* config/fp-bit.h (LSHIFT): Take shift count parameter.
[official-gcc.git] / gcc / config / i386 / i386.h
blob256c0e49e20963866125d2287985e96a11accd7a
1 /* Definitions of target machine for GCC for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Define the specific costs for a given cpu */
39 struct processor_costs {
40 const int add; /* cost of an add instruction */
41 const int lea; /* cost of a lea instruction */
42 const int shift_var; /* variable shift costs */
43 const int shift_const; /* constant shift costs */
44 const int mult_init[5]; /* cost of starting a multiply
45 in QImode, HImode, SImode, DImode, TImode*/
46 const int mult_bit; /* cost of multiply per each bit set */
47 const int divide[5]; /* cost of a divide/mod
48 in QImode, HImode, SImode, DImode, TImode*/
49 int movsx; /* The cost of movsx operation. */
50 int movzx; /* The cost of movzx operation. */
51 const int large_insn; /* insns larger than this cost more */
52 const int move_ratio; /* The threshold of number of scalar
53 memory-to-memory move insns. */
54 const int movzbl_load; /* cost of loading using movzbl */
55 const int int_load[3]; /* cost of loading integer registers
56 in QImode, HImode and SImode relative
57 to reg-reg move (2). */
58 const int int_store[3]; /* cost of storing integer register
59 in QImode, HImode and SImode */
60 const int fp_move; /* cost of reg,reg fld/fst */
61 const int fp_load[3]; /* cost of loading FP register
62 in SFmode, DFmode and XFmode */
63 const int fp_store[3]; /* cost of storing FP register
64 in SFmode, DFmode and XFmode */
65 const int mmx_move; /* cost of moving MMX register. */
66 const int mmx_load[2]; /* cost of loading MMX register
67 in SImode and DImode */
68 const int mmx_store[2]; /* cost of storing MMX register
69 in SImode and DImode */
70 const int sse_move; /* cost of moving SSE register. */
71 const int sse_load[3]; /* cost of loading SSE register
72 in SImode, DImode and TImode*/
73 const int sse_store[3]; /* cost of storing SSE register
74 in SImode, DImode and TImode*/
75 const int mmxsse_to_integer; /* cost of moving mmxsse register to
76 integer and vice versa. */
77 const int prefetch_block; /* bytes moved to cache for prefetch. */
78 const int simultaneous_prefetches; /* number of parallel prefetch
79 operations. */
80 const int branch_cost; /* Default value for BRANCH_COST. */
81 const int fadd; /* cost of FADD and FSUB instructions. */
82 const int fmul; /* cost of FMUL instruction. */
83 const int fdiv; /* cost of FDIV instruction. */
84 const int fabs; /* cost of FABS instruction. */
85 const int fchs; /* cost of FCHS instruction. */
86 const int fsqrt; /* cost of FSQRT instruction. */
89 extern const struct processor_costs *ix86_cost;
91 /* Macros used in the machine description to test the flags. */
93 /* configure can arrange to make this 2, to force a 486. */
95 #ifndef TARGET_CPU_DEFAULT
96 #ifdef TARGET_64BIT_DEFAULT
97 #define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
98 #else
99 #define TARGET_CPU_DEFAULT 0
100 #endif
101 #endif
103 #ifndef TARGET_FPMATH_DEFAULT
104 #define TARGET_FPMATH_DEFAULT \
105 (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
106 #endif
108 #define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
110 /* 64bit Sledgehammer mode. For libgcc2 we make sure this is a
111 compile-time constant. */
112 #ifdef IN_LIBGCC2
113 #undef TARGET_64BIT
114 #ifdef __x86_64__
115 #define TARGET_64BIT 1
116 #else
117 #define TARGET_64BIT 0
118 #endif
119 #else
120 #ifndef TARGET_BI_ARCH
121 #undef TARGET_64BIT
122 #if TARGET_64BIT_DEFAULT
123 #define TARGET_64BIT 1
124 #else
125 #define TARGET_64BIT 0
126 #endif
127 #endif
128 #endif
130 #define HAS_LONG_COND_BRANCH 1
131 #define HAS_LONG_UNCOND_BRANCH 1
133 #define TARGET_386 (ix86_tune == PROCESSOR_I386)
134 #define TARGET_486 (ix86_tune == PROCESSOR_I486)
135 #define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
136 #define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
137 #define TARGET_K6 (ix86_tune == PROCESSOR_K6)
138 #define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
139 #define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
140 #define TARGET_K8 (ix86_tune == PROCESSOR_K8)
141 #define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
142 #define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
144 #define TUNEMASK (1 << ix86_tune)
145 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
146 extern const int x86_use_bit_test, x86_cmove, x86_fisttp, x86_deep_branch;
147 extern const int x86_branch_hints, x86_unroll_strlen;
148 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
149 extern const int x86_use_himode_fiop, x86_use_simode_fiop;
150 extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
151 extern const int x86_read_modify, x86_split_long_moves;
152 extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
153 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
154 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
155 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
156 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
157 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
158 extern const int x86_epilogue_using_move, x86_decompose_lea;
159 extern const int x86_arch_always_fancy_math_387, x86_shift1;
160 extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
161 extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
162 extern const int x86_use_ffreep;
163 extern const int x86_inter_unit_moves, x86_schedule;
164 extern const int x86_use_bt;
165 extern const int x86_cmpxchg, x86_xadd;
166 extern int x86_prefetch_sse;
168 #define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
169 #define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
170 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
171 #define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
172 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
173 /* For sane SSE instruction set generation we need fcomi instruction. It is
174 safe to enable all CMOVE instructions. */
175 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
176 #define TARGET_FISTTP (((x86_fisttp & (1 << ix86_arch)) || TARGET_SSE3) \
177 && TARGET_80387)
178 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
179 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
180 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
181 #define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
182 #define TARGET_MOVX (x86_movx & TUNEMASK)
183 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
184 #define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
185 #define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
186 #define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
187 #define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
188 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
189 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
190 #define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
191 #define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
192 #define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
193 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
194 #define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
195 #define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
196 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
197 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
198 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
199 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
200 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
201 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
202 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
203 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
204 #define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
205 (x86_sse_partial_reg_dependency & TUNEMASK)
206 #define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
207 #define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
208 #define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
209 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
210 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
211 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
212 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
213 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
214 #define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
215 #define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
216 #define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
217 #define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
218 #define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
219 #define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
220 #define TARGET_USE_BT (x86_use_bt & TUNEMASK)
222 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
224 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
225 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
226 && (ix86_fpmath & FPMATH_387))
228 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
229 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
231 #define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
232 #define TARGET_XADD (x86_xadd & (1 << ix86_arch))
234 #ifndef TARGET_64BIT_DEFAULT
235 #define TARGET_64BIT_DEFAULT 0
236 #endif
237 #ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
238 #define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
239 #endif
241 /* Once GDB has been enhanced to deal with functions without frame
242 pointers, we can change this to allow for elimination of
243 the frame pointer in leaf functions. */
244 #define TARGET_DEFAULT 0
246 /* This is not really a target flag, but is done this way so that
247 it's analogous to similar code for Mach-O on PowerPC. darwin.h
248 redefines this to 1. */
249 #define TARGET_MACHO 0
251 /* Subtargets may reset this to 1 in order to enable 96-bit long double
252 with the rounding mode forced to 53 bits. */
253 #define TARGET_96_ROUND_53_LONG_DOUBLE 0
255 /* Sometimes certain combinations of command options do not make
256 sense on a particular target machine. You can define a macro
257 `OVERRIDE_OPTIONS' to take account of this. This macro, if
258 defined, is executed once just after all the command options have
259 been parsed.
261 Don't use this macro to turn on various extra optimizations for
262 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
264 #define OVERRIDE_OPTIONS override_options ()
266 /* Define this to change the optimizations performed by default. */
267 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
268 optimization_options ((LEVEL), (SIZE))
270 /* Support for configure-time defaults of some command line options. */
271 #define OPTION_DEFAULT_SPECS \
272 {"arch", "%{!march=*:-march=%(VALUE)}"}, \
273 {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
274 {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
276 /* Specs for the compiler proper */
278 #ifndef CC1_CPU_SPEC
279 #define CC1_CPU_SPEC "\
280 %{!mtune*: \
281 %{m386:mtune=i386 \
282 %n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
283 %{m486:-mtune=i486 \
284 %n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
285 %{mpentium:-mtune=pentium \
286 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
287 %{mpentiumpro:-mtune=pentiumpro \
288 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
289 %{mcpu=*:-mtune=%* \
290 %n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
291 %<mcpu=* \
292 %{mintel-syntax:-masm=intel \
293 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
294 %{mno-intel-syntax:-masm=att \
295 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
296 #endif
298 /* Target CPU builtins. */
299 #define TARGET_CPU_CPP_BUILTINS() \
300 do \
302 size_t arch_len = strlen (ix86_arch_string); \
303 size_t tune_len = strlen (ix86_tune_string); \
304 int last_arch_char = ix86_arch_string[arch_len - 1]; \
305 int last_tune_char = ix86_tune_string[tune_len - 1]; \
307 if (TARGET_64BIT) \
309 builtin_assert ("cpu=x86_64"); \
310 builtin_assert ("machine=x86_64"); \
311 builtin_define ("__amd64"); \
312 builtin_define ("__amd64__"); \
313 builtin_define ("__x86_64"); \
314 builtin_define ("__x86_64__"); \
316 else \
318 builtin_assert ("cpu=i386"); \
319 builtin_assert ("machine=i386"); \
320 builtin_define_std ("i386"); \
323 /* Built-ins based on -mtune= (or -march= if no \
324 -mtune= given). */ \
325 if (TARGET_386) \
326 builtin_define ("__tune_i386__"); \
327 else if (TARGET_486) \
328 builtin_define ("__tune_i486__"); \
329 else if (TARGET_PENTIUM) \
331 builtin_define ("__tune_i586__"); \
332 builtin_define ("__tune_pentium__"); \
333 if (last_tune_char == 'x') \
334 builtin_define ("__tune_pentium_mmx__"); \
336 else if (TARGET_PENTIUMPRO) \
338 builtin_define ("__tune_i686__"); \
339 builtin_define ("__tune_pentiumpro__"); \
340 switch (last_tune_char) \
342 case '3': \
343 builtin_define ("__tune_pentium3__"); \
344 /* FALLTHRU */ \
345 case '2': \
346 builtin_define ("__tune_pentium2__"); \
347 break; \
350 else if (TARGET_K6) \
352 builtin_define ("__tune_k6__"); \
353 if (last_tune_char == '2') \
354 builtin_define ("__tune_k6_2__"); \
355 else if (last_tune_char == '3') \
356 builtin_define ("__tune_k6_3__"); \
358 else if (TARGET_ATHLON) \
360 builtin_define ("__tune_athlon__"); \
361 /* Only plain "athlon" lacks SSE. */ \
362 if (last_tune_char != 'n') \
363 builtin_define ("__tune_athlon_sse__"); \
365 else if (TARGET_K8) \
366 builtin_define ("__tune_k8__"); \
367 else if (TARGET_PENTIUM4) \
368 builtin_define ("__tune_pentium4__"); \
369 else if (TARGET_NOCONA) \
370 builtin_define ("__tune_nocona__"); \
372 if (TARGET_MMX) \
373 builtin_define ("__MMX__"); \
374 if (TARGET_3DNOW) \
375 builtin_define ("__3dNOW__"); \
376 if (TARGET_3DNOW_A) \
377 builtin_define ("__3dNOW_A__"); \
378 if (TARGET_SSE) \
379 builtin_define ("__SSE__"); \
380 if (TARGET_SSE2) \
381 builtin_define ("__SSE2__"); \
382 if (TARGET_SSE3) \
383 builtin_define ("__SSE3__"); \
384 if (TARGET_SSE_MATH && TARGET_SSE) \
385 builtin_define ("__SSE_MATH__"); \
386 if (TARGET_SSE_MATH && TARGET_SSE2) \
387 builtin_define ("__SSE2_MATH__"); \
389 /* Built-ins based on -march=. */ \
390 if (ix86_arch == PROCESSOR_I486) \
392 builtin_define ("__i486"); \
393 builtin_define ("__i486__"); \
395 else if (ix86_arch == PROCESSOR_PENTIUM) \
397 builtin_define ("__i586"); \
398 builtin_define ("__i586__"); \
399 builtin_define ("__pentium"); \
400 builtin_define ("__pentium__"); \
401 if (last_arch_char == 'x') \
402 builtin_define ("__pentium_mmx__"); \
404 else if (ix86_arch == PROCESSOR_PENTIUMPRO) \
406 builtin_define ("__i686"); \
407 builtin_define ("__i686__"); \
408 builtin_define ("__pentiumpro"); \
409 builtin_define ("__pentiumpro__"); \
411 else if (ix86_arch == PROCESSOR_K6) \
414 builtin_define ("__k6"); \
415 builtin_define ("__k6__"); \
416 if (last_arch_char == '2') \
417 builtin_define ("__k6_2__"); \
418 else if (last_arch_char == '3') \
419 builtin_define ("__k6_3__"); \
421 else if (ix86_arch == PROCESSOR_ATHLON) \
423 builtin_define ("__athlon"); \
424 builtin_define ("__athlon__"); \
425 /* Only plain "athlon" lacks SSE. */ \
426 if (last_arch_char != 'n') \
427 builtin_define ("__athlon_sse__"); \
429 else if (ix86_arch == PROCESSOR_K8) \
431 builtin_define ("__k8"); \
432 builtin_define ("__k8__"); \
434 else if (ix86_arch == PROCESSOR_PENTIUM4) \
436 builtin_define ("__pentium4"); \
437 builtin_define ("__pentium4__"); \
439 else if (ix86_arch == PROCESSOR_NOCONA) \
441 builtin_define ("__nocona"); \
442 builtin_define ("__nocona__"); \
445 while (0)
447 #define TARGET_CPU_DEFAULT_i386 0
448 #define TARGET_CPU_DEFAULT_i486 1
449 #define TARGET_CPU_DEFAULT_pentium 2
450 #define TARGET_CPU_DEFAULT_pentium_mmx 3
451 #define TARGET_CPU_DEFAULT_pentiumpro 4
452 #define TARGET_CPU_DEFAULT_pentium2 5
453 #define TARGET_CPU_DEFAULT_pentium3 6
454 #define TARGET_CPU_DEFAULT_pentium4 7
455 #define TARGET_CPU_DEFAULT_k6 8
456 #define TARGET_CPU_DEFAULT_k6_2 9
457 #define TARGET_CPU_DEFAULT_k6_3 10
458 #define TARGET_CPU_DEFAULT_athlon 11
459 #define TARGET_CPU_DEFAULT_athlon_sse 12
460 #define TARGET_CPU_DEFAULT_k8 13
461 #define TARGET_CPU_DEFAULT_pentium_m 14
462 #define TARGET_CPU_DEFAULT_prescott 15
463 #define TARGET_CPU_DEFAULT_nocona 16
465 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
466 "pentiumpro", "pentium2", "pentium3", \
467 "pentium4", "k6", "k6-2", "k6-3",\
468 "athlon", "athlon-4", "k8", \
469 "pentium-m", "prescott", "nocona"}
471 #ifndef CC1_SPEC
472 #define CC1_SPEC "%(cc1_cpu) "
473 #endif
475 /* This macro defines names of additional specifications to put in the
476 specs that can be used in various specifications like CC1_SPEC. Its
477 definition is an initializer with a subgrouping for each command option.
479 Each subgrouping contains a string constant, that defines the
480 specification name, and a string constant that used by the GCC driver
481 program.
483 Do not define this macro if it does not need to do anything. */
485 #ifndef SUBTARGET_EXTRA_SPECS
486 #define SUBTARGET_EXTRA_SPECS
487 #endif
489 #define EXTRA_SPECS \
490 { "cc1_cpu", CC1_CPU_SPEC }, \
491 SUBTARGET_EXTRA_SPECS
493 /* target machine storage layout */
495 #define LONG_DOUBLE_TYPE_SIZE 80
497 /* Set the value of FLT_EVAL_METHOD in float.h. When using only the
498 FPU, assume that the fpcw is set to extended precision; when using
499 only SSE, rounding is correct; when using both SSE and the FPU,
500 the rounding precision is indeterminate, since either may be chosen
501 apparently at random. */
502 #define TARGET_FLT_EVAL_METHOD \
503 (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
505 #define SHORT_TYPE_SIZE 16
506 #define INT_TYPE_SIZE 32
507 #define FLOAT_TYPE_SIZE 32
508 #define LONG_TYPE_SIZE BITS_PER_WORD
509 #define DOUBLE_TYPE_SIZE 64
510 #define LONG_LONG_TYPE_SIZE 64
512 #if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
513 #define MAX_BITS_PER_WORD 64
514 #else
515 #define MAX_BITS_PER_WORD 32
516 #endif
518 /* Define this if most significant byte of a word is the lowest numbered. */
519 /* That is true on the 80386. */
521 #define BITS_BIG_ENDIAN 0
523 /* Define this if most significant byte of a word is the lowest numbered. */
524 /* That is not true on the 80386. */
525 #define BYTES_BIG_ENDIAN 0
527 /* Define this if most significant word of a multiword number is the lowest
528 numbered. */
529 /* Not true for 80386 */
530 #define WORDS_BIG_ENDIAN 0
532 /* Width of a word, in units (bytes). */
533 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
534 #ifdef IN_LIBGCC2
535 #define MIN_UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
536 #else
537 #define MIN_UNITS_PER_WORD 4
538 #endif
540 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
541 #define PARM_BOUNDARY BITS_PER_WORD
543 /* Boundary (in *bits*) on which stack pointer should be aligned. */
544 #define STACK_BOUNDARY BITS_PER_WORD
546 /* Boundary (in *bits*) on which the stack pointer prefers to be
547 aligned; the compiler cannot rely on having this alignment. */
548 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
550 /* As of July 2001, many runtimes to not align the stack properly when
551 entering main. This causes expand_main_function to forcibly align
552 the stack, which results in aligned frames for functions called from
553 main, though it does nothing for the alignment of main itself. */
554 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
555 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
557 /* Minimum allocation boundary for the code of a function. */
558 #define FUNCTION_BOUNDARY 8
560 /* C++ stores the virtual bit in the lowest bit of function pointers. */
561 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
563 /* Alignment of field after `int : 0' in a structure. */
565 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
567 /* Minimum size in bits of the largest boundary to which any
568 and all fundamental data types supported by the hardware
569 might need to be aligned. No data type wants to be aligned
570 rounder than this.
572 Pentium+ prefers DFmode values to be aligned to 64 bit boundary
573 and Pentium Pro XFmode values at 128 bit boundaries. */
575 #define BIGGEST_ALIGNMENT 128
577 /* Decide whether a variable of mode MODE should be 128 bit aligned. */
578 #define ALIGN_MODE_128(MODE) \
579 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
581 /* The published ABIs say that doubles should be aligned on word
582 boundaries, so lower the alignment for structure fields unless
583 -malign-double is set. */
585 /* ??? Blah -- this macro is used directly by libobjc. Since it
586 supports no vector modes, cut out the complexity and fall back
587 on BIGGEST_FIELD_ALIGNMENT. */
588 #ifdef IN_TARGET_LIBS
589 #ifdef __x86_64__
590 #define BIGGEST_FIELD_ALIGNMENT 128
591 #else
592 #define BIGGEST_FIELD_ALIGNMENT 32
593 #endif
594 #else
595 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
596 x86_field_alignment (FIELD, COMPUTED)
597 #endif
599 /* If defined, a C expression to compute the alignment given to a
600 constant that is being placed in memory. EXP is the constant
601 and ALIGN is the alignment that the object would ordinarily have.
602 The value of this macro is used instead of that alignment to align
603 the object.
605 If this macro is not defined, then ALIGN is used.
607 The typical use of this macro is to increase alignment for string
608 constants to be word aligned so that `strcpy' calls that copy
609 constants can be done inline. */
611 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
613 /* If defined, a C expression to compute the alignment for a static
614 variable. TYPE is the data type, and ALIGN is the alignment that
615 the object would ordinarily have. The value of this macro is used
616 instead of that alignment to align the object.
618 If this macro is not defined, then ALIGN is used.
620 One use of this macro is to increase alignment of medium-size
621 data to make it all fit in fewer cache lines. Another is to
622 cause character arrays to be word-aligned so that `strcpy' calls
623 that copy constants to character arrays can be done inline. */
625 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
627 /* If defined, a C expression to compute the alignment for a local
628 variable. TYPE is the data type, and ALIGN is the alignment that
629 the object would ordinarily have. The value of this macro is used
630 instead of that alignment to align the object.
632 If this macro is not defined, then ALIGN is used.
634 One use of this macro is to increase alignment of medium-size
635 data to make it all fit in fewer cache lines. */
637 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
639 /* If defined, a C expression that gives the alignment boundary, in
640 bits, of an argument with the specified mode and type. If it is
641 not defined, `PARM_BOUNDARY' is used for all arguments. */
643 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
644 ix86_function_arg_boundary ((MODE), (TYPE))
646 /* Set this nonzero if move instructions will actually fail to work
647 when given unaligned data. */
648 #define STRICT_ALIGNMENT 0
650 /* If bit field type is int, don't let it cross an int,
651 and give entire struct the alignment of an int. */
652 /* Required on the 386 since it doesn't have bit-field insns. */
653 #define PCC_BITFIELD_TYPE_MATTERS 1
655 /* Standard register usage. */
657 /* This processor has special stack-like registers. See reg-stack.c
658 for details. */
660 #define STACK_REGS
661 #define IS_STACK_MODE(MODE) \
662 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode) \
664 /* Number of actual hardware registers.
665 The hardware registers are assigned numbers for the compiler
666 from 0 to just below FIRST_PSEUDO_REGISTER.
667 All registers that the compiler knows about must be given numbers,
668 even those that are not normally considered general registers.
670 In the 80386 we give the 8 general purpose registers the numbers 0-7.
671 We number the floating point registers 8-15.
672 Note that registers 0-7 can be accessed as a short or int,
673 while only 0-3 may be used with byte `mov' instructions.
675 Reg 16 does not correspond to any hardware register, but instead
676 appears in the RTL as an argument pointer prior to reload, and is
677 eliminated during reloading in favor of either the stack or frame
678 pointer. */
680 #define FIRST_PSEUDO_REGISTER 53
682 /* Number of hardware registers that go into the DWARF-2 unwind info.
683 If not defined, equals FIRST_PSEUDO_REGISTER. */
685 #define DWARF_FRAME_REGISTERS 17
687 /* 1 for registers that have pervasive standard uses
688 and are not available for the register allocator.
689 On the 80386, the stack pointer is such, as is the arg pointer.
691 The value is zero if the register is not fixed on either 32 or
692 64 bit targets, one if the register if fixed on both 32 and 64
693 bit targets, two if it is only fixed on 32bit targets and three
694 if its only fixed on 64bit targets.
695 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
697 #define FIXED_REGISTERS \
698 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
699 { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, \
700 /*arg,flags,fpsr,dir,frame*/ \
701 1, 1, 1, 1, 1, \
702 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
703 0, 0, 0, 0, 0, 0, 0, 0, \
704 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
705 0, 0, 0, 0, 0, 0, 0, 0, \
706 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
707 2, 2, 2, 2, 2, 2, 2, 2, \
708 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
709 2, 2, 2, 2, 2, 2, 2, 2}
712 /* 1 for registers not available across function calls.
713 These must include the FIXED_REGISTERS and also any
714 registers that can be used without being saved.
715 The latter must include the registers where values are returned
716 and the register where structure-value addresses are passed.
717 Aside from that, you can include as many other registers as you like.
719 The value is zero if the register is not call used on either 32 or
720 64 bit targets, one if the register if call used on both 32 and 64
721 bit targets, two if it is only call used on 32bit targets and three
722 if its only call used on 64bit targets.
723 Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
725 #define CALL_USED_REGISTERS \
726 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
727 { 1, 1, 1, 0, 3, 3, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
728 /*arg,flags,fpsr,dir,frame*/ \
729 1, 1, 1, 1, 1, \
730 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
731 1, 1, 1, 1, 1, 1, 1, 1, \
732 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
733 1, 1, 1, 1, 1, 1, 1, 1, \
734 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
735 1, 1, 1, 1, 2, 2, 2, 2, \
736 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
737 1, 1, 1, 1, 1, 1, 1, 1} \
739 /* Order in which to allocate registers. Each register must be
740 listed once, even those in FIXED_REGISTERS. List frame pointer
741 late and fixed registers last. Note that, in general, we prefer
742 registers listed in CALL_USED_REGISTERS, keeping the others
743 available for storage of persistent values.
745 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
746 so this is just empty initializer for array. */
748 #define REG_ALLOC_ORDER \
749 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
750 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
751 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
752 48, 49, 50, 51, 52 }
754 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
755 to be rearranged based on a particular function. When using sse math,
756 we want to allocate SSE before x87 registers and vice vera. */
758 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
761 /* Macro to conditionally modify fixed_regs/call_used_regs. */
762 #define CONDITIONAL_REGISTER_USAGE \
763 do { \
764 int i; \
765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
767 if (fixed_regs[i] > 1) \
768 fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); \
769 if (call_used_regs[i] > 1) \
770 call_used_regs[i] = (call_used_regs[i] \
771 == (TARGET_64BIT ? 3 : 2)); \
773 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
775 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
776 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
778 if (! TARGET_MMX) \
780 int i; \
781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
782 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
783 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
785 if (! TARGET_SSE) \
787 int i; \
788 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
789 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
790 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
792 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
794 int i; \
795 HARD_REG_SET x; \
796 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
798 if (TEST_HARD_REG_BIT (x, i)) \
799 fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; \
801 if (! TARGET_64BIT) \
803 int i; \
804 for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) \
805 reg_names[i] = ""; \
806 for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) \
807 reg_names[i] = ""; \
809 } while (0)
811 /* Return number of consecutive hard regs needed starting at reg REGNO
812 to hold something of mode MODE.
813 This is ordinarily the length in words of a value of mode MODE
814 but can be less for certain modes in special long registers.
816 Actually there are no two word move instructions for consecutive
817 registers. And only registers 0-3 may have mov byte instructions
818 applied to them.
821 #define HARD_REGNO_NREGS(REGNO, MODE) \
822 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
823 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
824 : ((MODE) == XFmode \
825 ? (TARGET_64BIT ? 2 : 3) \
826 : (MODE) == XCmode \
827 ? (TARGET_64BIT ? 4 : 6) \
828 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
830 #define VALID_SSE2_REG_MODE(MODE) \
831 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
832 || (MODE) == V2DImode || (MODE) == DFmode)
834 #define VALID_SSE_REG_MODE(MODE) \
835 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
836 || (MODE) == SFmode || (MODE) == TFmode)
838 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
839 ((MODE) == V2SFmode || (MODE) == SFmode)
841 #define VALID_MMX_REG_MODE(MODE) \
842 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
843 || (MODE) == V2SImode || (MODE) == SImode)
845 /* ??? No autovectorization into MMX or 3DNOW until we can reliably
846 place emms and femms instructions. */
847 #define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
849 #define VALID_FP_MODE_P(MODE) \
850 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode \
851 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode) \
853 #define VALID_INT_MODE_P(MODE) \
854 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
855 || (MODE) == DImode \
856 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
857 || (MODE) == CDImode \
858 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode \
859 || (MODE) == TFmode || (MODE) == TCmode)))
861 /* Return true for modes passed in SSE registers. */
862 #define SSE_REG_MODE_P(MODE) \
863 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode \
864 || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode \
865 || (MODE) == V4SFmode || (MODE) == V4SImode)
867 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
869 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
870 ix86_hard_regno_mode_ok ((REGNO), (MODE))
872 /* Value is 1 if it is a good idea to tie two pseudo registers
873 when one has mode MODE1 and one has mode MODE2.
874 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
875 for any hard reg, then this must be 0 for correct output. */
877 #define MODES_TIEABLE_P(MODE1, MODE2) ix86_modes_tieable_p (MODE1, MODE2)
879 /* It is possible to write patterns to move flags; but until someone
880 does it, */
881 #define AVOID_CCMODE_COPIES
883 /* Specify the modes required to caller save a given hard regno.
884 We do this on i386 to prevent flags from being saved at all.
886 Kill any attempts to combine saving of modes. */
888 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
889 (CC_REGNO_P (REGNO) ? VOIDmode \
890 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
891 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
892 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
893 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
894 : (MODE))
895 /* Specify the registers used for certain standard purposes.
896 The values of these macros are register numbers. */
898 /* on the 386 the pc register is %eip, and is not usable as a general
899 register. The ordinary mov instructions won't work */
900 /* #define PC_REGNUM */
902 /* Register to use for pushing function arguments. */
903 #define STACK_POINTER_REGNUM 7
905 /* Base register for access to local variables of the function. */
906 #define HARD_FRAME_POINTER_REGNUM 6
908 /* Base register for access to local variables of the function. */
909 #define FRAME_POINTER_REGNUM 20
911 /* First floating point reg */
912 #define FIRST_FLOAT_REG 8
914 /* First & last stack-like regs */
915 #define FIRST_STACK_REG FIRST_FLOAT_REG
916 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
918 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
919 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
921 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
922 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
924 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
925 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
927 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
928 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
930 /* Value should be nonzero if functions must have frame pointers.
931 Zero means the frame pointer need not be set up (and parms
932 may be accessed via the stack pointer) in functions that seem suitable.
933 This is computed in `reload', in reload1.c. */
934 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
936 /* Override this in other tm.h files to cope with various OS lossage
937 requiring a frame pointer. */
938 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
939 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
940 #endif
942 /* Make sure we can access arbitrary call frames. */
943 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
945 /* Base register for access to arguments of the function. */
946 #define ARG_POINTER_REGNUM 16
948 /* Register in which static-chain is passed to a function.
949 We do use ECX as static chain register for 32 bit ABI. On the
950 64bit ABI, ECX is an argument register, so we use R10 instead. */
951 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
953 /* Register to hold the addressing base for position independent
954 code access to data items. We don't use PIC pointer for 64bit
955 mode. Define the regnum to dummy value to prevent gcc from
956 pessimizing code dealing with EBX.
958 To avoid clobbering a call-saved register unnecessarily, we renumber
959 the pic register when possible. The change is visible after the
960 prologue has been emitted. */
962 #define REAL_PIC_OFFSET_TABLE_REGNUM 3
964 #define PIC_OFFSET_TABLE_REGNUM \
965 ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC) \
966 || !flag_pic ? INVALID_REGNUM \
967 : reload_completed ? REGNO (pic_offset_table_rtx) \
968 : REAL_PIC_OFFSET_TABLE_REGNUM)
970 #define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
972 /* A C expression which can inhibit the returning of certain function
973 values in registers, based on the type of value. A nonzero value
974 says to return the function value in memory, just as large
975 structures are always returned. Here TYPE will be a C expression
976 of type `tree', representing the data type of the value.
978 Note that values of mode `BLKmode' must be explicitly handled by
979 this macro. Also, the option `-fpcc-struct-return' takes effect
980 regardless of this macro. On most systems, it is possible to
981 leave the macro undefined; this causes a default definition to be
982 used, whose value is the constant 1 for `BLKmode' values, and 0
983 otherwise.
985 Do not use this macro to indicate that structures and unions
986 should always be returned in memory. You should instead use
987 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
989 #define RETURN_IN_MEMORY(TYPE) \
990 ix86_return_in_memory (TYPE)
992 /* This is overridden by <cygwin.h>. */
993 #define MS_AGGREGATE_RETURN 0
995 /* This is overridden by <netware.h>. */
996 #define KEEP_AGGREGATE_RETURN_POINTER 0
998 /* Define the classes of registers for register constraints in the
999 machine description. Also define ranges of constants.
1001 One of the classes must always be named ALL_REGS and include all hard regs.
1002 If there is more than one class, another class must be named NO_REGS
1003 and contain no registers.
1005 The name GENERAL_REGS must be the name of a class (or an alias for
1006 another name such as ALL_REGS). This is the class of registers
1007 that is allowed by "g" or "r" in a register constraint.
1008 Also, registers outside this class are allocated only when
1009 instructions express preferences for them.
1011 The classes must be numbered in nondecreasing order; that is,
1012 a larger-numbered class must never be contained completely
1013 in a smaller-numbered class.
1015 For any two classes, it is very desirable that there be another
1016 class that represents their union.
1018 It might seem that class BREG is unnecessary, since no useful 386
1019 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1020 and the "b" register constraint is useful in asms for syscalls.
1022 The flags and fpsr registers are in no class. */
1024 enum reg_class
1026 NO_REGS,
1027 AREG, DREG, CREG, BREG, SIREG, DIREG,
1028 AD_REGS, /* %eax/%edx for DImode */
1029 Q_REGS, /* %eax %ebx %ecx %edx */
1030 NON_Q_REGS, /* %esi %edi %ebp %esp */
1031 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1032 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1033 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1034 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1035 FLOAT_REGS,
1036 SSE_REGS,
1037 MMX_REGS,
1038 FP_TOP_SSE_REGS,
1039 FP_SECOND_SSE_REGS,
1040 FLOAT_SSE_REGS,
1041 FLOAT_INT_REGS,
1042 INT_SSE_REGS,
1043 FLOAT_INT_SSE_REGS,
1044 ALL_REGS, LIM_REG_CLASSES
1047 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1049 #define INTEGER_CLASS_P(CLASS) \
1050 reg_class_subset_p ((CLASS), GENERAL_REGS)
1051 #define FLOAT_CLASS_P(CLASS) \
1052 reg_class_subset_p ((CLASS), FLOAT_REGS)
1053 #define SSE_CLASS_P(CLASS) \
1054 ((CLASS) == SSE_REGS)
1055 #define MMX_CLASS_P(CLASS) \
1056 ((CLASS) == MMX_REGS)
1057 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1058 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1059 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1060 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1061 #define MAYBE_SSE_CLASS_P(CLASS) \
1062 reg_classes_intersect_p (SSE_REGS, (CLASS))
1063 #define MAYBE_MMX_CLASS_P(CLASS) \
1064 reg_classes_intersect_p (MMX_REGS, (CLASS))
1066 #define Q_CLASS_P(CLASS) \
1067 reg_class_subset_p ((CLASS), Q_REGS)
1069 /* Give names of register classes as strings for dump file. */
1071 #define REG_CLASS_NAMES \
1072 { "NO_REGS", \
1073 "AREG", "DREG", "CREG", "BREG", \
1074 "SIREG", "DIREG", \
1075 "AD_REGS", \
1076 "Q_REGS", "NON_Q_REGS", \
1077 "INDEX_REGS", \
1078 "LEGACY_REGS", \
1079 "GENERAL_REGS", \
1080 "FP_TOP_REG", "FP_SECOND_REG", \
1081 "FLOAT_REGS", \
1082 "SSE_REGS", \
1083 "MMX_REGS", \
1084 "FP_TOP_SSE_REGS", \
1085 "FP_SECOND_SSE_REGS", \
1086 "FLOAT_SSE_REGS", \
1087 "FLOAT_INT_REGS", \
1088 "INT_SSE_REGS", \
1089 "FLOAT_INT_SSE_REGS", \
1090 "ALL_REGS" }
1092 /* Define which registers fit in which classes.
1093 This is an initializer for a vector of HARD_REG_SET
1094 of length N_REG_CLASSES. */
1096 #define REG_CLASS_CONTENTS \
1097 { { 0x00, 0x0 }, \
1098 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1099 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1100 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1101 { 0x03, 0x0 }, /* AD_REGS */ \
1102 { 0x0f, 0x0 }, /* Q_REGS */ \
1103 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1104 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1105 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1106 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1107 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1108 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1109 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1110 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1111 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1112 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1113 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1114 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1115 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1116 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1117 { 0xffffffff,0x1fffff } \
1120 /* The same information, inverted:
1121 Return the class number of the smallest class containing
1122 reg number REGNO. This could be a conditional expression
1123 or could index an array. */
1125 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1127 /* When defined, the compiler allows registers explicitly used in the
1128 rtl to be used as spill registers but prevents the compiler from
1129 extending the lifetime of these registers. */
1131 #define SMALL_REGISTER_CLASSES 1
1133 #define QI_REG_P(X) \
1134 (REG_P (X) && REGNO (X) < 4)
1136 #define GENERAL_REGNO_P(N) \
1137 ((N) < 8 || REX_INT_REGNO_P (N))
1139 #define GENERAL_REG_P(X) \
1140 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1142 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1144 #define NON_QI_REG_P(X) \
1145 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1147 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1148 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1150 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1151 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1152 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1153 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1155 #define SSE_REGNO_P(N) \
1156 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1157 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1159 #define REX_SSE_REGNO_P(N) \
1160 ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1162 #define SSE_REGNO(N) \
1163 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1164 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1166 #define SSE_FLOAT_MODE_P(MODE) \
1167 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1169 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1170 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1172 #define STACK_REG_P(XOP) \
1173 (REG_P (XOP) && \
1174 REGNO (XOP) >= FIRST_STACK_REG && \
1175 REGNO (XOP) <= LAST_STACK_REG)
1177 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1179 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1181 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1182 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1184 /* The class value for index registers, and the one for base regs. */
1186 #define INDEX_REG_CLASS INDEX_REGS
1187 #define BASE_REG_CLASS GENERAL_REGS
1189 /* Unused letters:
1190 B TU W
1191 h jk vw z
1194 /* Get reg_class from a letter such as appears in the machine description. */
1196 #define REG_CLASS_FROM_LETTER(C) \
1197 ((C) == 'r' ? GENERAL_REGS : \
1198 (C) == 'R' ? LEGACY_REGS : \
1199 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1200 (C) == 'Q' ? Q_REGS : \
1201 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1202 ? FLOAT_REGS \
1203 : NO_REGS) : \
1204 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1205 ? FP_TOP_REG \
1206 : NO_REGS) : \
1207 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1208 ? FP_SECOND_REG \
1209 : NO_REGS) : \
1210 (C) == 'a' ? AREG : \
1211 (C) == 'b' ? BREG : \
1212 (C) == 'c' ? CREG : \
1213 (C) == 'd' ? DREG : \
1214 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1215 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1216 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1217 (C) == 'A' ? AD_REGS : \
1218 (C) == 'D' ? DIREG : \
1219 (C) == 'S' ? SIREG : \
1220 (C) == 'l' ? INDEX_REGS : \
1221 NO_REGS)
1223 /* The letters I, J, K, L, M, N, and O in a register constraint string
1224 can be used to stand for particular ranges of immediate operands.
1225 This macro defines what the ranges are.
1226 C is the letter, and VALUE is a constant value.
1227 Return 1 if VALUE is in the range specified by C.
1229 I is for non-DImode shifts.
1230 J is for DImode shifts.
1231 K is for signed imm8 operands.
1232 L is for andsi as zero-extending move.
1233 M is for shifts that can be executed by the "lea" opcode.
1234 N is for immediate operands for out/in instructions (0-255)
1235 O is for TImode shifts.
1238 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1239 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1240 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1241 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1242 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1243 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1244 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1245 : (C) == 'O' ? (VALUE) >= 0 && (VALUE) <= 127 \
1246 : 0)
1248 /* Similar, but for floating constants, and defining letters G and H.
1249 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1250 TARGET_387 isn't set, because the stack register converter may need to
1251 load 0.0 into the function value register. */
1253 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1254 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1255 : 0)
1257 /* A C expression that defines the optional machine-dependent
1258 constraint letters that can be used to segregate specific types of
1259 operands, usually memory references, for the target machine. Any
1260 letter that is not elsewhere defined and not matched by
1261 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1262 be defined.
1264 If it is required for a particular target machine, it should
1265 return 1 if VALUE corresponds to the operand type represented by
1266 the constraint letter C. If C is not defined as an extra
1267 constraint, the value returned should be 0 regardless of VALUE. */
1269 #define EXTRA_CONSTRAINT(VALUE, D) \
1270 ((D) == 'e' ? x86_64_immediate_operand (VALUE, VOIDmode) \
1271 : (D) == 'Z' ? x86_64_zext_immediate_operand (VALUE, VOIDmode) \
1272 : (D) == 'C' ? standard_sse_constant_p (VALUE) \
1273 : 0)
1275 /* Place additional restrictions on the register class to use when it
1276 is necessary to be able to hold a value of mode MODE in a reload
1277 register for which class CLASS would ordinarily be used. */
1279 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1280 ((MODE) == QImode && !TARGET_64BIT \
1281 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1282 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1283 ? Q_REGS : (CLASS))
1285 /* Given an rtx X being reloaded into a reg required to be
1286 in class CLASS, return the class of reg to actually use.
1287 In general this is just CLASS; but on some machines
1288 in some cases it is preferable to use a more restrictive class.
1289 On the 80386 series, we prevent floating constants from being
1290 reloaded into floating registers (since no move-insn can do that)
1291 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1293 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1294 QImode must go into class Q_REGS.
1295 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1296 movdf to do mem-to-mem moves through integer regs. */
1298 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1299 ix86_preferred_reload_class ((X), (CLASS))
1301 /* If we are copying between general and FP registers, we need a memory
1302 location. The same is true for SSE and MMX registers. */
1303 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1304 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1306 /* QImode spills from non-QI registers need a scratch. This does not
1307 happen often -- the only example so far requires an uninitialized
1308 pseudo. */
1310 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1311 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1312 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1313 ? Q_REGS : NO_REGS)
1315 /* Return the maximum number of consecutive registers
1316 needed to represent mode MODE in a register of class CLASS. */
1317 /* On the 80386, this is the size of MODE in words,
1318 except in the FP regs, where a single reg is always enough. */
1319 #define CLASS_MAX_NREGS(CLASS, MODE) \
1320 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1321 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1322 : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE))) \
1323 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1325 /* A C expression whose value is nonzero if pseudos that have been
1326 assigned to registers of class CLASS would likely be spilled
1327 because registers of CLASS are needed for spill registers.
1329 The default value of this macro returns 1 if CLASS has exactly one
1330 register and zero otherwise. On most machines, this default
1331 should be used. Only define this macro to some other expression
1332 if pseudo allocated by `local-alloc.c' end up in memory because
1333 their hard registers were needed for spill registers. If this
1334 macro returns nonzero for those classes, those pseudos will only
1335 be allocated by `global.c', which knows how to reallocate the
1336 pseudo to another register. If there would not be another
1337 register available for reallocation, you should not change the
1338 definition of this macro since the only effect of such a
1339 definition would be to slow down register allocation. */
1341 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1342 (((CLASS) == AREG) \
1343 || ((CLASS) == DREG) \
1344 || ((CLASS) == CREG) \
1345 || ((CLASS) == BREG) \
1346 || ((CLASS) == AD_REGS) \
1347 || ((CLASS) == SIREG) \
1348 || ((CLASS) == DIREG) \
1349 || ((CLASS) == FP_TOP_REG) \
1350 || ((CLASS) == FP_SECOND_REG))
1352 /* Return a class of registers that cannot change FROM mode to TO mode. */
1354 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1355 ix86_cannot_change_mode_class (FROM, TO, CLASS)
1357 /* Stack layout; function entry, exit and calling. */
1359 /* Define this if pushing a word on the stack
1360 makes the stack pointer a smaller address. */
1361 #define STACK_GROWS_DOWNWARD
1363 /* Define this to nonzero if the nominal address of the stack frame
1364 is at the high-address end of the local variables;
1365 that is, each additional local variable allocated
1366 goes at a more negative offset in the frame. */
1367 #define FRAME_GROWS_DOWNWARD 1
1369 /* Offset within stack frame to start allocating local variables at.
1370 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1371 first local allocated. Otherwise, it is the offset to the BEGINNING
1372 of the first local allocated. */
1373 #define STARTING_FRAME_OFFSET 0
1375 /* If we generate an insn to push BYTES bytes,
1376 this says how many the stack pointer really advances by.
1377 On 386 pushw decrements by exactly 2 no matter what the position was.
1378 On the 386 there is no pushb; we use pushw instead, and this
1379 has the effect of rounding up to 2.
1381 For 64bit ABI we round up to 8 bytes.
1384 #define PUSH_ROUNDING(BYTES) \
1385 (TARGET_64BIT \
1386 ? (((BYTES) + 7) & (-8)) \
1387 : (((BYTES) + 1) & (-2)))
1389 /* If defined, the maximum amount of space required for outgoing arguments will
1390 be computed and placed into the variable
1391 `current_function_outgoing_args_size'. No space will be pushed onto the
1392 stack for each call; instead, the function prologue should increase the stack
1393 frame size by this amount. */
1395 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1397 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1398 instructions to pass outgoing arguments. */
1400 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1402 /* We want the stack and args grow in opposite directions, even if
1403 PUSH_ARGS is 0. */
1404 #define PUSH_ARGS_REVERSED 1
1406 /* Offset of first parameter from the argument pointer register value. */
1407 #define FIRST_PARM_OFFSET(FNDECL) 0
1409 /* Define this macro if functions should assume that stack space has been
1410 allocated for arguments even when their values are passed in registers.
1412 The value of this macro is the size, in bytes, of the area reserved for
1413 arguments passed in registers for the function represented by FNDECL.
1415 This space can be allocated by the caller, or be a part of the
1416 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1417 which. */
1418 #define REG_PARM_STACK_SPACE(FNDECL) 0
1420 /* Value is the number of bytes of arguments automatically
1421 popped when returning from a subroutine call.
1422 FUNDECL is the declaration node of the function (as a tree),
1423 FUNTYPE is the data type of the function (as a tree),
1424 or for a library call it is an identifier node for the subroutine name.
1425 SIZE is the number of bytes of arguments passed on the stack.
1427 On the 80386, the RTD insn may be used to pop them if the number
1428 of args is fixed, but if the number is variable then the caller
1429 must pop them all. RTD can't be used for library calls now
1430 because the library is compiled with the Unix compiler.
1431 Use of RTD is a selectable option, since it is incompatible with
1432 standard Unix calling sequences. If the option is not selected,
1433 the caller must always pop the args.
1435 The attribute stdcall is equivalent to RTD on a per module basis. */
1437 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1438 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1440 #define FUNCTION_VALUE_REGNO_P(N) \
1441 ix86_function_value_regno_p (N)
1443 /* Define how to find the value returned by a library function
1444 assuming the value has mode MODE. */
1446 #define LIBCALL_VALUE(MODE) \
1447 ix86_libcall_value (MODE)
1449 /* Define the size of the result block used for communication between
1450 untyped_call and untyped_return. The block contains a DImode value
1451 followed by the block used by fnsave and frstor. */
1453 #define APPLY_RESULT_SIZE (8+108)
1455 /* 1 if N is a possible register number for function argument passing. */
1456 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1458 /* Define a data type for recording info about an argument list
1459 during the scan of that argument list. This data type should
1460 hold all necessary information about the function itself
1461 and about the args processed so far, enough to enable macros
1462 such as FUNCTION_ARG to determine where the next arg should go. */
1464 typedef struct ix86_args {
1465 int words; /* # words passed so far */
1466 int nregs; /* # registers available for passing */
1467 int regno; /* next available register number */
1468 int fastcall; /* fastcall calling convention is used */
1469 int sse_words; /* # sse words passed so far */
1470 int sse_nregs; /* # sse registers available for passing */
1471 int warn_sse; /* True when we want to warn about SSE ABI. */
1472 int warn_mmx; /* True when we want to warn about MMX ABI. */
1473 int sse_regno; /* next available sse register number */
1474 int mmx_words; /* # mmx words passed so far */
1475 int mmx_nregs; /* # mmx registers available for passing */
1476 int mmx_regno; /* next available mmx register number */
1477 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1478 int float_in_sse; /* 1 if in 32-bit mode SFmode (2 for DFmode) should
1479 be passed in SSE registers. Otherwise 0. */
1480 } CUMULATIVE_ARGS;
1482 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1483 for a call to a function whose data type is FNTYPE.
1484 For a library call, FNTYPE is 0. */
1486 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1487 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1489 /* Update the data in CUM to advance over an argument
1490 of mode MODE and data type TYPE.
1491 (TYPE is null for libcalls where that information may not be available.) */
1493 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1494 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1496 /* Define where to put the arguments to a function.
1497 Value is zero to push the argument on the stack,
1498 or a hard register in which to store the argument.
1500 MODE is the argument's machine mode.
1501 TYPE is the data type of the argument (as a tree).
1502 This is null for libcalls where that information may
1503 not be available.
1504 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1505 the preceding args and about the function being called.
1506 NAMED is nonzero if this argument is a named parameter
1507 (otherwise it is an extra parameter matching an ellipsis). */
1509 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1510 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1512 /* Implement `va_start' for varargs and stdarg. */
1513 #define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1514 ix86_va_start (VALIST, NEXTARG)
1516 #define TARGET_ASM_FILE_END ix86_file_end
1517 #define NEED_INDICATE_EXEC_STACK 0
1519 /* Output assembler code to FILE to increment profiler label # LABELNO
1520 for profiling a function entry. */
1522 #define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1524 #define MCOUNT_NAME "_mcount"
1526 #define PROFILE_COUNT_REGISTER "edx"
1528 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1529 the stack pointer does not matter. The value is tested only in
1530 functions that have frame pointers.
1531 No definition is equivalent to always zero. */
1532 /* Note on the 386 it might be more efficient not to define this since
1533 we have to restore it ourselves from the frame pointer, in order to
1534 use pop */
1536 #define EXIT_IGNORE_STACK 1
1538 /* Output assembler code for a block containing the constant parts
1539 of a trampoline, leaving space for the variable parts. */
1541 /* On the 386, the trampoline contains two instructions:
1542 mov #STATIC,ecx
1543 jmp FUNCTION
1544 The trampoline is generated entirely at runtime. The operand of JMP
1545 is the address of FUNCTION relative to the instruction following the
1546 JMP (which is 5 bytes long). */
1548 /* Length in units of the trampoline for entering a nested function. */
1550 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1552 /* Emit RTL insns to initialize the variable parts of a trampoline.
1553 FNADDR is an RTX for the address of the function's pure code.
1554 CXT is an RTX for the static chain value for the function. */
1556 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1557 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1559 /* Definitions for register eliminations.
1561 This is an array of structures. Each structure initializes one pair
1562 of eliminable registers. The "from" register number is given first,
1563 followed by "to". Eliminations of the same "from" register are listed
1564 in order of preference.
1566 There are two registers that can always be eliminated on the i386.
1567 The frame pointer and the arg pointer can be replaced by either the
1568 hard frame pointer or to the stack pointer, depending upon the
1569 circumstances. The hard frame pointer is not used before reload and
1570 so it is not eligible for elimination. */
1572 #define ELIMINABLE_REGS \
1573 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1574 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1575 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1576 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1578 /* Given FROM and TO register numbers, say whether this elimination is
1579 allowed. Frame pointer elimination is automatically handled.
1581 All other eliminations are valid. */
1583 #define CAN_ELIMINATE(FROM, TO) \
1584 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1586 /* Define the offset between two registers, one to be eliminated, and the other
1587 its replacement, at the start of a routine. */
1589 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1590 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1592 /* Addressing modes, and classification of registers for them. */
1594 /* Macros to check register numbers against specific register classes. */
1596 /* These assume that REGNO is a hard or pseudo reg number.
1597 They give nonzero only if REGNO is a hard reg of the suitable class
1598 or a pseudo reg currently allocated to a suitable hard reg.
1599 Since they use reg_renumber, they are safe only once reg_renumber
1600 has been allocated, which happens in local-alloc.c. */
1602 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1603 ((REGNO) < STACK_POINTER_REGNUM \
1604 || (REGNO >= FIRST_REX_INT_REG \
1605 && (REGNO) <= LAST_REX_INT_REG) \
1606 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1607 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1608 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1610 #define REGNO_OK_FOR_BASE_P(REGNO) \
1611 ((REGNO) <= STACK_POINTER_REGNUM \
1612 || (REGNO) == ARG_POINTER_REGNUM \
1613 || (REGNO) == FRAME_POINTER_REGNUM \
1614 || (REGNO >= FIRST_REX_INT_REG \
1615 && (REGNO) <= LAST_REX_INT_REG) \
1616 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1617 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1618 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1620 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1621 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1622 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1623 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1625 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1626 and check its validity for a certain class.
1627 We have two alternate definitions for each of them.
1628 The usual definition accepts all pseudo regs; the other rejects
1629 them unless they have been allocated suitable hard regs.
1630 The symbol REG_OK_STRICT causes the latter definition to be used.
1632 Most source files want to accept pseudo regs in the hope that
1633 they will get allocated to the class that the insn wants them to be in.
1634 Source files for reload pass need to be strict.
1635 After reload, it makes no difference, since pseudo regs have
1636 been eliminated by then. */
1639 /* Non strict versions, pseudos are ok. */
1640 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1641 (REGNO (X) < STACK_POINTER_REGNUM \
1642 || (REGNO (X) >= FIRST_REX_INT_REG \
1643 && REGNO (X) <= LAST_REX_INT_REG) \
1644 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1646 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1647 (REGNO (X) <= STACK_POINTER_REGNUM \
1648 || REGNO (X) == ARG_POINTER_REGNUM \
1649 || REGNO (X) == FRAME_POINTER_REGNUM \
1650 || (REGNO (X) >= FIRST_REX_INT_REG \
1651 && REGNO (X) <= LAST_REX_INT_REG) \
1652 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1654 /* Strict versions, hard registers only */
1655 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1656 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1658 #ifndef REG_OK_STRICT
1659 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1660 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1662 #else
1663 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1664 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1665 #endif
1667 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1668 that is a valid memory address for an instruction.
1669 The MODE argument is the machine mode for the MEM expression
1670 that wants to use this address.
1672 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1673 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1675 See legitimize_pic_address in i386.c for details as to what
1676 constitutes a legitimate address when -fpic is used. */
1678 #define MAX_REGS_PER_ADDRESS 2
1680 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1682 /* Nonzero if the constant value X is a legitimate general operand.
1683 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1685 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1687 #ifdef REG_OK_STRICT
1688 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1689 do { \
1690 if (legitimate_address_p ((MODE), (X), 1)) \
1691 goto ADDR; \
1692 } while (0)
1694 #else
1695 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1696 do { \
1697 if (legitimate_address_p ((MODE), (X), 0)) \
1698 goto ADDR; \
1699 } while (0)
1701 #endif
1703 /* If defined, a C expression to determine the base term of address X.
1704 This macro is used in only one place: `find_base_term' in alias.c.
1706 It is always safe for this macro to not be defined. It exists so
1707 that alias analysis can understand machine-dependent addresses.
1709 The typical use of this macro is to handle addresses containing
1710 a label_ref or symbol_ref within an UNSPEC. */
1712 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1714 /* Try machine-dependent ways of modifying an illegitimate address
1715 to be legitimate. If we find one, return the new, valid address.
1716 This macro is used in only one place: `memory_address' in explow.c.
1718 OLDX is the address as it was before break_out_memory_refs was called.
1719 In some cases it is useful to look at this to decide what needs to be done.
1721 MODE and WIN are passed so that this macro can use
1722 GO_IF_LEGITIMATE_ADDRESS.
1724 It is always safe for this macro to do nothing. It exists to recognize
1725 opportunities to optimize the output.
1727 For the 80386, we handle X+REG by loading X into a register R and
1728 using R+REG. R will go in a general reg and indexing will be used.
1729 However, if REG is a broken-out memory address or multiplication,
1730 nothing needs to be done because REG can certainly go in a general reg.
1732 When -fpic is used, special handling is needed for symbolic references.
1733 See comments by legitimize_pic_address in i386.c for details. */
1735 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1736 do { \
1737 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1738 if (memory_address_p ((MODE), (X))) \
1739 goto WIN; \
1740 } while (0)
1742 #define REWRITE_ADDRESS(X) rewrite_address (X)
1744 /* Nonzero if the constant value X is a legitimate general operand
1745 when generating PIC code. It is given that flag_pic is on and
1746 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1748 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1750 #define SYMBOLIC_CONST(X) \
1751 (GET_CODE (X) == SYMBOL_REF \
1752 || GET_CODE (X) == LABEL_REF \
1753 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1755 /* Go to LABEL if ADDR (a legitimate address expression)
1756 has an effect that depends on the machine mode it is used for.
1757 On the 80386, only postdecrement and postincrement address depend thus
1758 (the amount of decrement or increment being the length of the operand). */
1759 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1760 do { \
1761 if (GET_CODE (ADDR) == POST_INC \
1762 || GET_CODE (ADDR) == POST_DEC) \
1763 goto LABEL; \
1764 } while (0)
1766 /* Max number of args passed in registers. If this is more than 3, we will
1767 have problems with ebx (register #4), since it is a caller save register and
1768 is also used as the pic register in ELF. So for now, don't allow more than
1769 3 registers to be passed in registers. */
1771 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1773 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1775 #define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1778 /* Specify the machine mode that this machine uses
1779 for the index in the tablejump instruction. */
1780 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1782 /* Define this as 1 if `char' should by default be signed; else as 0. */
1783 #define DEFAULT_SIGNED_CHAR 1
1785 /* Number of bytes moved into a data cache for a single prefetch operation. */
1786 #define PREFETCH_BLOCK ix86_cost->prefetch_block
1788 /* Number of prefetch operations that can be done in parallel. */
1789 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1791 /* Max number of bytes we can move from memory to memory
1792 in one reasonably fast instruction. */
1793 #define MOVE_MAX 16
1795 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
1796 move efficiently, as opposed to MOVE_MAX which is the maximum
1797 number of bytes we can move with a single instruction. */
1798 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1800 /* If a memory-to-memory move would take MOVE_RATIO or more simple
1801 move-instruction pairs, we will do a movmem or libcall instead.
1802 Increasing the value will always make code faster, but eventually
1803 incurs high cost in increased code size.
1805 If you don't define this, a reasonable default is used. */
1807 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1809 /* If a clear memory operation would take CLEAR_RATIO or more simple
1810 move-instruction sequences, we will do a clrmem or libcall instead. */
1812 #define CLEAR_RATIO (optimize_size ? 2 \
1813 : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1815 /* Define if shifts truncate the shift count
1816 which implies one can omit a sign-extension or zero-extension
1817 of a shift count. */
1818 /* On i386, shifts do truncate the count. But bit opcodes don't. */
1820 /* #define SHIFT_COUNT_TRUNCATED */
1822 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1823 is done just by pretending it is already truncated. */
1824 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1826 /* A macro to update M and UNSIGNEDP when an object whose type is
1827 TYPE and which has the specified mode and signedness is to be
1828 stored in a register. This macro is only called when TYPE is a
1829 scalar type.
1831 On i386 it is sometimes useful to promote HImode and QImode
1832 quantities to SImode. The choice depends on target type. */
1834 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1835 do { \
1836 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
1837 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
1838 (MODE) = SImode; \
1839 } while (0)
1841 /* Specify the machine mode that pointers have.
1842 After generation of rtl, the compiler makes no further distinction
1843 between pointers and any other objects of this machine mode. */
1844 #define Pmode (TARGET_64BIT ? DImode : SImode)
1846 /* A function address in a call instruction
1847 is a byte address (for indexing purposes)
1848 so give the MEM rtx a byte's mode. */
1849 #define FUNCTION_MODE QImode
1851 /* A C expression for the cost of moving data from a register in class FROM to
1852 one in class TO. The classes are expressed using the enumeration values
1853 such as `GENERAL_REGS'. A value of 2 is the default; other values are
1854 interpreted relative to that.
1856 It is not required that the cost always equal 2 when FROM is the same as TO;
1857 on some machines it is expensive to move between registers if they are not
1858 general registers. */
1860 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1861 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1863 /* A C expression for the cost of moving data of mode M between a
1864 register and memory. A value of 2 is the default; this cost is
1865 relative to those in `REGISTER_MOVE_COST'.
1867 If moving between registers and memory is more expensive than
1868 between two registers, you should define this macro to express the
1869 relative cost. */
1871 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
1872 ix86_memory_move_cost ((MODE), (CLASS), (IN))
1874 /* A C expression for the cost of a branch instruction. A value of 1
1875 is the default; other values are interpreted relative to that. */
1877 #define BRANCH_COST ix86_branch_cost
1879 /* Define this macro as a C expression which is nonzero if accessing
1880 less than a word of memory (i.e. a `char' or a `short') is no
1881 faster than accessing a word of memory, i.e., if such access
1882 require more than one instruction or if there is no difference in
1883 cost between byte and (aligned) word loads.
1885 When this macro is not defined, the compiler will access a field by
1886 finding the smallest containing object; when it is defined, a
1887 fullword load will be used if alignment permits. Unless bytes
1888 accesses are faster than word accesses, using word accesses is
1889 preferable since it may eliminate subsequent memory access if
1890 subsequent accesses occur to other fields in the same word of the
1891 structure, but to different bytes. */
1893 #define SLOW_BYTE_ACCESS 0
1895 /* Nonzero if access to memory by shorts is slow and undesirable. */
1896 #define SLOW_SHORT_ACCESS 0
1898 /* Define this macro to be the value 1 if unaligned accesses have a
1899 cost many times greater than aligned accesses, for example if they
1900 are emulated in a trap handler.
1902 When this macro is nonzero, the compiler will act as if
1903 `STRICT_ALIGNMENT' were nonzero when generating code for block
1904 moves. This can cause significantly more instructions to be
1905 produced. Therefore, do not set this macro nonzero if unaligned
1906 accesses only add a cycle or two to the time for a memory access.
1908 If the value of this macro is always zero, it need not be defined. */
1910 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1912 /* Define this macro if it is as good or better to call a constant
1913 function address than to call an address kept in a register.
1915 Desirable on the 386 because a CALL with a constant address is
1916 faster than one with a register address. */
1918 #define NO_FUNCTION_CSE
1920 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1921 return the mode to be used for the comparison.
1923 For floating-point equality comparisons, CCFPEQmode should be used.
1924 VOIDmode should be used in all other cases.
1926 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1927 possible, to allow for more combinations. */
1929 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1931 /* Return nonzero if MODE implies a floating point inequality can be
1932 reversed. */
1934 #define REVERSIBLE_CC_MODE(MODE) 1
1936 /* A C expression whose value is reversed condition code of the CODE for
1937 comparison done in CC_MODE mode. */
1938 #define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1941 /* Control the assembler format that we output, to the extent
1942 this does not vary between assemblers. */
1944 /* How to refer to registers in assembler output.
1945 This sequence is indexed by compiler's hard-register-number (see above). */
1947 /* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1948 For non floating point regs, the following are the HImode names.
1950 For float regs, the stack top is sometimes referred to as "%st(0)"
1951 instead of just "%st". PRINT_OPERAND handles this with the "y" code. */
1953 #define HI_REGISTER_NAMES \
1954 {"ax","dx","cx","bx","si","di","bp","sp", \
1955 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)", \
1956 "argp", "flags", "fpsr", "dirflag", "frame", \
1957 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
1958 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
1959 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1960 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1962 #define REGISTER_NAMES HI_REGISTER_NAMES
1964 /* Table of additional register names to use in user input. */
1966 #define ADDITIONAL_REGISTER_NAMES \
1967 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
1968 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
1969 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
1970 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
1971 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
1972 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1974 /* Note we are omitting these since currently I don't know how
1975 to get gcc to use these, since they want the same but different
1976 number as al, and ax.
1979 #define QI_REGISTER_NAMES \
1980 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1982 /* These parallel the array above, and can be used to access bits 8:15
1983 of regs 0 through 3. */
1985 #define QI_HIGH_REGISTER_NAMES \
1986 {"ah", "dh", "ch", "bh", }
1988 /* How to renumber registers for dbx and gdb. */
1990 #define DBX_REGISTER_NUMBER(N) \
1991 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1993 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1994 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1995 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1997 /* Before the prologue, RA is at 0(%esp). */
1998 #define INCOMING_RETURN_ADDR_RTX \
1999 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2001 /* After the prologue, RA is at -4(AP) in the current frame. */
2002 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2003 ((COUNT) == 0 \
2004 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2005 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2007 /* PC is dbx register 8; let's use that column for RA. */
2008 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2010 /* Before the prologue, the top of the frame is at 4(%esp). */
2011 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2013 /* Describe how we implement __builtin_eh_return. */
2014 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2015 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2018 /* Select a format to encode pointers in exception handling data. CODE
2019 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2020 true if the symbol may be affected by dynamic relocations.
2022 ??? All x86 object file formats are capable of representing this.
2023 After all, the relocation needed is the same as for the call insn.
2024 Whether or not a particular assembler allows us to enter such, I
2025 guess we'll have to see. */
2026 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2027 asm_preferred_eh_data_format ((CODE), (GLOBAL))
2029 /* This is how to output an insn to push a register on the stack.
2030 It need not be very fast code. */
2032 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
2033 do { \
2034 if (TARGET_64BIT) \
2035 asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n", \
2036 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2037 else \
2038 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]); \
2039 } while (0)
2041 /* This is how to output an insn to pop a register from the stack.
2042 It need not be very fast code. */
2044 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
2045 do { \
2046 if (TARGET_64BIT) \
2047 asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n", \
2048 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0)); \
2049 else \
2050 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]); \
2051 } while (0)
2053 /* This is how to output an element of a case-vector that is absolute. */
2055 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2056 ix86_output_addr_vec_elt ((FILE), (VALUE))
2058 /* This is how to output an element of a case-vector that is relative. */
2060 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2061 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2063 /* Under some conditions we need jump tables in the text section, because
2064 the assembler cannot handle label differences between sections. */
2066 #define JUMP_TABLES_IN_TEXT_SECTION \
2067 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2069 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2070 and switch back. For x86 we do this only to save a few bytes that
2071 would otherwise be unused in the text section. */
2072 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2073 asm (SECTION_OP "\n\t" \
2074 "call " USER_LABEL_PREFIX #FUNC "\n" \
2075 TEXT_SECTION_ASM_OP);
2077 /* Print operand X (an rtx) in assembler syntax to file FILE.
2078 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2079 Effect of various CODE letters is described in i386.c near
2080 print_operand function. */
2082 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2083 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2085 #define PRINT_OPERAND(FILE, X, CODE) \
2086 print_operand ((FILE), (X), (CODE))
2088 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2089 print_operand_address ((FILE), (ADDR))
2091 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
2092 do { \
2093 if (! output_addr_const_extra (FILE, (X))) \
2094 goto FAIL; \
2095 } while (0);
2097 /* a letter which is not needed by the normal asm syntax, which
2098 we can use for operand syntax in the extended asm */
2100 #define ASM_OPERAND_LETTER '#'
2101 #define RET return ""
2102 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2104 /* Which processor to schedule for. The cpu attribute defines a list that
2105 mirrors this list, so changes to i386.md must be made at the same time. */
2107 enum processor_type
2109 PROCESSOR_I386, /* 80386 */
2110 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
2111 PROCESSOR_PENTIUM,
2112 PROCESSOR_PENTIUMPRO,
2113 PROCESSOR_K6,
2114 PROCESSOR_ATHLON,
2115 PROCESSOR_PENTIUM4,
2116 PROCESSOR_K8,
2117 PROCESSOR_NOCONA,
2118 PROCESSOR_max
2121 extern enum processor_type ix86_tune;
2122 extern enum processor_type ix86_arch;
2124 enum fpmath_unit
2126 FPMATH_387 = 1,
2127 FPMATH_SSE = 2
2130 extern enum fpmath_unit ix86_fpmath;
2132 enum tls_dialect
2134 TLS_DIALECT_GNU,
2135 TLS_DIALECT_SUN
2138 extern enum tls_dialect ix86_tls_dialect;
2140 enum cmodel {
2141 CM_32, /* The traditional 32-bit ABI. */
2142 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
2143 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
2144 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
2145 CM_LARGE, /* No assumptions. */
2146 CM_SMALL_PIC, /* Assumes code+data+got/plt fits in a 31 bit region. */
2147 CM_MEDIUM_PIC /* Assumes code+got/plt fits in a 31 bit region. */
2150 extern enum cmodel ix86_cmodel;
2152 /* Size of the RED_ZONE area. */
2153 #define RED_ZONE_SIZE 128
2154 /* Reserved area of the red zone for temporaries. */
2155 #define RED_ZONE_RESERVE 8
2157 enum asm_dialect {
2158 ASM_ATT,
2159 ASM_INTEL
2162 extern enum asm_dialect ix86_asm_dialect;
2163 extern unsigned int ix86_preferred_stack_boundary;
2164 extern int ix86_branch_cost, ix86_section_threshold;
2166 /* Smallest class containing REGNO. */
2167 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2169 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
2170 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
2171 extern rtx ix86_compare_emitted;
2173 /* To properly truncate FP values into integers, we need to set i387 control
2174 word. We can't emit proper mode switching code before reload, as spills
2175 generated by reload may truncate values incorrectly, but we still can avoid
2176 redundant computation of new control word by the mode switching pass.
2177 The fldcw instructions are still emitted redundantly, but this is probably
2178 not going to be noticeable problem, as most CPUs do have fast path for
2179 the sequence.
2181 The machinery is to emit simple truncation instructions and split them
2182 before reload to instructions having USEs of two memory locations that
2183 are filled by this code to old and new control word.
2185 Post-reload pass may be later used to eliminate the redundant fildcw if
2186 needed. */
2188 enum ix86_entity
2190 I387_TRUNC = 0,
2191 I387_FLOOR,
2192 I387_CEIL,
2193 I387_MASK_PM,
2194 MAX_386_ENTITIES
2197 enum ix86_stack_slot
2199 SLOT_TEMP = 0,
2200 SLOT_CW_STORED,
2201 SLOT_CW_TRUNC,
2202 SLOT_CW_FLOOR,
2203 SLOT_CW_CEIL,
2204 SLOT_CW_MASK_PM,
2205 MAX_386_STACK_LOCALS
2208 /* Define this macro if the port needs extra instructions inserted
2209 for mode switching in an optimizing compilation. */
2211 #define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2212 ix86_optimize_mode_switching[(ENTITY)]
2214 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2215 initializer for an array of integers. Each initializer element N
2216 refers to an entity that needs mode switching, and specifies the
2217 number of different modes that might need to be set for this
2218 entity. The position of the initializer in the initializer -
2219 starting counting at zero - determines the integer that is used to
2220 refer to the mode-switched entity in question. */
2222 #define NUM_MODES_FOR_MODE_SWITCHING \
2223 { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2225 /* ENTITY is an integer specifying a mode-switched entity. If
2226 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2227 return an integer value not larger than the corresponding element
2228 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2229 must be switched into prior to the execution of INSN. */
2231 #define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2233 /* This macro specifies the order in which modes for ENTITY are
2234 processed. 0 is the highest priority. */
2236 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2238 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
2239 is the set of hard registers live at the point where the insn(s)
2240 are to be inserted. */
2242 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2243 ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED \
2244 ? emit_i387_cw_initialization (MODE), 0 \
2245 : 0)
2248 /* Avoid renaming of stack registers, as doing so in combination with
2249 scheduling just increases amount of live registers at time and in
2250 the turn amount of fxch instructions needed.
2252 ??? Maybe Pentium chips benefits from renaming, someone can try.... */
2254 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
2255 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2258 #define DLL_IMPORT_EXPORT_PREFIX '#'
2260 #define FASTCALL_PREFIX '@'
2262 struct machine_function GTY(())
2264 struct stack_local_entry *stack_locals;
2265 const char *some_ld_name;
2266 rtx force_align_arg_pointer;
2267 int save_varrargs_registers;
2268 int accesses_prev_frame;
2269 int optimize_mode_switching[MAX_386_ENTITIES];
2270 /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2271 determine the style used. */
2272 int use_fast_prologue_epilogue;
2273 /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2274 for. */
2275 int use_fast_prologue_epilogue_nregs;
2278 #define ix86_stack_locals (cfun->machine->stack_locals)
2279 #define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2280 #define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2282 /* Control behavior of x86_file_start. */
2283 #define X86_FILE_START_VERSION_DIRECTIVE false
2284 #define X86_FILE_START_FLTUSED false
2286 /* Flag to mark data that is in the large address area. */
2287 #define SYMBOL_FLAG_FAR_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
2288 #define SYMBOL_REF_FAR_ADDR_P(X) \
2289 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2291 Local variables:
2292 version-control: t
2293 End: