (CONST_INT_P (temp
))
1713 /* Use [base + disp} addressing mode if supported. */
1714 HOST_WIDE_INT offset
= INTVAL (temp
);
1715 addr
= memory_address (Pmode
,
1716 plus_constant (Pmode
, last_addr
,
1717 STACK_GROW_OFF (offset
)));
1721 /* Manual CSE if the difference is not known at compile-time. */
1722 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1723 addr
= memory_address (Pmode
,
1724 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1728 emit_stack_probe (addr
);
1733 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1734 while probing it. This pushes when SIZE is positive. SIZE need not
1735 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1736 by plus SIZE at the end. */
1739 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
1741 /* We skip the probe for the first interval + a small dope of 4 words and
1742 probe that many bytes past the specified size to maintain a protection
1743 area at the botton of the stack. */
1744 const int dope
= 4 * UNITS_PER_WORD
;
1746 /* First ensure SIZE is Pmode. */
1747 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1748 size
= convert_to_mode (Pmode
, size
, 1);
1750 /* If we have a constant small number of probes to generate, that's the
1752 if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1754 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1755 bool first_probe
= true;
1757 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1758 values of N from 1 until it exceeds SIZE. If only one probe is
1759 needed, this will not generate any code. Then adjust and probe
1760 to PROBE_INTERVAL + SIZE. */
1761 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1765 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
1766 first_probe
= false;
1769 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1770 emit_stack_probe (stack_pointer_rtx
);
1774 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1776 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
- i
));
1777 emit_stack_probe (stack_pointer_rtx
);
1780 /* In the variable case, do the same as above, but in a loop. Note that we
1781 must be extra careful with variables wrapping around because we might be
1782 at the very top (or the very bottom) of the address space and we have to
1783 be able to handle this case properly; in particular, we use an equality
1784 test for the loop condition. */
1787 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
1788 rtx loop_lab
= gen_label_rtx ();
1789 rtx end_lab
= gen_label_rtx ();
1792 /* Step 1: round SIZE to the previous multiple of the interval. */
1794 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1796 = simplify_gen_binary (AND
, Pmode
, size
,
1797 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1798 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1801 /* Step 2: compute initial and final value of the loop counter. */
1803 /* SP = SP_0 + PROBE_INTERVAL. */
1804 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1806 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1807 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1809 rounded_size_op
), NULL_RTX
);
1814 while (SP != LAST_ADDR)
1816 SP = SP + PROBE_INTERVAL
1820 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1821 values of N from 1 until it is equal to ROUNDED_SIZE. */
1823 emit_label (loop_lab
);
1825 /* Jump to END_LAB if SP == LAST_ADDR. */
1826 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1829 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1830 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1831 emit_stack_probe (stack_pointer_rtx
);
1833 emit_jump (loop_lab
);
1835 emit_label (end_lab
);
1838 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1839 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1841 /* TEMP = SIZE - ROUNDED_SIZE. */
1842 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1843 if (temp
!= const0_rtx
)
1845 /* Manual CSE if the difference is not known at compile-time. */
1846 if (GET_CODE (temp
) != CONST_INT
)
1847 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1848 anti_adjust_stack (temp
);
1849 emit_stack_probe (stack_pointer_rtx
);
1853 /* Adjust back and account for the additional first interval. */
1855 adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1857 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1860 /* Return an rtx representing the register or memory location
1861 in which a scalar value of data type VALTYPE
1862 was returned by a function call to function FUNC.
1863 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1864 function is known, otherwise 0.
1865 OUTGOING is 1 if on a machine with register windows this function
1866 should return the register in which the function will put its result
1870 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
1871 int outgoing ATTRIBUTE_UNUSED
)
1875 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
1878 && GET_MODE (val
) == BLKmode
)
1880 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1881 enum machine_mode tmpmode
;
1883 /* int_size_in_bytes can return -1. We don't need a check here
1884 since the value of bytes will then be large enough that no
1885 mode will match anyway. */
1887 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1888 tmpmode
!= VOIDmode
;
1889 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1891 /* Have we found a large enough mode? */
1892 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1896 /* No suitable mode found. */
1897 gcc_assert (tmpmode
!= VOIDmode
);
1899 PUT_MODE (val
, tmpmode
);
1904 /* Return an rtx representing the register or memory location
1905 in which a scalar value of mode MODE was returned by a library call. */
1908 hard_libcall_value (enum machine_mode mode
, rtx fun
)
1910 return targetm
.calls
.libcall_value (mode
, fun
);
1913 /* Look up the tree code for a given rtx code
1914 to provide the arithmetic operation for REAL_ARITHMETIC.
1915 The function returns an int because the caller may not know
1916 what `enum tree_code' means. */
1919 rtx_to_tree_code (enum rtx_code code
)
1921 enum tree_code tcode
;
1944 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1947 return ((int) tcode
);
1950 #include "gt-explow.h"